
Studies in Pure Prolog: Termination *

Krzysztof R. A pt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Dino Pedreschi
Dipartimento di Informatica, Universita di Pisa

Corso Italia 40, 56125 Pisa, Italy

Abstract

We provide a theoretical basis for studying termination of logic programs with
the Prolog selection rule. To this end we study the class of left terminating pro­
grams. These are logic programs that terminate with the Prolog selection rule for
all ground goals. First we show that various ways of defining semantics coincide
for left terminating programs. Then we offer a characterization of left terminating
programs that provides us with a practical method of proving termination. The
method is proven to be complete and is illustrated by giving simple proofs of termi­
nation of the quicksort, permutation and mergesort programs for the desired class
of goals.

1 Introduction

Background

Algorithms are designed for two types of problems - decidable ones and semi-decidable
ones. In the latter case we cannot claim termination for all inputs. In the former case
we usually can and only in few cases - like interactive programs (game playing programs,
editors, ...) or operating systems, we choose not to do so.

In this paper we study termination of Prolog programs and, naturally, confine our
attention to the category of programs that terminate for all inputs. By termination
we mean here finiteness of all possible Prolog derivations starting in the initial goal.
However, in the case of Prolog programs one is confronted with the problem that an
apparently correct program may fail to terminate in this sense for certain forms of inputs.

•This research was partly done during the authors' stay at the Department of Computer Sciences,
University of Texas at Austin, Austin, Texas, U.S.A .. First author's work was partly supported by
ESPRIT Basic Research Action 3020 (Integration). Second author's work was partly supported by
ESPRIT Basic Research Action 3012 (Compulog) and by the Italian National Research Council - C.N.R ..

151

For example, the append program fails to terminate in this sense for a goal with all
arguments being variables. To cope with this complication we only require that the
program terminates for all ground inputs. In such cases only "yes" or "no" answer can
be given. We call such programs left terminating. Then to show that a Prolog program
exhibits a proper termination behaviour we first show that it is left terminating and then
that it terminates for certain types of non-ground inputs. Our method of showing the
former will also allow us to establish the latter.

When studying Prolog programs from the point of view of termination it is useful to
notice that some programs terminate for all ground goals for all selection rules. Such
programs are extensively studied in Bezem [Bez89] where they are called terminating
programs. These are usually programs whose termination depends on a simple reduction
in one or more arguments. Examples of terminating programs are append, member, N
queens, various tree insertion and deletion programs and several others.

However, some Prolog programs satisfy such a strong termination property but fail to
terminate for certain desired forms of inputs for some selection rules.

An example is the following append3 program in which the append program is used:

append3(Xs, Ys, Zs, Us) +-

append(Xs, Ys, Vs),
append(Vs, Zs, Us).

Then append3 is a terminating program which terminates for the goal +-- append3 (xs,
ys, zs, Us), where xs, y.s, zs are lists and Us a variable, when the Prolog selection
rule is used but fails to terminate when the rightmost selection rule is used.

Worse yet, some programs fail to be terminating even though they terminate for the
Prolog selection rule for the desired class of inputs. An example is the flatten program
which collects all the nodes of a tree in a list:

flatten(nil, []) +--.

flatten(t(L, X, R), Xs) +­

flatten(L, Xis),
flatten(R, X2s),
append(Xis, [X I X2s], Xs).

flatten is not a terminating program but it terminates for the goal +-- flatten (x, Xs),
where x is a ground term and Xs a variable, when the Prolog selection rule is used.

In general, the problem arises due to the use of local variables, i.e. variables which ap­
pear in the body of a clause but not in its head. Several left terminating Prolog programs
use local variables in an essential way and consequently fail to be terminating. Examples
of such programs are various sorting and permutation programs and graph searching pro­
grams. Programs which fall into this category are usually of the form "generate and test"
or "divide and conquer".

In this paper we provide a framework to study left terminating programs. To this
end we refine the ideas of Bezem [Bez89] and Cavedon [Cav89] and use the concept of a
level mapping. This is a function assigning natural numbers to ground atoms. Our main
tool is the concept of an acceptable program. Intuitively, a program is acceptable if for

152

some level mapping, for all ground instances of the clauses of the program, the level of
the head is smaller than the level of atoms in a certain prefix of the body. Which prefix
is considered is determined by some model of the program.

The main result of the paper is that the notions of left termination and acceptability
coincide. The proof of this fact uses an iterated multiset ordering. This equivalence
result provides us with a method of proving left termination. Moreover, it allows us to
prove termination of a left terminating Prolog program for a class of non-ground goals.
The method is easy to use and is illustrated by proving termination of the quicksort,
permutation and mergesort programs.

Plan of the paper

This paper is organized as follows. In the next section we introduce the concept of a
left terminating program. This is a program that terminates for all ground goals w.r.t.
Prolog selection rule. We show that left terminating programs satisfy an elegant semantic
property: the least Herbrand model of a left terminating program P is a unique fixpoint
of the immediate consequence operator Tp associated with P, can be identified with the
unique fixpoint of the 3-valued immediate consequence operator associated with P and
can be characterized in terms of the completion of P, comp(P).

In Section 3 we provide a useful characterization of left terminating programs by intro­
ducing the notion of an acceptable program and proving that the notions of acceptability
and left termination coincide. The crucial concept here is that of a bounded goal. It
allows us to characterize terminating goals.

Finally, in Section 4 we prove left termination of the quicksort, permutation and
mergesort programs by providing in each case a simple proof of acceptability. Using the
concept of boundedness we show that each program terminates w.r.t. a desired class of
non-ground goals.

Preliminaries

We use standard notation and terminology of Lloyd [Llo87] or Apt [Apt88]. In particular,
we use the following abbreviations for a logic program P (or simply a program):
Bp for the Herbrand Base of P,
Tp for the immediate consequence operator of P,
Mp for the least Herbrand model of P,
ground(P) for the set of all ground instances of clauses from P,
comp(P) for Clark's completion of P.

Also, we use Prolog's convention identifying in the context of a program each string
starting with a capital letter with a variable, reserving other strings for the names of
constants, terms or relations. So, for example X s stands for a variable whereas xs stands
for a term.

In the programs we use the usual list notation. The constant [] denotes the empty
list and [. I .] is a binary function which given a term x and a list xs produces a new list
[x I xs) with head x and tail xs. By convention, identifiers ending with "s", like xs, will
range over lists. The standard notation [x 1 , ••• , Xn] , for n ~ 0, is used as an abbreviation

153

of [x1 I [... [xnl[]] ...]]. In general, the Herbrand Universe will also contain "impure"
elements that contain [] or [. J .] but are not lists - for example s([]) or [s(O) I O] where
O is a constant and s a unary function symbol. They will not cause any complications.

Given an operator T on a complete partial ordering L with the least element ..L, we
define the upward ordinal powers of T starting at l. in the standard way and denote them
by T i a where a is an ordinal. If L has the greatest element, say T, (this is the case
when for example L is a complete lattice) we define the downward ordinal powers of T
starting at T in the standard way and denote them by T 1 a.

