
4
Modular Termination Proofs for Logic and

Pure PROLOG Programs

Krzysztof R. Apt

CW! and University of Amsterdam

Dino Pedreschi

Universita di Pisa

Abstract

We provide a uniform and simplified presentation of the methods

of Bezem (1993) (first published as (Bezem 1989)) and of Apt and

Pedreschi (1993) (first published as (Apt and Pedreschi 1990)) for

proving termination of logic and PRO LOG programs. Then we show

how these methods can be refined so that they can be used in a

modular way.

1 Introduction
1.1 Motivation

The theory of logic programming ensures us that SLD-resolution is a sound

and complete procedure for executing logic programs. As a consequence,

given a program P, every SLD-tree for a goal G is a complete search space

for finding an SLD-refutation of G. In the actual implementations of logic

programming, the critical choice is that of a tree-searching algorithm. Two

basic tree-search strategies are: the breadth-first search which explores

the tree by levels, and the depth-first search which explores the tree by

branches. The former is a complete strategy, in the sense that it finds a

success node if one exists, whereas the latter is incomplete, since success

nodes can be missed if an infinite branch is explored first.

However, for efficiency reasons most implementations of logic program­

ming adopt the depth-first strategy; in the case of PROLOG additionally

a fixed selection rule is adopted. This "destroys" the completeness results

linking the declarative and operational semantics of logic programming and

makes it difficult to use the basic theory of logic programming for reasoning

about programs.
These complications motivate research on methods for proving termina­

tion oflogic programs, and in particular the approach ofBezem (1993), who

proposed a method for proving termination w.r.t. all selection rules, and

184 Krzysztof R. Apt and Dino Pedreschi

the approach of Apt and Pedreschi (1993), who refined Bezem's method to
the leftmost selection rule of PROLOG. (For a discussion of related work
the reader is referred to these two papers.)

The aim of the present paper is twofold. First, we provide a uniform and
simplified presentation of these two methods, which shows that the method
of Apt and Pedreschi for dealing with pure PROLOG programs is a natural
extension of Bezem's method for dealing with logic programs. Secondly,
we provide an extension of both methods, which supports a compositional
methodology for combining termination proofs of separate programs to ob­
tain proofs of larger programs. A number of applications are presented to
substantiate the effectiveness of these modular methods in breaking down
termination proofs into smaller and simpler ones, and their ability to deal
with program schemes. In particular, simple termination proofs are exhib­
ited for a divide and conquer scheme, a generate and test scheme, and two
schemes borrowed from functional programming: a map scheme and a fold
scheme.

The paper is organized as follows. In Section 2 we present the method
due to Bezem (1993) for proving termination of logic programs, and in
Section 3 its modification due to Apt and Pedreschi (1993) for proving
termination of pure PROLOG programs. Then in Sections 4 and 5 we
refine these methods so that they can be used in a modular way.

1.2 Preliminaries

Throughout this paper we use the standard notation of Lloyd (1987) and
Apt (1990). In particular, for a logic program P (or simply a program) we
denote the Herbrand Base of P by Bp and the least Herbrand model of
P by Mp. Also, we use PROLOG's convention identifying, in the context
of a program, each string starting with a capital letter with a variable,
reserving other strings for the names of constants, terms or relations. So,
for example X s stands for a variable whereas xs stands for a term.

In the programs we use the usual list notation. The constant [] denotes
the empty list and [. I .] is a binary function which, given a term x
and a list xs, produces a new list [x I xs] with head x and tail xs. By
convention, identifiers ending with "s", like xs, will range over lists. The
standard notation [x 1, .•. , Xn], for n 2: 0, is used as an abbreviation of
[x1 I[.. · [xnl[]] ...]].

Throughout the paper we consider SLD-resolution and LD-resolution.
The latter is obtained from SLD-resolution by using PROLOG's first-left
selection rule. The concepts of LD-derivation, LD-refutation, LD-tree, etc.
are defined in the usual way. By "pure PROLOG" we mean in this paper
LD-resolution combined with the depth-first search in LD-trees.

By choosing variables of the input clauses and the used mgu's in a
fixed way we can assume that for every program P and goal G there exists
exactly one LD-tree for PU {G}.

Modular termination proofs 185

In what follows we shall use the multiset ordering. A multiset, some­
times called bag, is an unordered sequence. 'V-!e denote a multiset consisting
of elements ai, .. ., an by bag (a1, ·:.,an)· Given a (non-reflexive) ordering
< on a set W the multiset ordering over (W, <) is an ordering on finite
multisets of th~ set W. It is defined as the transitive closure of the relation
in which X is smaller than Y if X can be obtained from Y by replacing
an element a of y by a finite (possibly zero) number of elements each of
which is smaller than a in the ordering<.

In symbols, first we define the relation -< by

X -< y iff x = y - {a} U Z for some a E Y and Z such that b < a for b E z,

where X y z are finite multisets of elements of W, and then define the
multiset ~rdering -<m over (W, <) as the transitive closure of the relation

-<.
It is well-known (see e.g. Dershowitz (1987)) that multiset ordering over

a well-founded ordering is again well-founded. In particular, the multiset
ordering over the set of natural numbers with their usual ordering is well-

founded.

2 Termination
2.1 Motivation
Consider the following simple program LIST:

list (Xs) ~ Xs is a list.

list([H I Ts]) ~ list(Ts).

list([]).

It is easy to see that

• for a list t the goal ~ list(t) successfully terminates,

• for a ground term t which is not a list, the goal <- list(t) finitely
fails.

Note that in the second statement we required that t is ground. Can
we drop this restriction? The answer is "No." Indeed, consider the goal
,_ list (X) with a variable X.

As X unifies with [H I Ts], we see that using the first clause
+--list (Ts) is a resolvent of ,_list (X). By repeating this procedure
we obtain an infinite LD-derivation which starts with <-list (X). There
is an easy fix to this problem: it suffices to reorder the clauses of the pro­
gram. Then the goal ~list (X) terminates with the c.a.s. {X/[]}. So
termination depends on the clause ordering.

Another, more interesting, possibility is to make the notion of termi­
nation independent of the clause ordering. According to this definition, a
goal terminates if all derivations starting with it are finite. Then the goal

186 Krzysztof R. Apt and Dino Pedreschi

;.- list (X) does not terminate in this sense. Once the clause ordering
becomes irrelevant, it is possible to adopt the .view of logic programming
theory and consider the program as the set (and not sequence) of clauses.

It is useful to note a simple consequence of this notion of termination.
When a goal terminates in this strong sense, the corresponding computa­
tion tree is finite. Thus the depth-first search in this tree terminates, and
consequently it is possible to compute by means of PROLOG all c.a.s.'s of
the goal under consideration.

In what follows we shall study this stronger notion of termination. Our
aim will be to identify for a given pure PROLOG program those goals
which terminate in the above sense. Clearly, our discussion concerning
the program LIST and the goal <-- list (X) is equally applicable to other
programs.

2.2 Terminating programs
We begin our study of termination by analyzing termination in a very
strong sense, namely w.r.t. all selection rules. This notion of termination
is more applicable to logic programs than to PRO LOG programs. However,
it is easier to handle and it will provide us with a useful basis from which
a transition to the case of pure PROLOG programs will be quite natural.

In this section we study the terminating programs in the following sense.
Definition 2.1 A program is called terminating if all its SLD-derivations
starting with a ground goal are finite.

Hence, terminating programs have the property that the SLD-trees of
ground goals are finite, and any search procedure in such trees will always
terminate, independently from the adopted selection rule. When studying
PROLOG programs, one is actually interested in proving termination of
a given program not only for all ground goals but also for a class of non­
ground goals constituting the intended queries. The method of proving
termination considered here will allow us to identify for each program such a
class of non-ground goals. As we shall see below, many PRO LOG programs,
including SUM, LIST and APPEND are terminating.

To prove that a program is terminating the following concepts due to
Bezem (1993) and Cavedon (1989) will play a crucial role.
Definition 2.2

• A level mapping for a program P is a function I I: B p _..., N of
ground atoms to natural numbers. For A E Bp, IAI is the level of A.

• A clause of P is called recurrent w. r. t. a level mapping I I, if for
every ground instance A<-- A, B, B of it

IAI >IBI.
• A program P is called recurrent w.r.t. a level mapping I I, if all its

Modular termination proofs 187

clauses are. P is called recurrent if it is recurrent w. r. t. some level
mapping.

First, following Bezem (1993), let us "lift" the concept of level mapping
to non-ground atoms.

Definition 2.3

• An atom A is called bounded w.r.t. a level mapping I I, if I I is
bounded on the set [A] of ground instances of A. For A bounded
w.r.t. I I, we define IAI, the level of A w.r.t. I j, as the maximum
I I takes on [A].

• A goal is called bounded w. r. t. a level mapping I I, if all its atoms
are. For G = +-A1, ... ,An bounded w.r.t. I I, we define IGI, the
level of G w.r.t. I I, as the multiset bag (IA1I, ... , IAnl). If IAil::; k
for i E [l, n], we say that G is bounded by k.

The concept of boundedness is crucial when considering termination, as
the following lemma shows. Recall that -<m stands for the multiset ordering
defined in the preliminaries.

Lemma 2.4 Let P be a program that is recurrent w. r. t. a level mapping
I I · Let G 1 be a goal that is bounded w. r. t. I I and let G2 be an SLD­
resolvent of 0 1 from P. Then

• G2 is bounded w.r.t. I I,
• IG2I -<m IG1I.

Proof. An SLD-resolvent of a goal and a clause is obtained by means of
the following three operations:

• instantiation of the goal,

• instantiation of the clause,

• replacement of an atom, say H, of a goal by the body of a clause
whose head is H.

Thus the lemma is an immediate consequence of the fact that an instance
of a recurrent clause w.r.t. I I is recurrent w.r.t. I I, and the following
claims in which we refer to the given level mapping. I
Claim 1 An instance G' of a bounded goal G is bounded and IG'I ::Sm IGI.
Proof. It suffices to note that an instance A' of a bounded atom A is
bounded and IA'I ::; IAI. I
Claim 2 For every recurrent clause H +- B, if +- H is bounded, then
+- B is bounded and I +-BI -<m I+- HI.
Proof. Consider an atom C occurring in a ground instance of +-B. Then
it occurs in the body of a ground instance of H +- B , say HB +- BB. By
the recurrence of H +- B we get JCI < IHBI, so JCI < IHI. This proves the
claim. I

188 Krzysztof R. Apt and Dino Pedreschi

Claim 3 For every recurrent clause H +- B and sequences of atoms
A and C, if +-A, H, C is bounded, then +-A, B, C is bounded and
I +-A,B, Cl -<m I +-A,H, q.
Proof. Immediate by Claim 2 and the definition of the multiset ordering.
I
The following conclusions are now immediate.
Corollary 2.5 Let P be a recurrent program and G a bounded goal. Then
all SLD-derivations of PU { G} are finite.
Proof. The multiset ordering is well-founded. I
Corollary 2.6 Every recurrent program is terminating.
Proof. Every ground goal is bounded. I
These corollaries can be easily applied to various PRO LOG programs. The
level mapping can be usually defined as a simple function of the terms of
the ground atom. The following natural concept, due to Ullman and Van
Gelder (1988), will often be useful.

