
IJllil IMlll\I

15

The Logic Programming Paradigm
and Prolog

Krzysztof R. Apt

15.1 HISTORY OF LOGIC PROGRAMMING

The logic programming paradigm has its roots in automated theorem proving from
which it took the notion of a deduction. What is new is that in the process of de
duction some values are computed. The creation of this programming paradigm is
the outcome of a long history that for most of its course ran within logic and only
later inside computer science. Logic programming is based on the syntax of first
order logic, which was originally proposed in the second half of nineteenth century
by Gottlob Frege and later modified to the currently used form by Giuseppe Peano
and Bertrand Russell.

In the 1930s, Kurt Godel and Jacques Her brand studied the notion of computabil
ity based on derivations. These works can be viewed as the origin of the "computation
as deduction" paradigm. Additionally, Herbrand discussed in his doctoral thesis a
set of rules for manipulating algebraic equations on terms that can be viewed now
as a sketch of a unification algorithm. Some 30 years later, in 1965, Alan Robinson
published his fundamental paper (Robinson 1965) that lies at the foundation of the
field of automated deduction. In this paper, he introduced the resolution principle,
the notion of unification, and a unification algorithm. Using the resolution method,
one can prove theorems of first-order logic, but another step was needed to see how
one could compute within this framework.

This was eventually achieved in 1974 by Robert Kowalski (Predicate logic as a
programming language, North-Holland, 197 4.) Proc. IFIP'7 4, in which logic programs
with a restricted form of resolution were introduced. The difference between this
form of resolution and the one proposed by Robinson is that the syntax is more
restricted, but proving now has a side effect in the form of a satisfying substitution.
This substitution can be viewed as a result of a computation and consequently certain
logical formulas can be interpreted as programs. In parallel, Alain Colmerauer and
his colleagues worked on a programming language for natural language processing
based on automated theorem proving. This ultimately led to creation of Prolog in
1973. Kowalski and Colmerauer with his team interacted in the period from 1971 to
1973. This influenced their views and helped them to crystallize the ideas.

475

476 The Logic Programming Paradigm and Prolog

Pro log can be seen as a practical realization of the idea oflogic programs. It started
as a programming language for applications in natural language processing, but soon
after it was found that it can also be used as a general purpose programming language.
A number of other attempts to realize the computation as deduction paradigm were
proposed about the same time, notably by Cordell Green and Carl Hewitt, but the
logic programming proposal, probably because it was the simplest and most versatile,
became most successful.

Originally, Prolog was implemented by Philippe Roussel, a colleague of
Colmerauer, in the form of an interpreter written in Algol-W. An important step
forward was achieved by David H. Warren, who proposed in 1983 an abstract ma
chine, now called Warren Abstract Machine (WAM), which consists of a machine
architecture with an instruction set that serves as a target for machine independent
Prolog compilers. WAM became a standard basis for implementing Prolog and other
logic programming languages.

The logic programming paradigm influenced a number of developments in com
puter science. As early as the 1970s, it led to the creation of deductive databases
that extend the relational databases by providing deduction capabilities. A fur
ther impetus to the subject came unexpectedly from the Japanese Fifth Genera
tion Project for intelligent computing systems (1982-1991), in which logic program
ming was chosen as its basis. More recently, this paradigm led to constraint logic
programming that realizes a general approach to computing in which the program
ming process is limited to a generation of constraints (requirements) and a solution
of them, and to inductive logic programming, a logic-based approach to machine
learning.

The above account of history of logic programming and Prolog shows its roots
in logic and automated deduction. In fact, Colmerauer and Roussel (1996) write
"There is no question that Prolog is essentially a theorem prover a la Robinson. Our
contribution was to transform that theorem prover into a programming language."
This origin of the logic paradigm probably impeded its acceptance within computer
science in times when imperative programming got impetus thanks to the creation of
Pascal and C, the fields of verification and semantics of imperative programs gained
ground, and when the artificial intelligence community already adopted Lisp as their
language of choice.

Here, we offer an alternative presentation of the subject by focusing on the or
dinary programming concepts (often implicitly) present in logic programming and
by relating various of its ideas to those present in the imperative and functional
programming paradigms.

15.2 BRIEF OVERVIEW OF THE LOGIC PROGRAMMING PARADIGM

The logic programming paradigm differs substantially from other programming
paradigms. When stripped to the bare essentials, it can be summarized by the follow
ing three features.

• Computing takes place over the domain of all terms defined over a "universal"
alphabet.

• Values are assigned to variables by means of automatically generated

15.2 Brief Overview of the Logic Programming Paradigm 4 77

substitutions, called most general unifiers. These values may contain variables,
called logical variables.

• The control is provided by a single mechanism: automatic backtracking.

In our exposition of this programming paradigm, we shall stress the above three
points. Even such a brief summary shows both the strength and weakness of the logic
programming paradigm. Its strength lies in an enormous simplicity and conciseness;
its weakness has to do with the restrictions to one control mechanism and the use of
a single data type.

This framework has to be modified and enriched to accommodate it to the custom
ary needs of programming, for example by providing various control constructs and
by introducing the data type of integers with the customary arithmetic operations.
This can be done and, in fact, Prolog and constraint logic programming languages
are examples of such a customization of this framework.

15.2.1 Declarative Programming

Two additional features of logic programming are important to note. First, in its
pure form it supports declarative programming. A declarative program admits two
interpretations. The first one, called a procedural interpretation, explains how the
computation takes place, whereas the second one, called a declarative interpretation,
is concerned with the question what is being computed.

Informally, the procedural interpretation is concerned with the method, whereas
the declarative interpretation is concerned with the meaning. In the procedural in
terpretation, a declarative program is viewed as a description of an algorithm that
can be executed. In the declarative interpretation, a declarative program is viewed
as a formula, and one can reason about its correctness without any reference to the
underlying computational mechanism. This makes declarative programs easier to
understand and to develop.

As we shall see, in some situations the specification of a problem in the logic
programming format already forms an algorithmic solution to the problem. So logic
programming supports declarative programming and allows us to write executable
specifications. It should be added, however, that in practice the Prolog programs
obtained in this way are often inefficient, so this approach to programming has to be
combined with various optimization techniques, and an appropriate understanding
of the underlying computation mechanism is indispensable. To clarify this point, we
shall present here a number of Prolog programs that are declarative and eliminate
from them various sources of inefficiency.

This dual interpretation of declarative programs also accounts for the double use
of logic programming as a formalism for programming and for knowledge repre
sentation, and explains the importance of logic programming in the field of artificial
intelligence.

15.2.2 Interactive Programming

Another important feature of logic programming is that it supports interactive pro
gramming. In other words, the user can write a single program and interact with it

478 The Logic Programming Paradigm and Prolog

by means of various queries of interest to which answers are produced. The Prolog
systems greatly support such an interaction and provide simple means to compute
one or more solutions to the submitted query, to submit another query, and to
trace the execution by setting up, if desired, various check points, all within the

same "interaction loop." This leads to a flexible style of programming.
This is completely analogous to the way functional programs are used where the

interaction is achieved by means of expressions that need to be evaluated using a
given collection of function definitions.

In what follows, we shall introduce Prolog, the best known programming lan
guage based on the logic programming paradigm. Prolog is then based on a subset
of first-order logic. We explain here how Prolog uses this syntax in a novel way (this
characteristic is called ambivalent syntax) and extends it by a number of interesting
features, notably by supporting infix notation and by providing so-called anony

mous and meta-variables. These extensions amount to more than syntactic sugar.
In fact, they make it possible to realize in Prolog higher-order programming and
meta-programming in a simple way.

When discussing Prolog, it is useful to abstract from the programming language
and first consider the underlying conceptual model provided by logic programming.

15.3 EQUATIONS SOLVED BY UNIFICATION AS ATOMIC ACTIONS

We begin by explaining how computing takes place at the "atomic level." In logic pro

gramming, the atomic actions are equations between terms (arbitrary expressions).
They are executed by means of the unification process that attempts to solve such
equations. In the process of solving, values are assigned to variables. These values
can be arbitrary terms. In fact, the variables are all of one type that consists of the
set of all terms.

This informal summary shows that the computation process in logic programming
is governed by different principles than in the other programming paradigms.

15.3.1 Terms

In a more rigorous explanation, let us start by introducing an alphabet that consists
of the following disjoint classes of symbols:

Ill variables, denoted by x, y, z, ... possibly with subscripts
II function symbols
II parentheses, "("and")"
11111 comma,","

We also postulate that each function symbol has a fixed arity, that is the number of
arguments associated with it. 0-ary function symbols are called constants, and are
usually denoted by a, b, c, d, Below we denote function symbols of positive arity
by f, g, h,

Finally, terms are defined inductively as follows:

ll a variable is a term,

15.3 Equations Solved by Unification as Atomic Actions 4 79

• if f is an n-ary function symbol and t1, .•• , tn are terms, then f(t1, ••• , tn) is a
term.

In particular every constant is a term. Variable-free terms are usually called ground
terms. Below we denote terms bys, t, u, w,

For example, if a is a constant, x and y are variables, f is a binary function symbol
and g a unary function symbol, then f(f(x, g(b)), y) is a term.