Throughout the paper we consider SLD-resolution with one selection rule only -
namely that of Prolog, usually called the leftmost selection rule. As Sin SLD stands for
"selection rule", we denote this form of resolution by LD (Linear resolution for Definite
clauses). The concepts of LD-derivation, LD-refutation, LD-tree, etc. are then defined
in the usual way. By "pure Prolog" we mean in this paper the LD-resolution combined
with the depth first search in the LD-trees.

By choosing variables of the input clauses and the used mgu's in a fixed way we can
assume that for every program P and goal G there exists exactly one LD-tree for PU{G}.

2 Left Termination

Our interest here is in terminating Prolog programs. This motivates the following concept.

Definition 2.1 A program P is called left terminating if all LD-derivations of P starting
in a ground goal are finite. D

In other words, a program is left terminating if all LD-trees for P with a ground
root are finite. When studying Prolog programs, one is actually interested in proving
termination of a given program not only for all ground goals but also for a class of non­
ground goals constituting the intended queries. Our method of proving left termination
will allow us to identify for each program such a class of non-ground goals.

But first let us see some simple consequences of the above definition. Following Blair
[Bla86] a program is called determinate if Tp T w = Tp 1 w.

Theorem 2.2 Every left terminating program is determinate.

Proof. By the results of Apt and Van Emden [AvE82] (see also Lloyd [Llo87]) for every
program P

= {A E Bp I there exists a successful SLD-tree for PU {+--A}},
{A E Bp I there does not exist a finitely failed SLD-tree for PU {<--A}}.

We always have Tp T w ~ Tp 1 w, since Tp is monotonic. To prove the converse inclusion
for a left terminating program P, take some A E Tp 1 w. By the second equality the

154

LD-tree for P U { +-- A} is not finitely failed. But by the choice of P it is finite, so it is
successful. Thus by the first equality A E Tp i w.

0

The converse of the above theorem does not hold - it suffices to take P = {A+- A, B}.
Then Tp j w = '/J and Tp l w = '/J but P is not left terminating.

The determinate programs, and consequently left terminating programs, enjoy some
pleasing semantic properties it is useful to record.

Theorem 2.3 For a determinate program P, Mp is the unique fixpoint ofTp.

Proof. We prefer to give a more general proof of this fact. To this end consider a
monotonic operator T on a complete lattice. Then by monotonicity
(i) for every fixpoint Y of T

T j w ~ Y ~ T l w,

(ii) Tjw ~TT (w+l) ~ T lw.
Suppose now that T j w = T l w. Then by (i) T has at most one fixpoint and by (ii)

T j w is a fixpoint ofT, since by definition T j (w + 1) = T(T j w).
The claim of the theorem now follows, since Tp is monotonic and by the result of Apt
and Van Emden [AvE82] Mp = Tp j w. 0

The other property of determinate programs is based on the theory of 3-valued models
for logic programs developed by Fitting [Fit85]. We recall first the relevant definitions
and results. Fitting [Fit85] uses a 3-valued logic due to Kleene [Kle52).

In Kleene's logic there are three truth values: t for true, f for false and u for undefined.
Every connective takes the value tor f if it takes that value in 2-valued logic for all possible
replacements of u's by t or f; otherwise it takes value u.

A Herbrand interpretation for this logic (called a 3-valued Herbrand interpretation) is
defined as a pair (T, F) of disjoint sets of ground atoms. Given such an interpretation
I = (T, F) a ground atom A is true in I if A E T, false in I if A E F and undefined
otherwise. Given I= (T,F) we denote T by J+ and F by 1-. Thus I= (J+,J-). If
J+ U 1- = Bp, we call I a total 3-valued Herbrand interpretation for the program P.

Every (2-valued) Herbrand interpretation I for a program P determines a total 3-
valued Herbrand interpretation (I, Bp-I) for P. This allows us to identify every 2-valued
Herbrand interpretation I with its 3-valued counterpart (I, Bp - I).

Given a program P, the 3-valued Herbrand interpretations for P form a complete
partial ordering with the ordering ~ defined by

and with the least element (0, 0). Note that in this ordering every total 3-valued Herbrand
interpretation is ~ -maximal.

Following Fitting [Fit85], given a program P we define an operator <£> p on the complete
partial ordering of 3-valued Herbrand interpretations for P as follows:

155

<f>p(I) = (T, F),

where

T = {A I there exists A.-.. Bi, ... , B1r. in ground(P) with B1 /\ ..• /\ B1c true in I},
F = {A I for all A.-.. Bi, ... , B1r. in ground(P), B1 /\ •.. /\ B1r. is false in I}.

It is easy to see that T and Fare disjoint, so <f>p(I) is indeed a 3-valued Herbrand
interpretation. <f>p is a natural generalization of the operator Tp to the case of 3-valued
logic. <f> p is easily seen to be monotonic. The following observation of Fitting (Fit85] is
of relevance here.

Lemma 2.4 For every program P and ordinal a

D

This implies the following results.

Lemma 2.5 For a determinate program P, Mp = <f>p j w. D

Proof. By Lemma 2.4 and the fact that Mp = Tp j w.

Corollary 2.6 For a determinate program P, Mp is the unique fixpoint of if> p.

Proof. Let Y be a fixpoint of if> p. By the monotonicity of <f> p, <f> p j w ~ Y, so by Lemma
2.5, Mp ~ Y. But Mp is a total 3-valued Herbrand interpretation so it is ~-maximal
and consequently M p = Y. D

The final characterization of the model Mp for determinate programs is in terms of
the completion comp(P).

Theorem 2.7 For a determinate program P, for all ground atoms A E Bp

Mp F A iff comp(P) F A,
Mp F -.A iff comp(P) F -.A.

Proof. Combining various completeness and characterization results (see Lloyd [Llo87]
or Apt [Apt88]) we have for every logic program P,

Tp i w FA iff comp(P) F A,
Tp l w f= -.A iff comp(P) F -.A.

156

But for a determinate program P, Mp = Tp T w = Tp l w.

Corollary 2.8 For a determinate program P

Mp = {A E Bp I comp(P) f= A},
Mp = {A E Bp I comp(P) ~ -iA}.

D

D

Thus for determinate programs, and a fortiori for left terminating programs, three most

common approaches to semantics coincide and result in a simple declarative semantics in
the form of a unique fixpoint of the Tp operator which coincides with the unique fixpoint
of the <l>p operator and which can be characterized by means of the completion comp(P).

3 Proving Left Termination

Let us consider now how to prove that a program is left terminating. Starting from

Floyd [Flo67] the classical proofs of program termination have been based on the use
of well-founded orderings. This approach has been successfully used in the area of logic

programming (see e.g. Bezem [Bez89], Cavedon [Cav89]) but with no attention paid to
Prolog programs. The notable exception is Deville [Dev90].

We obtain the desired method by a modification of the ideas of Bezem [Bez89] and
Cavedon [Cav89].

