
Moa and the Multi-model Architecture: A New
Perspective on NF2

M. van Keulen1 , J. Vonk1, A.P. de Vries2 , J. Flokstra1 • and H.E. Blok1

1 Center for Telematics and Information Technology (CTIT)
University of Twente,

Enschede, The Netherlands
{keulen,vonk,flokstra,blok}©eemcs.utwente.nl

2 Centrum voor Wiskunde en Informatica,
Amsterdam. The Netherlands

arjen©cwi.nl

Abstract. Advanced non-traditional application domains such as geographic in
formation systems and digital library systems demand advanced data management
support. In an effort to cope with this demand, we present the concept of a novel
multi-model DBMS architecture which provides evaluation of queries on com
plexly structured data without sacrificing efficiency. A vital role in this architecture
is played by the Moa language featuring a nested relational data model based on
XNF2 , in which we placed renewed interest. Furthermore, extensibility in Moa
avoids optimization obstacles due to black-box treatment of ADTs. The combina
tion of a mapping of queries on complexly structured data to an efficient physical
algebra expression via a nested relational algebra, extensibility open to optimiza
tion, and the consequently better integration of domain-specific algorithms, makes
that the Moa system can efficiently and effectively handle complex queries from
non-traditional application domains.

1 Introduction

Advanced non-traditional applications, such as digital library systems (DL) and ge
ographic information systems (GIS), place high demands on their data management
components. Data in these areas is intrinsically complex and voluminous in nature and
queries are computationally intensive. Researchers have sought to cope with these de
mands in different directions. In section 2, we explore these directions focussing on data
model and DBMS architecture as a motivation for our multi-model DBMS architecture,
as well as the particular role the logical algebra Moa plays in this architecture.

The multi-model DBMS architecture consists of three layers each supporting a dif
ferent data model. In this way, the top conceptual layer provides a data model supporting
complexly structured data, while in the logical and physical layers, a query on complexly
structured data is gradually transformed to efficient storage-level operations. To be able
to bridge the gap between a conceptual-level data model (e.g., a hierarchical or object
oriented data model) and a storage-level data model, we place renewed interest in Non
First Normal Form (NF2) data models, which were popular in the 80s, but proved diffi
cult to support efficiently with then available technology. The Moa data model, used in

V. Mai'lk et al. (Eds.): DEXA 2003, LNCS 2736, pp. 67-76, 2003.
@ Springer-Verlag Berlin Heidelberg 2003

Moa and the Multi-model Architecture 69

showed that a pure relational schema performed better in most cases than a schema using
OR features such as set-valued attributes.

Furthermore, encapsulation of data and operations inside objects or ADTs affect
query evaluation: optimization by the DBMS becomes infeasible, and query processing
too often results in object-at-a-time evaluation. Predator's E-ADT concept [161 improves
upon this by implementing an optimization interface to facilitate optimization of a query
plan using its own algebraic operations. The E-ADT approach adheres to the open
implementation approach, known from the software engineering field [14]. Instead of
building an ADT as a black box, it provides a meta-interface (see Figure 1) allowing a
client oftheADT to make certain performance choices. A typical example is a program's
advice to the operating system to adjust its caching strategy to a (sequential) memory
access pattern.

Multi-model DBMS architecture. To be able
to deal with the trade-off between complex
data model and performance, [22] introduces
the multi-model DBMS architecture with dif
ferent data models on different layers (see Fig
ure 2) as opposed to ordinary relational sys
tems, which use the relational model through
out the DBMS architecture. The conceptual
layer typically has an 00 data model or a hi
erarchical semi-structured one (e.g., XML).
We choose other, 'simpler' data models for
the logical and physical layers. Obviously, this

Physical ~j ~i
layer ii 5

>< ><
"1.l "1.l

Storage layer

(flat) JNF

comes at a cost, namely additional mappings Fig. 2. The multi-model DBMS architecture
between layers, that map a query expression and our choice for data models.

from one language to another. A typical choice
for a data model and algebra on the physical level, is one close to the machine, for exam
ple, relational algebra, or, what we have used in some cases, the binary relational data
model of main-memory DBMS MonetDB [3].