Terms are fundamental concepts in mathematical logic, but at first sight they seem
to be less common in computer science. However, they can be seen as a generalization
of the concept of a string familiar from the theory of formal languages. In fact, strings
can be viewed as terms built out of an alphabet the only function symbols of which
are the concatenation operations in each arity (or alternatively, out of an alphabet
the only function symbol of which is the binary concatenation operation assumed to
be associative, say to the right). Another familiar example of terms are arithmetic
expressions. These are terms built out of an alphabet in which, as the function symbols,
we take the usual arithmetic operations of addition, subtraction, multiplication, and,
say, integer division, and as constants 0, -1, 1,

In logic programming, no specific alphabet is assumed. In fact, it is convenient to
assume that in each arity an infinite supply of function symbols exists and that all terms
are written in this "universal alphabet." These function symbols can be, in particular,
the denotations of arithmetic operations, but no meaning is attached to these function
symbols. This is in contrast to most of the imperative programming languages, in
which for example the use of "+" in an expression implies that we refer to the
addition operation. The other consequence of this choice is no types are assigned to
terms. In fact, no types are assumed and consequently there is no distinction between,
say, arithmetic expressions, Boolean expressions, and terms denoting lists. All these
terms are considered as being of one type.

15.3.2 Substitutions

Unlike in imperative programming, in logic programming the variables can be unini
tialized. Moreover, the possible values of variables are terms. So to properly explain
the computation process we need to reexamine the notion of a state.

At any moment during the computation there will be only a finite number
of variables that are initialized - these are variables to which, in the considered
computation, some value was already assigned. Since these values are terms, we
are naturally led to consider substitutions. These are finite mappings from vari
ables to terms such that no variable is mapped to itself. So substitution provides
information about which variables are initialized. (Note that no variable can be
initialized to itself, which explains the restriction that no variable is mapped to
itself.)

Substitutions then form a counterpart of the familiar notion of a state used in im
perative programming. We denote a substitution by {xif t1, ... , Xn/tn}. This notation
implies that x1, ... , Xn are different variables, t1, ... , tn are terms and that no term t;
equals the variable Xi. We say then that the substitution {xii t1, ... , Xn/ tn} binds the
variable x; to the term t;.

480 The Logic Programming Paradigm and Prolog

Using a substitution, we can evaluate a term in much the same way as using

a state we can evaluate an expression in imperative programming languages. This

process of evaluation is called an application of a substitution to a term. It is the

outcome of a simultaneous replacement of each variable occurring in the domain of

the substitution by the corresponding term. So, for example, the application of the

substitution (x/f(z), y/g(z)) to the term h(x, y) yields the term h(f(z), g(z)). Here

the variable x was replaced by the term f(z) and the variable y by the term g(z). In

the same way, we define an application of a substitution to an atom, query, or a clause.

So an evaluation of a term using a substitution yields again a term. This is in

contrast to imperative programming where an evaluation of an expression using a

state yields a value that belongs to the type of this expression.

15.3.3 Most General Unifiers

As already mentioned, in logic programming the atomic actions are equations be

tween terms and the unification process is used to determine their meaning. Before

we discuss these matters in detail, let us consider some obvious examples of how

solving equations can be used as an assignment.
We assume that all mentioned variables are uninitialized. By writing x =a, we

assign the constant a to the variable x. Because in logic programming the equality

'"="is symmetric, the same effect is achieved by writing a = x. More interestingly, by

writing x = f (y) (or, equivalently, f(y) = x) we assign the term f (y) to the variable

x. Since f(y) is a term with a variable, we assigned to the variable x an expression

with a variable in it. Recall that a variable that occurs in a value assigned to another

variable is called a logical variable. Therefore, y is a logical variable here. The use of

logical variables is an important distinguishing feature of logic programming and we

devote the whole subsection 15.5.2 to an explanation of their use. Finally, by writing

f (y) = f(g(a)), we assign the term g(a) to the variable y, as this is the way to make
these two terms equal.

These examples show that the equality"=" in logic programming and the assign

ment in C, also written using ''= ", are totally different concepts.

Intuitively. unification is the process of solving an equation between terms (i.e., of

making two terms equal) in a least constraining way. The resulting substitution (if it

exists) is called a most general unifier (mgu). For example, the equation x = f(y) can

be solved (i.e., the terms x and f (y) unify) in a number of ways, for instance, by means

of each of the substitutions {x/f(y)}, {x/f(a), y/a), {x/f(a). y/a, z/g(b)}, Clearly,

only the first one is ''least constraining." In fact, out of these three substitutions the

first one is the only most general unifier of the equation x = f(y). The notion of a least

constraining substitution can be made precise by defining an order on substitutions.

In this order, the substitution (x / f(y)) is more general than {x / f (a), y /a), etc.

Note that we made the terms x and f(y) equal by instantiating only one of

them. Such a special case of the unification is called matching, which is the way of

assigning values in functional programming languages. Unification is more general

than matching as the following, slightly less obvious, example shows. Consider the

equation f(x, a)= f(b, y). Here, the most general unifier is {x/b. y/a). In contrast

to the previous example, it is now not possible to make these two terms equal by
instantiating only one of them.

15.3 Equations Solved by Unification as Atomic Actions 481

The problem of deciding whether an equation between terms has a solution is
called the unification problem. Robinson (JACM, 12(1): 23-41, 1965) showed that
the unification problem is decidable. More precisely, he introduced a unification
algorithm with the following property. If an equation between terms has a solution,
the algorithm produces an mgu, otherwise it reports a failure. An mgu of an equation
is unique up to renaming of the variables.

15.3.4 A Unification Algorithm

In what follows, we discuss the unification process in more detail using an elegant
unification algorithm introduced in Martelli and Montanari (An efficient unification
algorithm, ACM Trans. Prog. Lang. and Systems; vol 4, 1982, pp. 258-282). This
algorithm takes as input a finite set of term equations {s1 = t1 • .•• , s,, = t,,} and tries
to produce an rngu of them.

MARTELLI-MONTANARI ALGORITHM

Nondeterministically choose from the set of equations an equation of a form below
and perform the associated action.

(1) f(s1,Sn)= f(t1, .. . ,t,,) replace by the equations

S1 = t1, ... , Sn= t 11 ,

(2) f(s1 ,s11)=g(t1,tm)whereff.g haltwithfailure,

(3) x = x delete the equation,

(4) t = x where t is not a variable replace by the equation x = t,

(5) x = t where x does not occur in t apply the substitution {x/t)

and x occurs elsewhere to all other equations

(6) x = t where x occurs in t and x differs from t halt with failure.

The algorithm terminates when no action can be performed or when failure arises.
In case of success, by changing in the final set of equations all occurrences of"="
to "/" we obtain the desired mgu. Note that action (1) includes the case c = c for
every constant c which leads to deletion of such an equation. In addition, action (2)
includes the case of two different constants.

To illustrate the operation of this algorithm, reconsider the equation f(x, a) =
f(b, y). Using action (1) it rewrites to the set of two equations, {x = b, a = y}. By
action (4) we now get the set {x = b, y =a}. At this moment, the algorithm terminates
and we obtain the mgu {x/b, y/a}.

So by interpreting the equality symbol as the request to find a most general unifier
of the considered pair of terms, each equation is turned into an atomic action that
either produces a substitution (a most general unifier) or fails. This possibility of
a failure at the level of an atomic action is another distinguishing feature of logic
programming.

By writing a sequence of equations, we can create very simple logic programs
that either succeed and produce as output a substitution or fail. It is important to

482 The Logic Programming Paradigm and Prolog

understand how the computation then proceeds. We illustrate it by means of three
progressively more complex examples.

First consider the sequence

f(x, a)= /(g(z), y), h(u) = h(d).

The first equation yields first the intermediate substitution {x / g(z), y I a} and the
second one the substitution {u/d}. By combining these two substitutions we obtain
the substitution {x/g(z), y/a, u/d} produced by this logic program.

As a slightly less obvious example, consider the sequence

f(x, a)= f(g(z), y), h(x, z) = h(u, d).

Here the intermediate substitution {x/g(z), y/a} binds the variable x that also oc
curs in the second equation. This second equation needs to be evaluated first in
the "current state,'' here represented by the substitution {x / g(z), y /a}, before being
executed. This evaluation produces the equation h(g(z), z) = h(u, d).This equation
yields the most general unifier {u/ g(d), z/ d} and the resulting final substitution is
here {x/g(d), y/a, u/g(d), z/d}.

What happened here is that the substitution {u/g(d), z/d} was applied to the inter
mediate substitution {x/g(z), y/a}. The effect of an application of one substitution,
say o, to another, say y, (or of composition of the substitutions) is obtained by

II applying o to each of the terms that appear in the range of y
11111 adding to the resulting substitution the bindings to the variables that are in the

domain of o but not in the domain of y
In the above example, the first step yields the substitution {x/g(d), y/a), and the
second step adds the bindings u/g(d) and z/d to the final substitution. This pro
cess of substitution composition corresponds to an update of a state in imperative
programming, and that is how we shall refer to it in the sequel.

