
The Alma Project, or How First-Order Logic
Can Help Us in Imperative Programming

Krzysztof R. Apt1•2 and Andrea Schaerf3

1 CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

K.R.Apt©cwi.nl
2 Dept. of Mathematics, Computer Science, Physics & Astronomy University of

Amsterdam, The Netherlands
3 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica

Universita di Udine
via delle Scienze 208, 1-33100 Udine, Italy

schaerf©uniud.it

Abstract. The aim of the Alma project is the design of a strongly typed
constraint programming language that combines the advantages of logic
and imperative programming.
The first stage of the project was the design and implementation of Alma-
0, a small programming language that provides a support for declarative
programming within the imperative programming framework. It is ob­
tained by extending a subset of Modula-2 by a small number of features
inspired by the logic programming paradigm.
In this paper we discuss the rationale for the design of Alma-0, the ben­
efits of the resulting hybrid programming framework, and the current
work on adding constraint processing capabilities to the language. In
particular, we discuss the role of the logical and customary variables, the
interaction between the constraint store and the program, and the need
for lists.

1 Introduction

1.1 Background on Designing Programming Languages

The design of programming languages is one of the most hotly debated topics
in computer science. Such debates are often pretty chaotic because of the lack
of universally approved criteria for evaluating programming languages. In fact,
the success or failure of a language proposal often does not say much about
the language itself but rather about such accompanying factors as: the quality
and portability of the implementation, the possibility of linking the language
with the currently reigning programming language standard (for instance, C),
the existing support within the industry, presence of an attractive development
environment, the availability on the most popular platforms, etc.

The presence of these factors often blurs the situation because in evaluating
a language proposal one often employs, usually implicitly, an argument that the

E.-R. Olderog, B. Steffen (Eds.): Correct System Design, LNCS 1710, pp. 89-113, 1999.
© Springer-Verlag Berlin Heidelberg 1999

90 K.R. Apt and A. Schaerf

"market" will eventually pick up the best product. Such a reasoning would be
correct if the market forces in computing were driven by the desire to improve
the quality of programming. But from an economic point of view such aspects
as compatibility and universal availability are far more important than quality.

Having this in mind we would like to put the above factors in a proper per­
spective and instead concentrate on the criteria that have been used in academia
and which appeal directly to one of the primary purposes for which a program­
ming language is created, namely, to support an implementation of the algo­
rithms. In what follows we concentrate on the subject of "general purpose"
programming languages, so the ones that are supposed to be used for developing
software, and for teaching programming.

Ever since Algol-60 it became clear that such programming languages should
be "high-level" in that they should have a sufficiently rich repertoire of control
structures. Ever since C and Pascal it became clear that such programming
languages should also have a sufficiently rich repertoire of data structures.

But even these seemingly obvious opinions are not universally accepted as
can be witnessed by the continuing debate between the followers of imperative
programming and of declarative programming. In fact, in logic programming
languages, such as Prolog, a support for just one data type, the lists, is provided
and the essence of declarative programming as embodied in logic and functional
programming lies in not using assignment.

Another two criteria often advanced in the academia are that the program­
ming language should have a "simple" semantics and that the programs should
be "easy" to write, read and verify. What is "simple" and what is "easy" is in
the eyes of the beholder, but both criteria can be used to compare simplicity of
various programming constructs and can be used for example to argue against
the goto statement or pointers.

In this paper we argue that these last two criteria can be realized by basing
a programming language on first-order logic. The point is that first-order logic
is a simple and elegant formalism with a clear semantics. From all introduced
formalisms (apart from the propositional logic that is too simplistic for program­
ming purposes) it is the one that we understand best, both in terms of its syntax
and its semantics. Consequently, its use should facilitate program development,
verification and understanding.

One could argue that logic programming has realized this approach to com­
puting as it is based on Horn clauses that are special types of first-order formu­
las. However, in logic programming in its original setting computing (implicitly)
takes place over the domain of terms. This domain is not sufficient for program­
ming purposes. Therefore in Prolog, the most widely used logic programming
language, programs are augmented with some support for arithmetic. This leads
to a framework in which the logical basis is partly lost due to the possibility
of errors. For instance, Prolog's assignment statement X is t yields a run-time
error if t is not a ground arithmetic expression.

This and other deficiencies of Prolog led to the rise of constraint logic pro­
gramming languages that overcome some of Prolog's shortcomings. These pro-

The Alma Project, or How First-Order Logic Can Help Us 91

gramming languages depend in essential way on some features as the presence
of constraint solvers (for example a package for linear programming) and con­
straint propagation. So this extension of logic programming goes beyond first­
order logic.

It is also useful to reflect on other limitations of these two formalisms. Both
logic programming and constraint logic programming languages rely heavily on
recursion and the more elementary and easier to understand concept of iteration
is not available as a primitive. Further, types are absent. They can be added to
the logic programming paradigm and in fact a number of successful proposals
have been made, see, e.g., [15]. But to our knowledge no successful proposal
dealing with addition of types to constraint logic programs is available.

Another, admittedly debatable, issue is assignment, shunned in logic pro­
gramming and constraint logic programming because its use destroys the declara­
tive interpretation of a program as a formula. However, we find that assignment
is a useful construct. Some uses of it, such as recording the initial value of a
variable or counting the number of bounded iterations, can be replaced by con­
ceptually simpler constructs but some other uses of it such as for counting or for
recording purposes are much less natural when simulated using logic formulas.

1. 2 Design Decisions

These considerations have led us to a design of a programming language Alma-0.
The initial work on the design of this language was reported in [3]; the final
description of the language, its implementation and semantics is presented in
[2].

In a nutshell, Alma-0 has the following characteristics:

it is an extension of a subset of Modula-2 that includes assignment, so it is
a strongly typed imperative language;
to record the initial value of a variable the equality can be used;
it supports so-called "don't know" nondeterminism by providing a possibility
of a creation of choice points and automatic backtracking;
it provides two forms of bounded iterations.

The last two features allow us to dispense with many uses of recursion that
are in our opinion difficult to understand and to reason about.

As we shall see, the resulting language proposal makes programming in an
imperative style easier and it facilitates (possibly automated) program verifi­
cation. Additionally, for several algorithmic problems the solutions offered by
Alma-0 is substantially simpler than the one offered by the logic programming
paradigm.

The following simple example can help to understand what we mean by
saying that Alma-0 is based on first-order logic and that some Alma-0 programs
are simpler than their imperative and logic programming counterparts.