Recurrent Programs

It is useful to recall first some concepts and results from Bezem [Bez89]. A level mapping
for a program P is a function I I : Bp -; N of ground atoms to natural numbers. For

A E Bp, IA[is the level of A. Following Bezem [Bez89J (see also Cavedon [Cav89]), a
program is called recurrent if for some level mapping 11, for every clause A <-- Bi, ... , Bn
in ground(P)

IAI > I Bi I for i E [1, n].

Another relevant concept is that of boundedness: an atom A is bounded with respect

to a level mapping I I if J I is bounded on the set [A] of ground instances of A. A goal
is bounded if all its atoms are. Bezem [Bez89] showed that every SLD-derivation of a
recurrent program starting in a bounded goal terminates.

A program is called terminating, if all its S LD-derivations starting in a ground goal are
finite. Hence, terminating programs have the property that the S LD-trees of ground goals
are finite, and any search procedure in such trees will always terminate, independently
from the adopted selection rule.

One of the main results in Bezem [Bez89] is that a program is recurrent if and only
if it is terminating. Because of this result recurrent programs and bounded goals are too

157

restrict~ve :oncepts to deal. with Pro~og progr~ms, as a larger class of programs and goals
is termmatmg when adoptmg a specrfic select10n rule, e.g. Prolog selection rule.

Example 3.1
(i) Consider the following program even which defines even numbers and the "less than
or equal" relation:

evenCO) +-.

even Cs Cs CX))) +- even CX).

lte(O,Y) +-.

lte(s(X) ,s(Y)) +- lteCX,Y).

even is recurrent with leven(sn(O))I = n and llte(sn(O),sm(O))I = min{n,m}. Now con­
sider the goal:

G =+- lte(x, s100(0)), even(x)

which is supposed to compute the even numbers not exceeding 100. The LD-tree for G is

finite, whereas there exists an infinite SLD-derivation when the rightmost selection rule
is used. As a consequence of Bezem's result, the goal G is not bounded, although it can
be evaluated by a finite Prolog computation.

Actually, most "generate and test" Prolog programs are not recurrent, as they heavily
depend on the left-to-right order of evaluation, like the example above.

(ii) Consider the following naive reverse program:

reverse ([] , []) +-.

reverse([X I Xs], Ys) <-

reverse CXs, Zs),
append(Zs, [X], Ys).

append ([] , Ys, Ys) +-.

append([X I Xs], Ys, [X I Zs]) +- appendCXs, Ys, Zs).

The ground goal <- reverse(xs, ys), for arbitrary lists xs and ys, has an infinite SLD­
derivation, obtained by using the selection rule which selects the leftmost atom at the
first two steps, and the second leftmost atom afterwards. By Bezem's result, reverse is
not recurrent.

(iii) Consider the following program DC, representing a (binary) "divide and conquer"
schema; it is parametric with respect to the base, conquer, divide and merge predicates.

dc(X, Y) +­

base(X),
conquer(X, Y).

dc(X, Y) t­

divide(X ,X1,X2),
dc(X1,Y1),
dc(X2,Y2),
merge (Yi , Y2, Y).

158

Many programs naturally fit into this schema, or its generalization to non fixed arity of
the divide/merge predicates. Unfortunately, DC is not recurrent: it suffices to take a
ground instance of the recursive clause with X = a, Xl = a, Y = b, Yl = b, and observe
that the atom dc{a,b) occurs both in the head and in the body of such a clause. In this
example, the leftmost selection rule is needed to guarantee that the input data is divided
into subcomponents before recurring on such subcomponents. D

Acceptable Programs

To cope with these difficulties we modify the definition of a recurrent program as follows.

Definition 3.2 Let P be a program, 11 a level mapping for P and I a (not necessarily
Herbrand) model of P. P is called acceptable with respect to 11 and I if for every clause
A +- Bi, . .. , B.,. in ground(P)

IAI > IB•I for i E [1, n],

where

n = min({n} U {i E [1,n] I I~ Bi}).

Alternatively, we may define n by

_ { n if I f= B1 /\ ... /\ B.,.,
n = i if I f= B1 /\ •.. I\ Bi-1 and I ~ B1 /\ · · · /\ Bi.

P is called acceptable if it is acceptable with respect to some level mapping and a
model of P. D

Thus, given a level mapping 11 for P and a model I of P, in the definition of accept­
ability w.r.t. 11 and I for every clause At- B1, .. . ,B.,. in ground(P) we only require that
the level of A is higher than the level of Bi's in a certain prefix of Bi, ... , En· Which B;'s
are taken into account is determined by the model I. If I f= B1 I\ ... /\ B.,. then all of
them are considered and otherwise only those whose index is :::; n, where n is the least
index i for which I~ Bi.

The idea underlying the above definition can be illustrated by the following example.
Consider a program P containing the clause

p(X) +- q(X, Y),r(Y)

and a model I of P. Consider two ground instances

159

(c1) p(a) <- q(a,b),r(b),
(c:i) p(a) <- q(a,c),r(c)

of this clause (assuming that the constants a, b, c are in the Herbrand Universe of P) and
suppose that q(a, b) E I but q(a, c) rf_ I. To prove acceptability, a level mapping 11 is
supposed to satisfy

jp(a)I > lq(a, b)j and jp(a)j > jr(b)j

for clause (c1), but only
jp(a)j > jq(a, c)j

for clause (c2)- Intuitively, the condition q(a, c) rf_ I excludes (by the soundness of the
S LD-resolution) the existence of a refutation for q(a, c) and consequently there is no point
in checking that the level mapping decreases from p(a) to r(c), since the Pro log interpreter
will never reach r(c) during the execution starting with the goal<- p(a).

The following observation is immediate.

Lemma 3.3 Every recurrent program is acceptable.

Proof. Take I= Bp. Then for every A<- Bi, ... ,Bn in ground(P), ii= n. 0

Our aim is to prove that the notions of acceptability and left termination coincide.

M ultiset ordering

To prove one half of this statement we use the multiset ordering. A multiset, sometimes
called bag, is an unordered sequence. Given a (non-reflexive) ordering< on a set W, the
multiset ordering over (W, <) is an ordering on finite multisets of the set W. It is defined
as the transitive closure of the relation in which X is smaller than Y if X can be obtained
from Y by replacing an element a of Y by a finite (possibly empty) multiset ea.eh of whose
elements is smaller than a in the ordering <.

In symbols, first we define the relation -< by

X -< Y iff X = Y - {a} U Z for some Z such that b < a for b E Z,

where X, Y, Z a.re finite multisets of elements of W, and then define the multiset ordering

over (W, <) as the transitive closure of the relation -<.
It is well-known (see e.g. Dershowitz [Der87]) that multiset ordering over a well­

founded ordering is again well-founded. Thus it can be iterated while maintaining well­
foundedness.

What we need in our case is two fold iteration. We start with the set of natural numbers
N ordered by < and apply the multiset ordering twice. We call the first iteration multiset
ordering and the second double multiset ordering. Both are well-founded. The double
multiset ordering is defined on the finite multisets of finite multisets of natural numbers,
but we shall use it only on the finite sets of finite multisets of natural numbers. The
following lemma will be of help when using the double multiset ordering.

