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Abstract

Relevance is a multidimensional concept, not only
consisting of linguistic-only properties but also en-
riched by various other relevance dimensions that are
largely orthogonal to the topicality (i.e. content-based
relevance) of a document. The question is how to cap-
ture such dimensions of relevance effectively in a re-
trieval model.

In this paper we propose a model where we regard
additional relevance dimensions independent (given a
document instantiation). The independence assump-
tion is made because it is very difficult to predict influ-
ence of relevance dimensions a-priori. The model also
reflects our belief that modeling of additional knowl-
edge with prior probabilities (in a probabilistic set-
ting) is a counter-intuitive approach because of 1) the
orthogonality of additional relevance dimensions and
2) the difficulty to reliably (re-)estimate dimension
models, due to possible ‘noise’ introduced by non-
dimension related priors.

Also, relevance feedback needs to be able to handle
multiple dimensions of relevance effectively. Feed-
back in the model is done with dimension-specific
feedback sets.

We can only report informally on the results of
our model; based on the experimental scenarios per-
formed, the model is appearing to perform very well,
although quantitative assessments using an assessed
collection are necessary to confirm this and draw fur-
ther conclusions.

1 Introduction

We believe a clear distinction should be made be-
tween topicality and ‘relevance’, where topicality (i.e.
content-based or linguistic similarity) is an approxi-
mation of relevance and can be seen as only a single
dimension of relevance. An information need can in-
clude a variety of extra dimensions, not necessarily

all linguistic in nature. Mizarro (Mizarro, 1998) gives
examples of such dimensions, including comprehensi-
bility (style or difficulty of the text) and quantity (how
much information does the user want; this is mea-
sured in a.o. the size of documents and the number
of documents returned to the user). Our aim is to cap-
ture such dimensions of relevance effectively in our
retrieval model.

A closely related issue is the notion of ‘cover-
age’, as e.g. used in the INEX XML Retrieval ini-
tiative. Coverage is defined as how much of the
document component is relevant to the topic of re-
quest. Estimating the right amount of coverage for a
search request plays a significant role in the case of
structured document retrieval where the desirable re-
trieval unit is not known a-priori. Effective determi-
nation of the retrieval unit is a key issue which distin-
guishes structured document retrieval from traditional
retrieval (where the retrieval unit is fixed a-priori).

To further illustrate the retrieval unit problem, con-
sider a short motivating example. Let us assume we
have a document consisting of a section with three
subsections, and each subsection containing five para-
graphs. Now, the system that estimates topicality
identifies three relevant paragraphs in a subsection.
The open question is then whether to return the three
separate paragraphs, or the single subsection contain-
ing these as well as the remaining two (possibly irrel-
evant) paragraphs. The additional context provided by
the full subsection may be more desirable for a user
than the individual three paragraphs in isolation.

Assume a user is trying to solve the retrieval unit
question and decides to use coverage as an additional
relevance dimension. For modeling coverage, the user
decides to regard coverage as a function of both topi-
cality of document components and the size of docu-
ment components (size being an aspect of the quantity
dimension). The user reasons that:



Quantity

Figure 1: Encoding of additional relevance dimen-
sions. Note that Qterms and Qsize denote informa-
tion given by the query (query terms and preferred
component size).

e the shorter the document component is, the more
likely it will not contain enough information to
fulfill the information need;

e the longer the document component is, the more
likely it is that distilling the topically relevant in-
formation will take substantial more reader ef-
fort.

Now, when a user is ranking a document collec-
tion with regard to coverage, a ranking is performed
against a combination of both topicality relevance
and quantity relevance (where the user uses document
component size as a representation of quantity). In
probabilistic terms we are calculating the probabil-
ity of complete relevance of a document component,
given topicality relevance and quantity relevance.

More generally, we propose a probabilistic model
where, given a document instantiation, we regard the
dimensions of relevance independent based on the
assumption that without user interaction, we cannot
say anything about the influence of each dimension
on user satisfaction. Traditional information retrieval
uses only a single dimension of this model, namely
topicality. The model is visualized in Figure 1.