Define by induction a function I I, called listsize, which assigns natural
numbers to ground terms:

l[xlxs]I = lxsl + 1,

lf(x1,. . .,xn)I= Oiff-1 [.I.]·

Note that for a list xs, lxsl equals its length.
For goals with one atom it is often easy to establish boundedness by

proving a stronger property.

Definition 2. 7 Let I I be a level mapping. An atom A is called rigid
w. r. t. I I if I I is constant on the set [A] of ground instances of A.

Obviously, rigid atoms are bounded.
Example 1
(i) Consider the program LIST. Define

I list (t) I = It I .
It is straightforward to see that LIST is recurrent w.r.t. I I and that for a
list t, the atom list(t) is rigid w.r.t. J I· By Corollary 2.6 we conclude
that LIST is terminating and by Corollary 2.5 we conclude that for a list
t, all SLD-derivations of LIST U { +- list (t)} are finite.

(ii) Consider now the program MEMBER:

member(Element, List) +- Element is an element of the list List.

member(X, [Y Xs]) +- member(X, Xs).
member(X, [X I Xs]).

Modular termination proofs 189

Using the level mapping

lmember(x, y) I = lyl

we conclude by Corollary 2.6 that MEMBER is terminating and by Corollary
2.5 that for a list t, all SLD-derivations of MEMBER U { +-- member(s, t)}
are finite.

We now prove the converse of Corollary 2.6. With a goal G we associate
the set of SLD-derivations of PU {G}. These SLD-derivations can be
structured as a tree which we call ah S-tree for PU { G}. In this tree the
resolvents of a goal w.r.t. all selection rules and all input clauses constitute
its direct descendants.

Lemma 2.8 An S-tree for P U { G} is finite iff all SLD-derivations of
P U { G} are finite.

Proof. By the fact that we fixed the choice of mgu's and the fact that
logic programs are finite, the S-trees are finitely branching. The claim now
follows by Konig's lemma (Konig 1927). I

This lemma allows us to concentrate on S-trees. For a program P and a
goal G, we denote by nodesp(G) the number of nodes in the S-tree for
Pu {G}.

Lemma 2.9 Let P be a program and G a goal such that the S-tree for
P U { G} is finite. Then

(i) for all substitutions B, nodesp(GB) :::; nodesp(G),

(ii) for all atoms A of G, nodes p (+-- A) ::::; nodes p (G),

(iii) for all non-root nodes H in the S-tree for PU {G}, nodesp(H) <
nodesp(G).

Proof
(i) By the lifting lemma (see (Lloyd 1987)) we conclude that to every SLD­
derivation of PU {GB} with input clauses C 1, C2, ... , there corresponds an
SLD-derivation of PU { G} with variants of input clauses C1, C2 , ... , of the
same or larger length. This implies the claim.
(ii), (iii) Immediate by the definition. I

We can now prove the desired result.

Theorem 2.10 Let P be a terminating program. Then for some level
mapping I I

(i) P is recurrent w. r. t. I I,
(ii) for every goal G, G is bounded w.r.t I I iff all SLD-derivations of

P U { G} are finite.

Proof. Define the level mapping by putting for A E Bp

190 Krzysztof R. Apt and Dino Pedreschi

IAI = nodesp (+-A).

Since P is terminating, by Lemma 2.8 this level mapping is well defined.
First we prove one implication of (ii).

(iil) Consider a goal G such that all SLD-derivations of PU { G} are finite.
We prove that G is bounded by nodesp(G) w.r.t. I I·

To this end take a ground instance <--A1, ... , An of G and i E [1, n].
We have

nodesp(G)

> {Lemma 2.9 (i)}

nodesp(+-A1, ... , An)

> {Lemma 2.9 (ii)}

nodesp (+-Ai)

{definition of I I}
I Ail,

which proves the claim.

(i) We prove that P is recurrent w.r.t. I I· Take a clause A+- B1, ... , Bn
in P and its ground instance Ae +- B1B, .. . , BnB· We need to show that

IABI > IBiBI for i E [l, n].

We have ABB = AB, so AB and A unify. Letµ = mgu(AB, A). Then
e = µ6 for some 6. By the definition of SLD-resolution, +- B1µ, .. ., Bnµ
is an SLD-resolvent of +- AB.

Then for i E [l, n]

IABI
{definition of I I}

nodes p (+- AB)

> {Lemma 2.9 (iii), +- B1µ, .. . , Bnµ is a resolvent of +-A&}
nodesp (+- B1µ, .. . , Bnµ)

> {part (iil), with G := +- B1µ, .. . , Bnµ and Ai :=Bi&}

IBiBI.
(ii2) Consider a goal G which is bounded w.r.t. I I· Then by (i) and
Corollary 2.5 all SLD-derivations of P U { G} are finite. I
Corollary 2.11 A program is terminating iff it is recurrent.

Proof. By Corollary 2.6 and Theorem 2.10. I

2.3 Examples

2.3.1 Subset

Modular termination proofs

Consider the following program SUBSET:

subset (Xs, Ys) +-
each element of the list Xs is a member of the list Ys.

subset ([X I Xs] , Ys) +-- member(X, Ys) , subset (Xs, Ys).
subset ([], Ys.

augmented by the MEMBER program.

191

To prove that SUBSET is recurrent we use the following level mapping:

lmember(x, xs)I

lsubset(xs, ys)I

By Corollary 2.6 SUBSET is terminating and consequently by Corol­

lary 2.5 if xs and ys are lists, all SLD-derivations of SUBSET U
{ +-subset(xs,ys)} are finite.

In general, various choices for the level mapping exist and for each choice
different conclusions can be drawn. The following three simple examples

illustrate this point.

2.3.2 Append

Consider the program APPEND:

app (Xs, Ys, Zs) +-
Zs is the result of concatenating the lists Xs and Ys.

app ([X I Xs] , Ys, [X I Zs]) +-- app (Xs, Ys, Zs) .
app ([] , Ys, Ys) .

It is easy to check that APPEND is recurrent w.r.t. the level mapping
lapp(xs, ys, zs) I = lxsl and also w.r.t. the level mapping lapp(xs,

ys , zs) I = I zs I . In each case we get different class of goals which are

bounded. The level mapping

lapp(xs, ys, zs) I = min(lxsl, lzsl)

combines the advantages of both of them. APPEND is easily seen to be recur­
rent w.r.t. this level mapping and if xs is a list or zs is a list, app (xs, ys,

zs) is bounded (though not rigid). By Corollary 2.6 APPEND is terminating

and by Corollary 2.5 if xs is a list or zs is a list, all SLD-derivations of

APPEND U { +-- app(xs, ys, zs)} are finite.

2.3.3 Select

Consider the program SELECT:

select (X, Xs, Zs) +--

192 Krzysztof R. Apt and Dino Pedreschi

Zs is the result of deleting one occurrence of X from the list Xs.
select(X, [X 1 Xs], Xs).
select (X, [Y I Xs] , [Y I Zs]) +- select (X, Xs, Zs) .
As in the case of the APPEND program, it is most advantageous to use the level mapping

lselect(xs, ys, zs) I = min(lysl, lzsl).
Then SELECT is recurrent w.r.t I I and if ys is a list or zs is a list, all SLD-derivations of SELECT U { +- select(xs, ys, zs)} are finite.

2.3.4 Sum
Finally, consider the following program SUM:

sum(X, Y, Z) -
X, Y, Z are natural numbers such that Z is the sum of X and Y.

sum(X, s(Y), s(Z)) +- sum(X, Y, Z).
sum(X, 0, X).

Again, it is most advantageous to use here the level mapping
lsum(x, y, z) I = min(size(y), size(z)),

where for a term t, size(t) denotes the number of symbols in t.
Then SUM is recurrent w.r.t. I I and for a ground y or z, sum(x, y, z) is bounded w.r.t. I I· By Corollary 2.6 SUM is terminating and by Corollary

2.5 for a ground y or z, all SLD-derivations of SUM U { - sum(x, y, z)} are finite.

3 Left termination
3.1 Motivation
Because of Corollary 2.11, recurrent programs and bounded goals are too restrictive concepts to deal with PROLOG programs, as a larger class of programs and goals is terminating when adopting a specific selection rule, e.g. PROLOG selection rule.
Example 2
(i) First we consider a terminating program P such that for some goal G all LD-derivations of P U { G} are finite, whereas some SLD-derivation of P U { G} is infinite.

Examine the following program EVEN:

even(X) -
X is an even natural number.

even (s (s (X))) - even (X) .
even(O).

lte(X, Y) +-

Modular termination proofs 193

X, Y are natural numbers such that X is smaller than or equal to Y.

lte((s(X), s(Y)) +- lte(X, Y).
lte(O, Y).

EVEN is recurrent with
ieven(x)I = size(x)

and
llte(x, y)I = min(size(x),size(y))

so by Corollary 2.6 it is terminating. Now consider the goal:

G = +- lte(X, s 100 (o)), even(X)

which is supposed to compute the even numbers not exceeding 100. One

can show that all LD-derivations of G are finite, whereas there exists an

infinite SLD-derivation when the rightmost selection rule is used. As a

consequence of Corollary 2.5 the goal G is not bounded, although it can be

evaluated by a finite PROLOG computation.
This example is a contrived instance of the generate-and-test program­

ming technique. This technique involves two procedures, one which gener­

ates the set of candidates, and another which tests whether these candidates

are solutions to the problem. Actually, most PROLOG programs that are

implementations of the "generate-and-test" technique are not recurrent, as

they heavily depend on the left-to-right order of evaluation, like the above

goal.

(ii) Next, we consider a program P which is not terminating but such that

all LD-derivations starting with a ground goal are finite. The following

NAIVE REVERSE program is often used as a benchmark for PROLOG ap­

plications:

reverse(Xs, Ys) +- Ys is a reverse of the list Xs.

reverse ([X I Xs] , Ys) +-
reverse (Xs, Zs),
app (Zs, [X] , Ys) .

reverse ([] , []) .

augmented by the APPEND program.

It is easy to check that the ground goal +-reverse (xs, ys), for a list

xs with at least two elements and an arbitrary list ys has an infinite SLD­

derivation, obtained by using the selection rule which selects the leftmost

atom at the first two steps, and the second leftmost atom afterwards. Thus

reverse is not terminating. However, one can show that all LD-derivations

starting with a goal +-reverse Cs, y) for s ground (or s list) are finite.

194 Krzysztof R. Apt and Dino Pedreschi

(iii) More generally, consider the following program DC, representing a (bi­
nary) divide and conquer schema; it is parametric w.r.t. the relations base,
conquer, divide and merge.

de solve ex, Y) <­

base ex),
conquer(X, Y).

de solve ex, Y) <-

divide (X, XO, X1, X2),
dcsolve(Xi, Yi),
dcsolve(X2, Y2),
merge(XO, Yi, Y2, Y).