Consider the procedure that tests whether an array a [1 .. n] is ordered. The
customary way to write it in Modula-2 is:

92 K.R. Apt and A. Schaerf

i:= 1;
ordered := TRUE;
WHILE i < n AND ordered DO

ordered:= ordered AND (a[i) <= a[i+1));
i := i+1

END;

In Alma-0 we can just write:

ordered := FOR i:= 1 TO n-1 DO a[i] <= a[i+1) END

This is much simpler and as efficient. In fact, this use of the FOR statement
corresponds to the bounded universal quantification and the above one line pro­
gram equals the problem specification.

In the logic programming framework there are no arrays. But the related
problem of finding whether a list Lis ordered is solved by the following program
which is certainly more involved than the above one line of Alma-0 code:

ordered([]).
ordered ([X]) .
ordered([X, Y I Xs]) X =< Y, ordered([YI Xs]).

1.3 Towards an Imperative Constraint Programming Language

In Alma-0 each variable is originally uninitialized and needs to be initialized
before being used. Otherwise a run-time error arises. The use of uninitialized
variables makes it possible to use a single program for a number of purposes,
such as computing a solution, completing a partial solution, and testing a can­
didate solution. On the other hand, it also provides a limitation on the resulting
programming style as several first-order formulas, when translated to Alma-0
syntax, yield programs that terminate in a run-time error.

With the addition of constraints this complication would be overcome. The
idea is that the constraints encountered during the program execution are moved
to the constraint store and evaluated later, when more information is available.
Then the above restriction that each variable has to be initialized before being
used can be lifted, at least for the variables that are manipulated by means of
constraints. Additionally, more programs can be written in a declarative way. In
fact, as we shall see, an addition of constraints to Alma-0 leads to a very natural
style of programming in which the constraint generation part of the program is
often almost identical to the problem specification.

Constraint programming in a nutshell consists of generating constraints (re­
quirements) and solving them by general and domain specific methods. This
approach to programming was successfully realized in a number of programming
languages, notably constraint logic programming languages.

Up to now, the most successful approach to imperative constraint program­
ming is the object-oriented approach taken by ILOG Solver (see [16], [9]). In this
system constraints and variables are treated as objects and are defined within

The Alma Project, or How First-Order Logic Can Help Us 93

a C++ class library. Thanks to the class encapsulation mechanism and the op­
erator overloading capability of C++, the user can see constraints almost as if
they were a part of the language. A similar approach was independently taken
in the NeMo+ programming environment of [18].

In our approach constraints are integrated into the imperative programming
paradigm, as "first class citizens" of the language. The interaction between the
constraint store and the program becomes then more transparent and concep­
tually simpler and the resulting constraint programs are in our opinion more
natural than their counterparts written in the constraint logic programming
style or in the imperative languages augmented with constraint libraries.

The reason for this in the case of constraint logic programming is that many
uses of recursion and lists can be replaced by the more basic concepts of bounded
iteration and arrays. In the case of the imperative languages with constraint li­
braries, due to the absence of non-determinism in the language, failure situations
(arising due to inconsistent constraints) must be dealt with explicitly by the pro­
grammer, whereas in Alma-0 they are managed implicitly by the backtracking
mechanism.

When adding constraints to a strongly typed imperative programming lan­
guage one needs to resolve a number of issues. First, constraints employ variables
in the mathematical sense of the word (so unknowns) while the imperative pro­
gramming paradigm is based on the computer science concept of a variable, so a
known, but varying entity. We wish to separate between these two uses of vari­
ables because we want to manipulate unknowns only by means of constraints
imposed on them. This precludes the modelling of unknowns by means of unini­
tialized variables since the latter can be modified by means of an assignment.

Second, one needs to integrate the constraints in such a way that various
features of the underlying language such as use of local and global declarations
and of various parameter passing mechanisms retain their coherence.

Additionally, one has to maintain the strong typing discipline according to
which each variable has a type associated with it in such a way that throughout
the program execution only values from its type can be assigned to the variable.
Finally, one needs to provide an adequate support for search, one of the main
aspects of constraint programming.

So the situation is quite different than in the case of the logic programming
framework. Namely, the logic programming paradigm is based on the notion
of a variable in the mathematical sense (usually called in this context a logical
variable). This greatly facilitates the addition of constraints and partly explains
why the integration of constraints into logic programming such as in the case
of CHIP (see [19]), Prolog III (see [4]) and CLP(R) (see [11]), to name just
three examples, has been so smooth and elegant. Further, logic programming
languages provide support for automatic backtracking.

However, as already mentioned, in constraint logic programming languages
types are not available. Moreover, there is a very limited support for scoping
and only one parameter mechanism is available.

94 K.R. Apt and A. Schaerf

Let us return now to Alma-0. The language already provides a support for
search by means of automatic backtracking. This support is further enhanced
in our proposal by providing a built-in constraint propagation. In [2] we stated
that our language proposal should be viewed as "an instance of a generic method
for extending (essentially) any imperative programming language with facilities
that encourage declarative programming." That is why we think that the pro­
posal here discussed should be viewed not only as a suggestion how to integrate
constraints into Alma-0, but more generally how to integrate constraints into
any strongly typed imperative language. In fact, Alma-0 can be viewed as an
intermediate stage in such an integration.

The remainder of the paper is organized as follows. In Section 2 we sum­
marize the new features of Alma-0 and in Section 3 we illustrate the resulting
programming style by two examples. Then, in Section 4 we discuss the basics of
our proposal for adding constraints to Alma-0 and in Section 5 we explain how
constraints interact with procedures. In turn in Section 6 we discuss language
extensions for expressing complex constraints and for facilitating search in pres­
ence of constraints. Finally, in Section 7 we discuss related work and in Section 8
we draw some conclusions and discuss the future work.

2 A Short Overview of Alma-0

Alma-0 is an extension of a subset of Modula-2 by nine new features inspired by
the logic programming paradigm. We briefly recall most of them here and refer
to [2] for a detailed presentation.

- Boolean expressions can be used as statements and vice versa. This feature
of Alma-0 is illustrated by the above one line program of Subsection 1.2.
A boolean expression that is used as a statement and evaluates to FALSE is
identified with a failure.
Choice points can be created by the non-deterministic statements ORELSE
and SOME. The former is a dual of the statement composition and the latter
is a dual of the FOR statement. Upon failure the control returns to the most
recent choice point, possibly within a procedure body, and the computation
resumes with the next branch in the state in which the previous branch was
entered.