160

Lemma 3.4 Let X and Y be two finite sets of finite multisets of natural numbers. Suppose
that

Vx E X 3y E Y (y majorizes x),

where y majorizes x means that x is smaller than y in the multiset ordering.
Then X is smaller than Y in the double multiset ordering.

Proof. We call an element y E Y majorizing if it majorizes some x E X. X can be
obtained from Y by first replacing each majorizing y E Y by the multiset My of elements
of X it majorizes and then removing from Y the non-majorizing elements. This proves
the claim. D

Below we use the notation bag (a1, •.. ,a,,) to denote the multiset consisting of the
unordered sequence ai, ... , a,.,.

Boundedness

Another important concept is boundedness. It allows us to identify goals from which no
divergence can arise. Recall that an atom A is called bounded w.r.t. a level mapping 11 if
11 is bounded on the set [A] of ground instances of A. If A is bounded, then l[A] I denotes
the maximum that 11 takes on [A]. Note that every ground atom is bounded.

Our concept of a bounded goal differs from that of Bezem [Bez89) in that it takes into
account the model I. This results in a more complicated definition.

Definition 3.5 Let P be a program, 11 a level mapping for P, I a model of P and k 2::: 0.

(i) With each ground goal G = +- Ai, ... , An we associate a finite multiset IGl1 of
natural numbers defined by

IGl1 = bag (!Ad, ... , IA1d),

where
n= min({n} U {iE[l,n)II~A}).

(ii) With each goal G we associate a set of multisets l[GJl1 defined by

l[GJl1 = {IG'l1 I G' is a ground instance of G}.

(iii) A goal G is called bounded by k w.r.t. 11 and I if k 2::: f. for f. E ul[G]j1.

A goal is called boundedw.r.t. 11 and I if it is bounded by some k 2::: 0 w.r.t. 11 and
I.

D
It is useful to note the following.

~emma 3.6 Let P be a program, 11 a level mapping for P and I a model of P. A goal G
is bounded w.r.t. 11 and I iff the set l[GJl1 is finite.

161

Proof. Consider a goal G that is bounded by some k. Suppose that G has n atoms.
Then each element of l[GJl1 is a multiset of at most n numbers selected from [O, kj. The
number of such multisets is finite.

The other implication is obvious. D

The following lemma is an analogue of Lemma 2.5 of Bezem [Bez89j.

Lemma 3.7 Let P be a program that is acceptable w.r.t. a level mapping 11 and a model
I. Let G be a goal that is bounded (w.r.t. 11 and I) and let H be an LD-resolvent of G
from P. Then

(i) H is bounded,

(ii) I [HJ 11 is smaller than I [G] 11 in the double multiset ordering.

Proof. Let G =+-Ai, ... , An(n 2:: 1). For some input clause C =A+- Bi, ... , Bk(k 2:: 0)
and mgu 8 of A and Ai, H =+-(Bi, ... , Bk, A2, .. . , An)B.

First we show that for every ground instance H0 of H there exists a ground instance
G' of G such that IHol1 is smaller that IG'l1 in the multiset ordering.

So let H0 be a ground instance of H. For some substitution 8

Ho=+- B~, .. . , B~, A~, ... ,A~

and A~ is ground, where for brevity for any atom, clause or goal B, B' denotes B86. Note
that

and

since A'= A~ as AB = A18.

Case 1 For i E [1,k] Ip B;.
Then

C' = A~ +- B~, .. . , B~

G' =+-A~, ... , A~,

I Hair= bag (IB~ I, ... , IB~I, IA~I, ··.,IA~!)

where
ii= min({n} U {i E [2,n] I ~A:}).

Additionally, since I is a model of P, I p A~. Thus

\G'lr = bag (\A~j, \A~j, .. . , \A~I).

This means that \H0 11 is obtained from IG'l1 by replacing IA~j by IB~j, . .. , IB~I- But
by the definition of acceptability

IB!\ < \A~I

162

for i E [1, k], so I Hair is smaller than IG'lr in the multiset ordering.

Case 2 For some i E [1, k] I~ B~.
Then

IHolr = bag(JBa ... , IB.W

where
k = min({i E [1,k] I I~ EH).

Also by the definition of acceptability

1sn < IA~I

for i E [1, k], so IHolr is smaller than IG'lr in the multiset ordering.

0

D

This implies claim (i) since G is bounded. By Lemma 3.6 I [HJ 11 is finite and claim (ii)
now follows by Lemma 3.4. D

Corollary 3.8 Let P be an acceptable program and G a bounded goal. Then all LD­
derivations of PU { G} are finite.

Proof. The double multiset ordering is well-founded.

Corollary 3.9 Every acceptable program is left terminating.

Proof. Every ground goal is bounded.

LD-trees

D

D

To prove the converse of Corollary 3.9 we analyze the size of finite LD-trees. To this end
we need the following lemma, where nodesp(G) for a program P and a goal G denotes
the number of nodes in the LD-tree for PU { G}.

Lemma 3.10 (LD-tree) Let P be a program and G a goal such that the LD-tree for
P U { G} is finite. Then

{i) for all substitutions B, nodesp(GB) :::; nodesp(G),

{ii) for all prefixes H of G, nodesp(H) :::; nodesp(G),

{iii) for all non-root nodes H in the LD-tree for PU {G}, nodesp(H) < nodesp(G).

Proof. (i) By an application of a variant of the Lifting Lemma (see e.g. Lloyd [Llo87]) to
LD-derivations we conclude that to every LD-derivation of P U {GB} with input clauses

163

C1 , C2, .. . , there corresponds an LD-derivation of PU {G} with input clauses Ci, C2 , ...

of the same of larger length. This implies the claim.
(ii) Consider a prefix H = t- A1 , .. . , A., of G = t- Ai, ... , A,,, (n 2: k). By an appropriate
renaming of variables (formally justified by the Variant Lemma 2.8 in Apt [Apt88]) we can
assume that all input clauses used in the LD-tree for PU{ H} have no variables in common
with G. We can now transform the LD-tree for PU{H} into an initial subtree of the LD­
tree for PU { G} by replacing in it a node +-- B1 , .• • , Bi by+-- B 1 , ... , Bi, A1c+1 B, .. . ,A,,8,
where () is the composition of the mgu's used on the path from the root H to the node
t- B1, .• . , B1. This implies the claim.
(iii) Immediate by the definition. D

As stated at the beginning of Section 2, we are interested in proving not only left termina­
tion of a program, but also its termination for a class of non-ground goals. We now show
that the concepts of acceptability and boundedness provide us with a complete method
for proving both properties.

Theorem 3.11 Let P be a left terminating program. Then for some level mapping I I
and a model I of P

(i) P is acceptable w.r.t. 11 and I,

(ii) for every goal G, G is bounded w.r.t. I I and I iff all LD-derivations of PU { G}
are finite.

Proof. Define the level mapping by putting for A E B p

!Al = nodesp (+-- A).