Many programs naturally fit into this schema, or its generalization to non
fixed arity of the relations divide/merge. Unfortunately, DC is not recur­
rent: it suffices to take a ground instance of the recursive clause with X=a,
Xi=a, Y=b, Yi=b, and observe that the atom dcsolve(a, b) occurs both
in the head and in the body of such a clause. In this example, the leftmost
selection rule is needed to guarantee that the input data is divided into
subcomponents before recurring on such subcomponents.

To cope with these difficulties we first modify the definition of a termi­
nating program.

3.2 Left terminating programs

Definition 3.1 A program is called left terminating if all its LD­
derivations starting with a ground goal are finite.

This notion of termination is clearly more appropriate for the study of
PROLOG programs than that of a terminating program. To prove that a
program is left terminating, and to characterize the goals that terminate
w.r.t. such a program, we introduce the following concepts due to Apt and
Pedreschi (1993).

Definition 3.2 Let P be a program, I I a level mapping for P and I a
(not necessarily Herbrand) interpretation of P.

• A clause of P is called acceptable w.r.t. I I and I if I is its model
and for every ground instance A<-- A, B, B of it such that I f= A

IAI > IBI.
In other words, for every ground instance A<-- B 1 , ... , Bn of the
clause

IAI > IBil foriE [l,n],

where
n = min({n} U {i E [l,n] I I~ Bi}).

Modular termination proofs 195

• A program P is called acceptable w.r.t. I I and I if all its clauses are.
P is called acceptable if it is acceptable w. r. t. some level mapping and
an interpretation of P.

The use of the premise I p A forms the only difference between the
concepts of recurrence and acceptability. Intuitively, this premise expresses
the fact that when in the evaluation of the goal ..-- A, B, B using the left­
most selection rule the atom B is reached, the atoms A are already refuted.
Consequently, by the soundness of the LD-resolution, these atoms are all
true in J.

Alternatively, we may define n by

n = { n if! F Bi /\ ... /\ Bn,

i if! p Bi/\···/\ Bi-1 and!~ Bi/\ ··· /\Bi.

Thus, given a level mapping I I for P and an interpretation I of P, in
the definition of acceptability w.r.t. I I and I, for every ground instance
A..-- B 1, ... , Bn of a clause in P, we only require that the level of A is higher
than the level of Bi's in a certain prefix of B1 , ... , Bn. Which Bi's are taken
into account is determined by the model I. If I I= B1 /\ · · · /\ Bn then all
of them are considered and otherwise only those whose index is 5 n, where
n is the least index i for which I ~ Bi.

The following observation shows that the notion of acceptability gener­
alizes that of recurrence.

Lemma 3.3 A program is recurrent w.r.t. I I iff it is acceptable w.r.t.
I I and Bp.

Our aim is to prove that the notions of acceptability and left termination
coincide. To this end we need the notion of boundedness. The concept of
a bounded goal used here differs from that introduced in Definition 2.3
in that it takes into account the interpretation I. This results in a more
complicated definition.

In what follows, assume that the maximum function max : 2"' ~ N U
{ oo} is defined as:

maxS =

0 ifs= 0,

n if S is finite and non-empty,

and n is the maximum of S,

oo if Sis infinite.

Then max S < oo iff the set S is finite.

196 Krzysztof R. Apt and Dino Pedre,schi

Definition 3.4 Let P be a program, I I a level mapping for P and I an
interpretation of P.

• With each goal G = +- A1, ... , An we associate n sets of natural
numbers defined as follows, for i E [1, n]:

IGI{ = {IA'il I <---A~, ... ,A~ is a ground instance ofG and

I I= A~ A···/\ A~_ 1 }.

• A goal G is called bounded w.r.t. I I and I if IGlf is finite, for i E
[1,n].

• For G = <----- A1 , ... , An bounded w. r. t. I I and I we define a multiset
IGl1 of natural numbers as follows:

IGl1 = bag (max IGI{, ... , max IGI~).

• For G bounded w.r.t. I I and I, and k?: 0, we say that G is bounded
byk (w.r.t.1 I andI)ifk?:hforhE IGlr·

Note that a goal G is bounded w.r.t. I I and Bp iff it is bounded w.r.t.
I in the sense of Definition 2.3.

Lemma 3.5 Let P be a program that is acceptable w. r. t. a level mapping
I I and an interpretation I. Let G1 be a goal that is bounded w.r.t. I I
and I, and let G2 be an LD-resolvent of G1 from P. Then

(i) G2 is bounded w. r. t. I I and I,

(ii) IG2l1 -<m IG1II·
Proof. It suffices to prove the following claims in which we refer to the
given level mapping and interpretation I. I
Claim 1 An instance G' of a bounded goal G = <----- A1 , ... , An is bounded
and IG'lr ~m IGlr.
Proof. It suffices to note that IG'I{ ~ IGI{ for i E [l, n]. I
Claim 2 For every acceptable clause A <----- B and sequence of atoms
C, if <-----A, C is bounded, then <----- B, C is bounded and I+- B, Cir -<m
l<---A,Cl1·

Proof. Let B = B1, ... , Bn and C = C1, ... , Cm, for n, m ?: 0. We first
prove the following facts.

Fact 1 For i E [I, n], I<----- B1, ... , Bn, C1, ... , Cml{ is finite, and

maxi+- B1, ... , Bn, C1, ... , Cml{ <maxi <-----A, C1, ... , Cm!{.

Proof. We have

Modular termination proofs

= {Definition 3.4 }

max{ I B~ I I +- B~, .. ., B~ is a ground instance of +- B

and I I= B~ /\ · .. /\ B:_i}

197

= {for some A', A' +- B~, .. ., B~ is a ground instance of A +- B}

max{IB~l I A'+- B~, .. . , B~ is a ground instance of A <--B

and I I= B~ /\ · · · /\ B~_ 1 }

< {Definition 3.2 and the fact that

Vx E S 3y E R : x < y implies max S < max R}

max{IA'l I A' is a ground instance of A}

= {Definition 3.4}

maxi +-A,C1, ... ,Cml{.

Fact 2 For j E [l, m], I +- B1, ... , Bn, C1,. .. , CmlJ+n is finite, and

maxi<-- B1, ... , Bn, C1, ... , CmlJ+n ~maxi +-A, C1, .. .,CmlJ+i·

Proof. We have

maxi+- B1, ... , Bn, C1, ... , CmlJ+n

{Definition 3.4}

max{ I Cj I I +- B~' ... ' B~' q' ... ' c;,.. is a ground instance of

+- B, C and I I= B~ /\ · · · /\ B~ /\ C~ /\ · · · /\ Cj_i}

< {for some A', A' +- B~, ... , B~ is a ground instance of A +- B,

I is a model of P, and S <:: R implies max S ~ max R}

max{ICj I I +-A'' c~' .. ., c;,.. is a ground instance of +-A, c
and I I= A' /\ C~ /\ .. · /\ Cj_i}

= {Definition 3.4}

maxi+- A, C1, .. ., CmlJ+i·

As a consequence of Facts 1 and 2 +- B, C is bounded and

bag(maxl +-B,q{,. .. ,maxl <--B,Cl~+m) -<m

bag(maxl +-A, Cl{, .. ., maxi +-A, q;;.,+l)

which establishes the claim. I
Corollary 3.6 Let P be an acceptable program and G a bounded goal.

Then all LD-derivations of PU { G} are finite.

Proof. The multiset ordering is well-founded. I
Corollary 3. 7 Every acceptable program is left terminating.

Proof. Every ground goal is bounded. I

198 Krzysztof R. Apt and Dino Pedreschi

We now prove the converse of Corollary 3. 7. To this end we proceed analo­
gously as in the case of terminating programs and analyze the size of finite
LD-trees. We need the following analogue of Lemma 2.9, where for a pro­
gram P and a goal G we now denote by nodes p (G) the number of nodes
in the LD-tree for PU { G}.
Lemma 3.8 Let P be a program and G a goal such that the LD-tree for
P U { G} is finite. Then

(i) for all substitutions e, nodesp(GB) s nodesp(G),
(ii) for all prefixes H of G, nodesp(H) S nodesp(G),

(iii) for all non-root nodes H in the LD-tree for P U { G},
nodesp(H) < nodesp(G).

Proof
(i) By the lifting lemma (see (Lloyd 1987)) we conclude that to every LD­
derivation of PU {Ge} with input clauses C1 , C2 , ... , there corresponds an
LD-derivation of PU {G} with variants of input clauses C1, C2, ... , of the
same or larger length. This implies the claim.

(ii) Consider a prefix H = +-Ai, ... , Ak of G = +-A1, ... , An (n :;::: k).
By an appropriate renaming of variables (formally justified by the variant
lemma (see (Apt 1990)) we can assume that all input clauses used in the
LD-tree for PU {H} have no variables in common with G. We can now
transform the LD-tree for PU {H} into an initial subtree of the LD-tree
for Pu{G} by replacing in it a node +- B by +- B, Ak+18, .. . , Ane, where
e is the composition of the mgu's used on the path from the root H to the
node +-B. This implies the claim.

(iii) Immediate by the definition. I

We can now demonstrate the desired result.

Theorem 3.9 Let P be a left terminating program. Then for some level
mapping I I and an interpretation I of P

(i) P is acceptable w.r.t. I I and I,
(ii) for every goal G, G is bounded w.r.t. I I and I iff all LD-derivations

of PU { G} are finite.

Proof. Define the level mapping by putting for A E B p

IAI = nodesp (+-A).

Since P is left terminating, this level mapping is well defined. Next, choose

I= {A E Bp I there is an LD-refutation of PU {+-A}}.

By the strong completeness of SLD-resolution, I = Mp, so I is a model of
P.

Modular termination proofs 199

First we prove one implication of (ii).

(iil) Consider a goal G such that all LO-derivations of P U { G} are finite.
We prove that G is bounded by nodesp(G) w.r.t. I I and I.

To this end take f. E Ul[G]l 1 . For some ground instance +-Ai, ... , An
of G and i E [l, n], where

n = min({n} u {i E [1,n] I I~ Ai}),

we have f.= !Ail· We now calculate

nodesp(G)

> {Lemma 3.8 (i)}

nodesp(+-Ai, ... , An)

> {Lemma 3.8 (ii)}
nodesp(+-A1, ... , An)

> {Lemma 3.8 (iii), noting that for j E [1, n - 1]

there is an LO-refutation of P U { +- Ai, ... , Aj}}

nodesp(+-Ai, ... , An)

> {Lemma 3.8 (ii)}

nodesp (+-Ai)

{definition of I I}
I Ail

= f..

(i) We now prove that P is acceptable w.r.t. I I and I. Take a clause
A+- B1, ... , Bn in P and its ground instance AB +- B1B, .. . , Bn8. We need
to show that

where
n= min({n} U {iE[l,n]II~BiB}).

We have ABB = AO, so AB and A unify. Let µ = mgu(AB, A). Then
B = µ8 for some 8. By the definition of LO-resolution, +- B1µ, .. . , Bnµ is
an LO-resolvent of +-AB.

Then for i E [1, n]

IABI
= {definition of I I}

nodesp (+-AB)

200 Krzysztof R. Apt and Dino Pedreschi

> {Lemma 3.8 (iii), <-Biµ, ... , Bnµ is a resolvent of +- AB}
nodesp (<-Biµ, ... , Bnµ)

> {part (iil), with G := <- Biµ, ... , Bnµ and Ai := BiB}
I Bi BI.

