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The Logic Programming Paradigm 
and Prolog 

Krzysztof R. Apt 

15.1 HISTORY OF LOGIC PROGRAMMING 

The logic programming paradigm has its roots in automated theorem proving from 
which it took the notion of a deduction. What is new is that in the process of de
duction some values are computed. The creation of this programming paradigm is 
the outcome of a long history that for most of its course ran within logic and only 
later inside computer science. Logic programming is based on the syntax of first
order logic, which was originally proposed in the second half of nineteenth century 
by Gottlob Frege and later modified to the currently used form by Giuseppe Peano 
and Bertrand Russell. 

In the 1930s, Kurt Godel and Jacques Her brand studied the notion of computabil
ity based on derivations. These works can be viewed as the origin of the "computation 
as deduction" paradigm. Additionally, Herbrand discussed in his doctoral thesis a 
set of rules for manipulating algebraic equations on terms that can be viewed now 
as a sketch of a unification algorithm. Some 30 years later, in 1965, Alan Robinson 
published his fundamental paper (Robinson 1965) that lies at the foundation of the 
field of automated deduction. In this paper, he introduced the resolution principle, 
the notion of unification, and a unification algorithm. Using the resolution method, 
one can prove theorems of first-order logic, but another step was needed to see how 
one could compute within this framework. 

This was eventually achieved in 1974 by Robert Kowalski (Predicate logic as a 
programming language, North-Holland, 197 4.) Proc. IFIP'7 4, in which logic programs 
with a restricted form of resolution were introduced. The difference between this 
form of resolution and the one proposed by Robinson is that the syntax is more 
restricted, but proving now has a side effect in the form of a satisfying substitution. 
This substitution can be viewed as a result of a computation and consequently certain 
logical formulas can be interpreted as programs. In parallel, Alain Colmerauer and 
his colleagues worked on a programming language for natural language processing 
based on automated theorem proving. This ultimately led to creation of Prolog in 
1973. Kowalski and Colmerauer with his team interacted in the period from 1971 to 
1973. This influenced their views and helped them to crystallize the ideas. 
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Pro log can be seen as a practical realization of the idea oflogic programs. It started 
as a programming language for applications in natural language processing, but soon 
after it was found that it can also be used as a general purpose programming language. 
A number of other attempts to realize the computation as deduction paradigm were 
proposed about the same time, notably by Cordell Green and Carl Hewitt, but the 
logic programming proposal, probably because it was the simplest and most versatile, 
became most successful. 

Originally, Prolog was implemented by Philippe Roussel, a colleague of 
Colmerauer, in the form of an interpreter written in Algol-W. An important step 
forward was achieved by David H. Warren, who proposed in 1983 an abstract ma
chine, now called Warren Abstract Machine (WAM), which consists of a machine 
architecture with an instruction set that serves as a target for machine independent 
Prolog compilers. WAM became a standard basis for implementing Prolog and other 
logic programming languages. 

The logic programming paradigm influenced a number of developments in com
puter science. As early as the 1970s, it led to the creation of deductive databases 
that extend the relational databases by providing deduction capabilities. A fur
ther impetus to the subject came unexpectedly from the Japanese Fifth Genera
tion Project for intelligent computing systems (1982-1991), in which logic program
ming was chosen as its basis. More recently, this paradigm led to constraint logic 
programming that realizes a general approach to computing in which the program
ming process is limited to a generation of constraints (requirements) and a solution 
of them, and to inductive logic programming, a logic-based approach to machine 
learning. 

The above account of history of logic programming and Prolog shows its roots 
in logic and automated deduction. In fact, Colmerauer and Roussel (1996) write 
"There is no question that Prolog is essentially a theorem prover a la Robinson. Our 
contribution was to transform that theorem prover into a programming language." 
This origin of the logic paradigm probably impeded its acceptance within computer 
science in times when imperative programming got impetus thanks to the creation of 
Pascal and C, the fields of verification and semantics of imperative programs gained 
ground, and when the artificial intelligence community already adopted Lisp as their 
language of choice. 

Here, we offer an alternative presentation of the subject by focusing on the or
dinary programming concepts (often implicitly) present in logic programming and 
by relating various of its ideas to those present in the imperative and functional 
programming paradigms. 

15.2 BRIEF OVERVIEW OF THE LOGIC PROGRAMMING PARADIGM 

The logic programming paradigm differs substantially from other programming 
paradigms. When stripped to the bare essentials, it can be summarized by the follow
ing three features. 

• Computing takes place over the domain of all terms defined over a "universal" 
alphabet. 

• Values are assigned to variables by means of automatically generated 
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substitutions, called most general unifiers. These values may contain variables, 
called logical variables. 

• The control is provided by a single mechanism: automatic backtracking. 

In our exposition of this programming paradigm, we shall stress the above three 
points. Even such a brief summary shows both the strength and weakness of the logic 
programming paradigm. Its strength lies in an enormous simplicity and conciseness; 
its weakness has to do with the restrictions to one control mechanism and the use of 
a single data type. 

This framework has to be modified and enriched to accommodate it to the custom
ary needs of programming, for example by providing various control constructs and 
by introducing the data type of integers with the customary arithmetic operations. 
This can be done and, in fact, Prolog and constraint logic programming languages 
are examples of such a customization of this framework. 

15.2.1 Declarative Programming 

Two additional features of logic programming are important to note. First, in its 
pure form it supports declarative programming. A declarative program admits two 
interpretations. The first one, called a procedural interpretation, explains how the 
computation takes place, whereas the second one, called a declarative interpretation, 
is concerned with the question what is being computed. 

Informally, the procedural interpretation is concerned with the method, whereas 
the declarative interpretation is concerned with the meaning. In the procedural in
terpretation, a declarative program is viewed as a description of an algorithm that 
can be executed. In the declarative interpretation, a declarative program is viewed 
as a formula, and one can reason about its correctness without any reference to the 
underlying computational mechanism. This makes declarative programs easier to 
understand and to develop. 

As we shall see, in some situations the specification of a problem in the logic 
programming format already forms an algorithmic solution to the problem. So logic 
programming supports declarative programming and allows us to write executable 
specifications. It should be added, however, that in practice the Prolog programs 
obtained in this way are often inefficient, so this approach to programming has to be 
combined with various optimization techniques, and an appropriate understanding 
of the underlying computation mechanism is indispensable. To clarify this point, we 
shall present here a number of Prolog programs that are declarative and eliminate 
from them various sources of inefficiency. 

This dual interpretation of declarative programs also accounts for the double use 
of logic programming as a formalism for programming and for knowledge repre
sentation, and explains the importance of logic programming in the field of artificial 
intelligence. 

15.2.2 Interactive Programming 

Another important feature of logic programming is that it supports interactive pro
gramming. In other words, the user can write a single program and interact with it 
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by means of various queries of interest to which answers are produced. The Prolog 
systems greatly support such an interaction and provide simple means to compute 
one or more solutions to the submitted query, to submit another query, and to 
trace the execution by setting up, if desired, various check points, all within the 

same "interaction loop." This leads to a flexible style of programming. 
This is completely analogous to the way functional programs are used where the 

interaction is achieved by means of expressions that need to be evaluated using a 
given collection of function definitions. 

In what follows, we shall introduce Prolog, the best known programming lan
guage based on the logic programming paradigm. Prolog is then based on a subset 
of first-order logic. We explain here how Prolog uses this syntax in a novel way (this 
characteristic is called ambivalent syntax) and extends it by a number of interesting 
features, notably by supporting infix notation and by providing so-called anony

mous and meta-variables. These extensions amount to more than syntactic sugar. 
In fact, they make it possible to realize in Prolog higher-order programming and 
meta-programming in a simple way. 

When discussing Prolog, it is useful to abstract from the programming language 
and first consider the underlying conceptual model provided by logic programming. 

15.3 EQUATIONS SOLVED BY UNIFICATION AS ATOMIC ACTIONS 

We begin by explaining how computing takes place at the "atomic level." In logic pro

gramming, the atomic actions are equations between terms (arbitrary expressions). 
They are executed by means of the unification process that attempts to solve such 
equations. In the process of solving, values are assigned to variables. These values 
can be arbitrary terms. In fact, the variables are all of one type that consists of the 
set of all terms. 

This informal summary shows that the computation process in logic programming 
is governed by different principles than in the other programming paradigms. 

15.3.1 Terms 

In a more rigorous explanation, let us start by introducing an alphabet that consists 
of the following disjoint classes of symbols: 

Ill variables, denoted by x, y, z, ... possibly with subscripts 
II function symbols 
II parentheses, "("and")" 
11111 comma,"," 

We also postulate that each function symbol has a fixed arity, that is the number of 
arguments associated with it. 0-ary function symbols are called constants, and are 
usually denoted by a, b, c, d, .... Below we denote function symbols of positive arity 
by f, g, h, .... 

Finally, terms are defined inductively as follows: 

ll a variable is a term, 
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• if f is an n-ary function symbol and t1, .•• , tn are terms, then f(t1, ••• , tn) is a 
term. 

In particular every constant is a term. Variable-free terms are usually called ground 
terms. Below we denote terms bys, t, u, w, .... 

For example, if a is a constant, x and y are variables, f is a binary function symbol 
and g a unary function symbol, then f(f(x, g(b)), y) is a term. 