Since P is left terminating, this level mapping is well defined. Next, choose

I = {A E Bp I there is an LD-refutation of PU { t- A}}.

By the strong completeness of SLD-resolution, I= Mp, so I is a model of P.
First we prove one implication of (ii).

(iil) Consider a goal G such that all LD-derivations of PU { G} are finite. We prove that
G is bounded by nodesp(G) w.r.t. 11 and I.

To this end take l E Uj[G]j1. For some ground instance t- Ai, .. . ,An of G and
i E [1, n), where

fi= min({n} U {i E [1,n] JI~ Ai}),

we have l = I A I· We now calculate

nodesp(G)

> {Lemma 3.10 (i)}

164

nodesp(+-Ai, ... , An)
> {Lemma 3.10 (ii)}

nodesp(+- Ai, ... , An.)

> {Lemma 3.10 (iii), noting that for j E [1,n -1]

there is an LD-refutation of PU {+-Ai, ... , Ai}}

nodesp(+- A;, ... , An.)

> {Lemma 3.10 (ii)}

nodesp (+-A;)

= {definition of 11}

IAI
= £.

(i) We now prove that P is acceptable w.r.t. 11 and I. Take a clause A+- Bi, ... , En in
P and its ground instance AB +- Ei 8, ... , EnB. We need to show that

IABI > IE;BI for i E [1, n],

where
fi = min({n} U {i E [1,n] I I~ B;B}).

We have ABB= AB, so AB and A unify. Letµ= mgu(AB, A). Then 8 = µ8 for some
8. By the definition of LD-resolution, +- Eiµ, .. ., Enµ is an LD-resolvent of+- AB.

Then for i E [1, fi]

IABI
= {definition of 11}

nodesp (+- AB)

> {Lemma 3.10 (iii), +- Eiµ, .. ., Enµ is a resolvent of +- AB}

nodesp (+- Eiµ, .. . , Enµ)

> {part (iil), noting that E;B E UI[+- B1µ,. . . , Enµ]l 1 }

IB;BI.

(ii2) Consider a goal G which is bounded w.r.t. 11 and I. Then by (i) and Corollary 3.8
all LD-derivations of PU { G} are finite. 0

Corollary 3.12 A program is left terminating iff it is acceptable.

Proof. By Corollary 3.9 and Theorem 3.11. 0

165

4 Applications

The equivalence between the left terminating and acceptable programs provides us with
a method of proving termination of Prolog programs. The level mapping and the model
used in the proof of Theorem 3.11 were quite involved and relied on elaborate information
about the program at hand which is usually not readily available. However, in practical
situations much simpler constructions suffice. The level mapping can be usually defined
as a simple function of the terms of the ground atom and the model takes into account
only some straightforward information about the program. We illustrate it by means of
three examples.

First, we define by structural induction a function 11 on ground terms by putting:

l[xlxs]i = lxsl + 1,
lf(xi, ... ,xn)I= OifjoJ: [.l.J.

It is useful to note that for a list xs, lxsl equals its length. The function 11 is called
listsize in Ullman and Van Gelder [UvG88]. It will be used in the examples below.

Quicksort

Consider the following program QS (for quicksort):

(qsi) qs(O, []) +-.
(qs2) qs([X I Xs], Ys)+-

f(X, Xs, X1s, X2s),
qs(X1s, Y1s),
qs (X2s, Y2s),
a(Y1s, [X I Y2s], Ys).

(Ji) f(X, [], [], []) +-.
(h) f(X, [Y I Xs], [Y I Y1s], Y2s) +­

X > Y,
f(X, Xs, Y1s, Y2s).

(!J) f (X, [Y I Xs] , Y1s, [Y I Y2s]) +-
X 5_ Y,
f(X, Xs, Y1s, Y2s).

(ai) a([], Ys, Ys) +-.
(a2) a([X I Xs], Ys, [X I Zs]) +-

a(Xs, Ys, Zs).

We assume that QS operates on the domain of natural numbers over which the builtin
relations > and :::;, written in infix notation, are defined. This domain can be incorpo­
rated into the Herbrand universe of QS by adding to the language of QS the constant 0
and the successor functions (for example by adding to QS the clause s(O) > 0 +-.).

166

Denote now the program consisting of the clauses (!1), (!2), (h) by filter, and the
program consisting of the clauses (a1), (a2) by append.

Lemma 4.1 filter is recurrent with lf(x,xs,xls,x2s)I = lxsl. D

We adopted here the simplifying assumption that builtins >and :s; are recurrent with
the level mapping Is> tl = 0 and Is::; tl = 0.

Lemma 4.2 append is recurrent with la(xs,ys,zs)I = lxsl.

Lemma 4.3 QS is not recurrent.

Proof. Consider clause (qs2) instantiated with the ground substitution

{X/a, Xs/b, Ys/c, Xls/[alb], Yls/c}.

D

Then the ground atom qs([alb], c) appears both in the head and the body of the resulting
clause. D

To prove that QS is left terminating we show that it is acceptable. We define an
appropriate level mapping 11 by extending the ones given in Lemma's 4.1 and 4.2 with

lqs(xs,ys)I = lxsl.

Next, we define a Herbrand interpretation of QS by putting

I= {qs(xs,ys)llxsJ=lysl}
U {f(x, xs, yls, y2s) J lxsl = Jylsl + ly2sl}
U { a(xs, ys, zs) I lxsl + IYsl = lzsl}
U (X>Y]
u [X::;Y].

Recall that [A] for an atom A stands for the set of all ground instances A.

Lemma 4.4 I is a model of QS.

Proof. First, note that l[JI + IYsl = Jysl and that lxsl + IYsl = lzsl implies l[xlxsJI + JysJ =
l[xJzs]I. This implies that I is a model of append.

Next, note that I[JI + I[]J = I[JI and that lxsJ = lylsJ + Jy2sJ implies l[ylxsJI =
l[ylyls]I + ly2sJ and l[yJxs]I = Jylsl + l[yly2s]I. This implies that I is a model of filter.

Finally, note that l[JI = l[]I and that JxsJ = lxlsl + lx2sl, lxlsl = lylsl, lx2sJ = ly2sl
and lylsl + l[xly2s]I = lysl imply l[xlxs]I = IYsl. This implies that I is a model of QS. D

We now prove the desired result.

Theorem 4.5 QS is acceptable w.r.t. 11 and I.

Proof. As filter and append are recurrent w.r.t. 11, we only need to consider clauses
(qs1) and (qs2). (qs1) satisfies the appropriate requirement voidly.

167

Consider now a ground instance C of (qs2). C is of the form At- B1, IJ.i, B3, B4• We
now prove three facts which obviously imply that C satisfies the appropriate requirement.

Fact 1 !Al > IB1l­

Proof. Note that

lqs([xlxs],ys)JI = l[xlxs]I > lxsl = IJ(x,xs,xls,x2s)I.