2 Retrieval Model

2.1 Modeling Additional Relevance Dimensions
Firstly, for modeling additional relevance dimensions,
we need a probabilistic description. The model in
Figure 1 leads to the following. When P(R;|D;) is
the probability of topical relevance given document d
and P(R4|Dy) is the probability of quantity relevance
given document d, then we can calculate a joint prob-
ability of ‘complete’ relevance or user satisfaction as:

P(Dd,Rt, Rq7 Qterms> Qsize) =
P(RtlDd7 Qterms)P(quDd>Qsize)P(Dd)
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Figure 2: The log-normal distribution used for mod-
eling the quantity dimension

Looking at the motivating example in Section 1 and
especially the user reasoning for modeling the quan-
tity dimension, we decided to use a log-normal dis-
tribution. It is a distribution characterized by both a
steep slope at the start and a long tail (as can be seen
from Figure 2). The steep slope at the start reflects
the ‘punishing’ behavior we want to model for (ex-
tremely) short document components. The long tail
reflects that we do want to punish long document com-
ponents, but not as harshly as extremely short ones
(since these still might be useful, even while taking
more reader effort to distill the relevant information).

Secondly, we need the modeling parameter for the
distribution itself. We have chosen for component
size, but other possibilities include:

o the depth of the document component in the tree
structure, where we want to penalize compo-
nents present deep in the trees (generally small
components and too specific) or components
present high in the trees (generally large com-
ponents and too broad);

e the number of children of a document compo-
nent. A short document component containing a
large amount of children highly likely contains
a diversified mix of information and a could be
less desirable for a user than a more homoge-
neous component.

Lastly, we need to integrate additional dimensions
of relevance into our retrieval model. A general ap-
proach for modeling additional knowledge is using the
prior probabilities (in a probabilistic setting). For ex-



ile, Westerveld et al. (Westerveld et al., 2001) used
strategy successfully to increase the likelihood of
ing entry pages in a Web retrieval task. Also, a
r on document length improved retrieval perfor-
ice at TREC-style experiments (Hiemstra, 2000),
:d on the assumption that longer documents have a
1er probability of containing relevant information.
ince we regard additional dimensions of rele-
ce independent given an document instantiation,
model in Figure 1 also reflects our belief that
leling other dimensions of relevance through
r probabilities is a somewhat counter-intuitive
roach. For the rest of the discussion, note that
have used a language modeling approach for
leling topicality (see subsection 2.2).

'irstly, non-linguistic dimensions of relevance are
gely) orthogonal to the topicality, estimated by
language model. The orthogonality assumption
1eled by research performed in the user modeling
relevance areas (see a.o. (Belkin et al., 1982a),
Ikin et al., 1982b), (Bruce, 1994), (Barry, 1994).
iin, the common thread in this work is the fact
relevance is a multidimensional concept, of which
cality is only a single one. Mizarro (Mizarro,
8) names other, possible non-topical dimensions
tract characteristics of documents, constructed in-
endently from the particulars of the database or
ection at hand. In other words: other, non-topical
ensions are constructed independently from the
suage models present in the documents of a col-
ion.

econdly, encoding additional knowledge in prior
>abilities makes it more difficult to reliably esti-
2 dimension models, due to the possible noise non-
ension related prior probabilities introduce.

Topicality Modeling

model used for describing topicality of docu-
its is a probabilistic model, the statistical language
lel described by Hiemstra (Hiemstra, 2000). The
n idea of this model is to extract and to compare
ument and query models and determine the proba-
'y that the document generated the query. In other
ds, the statistical language model extracts linguis-
nformation and is suited for modeling of the topi-
ty dimension of the information need.
1 deriving document models for all of the doc-
:nts in the collection, we regarded every subtree
sent in the collection as a separate document. The
dability of topical relevance P(R:|Dg, Qterms)

where Qierms consists of the set of query terms
{Ty, -, Tp} is calculated with:

P(RtiDd) Qterms) = P(RtlDda T17 e 3Tn) =

P(Da) [ [ P(1)P(Ti| L, Da)

i=1

where P(I;) is the probability that a term is important
(the event I has a sample space of {0,1}).

We follow the reasoning of Hiemstra (Hiemstra,
2000) to relate the model to a weighting scheme
(tf.idf-based). After some manipulation of the model
we get:

P(Dd)Tla' o ,Tn) X P(Dd) H(1+-(-I)\f;(;\-l:;__-‘lp'i;’)‘5)

i=1

As estimators for P(Dy, P(T;|Dg) and P(T;) we
used:

P(Ds) = - @1

tf;
P(Ti|D,) = _thid

> thid

where n is the number of documents, tf; 4 is
the term frequency of term ¢ in document d and
> tf (4, d) is the length of document d.