As a final example consider the sequence

f(x, a)= /(g(z), y), h(x, z) = h(d, u).

It yields a failure. Indeed, after executing the first equation the variable x is bound
to g(z), so the evaluation of the second equation yields h(g(z). z) = h(d, u) and no
substitution makes equal (unifies) the terms h(g(z), z) and h(d, u).

It is useful to compare solving equations by unification with the assignment com
mand. First, note that, in contrast to assignment, unification can assign an arbitrary
term to a variable. Also, it can fail, something the assignment cannot do. On the other
hand, using assignment one can modify the value of a variable, something unification
can perform in a very limited way: by further instantiating the term used as a value.
Thus, these atomic actions are incomparable.

15.4 CLAUSES AS PARTS OF PROCEDURE DECLARATIONS

Logic programming is a rule based formalism and Prolog is a rule based language.
In this context, the rules are called clauses. To better understand the relationship
between logic programming and imperative programming, we proceed in two steps
and introduce a restricted form of clauses first.

15.4 Clauses as Parts of Procedure Declarations 483

15.4.1 Simple Clauses

Using unification, we can execute only extremely simplistic programs that consist of
sequences of equations. We now enrich this framework by adding procedures. In logic
programming they are modelled by means of symbols, sometimes called predicates.
Below, we denote relation symbols by p, q, r, As in the case of the function
symbols, we assume that each relation symbol has a fixed arity associated with it.
When the arity is 0, the relation symbol is usually called a propositional symbol.

If p is an n-ary relation symbol and ti, ... , tn are terms, then we call p(ti, ... , tn)
an atom. When n = 0 the propositional symbols coincide with atoms. Interestingly,
as we shall see, such atoms are useful. Intuitively, a relation symbol corresponds
to a procedure identifier and an atom to a procedure call. The equality symbol"=" is
a binary relation symbol written in an infix form, so each equation is also an atom.
However, the meaning of equality is determined, so it can be viewed as a built-in
procedure, i.e., a procedure with a predefined meaning.

We still need to define the procedure declarations and to clarify the parameter
mechanism used. Given an n-ary relation symbol p and atoms Ai, ... , Ak we call an
expression of the form

p(xi, ... , Xn) :- A1, ... , Ak.

a simple clause. p(xi, ... , Xn) is called the head of the clause and A1, ... , Ak its body.
The fullstop "." at the end of the clause is important: it signals to the compiler (or
interpreter) that the end of the clause is encountered.

The procedural interpretation of a simple clause p(xi, ... , xn) :- Ai, ... , Ak is:
"to establish p(x1, ... , xn) establish A1, ... , Ak", while the declarative interpretation
is: "p(x1, ... , Xn) is true if A1, ... , Ak is true". The declarative interpretation explains
why in the logic programming theory the reversed implication symbol "+-" is used
instead of":-".

Finally, a simple logic program is a finite set of clauses. Such a program is activated
by providing an initial query, which is a sequence of atoms. In the imperative program
ming jargon a query is then a program and a simple logic program is a set of procedure
declarations. Intuitively, given a simple program, the set of its simple clauses with the
same relation symbol in the head corresponds to the procedure declaration in the
imperative languages. One of the syntactic confusions is that in logic programming
the comma"," is used as a separator between the atoms constituting a query, whereas
in the imperative programming the semicolon ";" is used for this purpose.

15.4.2 Computation Process

A nondeterminism is introduced into this framework by allowing multiple clauses
with the same relation symbol in the head. In the logic programming theory, this form
of nondeterminism (called don't know nondeterminism) is retained by considering
all computations that can be generated by means of multiple clauses and by retaining
the ones that lead to a success. "Don't know" refers to the fact that in general we do
not know which computation will lead to a success.

In Prolog, this computation process is made deterministic by ordering the clauses
by the textual ordering and by employing automatic backtracking to recover from

484 The Logic Programming Paradigm and Prolog

failures. Still, when designing Prolog programs, it is useful to have the don't know
nondeterminism in mind. In fact, in explanations of Prolog programs phrases like
"this program nondeterministically guesses an element such that ... " are common.
Let us explain now more precisely how the computing takes place in Prolog. To this
end, we need to clarify the procedure mechanism used and the role played by the
use of multiple clauses.

The procedure mechanism associated with the simple clauses introduced above
is call-by-name according to which the formal parameters are simultaneously substi
tuted by the actual ones. So this procedure mechanism can be simply explained by
means of substitutions: given a simple clause p(x1, ... , Xn) :- A1, ... , Ak. a procedure
call p(t1, ... , t,,) leads to an execution of the statement (A1, ... , Ak){xJ/t1, ... , Xn/tn)
obtained by applying the substitution {xJ/t1, ••• , Xn/t,,) to the statement A1, ... , Ak.
(We assume here that the variables of the clauses are appropriately renamed to
avoid variable clashes.) Equivalently, we can say that the procedure call p(t1, ... , tn)
leads to an execution of the statement A1, ... , Ak in the state (represented by a
substitution) updated by the substitution {xi/t1, •.• , x,,/t,,).

The clauses are tried in the order they appear in the program text. The depth-first
strategy is implied by the fact that a procedure call leads directly to an execution
of the body of the selected simple clause. If at a certain stage a failure arises, the
computation backtracks to the last choice point (a point in the computation at which
one out of more applicable clauses was selected) and the subsequent simple clause
is selected. If the selected clause was the last one, the computation backtracks to the
previous choice point. If no choice point is left, a failure arises. Backtracking implies
that the state is restored, so all the state updates performed since the creation of the
last choice point are undone.

Let us illustrate now this definition of Prolog's computation process by consider
ing the most known Prolog program the purpose of which is to append two lists. In
Prolog, the empty list is denoted by [] and the list with head h and tail t by [h I t].
The term [a I [b I s]] abbreviates to a more readable form [a,b I s], the list [a I [b I []]]
abbreviates to [a,b] and similarly with longer lists. This notation can be used both for
lists and for arbitrary terms that start with the list formation operator[.! ..].

Then the following logic program defines by induction w.r.t. the first argument
how to append two lists. Here and elsewhere we follow Prolog's syntactic conventions
and denote variables by strings starting with an upper case letter. The names ending
with "s" are used for the variables meant to be instantiated to lists.

% append(Xs, Ys, Zs) :- Zs is the result of concatenating the lists Xs and Ys.
append(Xs, Ys, Zs) :- Xs = [], Zs = Ys.
append(Xs, Ys, Zs) :- Xs = [H I Ts], Zs = [H I Us], append(Ts, Ys, Us).

In Prolog, the answers are generated as substitutions written in an equational form (as
in the Martelli-Montanari algorithm presented above). In what follows, we display
a query Q. as?- Q . . Here "?-"is the system prompt and the fullstop "."signals the
end of the query.

One can check then that the query

15.4 Clauses as Parts of Procedure Declarations 485

?- append([jan,feb,mar], [april,may], Zs).

yields Zs = [jan,feb,mar,april,may] as the answer and that the query

?- append([jan,feb,mar], [april,may], [jan,feb,mar,april,may]).

succeeds and yields the empty substitution as the answer.

In contrast, the query

?- append([jan,feb,mar], [april,may], [jan,feb,mar,april]).

fails. Indeed, the computation leads to the subsequent procedure calls

append([feb,mar], [april,may], [feb,mar,april]),
append([mar], [april,may], [mar,april]) and
append([], [april,may], [april]),

and the last one fails because the terms [april,may] and [april] don't unify.

15.4.3 Clauses

The last step in defining logic programs consists of allowing arbitrary atoms as heads
of the clauses. Formally, given atoms H, A 1, ... , Ak, we call an expression of the form

a clause. If k = 0, that is if the clause's body is empty, such a clause is called a fact

and the ":-" symbol is then omitted. If k > 0, that is, if the clause's body is nonempty,
such a clause is called a rule. A logic program is then a finite set of clauses and a pure

Prolog program is a finite sequence of clauses.
Given a pure Prolog program, we call the set of its clauses with the relation pin

the head the definition of p. Definitions correspond to the procedure declarations in
imperative programming and to the function definitions in functional programming.
Variables that occur in the body of a clause but not in its head are called local. They
correspond closely to the variables that are local to the procedure bodies in the
imperative languages with the difference that in logic programs their declaration is
implicit. Logic programming, like Pascal, does not have a block statement.

To explain how the computation process takes place for pure Prolog programs,

we simply view a clause of the form

p(s1, ... , Sn) :- A1, ... , Ak.

486 The Logic Programming Paradigm and Prolog

as a shorthand for the simple clause

p(x1, ... , x,,) :- (x1, ... , x,,) = (s1, ... , s,,), A1, ... , Ak·

where x1, ... , x,, are fresh variables. We use here Prolog's syntactic facility according
to which given a sequence s1, ••. , Sn of terms (s1, ..• , s11) is also a term.