(ii2) Consider a goal G which is bounded w.r.t. I I and I. Then by (i) and
Corollary 3.6 all LD-derivations of PU { G} are finite. I
Corollary 3.10 A program is left terminating iff it is acceptable.
Proof. By Corollary 3. 7 and Theorem 3.9. I
3.3 Examples
The equivalence between the left terminating and acceptable programs pro­
vides us with a method of proving termination of PRO LOG programs. The
level mapping and the model used in the proof of Theorem 3.9 were quite
involved and relied on elaborate information about the program at hand,
which is usually not readily available. However, in practical situations much
simpler constructions suffice. We illustrate it by means of two examples.
In these we use the previously defined function listsize I J, which assigns
natural numbers to ground terms.

In the following, we present the proof of acceptability (w.r.t. a level map­
ping I ! and an interpretation I) of a given clause C = Ao +- A1, ... , An
by means of the following proof outline:

{Jo}

Ao <- {to}

A1, { ti}

{Ji}

An-1, {tn-1}

{fn-1}

An. {tn}

{Jn}

Here, ti and Ji, for i E [O, n] are integer expressions and first order formulas,
respectively, such that all ground instances of the following properties are
satisfied:

(1) ti = I Ail, for i E [O, n],
(2) Ji =:I I= Ai, for i E [O, n],
(3) Ji /\ · · · /\ Jn =? Jo,

Modular termination proofs 201

(4) For i E [l, n] : Ji /\ · · · /\ fi-1 ==> to > ti .
We omit {Ji} (resp. {ti}) in the proof outlines if fi =true (resp. ti = 0.)
It is immediate that a proof outline satisfying properties 1 to 4 correspond~
to the proofs that I is a model of the clause C, and that C is acceptable
w.r.t. I I and I. We found it convenient to use proof outlines to present
the proofs of acceptability, as most steps in these proofs are trivial and can
be omitted without loss of information.
3.3.l Permutation
Consider the following program PERMUTATION:

perm(Xs, Ys) +- Ys is a permutation of the list Xs.

perm(Xs, [X I Ys]) +-
app(Xls, [X I X2s], Xs),
app(Xls, X2s, Zs),
perm(Zs, Ys).

perm ([] , []) .

augmented by the APPEND program.
The intention is to invoke perm with its first argument instantiated.

The first clause takes care of a non-empty list xs. One should first split it
into two sublists xls and [x I x2s] and concatenate x1s and x2s to get
zs. If now ys is a permutation of zs, then [x I ys] is a permutation of
xs. The second clause states that the empty list is a permutation of itself.

Observe the following:

• PERMUTATION is not recurrent. Indeed, consider the SLD-derivation of
PERMUTATIONU {+-perm(xs, [x I ys])}withxs, x, ysground,in
whose second goal the middle atom app(xis, x2s, zs) is selected.
By repeatedly applying the recursive clause of APPEND we obtain an
infinite derivation. Thus PERMUTATION is not terminating and so by
Corollary 2.6 it is not recurrent.

• The Herbrand interpretation

JAPP {app(xs,ys,zs) I lxsl + Jys! = !zsJ}

is a model of the program APPEND. Indeed, JAPP is trivially a model
of the non-recursive clause of the app relation and the following proof
outline shows that I AP p is a model of the recursive clause:

{I + lxsl + lysl = 1 + lzsl}

app([xlxs], ys, [xlzs])

app(xs, ys,zs).

{!xsl + jysl = lzsl}

202 K rzysztof R. Apt and Dino Pedreschi

• The program PERMUTATION is acceptable w.r.t. the level mapping I
and the interpretation !PERM defined by

lxsl + 1, lperm(xs, ys)J

lapp(xs, ys,zs)I min (lxsl, lzsl),

!PERM = [perm(Xs, Ys)] u JAPP·

Recall that [A] for an atom A stands for the set of all ground instances
of A. We already noted in Example 1 that APPEND is recurrent w.r.t.
I I· The proof outline for the non-recursive clause of the perm re­
lation is obvious. For the recursive clause take the following proof
outline:

perm(xs, [xlys]) +-

app(x1s, [xlx2s],xs),

{lx1sl + 1 + lx2sl = lxsJ}

app(x1s, x2s, zs),

{Jx1sJ + Jx2sJ = lzsJ}

perm(zs, ys).

{lxsl+l}

{min(lx1sl, lxsl)}

{min(lx1sl, lzsl)}

{lzsl + 1}

Using Corollary 3.7 we conclude that PERMUTATION is acceptable. More­
over, we obtain that, for a list s, the atom permes, t) is rigid and
hence bounded. Consequently, by Corollary 3.6, all LD-derivations of
PERMUTATION U{ ..._ perm(s, t)} are finite.

3.3.2 Quicksort

Consider now the following program QUICKSORT:

qs exs, Ys) ..._ Ys is an ordered permutation of the list Xs.

qs([X I Xs], Ys) +-

partex, Xs, Littles, Bigs),
qseLittles, Ls),
qseBigs, Bs),
appeLs, [X I Bs], Ys).

qse[J' []).

parteX, [Y I Xs], [Y I Ls], Bs) +­

X > Y, parteX, Xs, Ls, Bs).
part ex, [Y I Xs], Ls, [Y I Bs]) +­

X ~ Y, parteX, Xs, Ls, Bs).
part ex' [] ' [] ' []) .

augmented by the APPEND program.

Modular termination proofs 203

According to this sorting procedure, using its first element X, a list is first partitioned in two sublists, one consisting of elements smaller than X, and the other consisting of elements larger or equal than X. Then each sublist is quicksorted, and the resulting sorted sublists are appended with the element X put in the middle.
We assume that QUICKSORT operates on the domain of natural numbers over which the built-in relations > and ::;, written in infix notation, are defined. We thus assume that this domain is part of the Herbrand universe of QUICKSORT.
Observe the following:

• QUICKSORT is not recurrent. In fact, consider the first clause instan­tiated with the grounding substitution

{X/a, Xs/b, Ys/c, Littles/[a I b], Ls/c}.
Then the ground atom qs([a I b], c) appears both in the head and the body of the resulting clause.

• The clauses defining the relation part are trivially recurrent with lpart(x, xs, ls, bs)I = lxsJ, Js > tl = 0 and Js :S: tl = 0.
• Extend now the above level mapping with

lqs(xs,ys)I = Jxsl,
lapp(xs,ys,zs)I lxsl.

Recall that APPEND is recurrent w.r.t. I \. Next, define a Herbrand interpretation of QUI CKSORT by putting

I = { qs(xs, ys) ! lxsl ?: \ys\}

U {part(x, xs, ls, bs) I \xs\ ?: \lsl + lbs\}
U { app(xs, ys, zs) I \xs\ + \ysl ?: \zs\}
U [X > Y]

U [X::; Y].

The following proof outlines show that QUICKSORT is acceptable w.r.t. I I and I. The proof outlines for the non-recursive clauses are obvious and omitted.

{l + \xs[+ lysl ?: 1 + !zsl}

app([x\xs], ys, [x\zs])

app(xs, ys, zs).

{\xs[+ [ys! ?: \zs[}

204 Krzysztof R. Apt and Dino Pedreschi

{l + lxsl 2: 1 + lls\ + lbsl}

part(x, [y\xs], [ylls], bs) <--

X >Y,

part(x, xs, ls, bs).

{\xsl 2: \lsl + lbsl}

{l + lxs\ 2: lls\ + 1 + lbsl}

part(x, [ylxs], ls, [ylbs]) <--

{l + lxs\ 2: lysl}

qs([xlxs], ys)

X:::; Y,

part(x, xs, ls, bs).

{lxs\ 2: \lsl + \bsl}

part(x, xs, littles, bigs),

{lxsl 2: \littles\ + lbigsl}

qs(li ttles, ls),

{llittlesl 2: llsl}

qs(bigs, bs),

{lbigs\ 2: \bsl}

{1 + jxsl}

{jxsl}

{llittlesj}

{\bigsl}

app(ls, [xlbs], ys). {llsl}

{llsj + 1 + jbsj 2: jysj}

Using Corollary 3. 7 we conclude that QUICKSORT is acceptable. More­
over, we obtain that, for a list s, the atom qs(s, t) is rigid and hence
bounded. By Corollary 3.6 we conclude that all LD-derivations of
QUICKSDRT U{ <-- qs(s, t)} are finite.

4 A modular approach to termination
4.1 Drawbacks of the proof method
The proof method for (left) termination introduced in the previous sections
suffers from two drawbacks.

Modular termination proofs 205

• The level mapping used in the proof of recurrence/acceptability is
sometimes different from the expected natural candidate. Consider
for instance the program PERMUTATION. The relation perm is defined
by induction on the length of its first argument, which is a list, and
therefore a natural candidate for I perm(xs, ys) I is I xs I. Neverthe­
less, it is needed to add 1 to such a value in order to enforce a strict
decreasing from the relation perm to the relation app, as required by
the definition of acceptability.

• The proposed proof method does not provide means for constructing
modular proofs, hence no straightforward technique is available to
combine proofs for separate programs to obtain proofs of combined
programs.

As the module hierarchy of a program becomes more complex, such
adjustments of natural level mappings become more artificial and conse­
quently more difficult to discover. For example, to prove that the program

overlap(Xs, Ys) ;-member(X, Xs), member(X, Ys).
has_a_or_b(Xs) ,_overlap (Xs, [a, b]).

augmented by the MEMBER program.

is recurrent we need to put I overlap (xs, ys) I = I xs I +1 to enforce the
decrease in the first clause and then I has_a_or_b (xs) I = I xs I +2 to en­
force the decrease in the second clause.

Both drawbacks pose serious limitations for the practical applicability
of the proposed proof method. First, as argued by De Schreye, Verschaetse
and Bruynooghe (1992), unnatural level mappings are difficult to discover
by automated tools. Secondly, modularity is essential in mastering the
complexity of large-scaled programs. These drawbacks share their orig­
inating cause. The notions of recurrence/acceptability are based on the
fact that level mappings decrease from clause heads to clause bodies. This
is used for two different purposes:

(1) in (mutually) recursive calls, to ensure termination of (mutually) re­
cursive procedures, and

(2) in non (mutually) recursive calls, to ensure that non (mutually) re­
cursive procedures are called with terminating goals.

Although a decreasing of the level mappings is apparently essential for
the first purpose, this is not the case for the second purpose, since a weaker
condition can be adopted to ensure that non-recursive procedures are prop­
erly called.

The next subsections will elaborate on this idea, by presenting alter­
native definitions of recurrence/acceptability, which we qualify with the
prefix semi. These notions are actually proved equivalent to the original
ones, but they give rise to more flexible proof methods, which avoid the

206 Krzysztof R. Apt and Dino Pedreschi

cited drawbacks.

4.2 Semi-recurrent programs
Following the intuition that recursive and non-recursive procedures should
be handled separately in proving termination, we introduce a natural or­
dering over the relation names occurring in a program P, with the intention
that for relations p and q, p:;;;) q holds if procedure p can call procedure q.
The next definition makes this concept precise. We denote by Ilp the set
of relations occurring in a program P.
Definition 4.1 Let P be a program and p, q relations in Ilp.