The XNF2-data model [15] is very suitable as intermediary data model for bridging
the gap (logical layer) between a complex data model and a simple relational one. It
handles complex data structures as nested relations, but still comes with an algebra that
is not much more complex than an ordinary relational one. The idea of a DBMS based
on XNF2 [9] lost interest when it appeared too difficult to build one that performed well.
In the sequel, we show our adaptation of the XNF2 data model and its effective use in
our multi-model DBMS prototype, called Moa.

Summarizing, the Moa DBMS prototype with its multi-model architecture has the
potential of better meeting the demands of advanced application domains. By using dif
ferent data models on different layers, it is possible to provide a complex data model
at the top and still be able to evaluate queries efficiently. We achieve the latter through
several provisions: (1) by utilizing an XNF2-based algebra as an intermediary, queries
on complexly structured data are gradually and effectively translated to efficient storage
level operations, (2) extensibility at all layers allows to better integrate domain-specific
algorithms into the DBMS, thus improving the performance of domain-specific opera-

68 M. van Keulen et al.

the logical layer of the architecture, is an adaptation and extension of (X)NF2 for which
we developed an approach towards efficient query evaluation. Another key feature of our
approach is extensibility on all layers to be able to integrate domain-specific algorithms
such that certain optimization obstacles concerning ADTs are avoided.

The strength of the Moa system lies in the combination of architecture, data models,
the mappings between them, and the way extensibility is handled. This paper provides
an overview of the entire concept necessarily leaving out much detail and focussing on
architecture and data models. The more interested reader is referred to [21].

In Section 3, we present Moa's approach to query processing. The Moa language
is illustrated by means of an example in Section 4. The ideas behind Moa have been
validated and fine-tuned in various advanced application domains, such as GIS and
multi-media retrieval, an overview of which is given in Section 5. Finally, we present
our conclusions and future work in Section 6.

2 Motivation and Related Research

In the past decade, the following trade-off particularly eluded researchers when trying to
make DBMS technology better suitable to non-traditional applications. On the one hand,
it concerns data model expressiveness. The suitability of a DBMS for an application is
closely related to the expressiveness of its data model. The data model of the conceptual
level should fit the universe of discourse, since end-users have to understand this model
of the real world in order to formulate their queries. To support the inherently complexly
structure data of many application areas, advanced data models were proposed, such as
the object-oriented and object-relational data models. On the other hand, performance
is expected from the DBMS, which typically means that it should be able to effectively
optimize queries. The more complex the data model, however, the harder it is to develop
an effective optimizer, as research on OODBMSs clearly showed.

Garlic [8] is an example of a system that integrates special-purpose data servers us
ing object wrappers. Unfortunately, even with its advanced optimizer that uses statistics
from the wrappers, performing such processing outside the scope of the database system
may cause serious performance degradation, see, e.g., [11). Full-fledged OODBMSs do
not meet demands either. Often data independence is not handled well: the application
class structure dictates physical layout of data and user-interfaces were non-declarative.
As known from RDBMSs, data independence is essential for scalability and data distri
bution. But even with a declarative query language and the ability to convert 00 item
oriented thinking into set-oriented query plans, which 0 2 [1] both mastered, OODBMSs
never became the success as anticipated.

r---.,
base· base interface

program j
Bt";e~'.n~rface

program
L - - .J

In the DBMS market today, the object-relational (OR) data
model dominates claiming to be simple enough for query op
timization, but expressive enough to handle advanced applica
tion areas. As Date and Darwen point out in [10], extensibility
with user-defined data types does not require a new data model
per se. However, as the Bucky benchmark has shown, room for

Fig. I. Open implemen- improvement concerning performance exists [6]. Designed to
tation. evaluate especially the extra features of the OR data model, it

70 M. van Keulen et al.

tions, and (3) extensibility in Moa is defined such that extensions are not black-boxes,
but are open to the optimizer, hence, possible optimizations can be better exploited.