Terms are fundamental concepts in mathematical logic, but at first sight they seem 
to be less common in computer science. However, they can be seen as a generalization 
of the concept of a string familiar from the theory of formal languages. In fact, strings 
can be viewed as terms built out of an alphabet the only function symbols of which 
are the concatenation operations in each arity (or alternatively, out of an alphabet 
the only function symbol of which is the binary concatenation operation assumed to 
be associative, say to the right). Another familiar example of terms are arithmetic 
expressions. These are terms built out of an alphabet in which, as the function symbols, 
we take the usual arithmetic operations of addition, subtraction, multiplication, and, 
say, integer division, and as constants 0, -1, 1, .... 

In logic programming, no specific alphabet is assumed. In fact, it is convenient to 
assume that in each arity an infinite supply of function symbols exists and that all terms 
are written in this "universal alphabet." These function symbols can be, in particular, 
the denotations of arithmetic operations, but no meaning is attached to these function 
symbols. This is in contrast to most of the imperative programming languages, in 
which for example the use of "+" in an expression implies that we refer to the 
addition operation. The other consequence of this choice is no types are assigned to 
terms. In fact, no types are assumed and consequently there is no distinction between, 
say, arithmetic expressions, Boolean expressions, and terms denoting lists. All these 
terms are considered as being of one type. 

15.3.2 Substitutions 

Unlike in imperative programming, in logic programming the variables can be unini
tialized. Moreover, the possible values of variables are terms. So to properly explain 
the computation process we need to reexamine the notion of a state. 

At any moment during the computation there will be only a finite number 
of variables that are initialized - these are variables to which, in the considered 
computation, some value was already assigned. Since these values are terms, we 
are naturally led to consider substitutions. These are finite mappings from vari
ables to terms such that no variable is mapped to itself. So substitution provides 
information about which variables are initialized. (Note that no variable can be 
initialized to itself, which explains the restriction that no variable is mapped to 
itself.) 

Substitutions then form a counterpart of the familiar notion of a state used in im
perative programming. We denote a substitution by {xif t1, ... , Xn/tn}. This notation 
implies that x1, ... , Xn are different variables, t1, ... , tn are terms and that no term t; 
equals the variable Xi. We say then that the substitution {xii t1, ... , Xn/ tn} binds the 
variable x; to the term t;. 
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Using a substitution, we can evaluate a term in much the same way as using 

a state we can evaluate an expression in imperative programming languages. This 

process of evaluation is called an application of a substitution to a term. It is the 

outcome of a simultaneous replacement of each variable occurring in the domain of 

the substitution by the corresponding term. So, for example, the application of the 

substitution (x/f(z), y/g(z)) to the term h(x, y) yields the term h(f(z), g(z)). Here 

the variable x was replaced by the term f(z) and the variable y by the term g(z). In 

the same way, we define an application of a substitution to an atom, query, or a clause. 

So an evaluation of a term using a substitution yields again a term. This is in 

contrast to imperative programming where an evaluation of an expression using a 

state yields a value that belongs to the type of this expression. 

15.3.3 Most General Unifiers 

As already mentioned, in logic programming the atomic actions are equations be

tween terms and the unification process is used to determine their meaning. Before 

we discuss these matters in detail, let us consider some obvious examples of how 

solving equations can be used as an assignment. 
We assume that all mentioned variables are uninitialized. By writing x =a, we 

assign the constant a to the variable x. Because in logic programming the equality 

'"="is symmetric, the same effect is achieved by writing a = x. More interestingly, by 

writing x = f (y) (or, equivalently, f(y) = x) we assign the term f (y) to the variable 

x. Since f(y) is a term with a variable, we assigned to the variable x an expression 

with a variable in it. Recall that a variable that occurs in a value assigned to another 

variable is called a logical variable. Therefore, y is a logical variable here. The use of 

logical variables is an important distinguishing feature of logic programming and we 

devote the whole subsection 15.5.2 to an explanation of their use. Finally, by writing 

f (y) = f(g(a )), we assign the term g(a) to the variable y, as this is the way to make 
these two terms equal. 

These examples show that the equality"=" in logic programming and the assign

ment in C, also written using ''= ", are totally different concepts. 

Intuitively. unification is the process of solving an equation between terms (i.e., of 

making two terms equal) in a least constraining way. The resulting substitution (if it 

exists) is called a most general unifier (mgu). For example, the equation x = f(y) can 

be solved (i.e., the terms x and f (y) unify) in a number of ways, for instance, by means 

of each of the substitutions {x/f(y)}, {x/f(a), y/a), {x/f(a). y/a, z/g(b)}, Clearly, 

only the first one is ''least constraining." In fact, out of these three substitutions the 

first one is the only most general unifier of the equation x = f(y). The notion of a least 

constraining substitution can be made precise by defining an order on substitutions. 

In this order, the substitution (x / f(y)) is more general than {x / f (a), y /a), etc. 

Note that we made the terms x and f(y) equal by instantiating only one of 

them. Such a special case of the unification is called matching, which is the way of 

assigning values in functional programming languages. Unification is more general 

than matching as the following, slightly less obvious, example shows. Consider the 

equation f(x, a)= f(b, y). Here, the most general unifier is {x/b. y/a). In contrast 

to the previous example, it is now not possible to make these two terms equal by 
instantiating only one of them. 
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The problem of deciding whether an equation between terms has a solution is 
called the unification problem. Robinson (JACM, 12(1): 23-41, 1965) showed that 
the unification problem is decidable. More precisely, he introduced a unification 
algorithm with the following property. If an equation between terms has a solution, 
the algorithm produces an mgu, otherwise it reports a failure. An mgu of an equation 
is unique up to renaming of the variables. 

15.3.4 A Unification Algorithm 

In what follows, we discuss the unification process in more detail using an elegant 
unification algorithm introduced in Martelli and Montanari (An efficient unification 
algorithm, ACM Trans. Prog. Lang. and Systems; vol 4, 1982, pp. 258-282). This 
algorithm takes as input a finite set of term equations {s1 = t1 • .•• , s,, = t,,} and tries 
to produce an rngu of them. 

MARTELLI-MONTANARI ALGORITHM 

Nondeterministically choose from the set of equations an equation of a form below 
and perform the associated action. 

(1) f(s1 ... .,Sn)= f(t1, .. . ,t,,) replace by the equations 

S1 = t1, ... , Sn= t 11 , 

(2) f(s1 .... ,s11)=g(t1 ... .,tm)whereff.g haltwithfailure, 

(3) x = x delete the equation, 

(4) t = x where t is not a variable replace by the equation x = t, 

(5) x = t where x does not occur in t apply the substitution {x/t) 

and x occurs elsewhere to all other equations 

( 6) x = t where x occurs in t and x differs from t halt with failure. 

The algorithm terminates when no action can be performed or when failure arises. 
In case of success, by changing in the final set of equations all occurrences of"=" 
to "/" we obtain the desired mgu. Note that action (1) includes the case c = c for 
every constant c which leads to deletion of such an equation. In addition, action (2) 
includes the case of two different constants. 

To illustrate the operation of this algorithm, reconsider the equation f(x, a) = 
f(b, y). Using action (1) it rewrites to the set of two equations, {x = b, a = y}. By 
action ( 4) we now get the set {x = b, y =a}. At this moment, the algorithm terminates 
and we obtain the mgu {x/b, y/a}. 

So by interpreting the equality symbol as the request to find a most general unifier 
of the considered pair of terms, each equation is turned into an atomic action that 
either produces a substitution (a most general unifier) or fails. This possibility of 
a failure at the level of an atomic action is another distinguishing feature of logic 
programming. 

By writing a sequence of equations, we can create very simple logic programs 
that either succeed and produce as output a substitution or fail. It is important to 
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understand how the computation then proceeds. We illustrate it by means of three 
progressively more complex examples. 

First consider the sequence 

f(x, a)= /(g(z), y), h(u) = h(d). 

The first equation yields first the intermediate substitution {x / g(z), y I a} and the 
second one the substitution {u/d}. By combining these two substitutions we obtain 
the substitution {x/g(z), y/a, u/d} produced by this logic program. 

As a slightly less obvious example, consider the sequence 

f(x, a)= f(g(z), y), h(x, z) = h(u, d). 

Here the intermediate substitution {x/g(z), y/a} binds the variable x that also oc
curs in the second equation. This second equation needs to be evaluated first in 
the "current state,'' here represented by the substitution {x / g(z), y /a}, before being 
executed. This evaluation produces the equation h(g(z), z) = h(u, d).This equation 
yields the most general unifier {u/ g(d), z/ d} and the resulting final substitution is 
here {x/g(d), y/a, u/g(d), z/d}. 

What happened here is that the substitution {u/g(d), z/d} was applied to the inter
mediate substitution {x/g(z), y/a}. The effect of an application of one substitution, 
say o, to another, say y, (or of composition of the substitutions) is obtained by 

II applying o to each of the terms that appear in the range of y 
11111 adding to the resulting substitution the bindings to the variables that are in the 

domain of o but not in the domain of y 
In the above example, the first step yields the substitution {x/g(d), y/a), and the 
second step adds the bindings u/g(d) and z/d to the final substitution. This pro
cess of substitution composition corresponds to an update of a state in imperative 
programming, and that is how we shall refer to it in the sequel. 