(i) We say that p refers to q in P if there is a clause in P that uses p in
its head and q in its body.

(ii) We say that p depends on q in P, and write p::;;;) q, if (p, q) is in the
reflexive, transitive closure of the relation refers to.

Observe that according to the above definition p ~ q =:: p ::;;;) q I\ q ::;;;)
p means that p and q are mutually recursive (i.e., they are in the same
recursive clique), and p :::J q = p :;;;) q /\ q i) p means that p calls q as a
subprogram. It is important to notice that the ordering =i over Ilp is well
founded.

The following definition of semi-recurrence exploits the ordering over
the relation names. The level mapping is required to decrease from an
atom A in the head of a clause to an atom B in the body of that clause
only if the relations of A and B are mutually recursive. Additionally, the
level mapping is required not to increase from A to B if the relations of A
and Bare not mutually recursive. We adopt the notation rel(A) to denote
the relation symbol occurring in atom A.
Definition 4.2

• A clause is called semi-recurrent w. r. t. a level mapping
every ground instance A +- A, B, B of it

(i) IAI > IBI if rel(A) ~ rel(B),
(ii) IAI 2: IBI if rel(A) :::J rel(B).

I, if for

• A program P is called semi-recurrent w.r.t. a level mapping I I if all
its clauses are. P is called semi-recurrent if it is semi-recurrent w. r. t.
some level mapping.

The following observation is immediate.

Lemma 4.3 If a program is recurrent w.r.t. I I, then it is semi-recurrent
w.r.t. I I·

The converse of Lemma 4.3 also holds, in a sense made precise by the
following result.

Lemma 4.4 If a program is semi-recurrent w.r.t. I I, then it is recurrent
w.r.t. a level mapping II II· Moreover, for each atom A, if A is bounded

Modular termination proofs 207

w.r.t. I I , then A is bounded w.r.t. 1111-

Proof. In order to define the level mapping 11 11, we first introduce (by
overloading the symbol I I) a mapping I I: Ilp-+ N such that, for p, q E
Ilp:

p '.:::' q implies IPI = lql,
p :J q implies IPI > lql.

(4.1)

(4.2)

A mapping I I satisfying properties (4.1) and (4.2) obviously exists, as Ilp
is finite. Note that this mapping preserves the :J ordering. Next, we define
a level mapping II II for P by putting for A E Bp:

llAll = IAI + lrel(A)I (4.3)

We now prove that P is recurrent w.r.t. 1111- Let A,____ A, B, B be a ground
instance of a clause from P. The following two cases arise:
Case 1 rel(A) '.:::' rel(B).
We calculate:

llAll
{(4.3)}

IAI + lrel(A)I
> {IAI > IBI by Definition 4.2 (i)}

IBI + lrel(A)I
{lrel(A)I = lrel(B)I by rel(A) '.:::' rel(B) and (4.1)}

IBI + lrel(B)I
{(4.3)}

llBll-
Case 2 rel(A) :J rel(B).
We calculate:

llAll
{(4.3)}

IAI + lrel(A)I
> {lrel(A)I > lrel(B)I by rel(A) :J rel(B) and (4.2)}

IAI + lrel(B)I
> {IAI 2: IBI by rel(A) :J rel(B) and Definition 4.2 (ii)}

IBI + jrel(B)I
{(4.3)}

llBll-

208 Krzysztof R. Apt and Dino Pedreschi

In both cases we proved llAll > llBll, which establishes the first claim. The
second claim follows directly from the definition of 11 11 · I

The following is an immediate conclusion of Lemmata 4.3 and 4.4.

Corollary 4.5 A program is recurrent iff it is semi-recurrent.

In what follows we study conditions which allow us to deduce termina­
tion of a program from termination of its components. The simplest form
of program composition takes place when a program is constructed from
two subprograms which use disjoint sets of relations. The following obvious
composition theorem allows us to deal with this case.

Theorem 4.6 Let P and Q be two programs such that no relation occurs
in both of them. Suppose that

• Q is semi-recurrent w.r.t. level mapping I IQ,
• P is semi-recurrent w. r. t. level mapping I IP.

Then P U Q is semi-recurrent w. r. t. I I defined as follows:

{ IAlp if rel(A) is defined inP,
IAI =

IAIQ if rel(A) is defined inQ.

Obviously, this theorem is of very limited use. We now consider a
situation when a program uses another one as a subprogram. The following
notion of extension of a program formalizes this situation.

Definition 4. 7 Let P and Q be two programs.

(i) A relation p is defined in a program P if p occurs in the head of a
clause from P.

(ii) P extends Q if no relation defined in P occurs in Q.

Informally, P extends Q if P defines new (w.r.t. Q) relations. From
now we assume without loss of generality that, for a given program P and
a level mapping I I for P, IAI = 0 if rel(A) is not defined in P. Notice
that such an assumption is indeed immaterial for the notion of (semi-)
recurrence, since if rel(A) does not occur in the head of any clause of P,
then any constraint put on IAI is satisfied when IAI = 0.

Observe that the definition of semi-recurrence allows us to compose
termination proofs. Indeed, the following result holds.

Theorem 4.8 Let P and Q be two programs such that P extends Q.
Suppose that

(1) Q is semi-recurrent w.r.t. I IQ,
(2) P is semi-recurrent w.r.t. I IP,
(3) for every ground instance A~ A, B,B of a clause of P

IAIP 2:: IBIQ if rel(B) is defined in Q.

Modular termination proofs 209

Then PU Q is semi-recurrent w. r. t. I i defined as follows:

{ I Alp if rel(A) is in P.

IAlq if rel(A) is defined inQ.
!Al (4.4)

Proof. It suffices to note that for every ground instance A+- A, B, B of a
clause from PU Q the following two implications hold:
(i) if rel(A) :::::::: rel(B), then either both relations are defined in P or both
are defined in Q,
(ii) if rel(A) ::J rel(B), then either rel(A) is not defined in P. I

This theorem suggests a natural way of composing termination proofs
provided the level mappings of the programs P and Q satisfy condition 3.
In general, it is difficult to expect that two independently constructed level
mappings happen to satisfy such a relation. (An example illustrating this
complication can be found below.)

Consequently, we need a more general approach. The result we now
present makes it possible to construct termination proofs in a modular way
in full generality and is the main motivation for the introduction of the
notion of semi-recurrence.

Theorem 4.9 Let P and Q be two programs such that P extends Q.
Suppose that

(l) Q is semi-recurrent w. r. t. I lo,
(2) P is semi-recurrent w.r.t. I IP,
(3) there exists a level mapping 11 11 p such that for every gronnd instance

A +-- A, B, B of a clause from P

(a) llAllP 2 llBllP if rel(B) is defined in P,
(b) llAllP 2 IBIQ if rel(B) is defined in Q.

Then P U Q is semi-recurrent w. r. t. I I defined as follows:

IAI = { IAlp + llAllP if rel(A) is defined ·inP,

IAIQ if rel(A) is defined inQ.
(4.5)

Proof. It suffices to prove that each clause from P is semi-recurrent w.r.t.
I I- Let A +- A, B, B be a ground instance of a clause from P. The
following two cases arise:
Case 1 rel(A):::::::: rel(B).
Then by Definition 4.7, rel(B) is defined in P. According to Definition
4.2(i) we need to prove IAI > IBI. We calculate:

IAI
{(4.4)}

210 Krzysztof R. Apt and Dino Pedreschi

[A[p + [[A[[P
> {[A[p > [B[p by assumption 2 and Definition 4.2 (i),

and llAllP > [[B[[P by assumption 3(a)}

IB[p + llBllP
{(4.4)}

IB[.

Case 2 rel(A) :::J rel(B).
According to Definition 4.2(ii), we need to prove [Al ~ [B[. Two subcases
arise:
Subcase 2.1 rel(B) is defined in P.
We calculate:

[A[
{(4.4)}

[A[p + [[A[[P
> {[A[p ~ [B[p by assumption 2 and Definition 4.2 (ii),

and [[A[[P ~ llB[[P by assumption 3(a)}

[Bfp + [[B[[P
{(4.4)}

[B[.

Subcase 2.2 rel(B) is defined in Q.
We calculate:

I

[Al
{(4.4)}

[A[p + [[A[[P
> {llAllP ~ [B[q by assumption 3(b)}

[A[p + [B[q
> IB[q
= {(4.4)}

[B[.

4.3 Methodology
Theorems 4.6, 4.8 and 4.9 provide us with an incremental, bottom-up
method for proving termination of logic programs. Given a program P,
the method can be informally illustrated as follows.

Modular termination proofs 211

(1) Partition the relation names in P in the equivalence classes w.r.t.
the equivalence '.:::::'. induced by the "depends on" relation Such
equivalence classes correspond to the recursive cliques of program P.
Let Pi, .. ., Pn be the partition of the clauses from P such that each
P; contains the clauses defining the relation(s) belonging to the same
equivalence class. The relation ::J defined on the relations induces a
corresponding well founded ordering > on the programs Pi:

Pi > P3 iff p ::J q for some p defined in P, and q defined in Pj.
(2) Prove by induction w.r.t. the ordering > that for every program Pi,

i E [l, n] the program Pi U LJP,<P, Pj is semi-recurrent.

The base case. Consider all P;, i E [l, n], which are minimal w.r.t.
>.

• Prove that each such Pi is semi-recurrent (w.r.t. some I IP,).
Notice that this is the same as proving that Pi is recurrent w.r.t.
I IP,, as procedures in P; do not call any subprograms.

The induction step. Consider a P;, i E [l, n], such that all Pj for
which Pj < Pi have already been proved semi-recurrent.

• Prove that P; (in isolation) is recurrent w.r.t. some I IP,·
Notice that the assumption that IAIP, = 0 if rel(A) is not defined
in Pi allows us to abstract from the relations that are not defined
in Pi. Consequently, we only need to prove that I IP, decreases
on (mutually) recursive calls. This facilitates the choice of a
"natural" candidate for
I jp,, which directly mirrors the inductive structure of the pro­
cedures defined in P;.

• Use Theorem 4.6 to conclude that UP;<P, Pj is semi-recurrent.
• Use Theorem 4.8 or Theorem 4.9 to prove that P; U LJP,<P; P1

is semi-recurrent.
Here we only need to come up with a level mapping II II which
is usually directly suggested by the level mappings I IP:i, where
PJ < P;.

4.4 Examples

4.4.l Mergesort
Consider the following program MERGESORT which is an instance of the
divide and conquer schema:

ms(Xs, Ys) +-

Ys is an ordered permutation of the list Xs.

ms([X, Y I Xs], Ys) +-

split([X, Y I Xs], Xis, X2s),
ms(Xis, Yis),

212 Krzysztof R. Apt and Dino Pedreschi

ms(X2s, Y2s),
merge(Yis, Y2s, Ys).

ms ([X] , [X]) .
ms ([) , []).

split ([X I Xs] , [X I Ys] , Zs) +­

split (Xs, Zs, Ys).
split ((] , [] , []) .

merge([X I Xs], [Y I Ys], [X I Zs]) +­

X :SY,
merge(Xs, [Y I Ys], Zs).

merge ([X I Xs] , [Y I Ys] , [Y I Zs]) +­

X > Y,
merge([X I Xs], Ys, Zs).

merge([], Xs, Xs).
merge(Xs, [], Xs).