So given a procedure call p(t1, ... , t11) if the above clause p(s1, ... , s,,) :
A1, ... , Ak is selected, an attempt is made to unify (t1, ..• , t11) with (s1, ... , s,,). (As
before, we assume here that no variable clashes arise; otherwise the variables of the
clause should be appropriately renamed.) If the unification succeeds and produces
a substitution e, the state (represented by a substitution) is updated by applying to
it e and the computation continues with the statement A1, ... , Akin this new state.
Otherwise, a failure arises and the next clause is selected.

Therefore, by using clauses instead of simple clauses, unification is effectively
lifted to a parameter mechanism. As a side effect, this makes the explicit use of
unification, modelled by means of"=", superfluous. As an example, reconsider the
above program appending two lists. Using the clauses it can be written in a much
more succinct way, as the following program APPEND:

% append(Xs, Ys, Zs) :- Zs is the result of concatenating the lists Xs and Ys.
append([], Ys, Ys).
append([X I Xs], Ys, [X I Zs]) :- append(Xs, Ys, Zs).

Here, the implicit case analysis present in the previous program is in effect moved
into the heads of the clauses. The use of terms in the heads of the clauses is
completely analogous to the use of patterns in function definitions in functional pro
gramming.

To summarize, the characteristic elements of procedure declarations in logic pro
gramming, in contrast to imperative programming, are: the use of multiple rules and
use of patterns to select among these rules.

15.5 PROLOG'S APPROACH TO PROGRAMMING

The power and originality of the Prolog programming style lies in the combination
of automatic backtracking with the use of relations and logical variables.

15.5.1 Multiple Uses of a Single Program

As a first illustration of the novelty of Prolog's approach to programming, we illustrate
the possibility of using the same program for different purposes. The perhaps simplest
example involves the following program MEMBER. We use in it a useful feature of
Pro log, so-called anonymous variable, written as an "underscore" character"-·" Each
occurrence of "_" in a query or in a clause is interpreted as a different variable.
Anonymous variables are analogous to the wildcard pattern feature of the ML or
Haskell language.

15.5 Prolog's Approach to Programming 487

% member(X, Xs):- X is a member of the list Xs.
member(X, [X I _]).
member(X, [_I Xs]):- member(X, Xs).

MEMBER can be used both for testing and for computing:

?- member(wed, [man, wed, fri]).
yes
?- member(X, [man, wed, fri]).
Xs =man;
Xs =wed;
Xs=fri;
no

Here ";" is the user's request to produce the next answer. If this request fails, the
answer "no" is printed.

Consequently, given a variable X and two lists s and t, the query rnember(X, s),
member(X, t). generates all elements that are present both ins and t. Operationally,
the first call generates all members of sand the second call tests for each of them the
membership in t.

Also the APPEND program can be used for a number of purposes, in particular to
concatenate two lists and to split a list in all possible ways. For example, we have

?- append(Xs, Ys, [man, wed, fri]).
Xs = []

Ys = [man, wed, fri];
Xs =[man]
Ys = [wed, fri];
Xs =[man, wed]
Ys = [fri];
Xs = [man, wed, fri]
Ys = [];

no

This cannot be achieved with any functional programing version of the APPEND. The
difference comes from the fact that in logic programming procedures are defined by
means of the relations, whereas in functional programming functions are used. In
fact, there is no distinction between input and output arguments in the procedures
in logic programs.

To see two uses of append in a single program, consider a program that checks
whether one list is a consecutive sublist of another one. The one line program SUB LIST

488 The Logic Programming Paradigm and Prolog

Xs
Zs

Ys

Figure 15.1. Xs is a sublist of the list Ys

that follows formalizes the following definition of a sublist:

• the list Xs is a sub list of the list Y s if Xs is a prefix of a suffix of Y s.

% sublist(Xs, Ys) :- Xs is a sublist of the list Ys.
sublist(Xs, Ys) :- append(_, Zs, Ys), append(Xs, _, Zs).

Here, both anonymous variables and Zs are local. In this rule Zs is a suffix of Ys and
Xs is a prefix of Zs. This relation is illustrated in Figure 15.1.
Operationally, given two lists, as and bs, the query sublist(as, bs). leads to a generation
of splits of the list bs through the call append(_, Zs, bs). Then for each generated suffix
Zs of bs it is checked whether for some list, denoted by the anonymous variable _,
the call append(as, _, Zs) succeeds. This happens when as is a prefix of Zs. So a typical
use of this program involves backtracking.

15.5.2 Logical Variables

Let us return now to the logical variables. They are an important feature of logic
programming, but it is easy to overlook their use. For example, they already appear
in the computations involving the first version of the list concatenation program,
and consequently, because of the way we defined the computation process, in the
computations of the APPEND program. Indeed, given the query append ([jan,feb,mar],
[april,may], Zs). the rule

append(Xs, Ys, Zs) :- Xs =[HI Ts], Zs = [H I Us], append(Ts, Ys, Us).

leads to the binding of the variable Zs to the term (jan I Us]. The value of the variable
Us is computed later, by means of the call append((feb,mar], [april,may], Us). This call
first binds Us to the term [feb I Uls], where Uls is a fresh variable, and hence Zs to
the term [jan, feb I Uls]. This progressive building of the output using the logical
variables is typical for Prolog. The real power of logical variables should become
apparent after considering the following three original Prolog programs.

A type assignment
The typed lambda calculus and Curry's system of type assignment involves statements
of the form s : r, which should be read as "term s has type r ." Finite sequences of
such statements with s being a variable are called environments are denoted below

15.5 Prolog's Approach to Programming 489

by E. A statement of the form E f- s : r should be read as "in the environment E the
terms has type r". The following three rules define by induction on the structure of
lambda terms how to assign types to lambda terms:

x: t EE
Ef--x:t

E f- m : s -+ t, E f- n : s
E f- (m n) : t

E,x:sf--m:t

E f- (A.x.m) : s-+ t

To encode the lambda terms as usual "first-order" terms, we use the unary function
symbol var and two binary function symbols, lambda and apply. The lambda term x
(a variable) is translated to the term var(x), the lambda term (m n) to the term apply
(m, n), and the lambda term A.x.m to the term lambda(x, m). For example, the lambda
term A.x. (x x) translates to lambda(x, apply(var(x), var(x))). The subtle point is that
according to Prolog convention, lower case letters stand for constants, so for example
var(x) is a ground term (i.e., a term without variables).

The above rules directly translate into the following Prolog program that refers
to the previously defined member relation.

:- op(1100, yfx, arrow).
% type(E, S, T):- lambda term S has type Tin the environment E.
type(E, var(X), T):- member([X, T], E).
type(E, apply(M, N), T):- type(E, M, S arrow T), type(E, N, S).
type(E, lambda(X, M), (S arrow T)):- type([[X, S] I E], M, T).

For readability, we use here arrow as a binary function symbol written in infix notation.
The first line declares this use of arrow together with a certain associativity and
priority information (The details of this archaic, though useful, Prolog notation are
not relevant here.)

As expected, the above program can be used to check whether a given (represen
tation of a) lambda term has a given type. Less expected is that this program can also
be used to compute a type assignment to a lambda term, if such an assignment exists,
and to report a failure if no such assignment exists. To this end, given a lambda term
s, it suffices to use the query type([], t, T)., where the empty list[] denotes the empty
environment and where t is the translation of s to a first-order term. For instance,
the query

?- type([], lambda(x, apply(var(x), var(x))), T).

fails. In fact, no type can be assigned to the lambda term h. (x x). The computation
first leads to the call

490 The Logic Programming Paradigm and Prolog

type([[x, S]]1 apply(var(x), var(x)), T)

and then to the call

type([[xl S]]1 var(x), S arrow T).

This in turn leads to the call

member([x, S arrow T]1 [[x, S]])

which fails, because the terms S arrow T and S do not unify. In the above computation,
T is used as a logical variable.

The problem of computing a type assignment for lambda terms was posed and
solved by Curry and Feys (1958). It is an important topic in the theory of lambda cal
culus that is of relevance for type inference in functional programming. The solution
in Prolog given above is completely elementary. A typical use of this program does
not involve backtracking. In fact, its power relies on unification.

A Sequence Program
Next, consider the following problem: arrange three ls, three 2s, ... , three 9s in
sequence so that for all i E [1,9] there are exactly i numbers between successive
occurrences of i. An example of such a sequence is

11 91 11 2, 11 81 2, 41 6, 2, 71 91 4, 5, 81 6, 31 4, 71 51 31 9, 6, 8, 31 51 7.

The desired program is an almost verbatim formalization of the problem in Prolog.

% sequence(Xs) :- Xs is a list of 27 variables.
sequence([_, _, _, _, _,_,_, _,_,_, _, _, _, _, _, _,_,_, _,_,_, _, _, _, _, _, _]).
% question(Ss) :- Ss is a solution to the problem.
question(Ss) :-

sequence(Ss) I
sub list([9 1-r-1-1-r-1-1-1-r-191_,_,_,_1-1-1-1-,_,9] I Ss),
sub list([8, -r-1-1-1-1-1-1-,81-1-r-1-1-i-1-,_18] 1 Ss),
sublist([7 r-1-1-1-1-1-1-1 7 1-1-1-1-1-1-1-1 7]1 Ss)1
sub list([6, _,_1-1-1-1-161-1-1-1-1-1-16] I Ss),
sub list([51-1-1-1-1-15 1-1-1-1-1-15] I Ss)1
sub list([41-1-1_,_,41_1_1_1_,4], Ss),
sublist([31-1-1-131_1_,_13]1 Ss)I
sublist([2,_1-121-i-12]1 Ss)1
sublist([l1_1l1_1l] 1 Ss).