As a final example consider the sequence 

f(x, a)= /(g(z), y), h(x, z) = h(d, u). 

It yields a failure. Indeed, after executing the first equation the variable x is bound 
to g(z), so the evaluation of the second equation yields h(g(z). z) = h(d, u) and no 
substitution makes equal (unifies) the terms h(g(z), z) and h(d, u). 

It is useful to compare solving equations by unification with the assignment com
mand. First, note that, in contrast to assignment, unification can assign an arbitrary 
term to a variable. Also, it can fail, something the assignment cannot do. On the other 
hand, using assignment one can modify the value of a variable, something unification 
can perform in a very limited way: by further instantiating the term used as a value. 
Thus, these atomic actions are incomparable. 

15.4 CLAUSES AS PARTS OF PROCEDURE DECLARATIONS 

Logic programming is a rule based formalism and Prolog is a rule based language. 
In this context, the rules are called clauses. To better understand the relationship 
between logic programming and imperative programming, we proceed in two steps 
and introduce a restricted form of clauses first. 
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15.4.1 Simple Clauses 

Using unification, we can execute only extremely simplistic programs that consist of 
sequences of equations. We now enrich this framework by adding procedures. In logic 
programming they are modelled by means of symbols, sometimes called predicates. 
Below, we denote relation symbols by p, q, r, .... As in the case of the function 
symbols, we assume that each relation symbol has a fixed arity associated with it. 
When the arity is 0, the relation symbol is usually called a propositional symbol. 

If p is an n-ary relation symbol and ti, ... , tn are terms, then we call p(ti, ... , tn) 
an atom. When n = 0 the propositional symbols coincide with atoms. Interestingly, 
as we shall see, such atoms are useful. Intuitively, a relation symbol corresponds 
to a procedure identifier and an atom to a procedure call. The equality symbol"=" is 
a binary relation symbol written in an infix form, so each equation is also an atom. 
However, the meaning of equality is determined, so it can be viewed as a built-in 
procedure, i.e., a procedure with a predefined meaning. 

We still need to define the procedure declarations and to clarify the parameter 
mechanism used. Given an n-ary relation symbol p and atoms Ai, ... , Ak we call an 
expression of the form 

p(xi, ... , Xn) :- A1, ... , Ak. 

a simple clause. p(xi, ... , Xn) is called the head of the clause and A1, ... , Ak its body. 
The fullstop "." at the end of the clause is important: it signals to the compiler (or 
interpreter) that the end of the clause is encountered. 

The procedural interpretation of a simple clause p(xi, ... , xn) :- Ai, ... , Ak is: 
"to establish p(x1, ... , xn) establish A1, ... , Ak", while the declarative interpretation 
is: "p(x1, ... , Xn) is true if A1, ... , Ak is true". The declarative interpretation explains 
why in the logic programming theory the reversed implication symbol "+-" is used 
instead of":-". 

Finally, a simple logic program is a finite set of clauses. Such a program is activated 
by providing an initial query, which is a sequence of atoms. In the imperative program
ming jargon a query is then a program and a simple logic program is a set of procedure 
declarations. Intuitively, given a simple program, the set of its simple clauses with the 
same relation symbol in the head corresponds to the procedure declaration in the 
imperative languages. One of the syntactic confusions is that in logic programming 
the comma"," is used as a separator between the atoms constituting a query, whereas 
in the imperative programming the semicolon ";" is used for this purpose. 

15.4.2 Computation Process 

A nondeterminism is introduced into this framework by allowing multiple clauses 
with the same relation symbol in the head. In the logic programming theory, this form 
of nondeterminism (called don't know nondeterminism) is retained by considering 
all computations that can be generated by means of multiple clauses and by retaining 
the ones that lead to a success. "Don't know" refers to the fact that in general we do 
not know which computation will lead to a success. 

In Prolog, this computation process is made deterministic by ordering the clauses 
by the textual ordering and by employing automatic backtracking to recover from 
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failures. Still, when designing Prolog programs, it is useful to have the don't know 
nondeterminism in mind. In fact, in explanations of Prolog programs phrases like 
"this program nondeterministically guesses an element such that ... " are common. 
Let us explain now more precisely how the computing takes place in Prolog. To this 
end, we need to clarify the procedure mechanism used and the role played by the 
use of multiple clauses. 

The procedure mechanism associated with the simple clauses introduced above 
is call-by-name according to which the formal parameters are simultaneously substi
tuted by the actual ones. So this procedure mechanism can be simply explained by 
means of substitutions: given a simple clause p(x1, ... , Xn) :- A1, ... , Ak. a procedure 
call p(t1, ... , t,,) leads to an execution of the statement (A1, ... , Ak){xJ/t1, ... , Xn/tn) 
obtained by applying the substitution {xJ/t1, ••• , Xn/t,,) to the statement A1, ... , Ak. 
(We assume here that the variables of the clauses are appropriately renamed to 
avoid variable clashes.) Equivalently, we can say that the procedure call p(t1, ... , tn) 
leads to an execution of the statement A1, ... , Ak in the state (represented by a 
substitution) updated by the substitution {xi/t1, •.• , x,,/t,,). 

The clauses are tried in the order they appear in the program text. The depth-first 
strategy is implied by the fact that a procedure call leads directly to an execution 
of the body of the selected simple clause. If at a certain stage a failure arises, the 
computation backtracks to the last choice point (a point in the computation at which 
one out of more applicable clauses was selected) and the subsequent simple clause 
is selected. If the selected clause was the last one, the computation backtracks to the 
previous choice point. If no choice point is left, a failure arises. Backtracking implies 
that the state is restored, so all the state updates performed since the creation of the 
last choice point are undone. 

Let us illustrate now this definition of Prolog's computation process by consider
ing the most known Prolog program the purpose of which is to append two lists. In 
Prolog, the empty list is denoted by [] and the list with head h and tail t by [h I t]. 
The term [a I [b I s]] abbreviates to a more readable form [a,b I s], the list [a I [b I []]] 
abbreviates to [a,b] and similarly with longer lists. This notation can be used both for 
lists and for arbitrary terms that start with the list formation operator[.! .. ]. 

Then the following logic program defines by induction w.r.t. the first argument 
how to append two lists. Here and elsewhere we follow Prolog's syntactic conventions 
and denote variables by strings starting with an upper case letter. The names ending 
with "s" are used for the variables meant to be instantiated to lists. 

% append(Xs, Ys, Zs) :- Zs is the result of concatenating the lists Xs and Ys. 
append(Xs, Ys, Zs) :- Xs = [], Zs = Ys. 
append(Xs, Ys, Zs) :- Xs = [H I Ts], Zs = [H I Us], append(Ts, Ys, Us). 

In Prolog, the answers are generated as substitutions written in an equational form (as 
in the Martelli-Montanari algorithm presented above). In what follows, we display 
a query Q. as?- Q . . Here "?-"is the system prompt and the fullstop "."signals the 
end of the query. 

One can check then that the query 
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?- append([jan,feb,mar], [april,may], Zs). 

yields Zs = [jan,feb,mar,april,may] as the answer and that the query 

?- append([jan,feb,mar], [april,may], [jan,feb,mar,april,may]). 

succeeds and yields the empty substitution as the answer. 

In contrast, the query 

?- append([jan,feb,mar], [april,may], [jan,feb,mar,april]). 

fails. Indeed, the computation leads to the subsequent procedure calls 

append([feb,mar], [april,may], [feb,mar,april]), 
append([mar], [april,may], [mar,april]) and 
append([], [april,may], [april]), 

and the last one fails because the terms [april,may] and [april] don't unify. 

15.4.3 Clauses 

The last step in defining logic programs consists of allowing arbitrary atoms as heads 
of the clauses. Formally, given atoms H, A 1, ... , Ak, we call an expression of the form 

a clause. If k = 0, that is if the clause's body is empty, such a clause is called a fact 

and the ":-" symbol is then omitted. If k > 0, that is, if the clause's body is nonempty, 
such a clause is called a rule. A logic program is then a finite set of clauses and a pure 

Prolog program is a finite sequence of clauses. 
Given a pure Prolog program, we call the set of its clauses with the relation pin 

the head the definition of p. Definitions correspond to the procedure declarations in 
imperative programming and to the function definitions in functional programming. 
Variables that occur in the body of a clause but not in its head are called local. They 
correspond closely to the variables that are local to the procedure bodies in the 
imperative languages with the difference that in logic programs their declaration is 
implicit. Logic programming, like Pascal, does not have a block statement. 

To explain how the computation process takes place for pure Prolog programs, 

we simply view a clause of the form 

p(s1, ... , Sn) :- A1, ... , Ak. 
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as a shorthand for the simple clause 

p(x1, ... , x,,) :- (x1, ... , x,,) = (s1, ... , s,,), A1, ... , Ak· 

where x1, ... , x,, are fresh variables. We use here Prolog's syntactic facility according 
to which given a sequence s1, ••. , Sn of terms (s1, ..• , s11 ) is also a term. 