According to this sorting procedure, a list of length at least 2 is first
split into two lists of roughly equal length (by means of the reversed order of
parameters in the recursive call of split), then each sublist is mergesorted,
and finally the resulting sorted sublists are merged, preserving the ordering.

Note that MERGESORT is not recurrent. Indeed, due to the introduction of
the local variables X1,X2,Y1, Y2 in the body of the recursive clause defining
ms, it is not terminating. By adding an additional parameter Bezem (1993)
modified this program so that it becomes terminating:

ms(Xs, Ys, Xs) +-

Ys is an ordered permutation of the list Xs.

ms ([X, Y I Xs] , Ys, [H I Ls]) +-

split ([X, Y I Xs], Xis, X2s, [H I Ls]),
ms(Xis, Yis, Ls),
ms(X2s, Y2s, Ls),
merge(Yis, Y2s, Ys, [H I Ls]).

ms([X], [X], Ls).
ms ([] , [] , Ls) .

split ([X I Xs] , [X I Ys] , Zs, [H I Ls]) +­

split (Xs, Zs, Ys, Ls).
split ([] , [] , [] , Ls) .

merge ([X I Xs] , [Y I Ys] , [X I Zs] , [H I Ls]) +­
X :S Y,
merge(Xs,[Y I Ys], Zs, Ls).

merge ([X I Xs] , [Y I Ys] , [Y I Zs] , [H I Ls]) +­
X > Y,
merge([X I Xs], Ys, Zs, Ls).

Modular termination proofs

merge([], Xs, Xs, Ls).
merge(Xs, [], Xs, Ls).

213

(A misprint crept in to (Bezem 1993) where instead of calling merge, ms
calls itself.) We prove this fact using Theorems 4.6 and 4.8. Call the above
program MERGESORT' and denote the subprograms of MERGESORT' which
define the relations ms , split and merge by MS, SPLIT and MERGE, cor­
respondingly. Thanks to the addition of the last argument MS is recurrent
w .r. t. the level mapping

lms(xs,ys,ls)I = llsj,

SPLIT is recurrent w.r.t. the level mapping

lsplit(xs,ys,zs,ls)I = llsl,

and MERGE is recurrent w.r.t. the level mapping

lmerge(xs,ys,zs,ls)I = llsJ.

By Theorem 4.6 SPLIT U MERGE is recurrent w.r.t. I I· Assumption 3
of Theorem 4.8 applied to the programs MS and SPLIT U MERGE is obviously
satisfied, so we conclude by this theorem that MERGESORT' is semi-recurrent
w.r.t. I I, and hence terminating.

To prove this fact Bezem (1993) used the concept of a recurrent pro­
gram, which, to deal with the subprogram calls in the recursive clause
defining ms, requires a more artificial level mapping in which I ms (xs, ys ,
ls)I = llsl+1.

4.4.2 Curry's type assignment

Consider the following program for Curry's type assignment (see e.g.
(Reddy 1986)). In Curry's type system, a type assignment E I- M : T ex­
presses the fact that >.-term Mis assigned type T w.r.t. environment E. Here,
>.-terms are represented using the function symbols var (for variables),
apply (for application), and lambda (for >.-abstraction). Type terms are
represented using the function symbol arrow (for the function type). For
the sake of concreteness, we augment the program with extra constants
(say v, w, z) representing >.-variables, and others (say Nat, Bool) repre­
senting basic types. Finally, environments are represented as lists of pairs
(>.-variable, type term).

type(E,M, T) f­

E I- M : T

(t1) type(E,var(X),T) f- in(E,X,T).
(t2) type(E,apply(M,N), T) f-

type(E,M,arrow(S,T)), type(E,N,S).
(t3) type(E,lambda(X,M) ,arrow(S, T)) f-

214 Krzysztof R. Apt and Dino Pedreschi

type([(X,S)IE] ,M,T).

in(E,X, T) <-

X is bound to T in E

(ii) in([(X,T) IE] ,X,T).
(i 2) in ([(Y, T) I E] , X, T) <-- X =/:- Y, in (E, X, T) .

Denote by CURRY the program formed by clauses ti, t2 and t3, and by ENV
the program formed by clauses ii and i2. Clearly, CURRY extends ENV, and
type:J in :J -=/= in curry U env. Observe the following:

• relation in is defined by induction on the length of its first argument,
which is a list. As a result, the program ENV is recurrent w.r.t. I IENV
defined as:

lin(e,x, t)IENV = leJ.

• Relation type is defined by induction on the size of its first argument,
which is a >.-term. As a result, the program CURRY is recurrent w.r.t.
I lcuRRY defined as:

ltype(e,m, t)JcuRRY = size(m).

• In any derivation starting from a goal <--type(e, m, t), the length of
the environment is bounded by I e I +size(m), since the length of the
environment is incremented together with the decrease of the size of
the >.-term (clause t3)· As a result, by defining

Jltype(e,m, t)llcuRRY =lei+ size(m)

we satisfy for II llcuRRY the assumptions 3(a) and (b) of Theorem
4.9.
Note that the level mappings I IENV and I lcuRRY do not satisfy
condition 3 of Theorem 4.8, so this theorem cannot be used here.

As a consequence, by Theorem 4.9, Lemma 4.4 and Corollary 2.6 we
conclude that CURRY U ENV is terminating. Additionally, we obtain that a
goal +--type(e, m, t) is bounded if e is a list and m is ground. This latter
result is relevant, since it justifies the fact that program CURRY U ENV can
be used to implement type inference by means of the goals of the kind
<--type(e, m, T), where e is a list, m is a ground >.-term, and T is a variable.

As a final remark, notice that it is possible to arrive at the same con­
clusion by showing directly that CURRY U ENV is recurrent w.r.t. the level
mapping ltype(e,m, t}J = lei+ 2 x size(m), but such a level mapping is
unnatural. Moreover, such a proof cannot be readily explained in a com­
positional way, as a combination of the separate proofs for CURRY and ENV.

Modular termination proofs 215

4.4.3 A relational MAP program

Consider the following program MAP, implementing a relational equivalent
of the ubiquitous higher-order combinator map of functional programming:

map([X1, ... , Xn], [Y1, ... , Yn]) +-­

p(Xi, Yi) holds for i E [1,n].

map([XIXs], [YIYs]) +--

p(X, Y), map(Xs, Ys).
map ([] , []) .

The program MAP is parametric w.r.t. relation p. Let P be a program
defining the relation p, such that MAP extends P (hence: map ::J p.) Assume
that P is recurrent w.r.t. I IP defined as lp(x,y)lp = f(x), where f(x)
denotes some function assigning natural numbers to ground terms.

We observe the following:

• The program MAP is trivially recurrent w.r.t. I IMAP defined by

lmap(xs, ys)IMAP = lxsl.

• Define 11 11 MAP by recursion as follows:

IJmap([], ys)llMAP

llmap([xlxs], ys)llMAP

0,

f(x) + llmap(xs,ys)llMAP·

Assumption 3 of Theorem 4.9 is satisfied by 111 IMAP· Indeed, consider
a ground instance

map([xlxs], [yJys]) +- p(x, y), map(xs, ys).

of the recursive clause of program MAP, and observe that:
llmap([xlxs], [ylys])llMAP = f(x) + llmap(xs, [ylys])llMAP 2 f(x) =

lp(x, y)IP,
llmap([xlxs], [ylys])llMAP = f(x) + llmap(xs, [yJys])IJMAP
2 Jlmap(xs, [ylys])llMAP = Jlmap(xs, ys)llMAP·

By Theorem 4.9 we conclude that MAP UP is recurrent. Moreover, we
obtain that a goal +- map(xs, ys) is bounded if xs is a list of terms each
of which is bounded w.r.t. f. (As expected, a term t is bounded w.r.t f
if f is bounded on the set of ground instances of t.) Thus we obtained a
modular proof scheme for the parametric program MAP .

Note that there is no relationship between lmap([xlxs], [ylys])IMAP
which equals lxsl + 1 and lp(x,y)Jp which equals f(x), so with this nat­
ural choice of level mappings we cannot apply here Theorem 4.8.

216 Krzysztof R. Apt and Dino Pedreschi

5 A modular approach to left termination
5.1 Semi-acceptable programs
An analogous modification of the notion of acceptability yields a modular
approach to the proofs of left termination.

Definition 5.1 Let P be a program, I I a level mapping for P and I a
(not necessarily Herbrand) interpretation of P.

• A clause of P is called semi-acceptable w.r.t. I I and I, if I is its
model and for every ground instance A +- A, B, B of it such that I f=
A

(i) IAI > IBI if rel(A) ~ rel(B),
(ii) IAI 2:: IBI if rel(A) :::J rel(B).

• A program P is called semi-acceptable w. r. t. I I and I, if all its
clauses are. P is called semi-acceptable if it is semi-acceptable w. r. t.
some level mapping and an interpretation of P.

Again, the use of the premise I f= A forms the only difference between
the concepts of semi-recurrence and semi-acceptability.

The following observations are immediate. The first one is a counterpart
of Lemma 3.3.

Lemma 5.2 A program is semi-recurrent w. r. t. I I iff it is semi­
acceptable w. r. t. I I and B p.

Lemma 5.3 If a program is acceptable w.r.t. I I and I, then it is semi­
acceptable w.r.t. I I and I.

Also, the proof of Lemma 4.4 can be literally viewed as a proof of the
following analogous result for semi-acceptable programs.
Lemma 5.4 If a program is semi-acceptable w.r.t. I I and I, then it
is acceptable w. r. t. a level mapping 11 11 and the same interpretation I.
Moreover, for each atom A, if A is bounded w.r.t. I I, then A is bounded
w.r.t. 1111·

The following is a direct consequence of Lemmata 5.3 and 5.4.
Corollary 5.5 A program is acceptable iff it is semi-acceptable.

Let us consider now the issue of modularity. The following is an ana­
logue of Theorem 4.6 for semi-acceptable programs.

Theorem 5.6 Let P and Q be two programs such that no relation occurs
in both of them. Suppose that

• Q is semi-acceptable w.r.t. level mapping I IQ and interpretation IQ,
• P is semi-acceptable w.r.t. level mapping I IP and interpretation Ip.

Modular termination proofs 217

Then PU Q is semi-recurrent w.r.t. I I and fp U IQ, where I I is defined
as follows:

IAI = { IAIP if rel(A) is defined inP,

IAIQ if rel(A) is defined inQ.

Next, note the following analogue of Theorem 4.8 for semi-acceptable
programs.

Theorem 5. 7 Let P and Q be two programs such that P extends Q.
Suppose that

(1) Q is semi-acceptable w.r.t. I IQ and lp n BQ,
(2) P is semi-acceptable w.r.t. I IP and lp,
(3) for every ground instance At-A, B, B of a clause of P such that

lp f=A
I Alp 2: IBIQ if rel(B) is defined in Q.