For P(T;) we used:

(2.2)

where df; is the document frequency of term 4.

Filling in the likelihood estimators gives us the fol-
lowing model for topicality (with a constant A for all
terms):

(2.3)

P(R;|D4,Qterms) = P(Rt|Dg, T1,- -+, Tp) o

i At Yo dfi
ZlOg(l+1“>\Zitﬂ,d dfi)

i=1

We used a very simple query model resulting in
query term weights represented with tf; 4, the term
frequency of term ¢ in query g.



3 Relevance Dimensions and Relevance
Feedback

Explicit relevance feedback is the main entry point
for learning additional relevance dimensions, since we
cannot assume a system has knowledge of other rele-
vance dimensions at the initial query stage.

We make a distinction between relevance feedback
as a directed process, in the case of a user identifying
relevant documents and feeding that information back
to the system or relevance feedback as an undirected
process, in the case of taking top-ranked documents
and using that collection for query term expansion.

For the purpose of relevance feedback, let us as-
sume we have a user examining the result set after an
initial search and this user is judging the results set
on topicality and quantity. We can distinguish three
possible decisions by this user when judging a result:

e The user sees the result as correct regarding top-
icality and not quantity;

e The user sees the result as correct regarding
quantity and not topicality;

e The user sees the result as contributing to both
relevance dimensions.

If the first situation applies and a user is giving
feedback on topicality alone and not on quantity, we
simply can re-estimate the language model parame-
ters and disregard quantity influence altogether. If the
second situation applies and a user is giving feedback
on quantity alone and not topicality, we simply can re-
estimate the model parameters of the quantity model
and we can leave the language model parameters as
they were. The situation becomes more difficult in
the third case, when a user is giving feedback based
both on topicality and quantity. Feedback in this situ-
ation can be visualized with the adapted model of Fig-
ure 3. In relevance feedback, the user can be regarded
as specifying the probability distributions of topicality
and quantity, given that the document is ‘completely’
relevant.

We have only experimented with undirected feed-
back without further specification of probability dis-
tributions for relevance feedback. Then undirected
feedback will only increase performance when giv-
ing feedback per dimension. To explain this further,
consider the user from the motivating example having
performed a search. The ranking has been performed
on quantity, the combination of topicality and com-
ponent size. The question if the quantity-ranked set
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Figure 3: Relevance feedback

of document components can be used effectively for
blind feedback.

Compare the document set ranked on quantity with
a document set ranked on topicality only. Since it is
possible that documents with a lower topicality-only
score get a higher rank in the quantity ranking (be-
cause of a better size), using the quantity-ranked doc-
ument set for e.g. topicality feedback will worsen the
quality of the (estimated) topicality model parameters.

To update our model given relevance feedback, we
perform re-estimation of the separate dimension mod-
els. We see the document feedback set as a collec-
tion of content sources. Each content source is char-
acterized by a collection of properties which map to
relevance dimensions. For example, when consider-
ing topicality and quantity, we characterize each con-
tent source with two properties R (topicality) and R,
(quantity). Recall that we consider additional rele-
vance dimensions independent given a document in-
stantiation. We can characterize a document D, in
the feedback set, being characterized by topicality and
quantity as:

P(Dda Rt’ Rqa Qtermsa Qsize) =
P(RtlDd, Qterms)P(qudeQsize)P(Dd)

We assigned a uniform distribution to P(D;)
so we can safely leave this out of the model with-
out affecting the ranking. Using the language
model for topicality (including a A;, varying per
term) and the log-normal for quantity gives us for
P(Dd, Rta Rqa Qtems> Qsize):

{P(Dco [[%P@IDa + (1 - /\»P(m}

i=1

P(quDda Qsize)



We now want to find the set of model parameters
which maximize the likelihood (with r feedback doc-
uments):

T1 [P0 [TAP(EID) + (- 2)P(T:)

e=1 i=1

P(quDe) Qsize)

When we work the model out further for the topi-
cality and quantity dimensions only (where quantity is
modeled by a log-normal distribution) and leave out
P(D) since it is uniform, we want to maximize the
likelihood L (with r feedback documents):