So given a procedure call p(t1, ... , t11 ) if the above clause p(s1, ... , s,,) :
A1, ... , Ak is selected, an attempt is made to unify (t1, ..• , t11) with (s1, ... , s,,). (As 
before, we assume here that no variable clashes arise; otherwise the variables of the 
clause should be appropriately renamed.) If the unification succeeds and produces 
a substitution e, the state (represented by a substitution) is updated by applying to 
it e and the computation continues with the statement A1, ... , Akin this new state. 
Otherwise, a failure arises and the next clause is selected. 

Therefore, by using clauses instead of simple clauses, unification is effectively 
lifted to a parameter mechanism. As a side effect, this makes the explicit use of 
unification, modelled by means of"=", superfluous. As an example, reconsider the 
above program appending two lists. Using the clauses it can be written in a much 
more succinct way, as the following program APPEND: 

% append(Xs, Ys, Zs) :- Zs is the result of concatenating the lists Xs and Ys. 
append([], Ys, Ys). 
append([X I Xs], Ys, [X I Zs]) :- append(Xs, Ys, Zs). 

Here, the implicit case analysis present in the previous program is in effect moved 
into the heads of the clauses. The use of terms in the heads of the clauses is 
completely analogous to the use of patterns in function definitions in functional pro
gramming. 

To summarize, the characteristic elements of procedure declarations in logic pro
gramming, in contrast to imperative programming, are: the use of multiple rules and 
use of patterns to select among these rules. 

15.5 PROLOG'S APPROACH TO PROGRAMMING 

The power and originality of the Prolog programming style lies in the combination 
of automatic backtracking with the use of relations and logical variables. 

15.5.1 Multiple Uses of a Single Program 

As a first illustration of the novelty of Prolog's approach to programming, we illustrate 
the possibility of using the same program for different purposes. The perhaps simplest 
example involves the following program MEMBER. We use in it a useful feature of 
Pro log, so-called anonymous variable, written as an "underscore" character"-·" Each 
occurrence of "_" in a query or in a clause is interpreted as a different variable. 
Anonymous variables are analogous to the wildcard pattern feature of the ML or 
Haskell language. 
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% member(X, Xs):- X is a member of the list Xs. 
member(X, [X I _]). 
member(X, [_I Xs]):- member(X, Xs). 

MEMBER can be used both for testing and for computing: 

?- member(wed, [man, wed, fri]). 
yes 
?- member(X, [man, wed, fri]). 
Xs =man; 
Xs =wed; 
Xs=fri; 
no 

Here ";" is the user's request to produce the next answer. If this request fails, the 
answer "no" is printed. 

Consequently, given a variable X and two lists s and t, the query rnember(X, s), 
member(X, t). generates all elements that are present both ins and t. Operationally, 
the first call generates all members of sand the second call tests for each of them the 
membership in t. 

Also the APPEND program can be used for a number of purposes, in particular to 
concatenate two lists and to split a list in all possible ways. For example, we have 

?- append(Xs, Ys, [man, wed, fri]). 
Xs = [] 

Ys = [man, wed, fri]; 
Xs =[man] 
Ys = [wed, fri]; 
Xs =[man, wed] 
Ys = [fri]; 
Xs = [man, wed, fri] 
Ys = []; 

no 

This cannot be achieved with any functional programing version of the APPEND. The 
difference comes from the fact that in logic programming procedures are defined by 
means of the relations, whereas in functional programming functions are used. In 
fact, there is no distinction between input and output arguments in the procedures 
in logic programs. 

To see two uses of append in a single program, consider a program that checks 
whether one list is a consecutive sublist of another one. The one line program SUB LIST 
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Xs 
Zs 

Ys 

Figure 15.1. Xs is a sublist of the list Ys 

that follows formalizes the following definition of a sublist: 

• the list Xs is a sub list of the list Y s if Xs is a prefix of a suffix of Y s. 

% sublist(Xs, Ys) :- Xs is a sublist of the list Ys. 
sublist(Xs, Ys) :- append(_, Zs, Ys), append(Xs, _, Zs). 

Here, both anonymous variables and Zs are local. In this rule Zs is a suffix of Ys and 
Xs is a prefix of Zs. This relation is illustrated in Figure 15.1. 
Operationally, given two lists, as and bs, the query sublist(as, bs). leads to a generation 
of splits of the list bs through the call append(_, Zs, bs). Then for each generated suffix 
Zs of bs it is checked whether for some list, denoted by the anonymous variable _, 
the call append( as, _, Zs) succeeds. This happens when as is a prefix of Zs. So a typical 
use of this program involves backtracking. 

15.5.2 Logical Variables 

Let us return now to the logical variables. They are an important feature of logic 
programming, but it is easy to overlook their use. For example, they already appear 
in the computations involving the first version of the list concatenation program, 
and consequently, because of the way we defined the computation process, in the 
computations of the APPEND program. Indeed, given the query append ([jan,feb,mar], 
[april,may], Zs). the rule 

append(Xs, Ys, Zs) :- Xs =[HI Ts], Zs = [H I Us], append(Ts, Ys, Us). 

leads to the binding of the variable Zs to the term (jan I Us]. The value of the variable 
Us is computed later, by means of the call append((feb,mar], [april,may], Us). This call 
first binds Us to the term [feb I Uls], where Uls is a fresh variable, and hence Zs to 
the term [jan, feb I Uls]. This progressive building of the output using the logical 
variables is typical for Prolog. The real power of logical variables should become 
apparent after considering the following three original Prolog programs. 

A type assignment 
The typed lambda calculus and Curry's system of type assignment involves statements 
of the form s : r, which should be read as "term s has type r ." Finite sequences of 
such statements with s being a variable are called environments are denoted below 
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by E. A statement of the form E f- s : r should be read as "in the environment E the 
terms has type r". The following three rules define by induction on the structure of 
lambda terms how to assign types to lambda terms: 

x: t EE 
Ef--x:t 

E f- m : s -+ t, E f- n : s 
E f- (m n) : t 

E,x:sf--m:t 

E f- (A.x.m) : s-+ t 

To encode the lambda terms as usual "first-order" terms, we use the unary function 
symbol var and two binary function symbols, lambda and apply. The lambda term x 
(a variable) is translated to the term var(x), the lambda term (m n) to the term apply 
(m, n), and the lambda term A.x.m to the term lambda(x, m). For example, the lambda 
term A.x. (x x) translates to lambda(x, apply(var(x), var(x))). The subtle point is that 
according to Prolog convention, lower case letters stand for constants, so for example 
var(x) is a ground term (i.e., a term without variables). 

The above rules directly translate into the following Prolog program that refers 
to the previously defined member relation. 

:- op(1100, yfx, arrow). 
% type(E, S, T):- lambda term S has type Tin the environment E. 
type(E, var(X), T):- member([X, T], E). 
type(E, apply(M, N), T):- type(E, M, S arrow T), type(E, N, S). 
type(E, lambda(X, M), (S arrow T)):- type([[X, S] I E], M, T). 

For readability, we use here arrow as a binary function symbol written in infix notation. 
The first line declares this use of arrow together with a certain associativity and 
priority information (The details of this archaic, though useful, Prolog notation are 
not relevant here.) 

As expected, the above program can be used to check whether a given (represen
tation of a) lambda term has a given type. Less expected is that this program can also 
be used to compute a type assignment to a lambda term, if such an assignment exists, 
and to report a failure if no such assignment exists. To this end, given a lambda term 
s, it suffices to use the query type([], t, T)., where the empty list[] denotes the empty 
environment and where t is the translation of s to a first-order term. For instance, 
the query 

?- type([], lambda(x, apply(var(x), var(x))), T). 

fails. In fact, no type can be assigned to the lambda term h. (x x). The computation 
first leads to the call 
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type([[x, S]]1 apply(var(x), var(x)), T) 

and then to the call 

type([[xl S]]1 var(x), S arrow T). 

This in turn leads to the call 

member([x, S arrow T]1 [[x, S]]) 

which fails, because the terms S arrow T and S do not unify. In the above computation, 
T is used as a logical variable. 

The problem of computing a type assignment for lambda terms was posed and 
solved by Curry and Feys (1958). It is an important topic in the theory of lambda cal
culus that is of relevance for type inference in functional programming. The solution 
in Prolog given above is completely elementary. A typical use of this program does 
not involve backtracking. In fact, its power relies on unification. 

A Sequence Program 
Next, consider the following problem: arrange three ls, three 2s, ... , three 9s in 
sequence so that for all i E [1,9] there are exactly i numbers between successive 
occurrences of i. An example of such a sequence is 

11 91 11 2, 11 81 2, 41 6, 2, 71 91 4, 5, 81 6, 31 4, 71 51 31 9, 6, 8, 31 51 7. 

The desired program is an almost verbatim formalization of the problem in Prolog. 