In the following section, we present Moa's approach to XNF2-based query processing
within the multi-model architecture.

3 Query Processing in Moa

As early as 1982, Schek and Pistor argued that the relational data model is inconvenient
for a domain like information retrieval [15]. To overcome these shortcomings, they
propose a NF2 data model dropping the first normal form (lNF) requirement to allow
non-atomic attribute domains such as sets of values. Many theoretical properties of the
relational model also hold for NF2 • The main difference between NF2 and eXtended
NF2 (XNF2) data models such as that of the AIM DBMS [9], is that XNF2 supports
additional data types such as lists and allows for arbitrary nesting of type constructors.

The main part of the work on NF2 concerns the definition of algebras, not their
function: facilitate efficient query evaluation. With the latter, problems are encountered
including inefficient nested-loop processing, data redundancy, restructuring overhead
and the infamous COUNT-bug [18), since in the presence of empty subsets, unnest is not
the inverse of nest. [17) has made a large contribution to the area of query optimization
of nested relational algebras with, e.g., the introduction of a special nestjoin-operator.

Moa is an extension of XNF2, where not only
type constructors can be arbitrarily nested, but also
new type constructors can be added. Moa addition
ally incorporates a solution to the mentioned NF2

query processing problems. It does this by keep
ing an explicit structure definition in the form of

!Di
type constructors connected to unnested (flat) data,
and by having both nest/unnest operators as well as
navigators, such as map. Furthermore, it deals with
the COUNT-bug by explicitly generating counter
acting operations where needed. ~ 6

7 I b
c

Example (see Figure 3). Suppose, our database
db is structured as a set of sets of n-tuples: db E

Fig. 3. Nested data and flat data.

PP Vi x ... x Vn where P is the powerset operator and Vi are domains of atomic values.
Choosing subsets of Vi as v1 = {a, b, c} and v2 = {11, 12, 13}, a concrete db can look
like db = {{(a, 11), (b, 12)}, {}, { (c, 13)}}. Our generic mapping represents db as type
constructors (rounded rectangles) connected to the following flat data:

ID1 =set of as many unique id's as there are subsets in the database. (1)

I D2 =set of as many unique id's as there are n-tuples in the database. (2)

SI = subset index as a set of pairs ~ I D 1 x I D2 (3)

Ai= columns as a set of pairs~ ID2 x Vi (i E {1, 2}) (4)

The figure furthermore illustrates the distinction between a value and an identified
value set (or ivs). A column does not represent one atomic value, but a set of atomic val
ues. The TUPLE structure constructed from A1 and A2 represents a set of tuples, called

/ Moa
xpr. Moa

rewrite step

Columns

Tables

/
/Mon

; result
structure

Column
operntions

Columns

Tables

Moa and the Multi-model Architecture 71

/
/ Moa

result
strucrure

Columns
Table

operations

Tables

Execution

1\
/ \

/
/ Moa\ Retrieve

result \ and
1 structure \---~ format

1 result

Columns

Result tables

Fig- 4. Moa query evaluation steps.

an ivs, rather than one tuple value. The SET structure above it introduces a partitioning
of this set of tuples according to SI, hence representing a set of sets, rather than one set,
so it too is an ivs. The top-most SET doesn't introduce another partitioning, but only
wraps things in a proper (nested) value and, therefore, is a value. All stmctures in Moa
have a value and an ivs form.

Note that, based on SI alone, it is impossible to determine that one or more empty
subsets exists. Part of solving the COUNT-bug is the representation of an empty subset
as an occurrence in the third argument of SET ivs (I D 1) and no occurrence in the first
(SI).

Each operator in our language is defined on structure and data level. For example, the
count has the effect of converting a set-of-set-structured argument to a set-of-atomic
structured result (structure level), while at the same time generating a grouped count
operation on the flat data connected to that result structure (data level). In other words,
a query in Moa is translated into both a physical algebra expression on fiat data, and an
explicit conversion from argument to result structure.

