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Abstract 

We provide a uniform and simplified presentation of the methods 

of Bezem (1993) (first published as (Bezem 1989)) and of Apt and 

Pedreschi (1993) (first published as (Apt and Pedreschi 1990)) for 

proving termination of logic and PRO LOG programs. Then we show 

how these methods can be refined so that they can be used in a 

modular way. 

1 Introduction 
1.1 Motivation 

The theory of logic programming ensures us that SLD-resolution is a sound 

and complete procedure for executing logic programs. As a consequence, 

given a program P, every SLD-tree for a goal G is a complete search space 

for finding an SLD-refutation of G. In the actual implementations of logic 

programming, the critical choice is that of a tree-searching algorithm. Two 

basic tree-search strategies are: the breadth-first search which explores 

the tree by levels, and the depth-first search which explores the tree by 

branches. The former is a complete strategy, in the sense that it finds a 

success node if one exists, whereas the latter is incomplete, since success 

nodes can be missed if an infinite branch is explored first. 

However, for efficiency reasons most implementations of logic program­

ming adopt the depth-first strategy; in the case of PROLOG additionally 

a fixed selection rule is adopted. This "destroys" the completeness results 

linking the declarative and operational semantics of logic programming and 

makes it difficult to use the basic theory of logic programming for reasoning 

about programs. 
These complications motivate research on methods for proving termina­

tion oflogic programs, and in particular the approach ofBezem (1993), who 

proposed a method for proving termination w.r.t. all selection rules, and 
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the approach of Apt and Pedreschi (1993), who refined Bezem's method to 
the leftmost selection rule of PROLOG. (For a discussion of related work 
the reader is referred to these two papers.) 

The aim of the present paper is twofold. First, we provide a uniform and 
simplified presentation of these two methods, which shows that the method 
of Apt and Pedreschi for dealing with pure PROLOG programs is a natural 
extension of Bezem's method for dealing with logic programs. Secondly, 
we provide an extension of both methods, which supports a compositional 
methodology for combining termination proofs of separate programs to ob­
tain proofs of larger programs. A number of applications are presented to 
substantiate the effectiveness of these modular methods in breaking down 
termination proofs into smaller and simpler ones, and their ability to deal 
with program schemes. In particular, simple termination proofs are exhib­
ited for a divide and conquer scheme, a generate and test scheme, and two 
schemes borrowed from functional programming: a map scheme and a fold 
scheme. 

The paper is organized as follows. In Section 2 we present the method 
due to Bezem (1993) for proving termination of logic programs, and in 
Section 3 its modification due to Apt and Pedreschi (1993) for proving 
termination of pure PROLOG programs. Then in Sections 4 and 5 we 
refine these methods so that they can be used in a modular way. 

1.2 Preliminaries 

Throughout this paper we use the standard notation of Lloyd (1987) and 
Apt (1990). In particular, for a logic program P (or simply a program) we 
denote the Herbrand Base of P by Bp and the least Herbrand model of 
P by Mp. Also, we use PROLOG's convention identifying, in the context 
of a program, each string starting with a capital letter with a variable, 
reserving other strings for the names of constants, terms or relations. So, 
for example X s stands for a variable whereas xs stands for a term. 

In the programs we use the usual list notation. The constant [ ] denotes 
the empty list and [ . I . ] is a binary function which, given a term x 
and a list xs, produces a new list [ x I xs] with head x and tail xs. By 
convention, identifiers ending with "s", like xs, will range over lists. The 
standard notation [ x 1, .•. , Xn ], for n 2: 0, is used as an abbreviation of 
[x1 I[ .. · [xnl[]] ... ]]. 

Throughout the paper we consider SLD-resolution and LD-resolution. 
The latter is obtained from SLD-resolution by using PROLOG's first-left 
selection rule. The concepts of LD-derivation, LD-refutation, LD-tree, etc. 
are defined in the usual way. By "pure PROLOG" we mean in this paper 
LD-resolution combined with the depth-first search in LD-trees. 

By choosing variables of the input clauses and the used mgu's in a 
fixed way we can assume that for every program P and goal G there exists 
exactly one LD-tree for PU {G}. 
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In what follows we shall use the multiset ordering. A multiset, some­
times called bag, is an unordered sequence. 'V-!e denote a multiset consisting 
of elements ai, .. ., an by bag (a1, ·:.,an)· Given a (non-reflexive) ordering 
< on a set W the multiset ordering over (W, <) is an ordering on finite 
multisets of th~ set W. It is defined as the transitive closure of the relation 
in which X is smaller than Y if X can be obtained from Y by replacing 
an element a of y by a finite (possibly zero) number of elements each of 
which is smaller than a in the ordering<. 

In symbols, first we define the relation -< by 

X -< y iff x = y - {a} U Z for some a E Y and Z such that b < a for b E z, 

where X y z are finite multisets of elements of W, and then define the 
multiset ~rdering -<m over (W, <) as the transitive closure of the relation 

-<. 
It is well-known (see e.g. Dershowitz (1987)) that multiset ordering over 

a well-founded ordering is again well-founded. In particular, the multiset 
ordering over the set of natural numbers with their usual ordering is well-

founded. 

2 Termination 
2.1 Motivation 
Consider the following simple program LIST: 

list (Xs) ~ Xs is a list. 

list([H I Ts]) ~ list(Ts). 

list([]). 

It is easy to see that 

• for a list t the goal ~ list(t) successfully terminates, 

• for a ground term t which is not a list, the goal <- list(t) finitely 
fails. 

Note that in the second statement we required that t is ground. Can 
we drop this restriction? The answer is "No." Indeed, consider the goal 
,_ list (X) with a variable X. 

As X unifies with [H I Ts], we see that using the first clause 
+--list (Ts) is a resolvent of ,_list (X). By repeating this procedure 
we obtain an infinite LD-derivation which starts with <-list (X). There 
is an easy fix to this problem: it suffices to reorder the clauses of the pro­
gram. Then the goal ~list (X) terminates with the c.a.s. {X/[ ]}. So 
termination depends on the clause ordering. 

Another, more interesting, possibility is to make the notion of termi­
nation independent of the clause ordering. According to this definition, a 
goal terminates if all derivations starting with it are finite. Then the goal 
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;.- list (X) does not terminate in this sense. Once the clause ordering 
becomes irrelevant, it is possible to adopt the .view of logic programming 
theory and consider the program as the set (and not sequence) of clauses. 

It is useful to note a simple consequence of this notion of termination. 
When a goal terminates in this strong sense, the corresponding computa­
tion tree is finite. Thus the depth-first search in this tree terminates, and 
consequently it is possible to compute by means of PROLOG all c.a.s.'s of 
the goal under consideration. 

In what follows we shall study this stronger notion of termination. Our 
aim will be to identify for a given pure PROLOG program those goals 
which terminate in the above sense. Clearly, our discussion concerning 
the program LIST and the goal <-- list (X) is equally applicable to other 
programs. 

2.2 Terminating programs 
We begin our study of termination by analyzing termination in a very 
strong sense, namely w.r.t. all selection rules. This notion of termination 
is more applicable to logic programs than to PRO LOG programs. However, 
it is easier to handle and it will provide us with a useful basis from which 
a transition to the case of pure PROLOG programs will be quite natural. 

In this section we study the terminating programs in the following sense. 
Definition 2.1 A program is called terminating if all its SLD-derivations 
starting with a ground goal are finite. 

Hence, terminating programs have the property that the SLD-trees of 
ground goals are finite, and any search procedure in such trees will always 
terminate, independently from the adopted selection rule. When studying 
PROLOG programs, one is actually interested in proving termination of 
a given program not only for all ground goals but also for a class of non­
ground goals constituting the intended queries. The method of proving 
termination considered here will allow us to identify for each program such a 
class of non-ground goals. As we shall see below, many PRO LOG programs, 
including SUM, LIST and APPEND are terminating. 

To prove that a program is terminating the following concepts due to 
Bezem (1993) and Cavedon (1989) will play a crucial role. 
Definition 2.2 

• A level mapping for a program P is a function I I: B p _..., N of 
ground atoms to natural numbers. For A E Bp, IAI is the level of A. 

• A clause of P is called recurrent w. r. t. a level mapping I I, if for 
every ground instance A<-- A, B, B of it 

IAI >IBI. 
• A program P is called recurrent w.r.t. a level mapping I I, if all its 
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clauses are. P is called recurrent if it is recurrent w. r. t. some level 
mapping. 

First, following Bezem (1993), let us "lift" the concept of level mapping 
to non-ground atoms. 

Definition 2.3 

• An atom A is called bounded w.r.t. a level mapping I I, if I I is 
bounded on the set [A] of ground instances of A. For A bounded 
w.r.t. I I, we define IAI, the level of A w.r.t. I j, as the maximum 
I I takes on [A]. 

• A goal is called bounded w. r. t. a level mapping I I, if all its atoms 
are. For G = +-A1, ... ,An bounded w.r.t. I I, we define IGI, the 
level of G w.r.t. I I, as the multiset bag (IA1I, ... , IAnl). If IAil::; k 
for i E [l, n], we say that G is bounded by k. 

The concept of boundedness is crucial when considering termination, as 
the following lemma shows. Recall that -<m stands for the multiset ordering 
defined in the preliminaries. 

Lemma 2.4 Let P be a program that is recurrent w. r. t. a level mapping 
I I · Let G 1 be a goal that is bounded w. r. t. I I and let G2 be an SLD­
resolvent of 0 1 from P. Then 

• G2 is bounded w.r.t. I I, 
• IG2I -<m IG1I. 

Proof. An SLD-resolvent of a goal and a clause is obtained by means of 
the following three operations: 

• instantiation of the goal, 

• instantiation of the clause, 

• replacement of an atom, say H, of a goal by the body of a clause 
whose head is H. 

Thus the lemma is an immediate consequence of the fact that an instance 
of a recurrent clause w.r.t. I I is recurrent w.r.t. I I, and the following 
claims in which we refer to the given level mapping. I 
Claim 1 An instance G' of a bounded goal G is bounded and IG'I ::Sm IGI. 
Proof. It suffices to note that an instance A' of a bounded atom A is 
bounded and IA'I ::; IAI. I 
Claim 2 For every recurrent clause H +- B, if +- H is bounded, then 
+- B is bounded and I +-BI -<m I+- HI. 
Proof. Consider an atom C occurring in a ground instance of +-B. Then 
it occurs in the body of a ground instance of H +- B , say HB +- BB. By 
the recurrence of H +- B we get JCI < IHBI, so JCI < IHI. This proves the 
claim. I 
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Claim 3 For every recurrent clause H +- B and sequences of atoms 
A and C, if +-A, H, C is bounded, then +-A, B, C is bounded and 
I +-A,B, Cl -<m I +-A,H, q. 
Proof. Immediate by Claim 2 and the definition of the multiset ordering. 
I 
The following conclusions are now immediate. 
Corollary 2.5 Let P be a recurrent program and G a bounded goal. Then 
all SLD-derivations of PU { G} are finite. 
Proof. The multiset ordering is well-founded. I 
Corollary 2.6 Every recurrent program is terminating. 
Proof. Every ground goal is bounded. I 
These corollaries can be easily applied to various PRO LOG programs. The 
level mapping can be usually defined as a simple function of the terms of 
the ground atom. The following natural concept, due to Ullman and Van 
Gelder (1988), will often be useful. 