% sequence(Xs) :- Xs is a list of 27 variables. 
sequence( [ _, _, _, _, _,_,_, _,_,_, _, _, _, _, _, _,_,_, _,_,_, _, _, _, _, _, _]). 
% question(Ss) :- Ss is a solution to the problem. 
question(Ss) :-

sequence(Ss) I 
sub list( [9 1-r-1-1-r-1-1-1-r-191_,_,_,_1-1-1-1-,_,9] I Ss), 
sub list( [8, -r-1-1-1-1-1-1-,81-1-r-1-1-i-1-,_18] 1 Ss), 
sublist([7 r-1-1-1-1-1-1-1 7 1-1-1-1-1-1-1-1 7]1 Ss)1 
sub list([ 6, _,_1-1-1-1-161-1-1-1-1-1-16] I Ss), 
sub list( [ 51-1-1-1-1-15 1-1-1-1-1-15] I Ss )1 
sub list([ 41-1-1_,_,41_1_1_1_,4], Ss), 
sublist([31-1-1-131_1_,_13]1 Ss)I 
sublist([2,_1-121-i-12]1 Ss)1 
sublist([l1_1l1_1l] 1 Ss). 
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Note how the anonymous variables dramatically improve the readability of the pro
gram. 

Operationally, the query?- question(Ss). leads to the procedure call sequence(Ss) 
that instantiates the variable Ss to the list of 27 anonymous (so different) variables. 
Then each of the nine calls of the sub list procedure enforces an existence of a specific 
sublist pattern on Ss. Each pattern involves syntactically anonymous variables, each 
of them representing operationally a logical variable. 

In spite of the fact that the program is simple and transparent, the resulting com
putation is involved because of a extensive use of backtracking. The query generates 
all six solutions to the problem. 

Difference lists 
One of the drawbacks of the concatenation of lists performed by the APPEND program 
is that for lists s and t the execution of the query append(s, t, Z) takes the number of 
steps that is proportional to the length of the first list, s. This is obviously inefficient. 
In an imperative setting, if one represents a list as a link list, to concatenate two lists 
it suffices to adjust one pointer. 

Difference list is a generalization of the concept of a list that allows us to perform 
concatenation in constant time. The fact that many programs rely explicitly on list 
concatenation explains the importance of this concept. 

In what follows, we use the subtraction operator"-" written in the infix form. Its 
use has nothing to do with arithmetic, though intuitively one should read it as the 
"difference." Formally, a difference list is a construct of the form [a1 , ... , amlx] -
x, where x is a variable and where we used the notation introduced in 
Subsection 15.4.2. It represents the list [a1 , ... , am] in a form amenable to 
a different definition of concatenation. Namely, consider two difference lists 
[ai. ... , amlx] - x and [b 1, ... , bnlYl - y. Then their concatenation is the difference 
list [a1, ... , am, bi, ... , bnlY] - y2. 

This concatenation process is achieved by the following one line APPENDJJL 
program: 

% append(Xs, Ys, Zs) :- the difference list Zs is the result of concatenating 
% the difference lists Xs and Y s. 
append_dl(X-Y, Y-Z, X-Z). 

For example, we have: 

?- append_dl([a,blX]-X, [c,dlY]-Y, U). 
U = [a,b,c,dlY]-Y, 
X = [c,dlY] 

which shows that U became instantiated to the difference list representing the list 
[a,b,c,d]. 

We shall illustrate the use of difference lists in Subsection 15.6.2. 
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15.6 ARITHMETIC IN PROLOG 

The Prolog programs presented so far are declarative since they admit a dual reading 
as a formula. The treatment of arithmetic in Prolog compromises to some extent its 
declarative underpinnings. However, it is difficult to come up with a better solution 
than the one offered by the original designers of the language. The shortcomings of 
Prolog's treatment of arithmetic are overcome in the constraint logic programming 
languages. 

15.6.1 Arithmetic Operators 

Prolog provides integers and floating point numbers as built-in data structures, with 
the typical operations on them. These operations include the usual arithmetic oper
ators such as+,-,• (multiplication), and// (integer division). 

Now, according to the usual notational convention of logic programming and 
Prolog, the relation and function symbols are written in the prefix form, that is in 
front of the arguments. In contrast, in accordance with their usage in arithmetic, the 
binary arithmetic operators are written in infix form, that is between the arguments. 
Moreover, negation of a natural number can be written in the bracketless prefix form, 
that is, without brackets surrounding its argument. 

This discrepancy in the syntax is resolved by considering the arithmetic operators 
as built-in function symbols written in the infix or bracketless prefix form with infor
mation about their associativity and binding power that allows us to disambiguate 
the arithmetic expressions. 

Actually, Prolog provides a means to declare an arbitrary function symbol as an 
infix binary symbol or as a bracketless prefix unary symbol, with a fixed priority that 
determines its binding power and a certain mnemonics that implies some (or no) 
form of associativity. An example of such a declaration was the line:- op(1100, yfx, 
arrow). used in the above-type assignment program. Function symbols declared in 
this way are called operators. Arithmetic operators can be thus viewed as operators 
predeclared in the language "prelude." 

In addition to the arithmetic operators we also have at our disposal infinitely many 
integer constants and infinitely many floating point numbers. In what follows, by a 
number, we mean either an integer constant or a floating point number. The arith
metic operators and the set of all numbers uniquely determine a set of terms. We call 
terms defined in this language arithmetic expressions and introduce the abbreviation 
gae for ground (i.e., variable free) arithmetic expressions. 

15.6.2 Arithmetic Comparison Relations 

With each gae, we can uniquely associate its value, computed in the expected way. 
Prolog allows us to compare the values of gaes by means of the customary six arith
metic comparison relations 

<, =<, =:=("equal"), =\=, ("different"), >=, and >. 
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The "equal" relation "=:=" should not be confused with the "is unifiable with" 
relation"=" discussed in Section 15.3. 

The arithmetic comparison relations work on gaes and produce the expected 
outcome. For instance, > compares the values of two gaes and succeeds if the value 
of the first argument is larger than the value of the second and fails otherwise. 

Thus, for example 

?- 6*2 =:= 3*4. 
yes 
?- 7 > 3+4. 

no 

However, when one of the arguments of the arithmetic comparison relations is not 
a gae, the computation ends in an error. 

For example, we have 

?- [] < 5. 

error in arithmetic expression: [] is not a number. 

As a simple example of the use of the arithmetic comparison relations, consider 
the following program, which checks whether a list of numbers is ordered. 

% ordered(Xs) :- Xs is an =<-ordered list of numbers 
ordered([]). 
ordered([_]). 
ordered([X, Y I Xs]) :- X =< Y, ordered([Y I Xs]). 

Recall that [X, Y I Xs]) is the abbreviated Prolog notation for [X I [Y I Xs]]). 
We now have 

?- ordered([l,1,2,3]). yes 

but also 

?- ordered([1,X,1]). 
instantiation fault in 1 =< X 

Here, a run-time error took place because at a certain stage the comparison relation 
"=<" was applied to an argument that is not a number. 

As another example, consider Prolog's version of the quicksort procedure of 
C.A.R. Hoare. According to this sorting procedure, a list is first partitioned into 
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two sublists using an element X of it, one consisting of the elements smaller than X 
and the other consisting of the elements larger or equal than X. Then each sublist is 
quicksorted and the resulting sorted sublists are appended with the element X put 
in the middle. This can be expressed in Prolog by means of the following QUICKSORT 
program, where X is chosen to be the first element of the given list: 

% qs(Xs, Ys) :- Ys is an ordered permutation of the list Xs. 
qs([], []). 
qs([X I Xs], Ys) :-

part(X, Xs, Littles, Bigs), 
qs(Littles, Ls), 
qs(Bigs, Bs), 
append(Ls, [X I Bs], Ys). 

% part(X, Xs, Ls, Bs) :- Ls is a list of elements of Xs which are < X, 
% Bs is a list of elements of Xs which are >= X. 
part(_, [], [], []}. 
part(X, [YI Xs], [YI Ls], Bs) :- X > Y, part(X, Xs, Ls, Bs). 
part(X, [Y I Xs], Ls, [Y I Bs]) :- X =< Y, part(X, Xs, Ls, Bs). 

We now have, for example 

?- qs([7,9,8,1,5], Ys). 
Ys = [1, 5, 7, 8, 9] 

and also 

?- qs([7,9,8,1,5], [1,5,7,9,8]}. 
no 

The QUICKSORT program uses the append relation to concatenate the lists. Conse
quently, its efficiency can be improved using the difference lists introduced in Sub
section 15.5.2. Conceptually, the calls of the append relation are first replaced by the 
corresponding calls of the append_dl relation. This yields a program defining the qs_dl 
relation. Then unfolding the calls of append_dl leads to a program that does not use 
the APPEND_DL program anymore and performs the list concatenation "on the fly." 
This results in the program QUICKSORLDL in which the definition of the qs relation is 
replaced by 

% qs(Xs, Ys) :- Ys is an ordered permutation of the list Xs. 
qs(Xs, Ys) :- qs_dl(Xs, Ys - []). 
% qs_dl(Xs, Y) :- Y is a difference list representing the 
% ordered permutation of the list Xs. 
qs_dl([], Xs - Xs). 



qs_dl([X I Xs], Ys - Zs) :-
part(X, Xs, Littles, Bigs), 
qs_dl(Littles, Ys - [X I Yls]), 
qs_dl(Bigs, Yls - Zs). 

The first rule links the qs relation with the qs_dl relation. 

15.6.3 Evaluation of Arithmetic Expressions 
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So far we have presented programs that use ground arithmetic expressions but have 

not yet introduced any means of evaluating them. For example, no facilities have 

been introduced so far to evaluate 3+4. All we can do at this stage is to check that the 

outcome is 7 by using the comparison relation=:= and the query 7 =:= 3+4. However, 

using the comparison relations it is not possible to assign the value of 3+4, that is 7, 

to a variable, say X. Note that the query X =:= 3+4. ends in an error, while the query 
X = 3+4. instantiates X to the term 3+4. 