Fact 2 Suppose I != B1. Then IAI > IB2I and !Al > !Bal·

Proof. By assumption lxsl == lxlsl + lx2sl, so

lqs([xlxs], ys)I > lxsl ~ lxlsl = lqs(xls, yls)I

and analogously
lqs([xlxs],ys)I > lqs(x2s,y2s)I.

Fact 3 Suppose I != B1 and I f= B2. Then IAI > IB41·

0

0

Proof. By Fact 2 lqs([xlxs], ys)I > lqs(xls, yls)I = lxlsl and by assumption lxlsl =
lylsl, so

lqs([xlxs].ys)I > jylsl = la(yls,[xly2s],ys)I.

0
D

So far we only proved that QS is left terminating. We now prove that it terminates for
a large class of goals.

Lemma 4.6 For all terms t, ti, ... , t1c, k 2'.: 0, a goal of the form

+- qs([t1, . .. , t1cJ, t)

is bounded w.r.t. 11 and I.

Proof. Let A be a ground instance of qs([ti, ... , t1:], t). Then IAI = l[ti, ... , tkJI = k, so
I t- Al1 = bag(k). Hence t- qs([t1, ... , tk], t) is bounded by k w.r.t. 11 and /. D

It is worth noting that every "ill typed" goal t- qs(s,t), where sis a non-variable,
non-list term is also bounded w.r.t. 11 and I, as ls'I = 0 for every ground instances' of s.

Corollary 4. 7 For all terms t, ti, ... , tk, k 2'.: 0, all LD-derivations of
QS U{ t- qs([t1 , ••• , t1c], t)} are finite.

Proof. By Corollary 3.8. 0

168

Permutation

Consider now the following program PERM (for permutation) studied in Plumer [Plii90b] :

(P1) p(O, []),_.
(P2) p(Xs, [X I Ys]),_

a(X1s, [XIX2s], Xs),
a(X1s, X2s, Zs),

p(Zs, Ys)).

augmented by the clauses (a1) and (a2) which form the append program defining the
relation a.

The intention is to invoke p with its first argument instantiated. Clause (P1) states
that the empty list is a permutation of itself. Clause (p2) takes care of a non-empty list
xs - one should first split it into two sublists xls and [xlx2s] and concatenate xls and
x2s to get zs. If now ys is a permutation of zs, [xlys] is a permutation of xs.

Lemma 4.8 PERM is not recurrent.

Proof. By Theorem 2.8 of Bezem [Bez89] every recurrent program P is terminating,
which means that all SLD-derivations of P starting with a ground goal are finite. But
the SLD-derivation of PERM U{,_ p(xs, [xlys])} with xs,x,ys ground, in whose second
goal the middle atom a(xls, x2s, zs) is selected, diverges when clause (a2) is repeatedly
used. Thus PERM is not terminating and so it is not recurrent. 0

We now prove that PERM is acceptable. First, we define a level mapping by putting

lp(zs, ys)I = lzsl + 1,
la(xls, x2s, zs)I = min(lxlsl, lzsl).

Next, we define a Herbrand interpretation I by putting

I = [p(Zs,Ys)]
U {a(xls,x2s,zs) I lxlsl + lx2sl = lzsl}.

Lemma 4.9]•is a model of PERM.

Proof. I is trivially a model of (p1) and (p2). In the proof of Lemma 4.4 we showed that
I is also a model of append. O

We can now prove the desired result.

Theorem 4.10 PERM is acceptable w.r.t. 11 and].

Proof. It is easy to see that append is recurrent w.r.t. 11, so we only need to consider
clause (P2). Let C = A ,_ B1, B2, Ba be a ground instance of (p2). The required condition
for C is implied by the following three facts.

Fact 1 IA! > IB1 I·

Proof. Note that

169

jp(xs, [xiys])I = lxsl + 1 > lxsl ~ min(lxlsl, lxsl) = la(xls, [xlx2s],xs)I.

Fact 2 Suppose I f= B1. Then IA! > IB2I·

Proof. By assumption lxlsl + l[xlx2s]I = lxsl, so

lp(xs, [xlys])I = lxsl + 1 > jxlsl ~ min(jxlsj, lzsl) = ja(xls, x2s, zs)I.

Fact 3 Suppose I f= B1 and I f= B2. Then IAI > IBal·

Proof. By assumption lxlsl + l[xjx2s]I = lxsl and lxls! + jx2s! = lzs!, so

jp(xs, [xlys])I = lxsl + 1 > lxsl = lxlsl + lx2sl + 1=lzsl+1 = lp(zs, ys)I.

Also, we have the following.

Lemma 4.11 For all terms t, ti, ... , t1c, k ~ 0, a goal of the form

is bounded w.r.t. 11 and I.

Proof. The same as that of Lemma 4.6.

Corollary 4.12 For all terms t, t1, ... , t1c, k ~ 0, all LD-derivations of
PERM U{ +- p([t1 , .•. , t1c], t)} are finite.

Proof. By Corollary 3.8.

0

0

D

D

D

D

It is useful to note that we had to use here for append a different level mapping than
the one used in the proof of acceptability of QS. With the original level mapping for
append, PERM is not acceptable w.r.t. any model. Indeed, consider a ground instance A
of the head of (p2). Let C =A +- Bi, B2 , B3 be a ground instance of (p2) in which the
variable Xls is instantiated to some ground term t with ltl = IAI. Then with the original
level mapping for append we have IAI = ltl = IBd.

In contrast, the level mapping for append used in Theorem 4.10 can also be used in
the proof of acceptability of QS.

170

Mergesort
Finally, consider the following program MS (for mergesort) taken from Ullman and Van
Gelder [UvG88]:

(ms1) ms(O, []) +--.

(ms2) ms ([X] , [X]) +--.

(ms3) ms([X I [Y I Xs.]], Ys) +-

s([X I [Y I Xs]], X1s, X2s),
ms(X1s, Y1s),
ms(X2s, Y2s),
m(Y1s, Y2s, Ys).

(s1) s(O, D. 0) +--.

(s2) s([X I Xs], [X I Ys], Zs) +­

s(Xs, Zs, Ys).

(m1) m([],Xs,Xs)+-.
(m2) m(Xs, D, Xs) +--.

(ma) m([X I Xs], [Y I Ys], [X I Zs]) +­

X ~Y,
m(Xs, [Y I Ys], Zs).

(Tn.4) m([X I Xs], [Y I Ys], [Y I Zs]) +-

X > Y,
m([X I Xs], Ys, Zs).

We assume that MS operates on the same domain as QS. The intention is to invoke ms
with its first argument being an unsorted list. Clause (ms3) takes care of non-empty list
of length at least 2. The idea is first to split the input list in two lists of roughly equal
length (note the reversed order of parameters in the recursive call of s), then mergesort
each sublist and finally merge the resulting sorted sublists.

· Denote the program consisting of the clauses (s1), (s2) by split, and the program
consisting of the clauses (m1), (m2), (m3), (Tn.4) by merge.

Lemma 4.13 split is recurrent with ls(xs,xls,x2s)I = lxsl. D

Lemma 4.14 merge is recurrent with lm(xs,ys,zs)I = lxsl + IYsl. D

Lemma 4.15 MS is not recurrent.