Define by induction a function I I, called listsize, which assigns natural 
numbers to ground terms: 

l[xlxs]I = lxsl + 1, 

lf(x1,. . .,xn)I= Oiff-1 [.I.]· 

Note that for a list xs, lxsl equals its length. 
For goals with one atom it is often easy to establish boundedness by 

proving a stronger property. 

Definition 2. 7 Let I I be a level mapping. An atom A is called rigid 
w. r. t. I I if I I is constant on the set [A] of ground instances of A. 

Obviously, rigid atoms are bounded. 
Example 1 
(i) Consider the program LIST. Define 

I list ( t) I = It I . 
It is straightforward to see that LIST is recurrent w.r.t. I I and that for a 
list t, the atom list(t) is rigid w.r.t. J I· By Corollary 2.6 we conclude 
that LIST is terminating and by Corollary 2.5 we conclude that for a list 
t, all SLD-derivations of LIST U { +- list ( t)} are finite. 

(ii) Consider now the program MEMBER: 

member(Element, List) +- Element is an element of the list List. 

member(X, [Y Xs]) +- member(X, Xs). 
member(X, [X I Xs]). 
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Using the level mapping 

lmember(x, y) I = lyl 

we conclude by Corollary 2.6 that MEMBER is terminating and by Corollary 
2.5 that for a list t, all SLD-derivations of MEMBER U { +-- member(s, t)} 
are finite. 

We now prove the converse of Corollary 2.6. With a goal G we associate 
the set of SLD-derivations of PU {G}. These SLD-derivations can be 
structured as a tree which we call ah S-tree for PU { G}. In this tree the 
resolvents of a goal w.r.t. all selection rules and all input clauses constitute 
its direct descendants. 

Lemma 2.8 An S-tree for P U { G} is finite iff all SLD-derivations of 
P U { G} are finite. 

Proof. By the fact that we fixed the choice of mgu's and the fact that 
logic programs are finite, the S-trees are finitely branching. The claim now 
follows by Konig's lemma (Konig 1927). I 

This lemma allows us to concentrate on S-trees. For a program P and a 
goal G, we denote by nodesp(G) the number of nodes in the S-tree for 
Pu {G}. 

Lemma 2.9 Let P be a program and G a goal such that the S-tree for 
P U { G} is finite. Then 

(i) for all substitutions B, nodesp(GB) :::; nodesp(G), 

(ii) for all atoms A of G, nodes p ( +-- A) ::::; nodes p ( G), 

(iii) for all non-root nodes H in the S-tree for PU {G}, nodesp(H) < 
nodesp(G). 

Proof 
(i) By the lifting lemma (see (Lloyd 1987)) we conclude that to every SLD­
derivation of PU {GB} with input clauses C 1, C2, ... , there corresponds an 
SLD-derivation of PU { G} with variants of input clauses C1, C2 , ... , of the 
same or larger length. This implies the claim. 
(ii), (iii) Immediate by the definition. I 

We can now prove the desired result. 

Theorem 2.10 Let P be a terminating program. Then for some level 
mapping I I 

(i) P is recurrent w. r. t. I I, 
(ii) for every goal G, G is bounded w.r.t I I iff all SLD-derivations of 

P U { G} are finite. 

Proof. Define the level mapping by putting for A E Bp 
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IAI = nodesp (+-A). 

Since P is terminating, by Lemma 2.8 this level mapping is well defined. 
First we prove one implication of (ii). 

(iil) Consider a goal G such that all SLD-derivations of PU { G} are finite. 
We prove that G is bounded by nodesp(G) w.r.t. I I· 

To this end take a ground instance <--A1, ... , An of G and i E [1, n]. 
We have 

nodesp(G) 

> {Lemma 2.9 (i)} 

nodesp( +-A1, ... , An) 

> {Lemma 2.9 (ii)} 

nodesp (+-Ai) 

{definition of I I} 
I Ail, 

which proves the claim. 

(i) We prove that P is recurrent w.r.t. I I· Take a clause A+- B1, ... , Bn 
in P and its ground instance Ae +- B1B, .. . , BnB· We need to show that 

IABI > IBiBI for i E [l, n]. 

We have ABB = AB, so AB and A unify. Letµ = mgu(AB, A). Then 
e = µ6 for some 6. By the definition of SLD-resolution, +- B1µ, .. ., Bnµ 
is an SLD-resolvent of +- AB. 

Then for i E [l, n] 

IABI 
{definition of I I} 

nodes p ( +- AB) 

> {Lemma 2.9 (iii), +- B1µ, .. . , Bnµ is a resolvent of +-A&} 
nodesp ( +- B1µ, .. . , Bnµ) 

> {part (iil), with G := +- B1µ, .. . , Bnµ and Ai :=Bi&} 

IBiBI. 
(ii2) Consider a goal G which is bounded w.r.t. I I· Then by (i) and 
Corollary 2.5 all SLD-derivations of P U { G} are finite. I 
Corollary 2.11 A program is terminating iff it is recurrent. 

Proof. By Corollary 2.6 and Theorem 2.10. I 



2.3 Examples 

2.3.1 Subset 

Modular termination proofs 

Consider the following program SUBSET: 

subset (Xs, Ys) +-
each element of the list Xs is a member of the list Ys. 

subset ( [X I Xs] , Ys) +-- member(X, Ys) , subset (Xs, Ys). 
subset ( [], Ys. 

augmented by the MEMBER program. 

191 

To prove that SUBSET is recurrent we use the following level mapping: 

lmember(x, xs)I 

lsubset(xs, ys)I 

By Corollary 2.6 SUBSET is terminating and consequently by Corol­

lary 2.5 if xs and ys are lists, all SLD-derivations of SUBSET U 
{ +-subset(xs,ys)} are finite. 

In general, various choices for the level mapping exist and for each choice 
different conclusions can be drawn. The following three simple examples 

illustrate this point. 

2.3.2 Append 

Consider the program APPEND: 

app (Xs, Ys, Zs) +-
Zs is the result of concatenating the lists Xs and Ys. 

app ( [X I Xs] , Ys, [X I Zs]) +-- app (Xs, Ys, Zs) . 
app ( [] , Ys, Ys) . 

It is easy to check that APPEND is recurrent w.r.t. the level mapping 
lapp(xs, ys, zs) I = lxsl and also w.r.t. the level mapping lapp(xs, 

ys , zs) I = I zs I . In each case we get different class of goals which are 

bounded. The level mapping 

lapp(xs, ys, zs) I = min(lxsl, lzsl) 

combines the advantages of both of them. APPEND is easily seen to be recur­
rent w.r.t. this level mapping and if xs is a list or zs is a list, app (xs, ys, 

zs) is bounded (though not rigid). By Corollary 2.6 APPEND is terminating 

and by Corollary 2.5 if xs is a list or zs is a list, all SLD-derivations of 

APPEND U { +-- app(xs, ys, zs)} are finite. 

2.3.3 Select 

Consider the program SELECT: 

select (X, Xs, Zs) +--
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Zs is the result of deleting one occurrence of X from the list Xs. 
select(X, [X 1 Xs], Xs). 
select (X, [Y I Xs] , [Y I Zs] ) +- select (X, Xs, Zs) . 
As in the case of the APPEND program, it is most advantageous to use the level mapping 

lselect(xs, ys, zs) I = min(lysl, lzsl). 
Then SELECT is recurrent w.r.t I I and if ys is a list or zs is a list, all SLD-derivations of SELECT U { +- select(xs, ys, zs)} are finite. 

2.3.4 Sum 
Finally, consider the following program SUM: 

sum(X, Y, Z) -
X, Y, Z are natural numbers such that Z is the sum of X and Y. 

sum(X, s(Y), s(Z)) +- sum(X, Y, Z). 
sum(X, 0, X). 

Again, it is most advantageous to use here the level mapping 
lsum(x, y, z) I = min(size(y), size(z)), 

where for a term t, size(t) denotes the number of symbols in t. 
Then SUM is recurrent w.r.t. I I and for a ground y or z, sum(x, y, z) is bounded w.r.t. I I· By Corollary 2.6 SUM is terminating and by Corollary 

2.5 for a ground y or z, all SLD-derivations of SUM U { - sum(x, y, z)} are finite. 

3 Left termination 
3.1 Motivation 
Because of Corollary 2.11, recurrent programs and bounded goals are too restrictive concepts to deal with PROLOG programs, as a larger class of programs and goals is terminating when adopting a specific selection rule, e.g. PROLOG selection rule. 
Example 2 
(i) First we consider a terminating program P such that for some goal G all LD-derivations of P U { G} are finite, whereas some SLD-derivation of P U { G} is infinite. 

Examine the following program EVEN: 

even(X) -
X is an even natural number. 

even (s (s (X))) - even (X) . 
even(O). 

lte(X, Y) +-
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X, Y are natural numbers such that X is smaller than or equal to Y. 

lte((s(X), s(Y)) +- lte(X, Y). 
lte(O, Y). 

EVEN is recurrent with 
ieven(x)I = size(x) 

and 
llte(x, y)I = min(size(x),size(y)) 

so by Corollary 2.6 it is terminating. Now consider the goal: 

G = +- lte(X, s 100 (o)), even(X) 

which is supposed to compute the even numbers not exceeding 100. One 

can show that all LD-derivations of G are finite, whereas there exists an 

infinite SLD-derivation when the rightmost selection rule is used. As a 

consequence of Corollary 2.5 the goal G is not bounded, although it can be 

evaluated by a finite PROLOG computation. 
This example is a contrived instance of the generate-and-test program­

ming technique. This technique involves two procedures, one which gener­

ates the set of candidates, and another which tests whether these candidates 

are solutions to the problem. Actually, most PROLOG programs that are 

implementations of the "generate-and-test" technique are not recurrent, as 

they heavily depend on the left-to-right order of evaluation, like the above 

goal. 

(ii) Next, we consider a program P which is not terminating but such that 

all LD-derivations starting with a ground goal are finite. The following 

NAIVE REVERSE program is often used as a benchmark for PROLOG ap­

plications: 

reverse(Xs, Ys) +- Ys is a reverse of the list Xs. 

reverse ( [X I Xs] , Ys) +-
reverse (Xs, Zs), 
app (Zs, [X] , Ys) . 

reverse ( [] , []) . 

augmented by the APPEND program. 

It is easy to check that the ground goal +-reverse (xs, ys), for a list 

xs with at least two elements and an arbitrary list ys has an infinite SLD­

derivation, obtained by using the selection rule which selects the leftmost 

atom at the first two steps, and the second leftmost atom afterwards. Thus 

reverse is not terminating. However, one can show that all LD-derivations 

starting with a goal +-reverse Cs, y) for s ground (or s list) are finite. 
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(iii) More generally, consider the following program DC, representing a (bi­
nary) divide and conquer schema; it is parametric w.r.t. the relations base, 
conquer, divide and merge. 

de solve ex, Y) <­

base ex), 
conquer(X, Y). 

de solve ex, Y) <-

divide (X, XO, X1, X2), 
dcsolve(Xi, Yi), 
dcsolve(X2, Y2), 
merge(XO, Yi, Y2, Y). 