- The created choice points can be erased or iterated over by means of the
COMMIT and FORALL statements. COMMIT S END removes the choice points
created during the first successful execution of S. FORALL S DO T END iter­
ates over all choice points created by S. Each time S succeeds, T is executed.

- The notion of initialized variable is introduced: A variable is uninitialized
until the first time a value is assigned to it; from that point on, it is initialized.
The KNOWN relation tests whether a variable of a simple type is initialized.

- The equality test is generalized to an assignment statement in case one side is
an uninitialized variable and the other side an expression with known value.

The Alma Project, or How First-Order Logic Can Help Us 95

In Alma-0 three types of parameter mechanisms are allowed: call by value,
call by variable and call by mixed form. The first two are those of Pascal
and Modula-2; the third one is an amalgamation of the first two (see [2)).
Parameters passed by mixed form can be used both for testing and for com­
puting.

Let us summarize these features of Alma-0 by clarifying which of them are
based on first-order logic.

In the logical reading of the programming language constructs the program
composition S; T is viewed as the conjunction S A T. A dual of ";", the EITHER

S ORELSE T END statement, corresponds then to the disjunction S V T.

Further, the FOR i: = s TO t DO S END statement is viewed as the bounded
universal quantification, Yi E [s .. t J S, and its dual, the SOME i: = s TO t DO S
END statement is viewed as the bounded existential quantification, :Ji E [s .. t] S.

In turn, the FORALL S DO T END statement can be viewed as the restricted
quantification \fx(S-+ T), where x are all the variables of S.

Because the boolean expressions are identified with the statements, we can
apply the negation connective, NOT, to the statements. Finally, the equality can
be interpreted both as a test and as an one-time assignment, depending on
whether the variable in question is initialized or not.

3 Programming in Alma-0

To illustrate the above features of Alma-0 and the resulting programming style
we now consider two examples.

3.1 The Frequency Assignment Problem

The first problem we discuss is a combinatorial problem from telecommunication.

Problem 1. Frequency Assignment ([7]). Given is a set of n cells, C := {c1,
c2, ... , en} and a set of m frequencies (or ehannels) F := {f1, h, ... , fm}· An
assignment is a function which assoeiates with each cell ci a frequeney Xi E

F. The problem consists in finding an assignment that satisfies the following
eonstraints.

Separations: Given h and k we call the value d(f;,, fk) = I h - k I the dis­
tance between two channels fh and fk. (The assumption is that consecutive
frequencies lie one unit apart.) Given is an n x n non-negative integer sym­
metric matrix S, called a separation matrix, such that each Sij represents
the minimum distance between the frequencies assigned to the cells Ci and
Cj. That is, for all i E [l..n] and j E [l..n] it holds that d(xi, Xj) ;:::: Sij.

Illegal channels: Given is an n x m boolean matrix F such that if Fij = true,
then the frequency fj cannot be assigned to the cell i, i. e., Xi i= f j.

96 K.R. Apt and A. Schaerf

Separation constraints prevent interference between cells which are located
geographically close and which broadcast in each other's area of service. Illegal
channels account for channels reserved for external uses (e.g., for military bases).

The Alma-0 solution to this problem does not use an assignment and has
a dual interpretation as a formula. We tested this program on various data.
We assume here for simplicity that each Ci equals i and each fi equals i, so
C = {1, ... ,n} and F = {1, ... ,m}.

MODULE FrequencyAssigrunent;
CONST N = 30; (• number of cells •)

M = 27; (* number of frequencies •)

TYPE SeparationMatrix =ARRAY [1 .. N],[1 .. N] OF INTEGER;
IllegalFrequencies =ARRAY [1 .. N],[1 .. M] OF BOOLEAN;
Assigrunent =ARRAY [1 .. N] OF [1 .. M]; (•solution vector•)

VAR S: SeparationMatrix;
F: IllegalFrequencies;
A: Assignment;
noSol: INTEGER;

PROCEDURE AssignFrequencies(S: SeparationMatrix; F: IllegalFrequencies;
VARA: Assignment);

VAR i, j, k: INTEGER;
BEGIN

FOR i := 1 TO N DO
SOME j := 1 TO M DO (• j is a candidate frequency for cell i *)

NOT F[i,j];
FOR k := 1 TO i-1 DO

abs(A[k] - j) >= S[k,i]
END;
A[i] = j

END
END

END AssignFrequencies;

BEGIN
InitializeData(S,F);
AssignFrequencies(S,F,A);
PrintSolution(A)

END FrequencyAssignment.

The simple code of the procedures Ini tializeData and PrintSolution is
omitted. The generalized equality A [i) = j serves here as an assignment and
the SOME statement takes care of automatic backtracking in the search for the
right frequency j.

In the second part of the paper we shall discuss an alternative solution to
this problem using constraints.

The Alma Project, or How First-Order Logic Can Help Us 97

3.2 Job Shop Scheduling

The second problem we discuss is a classical scheduling problem, namely the job
shop scheduling problem. We refer to [5, page 242] for its precise description.
Roughly speaking, the problem consists of scheduling over time a set of jobs,
each consisting of a set of consecutive tasks, on a set of processors.

The input data is represented by an array of jobs, each element of which is
a record that stores the number of the tasks and the array of tasks. In turn,
each task is represented by the machine it uses and by its length. The output is
delivered as an integer matrix that (like a so-called Gantt chart) for each time
point k and each processor p stores the job number that p is serving at the time
point k.

The constraint that each processor can perform only one job at a time is
enforced by using generalized equality on the elements of the output matrix.
More precisely, whenever job i requires processor j for a given time window
[di, d2], the program attempts for some k to initialize the elements of the matrix
(j, k + di), (j, k + di + 1), ... , (j, k + d2) to the value i. If this initialization
succeeds, the program continues with the next task. Otherwise some element in
this segment is already initialized, i.e., in this segment processor j is already
used by another job. In this case the execution fails and through backtracking
the next value for k is chosen.

The constraint that the tasks of the same job must be executed in the pro­
vided order and cannot overlap in time is enforced by the use of the variable
min_start_time which, for each job, initially equals I and then is set to the end
time of the last considered task of the job. To perform this update we exploit
the fact that when the SOME statement is exited its index variable k equals the
smallest value in the considered range for which the computation does not fail
(as explained in [2]).

We provide here the procedure that performs the scheduling. For the sake of
brevity the rest of the program is omitted.