Proof. Analogous to that of Lemma 4.3. D

We now show that MS is acceptable. We define an appropriate level mapping 11 by
extending the ones given in Lemma's 4.13 and 4.14 with

lms(xs,ys)I = lxsl + 1.

171

Next, we define a Herbrand interpretation of MS by putting

I = {ms(xs,ys)l lxsl = IYsl}
U {s(xs,yls,y2s) I lylsl = r!xsl/2l,IY2sl = Llxsl/2J}
U {m(xs,ys,zs)l lxsl + IYsl = lzsl}
U [X>Y]
U [X:S: Y].

Lemma 4.16 I is a model of MS.

Proof. First, note that l[]I + lxsl = lxsl, lxsl + l[]I = lxsj, lxsj + l[yjys]I = lzsl implies
l[xlxs]l+l[ylys]I = l[xlzs]I, and that l[xJxs]l+lysl = lzsJ implies l[xJxsJl+l[yJys]J = l[yJzs]I.
This implies that I is a model of merge.

Next, note that l[JI = J[]J and l[x]I = l[x]I imply that I is a model of (ms1) and
(ms2). Moreover, lxlsJ = rl[xl[ylxs]] l/21 and lx2sl = lJ [xl[ylxslJl/2 J imply l[xl[ylxs]]I =
lxlsl + lx2sl, which, together with lxlsl = lylsl, lx2sl = lylsl and lylsl + ly2sl = IYsl,
imply l[xl[ylxs]]I = IYsl. This implies that I is a model of (ms3).

Next, note that l[JI = rl[Jl/21 and l[JI = Ll[]l/2J imply that I is a model of (s1).

Finally, to see that I is a model of (s2), consider an atom s(xs, zs, ys) EI. The following
two cases arise.
Case 1 lxsl = 2k, k ~ 0. By assumption, lzsl = k and Jysl = k. This implies l[xJys]J =
k + 1 = ll[xlxs]l/21 and Jzsl = k = Ll[xlxs]l/2J.
Case 2 Jxsl = 2k + 1, k 2::: 0. By assumption, lzsl = k + 1 and lysJ = k. This implies
l[xlys]I = k + 1 = Jl[xJxs]l/21 and lzsl = k + 1 = Ll[xlxs]l/2J.

In both cases we conclude that s([xlxs], [xlys],zs) E J, i.e. I is a model of (s2). 0

We now prove the desired result.

Theorem 4.17 MS is acceptable w. r. t. 11 and I.

Proof. As split and merge are recurrent w.r.t. I I, we only need to consider clauses
(ms1), (ms2) and (ms3). (ms1) and (ms2) satisfy the appropriate requirement voidly.

Consider now a ground instance C = +- Bi, B2, B3, B4 of (ms3). We prove three facts
which imply that C satisfies the appropriate requirement.

Fact 1 IAI > IB1 I·

Proof. Note that

lms([xl[ylxs]], ys)]) I = l[xl[ylxs]]J + 1 > l[xl[ylxs]JI = Js([xl[ylxs]], xls, x2s)J.

Fact 2 Suppose I f= B1. Then IAI > IB2I and JAI > IB31·

0

Proof. By assumption lxlsl = fl[xl[ylxs]]l/21 and Jx2sJ = lJ[xl[yJxslJl/2J, which implies
lfxl[yJxsJll > Jxlsl and l[xl[ylxs]JI > Jx2sl, as l[xl[ylxslJI > 1. Hence

lms([xl[ylxs]], ys)I = I [xl[ylxs]] I + 1 > lxlsJ + 1 = Jms(xls, yls)I

172

and analogously
Jms([xl[y!xs]],ys)I > lms(x2s,y2s)I.

D

Fact 3 Suppose I I= B1, I I= B2 and Ip B3. Then IAJ > IB41·

Proof. By assumption !ms([xJ[yJxs]],ys)J > l(xl[Ylxs]]J = lxlsl + lx2sJ and Jxlsl =
lylsl, Jx2sJ = Jy2sl, so

Jms([xJ[yJxs]],ys)J > JylsJ + Jy2sJ = Jm(y1s,y2s,ys)J.

Additionally, we have the following.

Lemma 4.18 For all terms t, t1, ... , t1o, k ~ 0, a goal of the form

is bounded w.r.t. J 1 and I.

Proof. The same as that of Lemma 4.6.

Corollary 4.19 For all terms t, t 1 , .•. , t1c, k ~ 0, all LD-derivations of
MS U{ +-- ms([ti, ... , t1c], t)} are finite.

Proof. By Corollary 3.8.

5 Conclusions

Assessment of the method

D
D

0

0

Our approach to termination is limited to the study of left terminating programs, so it is
useful to reflect how general this class of programs is. The main result of Bezem [Bez89]
states that every total recursive function can be computed by a recurrent program. As
recurrent programs are left terminating, the same property is shared by left terminating
programs.

For a further analysis of left terminating programs we first introduce the following
notions, essentially due to Dembinski and Maluszynski (DM85]. We follow here the pre­
sentation of Pliimer [Plii90a]. Given an n-ary relation symbol p, by a mode for p we mean
a function dp from {1, ... , n} to the set { +, - }. We write dp in a more suggestive form
p(dp(l), .. . , c4,(n)).

Modes indicate how the arguments of a relation should be used. If ~(i) ='+',we call
i the input position of p and if dv(i) = '-', we call i the output position of p (both w.r. t.
dv) . The input positions should be replaced by ground terms and the output positions
by variables. This motivates the following notion.

173

Given a mode <1p for a relation p, we say that an atom A= p(ti, .. ., t,.,) respects <1p if
for i E [1, n], t.; is ground if i is an input position of p w.r.t. <1p and t.; is a va.riable if i is
an output position of p w.r.t. <1p.

A mode for a program P is a function which assigns to each relation symbol of P a
non-empty set of modes. Given a mode for a program P, we say that an atom A respects
moding if A respects some mode in the set of modes associated with the relation p used
in A.

As an example consider the mode for the program append represented by the following
set:

{append(+,+, -), append(-,-,+)}.

It indicates that append should be called either with its first two arguments ground and
the third being a variable, or with its first two arguments being a variable and the third
argument ground. Then any atom append(xs, ys, zs), where either xs, ys are ground and
zs is a variable, or xs, ys are variables and zs is ground, respects moding.

The following simple theorem shows that the property of left termination is quite
natural.

Theorem 5.1 Let P be a program wi.th a mode such that for all atoms A which respect
moding, all LD-derivations of PU {+-A} are finite. Then P is left terminating.

Proof. Consider a ground atom A. A is a ground instance of some atom B which respects
moding. By a variant of the Lifting Lemma applied to the LD-resolution we conclude
that all LD-derivations of PU { +- A} a.re finite. This implies that P is left terminating.
D

The assumptions of the above theorem are satisfied by an overwhelming class of Prolog
programs.