Many programs naturally fit into this schema, or its generalization to non 
fixed arity of the relations divide/merge. Unfortunately, DC is not recur­
rent: it suffices to take a ground instance of the recursive clause with X=a, 
Xi=a, Y=b, Yi=b, and observe that the atom dcsolve(a, b) occurs both 
in the head and in the body of such a clause. In this example, the leftmost 
selection rule is needed to guarantee that the input data is divided into 
subcomponents before recurring on such subcomponents. 

To cope with these difficulties we first modify the definition of a termi­
nating program. 

3.2 Left terminating programs 

Definition 3.1 A program is called left terminating if all its LD­
derivations starting with a ground goal are finite. 

This notion of termination is clearly more appropriate for the study of 
PROLOG programs than that of a terminating program. To prove that a 
program is left terminating, and to characterize the goals that terminate 
w.r.t. such a program, we introduce the following concepts due to Apt and 
Pedreschi ( 1993). 

Definition 3.2 Let P be a program, I I a level mapping for P and I a 
(not necessarily Herbrand) interpretation of P. 

• A clause of P is called acceptable w.r.t. I I and I if I is its model 
and for every ground instance A<-- A, B, B of it such that I f= A 

IAI > IBI. 
In other words, for every ground instance A<-- B 1 , ... , Bn of the 
clause 

IAI > IBil foriE [l,n], 

where 
n = min({n} U {i E [l,n] I I~ Bi}). 
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• A program P is called acceptable w.r.t. I I and I if all its clauses are. 
P is called acceptable if it is acceptable w. r. t. some level mapping and 
an interpretation of P. 

The use of the premise I p A forms the only difference between the 
concepts of recurrence and acceptability. Intuitively, this premise expresses 
the fact that when in the evaluation of the goal ..-- A, B, B using the left­
most selection rule the atom B is reached, the atoms A are already refuted. 
Consequently, by the soundness of the LD-resolution, these atoms are all 
true in J. 

Alternatively, we may define n by 

n = { n if! F Bi /\ ... /\ Bn, 

i if! p Bi/\···/\ Bi-1 and!~ Bi/\ ··· /\Bi. 

Thus, given a level mapping I I for P and an interpretation I of P, in 
the definition of acceptability w.r.t. I I and I, for every ground instance 
A..-- B 1, ... , Bn of a clause in P, we only require that the level of A is higher 
than the level of Bi's in a certain prefix of B1 , ... , Bn. Which Bi's are taken 
into account is determined by the model I. If I I= B1 /\ · · · /\ Bn then all 
of them are considered and otherwise only those whose index is 5 n, where 
n is the least index i for which I ~ Bi. 

The following observation shows that the notion of acceptability gener­
alizes that of recurrence. 

Lemma 3.3 A program is recurrent w.r.t. I I iff it is acceptable w.r.t. 
I I and Bp. 

Our aim is to prove that the notions of acceptability and left termination 
coincide. To this end we need the notion of boundedness. The concept of 
a bounded goal used here differs from that introduced in Definition 2.3 
in that it takes into account the interpretation I. This results in a more 
complicated definition. 

In what follows, assume that the maximum function max : 2"' ~ N U 
{ oo} is defined as: 

maxS = 

0 ifs= 0, 

n if S is finite and non-empty, 

and n is the maximum of S, 

oo if Sis infinite. 

Then max S < oo iff the set S is finite. 
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Definition 3.4 Let P be a program, I I a level mapping for P and I an 
interpretation of P. 

• With each goal G = +- A1, ... , An we associate n sets of natural 
numbers defined as follows, for i E [1, n]: 

IGI{ = {IA'il I <---A~, ... ,A~ is a ground instance ofG and 

I I= A~ A···/\ A~_ 1 }. 

• A goal G is called bounded w.r.t. I I and I if IGlf is finite, for i E 
[1,n]. 

• For G = <----- A1 , ... , An bounded w. r. t. I I and I we define a multiset 
IGl1 of natural numbers as follows: 

IGl1 = bag (max IGI{, ... , max IGI~). 

• For G bounded w.r.t. I I and I, and k?: 0, we say that G is bounded 
byk (w.r.t.1 I andI)ifk?:hforhE IGlr· 

Note that a goal G is bounded w.r.t. I I and Bp iff it is bounded w.r.t. 
I in the sense of Definition 2.3. 

Lemma 3.5 Let P be a program that is acceptable w. r. t. a level mapping 
I I and an interpretation I. Let G1 be a goal that is bounded w.r.t. I I 
and I, and let G2 be an LD-resolvent of G1 from P. Then 

(i) G2 is bounded w. r. t. I I and I, 

(ii) IG2l1 -<m IG1II· 
Proof. It suffices to prove the following claims in which we refer to the 
given level mapping and interpretation I. I 
Claim 1 An instance G' of a bounded goal G = <----- A1 , ... , An is bounded 
and IG'lr ~m IGlr. 
Proof. It suffices to note that IG'I{ ~ IGI{ for i E [l, n]. I 
Claim 2 For every acceptable clause A <----- B and sequence of atoms 
C, if <-----A, C is bounded, then <----- B, C is bounded and I+- B, Cir -<m 
l<---A,Cl1· 

Proof. Let B = B1, ... , Bn and C = C1, ... , Cm, for n, m ?: 0. We first 
prove the following facts. 

Fact 1 For i E [I, n], I<----- B1, ... , Bn, C1, ... , Cml{ is finite, and 

maxi+- B1, ... , Bn, C1, ... , Cml{ <maxi <-----A, C1, ... , Cm!{. 

Proof. We have 
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= {Definition 3.4 } 

max{ I B~ I I +- B~, .. ., B~ is a ground instance of +- B 

and I I= B~ /\ · .. /\ B:_i} 
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= {for some A', A' +- B~, .. ., B~ is a ground instance of A +- B} 

max{IB~l I A'+- B~, .. . , B~ is a ground instance of A <--B 

and I I= B~ /\ · · · /\ B~_ 1 } 

< {Definition 3.2 and the fact that 

Vx E S 3y E R : x < y implies max S < max R} 

max{IA'l I A' is a ground instance of A} 

= {Definition 3.4} 

maxi +-A,C1, ... ,Cml{. 

Fact 2 For j E [l, m], I +- B1, ... , Bn, C1,. .. , CmlJ+n is finite, and 

maxi<-- B1, ... , Bn, C1, ... , CmlJ+n ~maxi +-A, C1, .. .,CmlJ+i· 

Proof. We have 

maxi+- B1, ... , Bn, C1, ... , CmlJ+n 

{Definition 3.4} 

max{ I Cj I I +- B~' ... ' B~' q' ... ' c;,.. is a ground instance of 

+- B, C and I I= B~ /\ · · · /\ B~ /\ C~ /\ · · · /\ Cj_i} 

< {for some A', A' +- B~, ... , B~ is a ground instance of A +- B, 

I is a model of P, and S <:: R implies max S ~ max R} 

max{ICj I I +-A'' c~' .. ., c;,.. is a ground instance of +-A, c 
and I I= A' /\ C~ /\ .. · /\ Cj_i} 

= {Definition 3.4} 

maxi+- A, C1, .. ., CmlJ+i· 

As a consequence of Facts 1 and 2 +- B, C is bounded and 

bag(maxl +-B,q{,. .. ,maxl <--B,Cl~+m) -<m 

bag(maxl +-A, Cl{, .. ., maxi +-A, q;;.,+l) 

which establishes the claim. I 
Corollary 3.6 Let P be an acceptable program and G a bounded goal. 

Then all LD-derivations of PU { G} are finite. 

Proof. The multiset ordering is well-founded. I 
Corollary 3. 7 Every acceptable program is left terminating. 

Proof. Every ground goal is bounded. I 
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We now prove the converse of Corollary 3. 7. To this end we proceed analo­
gously as in the case of terminating programs and analyze the size of finite 
LD-trees. We need the following analogue of Lemma 2.9, where for a pro­
gram P and a goal G we now denote by nodes p ( G) the number of nodes 
in the LD-tree for PU { G}. 
Lemma 3.8 Let P be a program and G a goal such that the LD-tree for 
P U { G} is finite. Then 

(i) for all substitutions e, nodesp(GB) s nodesp(G), 
(ii) for all prefixes H of G, nodesp(H) S nodesp(G), 

(iii) for all non-root nodes H in the LD-tree for P U { G}, 
nodesp(H) < nodesp(G). 

Proof 
(i) By the lifting lemma (see (Lloyd 1987)) we conclude that to every LD­
derivation of PU {Ge} with input clauses C1 , C2 , ... , there corresponds an 
LD-derivation of PU {G} with variants of input clauses C1, C2, ... , of the 
same or larger length. This implies the claim. 

(ii) Consider a prefix H = +-Ai, ... , Ak of G = +-A1, ... , An (n :;::: k). 
By an appropriate renaming of variables (formally justified by the variant 
lemma (see (Apt 1990)) we can assume that all input clauses used in the 
LD-tree for PU {H} have no variables in common with G. We can now 
transform the LD-tree for PU {H} into an initial subtree of the LD-tree 
for Pu{G} by replacing in it a node +- B by +- B, Ak+18, .. . , Ane, where 
e is the composition of the mgu's used on the path from the root H to the 
node +-B. This implies the claim. 

(iii) Immediate by the definition. I 

We can now demonstrate the desired result. 

Theorem 3.9 Let P be a left terminating program. Then for some level 
mapping I I and an interpretation I of P 

(i) P is acceptable w.r.t. I I and I, 
(ii) for every goal G, G is bounded w.r.t. I I and I iff all LD-derivations 

of PU { G} are finite. 

Proof. Define the level mapping by putting for A E B p 

IAI = nodesp (+-A). 

Since P is left terminating, this level mapping is well defined. Next, choose 

I= {A E Bp I there is an LD-refutation of PU {+-A}}. 

By the strong completeness of SLD-resolution, I = Mp, so I is a model of 
P. 
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First we prove one implication of (ii). 

(iil) Consider a goal G such that all LO-derivations of P U { G} are finite. 
We prove that G is bounded by nodesp(G) w.r.t. I I and I. 

To this end take f. E Ul[G]l 1 . For some ground instance +-Ai, ... , An 
of G and i E [l, n], where 

n = min({n} u {i E [1,n] I I~ Ai}), 

we have f.= !Ail· We now calculate 

nodesp(G) 

> {Lemma 3.8 (i)} 

nodesp( +-Ai, ... , An) 

> {Lemma 3.8 (ii)} 
nodesp( +-A1, ... , An) 

> {Lemma 3.8 (iii), noting that for j E [1, n - 1] 

there is an LO-refutation of P U { +- Ai, ... , Aj}} 

nodesp( +-Ai, ... , An) 

> {Lemma 3.8 (ii)} 

nodesp (+-Ai) 

{definition of I I} 
I Ail 

= f.. 