To overcome this problem, the binary arithmetic evaluator is is used in Prolog. is 
is an infix operator defined as follows. 

Consider the call s is t. 
Then t has to be a ground arithmetic expression (gae ). 

The call of s is t results in the unification of the value of the gae t with s. 
If t is not a gae then a run-time error arises. 
Thus, for example, we have 

?- 7 is 3+4. 
yes 
8 is 3+4. 
no 
?- X is 3+4. 
X=7 
?- X is Y+l. 
! Error in arithmetic expression: not a number 

As an example of the use of an arithmetic evaluator, consider the proverbial 

factorial function. It can be computed using the following program FACTORIAL: 

% factorial(N, F) :- Fis N!. 
factorial(O, 1). 
factorial(N, F) :- N > 0, N1 is N-1, factorial(Nl, Fl), Fis N*Fl. 

Note the use of a local variable N1 in the atom Nl is N-1 to compute the decrement 

of N and the use of a local variable Fl to compute the value of Nl factorial. The 

atom Nl is N-1 corresponds to the assignment command N :== N-1 of imperative pro

gramming. The difference is that a new variable needs to be used to compute the 
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value of N-1. Such uses of local variables are typical when computing with integers 
in Prolog. 

As another example consider a Prolog program that computes the length of a list. 

% length(Xs, N) :- N is the length of the list Xs. 
length([], 0). 
length([_ I Ts], N) :- length(Ts, M), N is M+l. 

We then have 

?- length([a,b,c], N). 
N=3 

An intuitive but incorrect version would use as the second clause 

length([_ I Ts], N+l) :- length(Ts, N). 

With such definition we would get the following nonintuitive outcome: 

?- length([a,b,c], N). 
N=0+1+1+1 

The point is that the generated ground arithmetic expressions are not automatically 
evaluated in Prolog. 

We conclude that arithmetic facilities in Prolog are quite subtle and require good 
insights to be properly used. 

15.7 CONTROL, AMBIVALENT SYNTAX, AND META-VARIABLES 

In the framework discussed so far, no control constructs are present. Let us see now 
how they could be simulated by means of the features explained so far. Consider the 
customary if B then S else T fi construct. It can be modelled by means of the following 
two clauses: 

p(x) :- B, S. 
p(x) :- not B, T. 

• t 

_,,-~~-----.. --------------------
where p is a new procedure identifier and all the variables ofB, Sand Tare collected in 
x. To see how inefficiency creeps into this style of programming, consider two cases. 

First, suppose that the first clause is selected and that B is true (i.e., succeeds). 
Then the computation continues with S. But in general B is an arbitrary query and 
because of the implicit nondeterminism present B can succeed in many ways. If the 
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computation of S fails, these alternative ways of computing B will be automatically 
tried even though we know already that B is true. 

Second, suppose that the first clause is selected and that Bis false (that is fails). 
Then backtracking takes place and the second clause is tried. The computation pro
ceeds by evaluating not B. This is completely unneeded, since we know at this stage 
that not Bis true (that is, succeeds). 

Note that omitting not B in the second rule would cause a problem in case a 
success of B were followed by a failure of S. Then upon backtracking T would be 
executed. 

15.7.1 Cut 

To deal with such problems, Prolog provides a low level built-in nullary relation 
symbol called cut and denoted by "!". To explain its meaning we rewrite first the 
above clauses using cut: 

p(x) :- B, !, S. 
p(x) :- T. 

In the resulting analysis, two possibilities arise, akin to the above case distinction. 
First, if Bis true (i.e., succeeds), then the cut is encountered. Its execution 

• discards all alternative ways of computing B, 
• discards the second clause, p(x) :- T., as a backtrackable alternative to the current 

selection of the first clause. 

Both items have an effect that in the current computation some clauses are not 
available anymore. 

Second, if B is false (i.e., fails), then backtracking takes place and the second 
clause is tried. The computation proceeds now by directly evaluating T. 

So using the cut and the above rewriting we achieved the intended effect and 
modelled the if B then S else T fi construct in the desired way. 

The above explanation of the effect of cut is a good starting point to provide its 
definition in full generality. 

Consider the following definition of a relation p: 

p(s;) :- B,!,C. 

Here, the i 1h clause contains a cut atom. Now, suppose that during the execution of 
a query, a call p(t) is encountered and eventually the i 1h clause is used and the indi
cated occurrence of the cut is executed. Then the indicated occurrence of ! succeeds 
immediately, but additionally 
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1. all alternative ways of computing B are discarded, and 
2. all computations of p(t) using the i 1h to fC-h clause for pare discarded as back

trackable alternatives to the current selection of the i-clause. 

The cut was introduced to improve the implicit control present through the combi
nation of backtracking and the textual ordering of the clauses. Because of the use of 
patterns in the clause heads, the potential source of inefficiency can be sometimes 
hidden somewhat deeper in the program text. Reconsider for example the QUICKSORT 
program of Section 15.6 and the query?- qs([7,9,8,l,5], Ys). To see that the resulting 
computation is inefficient, note that the second clause defining the part relation fails 
when 7 is compared with 9 and subsequently the last, third, clause is tried. At this 
moment 7 is again compared with 9. The same redundancy occurs when 1 is compared 
with 5. To avoid such inefficiencies the definition of part can be rewritten using cut 
as follows: 

part(_, [], [], []). 
part(X, [YI Xs], [Y I Ls], Bs) :- X > Y, !, part(X, Xs, Ls, Bs). 
part(X, [YI Xs], Ls, [YI Bs]) :- part(X, Xs, Ls, Bs). 

Of course, this improvement can be also applied to the QUICKSORTJ)L program. 
Cut clearly compromises the declarative reading of the Prolog programs. It has 

been one of the most criticized features of Prolog. In fact, a proper use of cut requires 
a good understanding of Prolog's computation mechanism and a number of thumb 
rules were developed to help a Prolog programmer to use it correctly. A number of 
alternatives to cut were proposed. The most interesting of them, called commit, en
tered various constraint and parallel logic programming languages but is not present 
in standard Prolog. 

15. 7 .2 Ambivalent Syntax and Meta-variables 

Before we proceed, let us review first the basics of Prolog syntax mentioned so far. 

1. Variables are denoted by strings starting with an upper case letter or "_" 
(underscore). In particular, Prolog allows so-called anonymous variables, writ
ten as"_" (underscore). 

2. Relation symbols (procedure identifiers), function symbols, and nonnumeric 
constants are denoted by strings starting with a lower case letter. 

3. Binary and unary function symbols can be declared as infix or bracketless 
prefix operators. 

Now, in contrast to first-order logic, in Prolog the same name can be used both for 
function symbols and for relation symbols. Moreover, the same name can be used 
for function or relation symbols of different arity. This facility is called ambivalent 
syntax. A function or a relation symbol f of arity n is then referred to as f/n. Thus, in 
a Prolog program, we can use both a relation symbol p/2 and function symbols p/1 
and p/2 and build syntactically legal terms or atoms like p(p(a,b),c,p(X)). 
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In presence of the ambivalent syntax, the distinction between function sym
bols and relation symbols and between terms and atoms disappears, but in the 
context of queries and clauses, it is clear which symbol refers to which syntactic 
category. 

The ambivalent syntax together with Prolog's facility to declare binary function 
symbols (and thus also binary relation symbols) as infix operators allows us to pass 
queries, clauses and programs as arguments. In fact, ":-/2" is declared internally as an 
infix operator and so is the comma" ,/2" between the atoms, so each clause is actually 
a term. This facilitates meta-programming, that is, writing programs that use other 
programs as data. 

In what follows, we shall explain how meta-programming can be realized in 
Prolog. To this end, we need to introduce one more syntactic feature. Prolog per
mits the use of variables in the positions of atoms, both in the queries and in the 
clause bodies. Such a variable is called then a meta-variable. Computation in the 
presence of the meta-variables is defined as before since the mgus employed can also 
bind the meta-variables. Thus, for example, given the legal, albeit unusual, Prolog 
program (that uses the ambivalent syntax facility) 

p(a). 
a. 

the execution of the Pro log query p(X), X. first leads to the query a. and then succeeds. 
Here, a is both a constant and a nullary relation symbol. 

Prolog requires that the meta-variables are properly instantiated before they 
are executed. In other words, they need to evaluate to a nonnumeric term at the 
moment they are encountered in an execution. Otherwise, a run-time error arises. 
For example, for the above program and the query p(X), X, Y., the Pro log computation 
ends up in error once the query Y. is encountered. 

15. 7 .3 Control Facilities 

Let us now see how the ambivalent syntax in conjunction with meta-variables sup
ports meta-programming. In this section we limit ourselves to (meta-)programs that 
show how to introduce new control facilities. We discuss here three examples, each 
introducing a control facility actually available in Prolog as a built-in. More meta
programs will be presented in the next section once we introduce other features of 
Pro log. 