15.5 Prolog's Approach to Programming 491

Note how the anonymous variables dramatically improve the readability of the pro
gram.

Operationally, the query?- question(Ss). leads to the procedure call sequence(Ss)
that instantiates the variable Ss to the list of 27 anonymous (so different) variables.
Then each of the nine calls of the sub list procedure enforces an existence of a specific
sublist pattern on Ss. Each pattern involves syntactically anonymous variables, each
of them representing operationally a logical variable.

In spite of the fact that the program is simple and transparent, the resulting com
putation is involved because of a extensive use of backtracking. The query generates
all six solutions to the problem.

Difference lists
One of the drawbacks of the concatenation of lists performed by the APPEND program
is that for lists s and t the execution of the query append(s, t, Z) takes the number of
steps that is proportional to the length of the first list, s. This is obviously inefficient.
In an imperative setting, if one represents a list as a link list, to concatenate two lists
it suffices to adjust one pointer.

Difference list is a generalization of the concept of a list that allows us to perform
concatenation in constant time. The fact that many programs rely explicitly on list
concatenation explains the importance of this concept.

In what follows, we use the subtraction operator"-" written in the infix form. Its
use has nothing to do with arithmetic, though intuitively one should read it as the
"difference." Formally, a difference list is a construct of the form [a1 , ... , amlx] -
x, where x is a variable and where we used the notation introduced in
Subsection 15.4.2. It represents the list [a1 , ... , am] in a form amenable to
a different definition of concatenation. Namely, consider two difference lists
[ai. ... , amlx] - x and [b 1, ... , bnlYl - y. Then their concatenation is the difference
list [a1, ... , am, bi, ... , bnlY] - y2.

This concatenation process is achieved by the following one line APPENDJJL
program:

% append(Xs, Ys, Zs) :- the difference list Zs is the result of concatenating
% the difference lists Xs and Y s.
append_dl(X-Y, Y-Z, X-Z).

For example, we have:

?- append_dl([a,blX]-X, [c,dlY]-Y, U).
U = [a,b,c,dlY]-Y,
X = [c,dlY]

which shows that U became instantiated to the difference list representing the list
[a,b,c,d].

We shall illustrate the use of difference lists in Subsection 15.6.2.

492 The Logic Programming Paradigm and Prolog

15.6 ARITHMETIC IN PROLOG

The Prolog programs presented so far are declarative since they admit a dual reading
as a formula. The treatment of arithmetic in Prolog compromises to some extent its
declarative underpinnings. However, it is difficult to come up with a better solution
than the one offered by the original designers of the language. The shortcomings of
Prolog's treatment of arithmetic are overcome in the constraint logic programming
languages.

15.6.1 Arithmetic Operators

Prolog provides integers and floating point numbers as built-in data structures, with
the typical operations on them. These operations include the usual arithmetic oper
ators such as+,-,• (multiplication), and// (integer division).

Now, according to the usual notational convention of logic programming and
Prolog, the relation and function symbols are written in the prefix form, that is in
front of the arguments. In contrast, in accordance with their usage in arithmetic, the
binary arithmetic operators are written in infix form, that is between the arguments.
Moreover, negation of a natural number can be written in the bracketless prefix form,
that is, without brackets surrounding its argument.

This discrepancy in the syntax is resolved by considering the arithmetic operators
as built-in function symbols written in the infix or bracketless prefix form with infor
mation about their associativity and binding power that allows us to disambiguate
the arithmetic expressions.

Actually, Prolog provides a means to declare an arbitrary function symbol as an
infix binary symbol or as a bracketless prefix unary symbol, with a fixed priority that
determines its binding power and a certain mnemonics that implies some (or no)
form of associativity. An example of such a declaration was the line:- op(1100, yfx,
arrow). used in the above-type assignment program. Function symbols declared in
this way are called operators. Arithmetic operators can be thus viewed as operators
predeclared in the language "prelude."

In addition to the arithmetic operators we also have at our disposal infinitely many
integer constants and infinitely many floating point numbers. In what follows, by a
number, we mean either an integer constant or a floating point number. The arith
metic operators and the set of all numbers uniquely determine a set of terms. We call
terms defined in this language arithmetic expressions and introduce the abbreviation
gae for ground (i.e., variable free) arithmetic expressions.

15.6.2 Arithmetic Comparison Relations

With each gae, we can uniquely associate its value, computed in the expected way.
Prolog allows us to compare the values of gaes by means of the customary six arith
metic comparison relations

<, =<, =:=("equal"), =\=, ("different"), >=, and >.

15.6 Arithmetic in Prolog 493

The "equal" relation "=:=" should not be confused with the "is unifiable with"
relation"=" discussed in Section 15.3.

The arithmetic comparison relations work on gaes and produce the expected
outcome. For instance, > compares the values of two gaes and succeeds if the value
of the first argument is larger than the value of the second and fails otherwise.

Thus, for example

?- 6*2 =:= 3*4.
yes
?- 7 > 3+4.

no

However, when one of the arguments of the arithmetic comparison relations is not
a gae, the computation ends in an error.

For example, we have

?- [] < 5.

error in arithmetic expression: [] is not a number.

As a simple example of the use of the arithmetic comparison relations, consider
the following program, which checks whether a list of numbers is ordered.

% ordered(Xs) :- Xs is an =<-ordered list of numbers
ordered([]).
ordered([_]).
ordered([X, Y I Xs]) :- X =< Y, ordered([Y I Xs]).

Recall that [X, Y I Xs]) is the abbreviated Prolog notation for [X I [Y I Xs]]).
We now have

?- ordered([l,1,2,3]). yes

but also

?- ordered([1,X,1]).
instantiation fault in 1 =< X

Here, a run-time error took place because at a certain stage the comparison relation
"=<" was applied to an argument that is not a number.

As another example, consider Prolog's version of the quicksort procedure of
C.A.R. Hoare. According to this sorting procedure, a list is first partitioned into

494 The Logic Programming Paradigm and Prolog

two sublists using an element X of it, one consisting of the elements smaller than X
and the other consisting of the elements larger or equal than X. Then each sublist is
quicksorted and the resulting sorted sublists are appended with the element X put
in the middle. This can be expressed in Prolog by means of the following QUICKSORT
program, where X is chosen to be the first element of the given list:

% qs(Xs, Ys) :- Ys is an ordered permutation of the list Xs.
qs([], []).
qs([X I Xs], Ys) :-

part(X, Xs, Littles, Bigs),
qs(Littles, Ls),
qs(Bigs, Bs),
append(Ls, [X I Bs], Ys).

% part(X, Xs, Ls, Bs) :- Ls is a list of elements of Xs which are < X,
% Bs is a list of elements of Xs which are >= X.
part(_, [], [], []}.
part(X, [YI Xs], [YI Ls], Bs) :- X > Y, part(X, Xs, Ls, Bs).
part(X, [Y I Xs], Ls, [Y I Bs]) :- X =< Y, part(X, Xs, Ls, Bs).

We now have, for example

?- qs([7,9,8,1,5], Ys).
Ys = [1, 5, 7, 8, 9]

and also

?- qs([7,9,8,1,5], [1,5,7,9,8]}.
no

The QUICKSORT program uses the append relation to concatenate the lists. Conse
quently, its efficiency can be improved using the difference lists introduced in Sub
section 15.5.2. Conceptually, the calls of the append relation are first replaced by the
corresponding calls of the append_dl relation. This yields a program defining the qs_dl
relation. Then unfolding the calls of append_dl leads to a program that does not use
the APPEND_DL program anymore and performs the list concatenation "on the fly."
This results in the program QUICKSORLDL in which the definition of the qs relation is
replaced by

% qs(Xs, Ys) :- Ys is an ordered permutation of the list Xs.
qs(Xs, Ys) :- qs_dl(Xs, Ys - []).
% qs_dl(Xs, Y) :- Y is a difference list representing the
% ordered permutation of the list Xs.
qs_dl([], Xs - Xs).

qs_dl([X I Xs], Ys - Zs) :-
part(X, Xs, Littles, Bigs),
qs_dl(Littles, Ys - [X I Yls]),
qs_dl(Bigs, Yls - Zs).

The first rule links the qs relation with the qs_dl relation.

15.6.3 Evaluation of Arithmetic Expressions

15.6 Arithmetic in Prolog 495

So far we have presented programs that use ground arithmetic expressions but have

not yet introduced any means of evaluating them. For example, no facilities have

been introduced so far to evaluate 3+4. All we can do at this stage is to check that the

outcome is 7 by using the comparison relation=:= and the query 7 =:= 3+4. However,

using the comparison relations it is not possible to assign the value of 3+4, that is 7,

to a variable, say X. Note that the query X =:= 3+4. ends in an error, while the query
X = 3+4. instantiates X to the term 3+4.