(i) We now prove that P is acceptable w.r.t. I I and I. Take a clause 
A+- B1, ... , Bn in P and its ground instance AB +- B1B, .. . , Bn8. We need 
to show that 

where 
n= min({n} U {iE[l,n]II~BiB}). 

We have ABB = AO, so AB and A unify. Let µ = mgu(AB, A). Then 
B = µ8 for some 8. By the definition of LO-resolution, +- B1µ, .. . , Bnµ is 
an LO-resolvent of +-AB. 

Then for i E [1, n] 

IABI 
= {definition of I I} 

nodesp ( +-AB) 
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> {Lemma 3.8 (iii), <-Biµ, ... , Bnµ is a resolvent of +- AB} 
nodesp (<-Biµ, ... , Bnµ) 

> {part (iil ), with G := <- Biµ, ... , Bnµ and Ai := BiB} 
I Bi BI. 

(ii2) Consider a goal G which is bounded w.r.t. I I and I. Then by (i) and 
Corollary 3.6 all LD-derivations of PU { G} are finite. I 
Corollary 3.10 A program is left terminating iff it is acceptable. 
Proof. By Corollary 3. 7 and Theorem 3.9. I 
3.3 Examples 
The equivalence between the left terminating and acceptable programs pro­
vides us with a method of proving termination of PRO LOG programs. The 
level mapping and the model used in the proof of Theorem 3.9 were quite 
involved and relied on elaborate information about the program at hand, 
which is usually not readily available. However, in practical situations much 
simpler constructions suffice. We illustrate it by means of two examples. 
In these we use the previously defined function listsize I J, which assigns 
natural numbers to ground terms. 

In the following, we present the proof of acceptability (w.r.t. a level map­
ping I ! and an interpretation I) of a given clause C = Ao +- A1, ... , An 
by means of the following proof outline: 

{Jo} 

Ao <- {to} 

A1, { ti} 

{Ji} 

An-1, {tn-1} 

{fn-1} 

An. {tn} 

{Jn} 

Here, ti and Ji, for i E [O, n] are integer expressions and first order formulas, 
respectively, such that all ground instances of the following properties are 
satisfied: 

(1) ti = I Ail, for i E [O, n], 
(2) Ji =:I I= Ai, for i E [O, n], 
(3) Ji /\ · · · /\ Jn =? Jo, 
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(4) For i E [l, n] : Ji /\ · · · /\ fi-1 ==> to > ti . 
We omit {Ji} (resp. {ti}) in the proof outlines if fi =true (resp. ti = 0.) 
It is immediate that a proof outline satisfying properties 1 to 4 correspond~ 
to the proofs that I is a model of the clause C, and that C is acceptable 
w.r.t. I I and I. We found it convenient to use proof outlines to present 
the proofs of acceptability, as most steps in these proofs are trivial and can 
be omitted without loss of information. 
3.3.l Permutation 
Consider the following program PERMUTATION: 

perm(Xs, Ys) +- Ys is a permutation of the list Xs. 

perm(Xs, [X I Ys]) +-
app(Xls, [X I X2s], Xs), 
app(Xls, X2s, Zs), 
perm(Zs, Ys). 

perm ( [] , [] ) . 

augmented by the APPEND program. 
The intention is to invoke perm with its first argument instantiated. 

The first clause takes care of a non-empty list xs. One should first split it 
into two sublists xls and [x I x2s] and concatenate x1s and x2s to get 
zs. If now ys is a permutation of zs, then [x I ys] is a permutation of 
xs. The second clause states that the empty list is a permutation of itself. 

Observe the following: 

• PERMUTATION is not recurrent. Indeed, consider the SLD-derivation of 
PERMUTATIONU {+-perm(xs, [x I ys])}withxs, x, ysground,in 
whose second goal the middle atom app(xis, x2s, zs) is selected. 
By repeatedly applying the recursive clause of APPEND we obtain an 
infinite derivation. Thus PERMUTATION is not terminating and so by 
Corollary 2.6 it is not recurrent. 

• The Herbrand interpretation 

JAPP {app(xs,ys,zs) I lxsl + Jys! = !zsJ} 

is a model of the program APPEND. Indeed, JAPP is trivially a model 
of the non-recursive clause of the app relation and the following proof 
outline shows that I AP p is a model of the recursive clause: 

{I + lxsl + lysl = 1 + lzsl} 

app([xlxs], ys, [xlzs]) 

app(xs, ys,zs). 

{!xsl + jysl = lzsl} 
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• The program PERMUTATION is acceptable w.r.t. the level mapping I 
and the interpretation !PERM defined by 

lxsl + 1, lperm(xs, ys )J 

lapp(xs, ys,zs)I min (lxsl, lzsl), 

!PERM = [perm(Xs, Ys)] u JAPP· 

Recall that [A] for an atom A stands for the set of all ground instances 
of A. We already noted in Example 1 that APPEND is recurrent w.r.t. 
I I· The proof outline for the non-recursive clause of the perm re­
lation is obvious. For the recursive clause take the following proof 
outline: 

perm(xs, [xlys]) +-

app(x1s, [xlx2s],xs), 

{lx1sl + 1 + lx2sl = lxsJ} 

app(x1s, x2s, zs), 

{Jx1sJ + Jx2sJ = lzsJ} 

perm(zs, ys). 

{lxsl+l} 

{min(lx1sl, lxsl)} 

{min(lx1sl, lzsl)} 

{lzsl + 1} 

Using Corollary 3.7 we conclude that PERMUTATION is acceptable. More­
over, we obtain that, for a list s, the atom permes, t) is rigid and 
hence bounded. Consequently, by Corollary 3.6, all LD-derivations of 
PERMUTATION U{ ..._ perm(s, t)} are finite. 

3.3.2 Quicksort 

Consider now the following program QUICKSORT: 

qs exs, Ys) ..._ Ys is an ordered permutation of the list Xs. 

qs([X I Xs], Ys) +-

partex, Xs, Littles, Bigs), 
qseLittles, Ls), 
qseBigs, Bs), 
appeLs, [X I Bs], Ys). 

qse[J' []). 

parteX, [Y I Xs], [Y I Ls], Bs) +­

X > Y, parteX, Xs, Ls, Bs). 
part ex, [Y I Xs], Ls, [Y I Bs]) +­

X ~ Y, parteX, Xs, Ls, Bs). 
part ex' [] ' [] ' []) . 

augmented by the APPEND program. 
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According to this sorting procedure, using its first element X, a list is first partitioned in two sublists, one consisting of elements smaller than X, and the other consisting of elements larger or equal than X. Then each sublist is quicksorted, and the resulting sorted sublists are appended with the element X put in the middle. 
We assume that QUICKSORT operates on the domain of natural numbers over which the built-in relations > and ::;, written in infix notation, are defined. We thus assume that this domain is part of the Herbrand universe of QUICKSORT. 
Observe the following: 

• QUICKSORT is not recurrent. In fact, consider the first clause instan­tiated with the grounding substitution 

{X/a, Xs/b, Ys/c, Littles/[a I b], Ls/c}. 
Then the ground atom qs([a I b], c) appears both in the head and the body of the resulting clause. 

• The clauses defining the relation part are trivially recurrent with lpart(x, xs, ls, bs)I = lxsJ, Js > tl = 0 and Js :S: tl = 0. 
• Extend now the above level mapping with 

lqs(xs,ys)I = Jxsl, 
lapp(xs,ys,zs)I lxsl. 

Recall that APPEND is recurrent w.r.t. I \. Next, define a Herbrand interpretation of QUI CKSORT by putting 

I = { qs(xs, ys) ! lxsl ?: \ys\} 

U {part(x, xs, ls, bs) I \xs\ ?: \lsl + lbs\} 
U { app(xs, ys, zs) I \xs\ + \ysl ?: \zs\} 
U [X > Y] 

U [X::; Y]. 

The following proof outlines show that QUICKSORT is acceptable w.r.t. I I and I. The proof outlines for the non-recursive clauses are obvious and omitted. 

{l + \xs[ + lysl ?: 1 + !zsl} 

app([x\xs], ys, [x\zs]) 

app(xs, ys, zs). 

{\xs[ + [ys! ?: \zs[} 
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{l + lxsl 2: 1 + lls\ + lbsl} 

part(x, [y\xs], [ylls], bs) <--

X >Y, 

part(x, xs, ls, bs). 

{\xsl 2: \lsl + lbsl} 

{l + lxs\ 2: lls\ + 1 + lbsl} 

part(x, [ylxs], ls, [ylbs]) <--

{l + lxs\ 2: lysl} 

qs([xlxs], ys) 

X:::; Y, 

part(x, xs, ls, bs). 

{lxs\ 2: \lsl + \bsl} 

part(x, xs, littles, bigs), 

{lxsl 2: \littles\ + lbigsl} 

qs(li ttles, ls), 

{llittlesl 2: llsl} 

qs(bigs, bs), 

{lbigs\ 2: \bsl} 

{1 + jxsl} 

{jxsl} 

{llittlesj} 

{\bigsl} 

app(ls, [xlbs], ys). {llsl} 

{llsj + 1 + jbsj 2: jysj} 

Using Corollary 3. 7 we conclude that QUICKSORT is acceptable. More­
over, we obtain that, for a list s, the atom qs(s, t) is rigid and hence 
bounded. By Corollary 3.6 we conclude that all LD-derivations of 
QUICKSDRT U{ <-- qs(s, t)} are finite. 

4 A modular approach to termination 
4.1 Drawbacks of the proof method 
The proof method for (left) termination introduced in the previous sections 
suffers from two drawbacks. 
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• The level mapping used in the proof of recurrence/acceptability is 
sometimes different from the expected natural candidate. Consider 
for instance the program PERMUTATION. The relation perm is defined 
by induction on the length of its first argument, which is a list, and 
therefore a natural candidate for I perm(xs, ys) I is I xs I. Neverthe­
less, it is needed to add 1 to such a value in order to enforce a strict 
decreasing from the relation perm to the relation app, as required by 
the definition of acceptability. 

• The proposed proof method does not provide means for constructing 
modular proofs, hence no straightforward technique is available to 
combine proofs for separate programs to obtain proofs of combined 
programs. 

As the module hierarchy of a program becomes more complex, such 
adjustments of natural level mappings become more artificial and conse­
quently more difficult to discover. For example, to prove that the program 

overlap(Xs, Ys) ;-member(X, Xs), member(X, Ys). 
has_a_or_b(Xs) ,_overlap (Xs, [a, b]). 

augmented by the MEMBER program. 

is recurrent we need to put I overlap (xs, ys) I = I xs I +1 to enforce the 
decrease in the first clause and then I has_a_or_b (xs) I = I xs I +2 to en­
force the decrease in the second clause. 