This two-level approach to query evaluation is illustrated in Figure 4. The general
form of a query is a Moa expression which uses columns from underlying tables 1 (the
leftmost pyramid). In the first rewrite step, Moa operations are mapped onto their re
spective column operations and result structure (second pyramid). This step converts a
query on a nested structure to operations on flat data, which, being a rewrite operation
independent of data volume, causes only minimal overhead. In the third pyramid, the
column operations have been translated to the table operations of the physical layer. The
third step performs the actual execution of the table operations producing result tables
connected to a Moa result structure. An example of the rewrite process is given at the
end of the next section.

4 Moa Logical Language

As explained, the Moa logical language is based on XNF2 and is described here by
means of the well-known example of an organisation that has departments and employees
that work in those departments. In terms of XNF2 , an organisation consists of a set of
departments, which in turn consist of sets of employees.

1 Until now, we have used relational tables as physical storage representation of a column, but

this is theoretically not obligatory.

72 M. van Keulen et al.

A specific instantiation of such an organisation 1s
shown in the organisation diagram presented in Figure 5.
It contains three departments, one with three, another
with two employees, and the technical healtcare depart
ment has no employees (yet), as it is a newly founded
department. Each department has a name and address at
tribute. Each employee has a name and a salary attribute.

University

Name: Mathematks
Address: Park lane 5

Name: Jones
Salar : 175.000

Name: Field
Salary: 275.000

Name: Technical Healthcare
Address: Ocean Drive 20

Name: Computer Science
Address: Part Jane 5

Name: Smith
Salary: I 00.000

Name: Johnson
Salary: 75.000

Name: Bing
Salary: 150.000

In traditional lNF relational terms, the department
entity has a multi-valued attribute (i.e., the employees),
which requires a transformation into a seperate entity and
relationship if stored in a strict lNF relational database.
In the Moa system however, the nested structure of the
schema can be preserved. Figure 6 shows the entire struc
ture specification of the example organisation in the Moa
logical language. At first glance, without knowing the
Moa language, one sees that the organisation is modeled Fig. 5. Example organisation
more naturally, since the nesting is preserved and not structure.
flattened as in lNF.

The structures Atomic, TUPLE, and SET in Figure 6 together form the kernel struc
tures available in the Moa system. They constitute the NF2 data model. Moa is open to
the definition of additional structures, called extensions, that may support NF2 's arbi
trary nesting. An example is the FV structure representing a feature vector intended for
multi-media retrieval applications.

SET(jDepartment:_keyj,
TUPLE(Atanic(!Department: DNamel) : dname,

Atanic(!Department: DAddressl) : dllifdrt.«,
SET(IDepEmp:_matchl,

TOPLE(AtOllli.c(!Employee: ENamel) : ename,
Atomic(JEmp~: Salary!) : .ia/ary
) : Employee,

!Department: _keyJ
) :Employm

) : Department
) : University

Fig. 6. Schema of University.

The syntax for type construction is a struc
ture identifier, followed by a number of argu
ments and an optional label. The argument for
Atomic is a column identifier which directly
references the data stored in the underlying
DBMS (cf., A.1 and A.2 in Figure 3). For ex
ample, I Department: DNamel refers to the
DName column of the Department table in an
RDBMS. The label is used as a convenience
mechanism to be able to reference the struc-
ture.

The TUPLE type constructor represents the theoretical notion of a product structure
that consists of one or more Moa structures of any type. The SET type constructor
represents a collection of Moa structures. The unrestricted nesting of type constructors
makes it, in particular with this type constructor, possible to support the arbitrary nesting
of the NF2 data model. The arguments of SET include an index2 mapping, the structure
of the elements of this set, and the index of the set that encloses the specified set (cf.,
SI, TUPLE(A1, A2), and I D1 in Figure 3, respectively).

In the example above, the index mapping and enclosing set index are represented by
I DepEmp : _match I and I Department: _keyl, respectively. Those are special column
identifiers disclosing database schema information. In this case, it maps primary keys of

2 ln relational terms, an index is the same as the primary key of a table.