Then PU Q is semi-acceptable w.r.t. I I and lp, where I I is defined as
follows:

{
IA/p if rel(A) is defined in P, IAI =
IAIQ if rel(A) is defined in Q.

Proof. The proof is identical to that of Theorem 4.8. I

(5.1)

As in the case of semi-recurrent programs we cannot always hope that
two unrelated level mappings satisfy condition 3 of this theorem. The
following analogue of Theorem 4.9 for semi-acceptable programs deals with
this difficulty.

Theorem 5.8 Let P and Q be two programs such that P extends Q, and
let fp be a model of PU Q. Suppose that

(1) Q is semi-acceptable w.r.t. I IQ and lp n BQ,
(2) P is semi-acceptable w.r.t. I IP and lp,
(3) there exists a level mapping /I 11 p such that for every ground instance

At-A, B, B of a clause from P such that]p f= A
(a) llAllP 2::: llBllP if rel(B) is defined in P,
(b) llAllP 2::: IBIQ if rel(B) is defined in Q.

Then PU Q is semi-acceptable w.r.t. I I and lp, where I I is defined as
follows:

IA/ { IAIP + llAllP if rel(A) is defined inP,

IA/Q if rel(A) is defined inQ.

218 Krzyszt,of R. Apt and Dino Pedreschi

Proof. The proof is identical to that of Theorem 4.9. I
5.2 Examples
We now present some applications of the modular method for proving left
termination. In the following we adopt proof outlines also as a proof format
for the verification of assumption 3 of Theorems 5.7 and 5.8. We refer to
such proof outlines with the qualification weak, and assume that for weak
proof outlines condition 4 of Section 3.3 is amended as follows, by replacing
>by;::::

41• For i E [1, n] : Ji /\ · · · /\ fi-1 ==} to ;::: ti.

5.2.1 Permutation
Reconsider the program PERMUTATION:

perm(Xs, Ys) +-

Ys is a permutation of the list Xs.

perm(Xs, [X I Ys]) +­
app(X1s, [X I X2s], Xs),
app(X1s, X2s, Zs),
perm(Zs, Ys).

perm([], []).

augmented by the APPEND program.

Denote the program defining the PERMUTATION relation by PERM. Clearly,
PERM extends APPEND, and perm =i app. Recall that APPEND is recurrent
w.r.t. iapp(xs, ys, zs)I = min (ixsl, izsl). Observe the following:

• the relation perm is defined by induction on the length of its first
argument. Indeed, the program PERM is semi-acceptable w.r.t. I I
and !PERM defined by:

lperm(xs, ys)I lxsi,

[perm(Xs, Ys)]

U {app(xs,ys,zs)i ixsl+iysi= izsi}.

The proof that !PERM is a model of APPEND is as in Section 3.3. The
following is a proof outline for the semi-acceptability of the recursive
clause for perm w.r.t. I I and !PERM:

Modular termination proofs

perm(xs, [xJys]) +-

app(xis, [x!x2s],xs),

{!xs! = Jxisl + !x2sj + 1}

app(x1s, x2s, zs),

{!zs! = !xisl + !x2sl}

perm(zs, ys).

219

{Jxs!}

{!zs!}.

• Assumption 3 of Theorem 5. 7 is satisfied as the following weak proof
outline shows:

perm(xs, [x!ys]) +-- {!xs!}

app(xis, [x!x2s], xs), { min(x1s, xs)}

{!xs! = lxisl + !x2sl + 1}

app(xis, x2s, zs), { min(x1s, zs)}

{!zs! = lxisl + !x2sl}

perm(zs, ys).

Hence, by Theorem 5.7 and Lemma 5.4 we conclude that PERMUTATION
= PERM U APPEND is acceptable w.r.t. I I and IP ERM· We thus achieved
the same result of Section 3.3, but in a modular way, and using a more
natural level mapping for perm.

5.2.2 A divide &f conquer scheme
Reconsider the divide and conquer schema DC which is parametric w.r.t.
the base, conquer, divide and merge relations:

de solve (X, Y) +­

base (X),
conquer(X, Y).

de solve (X, Y) +-

divide (X, XO, X1, X2),
dcsolve(Xi, Yi),
dcsolve(X2, Y2),
merge(XO, Yi, Y2, Y).

Let P be a program defining the relations base, conquer, divide and
merge. Clearly, DC extends P, and dcsol ve :J base, conquer, divide ,
merge. Assume that P is acceptable w.r.t. I IP and fp defined as follows:

lbase(x)!p = !!xii,

220 Krzysztoj R. Apt and Dino Pedreschi

jconquer(x, y)jp
jdivide(x, xO, x1,x2)jp
jmerge(xO, y1,y2, y)lp

Ip = [base(X)]

= !lxl!,

!lxl!,

l!xOlj + i!Y1ll + i!Y2ll,

U {conquer(x,y) 1llxll2: llYll}

U {divide(x,x0,x1,x2) 1 llxll 2: JlxO!I + llx11! + llx2ll

I\ !lxll > llx1!1 A llxll > !lx2ll}

U {merge(x0,y1,y2,y) I llYll :S llxOI! + jjy1ll + !ly2JI},

where 11 11 denotes some function assigning natural numbers to ground
terms.

Notice that these assumptions are quite natural for a large class of
programs following the divide and conquer paradigm.

We observe the following:

• the program DC is acceptable w.r.t. I lvc and Ivc defined by:

ldcsolve(x, y)lvc = llxll,

Ivc =]p U {dcsolve(x,y) I llxll 2: llYll}.

The proof outline for the non-recursive clause of DC is obvious. For
the recursive clause take the following proof outline:

{llxl! 2: llY!I}

dcsolve(x, y)

di vide(x, xO, x1, x2),

{ilxl! 2: !lxOll + llx1ll + llx2jl

/\ l!xll > llx1ll /\ Jlx!I > llx211}

dcsolve(x1, y1),

{ilx11! 2: ljy1ll}

dcsolve(x2, y2),

{llx2JI ;::: !ly2JI}

merge(xO, y1, y2, y).

{llxO!I + l!Y11! + !IY21! 2: llY!I}.

{llxll}

{llx1!1}

{llx2!1}

• Assumption 3 of Theorem 5.7 is satisfied as the following weak proof
outlines show:

Modular termination proofs

dcsolve(x, y)

base(x),

conquer(x, y).

dcsolve(x, y) +-

di vide(x, xO, x1, x2),

{llxll ~ llxOll + llx1ll + llx2ll

/\ llxll > llx1ll /\ llxll > llx2ll}

dcsolve(x1, y1),

{llx1ll ~ llYill}

dcsolve(x2, y2),

{llx2ll ~ llY2ll}

merge(xO, y1, y2, y).

221

{llxll}

Using Theorem 5.7 and Lemma 5.4 we conclude that DCUP is acceptable
w.r.t. I I and IDc, where

{ IAlvc if rel(A) = dcsolve,
IAI =

IAlp otherwise.

Moreover, we obtain that a goal +-- dcsolve(x, y) is bounded if
dcsolve(x, y) rigid, so in particular if x is ground. Thus we have obtained
a modular proof scheme for divide and conquer programs.

As a direct application, note that the program QUICKSORT can be defined
as QUICKSORT = DC U P by putting

and defining P as follows:

base([]).

conquer([] , []) .

qs = dcsolve,

divide ([X I Xs] , [X] , Littles, Bigs) +­

part (X, Xs, Littles, Bigs).

merge ([X] , Ls, Bs, Ys) +-

app (Ls, [XIBs], Ys).

222 Krzysztof R. Apt and Dino Pedreschi

It is easy to check that P satisfies the conditions of the presented
proof scheme for DC, and thus we can directly conclude that QUICKSORT
is left terminating, and that for a list s, all LD-derivations of QUICKSORT
U { +- qs(s, t)} are finite. (To be more precise, we obtain QUICKSORT from
the above program by unfolding in the sense of Tamaki and Sato (1984).)
5.2.3 A generate & test scheme
Consider the following one-clause program GT, representing a generate and
test schema; it is parametric w.r.t. the generate and test relations:

gtsolve(X, Y) +­

generate(X, Y),
test(Y).

Let P be a program defining the relations generate and test. Clearly,
GT extends P, and gtsolve :J generate, test. Assume that P is accept­
able w.r.t. I IP and fp defined as follows, where, as before, II II denotes a
function assigning natural numbers to ground terms:

lgenerate(x, y)lp = llxJI,
ltest(y)Jp = llYll,

fpl{test,generate} [test(Y)]

U {generate(x, y) J llxll ;::: llYll}.

Here for a Herbrand interpretation f and a set of relations R, we denote
by flR the restriction off to the relations belonging to R.

We observe the following:

• the program GT is trivially semi-recurrent w.r.t. any level mapping.
In fact, the only clause of GT is non-recursive.

• Define I lar and fer as follows:

lgtsolve(x, y)lcr = Jlxll,

fer = fp U (gtsolve(x, y)].

Assumption 3 of Theorem 5.7 is satisfied by I IP, I lar and Icr, as
the following weak proof outline shows:

gtsolve(x, y) +- {llxll}

generate(x, y), {llxl J}

{llxll 2 llYll}

test(y). {llylJ}

Modular termination proofs 223

By Theorem 5.7 and Lemma 5.4 we conclude that GT UP is acceptable
w.r.t. I I and IcT, where

{
IAlcT if rel(A) = gtsolve, IAI =
IAIP otherwise.

Moreover, we obtain that a goal +- gtsolve(x, y) is bounded if
gtsolve(x, y) is rigid, so in particular ifx is ground. Thus we have obtained
a modular proof scheme for generate and test programs.

As a direct application, consider the program SLOWSORT = GT U P, ob­
tained by putting

and

ss gtsolve,

generate _ perm,

test _ ordered,

P = PERMUTATION U ORDERED,

where ORDERED is defined by

ordered(Xs) +-

Xs is a ::;-ordered list of natural numbers.

ordered ([]) .
ordered([X]) .
ordered([X, Y I Xs]) +- X :::; Y, ordered([YI Xs]).

ORDERED is clearly recurrent w.r.t. the level mapping I ordered(ys) I
lysl, so acceptable w.r.t. I I and [ordered(XS)]. By Theorem 5.6

PERMUTATION U ORDERED is acceptable w.r.t. I I defined by

lperm(xs, ys)lp jxsl,

jordered(ys)lp lysj,

and the model [ordered(XS)] U IPERM·

Thus we can directly conclude that SLOWSORT is left terminating and
that for a list s, all LD-derivations of SLOWSORT U { +- ss(s, t)} are finite.

5.2.4 A relational fold program

Consider the following program FOLD which implements a relational equiv­
alent of the higher-order combinator fold-left of functional programming.
The program FOLD is parametric w.r.t. relation op. We assume that op
is the relational equivalent of a binary operator op, in the sense that
op(x,y,z) holds iff z = (x op y).

fold (X, [Yi, Yn] , Z) +-

z = (. . . ((X op Yi) op Y2) ... op Yn)

224 Krzysztof R. Apt and Dino Pedreschi

fold(X, [Y I Ys], Z) +-
op(X, Y, V), fold(V, Ys, Z).

fold(X, [] , X).