Both drawbacks pose serious limitations for the practical applicability 
of the proposed proof method. First, as argued by De Schreye, Verschaetse 
and Bruynooghe (1992), unnatural level mappings are difficult to discover 
by automated tools. Secondly, modularity is essential in mastering the 
complexity of large-scaled programs. These drawbacks share their orig­
inating cause. The notions of recurrence/acceptability are based on the 
fact that level mappings decrease from clause heads to clause bodies. This 
is used for two different purposes: 

(1) in (mutually) recursive calls, to ensure termination of (mutually) re­
cursive procedures, and 

(2) in non (mutually) recursive calls, to ensure that non (mutually) re­
cursive procedures are called with terminating goals. 

Although a decreasing of the level mappings is apparently essential for 
the first purpose, this is not the case for the second purpose, since a weaker 
condition can be adopted to ensure that non-recursive procedures are prop­
erly called. 

The next subsections will elaborate on this idea, by presenting alter­
native definitions of recurrence/acceptability, which we qualify with the 
prefix semi. These notions are actually proved equivalent to the original 
ones, but they give rise to more flexible proof methods, which avoid the 
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cited drawbacks. 

4.2 Semi-recurrent programs 
Following the intuition that recursive and non-recursive procedures should 
be handled separately in proving termination, we introduce a natural or­
dering over the relation names occurring in a program P, with the intention 
that for relations p and q, p:;;;) q holds if procedure p can call procedure q. 
The next definition makes this concept precise. We denote by Ilp the set 
of relations occurring in a program P. 
Definition 4.1 Let P be a program and p, q relations in Ilp. 

(i) We say that p refers to q in P if there is a clause in P that uses p in 
its head and q in its body. 

(ii) We say that p depends on q in P, and write p::;;;) q, if (p, q) is in the 
reflexive, transitive closure of the relation refers to. 

Observe that according to the above definition p ~ q =:: p ::;;;) q I\ q ::;;;) 
p means that p and q are mutually recursive (i.e., they are in the same 
recursive clique), and p :::J q = p :;;;) q /\ q i) p means that p calls q as a 
subprogram. It is important to notice that the ordering =i over Ilp is well 
founded. 

The following definition of semi-recurrence exploits the ordering over 
the relation names. The level mapping is required to decrease from an 
atom A in the head of a clause to an atom B in the body of that clause 
only if the relations of A and B are mutually recursive. Additionally, the 
level mapping is required not to increase from A to B if the relations of A 
and Bare not mutually recursive. We adopt the notation rel(A) to denote 
the relation symbol occurring in atom A. 
Definition 4.2 

• A clause is called semi-recurrent w. r. t. a level mapping 
every ground instance A +- A, B, B of it 

(i) IAI > IBI if rel(A) ~ rel(B), 
(ii) IAI 2: IBI if rel(A) :::J rel(B). 

I, if for 

• A program P is called semi-recurrent w.r.t. a level mapping I I if all 
its clauses are. P is called semi-recurrent if it is semi-recurrent w. r. t. 
some level mapping. 

The following observation is immediate. 

Lemma 4.3 If a program is recurrent w.r.t. I I, then it is semi-recurrent 
w.r.t. I I· 

The converse of Lemma 4.3 also holds, in a sense made precise by the 
following result. 

Lemma 4.4 If a program is semi-recurrent w.r.t. I I, then it is recurrent 
w.r.t. a level mapping II II· Moreover, for each atom A, if A is bounded 
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w.r.t. I I , then A is bounded w.r.t. 1111-

Proof. In order to define the level mapping 11 11, we first introduce (by 
overloading the symbol I I) a mapping I I: Ilp-+ N such that, for p, q E 
Ilp: 

p '.:::' q implies IPI = lql, 
p :J q implies IPI > lql. 

(4.1) 

(4.2) 

A mapping I I satisfying properties (4.1) and (4.2) obviously exists, as Ilp 
is finite. Note that this mapping preserves the :J ordering. Next, we define 
a level mapping II II for P by putting for A E Bp: 

llAll = IAI + lrel(A)I (4.3) 

We now prove that P is recurrent w.r.t. 1111- Let A,____ A, B, B be a ground 
instance of a clause from P. The following two cases arise: 
Case 1 rel(A) '.:::' rel(B). 
We calculate: 

llAll 
{(4.3)} 

IAI + lrel(A)I 
> {IAI > IBI by Definition 4.2 (i)} 

IBI + lrel(A)I 
{lrel(A)I = lrel(B)I by rel(A) '.:::' rel(B) and (4.1)} 

IBI + lrel(B)I 
{(4.3)} 

llBll-
Case 2 rel(A) :J rel(B). 
We calculate: 

llAll 
{(4.3)} 

IAI + lrel(A)I 
> {lrel(A)I > lrel(B)I by rel(A) :J rel(B) and (4.2)} 

IAI + lrel(B)I 
> {IAI 2: IBI by rel(A) :J rel(B) and Definition 4.2 (ii)} 

IBI + jrel(B)I 
{( 4.3)} 

llBll-
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In both cases we proved llAll > llBll, which establishes the first claim. The 
second claim follows directly from the definition of 11 11 · I 

The following is an immediate conclusion of Lemmata 4.3 and 4.4. 

Corollary 4.5 A program is recurrent iff it is semi-recurrent. 

In what follows we study conditions which allow us to deduce termina­
tion of a program from termination of its components. The simplest form 
of program composition takes place when a program is constructed from 
two subprograms which use disjoint sets of relations. The following obvious 
composition theorem allows us to deal with this case. 

Theorem 4.6 Let P and Q be two programs such that no relation occurs 
in both of them. Suppose that 

• Q is semi-recurrent w.r.t. level mapping I IQ, 
• P is semi-recurrent w. r. t. level mapping I IP. 

Then P U Q is semi-recurrent w. r. t. I I defined as follows: 

{ IAlp if rel(A) is defined inP, 
IAI = 

IAIQ if rel(A) is defined inQ. 

Obviously, this theorem is of very limited use. We now consider a 
situation when a program uses another one as a subprogram. The following 
notion of extension of a program formalizes this situation. 

Definition 4. 7 Let P and Q be two programs. 

(i) A relation p is defined in a program P if p occurs in the head of a 
clause from P. 

(ii) P extends Q if no relation defined in P occurs in Q. 

Informally, P extends Q if P defines new (w.r.t. Q) relations. From 
now we assume without loss of generality that, for a given program P and 
a level mapping I I for P, IAI = 0 if rel(A) is not defined in P. Notice 
that such an assumption is indeed immaterial for the notion of (semi-) 
recurrence, since if rel(A) does not occur in the head of any clause of P, 
then any constraint put on IAI is satisfied when IAI = 0. 

Observe that the definition of semi-recurrence allows us to compose 
termination proofs. Indeed, the following result holds. 

Theorem 4.8 Let P and Q be two programs such that P extends Q. 
Suppose that 

(1) Q is semi-recurrent w.r.t. I IQ, 
(2) P is semi-recurrent w.r.t. I IP, 
(3) for every ground instance A~ A, B,B of a clause of P 

IAIP 2:: IBIQ if rel(B) is defined in Q. 
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Then PU Q is semi-recurrent w. r. t. I i defined as follows: 

{ I Alp if rel(A) is in P. 

IAlq if rel(A) is defined inQ. 
!Al (4.4) 

Proof. It suffices to note that for every ground instance A+- A, B, B of a 
clause from PU Q the following two implications hold: 
(i) if rel(A) :::::::: rel(B), then either both relations are defined in P or both 
are defined in Q, 
(ii) if rel(A) ::J rel(B), then either rel(A) is not defined in P. I 

This theorem suggests a natural way of composing termination proofs 
provided the level mappings of the programs P and Q satisfy condition 3. 
In general, it is difficult to expect that two independently constructed level 
mappings happen to satisfy such a relation. (An example illustrating this 
complication can be found below.) 

Consequently, we need a more general approach. The result we now 
present makes it possible to construct termination proofs in a modular way 
in full generality and is the main motivation for the introduction of the 
notion of semi-recurrence. 

Theorem 4.9 Let P and Q be two programs such that P extends Q. 
Suppose that 

( l) Q is semi-recurrent w. r. t. I lo, 
(2) P is semi-recurrent w.r.t. I IP, 
( 3) there exists a level mapping 11 11 p such that for every gronnd instance 

A +-- A, B, B of a clause from P 

(a) llAllP 2 llBllP if rel(B) is defined in P, 
(b) llAllP 2 IBIQ if rel(B) is defined in Q. 

Then P U Q is semi-recurrent w. r. t. I I defined as follows: 

IAI = { IAlp + llAllP if rel(A) is defined ·inP, 

IAIQ if rel(A) is defined inQ. 
(4.5) 

Proof. It suffices to prove that each clause from P is semi-recurrent w.r.t. 
I I- Let A +- A, B, B be a ground instance of a clause from P. The 
following two cases arise: 
Case 1 rel(A):::::::: rel(B). 
Then by Definition 4.7, rel(B) is defined in P. According to Definition 
4.2(i) we need to prove IAI > IBI. We calculate: 

IAI 
{(4.4)} 
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[A[p + [[A[[P 
> {[A[p > [B[p by assumption 2 and Definition 4.2 (i), 

and llAllP > [[B[[P by assumption 3(a)} 

IB[p + llBllP 
{(4.4)} 

IB[. 

Case 2 rel(A) :::J rel(B). 
According to Definition 4.2(ii), we need to prove [Al ~ [B[. Two subcases 
arise: 
Subcase 2.1 rel(B) is defined in P. 
We calculate: 

[A[ 
{(4.4)} 

[A[p + [[A[[P 
> {[A[p ~ [B[p by assumption 2 and Definition 4.2 (ii), 

and [[A[[P ~ llB[[P by assumption 3(a)} 

[Bfp + [[B[[P 
{(4.4)} 

[B[. 

Subcase 2.2 rel(B) is defined in Q. 
We calculate: 

I 

[Al 
{(4.4)} 

[A[p + [[A[[P 
> {llAllP ~ [B[q by assumption 3(b)} 

[A[p + [B[q 
> IB[q 
= {(4.4)} 

[B[. 

4.3 Methodology 
Theorems 4.6, 4.8 and 4.9 provide us with an incremental, bottom-up 
method for proving termination of logic programs. Given a program P, 
the method can be informally illustrated as follows. 
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(1) Partition the relation names in P in the equivalence classes w.r.t. 
the equivalence '.:::::'. induced by the "depends on" relation Such 
equivalence classes correspond to the recursive cliques of program P. 
Let Pi, .. ., Pn be the partition of the clauses from P such that each 
P; contains the clauses defining the relation(s) belonging to the same 
equivalence class. The relation ::J defined on the relations induces a 
corresponding well founded ordering > on the programs Pi: 

Pi > P3 iff p ::J q for some p defined in P, and q defined in Pj. 
(2) Prove by induction w.r.t. the ordering > that for every program Pi, 

i E [l, n] the program Pi U LJP,<P, Pj is semi-recurrent. 

The base case. Consider all P;, i E [l, n], which are minimal w.r.t. 
>. 