As Theorem 3.11 shows, the method presented in this paper is a complete method for
proving termination of Prolog programs. We believe that it is also a useful method, since
it allows us to factore termination proofs into simpler, separate proofs, which consist of
checking the guesses for the level mapping I I and the model I. Moreover, the method
is modular, because termination proofs provided for subprograms can be reused in later
proofs.

In this pa.per, the method is used as an "a posteriori" technique for verifying termi­
nation of existing Prolog programs. However, it could also provide a guideline for the
program development, if the program is constructed together with its termination proof.
A specific level mapping and a model could suggest, in particular, a specific ordering of
atoms in clause bodies.

It is worth noting that some fragments of the proof of accceptability can be automated,
at least in the case of the applications presented in Section 4. In our examples, where the
function listsize is used, the task of checking the guesses for both the level mapping 11 and
the model I can be reduced to checking the validity of universal formulas in Presburger

174

arithmetic, which is a decidable theory. To illustrate this point, consider the following
guess I for a model for the program PERM:

I = {p(zs,ys) I lzsl = IYsl}
U {a(xls,x2s,zs) I lxlsl + jx2sl = lzsl}.

To show that I is a model of, say, clause (p2), we have to prove the following implication:

{a(xls, [xJx2s],xs),a(xls,x2s, zs),p(zs,ys)} ~I:=.} p(xs, [xlys]) EI.

By homomorphically mapping lists onto their lengths, i.e. by mapping [] to 0 and [: I .]
to the successor functions(.), we get the following formula of Presburger arithmetic:

n1 + n2 + 1 = n /\ n1 + n2 = k /\ k = m :=.} n = m + 1

where n1 = lxlsj, n2 = jx2sl, n = Jxs!, k = jzsj, m = lysl.
Analogous considerations apply to the verification of the level mapping.

Finally, it is useful to notice a simple consequence of our approach to termination. By
proving that a program P is acceptable and a goal G is bounded, we can conclude by
Corollary 3.8 that the LD-tree for PU { G} is finite. Thus, for the leftmost selection rule,
the set of computed answer substitutions for PU { G} is finite and consequently, by virtue
of the strong completeness of SLD-resolution, we can use the LD-resolution to compute
the set of all correct answer substitutions for PU { G}. In other words, query evaluation
of bounded goals can be implemented using pure Prolog.

Related work

Of course the subject of termination of Prolog programs has been studied by others.
Without aiming at completeness we mention here the following related work.

Vasak and Potter [VP86] identified two forms of termination for logic programs -
existential and universal one and characterized the class of universal terminating goals
for a g;\·en program with selected selection rules. However, this characterization cannot
be easily used to prove termination. Using our terminology, given a program P, a goal G
is universally terminating w.r.t. a selection rule R if the SLD-tree for PU { G} via. R is
finite.

Baudinet [Bau88] presented a method for proving termination of Prolog program in
which with ea.eh program a system of equations is associated whose least fixpoint is the
meaning of the program. By analyzing this least fixpoint various termination properties
can be proved. The main method of reasoning is fixpoint or structural induction.

Ullman and Van Gelder [UvG88] considered the problem of automatic verification of
termination of a Prolog program and a. goal. In their approach first some sufficient set
of inequalities between the sizes of the arguments of the relation symbols are generated,
and then it is verified if they indeed hold. Termination of the programs studied in the
previous section is beyond the scope of their method.

This approach was improved in Plumer [Plii90b], [Plii90a], who allowed a more general
form of the inequalities and the way sizes of the arguments are measured. This resulted

175

in a more powerful method. Both the quicksort and the permutation programs studied
in the previous section can be handled using Pliimer's method. However, the mergesort
remains beyond its scope.

Deville [Dev90] also considers termination in his proposal of systematic program de­
velopment. In his framework, termination proofs exploit well-founded orderings together
with mode and multiplicity informa-tion, the latter representing an upper bound to the
number of answer substitutions for goals which respect a given mode. For instance, a.
termination proof of the program DC of Example 3.l(iii) for the goal ~ dc(x, Y) would
involve verification of the following statements (assuming that x is a ground term):

l. the goal ~ divide(x,Xl,X2) respects moding, and both Xl and X2 are bound
to ground terms, xl and x2 respectively, by any computed answer substitution for
such a goal;

2. both xl and x2 are smaller than x w.r.t. some well-founded ordering;

3. the mode divide(+,-, -) has a finite multiplicity.

Our approach seems to be simpler as it relies on fewer concepts. Also, it suggests a
more uniform methodology. On the other hand, in Deville's approach more information
about the program is obtained.

References

[Apt88] K. R. Apt. Introduction to logic programming. Technical Report CS-R8826,
Centre for Mathematics and Computer Science, 1988. To appear in "Handbook
of Theoretical Computer Science", North Holland (J. van Leeuwen, ed.).

[AvE82] K. R. Apt and M. H. van Emden. Contributions to the theory of logic program­
ming. J. ACM, 29(3):841-862, 1982.

[Bau88]

[Bez89]

[Bla86]

[Cav89]

M. Baudinet. Proving termination properties of PROLOG programs. In Pro­
ceedings of the Srd Annual Symposium on Logic in Computer Science {LICS),
pages 336-347, Edinburgh, Scotland, 1988.

M. Bezem. Characterizing termination of logic programs with level mappings.
In E. L. Lusk and R. A. Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 69-80. The MIT Press, 1989.

H. A. Blair. Decidability in the Herbrand Base. Manuscript (presented at
the Workshop on Foundations of Deductive Databases and Logic Programming,
Washington D.C., August 1986), 1986.

L. Cavedon. Continuity, consistency, and completeness properties for logic pro­
grams. In G. Levi and M. Martelli, editors, Proceedings of the Si:i:th International
Conference on Logic Programming, pages 571-584. The MIT Press, 1989.

176

[Dev90] Y. Deville. Logic Programming. Systematic Program Development. International
Series in Logic Programming. Addison-Wesley, 1990.

[DM85] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking
for annotated logic programs. In Proceedings of the International Symposium
on Logic Programming, pages 29-38, Boston, 1985.

[Fit85] M. Fitting. A Kripke-Kleene semantics for general logic programs. Journal of
Logic Programming, 2:295-312, 1985.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proceedings Symposium
on Applied Mathematics, 19, Math. Aspects in Computer Science, pages 19-32.
American Society, 1967.

[Kle52] S. C. Kleene. Introduction to Metamathematics. van Nostrand, New York, 1952.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[Plii90a] L. Plumer. Termination Proofs for Logic Programs. Lecture Notes in Artificial
Intelligence 446, Springer-Verlag, Berlin, 1990.

[Plii90b] L. Plumer. Termination proofs for logic programs based on predicate inequal­
ities. Jn D. H. D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming, pages 634-648. The MIT Press,
1990.

[UvG88] J. D. Ullman and A. van Gelder. Efficient tests for top-down termination of
logical rules. J. ACM, 35(2):345-373, 1988.

[VP86] T. Vasak and J. Potter. Characterization of terminating logic programs. In
Proceedings of the 1986 IEEE Symposium on Logic Programming, 1986.