Disjunction 
To start with, we can define disjunction by means of the following simple program: 

or(X,Y) :- X. 
or(X,Y) :- Y. 
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A typical query is then or(Q,R), where Q and Rare "conventional queries." Disjunction 

is a Prolog's built-in declared as an infix operator ";/2" and defined by means of the 

above two rules, with "or" replaced by";". So instead of or(Q,R) one writes Q; R. 

If-then-else 
The other two examples involve the cut operator. The already discussed if B then S 

else T fi construct can be introduced by means of the now-familiar program 

iLthen_else(B, S, T) :- B,!,S. 
iLthen_else(B, S, T) :- T. 

In Prolog, iLthen_else is a built-in defined internally by the above two rules. 

iLthen_else(B, S, T) is written as B -> S;T. where '"-+ 12" is a built-in declared as 

an infix operator. As an example of its use, let us rewrite yet again the definition of 

the part relation used in the QUICKSORT program, this time using Prolog's B -> S;T. To 

enforce the correct parsing, we need to enclose the B -> S;T statement in brackets: 

part(_, [], [], []). 
part(X, [Y I Xs], Ls, Bs) :
( x > y -> 

Ls= [Y I Lls], part(X, Xs, Lls, Bs) 

Bs = [Y I Bls], part(X, Xs, Ls, Bls) 
). 

Note that here we had to dispense with the use of patterns in the "output" positions 

of part and reintroduce the explicit use of unification in the procedure body. By 

introducing yet another B -> S;T statement to deal with the case analysis in the second 

argument, we obtain a definition of the part relation that very much resembles a 

functional program: 

part(X, Xls, Ls, Bs) :
( Xls = [] -> 

) . 

Ls = [], Bs = [] 

X1s = [Y I Xs], 
( x > y -> 

Ls= [Y I Lls], part(X, Xs, Lls, Bs) 

Bs = [Y I B1s], part(X, Xs, Ls, B1s) 
) 
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In fact, in this program all uses of unification boil down to matching and its use does 
not involve backtracking. This example explains how the use of patterns often hides 
an implicit case analysis. By making this case analysis explicit using the if-then-else 
construct we end up with longer programs. In the end the original solution with the 
cut seems to be closer to the spirit of the language. 

Negation 
Finally, consider the negation operation not that is supposed to reverse failure with 
success. That is, the intention is that the query not Q. succeeds iff the query Q. fails. 
This operation can be easily implemented by means of meta-variables and cut as 
follows: 

not(X) :- X, !, fail. 
not(.). 

faiVO is Prolog's built-in with the empty definition. Thus, the call of the parameterless 
procedure fail always fails. 

This cryptic two-line program employs several discussed features of Prolog. In 
the first line, X is used as a meta-variable. Now consider the call not(Q), where Q is a 
query. If Q succeeds, then the cut is performed. This has the effect that all alternative 
ways of computing Qare discarded and also the second clause is discarded. Next, the 
built-in fail is executed and a failure arises. Because the only alternative clause was 
just discarded, the query not(Q) fails. If, on the other hand, the query Q fails, then 
backtracking takes place and the second clause, not(.), is selected. It immediately 
succeeds and so the initial query not(Q) succeeds. So this definition of not achieves 
the desired effect. 

not/1 is defined internally by the above two line definition augmented with the 
appropriate declaration of it as a bracketless prefix unary symbol. 

Call 
Finally, let us mention that Prolog also provides an indirect way of using meta
variables by means of a built-in relation call/1. call/1 is defined internally by this 
rule: 

call(X) :- X. 

call/1 is often used to "mask" the explicit use of meta-variables, but the outcome is 
the same. 

15. 7 .4 Negation as Failure 

The distinction between successful and failing computations is one of the unique 
features of logic programming and Prolog. In fact, no counterpart of failing compu
tations exists in other programming paradigms. 
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The most natural way of using failing computations is by employing the negation 
operator not that allows us to tum failure into success, by virtue of the fact that the 
query not Q. succeeds iff the query Q. fails. This way we can use not to represent 
negation of a Boolean expression. In fact, we already referred informally to this use 
of negation at the beginning of Section 15.7. 

This suggests a declarative interpretation of the not operator as a classical nega
tion. This interpretation is correct only if the negated query always terminates and 
is ground. Note, in particular, that given the procedure p defined by the single rule 
p :- p. the query not p. does not terminate. Also, for the query not(X"" 1)., we get the 
following counterintuitive outcome: 

?- not(X"" 1). 
no 

Thus, to generate all elements of a list Ls that differ from 1, the correct query is 
member(X, Ls), not(X"" 1). and not not(X"" 1), member(X, Ls). One usually refers to 
the way negation is used in Prolog as "negation as failure." When properly used, 
it is a powerful feature as testified by the following jewel program. We consider 
the problem of determining a winner in a two-person finite game. Suppose that the 
moves in the game are represented by a relation move. The game is assumed to 
be finite, so we postulate that given a position pos the query move(pos, Y). gener
ates finitely many answers, which are all possible moves from pos. A player loses 
if he is in a position pos from which no move exists, i.e., if the query move(pos, Y). 
fails. 

A position is a winning one when a move exists that leads to a losing, i.e., non
winning position. Using the negation operator, this can be written as 

% win(X) :- X is a winning position in the two-person finite game 
% represented by the relation move. 
win(X) :- move(X, Y), not win(Y). 

This remarkably concise program has a simple declarative interpretion. In con
trast, the procedural interpretation is quite complex: the query win(pos). deter
mines whether pos is a winning position by performing a minimax search on the 
0-1 game tree represented by the relation move. In this recursive procedure, the base 
case appears when the call to move fails. Then the corresponding call of win also 
fails. 

15.7.5 Higher-Order Programming and Meta-Programming in Prolog 

Thanks to the ambivalent syntax and meta-variables, higher-order programming and 
another form of meta-programming can be easily realized in Prolog. To explain this, 
we need two more built-ins. Each of them belongs to a different category. 
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Term Inspection Facilities 
Prolog offers a number of built-in relations that allow us to inspect, compare, and 
decompose terms. One of them is = .. /2 (pronounced univ) that allows us to switch 
between a term and its representation as a list. Instead of precisely describing its 
meaning, we just illustrate one of its uses by means the following query: 

?- Atom= .. [square, [1,2,3,4], Ys]. 
Atom= square([1,2,3,4], Ys). 

The left-hand side, here Atom, is unified with the term (or, equivalently, the atom), 
here square([1,2,3,4], Ys), represented by a list on the right-hand side, here [square, 
[1,2,3,4], Ys]. In this list representation of a term, the head of the list is the leading 
function symbol and the tail is the list of the arguments. 

Using univ, one can construct terms and pass them as arguments. More inter
estingly, one can construct atoms and execute them using the meta-variable facility. 
This way it is possible to realize higher-order programming in Prolog in the sense that 
relations can be passed as arguments. To illustrate this point, consider the following 
program MAP: 

% map(P, Xs, Ys) :- the list Ys is the result of applying P 
% elementwise to the list Xs. 
map(P, [], []). 
map(P, [X I Xs] , [Y I Ys]) :- apply(P, [X, Y]), map(P, Xs, Ys). 
% apply(P, [X1, ... , Xn]) :- execute the atom P(X1, ... , Xn). 
apply(P, Xs) :- Atom= .. [PIXs], Atom. 

In the last rule, univ is used to construct an atom. Note the use of the meta-variable 
Atom. MAP is Prolog's counterpart of the familiar higher-order functional program 
and it behaves in the expected way. For example, given the program % square(X, Y) 
:- Y is the square of X. square(X, Y) :- Y is X*X. we get 

?- map(square, [1,2,3,4], Ys). 
Ys = [1, 4, 9, 16] 

Program manipulation facilities 
Another class of Prolog built-ins makes it possible to access and modify the program 
during its execution. We consider here a single built-in in this category, clause/2 , that 
allows us to access the definitions of the relations present in the considered program. 
Again, consider first an example of its use in which we refer to the program MEMBER 
of Subsection 15.5.1. 
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?- clause(member(X,Y), Z). 
y = [X\__A], 
Z =true; 
y = (__A\_B], 
Z = member(X,_B) ; 
no 

In general. the call clause(head, body) leads to a unification of the term head :- body 
with the successive clauses forming the definition of the relation in question. This 
relation, here member, is the leading symbol of the first argument of clause/2 that has 

to be a non-variable. 
This built-in assumes that true is the body of a fact, here member(X, [X I _]). true/O 

is Prolog's built-in that succeeds immediately. Thus, its definition consists just of the 
fact true. This explains the first answer. The second answer is the result of unifying 
the term member(X,Y) :- Z with (a renaming of) the second clause defining member, 
namely member(X, [_ I Xs]):- member(X, Xs). 

Using clause/2, we can construct Prolog interpreters written in Prolog, that is, 
meta-interpreters. Here is the simplest one: 

% solve(Q) :- the query Q succeeds for the program accessible by clause/2. 
solve(true) :- !. 
solve((A,B)) :- !, solve(A), solve(B). 
solve(A) :- clause(A, B), solve(B). 

Recall that (A,B) is a legal Prolog term (with no leading function symbol). To un
derstand this program, one needs to know that the comma between the atoms is 
declared internally as a right associative infix operator, so the query A,B,C,D actually 
stands for the term (A,(B,(C,D))), etc. 