• Prove that each such Pi is semi-recurrent (w.r.t. some I IP,). 
Notice that this is the same as proving that Pi is recurrent w.r.t. 
I IP,, as procedures in P; do not call any subprograms. 

The induction step. Consider a P;, i E [l, n], such that all Pj for 
which Pj < Pi have already been proved semi-recurrent. 

• Prove that P; (in isolation) is recurrent w.r.t. some I IP,· 
Notice that the assumption that IAIP, = 0 if rel(A) is not defined 
in Pi allows us to abstract from the relations that are not defined 
in Pi. Consequently, we only need to prove that I IP, decreases 
on (mutually) recursive calls. This facilitates the choice of a 
"natural" candidate for 
I jp,, which directly mirrors the inductive structure of the pro­
cedures defined in P;. 

• Use Theorem 4.6 to conclude that UP;<P, Pj is semi-recurrent. 
• Use Theorem 4.8 or Theorem 4.9 to prove that P; U LJP,<P; P1 

is semi-recurrent. 
Here we only need to come up with a level mapping II II which 
is usually directly suggested by the level mappings I IP:i, where 
PJ < P;. 

4.4 Examples 

4.4.l Mergesort 
Consider the following program MERGESORT which is an instance of the 
divide and conquer schema: 

ms(Xs, Ys) +-

Ys is an ordered permutation of the list Xs. 

ms( [X, Y I Xs], Ys) +-

split( [X, Y I Xs], Xis, X2s), 
ms(Xis, Yis), 
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ms(X2s, Y2s), 
merge(Yis, Y2s, Ys). 

ms ( [X] , [X]) . 
ms ( [) , []). 

split ( [X I Xs] , [X I Ys] , Zs) +­

split (Xs, Zs, Ys). 
split ( (] , [] , [] ) . 

merge( [X I Xs], [Y I Ys], [X I Zs]) +­

X :SY, 
merge(Xs, [Y I Ys], Zs). 

merge ( [X I Xs] , [Y I Ys] , [Y I Zs]) +­

X > Y, 
merge([X I Xs], Ys, Zs). 

merge([], Xs, Xs). 
merge(Xs, [], Xs). 

According to this sorting procedure, a list of length at least 2 is first 
split into two lists of roughly equal length (by means of the reversed order of 
parameters in the recursive call of split), then each sublist is mergesorted, 
and finally the resulting sorted sublists are merged, preserving the ordering. 

Note that MERGESORT is not recurrent. Indeed, due to the introduction of 
the local variables X1,X2,Y1, Y2 in the body of the recursive clause defining 
ms, it is not terminating. By adding an additional parameter Bezem (1993) 
modified this program so that it becomes terminating: 

ms(Xs, Ys, Xs) +-

Ys is an ordered permutation of the list Xs. 

ms ( [X, Y I Xs] , Ys, [H I Ls]) +-

split ( [X, Y I Xs], Xis, X2s, [H I Ls]), 
ms(Xis, Yis, Ls), 
ms(X2s, Y2s, Ls), 
merge(Yis, Y2s, Ys, [H I Ls]). 

ms([X], [X], Ls). 
ms ( [] , [] , Ls) . 

split ( [X I Xs] , [X I Ys] , Zs, [H I Ls]) +­

split (Xs, Zs, Ys, Ls). 
split ( [] , [] , [] , Ls) . 

merge ( [X I Xs] , [Y I Ys] , [X I Zs] , [H I Ls]) +­
X :S Y, 
merge(Xs,[Y I Ys], Zs, Ls). 

merge ( [X I Xs] , [Y I Ys] , [Y I Zs] , [H I Ls]) +­
X > Y, 
merge([X I Xs], Ys, Zs, Ls). 
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merge([], Xs, Xs, Ls). 
merge(Xs, [], Xs, Ls). 
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(A misprint crept in to (Bezem 1993) where instead of calling merge, ms 
calls itself.) We prove this fact using Theorems 4.6 and 4.8. Call the above 
program MERGESORT' and denote the subprograms of MERGESORT' which 
define the relations ms , split and merge by MS, SPLIT and MERGE, cor­
respondingly. Thanks to the addition of the last argument MS is recurrent 
w .r. t. the level mapping 

lms(xs,ys,ls)I = llsj, 

SPLIT is recurrent w.r.t. the level mapping 

lsplit(xs,ys,zs,ls)I = llsl, 

and MERGE is recurrent w.r.t. the level mapping 

lmerge(xs,ys,zs,ls)I = llsJ. 

By Theorem 4.6 SPLIT U MERGE is recurrent w.r.t. I I· Assumption 3 
of Theorem 4.8 applied to the programs MS and SPLIT U MERGE is obviously 
satisfied, so we conclude by this theorem that MERGESORT' is semi-recurrent 
w.r.t. I I, and hence terminating. 

To prove this fact Bezem (1993) used the concept of a recurrent pro­
gram, which, to deal with the subprogram calls in the recursive clause 
defining ms, requires a more artificial level mapping in which I ms (xs, ys , 
ls)I = llsl+1. 

4.4.2 Curry's type assignment 

Consider the following program for Curry's type assignment (see e.g. 
(Reddy 1986)). In Curry's type system, a type assignment E I- M : T ex­
presses the fact that >.-term Mis assigned type T w.r.t. environment E. Here, 
>.-terms are represented using the function symbols var (for variables), 
apply (for application), and lambda (for >.-abstraction). Type terms are 
represented using the function symbol arrow (for the function type). For 
the sake of concreteness, we augment the program with extra constants 
(say v, w, z) representing >.-variables, and others (say Nat, Bool) repre­
senting basic types. Finally, environments are represented as lists of pairs 
(>.-variable, type term). 

type(E,M, T) f­

E I- M : T 

(t1 ) type(E,var(X),T) f- in(E,X,T). 
(t2) type(E,apply(M,N), T) f-

type(E,M,arrow(S,T)), type(E,N,S). 
(t3 ) type(E,lambda(X,M) ,arrow(S, T)) f-
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type([(X,S)IE] ,M,T). 

in(E,X, T) <-

X is bound to T in E 

(ii) in([(X,T) IE] ,X,T). 
( i 2) in ( [ (Y, T) I E] , X, T) <-- X =/:- Y, in (E, X, T) . 

Denote by CURRY the program formed by clauses ti, t2 and t3, and by ENV 
the program formed by clauses ii and i2. Clearly, CURRY extends ENV, and 
type:J in :J -=/= in curry U env. Observe the following: 

• relation in is defined by induction on the length of its first argument, 
which is a list. As a result, the program ENV is recurrent w.r.t. I IENV 
defined as: 

lin(e,x, t)IENV = leJ. 

• Relation type is defined by induction on the size of its first argument, 
which is a >.-term. As a result, the program CURRY is recurrent w.r.t. 
I lcuRRY defined as: 

ltype(e,m, t)JcuRRY = size(m). 

• In any derivation starting from a goal <--type( e, m, t ), the length of 
the environment is bounded by I e I +size(m), since the length of the 
environment is incremented together with the decrease of the size of 
the >.-term (clause t3)· As a result, by defining 

Jltype(e,m, t)llcuRRY =lei+ size(m) 

we satisfy for II llcuRRY the assumptions 3(a) and (b) of Theorem 
4.9. 
Note that the level mappings I IENV and I lcuRRY do not satisfy 
condition 3 of Theorem 4.8, so this theorem cannot be used here. 

As a consequence, by Theorem 4.9, Lemma 4.4 and Corollary 2.6 we 
conclude that CURRY U ENV is terminating. Additionally, we obtain that a 
goal +--type( e, m, t) is bounded if e is a list and m is ground. This latter 
result is relevant, since it justifies the fact that program CURRY U ENV can 
be used to implement type inference by means of the goals of the kind 
<--type( e, m, T), where e is a list, m is a ground >.-term, and T is a variable. 

As a final remark, notice that it is possible to arrive at the same con­
clusion by showing directly that CURRY U ENV is recurrent w.r.t. the level 
mapping ltype(e,m, t}J = lei+ 2 x size(m), but such a level mapping is 
unnatural. Moreover, such a proof cannot be readily explained in a com­
positional way, as a combination of the separate proofs for CURRY and ENV. 
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4.4.3 A relational MAP program 

Consider the following program MAP, implementing a relational equivalent 
of the ubiquitous higher-order combinator map of functional programming: 

map( [X1, ... , Xn], [Y1, ... , Yn]) +-­

p(Xi, Yi) holds for i E [1,n]. 

map([XIXs], [YIYs]) +--

p(X, Y), map(Xs, Ys). 
map ( [] , [] ) . 

The program MAP is parametric w.r.t. relation p. Let P be a program 
defining the relation p, such that MAP extends P (hence: map ::J p.) Assume 
that P is recurrent w.r.t. I IP defined as lp(x,y)lp = f(x), where f(x) 
denotes some function assigning natural numbers to ground terms. 

We observe the following: 

• The program MAP is trivially recurrent w.r.t. I IMAP defined by 

lmap(xs, ys)IMAP = lxsl. 

• Define 11 11 MAP by recursion as follows: 

IJmap([ ], ys)llMAP 

llmap([xlxs], ys)llMAP 

0, 

f(x) + llmap(xs,ys)llMAP· 

Assumption 3 of Theorem 4.9 is satisfied by 111 IMAP· Indeed, consider 
a ground instance 

map([xlxs], [yJys]) +- p(x, y), map(xs, ys). 

of the recursive clause of program MAP, and observe that: 
llmap([xlxs], [ylys])llMAP = f(x) + llmap(xs, [ylys])llMAP 2 f(x) = 

lp(x, y)IP, 
llmap([xlxs], [ylys])llMAP = f(x) + llmap(xs, [yJys])IJMAP 
2 Jlmap(xs, [ylys])llMAP = Jlmap(xs, ys)llMAP· 

By Theorem 4.9 we conclude that MAP UP is recurrent. Moreover, we 
obtain that a goal +- map(xs, ys) is bounded if xs is a list of terms each 
of which is bounded w.r.t. f. (As expected, a term t is bounded w.r.t f 
if f is bounded on the set of ground instances of t.) Thus we obtained a 
modular proof scheme for the parametric program MAP . 

Note that there is no relationship between lmap([xlxs], [ylys])IMAP 
which equals lxsl + 1 and lp(x,y)Jp which equals f(x), so with this nat­
ural choice of level mappings we cannot apply here Theorem 4.8. 
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5 A modular approach to left termination 
5.1 Semi-acceptable programs 
An analogous modification of the notion of acceptability yields a modular 
approach to the proofs of left termination. 

Definition 5.1 Let P be a program, I I a level mapping for P and I a 
(not necessarily Herbrand) interpretation of P. 

• A clause of P is called semi-acceptable w.r.t. I I and I, if I is its 
model and for every ground instance A +- A, B, B of it such that I f= 
A 

(i) IAI > IBI if rel(A) ~ rel(B), 
(ii) IAI 2:: IBI if rel(A) :::J rel(B). 