Moa and the Multi-model Architecture 73

departments to primary keys of employees. Thus, the IDepEmp : _match I column con
tains the relationship (CS,Smith), (CS,Johnson), (CS,Bing), (M,Jones), and (M,Field),
where CS is 'Computer Science' and M is 'Mathematics'.

Several operations are defined on the kernel structures, of which the most important
ones are listed below.

select [m] (op); The select-operation is similar to the select-operation ofrelational
algebra. The modifier m specifies the selection criterion and the operand op specifies
the argument on which the selection should be applied.

attr (op, l); The attr-operation is Moa's equivalent of projection, i.e., it evaluates
to the attribute referenced by label l of its tuple-valued argument. In a modifier, it
can be abbreviated by '%l'.
map [m] (op); The map-operation is a navigational operator: it evaluates modifier
m for each of the elements of operand op and collects the results in a SET structure.

- join [m1, m2] (op 1 , op2); The join-operation joins the two operands op 1 and
op2 based on equality of the modifiers m1 and m2 , similar to the join-operation in
relational algebra.

flatten (op); The flatten-operation converts a set of subsets to one set by taking the
union of all subsets, i.e., it removes one level of nesting.
count (op); This is an example of an aggregate function and shown in the example
of Figure 7 to illustrate that Moa correctly handles the COUNT-bug as explained in
Section 3.

II Que1Y 4· no couni-bug with Moa:
map[TUPLE<%dname, count(%Emplo'i"es)>)(UniwrsilV);

JI QueryS example join operation·
·a1n)%daddress. %addressJ(UnM!rsitV. Z1pcodes))

II Que1Y 6: optimization example
II structure-operation (flatten) = cheap

ounl(flatten(map{%Employees) (Umwrsil\r))).
If count + groupby + sum • e•penslve

sum[THISJ(map(count(%Employees)J (Unl"l!rsl1',l);

Fig. 7. Screendump of Moa System.

Note that the structure specification
of Figure 6 is stored in the data dic
tionary of the system under the name
"University" and can be used in queries
directly.

Figure 7 shows a screen dump of
the graphical user interface (GUI) of
the Moa system. In the figure, the top
part of the GUI represents the input
area and shows a number of exam
ple queries. The results of a query ex
ecution are presented in the bottom
part of the GUI. In this case, Query 4
has been executed. The resulting ele
ment ("Technical Healthcare", 0)
illustrates the correct handling of the

COUNT-bug, which would otherwise be missing from the result. Although without
showing results, query 5 shows the use of the join-operation, and query 6 illustrates two
equivalent expressions for the same query, hence offering an optimization opportunity.
The underlying database used here is a relational DBMS.3

3 The Moa system currently supports IBM DB2, PostgreSQL, MySQL, and MonetDB.

74 M. van Keulen et al.

l<fD<ry) c<p{Tlll'LE('Miamt, count(%£mp/11yee.r))l(Univmil)')
(step I) SIT(C1, TUPLE(Atcaiic(!Department: O~amel), Atomic(C2)))

C1 = fDepartment:_keyJ
c, = gtrcm:(OJterJoir,(!Oepartment: _key!.!EmpDll?: _i11Verael))

(step l) S&T(!Department :_key!,
TUPLE(Atomic(!Department: DNamel), Atomic(jtmp1: _cntl))
)

:rpC,ou:er'.oinlD•partment.:Jllt:r.ll>er • E•floyee.DNO)
·.rp':•agq:egat•(count (tlil>O .mn:berJ, :mp(l.ONl:lllb<;rJ

As an illustration of the rewrite
steps of Figure 4, the rewrite process for
example Query 4 is shown in Figure 8.
The map and attr operations rewrite to
the result structure representing a set of
department tuples identified by C1. The
count operation rewrites to the column
expression C2. In the second step, col-

Fig. 8. Query rewrite steps for Query 4. umn expression c2 produces a column
that takes the _cnt attribute from the result of the extended relational algebra (XRA)
expression4 tmpl (table operation).