The first clause states that the built-in true succeeds immediately. The second 
clause states that a query of the form A, B can be solved if A can be solved and B 
can be solved. Finally, the last clause states that an atomic query A can be solved if 
there exists a clause of the form A :- B such that the query B can be solved. The cuts 
are used here to enforce the a "definition by cases": either the argument of solve is 
true or a nonatomic query or else an atomic one. 

To illustrate the behavior of the above meta-interpreter, assume that MEMBER is 
a part of the considered program. We then have 

?- solve(member(X, [mon, wed, fri])). 
X = mon; 
X =wed; 
X=fri; 
no 
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This meta-program forms a basis for building various types of interpreters for larger 
fragments of Prolog or for its extensions. 

15.8 ASSESSMENT OF PROLOG 

Prolog, because of its origin in automated theorem proving, is an unusual program
ming language. It leads to a different style of programming and to a different view 
of programming. A number of elegant Prolog programs presented here speak for 
themselves. We also noted that the same Prolog program can often be used for 
different purposes - for computing, testing or completing a solution, or for com
puting all solutions. Such programs cannot be easily written in other programming 
paradigms. Logical variables are a unique and, as we saw, very useful feature of 
logic programming. Additionally, pure Prolog programs have a dual interpretation 
as logical formulas. In this sense, Prolog supports declarative programming. 

Both through the development of a programming methodology and ingenious 
implementations, great care was taken to overcome the possible sources of ineffi
ciency. On the programming level, we already discussed cut and the difference lists. 
Programs such as FACTORIAL of Subsection 15.6.3 can be optimized by means of tail 
recursion. On the implementation level, efficiency is improved by such techniques 
as the last call optimization that can be used to optimize tail recursion, indexing 
that deals with the presence of multiple clauses, and a default omission of the occur
check (the test "x does not occur in t" in clause (5) of the Martelli-Montanari algo
rithm) that speeds up the unification process (although on rare occasions makes it 
unsound). 

Prolog's only data type, the terms, is implicitly present in many areas of computer 
science. In fact, whenever the objects of interest are defined by means of grammars, 
for example first-order formulas, digital circuits, programs in any programming lan
guage, or sentences in some formal language, these objects can be naturally defined 
as terms. Prolog programs can then be developed starting with this representation 
of the objects as terms. Prolog's support for handling terms by means of unification 
and various term inspection facilities becomes handy. In short, symbolic data can be 
naturally handled in Prolog. 

The automatic backtracking becomes very useful when dealing with search. 
Search is of paramount importance in many artificial intelligence applications and 
backtracking itself is most natural when dealing with the NP-complete problems. 
Moreover, the principle of "computation as deduction" underlying Prolog's com
putation process facilitates formalization of various forms of reasoning in Prolog. 
In particular, Prolog's negation operator not can be naturally used to support 
nonmonotonic reasoning. All this explains why Prolog is a natural language for 
programming artificial intelligence applications, such as automated theorem provers, 
expert systems, and machine learning programs where reasoning needs to be 
combined with computing, game playing programs, and various decision support 
systems. 

Prolog is also an attractive language for computational linguistics applications 
and for compiler writing. In fact, Prolog provides support for so-called definite clause 
grammars (DCG). Thanks to this, a grammar written in the DCG form is already 
a Prolog program that forms a parser for this grammar. The fact that Prolog allows 
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one to write executable specifications makes it also a useful language for rapid pro
totyping, in particular in the area of meta-programming. 

For the sake of a balanced presentation let us discuss now Prolog's shortcomings. 

lack of Types 
Types are used in programming languages to structure the data manipulated by the 
program and to ensure its correct use. In Prolog, one can define various types like 
binary trees and records. Moreover, the language provides a notation for lists and 
offers a limited support for the type of all numbers by means of the arithmetic 
operators and arithmetic comparison relations. However, Prolog does not support 
types in the sense that it does not check whether the queries use the program in the 
intended way. 

Because of this absence of type checking, type errors are easy to make but difficult 
to find. For example, even though the APPEND program was meant to be used to 
concatenate two lists, it can also be used with nonlists as arguments: 

?- append([a,b], f(c), Zs). 
Zs =[a, b!f(c)] 

and no error is reported. In fact, almost every Prolog program can be misused. 
Moreover, because of lack of type checking some improvements of the efficiency 
of the implementation cannot be carried out and various run-time errors cannot be 
prevented. 

Subtle Arithmetic 
We discussed already the subtleties arising in presence of arithmetic in Section 15.6. 
We noted that Prolog's facilities for arithmetic easily lead to run-time errors. It would 
be desirable to discover such errors at compile time but this is highly non trivial. 

Idiosyncratic Control 
Prolog's control mechanisms are difficult to master by programmers accustomed 
to the imperative programming style. One of the reasons is that both bounded it
eration (the for statement) and unbounded iteration (the while statement) need to 
be implemented by means of the recursion. For example, a nested for statement is 
implemented by means of nested tail recursion that is less easy to understand. Of 
course, one can introduce both constructs by means of meta-programming, but then 
their proper use is not enforced because of the lack of types. Additionally, as already 
mentioned, cut is a low-level mechanism that is not easy to understand. 

Complex Semantics of Various Built-ins 
Prolog offers a large number of built-ins. In fact, the ISO Prolog Standard describes 
I 02 built-ins. Several of them are quite subtle. For example, the query not(not Q). tests 
whether the query Q. succeeds and this test is carried out without changing the state, 
i.e., without binding any of the variables. Moreover, it is not easy to describe precisely 
the meaning of some of the built-ins. For example, in the ISO Prolog Standard the 
operational interpretation of the if-then-else construct consists of 17 steps. 
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No Modules and No Objects 
Finally. even though modules exist in many widely used Prolog versions. neither 
modules nor objects are present in ISO Prolog Standard.as 1bis makes it difficult to 
properly structure Prolog programs and reuse them as components of other Prolog 
programs. It should be noted that thanks to Prolog's support for meta-programming, 
the object-programming style can be mimicked in Prolog in a simple way. But no 
compile-time checking of its proper use is then enforced then and errors in the 
program design will be discovered at best at the run-time. The same critique applies 
to Prolog's approach to higher-order programming and to meta-programming. 

Of course, these limitations of Prolog were recognized by many researchers who 
came up with various good proposals on how to improve Prolog's control, how to 
add to it (or how to infer) types, and how to provide modules and objects. Research 
in the field of logic programming also has dealt with the precise relation between 
the procedural and declarative interpretation of logic programs and a declarative 
account of various aspects of Prolog, including negation and meta-programming. 
Also verification of Prolog programs and its semantics were extensively studied. 

However, no single programming language proposal emerged yet that could 
be seen as a natural successor to Prolog in which the above shortcomings are 
properly solved. The language that comes closest to this ideal is Mercury (see 
http://www.cs.mu.oz.au/research/mercury/). Colmerauer designed a series of suc
cessors of Pro log, Pro log II, III, and IV that incorporated various forms of constraint 
processing into this programming style. 

When assessing Prolog, it is useful to have in mind that it is a programming 
language designed in the early 1970s (and standardized in the 1990s). The fact that 
it is still widely used and that new applications for it keep being found testifies to its 
originality. No other programming language succeeded to embrace first-order logic 
in such an effective way. 

15.9 BIBLIOGRAPHIC REMARKS 

For those interested in learning more about the origins of logic programming and of 
Pro log, the best place to start is Colmerauer and Roussel's account (The Birth of Pro
log, in Bergin and Gibson, History of Programming Languages. ACM Press/ Addison
Wesley, 1996, pp. 331-367). There a number of excellent books on programming in 
Prolog. The two deservedly most successful are Bratko (PROLOG Programming 
for Artificial Intelligence, Addison-Wesley, 2001) and Sterling and Shapiro (The Art 
of Prolog, MIT Press, 1994). The work by O'Keefe (The Craft of Prolog, MIT Press, 
1990) discusses in depth the efficiency and pragmatics of programming in Prolog. The 
work by Ait-Kaci (Warrens' Abstract Machine, MIT Press, 1991. Out of print. Avail
able at http://www.isg.sfu.ca/~hak/documents/wam.html) is an outstanding tutorial 
on the implementation of Prolog. 

15.10 CHAPTER SUMMARY 

We discussed the logic programming paradigm and its realization in Prolog. 1!1is 
paradigm has contributed a number of novel ideas in the area of programmmg 
languages. It introduced unification as a computation mechanism and it realized the 
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Table 15.1. 

Logic Programming 

equation solved by unification 
relation symbol 
term 
atom 
query 
definition of a relation 
local variable of a rule 
logic program 
"," between atoms 
substitution 
composition of substitutions 

Imperative Programming 

assignment 
procedure identifier 
expression 
procedure call 
program 
procedure declaration 
local variable of a procedure 
set of procedure declarations 
sequencing(";") 
state 
state update 

concept of "computation as deduction". Additionally, it showed that a fragment of 
first-order logic can be used as a programming language and that declarative pro
gramming is an interesting alternative to structured programming in the imperative 
programming style. 

Prolog is a rule-based language but thanks to a large number of built-ins it is a 
general purpose programming language. Programming in Prolog substantially differs 
from programming in the imperative programming style. Table 15.1 may help to relate 
the underlying concepts used in both programming styles. 
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