TYPE
Task Type

Job Type

= RECORD
machine
length

END;
= RECORD

INTEGER;
INTEGER;

tasks INTEGER;
task ARRAY. [1 .. MAX_TASKS] OF TaskType

END;
JobVectorType =ARRAY [1 .. MAX_JOBS] OF JobType;
GanttType =ARRAY [1 .. MAX_MACHINES],[1 .. MAX_DEADLINE] OF INTEGER;

PROCEDURE JobShopScheduling(VAR job: JobVectorType; deadline:INTEGER;
jobs :INTEGER; VAR gantt: GanttType);

VAR
i, j' k, h
min_start_time

INTEGER;
INTEGER;

98 K.R. Apt and A. Schaerf

BEGIN

DO

FOR i := 1 TO jobs DO
min_start_time := 1;
FOR j := 1 TO job[i] .tasks DO

SOME k := min_start_time TO deadline - job[i] .task[j) .length + 1

(* job i engages the processor needed for task j from time k to

k + (length of task j) - 1.
If the processor is already engaged, the program backtracks.

FOR h := k TO k + job[i].task[j] .length - 1 DO

gantt[job[i] .task[j].processor,h] = i;
END

END;
min_start_time := k + job[i] .task[j] .length;

END;
END

(* set the minimum start time for the next task

to the end of the current task *)

END JobShopScheduling;

In this program the "don't know" nondeterminism provided by the use of

the SOME statement is combined with the use of assignment.

Furthermore, as already mentioned, for each value of i and j the equality

gantt[job[i] .task[j] .processor,h] = i acts both as an assignment and as

a test.
The array gantt should be uninitialized when the procedure is called. At

the end of the execution the variable gantt contains the first feasible schedule

it finds.
Preinitialized values can be used to enforce some preassignments of jobs to

processors, or to impose a constraint that a processor is not available during

some periods of time. For example, if processor 2 is not available at time 5, we

just use the assignment gantt[2,5] := 0 (where 0 is a dummy value) before

invoking the procedure JobShopSchedule.
As an example, suppose we have 3 jobs, 3 processors (p1 , p 2 , and p3), the

deadline is 20, and the jobs are composed as follows:

task 1 task 2 task 3 task 4

job tasks proc !en proc !en proc: Jen proc len

1 4 Pi 5 p2 5 PJ 5 P2 3

2 3 P2 6 Pi 6 p3 1

3 4 p3 6 P2 4 Pi 4 P2 1

The first solution (out of the existing 48) for the array gantt that the pro­

gram finds is the following one, where the symbol ' - ' means that the value is

uninitialized, i.e., the processor is idle in the corresponding time point.

11111-222222-

222222111113333

333333 1111

3 3
1

1 2

3 3
1 1
2 2

3

2

The Alma Project, or How First-Order Logic Can Help Us 99

For some applications, it is necessary to make the schedule as short as pos­
sible. To this aim, we can use the following program fragment.

COMMIT
SOME deadline := 1 TO max_deadline DO

JobShopScheduling(JobVector,deadline,jobs,Gantt)
END

END

It computes the shortest schedule by guessing, in ascending order, the first
deadline that can be met by a feasible assignment. The use of the COMMIT state­
ment ensures that once a solution is found, the alternatives, with larger deadline
values, are discarded.

4 Introducing Constraints

In what follows we discuss a proposal for adding constraints to Alma-0.
This Section is organized as follows. In Subsection 4.1 we discuss the addi­

tion of constrained types and unknowns to the language and in Subsections 4.2
and 4.3 we define the constraint store and illustrate its interaction with the
program execution.

To illustrate how the proposed addition of constraints to Alma-0 provides a
better support for declarative programming we illustrate in Subsection 4.4 their
use by means of three example programs.

To simplify our considerations we ignore in this section the presence of pro­
cedures. In particular, we assume for a while that all declarations are at one
level.

4.1 Adding Constrained Types, Unknowns and Constraints

VVe start by adding a new kind of variables of simple types, called unknowns.
This is done by using the qualifier CONSTRAINED in declarations of simple types,

that is INTEGER, BOOLEAN, REAL, enumeration and subrange types.

Definition 1.

A type qualified with the keyword CONSTRAINED is called a constrained type.
- A variable whose type is a constrained type is called an unknown.

We shall see in Section 5 that this way of defining unknowns simplifies the
treatment of parameter passing in presence of unknowns. From now on we dis­
tinguish between variables and unknowns. In the discussion below we assume
the following declarations.

CONST N = 8;

'TYPE Board = ARRAY [1 .. N] OF CONSTRAINED [1 .. N];
Colour= (blue, green, red, yellow);
Info = RECORD

100 K.R. Apt and A. Schaerf

co: Colour;
No: CONSTRAINED INTEGER;

END;
VAR i, j: INTEGER;

a: ARRAY [1 .. N] of INTEGER;
C: CONSTRAINED [1 .. N];
X, Y: Board;
Z: Info;

So a, i and j are variables while C is an unknown. In turn, X and Y are arrays

of unknowns and Z is a record the first component of which is a variable and the

second an unknown.

Because of the syntax of Alma-0, boolean expressions can appear both in the

position of a statement and inside a condition.

Definition 2. A constraint is a boolean expression that involves some unknowns.

We postulate that the unknowns can appear only within constraints or within

the right hand side of an assignment.

The values of unknowns are determined only by means of constraints that

are placed on them. In particular, by the just introduced syntactic restriction,

one cannot use assignment to assign a value to an unknown. So in presence

of the above declarations the statements X [1] : = 0 and C : = 1 are illegal. In

contrast, the constraints X[i] = 0 and C = 1 are legal. Further, the assignments

i : = X [1] + X [2] and i : = Y [X [2]] are also legal statements.

Initially each unknown has an undetermined value that belongs to the domain

associated with the type. By placing constraints on an unknown its domain can

shrink. The unknown continues to have an undetermined value until the domain

gets reduced to a singleton.

If the program control reaches an occurrence of an unknown outside of a

constraint, so within the right hand side of an assignment, this unknown is

evaluated. If its value is at this moment undetermined, this evaluation yields a

run-time error. If the value is determined (that is, the domain is a singleton),

then it is substituted for the occurrence of the unknown. So the occurrences of

an unknown outside of a constraint are treated as usual variables.

Note that during the program execution the domain of an unknown mono­

tonically decreases with respect to the subset ordering. This is in stark contrast

with the case of variables. Initially, the value of a variable of a simple type is

not known but after the first assignment to it its value is determined though can

non-monotonically change to any other value from its type.

Intuitively, a program is viewed as an "engine" that generates constraints.

These constraints are gradually solved by means of the constraint solving process

that we shall explain now.