• A program P is called semi-acceptable w. r. t. I I and I, if all its 
clauses are. P is called semi-acceptable if it is semi-acceptable w. r. t. 
some level mapping and an interpretation of P. 

Again, the use of the premise I f= A forms the only difference between 
the concepts of semi-recurrence and semi-acceptability. 

The following observations are immediate. The first one is a counterpart 
of Lemma 3.3. 

Lemma 5.2 A program is semi-recurrent w. r. t. I I iff it is semi­
acceptable w. r. t. I I and B p. 

Lemma 5.3 If a program is acceptable w.r.t. I I and I, then it is semi­
acceptable w.r.t. I I and I. 

Also, the proof of Lemma 4.4 can be literally viewed as a proof of the 
following analogous result for semi-acceptable programs. 
Lemma 5.4 If a program is semi-acceptable w.r.t. I I and I, then it 
is acceptable w. r. t. a level mapping 11 11 and the same interpretation I. 
Moreover, for each atom A, if A is bounded w.r.t. I I, then A is bounded 
w.r.t. 1111· 

The following is a direct consequence of Lemmata 5.3 and 5.4. 
Corollary 5.5 A program is acceptable iff it is semi-acceptable. 

Let us consider now the issue of modularity. The following is an ana­
logue of Theorem 4.6 for semi-acceptable programs. 

Theorem 5.6 Let P and Q be two programs such that no relation occurs 
in both of them. Suppose that 

• Q is semi-acceptable w.r.t. level mapping I IQ and interpretation IQ, 
• P is semi-acceptable w.r.t. level mapping I IP and interpretation Ip. 
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Then PU Q is semi-recurrent w.r.t. I I and fp U IQ, where I I is defined 
as follows: 

IAI = { IAIP if rel(A) is defined inP, 

IAIQ if rel(A) is defined inQ. 

Next, note the following analogue of Theorem 4.8 for semi-acceptable 
programs. 

Theorem 5. 7 Let P and Q be two programs such that P extends Q. 
Suppose that 

(1) Q is semi-acceptable w.r.t. I IQ and lp n BQ, 
(2) P is semi-acceptable w.r.t. I IP and lp, 
(3) for every ground instance At-A, B, B of a clause of P such that 

lp f=A 
I Alp 2: IBIQ if rel(B) is defined in Q. 

Then PU Q is semi-acceptable w.r.t. I I and lp, where I I is defined as 
follows: 

{ 
IA/p if rel(A) is defined in P, IAI = 
IAIQ if rel(A) is defined in Q. 

Proof. The proof is identical to that of Theorem 4.8. I 

(5.1) 

As in the case of semi-recurrent programs we cannot always hope that 
two unrelated level mappings satisfy condition 3 of this theorem. The 
following analogue of Theorem 4.9 for semi-acceptable programs deals with 
this difficulty. 

Theorem 5.8 Let P and Q be two programs such that P extends Q, and 
let fp be a model of PU Q. Suppose that 

(1) Q is semi-acceptable w.r.t. I IQ and lp n BQ, 
(2) P is semi-acceptable w.r.t. I IP and lp, 
( 3) there exists a level mapping /I 11 p such that for every ground instance 

At-A, B, B of a clause from P such that ]p f= A 
(a) llAllP 2::: llBllP if rel(B) is defined in P, 
(b) llAllP 2::: IBIQ if rel(B) is defined in Q. 

Then PU Q is semi-acceptable w.r.t. I I and lp, where I I is defined as 
follows: 

IA/ { IAIP + llAllP if rel(A) is defined inP, 

IA/Q if rel(A) is defined inQ. 
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Proof. The proof is identical to that of Theorem 4.9. I 
5.2 Examples 
We now present some applications of the modular method for proving left 
termination. In the following we adopt proof outlines also as a proof format 
for the verification of assumption 3 of Theorems 5.7 and 5.8. We refer to 
such proof outlines with the qualification weak, and assume that for weak 
proof outlines condition 4 of Section 3.3 is amended as follows, by replacing 
>by;:::: 

41• For i E [1, n] : Ji /\ · · · /\ fi-1 ==} to ;::: ti. 

5.2.1 Permutation 
Reconsider the program PERMUTATION: 

perm(Xs, Ys) +-

Ys is a permutation of the list Xs. 

perm(Xs, [X I Ys]) +­
app(X1s, [X I X2s], Xs), 
app(X1s, X2s, Zs), 
perm(Zs, Ys). 

perm([], []). 

augmented by the APPEND program. 

Denote the program defining the PERMUTATION relation by PERM. Clearly, 
PERM extends APPEND, and perm =i app. Recall that APPEND is recurrent 
w.r.t. iapp(xs, ys, zs)I = min (ixsl, izsl). Observe the following: 

• the relation perm is defined by induction on the length of its first 
argument. Indeed, the program PERM is semi-acceptable w.r.t. I I 
and !PERM defined by: 

lperm(xs, ys)I lxsi, 

[perm(Xs, Ys)] 

U {app(xs,ys,zs)i ixsl+iysi= izsi}. 

The proof that !PERM is a model of APPEND is as in Section 3.3. The 
following is a proof outline for the semi-acceptability of the recursive 
clause for perm w.r.t. I I and !PERM: 



Modular termination proofs 

perm(xs, [xJys]) +-

app(xis, [x!x2s],xs), 

{!xs! = Jxisl + !x2sj + 1} 

app(x1s, x2s, zs), 

{!zs! = !xisl + !x2sl} 

perm(zs, ys). 
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{Jxs!} 

{!zs!}. 

• Assumption 3 of Theorem 5. 7 is satisfied as the following weak proof 
outline shows: 

perm(xs, [x!ys]) +-- {!xs!} 

app(xis, [x!x2s], xs), { min(x1s, xs)} 

{!xs! = lxisl + !x2sl + 1} 

app(xis, x2s, zs), { min(x1s, zs)} 

{!zs! = lxisl + !x2sl} 

perm(zs, ys). 

Hence, by Theorem 5.7 and Lemma 5.4 we conclude that PERMUTATION 
= PERM U APPEND is acceptable w.r.t. I I and IP ERM· We thus achieved 
the same result of Section 3.3, but in a modular way, and using a more 
natural level mapping for perm. 

5.2.2 A divide &f conquer scheme 
Reconsider the divide and conquer schema DC which is parametric w.r.t. 
the base, conquer, divide and merge relations: 

de solve (X, Y) +­

base (X), 
conquer(X, Y). 

de solve (X, Y) +-

divide (X, XO, X1, X2), 
dcsolve(Xi, Yi), 
dcsolve(X2, Y2), 
merge(XO, Yi, Y2, Y). 

Let P be a program defining the relations base, conquer, divide and 
merge. Clearly, DC extends P, and dcsol ve :J base, conquer, divide , 
merge. Assume that P is acceptable w.r.t. I IP and fp defined as follows: 

lbase(x)!p = !!xii, 
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jconquer(x, y)jp 
jdivide(x, xO, x1,x2)jp 
jmerge(xO, y1,y2, y)lp 

Ip = [base(X)] 

= !lxl!, 

!lxl!, 

l!xOlj + i!Y1ll + i!Y2ll, 

U {conquer(x,y) 1llxll2: llYll} 

U {divide(x,x0,x1,x2) 1 llxll 2: JlxO!I + llx11! + llx2ll 

I\ !lxll > llx1!1 A llxll > !lx2ll} 

U {merge(x0,y1,y2,y) I llYll :S llxOI! + jjy1ll + !ly2JI}, 

where 11 11 denotes some function assigning natural numbers to ground 
terms. 

Notice that these assumptions are quite natural for a large class of 
programs following the divide and conquer paradigm. 

We observe the following: 

• the program DC is acceptable w.r.t. I lvc and Ivc defined by: 

ldcsolve(x, y)lvc = llxll, 

Ivc = ]p U {dcsolve(x,y) I llxll 2: llYll}. 

The proof outline for the non-recursive clause of DC is obvious. For 
the recursive clause take the following proof outline: 

{llxl! 2: llY!I} 

dcsolve(x, y) 

di vide(x, xO, x1, x2), 

{ilxl! 2: !lxOll + llx1ll + llx2jl 

/\ l!xll > llx1ll /\ Jlx!I > llx211} 

dcsolve(x1, y1), 

{ilx11! 2: ljy1ll} 

dcsolve(x2, y2), 

{llx2JI ;::: !ly2JI} 

merge(xO, y1, y2, y). 

{llxO!I + l!Y11! + !IY21! 2: llY!I}. 

{llxll} 

{llx1!1} 

{llx2!1} 

• Assumption 3 of Theorem 5.7 is satisfied as the following weak proof 
outlines show: 
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dcsolve(x, y) 

base(x), 

conquer(x, y). 

dcsolve(x, y) +-

di vide(x, xO, x1, x2), 

{llxll ~ llxOll + llx1ll + llx2ll 

/\ llxll > llx1ll /\ llxll > llx2ll} 

dcsolve(x1, y1), 

{llx1ll ~ llYill} 

dcsolve(x2, y2), 

{llx2ll ~ llY2ll} 

merge(xO, y1, y2, y). 
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{llxll} 

Using Theorem 5.7 and Lemma 5.4 we conclude that DCUP is acceptable 
w.r.t. I I and IDc, where 

{ IAlvc if rel(A) = dcsolve, 
IAI = 

IAlp otherwise. 

Moreover, we obtain that a goal +-- dcsolve(x, y) is bounded if 
dcsolve(x, y) rigid, so in particular if x is ground. Thus we have obtained 
a modular proof scheme for divide and conquer programs. 

As a direct application, note that the program QUICKSORT can be defined 
as QUICKSORT = DC U P by putting 

and defining P as follows: 

base([]). 

conquer([] , []) . 

qs = dcsolve, 

divide ( [X I Xs] , [X] , Littles, Bigs) +­

part (X, Xs, Littles, Bigs). 

merge ( [X] , Ls, Bs, Ys) +-

app (Ls, [XIBs], Ys). 
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It is easy to check that P satisfies the conditions of the presented 
proof scheme for DC, and thus we can directly conclude that QUICKSORT 
is left terminating, and that for a list s, all LD-derivations of QUICKSORT 
U { +- qs(s, t)} are finite. (To be more precise, we obtain QUICKSORT from 
the above program by unfolding in the sense of Tamaki and Sato (1984).) 
5.2.3 A generate & test scheme 
Consider the following one-clause program GT, representing a generate and 
test schema; it is parametric w.r.t. the generate and test relations: 

gtsolve(X, Y) +­

generate(X, Y), 
test(Y). 

Let P be a program defining the relations generate and test. Clearly, 
GT extends P, and gtsolve :J generate, test. Assume that P is accept­
able w.r.t. I IP and fp defined as follows, where, as before, II II denotes a 
function assigning natural numbers to ground terms: 

lgenerate(x, y)lp = llxJI, 
ltest(y)Jp = llYll, 

fpl{test,generate} [test(Y)] 

U {generate(x, y) J llxll ;::: llYll}. 

Here for a Herbrand interpretation f and a set of relations R, we denote 
by flR the restriction off to the relations belonging to R. 