T [TIXPD. + (= AP PRI Q)
e=1"i=1

or the log-likelihood A:

ZZIog(A P(TD.) + (1 -

e=1 i=1

A)P(T3))+

Z log P(Ry| De, Qsize)

e=1

Due to the independence assumption, we can divide
the estimation problem into two subproblems and up-
date each dimension separately (with r feedback doc-
uments):

A = arg max Zlog(/\ P(T;|De)+(1=X) P(Ty))
As e=1

3.1

{#*,0*} = argmax » log P(Ry|De, Qsize) (3.2)

IJ',U} e=1

For the first estimation problem in equation 3.1 we
can use EM (Hiemstra, 2000). For iteration p we use
as E-step (with r feedback documents):

r

E=3 AP P(T|D.)
CE - N)P@) + 2P PTD,)

and as M-step:

AP+

k;
"
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For the second estimation problem in equation 3.2
we can perform a maximum likelihood estimation
procedure for p and o as follows. The usual approach
to estimation of a log-normal distribution LN (u, 02)
is to consider a new data sample Y;, where ¥; =
log X;,7 = 1---n. The estimation then becomes the
estimation of a normal distribution N (u, o) for which
we can easily derive the maximum likelihood estima-
tors.

The probability density function for a normal dis-
tribution Y with mean p and standard deviation o is
described by

—= (5L

The likelihood function is given by:

- i

f¥)=

exp(—1 Lty

= Yi—p,
)t ep(-5 2 (=
The log-likelihood is given by:

exp(-5 3 (T

1
og(a\/__
Y;

1 1, Y-
—75=)" +log(exp(~3 ; —£)?)

= log(
Working this out further gives us:
_ n I~ Yi—p
A= —-nlogo — 510g27r 3 Z( = )

i=1

Taking the partial derivatives with respect to 1 and
o gives us:

El:_ - Y; — p)?
(%) 0_2;( 1)

o5}

(A

(9)

~—

Q|3

o)

—%ZY-W

We can set the partial derivatives to 0 and solve for
p and o (we know that the original normal function is



Table 1: Experimentation scenarios.

[ Scenario | Retr. Unit | Dimension(s) |
12 {tr(article)} | R:
Vo {tr(%)} R;
V3 {tr(*)} Ry, R,

positive for all values in the range, and we know there
is a single (non-local) maximum). This gives us:

n
PR?
i=1

B =

3=

* 1<
ot == (Yi-n)?
ni:l

4 Experimental Work

We participated in INEX! and implemented an XML
retrieval system based on Monet, a main-memory
database kernel.

With our system, we performed three experimen-
tation scenarios. The first scenario mimicked ‘flat-
document’ retrieval of articles, i.e. retrieval of doc-
uments which possess no structure whatsoever. The
second scenario regarded all subtrees or transitive clo-
sures in the collection as separate documents.

For the third scenario we re-used the result sets of
the second run and used the log-normal distribution
to model the quantity dimension. To penalize the re-
trieval of extremely long document components (this
in contrast with the language model that assigns a
higher probability to longer documents), as well as ex-
tremely short document components, we set the mean
at 500 (representing a user with a preference for com-
ponents of 500 words).

In all three scenarios we used the statistical lan-
guage model of subsection 2.2 to model topicality.

Table 1 summarizes our experimentation scenarios.
Note that ¢r(c) denotes the transitive closure of a doc-
ument component with root ¢ and ¢r(*) denotes the
transitive closures of all subtrees present in the origi-
nal XML syntax trees.

'XML Retrieval Initiative, see http://qmir.dcs.quw.
ac.uk/inex/index.html
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5 Conclusions and Future Work

From an informal look into our results, modeling cov-
erage by using a combination of topicality and quan-
tity (in terms of component size), using a subjec-
tive probability function for the latter, seems to work
pretty well. To be able to make this conclusion more
firmly, we need to perform further experiments on
coverage estimation, as well as other dimensions of
relevance.

For quantitatively backing up our model, we need
evaluation results of the runs as well (sadly not avail-
able at the time of finishing this paper). We plan to re-
port on the retrieval performance in our INEX work-
shop paper (List and de Vries, 2003).

In future work, we intend to perform experimen-
tation with relevance feedback and extend the model
further for other dimensions and ultimately, for the
mapping of user context to retrieval model parame-
ters.
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