The Alma Project, or How First-Order Logic Can Help Us 101

4.2 Adding the Constraint Store

We now introduce the central notion of a constraint store. This is done in a
similar way as in the constraint logic programming systems, though we need to
take into account here the presence of variables and constants.

Definition 3. We call a constraint C evaluated if each constant that occurs in
it is replaced by its value and each variable (not unknown) that occurs in it is
replaced by its current value. If some variable that occurs in C is uninitialized,
we say that the evaluation of C yields an error. Otherwise we call the resulting
boolean expression the evaluated form of C.

So no variables occur in the evaluated form of a constraint. For technical
reasons we also consider a false constraint, denoted by 1-, that can be generated
only by a constraint solver to indicate contradiction.

Definition 4. A constraint store, in short a store, is a set of evaluated forms
of constraints. We say that an unknown is present in the store if it occurs in a
constraint that belongs to the store.

We call a store failed if 1- is present in it or if the domain of one of the un­
knowns present in it is empty. By a solution to the store we mean an assignment
of values from the current domains to all unknowns present in it.

Further, we say that a constraint is solved if its evaluated form is satisfied
by all combinations of values from the current domains of its unknowns.

For example, in the program fragment

i := 1;
j ;; 2;

x [i] <"' j;
Y[X[i+2)] <> Y[N];

we have two constraints, X [i] <= j and Y [X [i +2]] <> Y [N]. Here X [1] <= 2
is the evaluated form of the first one, while Y [X [3]] <> Y [8] is the evaluated
form of the second one. If we deleted the assignment i : = 1 the evaluations of
both constraints would yield an error.

The notion of a failed store is a computationally tractable approximation of
that of an inconsistent store, i.e., a store that has no solutions. Indeed, a failed
store is inconsistent but an inconsistent store does not have to be failed: just
consider X [1] = X [2] , X [1] < X [2].

4.3 Interaction Between the Program and the Constraint Store

The program interacts with the store in the following two ways:

- By adding to it the evaluated forms of the encountered constraints. If the
evaluation of such a constraint yields an error, a run-time error arises.

102 K.R. Apt and A. Schaerf

By generating possible values for unknowns that are present in the store by

means of some built-in primitives to be introduced in Subsection 6.2.

The store is equipped with a number of procedures called constraint solvers.

Their form depends on the applications. One or more of them can become ac­

tivated upon addition of (an evaluated form of) a constraint to the store. An

activation of constraint solvers, in the sequel called constraint solving, can re­

duce the domains of the unknowns, determine the values of some unknowns by

reducing the corresponding domains to singletons, delete some constraints that

are solved, or discover that the store is failed, either by generating the false

constraint .l or by reducing the domain of an unknown to the empty set.

We assume that constraint solving is a further unspecified process that de­

pending of application may be some form of constraint propagation or a decision

procedure. We require that the result of constraint solving maintains equivalence,

which means that the set of all solutions to the store does not change by applying

to it constraint solvers.
The store interacts with the program as follows.

Definition 5. Upon addition of a constraint to the store, constraint solving

takes place.

If as a result of the constraint solving the store remains non-failed, the control

returns to the program and the execution proceeds in the usual way.

Otherwise the store becomes failed and a failure arises. This means that

the control returns to the last choice point created in the program. Upon

backtracking all the constraints added after· the last choice point are retracted

and the values of the variables and the domains of the unknowns are restored

to their values at the moment that the last choice point was created.

This means that we extend the notion of failure, originally introduced in

Section 2, to deal with the presence of the store.

Note that constraints are interpreted in the same way independently of the

fact whether they appear as a statement or inside a condition. For example, the

following program fragment

IF X[1] > 0 THEN S ELSE T END

is executed as follows: The constraint X [1] > 0 is added to the store. If the

store does not fail S is executed, otherwise T is executed. So we do not check

whether X [1] > 0 is entailed by the store and execute S or T accordingly, as

one might intuitively expect. This means that constraints are always interpreted

as so-called tell operations in the store, and never as so-called ask operations,

which check for entailment (see Section 8 for a discussion on this point).

4.4 Examples

To illustrate use of the introduced concepts we now consider three ex<1mples. We

begin with the following classical problem.

The Alma Project, or How First-Order Logic Can Help Us 103

Problem 2. Eight Queens. Place 8 queens on the chess board so that they do not
attack each other.

We present here a solution that uses constraints. We only write the part
of the program that generates constraints. The code that actually solves the
generated constraints would make use of the built-in INDOMAIN as explained in
Subsection 6.2.

CONST N = 8;
TYPE Board= ARRAY [1 .. N] OF CONSTRAINED [1 .. N];
VAR i, j : [1. . N] ;

X: Board;

BEGIN
FOR i := 1 TO N-1 DO

FOR j := i+1 TD N DO
x [i] <> x [j] ;

X[i] <> X[j]+j-i;

X[i] <> X[j]+i-j

END
END

END;

Each generated constraint is thus of the form X [i] <> X [j] or X [i] <>
X [j] + k for some values i, j E [1 .. N] such that i < j and k being either the
value of j-i or of i-j.

Note that the above program text coincides with the problem formulation.
Next, consider the following problem that deals with the equations arising

when studying the flow of heat.

Problem 8. Laplace Equations. Given is a two dimensional grid with given values
for all the exterior points. The value of each interior points equals the average
of the values of its four neighbours. Compute the value of all interior points.

The solution using constraints again truly coincides with the problem spec­
ification. It is conceptually much simpler than the solution based on constraint
logic programming and given in [10].

TYPE Board= ARRAY [1 .. M], [1 .. N] OF CONSTRAINED REAL;
VAR i: [1. .M];

j: [1. . N] ;

X: Board;

BEGIN
FOR i := 2 TO M-1 DO

FOR j := 2 TO N-1 DO
X[i,j] = (X[i+1,j] + X[i-1,j] + X[i,j+1] + X[i,j-1])/4

END
END

END;

104 K.R. Apt and A. Schaerf

We assume here that the constraint solver that deals with linear equations
over reals is sufficiently powerful to solve the generated equations.

Finally, we present a solution to the Frequency Assignment problem (Prob­
lem 1) that uses constraints. Again, we only write the part of the program that
generates constraints. We assume here that the variables S and F are properly
initialized.