Besides the operations and structures described in this section, others are available in
the Moa system, e.g., the nest and unnest operations. However, due to space limitations,
it is infeasible to present an exhaustive list. The reader is referred to [21].

5 Application Areas and Context

The validity of the Moa concept described so far, can best be seen by looking at the
various projects in which Moa played a central role. The ideas for Moa and multi-model
architecture originate from the Magnum-project [5,4]. In this project, a structurally
object-oriented DBMS was developed for the purpose of efficiently integrating spatial
and thematic data in a single data manager. Decomposition and extensibility were the key
features of this project. In terms of the multi-model architecture, the Magnum system
consisted of two layers: the main-memory DBMS MonetDB as physical layer and Moa as
logical layer. This architecture could be extended in two ways. First, new base types could
be defined in MonetDB, e.g., polygon, together with a large set of spatial operators on
these primitive base types. Secondly, Moa's structural extensibility was used to support
structures like polygonal maps and triangulations, next to the conventional tuple and
set. Moa mapped these structures to MonetDB's binary data model, meaning that the
structured data was decomposed in binary tables. Experiments showed that the Magnum
system performed well on the Sequoia benchmark [19]. ,.--, ,---------"'\

The experiences with the Moa!MonetDB combination, es- ' ' , Ne~ :r~i".'.'t~n~ _ ,,
I

pecially with the combination of base type and structural ex- , ""§ , "==c="=""=·e=rtu=a=11=ay=er==:
tensibility, sparked off new efforts. In the Mirror and AMIS : :~] :
projects, the ideas for an extensible DBMS architecture based : ui g: :

Logical layer

Moa n!gchra

on Moa and MonetDB were further developed in the realm I I column algehra ' - - ,, of text and multi-media retrieval. Mirror concentrated on a i. Physical layer
generic multi-media retrieval framework based on belief net- F=1 F==1
works. Experiments showed its feasibility for content-based ~ ~
retrieval for text, images, and music [12,22]. Since paralleli
sation and fragmentation in the physical layer is orthogonal
to the logical layer, the architecture design seems to be better

Fig. 9. SUMMER feder-
ated architecture.

4 XRA [13] is a relational algebra extended with aggregates. The aggregate operation preforms
the aggregate function in the first argument on the groups determined by the second argument.

Moa and the Multi-model Architecture 75

prepared to scale up. The AMIS-project explored this idea by studying the optimization
of top-N IR-queries in a fragmented context [2].

In all three projects described above, the integration of data and algorithms from non
traditional application domains in a single data manager was a central theme. Much the
matic (tabular) data related to GIS or multi-media objects, however, resides in RDBMSs
with existing applications running on them. Therefore, in the SUMMER-project [20],
the multi-model architecture was taken one step further by using Moa as a kind of data
management middleware, driving both MonetDB and 'normal' RDBMSs (see Figure 9)
simultaneously. This allows the 'addition' of, for example, multi-media retrieval func
tionality to an existing federated information system. Also in SUMMER, we developed
an XML-based conceptual layer providing a subset ofXQuery [23]. This will make the
DBMS suitable to be used in web-based environments, providing a more convenient
way of managing large XML data volumes with, among others, integrated and efficient
multi-media retrieval.

6 Conclusions and Future Work

In this paper, we presented the concepts behind the Moa system: the multi-model DBMS
architecture and the Moa logical algebra which plays an important role therein. In order
to support demanding applications like GIS or digital libraries, one needs an expressive
conceptual data model supporting complexly structured data. Expressiveness is not the
only requirement. Since the managed data is often voluminous and queries complex,
performance is an important aspect as well. The multi-model architecture supports ex
tensibility in all three layers thus enabling to integrate domain-specific algorithms in an
effective way. Furthermore, the extensibility mechanism of the Moa language used in
the logical layer, has been designed in such a way that optimization across extensions
is possible. This alleviates the black-box ADT problem, which prohibits the optimizer,
for example, to push projections and selections through ADT-operators.