To overcome this problem, the binary arithmetic evaluator is is used in Prolog. is
is an infix operator defined as follows.

Consider the call s is t.
Then t has to be a ground arithmetic expression (gae).

The call of s is t results in the unification of the value of the gae t with s.
If t is not a gae then a run-time error arises.
Thus, for example, we have

?- 7 is 3+4.
yes
8 is 3+4.
no
?- X is 3+4.
X=7
?- X is Y+l.
! Error in arithmetic expression: not a number

As an example of the use of an arithmetic evaluator, consider the proverbial

factorial function. It can be computed using the following program FACTORIAL:

% factorial(N, F) :- Fis N!.
factorial(O, 1).
factorial(N, F) :- N > 0, N1 is N-1, factorial(Nl, Fl), Fis N*Fl.

Note the use of a local variable N1 in the atom Nl is N-1 to compute the decrement

of N and the use of a local variable Fl to compute the value of Nl factorial. The

atom Nl is N-1 corresponds to the assignment command N :== N-1 of imperative pro

gramming. The difference is that a new variable needs to be used to compute the

496 The Logic Programming Paradigm and Prolog

value of N-1. Such uses of local variables are typical when computing with integers
in Prolog.

As another example consider a Prolog program that computes the length of a list.

% length(Xs, N) :- N is the length of the list Xs.
length([], 0).
length([_ I Ts], N) :- length(Ts, M), N is M+l.

We then have

?- length([a,b,c], N).
N=3

An intuitive but incorrect version would use as the second clause

length([_ I Ts], N+l) :- length(Ts, N).

With such definition we would get the following nonintuitive outcome:

?- length([a,b,c], N).
N=0+1+1+1

The point is that the generated ground arithmetic expressions are not automatically
evaluated in Prolog.

We conclude that arithmetic facilities in Prolog are quite subtle and require good
insights to be properly used.

15.7 CONTROL, AMBIVALENT SYNTAX, AND META-VARIABLES

In the framework discussed so far, no control constructs are present. Let us see now
how they could be simulated by means of the features explained so far. Consider the
customary if B then S else T fi construct. It can be modelled by means of the following
two clauses:

p(x) :- B, S.
p(x) :- not B, T.

• t

_,,-~~-----.. --------------------
where p is a new procedure identifier and all the variables ofB, Sand Tare collected in
x. To see how inefficiency creeps into this style of programming, consider two cases.

First, suppose that the first clause is selected and that B is true (i.e., succeeds).
Then the computation continues with S. But in general B is an arbitrary query and
because of the implicit nondeterminism present B can succeed in many ways. If the

15. 7 Control, Ambivalent Syntax, and Meta-Variables 497

computation of S fails, these alternative ways of computing B will be automatically
tried even though we know already that B is true.

Second, suppose that the first clause is selected and that Bis false (that is fails).
Then backtracking takes place and the second clause is tried. The computation pro
ceeds by evaluating not B. This is completely unneeded, since we know at this stage
that not Bis true (that is, succeeds).

Note that omitting not B in the second rule would cause a problem in case a
success of B were followed by a failure of S. Then upon backtracking T would be
executed.

15.7.1 Cut

To deal with such problems, Prolog provides a low level built-in nullary relation
symbol called cut and denoted by "!". To explain its meaning we rewrite first the
above clauses using cut:

p(x) :- B, !, S.
p(x) :- T.

In the resulting analysis, two possibilities arise, akin to the above case distinction.
First, if Bis true (i.e., succeeds), then the cut is encountered. Its execution

• discards all alternative ways of computing B,
• discards the second clause, p(x) :- T., as a backtrackable alternative to the current

selection of the first clause.

Both items have an effect that in the current computation some clauses are not
available anymore.

Second, if B is false (i.e., fails), then backtracking takes place and the second
clause is tried. The computation proceeds now by directly evaluating T.

So using the cut and the above rewriting we achieved the intended effect and
modelled the if B then S else T fi construct in the desired way.

The above explanation of the effect of cut is a good starting point to provide its
definition in full generality.

Consider the following definition of a relation p:

p(s;) :- B,!,C.

Here, the i 1h clause contains a cut atom. Now, suppose that during the execution of
a query, a call p(t) is encountered and eventually the i 1h clause is used and the indi
cated occurrence of the cut is executed. Then the indicated occurrence of ! succeeds
immediately, but additionally

498 The Logic Programming Paradigm and Prolog

1. all alternative ways of computing B are discarded, and
2. all computations of p(t) using the i 1h to fC-h clause for pare discarded as back

trackable alternatives to the current selection of the i-clause.

The cut was introduced to improve the implicit control present through the combi
nation of backtracking and the textual ordering of the clauses. Because of the use of
patterns in the clause heads, the potential source of inefficiency can be sometimes
hidden somewhat deeper in the program text. Reconsider for example the QUICKSORT
program of Section 15.6 and the query?- qs([7,9,8,l,5], Ys). To see that the resulting
computation is inefficient, note that the second clause defining the part relation fails
when 7 is compared with 9 and subsequently the last, third, clause is tried. At this
moment 7 is again compared with 9. The same redundancy occurs when 1 is compared
with 5. To avoid such inefficiencies the definition of part can be rewritten using cut
as follows:

part(_, [], [], []).
part(X, [YI Xs], [Y I Ls], Bs) :- X > Y, !, part(X, Xs, Ls, Bs).
part(X, [YI Xs], Ls, [YI Bs]) :- part(X, Xs, Ls, Bs).

Of course, this improvement can be also applied to the QUICKSORTJ)L program.
Cut clearly compromises the declarative reading of the Prolog programs. It has

been one of the most criticized features of Prolog. In fact, a proper use of cut requires
a good understanding of Prolog's computation mechanism and a number of thumb
rules were developed to help a Prolog programmer to use it correctly. A number of
alternatives to cut were proposed. The most interesting of them, called commit, en
tered various constraint and parallel logic programming languages but is not present
in standard Prolog.

15. 7 .2 Ambivalent Syntax and Meta-variables

Before we proceed, let us review first the basics of Prolog syntax mentioned so far.

1. Variables are denoted by strings starting with an upper case letter or "_"
(underscore). In particular, Prolog allows so-called anonymous variables, writ
ten as"_" (underscore).

2. Relation symbols (procedure identifiers), function symbols, and nonnumeric
constants are denoted by strings starting with a lower case letter.

3. Binary and unary function symbols can be declared as infix or bracketless
prefix operators.

Now, in contrast to first-order logic, in Prolog the same name can be used both for
function symbols and for relation symbols. Moreover, the same name can be used
for function or relation symbols of different arity. This facility is called ambivalent
syntax. A function or a relation symbol f of arity n is then referred to as f/n. Thus, in
a Prolog program, we can use both a relation symbol p/2 and function symbols p/1
and p/2 and build syntactically legal terms or atoms like p(p(a,b),c,p(X)).

15. 7 Control, Ambivalent Syntax, and Meta-Variables 499

In presence of the ambivalent syntax, the distinction between function sym
bols and relation symbols and between terms and atoms disappears, but in the
context of queries and clauses, it is clear which symbol refers to which syntactic
category.

The ambivalent syntax together with Prolog's facility to declare binary function
symbols (and thus also binary relation symbols) as infix operators allows us to pass
queries, clauses and programs as arguments. In fact, ":-/2" is declared internally as an
infix operator and so is the comma" ,/2" between the atoms, so each clause is actually
a term. This facilitates meta-programming, that is, writing programs that use other
programs as data.

In what follows, we shall explain how meta-programming can be realized in
Prolog. To this end, we need to introduce one more syntactic feature. Prolog per
mits the use of variables in the positions of atoms, both in the queries and in the
clause bodies. Such a variable is called then a meta-variable. Computation in the
presence of the meta-variables is defined as before since the mgus employed can also
bind the meta-variables. Thus, for example, given the legal, albeit unusual, Prolog
program (that uses the ambivalent syntax facility)

p(a).
a.

the execution of the Pro log query p(X), X. first leads to the query a. and then succeeds.
Here, a is both a constant and a nullary relation symbol.

Prolog requires that the meta-variables are properly instantiated before they
are executed. In other words, they need to evaluate to a nonnumeric term at the
moment they are encountered in an execution. Otherwise, a run-time error arises.
For example, for the above program and the query p(X), X, Y., the Pro log computation
ends up in error once the query Y. is encountered.

15. 7 .3 Control Facilities

Let us now see how the ambivalent syntax in conjunction with meta-variables sup
ports meta-programming. In this section we limit ourselves to (meta-)programs that
show how to introduce new control facilities. We discuss here three examples, each
introducing a control facility actually available in Prolog as a built-in. More meta
programs will be presented in the next section once we introduce other features of
Pro log.

Disjunction
To start with, we can define disjunction by means of the following simple program:

or(X,Y) :- X.
or(X,Y) :- Y.