TYPE SeparationMatrix =ARRAY [1 .. N],[1 .. N] OF INTEGER;
IllegalFrequencies =ARRAY [1 .. N],[1 .. M] OF BOOLEAN;
Assignment= ARRAY [1 .. N) OF CONSTRAINED [1 .. M];

VAR S: SeparationMatrix;
F: IllegalFrequencies;
X: Assignment;
i, j: INTEGER;

BEGIN
FOR i := 1 TO N DO

FOR j := 1 TO M DO
IF F[i,j] THEN X[i] <> j END

END
END;
FOR i := 1 TO N DO

FOR j := 1 TO i-1 DO
EITHER X[i] - X[j] >= S[i,j]
ORELSE X[j] - X[i] >= S[i,j]
END

END
END

END;

The use of the ORELSE statement creates here choice points to which the
control can return if in the part of the program that deals with constraints
solving a failed store is produced.

Alternatively, one could use here a disjunction and replace the ORELSE state­
ment by

(X[i] - X[j] >= S[j,i]) OR (X[j] - X[i] >= S[j,i]).

In this case no choice points are created but the problem of solving (disjunctive)
constraints is now "relegated" to the store.

The latter solution is preferred if the constraint solver in use is able to perform
some form of preprocessing on disjunctive constraints, such as the constructive
disjunction of [8]. On the other hand, the former solution allows the programmer
to retain control upon the choice generated by the system. For example, she/he
can associate different actions to the two branches of the ORELSE statement.

It. is important to realize that the integration of constraints to Alma-0 as
outlined in this section is possible only because the unknowns are initially unini­
tialized.

The Alma Project, or How First-Order Logic Can Help Us 105

5 Constraints and Procedures

So far we explained how the program interacts with the store in absence of
procedures. In Alma-0 one level (i.e., not nested) procedures are allowed. In
presence of procedures we need to explain a number of issues.

First, to keep matters simple, we disallow local unknowns. This means that
the constrained types can be only introduced at the outer level. However, un­
knowns can be used within the procedure bodies provided the restrictions intro­
duced in Definition 2 are respected.

Next, we need to explain how unknowns can be passed as parameters. Formal
parameters of constrained types are considered as unknowns. This means that in
the procedure body such formal parameters can occur only within the constraints
or within the right hand side of an assignment.

We discuss first call by variable. An unknown (or a compound variable con­
taining an unknown) passed as an actual variable parameter is handled in the
same way as the customary variables, by means of the usual reference mecha­
nism.

For example consider the following problem.

Problem 4. Given is an array which assigns to each pixel on an M x N board a
colour. A region is a maximal set of adjacent pixels that have the same colour.
Determine the number of regions.

To solve it we represent each pixel as a record, one field of which holds the
colour of the pixel and the other is an unknown integer. Then we assign to
each pixel a number in such a way that pixels in the same region get the same
number. These assignments are performed by means of constraint solving. For
instance, in the case of Figure l the constraint solving takes care that the value
l is assigned to all but two pixels once it is assigned to the leftmost uppermost
pixel.

Fig. 1. Constraint Solving and Pixels

To achieve this effect in the program below we assume that the constraint
solving process is able to reduce the domain of y to {a} given the constraint
x = y and the fact that the domain of x equals {a}. The program uses both
constraints and an assignment. In addition, the program uses the built-in KNOWN
that, when used on unknowns, checks whether the domain of the argument is a
singleton.

106 K.R. Apt and A. Schaerf

TYPE Colour= (blue, green, red, yellow);
Info = RECORD

co: Colour;
No: CONSTRAINED INTEGER;

END;
Board= ARRAY (1 .. M],[1 .. N] OF Info;

PROCEDURE Region(VAR X: Board; VAR number: INTEGER);
VAR i, j, k: INTEGER;

BEGIN
FOR i := 1 TD M DO

FOR j := 1 TO N DO
IF i <MAND X[i,j].co = X[i+1,j] .co
THEN X[i,j] .No = X[i+1,j] .No
END;
IF j < N AND X[i,j].co = X[i,j+1] .co
THEN X[i,j] .No = X[i,j+1] .No
END

END
END;
k := 0;

FOR i := 1 TO M DO
FOR j := 1 TO N DO

IF NOT KNOWN(X[i,j] .No)
THEN k := k+l; X[i,j] .No = k
END

END
END;
number = k

END Region;

Note that for any i in [1. . M] and j in [1 .. N], the record component

X [i, j] . No is of a constrained type. Here the first double FOR statement gen­

erates the constraints while the second double FOR statement solves them by

assigning to the pixels that belong to the same region the same number.

Due to the call by variable mechanism, the actual parameter correspond­

ing the formal one, X, is modified by the procedure. In particular, the second

component, No, of each array element is instantiated after the procedure call.

Next, we explain the call by value mechanism in presence of unknowns. An

unknown passed as an actual value parameter is treated as a customary variable:

it is evaluated and its value is assigned to a local variable associated with the

formal parameter. If the value of this unknown is at this moment undetermined,

this evaluation yields a run-time error. This evaluation process also applies if a

field or an element of a compound actual value parameter is an unknown.

The Alma Project, or How First-Order Logic Can Help Us 107

6 Language Extensions

In this section we discuss some built-in procedures of the proposed language
that make it easier for the user to program with constraints. In particular, in
Subsection 6.1 we discuss built-ins for stating constraints, and in Subsection 6.2
we present built-ins for assigning values to unknowns.

6.1 Built-ins for Expressing Constraints

The practice of constraint programming requires inclusion in the programming
language of a certain number of language built-ins that facilitate constraint
formulation.

For example, if we wish to state that the unknowns of the array X must have
pairwise different values, we write

ALL_DIFFERENT(X);

This call results in a constraint which is equivalent to the set of all the
corresponding constraints of the form X [i] <> X [j], for i E [1.. N-1] and j
E [i+1.. N]. 1

Similarly, if we wish to state that at most k among the unknowns belonging
to the array X can have the value v, we write

AT_MOST(k,X,v);

This sort of built-ins on arrays are present in other imperative constraint
languages. We do not list all of them here, but we envision their presence in the
language.

Such built-ins on arrays are the counterparts in imperative languages of the
corresponding built-ins on lists provided by constraint logic programming sys­
tems such as CHIP. These languages also support symbolic manipulation of
terms which makes it easy to generate arithmetic constraints. The traditional
imperative programming languages lack this power and exclusive reliance on
arrays can lead to artificial and inefficient solutions.

For example, suppose we are given an n x n matrix A of integer unknowns
and we wish to state the constraint that the sum of the elements of the main
diagonal must be equal to a given value b. A customary solution would involve
resorting to an auxiliary array of unknowns in the following way:

VARA: ARRAY [1 .. N], [1 .. N] OF CONSTRAINED INTEGER;
V: ARRAY [1 .. N] OF CONSTRAINED INTEGER;
b: INTEGER;

V[1] = A[1,1];

1 In some systems, such a constraint is kept in its original form in order to exploit
constraint propagation techniques that deal specifically with constraints of this kind,
see [17].