We observe the following: 

• the program GT is trivially semi-recurrent w.r.t. any level mapping. 
In fact, the only clause of GT is non-recursive. 

• Define I lar and fer as follows: 

lgtsolve(x, y)lcr = Jlxll, 

fer = fp U (gtsolve(x, y)]. 

Assumption 3 of Theorem 5.7 is satisfied by I IP, I lar and Icr, as 
the following weak proof outline shows: 

gtsolve(x, y) +- {llxll} 

generate(x, y), {llxl J} 

{llxll 2 llYll} 

test(y). {llylJ} 
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By Theorem 5.7 and Lemma 5.4 we conclude that GT UP is acceptable 
w.r.t. I I and IcT, where 

{ 
IAlcT if rel(A) = gtsolve, IAI = 
IAIP otherwise. 

Moreover, we obtain that a goal +- gtsolve(x, y) is bounded if 
gtsolve(x, y) is rigid, so in particular ifx is ground. Thus we have obtained 
a modular proof scheme for generate and test programs. 

As a direct application, consider the program SLOWSORT = GT U P, ob­
tained by putting 

and 

ss gtsolve, 

generate _ perm, 

test _ ordered, 

P = PERMUTATION U ORDERED, 

where ORDERED is defined by 

ordered(Xs) +-

Xs is a ::;-ordered list of natural numbers. 

ordered ( [] ) . 
ordered( [X]) . 
ordered( [X, Y I Xs]) +- X :::; Y, ordered( [YI Xs]). 

ORDERED is clearly recurrent w.r.t. the level mapping I ordered(ys) I 
lysl, so acceptable w.r.t. I I and [ordered(XS)]. By Theorem 5.6 

PERMUTATION U ORDERED is acceptable w.r.t. I I defined by 

lperm(xs, ys)lp jxsl, 

jordered(ys)lp lysj, 

and the model [ordered(XS)] U IPERM· 

Thus we can directly conclude that SLOWSORT is left terminating and 
that for a list s, all LD-derivations of SLOWSORT U { +- ss(s, t)} are finite. 

5.2.4 A relational fold program 

Consider the following program FOLD which implements a relational equiv­
alent of the higher-order combinator fold-left of functional programming. 
The program FOLD is parametric w.r.t. relation op. We assume that op 
is the relational equivalent of a binary operator op, in the sense that 
op(x,y,z) holds iff z = (x op y). 

fold (X, [Yi, Yn] , Z) +-

z = ( . . . ( (X op Yi) op Y2) ... op Yn) 



224 Krzysztof R. Apt and Dino Pedreschi 

fold(X, [Y I Ys], Z) +-
op(X, Y, V), fold(V, Ys, Z). 

fold(X, [ ] , X). 

Let OP be a program defining the relation op, such that FOLD extends 
OP (hence: fold :::J op.) Assume that OP is acceptable w.r.t. I loP and fop 
satisfying the following properties: 

lop(x, y, z) lop = f(x) + g(y) 

fopl{op} = {op(x,y,z) I f(x) + g(y) 2:: f(z)}, 

where f , g denote some functions assigning natural numbers to ground 
terms. 

We observe the following: 

• the program FOLD is trivially recurrent w.r.t. I IFOLD defined by 

lfold(x,ys,z)IFOLD = lysl. 

By Lemma 3.3 FOLD is acceptable w.r.t. I IFoLD and fpoLD = fop U 
[fold(x, ys, z)). 

• Define a function 11 11 assigning natural numbers to ground terms 
by recursion as follows: 

ll[ylys]ll = g(y) + jjysjj, 
l!xl I 0 otherwise. 

Assumption 3 of Theorem 5.8 is satisfied by putting 

l!fold(x,ys,z)llFoLD = f(x) + l!ysl!, 

and using !FOLD defined before. Indeed, the weak proof outline for 
the non-recursive clause of FOLD is obvious and for the recursive clause 
we have the following weak proof outline: 

fold(x, [yjys),z) +-

op(x, y, v), 

{ f (x) + g(y) ;::: f (v)} 

fold(v, ys, z). 

{f(x) + g(y) + l!ysl!} 

{f(x) + g(y)} 

{f(v) + l!ysl!}. 

By Theorem 5.8 we conclude that FOLD U OP is acceptable. Moreover, 
we obtain that a goal 

+--- fold(x, ys, z) 

is bounded ifx is bounded w.r.t. f, and ys is a list of terms each of which is 
bounded w.r.t. g. Thus we have obtained a modular proof scheme for the 
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parametric program FOLD. Notice that with the above choice of the level 

mappings we cannot apply here Theorem 5.7, since I !FOLD is unrelated to 

I lop, whereas 11 llFoLD does not need to decrease in recursive calls. 

As a direct application, consider the program SUMLIST = FOLD U OP, 

obtained by putting OP = SUM, where SUM is defined as in Section 2.3, and 

op= sum. 

It is easy to check that OP satisfies the conditions of the presented proof 

scheme for FOLD, by putting: 

f(x) = 0, 

g(x) = size(x). 

Thus we can directly conclude that SUMLIST is acceptable, and that, for 

a ground ys, all LD-derivations of a goal ~ fold(x, ys, z) w.r.t. SUMLIST 

are finite. Note that the goal ~ fold(O, ys, z) computes the sum of the 

elements of the list ys. 

5.2.5 The MAP program revisited 

Reconsider the program MAP: 

map ( [X1, ... , Xn] , [Y1, ... , Yn] ) ~ 

p(Xi, Yi) holds for i E [1,n]. 

map([XIXs], [YIYs]) ~ 
p(X, Y), map(Xs, Ys). 

map([], []). 

Relax the assumptions made in Section 4.4 on P by assuming that P 

is acceptable w.r.t. \ \P defined as in Section 4.4, and any model I of P. 

It is immediate to observe that the proof outlines of Section 4.4 remain 

valid with the new assumptions. Hence, by Theorem 5.8, we conclude that 

MAP UP is acceptable; moreover, we obtain the same class of bounded goals 

as in Section 4.4. Again, we cannot apply here Theorem 5.7, since the level 

mappings for map and p are unrelated. 

5.2.6 A map coloring program 

Finally, consider a jewel of PROLOG - the following MAP _COLOR program 

from Sterling and Shapiro (1986, page 212) which generates a coloring of 

a map in such a way that no two neighbors have the same color. Below we 

call such a coloring correct. The map is represented as a list of regions and 

colors as a list of available colors. In turn, each region is determined by its 

name, color and the colors of its neighbors, so it is represented as a term 

region(name, color, neighbors), where neighbors is a list of colors of 

the neighboring regions. 

color..lllap(Map, Colors) ~ 
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Map is correctly colored using Colors. 

color..map( [Region I Regions] , Colors) +­
color_region(Region, Colors), 
color..map(Regions, Colors). 

color..map([], Colors). 

col or _region (Region, Col ors) +-
Region and its neighbors are correctly colored using Colors. 

color_region(region(Name, Color, Neighbors), Colors) +­
select(Color, Colors, Colors1), 
subset(Neighbors, Colors1). 

augmented by the SELECT program. 

augmented by the SUBSET program. 

Denote by CM the program consisting of the two clauses defining the 
relation color ..map, and by CR the program consisting of the clause defining 
the relation color_region. Clearly, CM extends CR, and CR extends SELECT 
and SUBSET. Moreover, color..map :::J color..region :::J select, subset in 
the program MAP_COLOR =CM U CR U SELECT U SUBSET. 

First we deal with the program CR U SELECT U SUBSET. To this end 
Theorems 5.6 and 5. 7 will be of help. Recall that SELECT is recurrent 
w.r.t. jselect(x, xs, ys)I = jxsj, and that SUBSET is recurrent w.r.t. 
jsubset(xs, ys)I = jxsl + fysj and jmember(x, xs)j = jxsj. Observe the 
following: 

• the program CR is trivially semi-recurrent w.r.t. any level mapping. 
• The Herbrand interpretation Is= {select(x,xs,ys) I fxsl ;:::: jysj} 

is a model of SELECT, as the following proof outlines show: 

{I+ jxsl ;:::: jxsj} 

select(x, [xjxs],xs). 

{I+ lxsj ;:::: 1 + jysj} 

select(x, [yjxs], [yjys]) +-

select(x, xs, ys). 

{fxsl;:::: jysj}. 

Consequently, by Lemma 3.3 and Theorem 5.6 SELECT U SUBSET is 
semi-acceptable w.r.t. I I and Is U [subset(Xs, Ys)) U [member(X, Xs)]. 
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• The programs CR and SELECT U SUBSET satisfy assumption 3 of The­
orem 5.7 by putting 

IcR =Is U [color_region(R, Cs)] U [subset(Xs, Ys)] U [member(X, Xs)] 

and extending I I as follows: 

jcolor_region(region(n, c,ns), cs)i = jnsl + lcsl, 
jcolor_region(x, cs)I 0 if x :f. region(n,c,ns). 

The associated weak proof outline follows: 

color_region(region(n, c, ns), cs) +- {Ins I+ icsi} 

select(c,cs,c1s), {lcsl} 

{icsl ?: lc1sl} 

subset(ns, c1s).{lnsl + jc1sl}. 

Therefore, by Theorem 5.7, the program CR U SELECT U SUBSET is 
semi-acceptable w.r.t. I I and lcR· 

Now we can deal with the program MAP_CQLOR. For this purpose Theo­
rem 5.8 will be of use. Observe the following: 

• The program CM is trivially recurrent w.r.t. lcolor..map(rs, cs)I = 
lrsl. 

• Define a function 11 11 from lists of regions to natural numbers by 
induction as follows: 

ll[region(n, c,ns)irs]ll lnsl + llrsll, 
ll[xlrs]ll llrsll if x :f. region(n, c,ns), 

llxll = 0, otherwise. 

The programs CM and CR U SELECT U SUBSET satisfy assumption 3 of 
Theorem 5.8 by putting 

IcM = IcR U [color..map(Rs, Cs)], 

licolor..map(rs, cs)llcM = llrsli + lcsi. 

Two weak proof outlines covering all ground instances of the recursive 
clause of color..map follow. We assume that x -:f. region(n, c,ns). 

color..map( [region(n, c, ns) lrs], cs) 

color_region(region(n, c,ns), cs), 

col or ..map( rs, cs). 

+- {lnsl + llrsll + lcsi} 

{Ins!+ icsl} 

{llrsll + lcsl} 
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col or ....map([x\rs], cs) 

col or ..region( x, cs), 

color...map(rs, cs). 

<-- {\\rs\\ + \cs\} 

{[[rs\I + \csJ}. 

Consequently, by Theorem 5.8, we conclude that the program 
MAP _COLOR = CM U CR U SELECT U SUBSET is semi-acceptable. Moreover, 
we obtain that a goal <-- color...map(rs, cs) is bounded if cs is a list and 
rs is a list of regions [region(n1, c1, ns1), ... , region(nk, ck, nsk)], where 
each nsi ( i E [ 1, k]) is a list. Thus, MAP _CO LOR terminates for the desired 
class of goals. 
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