500 The Logic Programming Paradigm and Prolog

A typical query is then or(Q,R), where Q and Rare "conventional queries." Disjunction

is a Prolog's built-in declared as an infix operator ";/2" and defined by means of the

above two rules, with "or" replaced by";". So instead of or(Q,R) one writes Q; R.

If-then-else
The other two examples involve the cut operator. The already discussed if B then S

else T fi construct can be introduced by means of the now-familiar program

iLthen_else(B, S, T) :- B,!,S.
iLthen_else(B, S, T) :- T.

In Prolog, iLthen_else is a built-in defined internally by the above two rules.

iLthen_else(B, S, T) is written as B -> S;T. where '"-+ 12" is a built-in declared as

an infix operator. As an example of its use, let us rewrite yet again the definition of

the part relation used in the QUICKSORT program, this time using Prolog's B -> S;T. To

enforce the correct parsing, we need to enclose the B -> S;T statement in brackets:

part(_, [], [], []).
part(X, [Y I Xs], Ls, Bs) :
(x > y ->

Ls= [Y I Lls], part(X, Xs, Lls, Bs)

Bs = [Y I Bls], part(X, Xs, Ls, Bls)
).

Note that here we had to dispense with the use of patterns in the "output" positions

of part and reintroduce the explicit use of unification in the procedure body. By

introducing yet another B -> S;T statement to deal with the case analysis in the second

argument, we obtain a definition of the part relation that very much resembles a

functional program:

part(X, Xls, Ls, Bs) :
(Xls = [] ->

) .

Ls = [], Bs = []

X1s = [Y I Xs],
(x > y ->

Ls= [Y I Lls], part(X, Xs, Lls, Bs)

Bs = [Y I B1s], part(X, Xs, Ls, B1s)
)

15. 7 Control, Ambivalent Syntax, and Meta-Variables 501

In fact, in this program all uses of unification boil down to matching and its use does
not involve backtracking. This example explains how the use of patterns often hides
an implicit case analysis. By making this case analysis explicit using the if-then-else
construct we end up with longer programs. In the end the original solution with the
cut seems to be closer to the spirit of the language.

Negation
Finally, consider the negation operation not that is supposed to reverse failure with
success. That is, the intention is that the query not Q. succeeds iff the query Q. fails.
This operation can be easily implemented by means of meta-variables and cut as
follows:

not(X) :- X, !, fail.
not(.).

faiVO is Prolog's built-in with the empty definition. Thus, the call of the parameterless
procedure fail always fails.

This cryptic two-line program employs several discussed features of Prolog. In
the first line, X is used as a meta-variable. Now consider the call not(Q), where Q is a
query. If Q succeeds, then the cut is performed. This has the effect that all alternative
ways of computing Qare discarded and also the second clause is discarded. Next, the
built-in fail is executed and a failure arises. Because the only alternative clause was
just discarded, the query not(Q) fails. If, on the other hand, the query Q fails, then
backtracking takes place and the second clause, not(.), is selected. It immediately
succeeds and so the initial query not(Q) succeeds. So this definition of not achieves
the desired effect.

not/1 is defined internally by the above two line definition augmented with the
appropriate declaration of it as a bracketless prefix unary symbol.

Call
Finally, let us mention that Prolog also provides an indirect way of using meta
variables by means of a built-in relation call/1. call/1 is defined internally by this
rule:

call(X) :- X.

call/1 is often used to "mask" the explicit use of meta-variables, but the outcome is
the same.

15. 7 .4 Negation as Failure

The distinction between successful and failing computations is one of the unique
features of logic programming and Prolog. In fact, no counterpart of failing compu
tations exists in other programming paradigms.

502 The Logic Programming Paradigm and Prolog

The most natural way of using failing computations is by employing the negation
operator not that allows us to tum failure into success, by virtue of the fact that the
query not Q. succeeds iff the query Q. fails. This way we can use not to represent
negation of a Boolean expression. In fact, we already referred informally to this use
of negation at the beginning of Section 15.7.

This suggests a declarative interpretation of the not operator as a classical nega
tion. This interpretation is correct only if the negated query always terminates and
is ground. Note, in particular, that given the procedure p defined by the single rule
p :- p. the query not p. does not terminate. Also, for the query not(X"" 1)., we get the
following counterintuitive outcome:

?- not(X"" 1).
no

Thus, to generate all elements of a list Ls that differ from 1, the correct query is
member(X, Ls), not(X"" 1). and not not(X"" 1), member(X, Ls). One usually refers to
the way negation is used in Prolog as "negation as failure." When properly used,
it is a powerful feature as testified by the following jewel program. We consider
the problem of determining a winner in a two-person finite game. Suppose that the
moves in the game are represented by a relation move. The game is assumed to
be finite, so we postulate that given a position pos the query move(pos, Y). gener
ates finitely many answers, which are all possible moves from pos. A player loses
if he is in a position pos from which no move exists, i.e., if the query move(pos, Y).
fails.

A position is a winning one when a move exists that leads to a losing, i.e., non
winning position. Using the negation operator, this can be written as

% win(X) :- X is a winning position in the two-person finite game
% represented by the relation move.
win(X) :- move(X, Y), not win(Y).

This remarkably concise program has a simple declarative interpretion. In con
trast, the procedural interpretation is quite complex: the query win(pos). deter
mines whether pos is a winning position by performing a minimax search on the
0-1 game tree represented by the relation move. In this recursive procedure, the base
case appears when the call to move fails. Then the corresponding call of win also
fails.

15.7.5 Higher-Order Programming and Meta-Programming in Prolog

Thanks to the ambivalent syntax and meta-variables, higher-order programming and
another form of meta-programming can be easily realized in Prolog. To explain this,
we need two more built-ins. Each of them belongs to a different category.

15. 7 Control, Ambivalent Syntax, and Meta-Variables 503

Term Inspection Facilities
Prolog offers a number of built-in relations that allow us to inspect, compare, and
decompose terms. One of them is = .. /2 (pronounced univ) that allows us to switch
between a term and its representation as a list. Instead of precisely describing its
meaning, we just illustrate one of its uses by means the following query:

?- Atom= .. [square, [1,2,3,4], Ys].
Atom= square([1,2,3,4], Ys).

The left-hand side, here Atom, is unified with the term (or, equivalently, the atom),
here square([1,2,3,4], Ys), represented by a list on the right-hand side, here [square,
[1,2,3,4], Ys]. In this list representation of a term, the head of the list is the leading
function symbol and the tail is the list of the arguments.

Using univ, one can construct terms and pass them as arguments. More inter
estingly, one can construct atoms and execute them using the meta-variable facility.
This way it is possible to realize higher-order programming in Prolog in the sense that
relations can be passed as arguments. To illustrate this point, consider the following
program MAP:

% map(P, Xs, Ys) :- the list Ys is the result of applying P
% elementwise to the list Xs.
map(P, [], []).
map(P, [X I Xs] , [Y I Ys]) :- apply(P, [X, Y]), map(P, Xs, Ys).
% apply(P, [X1, ... , Xn]) :- execute the atom P(X1, ... , Xn).
apply(P, Xs) :- Atom= .. [PIXs], Atom.

In the last rule, univ is used to construct an atom. Note the use of the meta-variable
Atom. MAP is Prolog's counterpart of the familiar higher-order functional program
and it behaves in the expected way. For example, given the program % square(X, Y)
:- Y is the square of X. square(X, Y) :- Y is X*X. we get

?- map(square, [1,2,3,4], Ys).
Ys = [1, 4, 9, 16]

Program manipulation facilities
Another class of Prolog built-ins makes it possible to access and modify the program
during its execution. We consider here a single built-in in this category, clause/2 , that
allows us to access the definitions of the relations present in the considered program.
Again, consider first an example of its use in which we refer to the program MEMBER
of Subsection 15.5.1.

504 The logic Programming Paradigm and Prolog

?- clause(member(X,Y), Z).
y = [X__A],
Z =true;
y = (__A_B],
Z = member(X,_B) ;
no

In general. the call clause(head, body) leads to a unification of the term head :- body
with the successive clauses forming the definition of the relation in question. This
relation, here member, is the leading symbol of the first argument of clause/2 that has

to be a non-variable.
This built-in assumes that true is the body of a fact, here member(X, [X I _]). true/O

is Prolog's built-in that succeeds immediately. Thus, its definition consists just of the
fact true. This explains the first answer. The second answer is the result of unifying
the term member(X,Y) :- Z with (a renaming of) the second clause defining member,
namely member(X, [_ I Xs]):- member(X, Xs).

Using clause/2, we can construct Prolog interpreters written in Prolog, that is,
meta-interpreters. Here is the simplest one:

% solve(Q) :- the query Q succeeds for the program accessible by clause/2.
solve(true) :- !.
solve((A,B)) :- !, solve(A), solve(B).
solve(A) :- clause(A, B), solve(B).

Recall that (A,B) is a legal Prolog term (with no leading function symbol). To un
derstand this program, one needs to know that the comma between the atoms is
declared internally as a right associative infix operator, so the query A,B,C,D actually
stands for the term (A,(B,(C,D))), etc.