108 K.R. Apt and A. Schaerf

FOR i := 2 to N DO
V (i] = A (i, i] + V (i-1) ;

END;
V(N] = b;

This solution, which one would write for example in ILOG Solver, has the
obvious drawback of creating N new unknowns for stating one single constraint.

Therefore we propose the use of lists of unknowns (as done for example in the
ICON programming language of [6] for the case of variables), identified by the
keyword LIST, upon which constraints of various forms can be stated by means
of built-ins. The above program fragment would then be replaced by

VARA: ARRAY [1 .. N], [1 .. N] OF CONSTRAINED INTEGER;
L: LIST OF CONSTRAINED INTEGER;
b: INTEGER;

Empty(L);
FOR i := 1 to N DO

Insert(L, A[i,i])
END;
Sum(L, 1 =1 ,b);

where Sum is a built-in with the expected meaning of constraining the sum of
the unknowns in L to be equal to b. Once the constraint Sum(L, '=', b) has been
added to the store, the variable L can be used again for a different purpose. Note
that in this solution no additional unknowns are created. In order to obtain a
similar behaviour in ILOG Solver one needs either to add a similar built-in to it
or to make explicit use of pointers to objects representing unknowns.

Consider now again the Frequency Assignment problem. We discuss here the
formulation of an additional constraint for this problem which requires the use
of lists. Suppose that we wish to state that in a particular region (i.e., a set of
cells) a given frequency is used no more than a given number of times.

This type of constraint is useful in real cases. In fact, in some situations even
though the pairwise interference among cells is below a given threshold and no
separation is required, the simultaneous use of a given frequency in many cells
can create a interference phenomenon, called cumulative interference.

The following procedure states the constraints for preventing cumulative in­
terference in region R (where the type Region is an array of booleans representing
a subset of the set of cells). Here max is the maximum number of cells in the
region that can use the same frequency.

PROCEDURE RegionConstraint(R: Region; max: INTEGER; VAR X: Assignment);
VAR i, k: INTEGER;

L: LIST OF CONSTRAINED [1 .. M];

BEGIN
FOR k := 1 TO M DO

Empty(L);

The Alma Project, or How First-Order Logic Can Help Us 109

FOR i := 1 TO N DO
IF R[i] THEN Insert(L,X[i]) END

END;
AT_MOST(max,L,k)

END
END RegionConstraint;

6.2 Built-ins for Assigning Values

In order to search for a solution of a set of constraints, values must be assigned to
unknowns. We define the built-in procedure INDOMAIN which gets an unknown of
a finite type (so BOOLEAN, enumeration or a subrange type) as a parameter, and
assigns to it one among the elements of its domain. The procedure also creates
a choice point and all other elements of the domain are successively assigned to
the unknown upon backtracking.

The choice of the value to assign to the unknown is taken by the system
depending on the current state of the store, based on predefined value selection
strategies. We do not discuss the issue of which are the best value selection
strategies. We only assume that all consistent values are eventually generated,
and that the choice point is erased after the last value has been generated.

The procedure INDOMAIN can be also used on arrays and on lists. For example,
the call INDOMAIN (A), where A is a matrix of integer unknowns, generates (upon
backtracking) all possible assignments for all elements of A.

The order of instantiation of the elements of A is taken care of by the store,
which applies built-in strategies to optimize the retrieval of the first instantiation
of the unknowns. As in the case of value selection, we do not discuss here the
issue of the variable ordering.

7 Related Work

We concentrate here on the related work involving addition of constraints to
imperative languages. For an overview of related work pertaining to the Alma-0
language we refer the reader to [2].

As already mentioned in the introduction, the most successful imperative
constraint language is the C++ library ILOG Solver [9]. The main difference
between our proposal and ILOG Solver is that the latter is based on the conven­
tional imperative language C++ and consequently it does not support automatic
backtracking. Therefore the interaction with the store cannot be based on fail­
ures issued by the store constraint solvers while evaluating the statements. In
ILOG Solver such an interaction is always explicit, whereas in our proposal we
aim at making it transparent to the user.

We are aware of two other language proposals in which constraints are in­
tegrated into an imperative language - the commercial language CHARME of
[14] and 2LP of [13]. In each language some of the issues here discussed have
been addressed, but not all of them.

llO K.R. Apt and A. Schaerf

More specifically, in CHARME unknowns (called logical variables) and linear
constraints on them are allowed. The language supports use of Prolog-like terms,
arrays and sequences of logical variables and a number of features (like demons
and the element primitive, an equivalent of INDOMAIN) adopted from the CHIP
language. Also, it provides a nondeterministic or statement and iterations over
finite domains, arrays and sequences of logical variables.

The C like syntax creates an impression that CHARME supports impera­
tive programming. However, from the paper it is not clear whether it is actually
the case. If it is, then it is not clear how the logical variables, constraints and
nondeterministic statements interact with the usual features of the underlying
imperative language. In particular, the use of logical variables outside of con­
straints, the impact of backtracking on the assignment statements and the status
of choice points created within procedure bodies is not explained (probably due
to space limitations). CHARME does provide bidirectional connection with C.

2LP was designed for linear programming applications. In 2LP unknowns
(called continuous variables) are global. They vary over the real interval [O, +oo)
and can be either simple ones or arrays. The only way these variables can be
modified is by imposing linear constraints on them. Constraints can also appear
in conditions. This leads to a conditional way of adding them to the store.

Whenever a constraint is added to the store, its feasibility w .r. t. the old
constraints is tested by means of an internal simplex-based algorithm. This al­
gorithm maintains the current feasible region, which is a polyhedron, together
with a witness point which is a distinguished vertex.

The continuous variables can appear outside of the constraints as arguments
of any procedure whose signature has a continuous variable, and as arguments to
some predeclared functions like wp that returns the value of a witness point. In
the latter case when a continuous variable is passed as a parameter, the witness
point value is used.

2LP provides the nondeterministic statements analogous to the ORELSE and
SOME statements of Alma-0 and a limited form for the FORALL statement. Auto­
matic backtracking over assignment and combination of continuous and custom­
ary variables in compound variables is not supported.