Let OP be a program defining the relation op, such that FOLD extends
OP (hence: fold :::J op.) Assume that OP is acceptable w.r.t. I loP and fop
satisfying the following properties:

lop(x, y, z) lop = f(x) + g(y)

fopl{op} = {op(x,y,z) I f(x) + g(y) 2:: f(z)},

where f , g denote some functions assigning natural numbers to ground
terms.

We observe the following:

• the program FOLD is trivially recurrent w.r.t. I IFOLD defined by

lfold(x,ys,z)IFOLD = lysl.

By Lemma 3.3 FOLD is acceptable w.r.t. I IFoLD and fpoLD = fop U
[fold(x, ys, z)).

• Define a function 11 11 assigning natural numbers to ground terms
by recursion as follows:

ll[ylys]ll = g(y) + jjysjj,
l!xl I 0 otherwise.

Assumption 3 of Theorem 5.8 is satisfied by putting

l!fold(x,ys,z)llFoLD = f(x) + l!ysl!,

and using !FOLD defined before. Indeed, the weak proof outline for
the non-recursive clause of FOLD is obvious and for the recursive clause
we have the following weak proof outline:

fold(x, [yjys),z) +-

op(x, y, v),

{ f (x) + g(y) ;::: f (v)}

fold(v, ys, z).

{f(x) + g(y) + l!ysl!}

{f(x) + g(y)}

{f(v) + l!ysl!}.

By Theorem 5.8 we conclude that FOLD U OP is acceptable. Moreover,
we obtain that a goal

+--- fold(x, ys, z)

is bounded ifx is bounded w.r.t. f, and ys is a list of terms each of which is
bounded w.r.t. g. Thus we have obtained a modular proof scheme for the

Modular termination proofs 225

parametric program FOLD. Notice that with the above choice of the level

mappings we cannot apply here Theorem 5.7, since I !FOLD is unrelated to

I lop, whereas 11 llFoLD does not need to decrease in recursive calls.

As a direct application, consider the program SUMLIST = FOLD U OP,

obtained by putting OP = SUM, where SUM is defined as in Section 2.3, and

op= sum.

It is easy to check that OP satisfies the conditions of the presented proof

scheme for FOLD, by putting:

f(x) = 0,

g(x) = size(x).

Thus we can directly conclude that SUMLIST is acceptable, and that, for

a ground ys, all LD-derivations of a goal ~ fold(x, ys, z) w.r.t. SUMLIST

are finite. Note that the goal ~ fold(O, ys, z) computes the sum of the

elements of the list ys.

5.2.5 The MAP program revisited

Reconsider the program MAP:

map ([X1, ... , Xn] , [Y1, ... , Yn]) ~

p(Xi, Yi) holds for i E [1,n].

map([XIXs], [YIYs]) ~
p(X, Y), map(Xs, Ys).

map([], []).

Relax the assumptions made in Section 4.4 on P by assuming that P

is acceptable w.r.t. \ \P defined as in Section 4.4, and any model I of P.

It is immediate to observe that the proof outlines of Section 4.4 remain

valid with the new assumptions. Hence, by Theorem 5.8, we conclude that

MAP UP is acceptable; moreover, we obtain the same class of bounded goals

as in Section 4.4. Again, we cannot apply here Theorem 5.7, since the level

mappings for map and p are unrelated.

5.2.6 A map coloring program

Finally, consider a jewel of PROLOG - the following MAP _COLOR program

from Sterling and Shapiro (1986, page 212) which generates a coloring of

a map in such a way that no two neighbors have the same color. Below we

call such a coloring correct. The map is represented as a list of regions and

colors as a list of available colors. In turn, each region is determined by its

name, color and the colors of its neighbors, so it is represented as a term

region(name, color, neighbors), where neighbors is a list of colors of

the neighboring regions.

color..lllap(Map, Colors) ~

226 Krzysztof R. Apt and Dino Pedreschi

Map is correctly colored using Colors.

color..map([Region I Regions] , Colors) +­
color_region(Region, Colors),
color..map(Regions, Colors).

color..map([], Colors).

col or _region (Region, Col ors) +-
Region and its neighbors are correctly colored using Colors.

color_region(region(Name, Color, Neighbors), Colors) +­
select(Color, Colors, Colors1),
subset(Neighbors, Colors1).

augmented by the SELECT program.

augmented by the SUBSET program.

Denote by CM the program consisting of the two clauses defining the
relation color ..map, and by CR the program consisting of the clause defining
the relation color_region. Clearly, CM extends CR, and CR extends SELECT
and SUBSET. Moreover, color..map :::J color..region :::J select, subset in
the program MAP_COLOR =CM U CR U SELECT U SUBSET.

First we deal with the program CR U SELECT U SUBSET. To this end
Theorems 5.6 and 5. 7 will be of help. Recall that SELECT is recurrent
w.r.t. jselect(x, xs, ys)I = jxsj, and that SUBSET is recurrent w.r.t.
jsubset(xs, ys)I = jxsl + fysj and jmember(x, xs)j = jxsj. Observe the
following:

• the program CR is trivially semi-recurrent w.r.t. any level mapping.
• The Herbrand interpretation Is= {select(x,xs,ys) I fxsl ;:::: jysj}

is a model of SELECT, as the following proof outlines show:

{I+ jxsl ;:::: jxsj}

select(x, [xjxs],xs).

{I+ lxsj ;:::: 1 + jysj}

select(x, [yjxs], [yjys]) +-

select(x, xs, ys).

{fxsl;:::: jysj}.

Consequently, by Lemma 3.3 and Theorem 5.6 SELECT U SUBSET is
semi-acceptable w.r.t. I I and Is U [subset(Xs, Ys)) U [member(X, Xs)].

Modular termination proofs 227

• The programs CR and SELECT U SUBSET satisfy assumption 3 of The­
orem 5.7 by putting

IcR =Is U [color_region(R, Cs)] U [subset(Xs, Ys)] U [member(X, Xs)]

and extending I I as follows:

jcolor_region(region(n, c,ns), cs)i = jnsl + lcsl,
jcolor_region(x, cs)I 0 if x :f. region(n,c,ns).

The associated weak proof outline follows:

color_region(region(n, c, ns), cs) +- {Ins I+ icsi}

select(c,cs,c1s), {lcsl}

{icsl ?: lc1sl}

subset(ns, c1s).{lnsl + jc1sl}.

Therefore, by Theorem 5.7, the program CR U SELECT U SUBSET is
semi-acceptable w.r.t. I I and lcR·

Now we can deal with the program MAP_CQLOR. For this purpose Theo­
rem 5.8 will be of use. Observe the following:

• The program CM is trivially recurrent w.r.t. lcolor..map(rs, cs)I =
lrsl.

• Define a function 11 11 from lists of regions to natural numbers by
induction as follows:

ll[region(n, c,ns)irs]ll lnsl + llrsll,
ll[xlrs]ll llrsll if x :f. region(n, c,ns),

llxll = 0, otherwise.

The programs CM and CR U SELECT U SUBSET satisfy assumption 3 of
Theorem 5.8 by putting

IcM = IcR U [color..map(Rs, Cs)],

licolor..map(rs, cs)llcM = llrsli + lcsi.

Two weak proof outlines covering all ground instances of the recursive
clause of color..map follow. We assume that x -:f. region(n, c,ns).

color..map([region(n, c, ns) lrs], cs)

color_region(region(n, c,ns), cs),

col or ..map(rs, cs).

+- {lnsl + llrsll + lcsi}

{Ins!+ icsl}

{llrsll + lcsl}

228 Krzysztof R. Apt and Dino Pedreschi

col ormap([x\rs], cs)

col or ..region(x, cs),

color...map(rs, cs).

<-- {\\rs\\ + \cs\}

{[[rs\I + \csJ}.

Consequently, by Theorem 5.8, we conclude that the program
MAP _COLOR = CM U CR U SELECT U SUBSET is semi-acceptable. Moreover,
we obtain that a goal <-- color...map(rs, cs) is bounded if cs is a list and
rs is a list of regions [region(n1, c1, ns1), ... , region(nk, ck, nsk)], where
each nsi (i E [1, k]) is a list. Thus, MAP _CO LOR terminates for the desired
class of goals.

Acknowledgements
This research was partly supported by the ESPRIT Basic Research Action
6810 (Compulog 2).
We thank Antonio Brogi, Augusto Ciuffoletti and Paolo Mancarella for
useful discussions on the final version and Andrea Schaerf for helpful com­
ments.

Bibliography
1. K. R. Apt (1990). Logic programming. In J. van Leeuwen, editor, Hand­

book of Theoretical Computer Science, pages 493-574. Elsevier, Amster­
dam. Vol. B.

2. K. R. Apt and D. Pedreschi (1990). Studies in pure Prolog: termination.
In J.W. Lloyd, editor, Symposium on Computional Logic, pages 150-176.
Springer-Verlag, Berlin.

3. K. R. Apt and D. Pedreschi (1993). Reasoning about termination of pure
PROLOG programs. Information and Computation, 106(1): 109-157.

4. M. Bezem (1989). Characterizing termination of logic programs with
level mappings. In E. L. Lusk and R. A. Overbeek, editors, Proceedings
of the North American Conference on Logic Programming, pages 69-80.
MIT Press, Cambridge, MA.

5. M.A. Bezem (1993). Strong termination of logic programs. Journal of
Logic Programming, 15(1 & 2):79-98.

6. L. Cavedon (1989). Continuity, consistency, and completeness properties
for logic programs. In G. Levi and M. Martelli, editors, Proceedings of
the Sixth International Conference on Logic Programming, pages 571-
584. MIT Press, Cambridge, MA.

7. N. Dershowitz (1987). Termination of rewriting. Journal of Symbolic
Computation, 8:69-116.

8. D. De Schreye, K. Verschaetse, and M. Bruynooghe (1992). A framework
for analyzing the termination of definite logic programs with respect to
call patterns. In Proceedings of the International Conference on Fifth

Modular termination proofs 229

Generation Computer Systems 1992, pages 481-488. Institute for New Generation Computer Technology (ICOT), Tokyo, Japan.
9. D. Konig (1927). Uber eine Schlu£weise aus dem Endlichen ins Un­endliche. Acta Litt. Ac. Sci., 3:121-130.
10. J. W. Lloyd (1987). Foundations of Logic Programming. Springer­Verlag, Berlin, second edition.
11. U.S. Reddy (1986). On the relationship between logic and functional languages. In D. DeGroot and G. Lindstrom, editors, Functional and Logic Programming, pages 3-36. Prentice-Hall, Englewood Cliffs, NJ.
12. L. Sterling and E. Shapiro (1986). The Art of PROLOG. MIT Press, Cambridge, MA.
13. H. Tamaki and T. Sato (1984). Unfold/Fold Transformations of Logic Programs. In Sten-Ake Tarnlund, editor, Proc. Second International Conference on Logic Programming, pages 127-139.
14. J. D. Ullman and A. van Gelder (1988). Efficient tests for top-down termination of logical rules. J. ACM, 35(2):345-373.