The first clause states that the built-in true succeeds immediately. The second
clause states that a query of the form A, B can be solved if A can be solved and B
can be solved. Finally, the last clause states that an atomic query A can be solved if
there exists a clause of the form A :- B such that the query B can be solved. The cuts
are used here to enforce the a "definition by cases": either the argument of solve is
true or a nonatomic query or else an atomic one.

To illustrate the behavior of the above meta-interpreter, assume that MEMBER is
a part of the considered program. We then have

?- solve(member(X, [mon, wed, fri])).
X = mon;
X =wed;
X=fri;
no

15.8 Assessment of Prolog 505

This meta-program forms a basis for building various types of interpreters for larger
fragments of Prolog or for its extensions.

15.8 ASSESSMENT OF PROLOG

Prolog, because of its origin in automated theorem proving, is an unusual program
ming language. It leads to a different style of programming and to a different view
of programming. A number of elegant Prolog programs presented here speak for
themselves. We also noted that the same Prolog program can often be used for
different purposes - for computing, testing or completing a solution, or for com
puting all solutions. Such programs cannot be easily written in other programming
paradigms. Logical variables are a unique and, as we saw, very useful feature of
logic programming. Additionally, pure Prolog programs have a dual interpretation
as logical formulas. In this sense, Prolog supports declarative programming.

Both through the development of a programming methodology and ingenious
implementations, great care was taken to overcome the possible sources of ineffi
ciency. On the programming level, we already discussed cut and the difference lists.
Programs such as FACTORIAL of Subsection 15.6.3 can be optimized by means of tail
recursion. On the implementation level, efficiency is improved by such techniques
as the last call optimization that can be used to optimize tail recursion, indexing
that deals with the presence of multiple clauses, and a default omission of the occur
check (the test "x does not occur in t" in clause (5) of the Martelli-Montanari algo
rithm) that speeds up the unification process (although on rare occasions makes it
unsound).

Prolog's only data type, the terms, is implicitly present in many areas of computer
science. In fact, whenever the objects of interest are defined by means of grammars,
for example first-order formulas, digital circuits, programs in any programming lan
guage, or sentences in some formal language, these objects can be naturally defined
as terms. Prolog programs can then be developed starting with this representation
of the objects as terms. Prolog's support for handling terms by means of unification
and various term inspection facilities becomes handy. In short, symbolic data can be
naturally handled in Prolog.

The automatic backtracking becomes very useful when dealing with search.
Search is of paramount importance in many artificial intelligence applications and
backtracking itself is most natural when dealing with the NP-complete problems.
Moreover, the principle of "computation as deduction" underlying Prolog's com
putation process facilitates formalization of various forms of reasoning in Prolog.
In particular, Prolog's negation operator not can be naturally used to support
nonmonotonic reasoning. All this explains why Prolog is a natural language for
programming artificial intelligence applications, such as automated theorem provers,
expert systems, and machine learning programs where reasoning needs to be
combined with computing, game playing programs, and various decision support
systems.

Prolog is also an attractive language for computational linguistics applications
and for compiler writing. In fact, Prolog provides support for so-called definite clause
grammars (DCG). Thanks to this, a grammar written in the DCG form is already
a Prolog program that forms a parser for this grammar. The fact that Prolog allows

506 The logic Programming Paradigm and Prolog

one to write executable specifications makes it also a useful language for rapid pro
totyping, in particular in the area of meta-programming.

For the sake of a balanced presentation let us discuss now Prolog's shortcomings.

lack of Types
Types are used in programming languages to structure the data manipulated by the
program and to ensure its correct use. In Prolog, one can define various types like
binary trees and records. Moreover, the language provides a notation for lists and
offers a limited support for the type of all numbers by means of the arithmetic
operators and arithmetic comparison relations. However, Prolog does not support
types in the sense that it does not check whether the queries use the program in the
intended way.

Because of this absence of type checking, type errors are easy to make but difficult
to find. For example, even though the APPEND program was meant to be used to
concatenate two lists, it can also be used with nonlists as arguments:

?- append([a,b], f(c), Zs).
Zs =[a, b!f(c)]

and no error is reported. In fact, almost every Prolog program can be misused.
Moreover, because of lack of type checking some improvements of the efficiency
of the implementation cannot be carried out and various run-time errors cannot be
prevented.

Subtle Arithmetic
We discussed already the subtleties arising in presence of arithmetic in Section 15.6.
We noted that Prolog's facilities for arithmetic easily lead to run-time errors. It would
be desirable to discover such errors at compile time but this is highly non trivial.

Idiosyncratic Control
Prolog's control mechanisms are difficult to master by programmers accustomed
to the imperative programming style. One of the reasons is that both bounded it
eration (the for statement) and unbounded iteration (the while statement) need to
be implemented by means of the recursion. For example, a nested for statement is
implemented by means of nested tail recursion that is less easy to understand. Of
course, one can introduce both constructs by means of meta-programming, but then
their proper use is not enforced because of the lack of types. Additionally, as already
mentioned, cut is a low-level mechanism that is not easy to understand.

Complex Semantics of Various Built-ins
Prolog offers a large number of built-ins. In fact, the ISO Prolog Standard describes
I 02 built-ins. Several of them are quite subtle. For example, the query not(not Q). tests
whether the query Q. succeeds and this test is carried out without changing the state,
i.e., without binding any of the variables. Moreover, it is not easy to describe precisely
the meaning of some of the built-ins. For example, in the ISO Prolog Standard the
operational interpretation of the if-then-else construct consists of 17 steps.

15.10 Chapter Summary 507

No Modules and No Objects
Finally. even though modules exist in many widely used Prolog versions. neither
modules nor objects are present in ISO Prolog Standard.as 1bis makes it difficult to
properly structure Prolog programs and reuse them as components of other Prolog
programs. It should be noted that thanks to Prolog's support for meta-programming,
the object-programming style can be mimicked in Prolog in a simple way. But no
compile-time checking of its proper use is then enforced then and errors in the
program design will be discovered at best at the run-time. The same critique applies
to Prolog's approach to higher-order programming and to meta-programming.

Of course, these limitations of Prolog were recognized by many researchers who
came up with various good proposals on how to improve Prolog's control, how to
add to it (or how to infer) types, and how to provide modules and objects. Research
in the field of logic programming also has dealt with the precise relation between
the procedural and declarative interpretation of logic programs and a declarative
account of various aspects of Prolog, including negation and meta-programming.
Also verification of Prolog programs and its semantics were extensively studied.

However, no single programming language proposal emerged yet that could
be seen as a natural successor to Prolog in which the above shortcomings are
properly solved. The language that comes closest to this ideal is Mercury (see
http://www.cs.mu.oz.au/research/mercury/). Colmerauer designed a series of suc
cessors of Pro log, Pro log II, III, and IV that incorporated various forms of constraint
processing into this programming style.

When assessing Prolog, it is useful to have in mind that it is a programming
language designed in the early 1970s (and standardized in the 1990s). The fact that
it is still widely used and that new applications for it keep being found testifies to its
originality. No other programming language succeeded to embrace first-order logic
in such an effective way.

15.9 BIBLIOGRAPHIC REMARKS

For those interested in learning more about the origins of logic programming and of
Pro log, the best place to start is Colmerauer and Roussel's account (The Birth of Pro
log, in Bergin and Gibson, History of Programming Languages. ACM Press/ Addison
Wesley, 1996, pp. 331-367). There a number of excellent books on programming in
Prolog. The two deservedly most successful are Bratko (PROLOG Programming
for Artificial Intelligence, Addison-Wesley, 2001) and Sterling and Shapiro (The Art
of Prolog, MIT Press, 1994). The work by O'Keefe (The Craft of Prolog, MIT Press,
1990) discusses in depth the efficiency and pragmatics of programming in Prolog. The
work by Ait-Kaci (Warrens' Abstract Machine, MIT Press, 1991. Out of print. Avail
able at http://www.isg.sfu.ca/~hak/documents/wam.html) is an outstanding tutorial
on the implementation of Prolog.

15.10 CHAPTER SUMMARY

We discussed the logic programming paradigm and its realization in Prolog. 1!1is
paradigm has contributed a number of novel ideas in the area of programmmg
languages. It introduced unification as a computation mechanism and it realized the

508 The Logic Programming Paradigm and Prolog

Table 15.1.

Logic Programming

equation solved by unification
relation symbol
term
atom
query
definition of a relation
local variable of a rule
logic program
"," between atoms
substitution
composition of substitutions

Imperative Programming

assignment
procedure identifier
expression
procedure call
program
procedure declaration
local variable of a procedure
set of procedure declarations
sequencing(";")
state
state update

concept of "computation as deduction". Additionally, it showed that a fragment of
first-order logic can be used as a programming language and that declarative pro
gramming is an interesting alternative to structured programming in the imperative
programming style.

Prolog is a rule-based language but thanks to a large number of built-ins it is a
general purpose programming language. Programming in Prolog substantially differs
from programming in the imperative programming style. Table 15.1 may help to relate
the underlying concepts used in both programming styles.

Acknowledgements

Maarten van Emden and Jan Smaus provided K.R. Apt with useful comments on
this chapter.