8 Conclusions and Future Work

In this paper we discussed the programming language Alma-0 that integrates the
imperative and logic programming paradigm and illustrated the resulting pro­
gramming style by a number of examples. Alma-0 is based on first-order logic in
the sense that it provides a computational interpretation for the standard connec­
tives, so negation, disjunction and conjunction, and for various forms of quan­
tification. In fact, many first-order formulas and their extensions by bounded
quantifiers, sorts (i.e., types), and arrays, can be interpreted and executed as
Alma-0 programs. The precise logical nature of this computational interpreta­
tion of first-order logic was worked out in [l].

The Alma Project, or How First-Order Logic Can Help Us 111

Then we discussed a proposal how to integrate constraint programming fea­
tures into the language. In this regard we believe that the use of an underlying
language based on first-order logic, such as Alma-0, rather than a conventional
imperative language, makes the integration of constraints more natural and con­
ceptually simpler.

We analyzed here a number of issues related to the proposed integration, such
as the use of constrained types and the unknowns, interaction between the pro­
gram and the constraint store, and the parameter passing mechanisms. Finally,
we presented some examples that illustrate the resulting style of programming.

In our future work we plan to extend the work carried out in [2] to the
language proposal here outlined. More specifically, we envisage to

- extend the executable, operational semantics based on the ASF +SDF Meta­
Environment of [12];

- extend both the Alma-0 compiler and its underlying abstract machine AAA;
implement a set of constraint solvers or provide an interface between the
language and existing constraint solvers.

The first item can be dealt with by adding to the executable semantics of
Alma-0 given in [2] a few rules that formalize the interaction between the program
and the store stipulated in Subsection 4.3. These rules are parameterized by the
constraint solvers attached to the store.

Regarding the last item, we plan to develop a simple solver for constraints
over finite domains to be used for prototyping and testing purposes. We also
plan to exploit more powerful external solvers already available for subsequent
releases of the system.

As already mentioned in Section 4.3, we do not allow so-called ask operations
in the store. This is a deliberate design decision which allows us to keep the
language design simple and the underlying execution model easy to implement.

Nevertheless, in future versions of the language, we plan to investigate the
possibility of equipping the store with an entailment procedure. This procedure
should check whether an evaluated form of a constraint is logically implied (or
entailed) by the store. Upon encounter of an ask constraint, the entailment
procedure would check whether the evaluated form is entailed by the store. If it
is the case, the constraint evaluates to TRUE. Otherwise the constraint evaluates
to FALSE. We would require that the entailment procedure returns correct results
but would not assume that it is complete.

We did not deal here with some of the issues related to the design of the
language. Specifically, we omitted discussion of

a full set of built-ins, in particular the ones appropriate for constraint opti­
mization,
primitives for selecting variable and value selection strategies,
the language support for the dynamic creation of unknowns.

These can be taken care of in a systematic way and lead to a complete and
rigorous definition of an imperative constraint programming language.

112 K.R. Apt and A. Schaerf

Acknowledgements

We would like to thank Jan Holleman, Eric Monfroy and Vincent Partington for
useful discussions on the subject of this paper. Helpful comments by Tony Hoare
and other two, anonymous, referees allowed us to improve the presentation.

References

1. K. R. Apt and M. A. Bezem. Formulas as programs. In K.R. Apt, V.W. Marek,
M. Truszczyiiski, and D.S. Warren, editors, The Logic Programming Paradigm: A
25 Year Perspective, pages 75-107, 1999.

2. K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An imperative
language that supports declarative programming. ACM Toplas, 20(5):1014-1066,
1998.

3. K. R. Apt and A. Schaerf. Search and imperative programming. In Proc. 24th
Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL '97), pages 67-79. ACM Press, 1997.

4. A. Colmerauer. An introduction to Prolog III. Communications of A CM, 33(7):69-
90, 1990.

5. M. R. Garey and D. S. Johnson. Computers and Intractability-A guide to NP­
completeness. W.H. Freeman and Company, San Francisco, 1979.

6. R. E. Griswold and M. T. Griswold. The Icon Programming Language. Prentice­
Hall, Englewood Cliffs, New Jersey, USA, 1983.

7. W. K. Hale. Frequency assignment: Theory and applications. In Proc. of IEEE,
pages 1497-1514, 1980.

8. P. Van Hentenryck, Vijay Saraswat, and Y. Deville. Design, implementation,
and evaluation of the constraint language cc(FD). In Andreas Podelski, editor,
Constraint Programming: Basics and Trends, LNCS 910. Springer-Verlag, 1995.
(Chatillon-sur-Seine Spring School, France, May 1994).

9. ILOG. ILOG optimization suite - white paper. Available via
http: I /ww. ilog. com, 1998.

10. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In 14th ACM Princi­
ples of Programming Languages Conference, pages 111-119, Munich, F.R.G., 1987.
ACM, New York.

11. Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The
CLP(??.) language and system. ACM Transactions on Programming Languages
and Systems {TOPLAS), 14(3):339-395, July 1992.

12. P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2):176-201, 1993.

13. K. McAloon and C. Tretkoff. 2LP: Linear programming and logic programming. In
P. Van Hentenryck and V. Saraswat, editors, Principles and Practice of Constraint
Programming, pages 101-116. MIT Press, 1995.

14. A. Oplobedu, J. Marcovitch, and Y. Tourbier. CHARME: Un langage industriel
de programmation par contraintes, illustre par une application chez Renault. In
Ninth International Workshop on Expert Systems and their Applications: General
Conference, Volume 1, pages 55-70, Avignon, France, 1989. EC2.

15. F. Pfenning, editor. Types in Logic Programming. MIT Press, Cambridge, Mas­
sachusetts, 1992.

The Alma Project, or How First-Order Logic Can Help Us 113

16. J.-F. Puget and M. Leconte. Beyond the glass box: Constraints as objects. In
Proc. of the 1995 International Sympos·ium on Logic Programming, pages 513-527,
1995.

17. J .-C. Regin. A filtering algorithm for constraints of difference in CSPs. In AAAl-
94: Proceedings of the 12th National Conference on Artificial Intelligence, pages
362-367, 1994.

18. I. Shvetsov, V. Telerman, and D. Ushakov. NeMo+ : Object-oriented constraint
programming environment based on subdefinite models. In G. Smolka, editor,
Artificial Intelligence and Symbolic Mathematical Comp~ttations, Lecture Notes in
Computer Science, vol. 1330, pages 534-548, Berlin, 1997. Springer-Verlag.

19. P. Van Hentenryck, Helmut Simonis, and Mehmet Dincbas. Constraint satisfaction
using constraint logic programming. Artificial Intelligence, 58:113-159, 1992.