To be able to bridge the gap between an expressive conceptual data model and an
efficient simple physical data model, the nested relational intermediary proved effective.
We placed renewed interest in XNF2 algebra, adapted and extended it, and worked on
new ways for efficient query evaluation. This resulted in the Moa language. We regard
its role to be vital in the success of the multi-model architecture.

In several projects, a prototype DBMS evolved into what is now called the Moa
system. The genericity, extensibility, and performance of the system were put to the test
in real-life applications.

In current and future projects, the Moa system continues to be used as our experi
mentation platform, which imposes a ongoing demand for perfecting the extensibility
and efficiency of the system. Moreover, we are exploring the realm of category theory in
search for ways to fundamentally improve the Moa and column algebra. Further effort
on distribution support is aimed at facilitating the construction of federated systems in
more advanced ways. Finally, the focus of the CIRQUID-project [7] is the integration
of information retrieval and databases to provide support for full text search in XQuery.

76 M. van Keulen et al.

References

1. F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-Oriented Database
System: The Story of 02. Morgan Kaufmann Publishers, 1992.

2. H.E. Blok, A.P. de Vries, H.M. Blanken, and P.M.G. Apers. Experiences with IR Top N
optimization in a main memory DBMS: Applying 'the database approach' in new domains.
In ?roes of BNCOD 18, LNCS 2097, pages 126-151, July 2001.

3. P.A. Boncz and M.L. Kersten. MIL primitives for querying a fragmented world. VLDB
Journal, 8(2):101-119, 1999.

4. P.A. Boncz, W. Quak, and M.L. Kersten. Monet and its geographic extensions: A novel
approach to high performance GIS processing. In Procs of EDBT'96, Avignon, France,
LNCS 1057, pages 147-166, March 1996.

5. P.A. Boncz, A.N. Wilschut, and M.L. Kersten. Flattening an object algebra to provide per
formance. In Procs of ICDE'98, Orlando, USA, pages 568-577, February 1998.

6. M.J. Carey, D. J. De Witt, J.P. Naughton, M. Asgarian, and et al. The BUCKY object-relational
benchmark (experience paper). In Procs of ACM SJGMOD '97, Tucson, Arizona, USA, pages
135-146, May 1997.

7. The CIRQUID project website, 2003. http: I /viww. cs. utwente .nl/-cirquid.
8. W.F. Cody, L.M. Haas, W. Niblack, M. Arya, and et al. Querying multimedia data from

multiple repositories by content: the Garlic project. In Procs ofVDB 3, Lausanne, Switzerland,
IFIP 34, pages 17-35, March 1995.

9. P. Dadam, K. Klispert, F. Andersen, H.M. Blanken, and et al. A DBMS prototype to support
extended NF2 relations: An integrated view on flat tables and hierarchies. In Procs of ACM
SIGMOD'98, Washington, D.C., USA., pages 356-367, May 1986.

10. C.J. Date and H. Darwen. Foundation for Object/Relational Databases: the Third Manifesto.
Addison-Wesley, 1998.

11. A.P. de Vries, B. Eberman, and D.E. Kovalcin. The design and implementation of an infras
tructure for multimedia digital libraries. In Procs of IDEAS'98, Cardiff, U.K., pages 103-120,
July 1998.

12. A.P. de Vries, M.G.L.M. van Doorn, H.M. Blanken, and P.M.G. Apers. The Mirror MMDBMS
architecture. In Procs ofVWB'99, Edinburgh, U.K., pages 758-761, Sep. 1999.

13. Paul W. P. J. Grefen and Rolf A. de By. A multi-set extended relational algebra - a formal
approach to a practical issue. In Procs of ICDE'94, Houston, USA, pages 80-88, Feb. 1994.

14. G. Kiczales, J. Lamping, C. Videira Lopes, C. Maeda, and et al. Open implementation design
guidelines. In Procs of ICSE'97, Boston, USA., pages 481-490, 1997.

15. H.-J. Schek and P. Pistor. Data structures for an integrated data base management and infor
mation retrieval system. In ?roes ofVWB'82, Mexico City, pages 197-207, Sep. 1982.

16. P. Seshadri and M. Paskin. PREDATOR: An OR-DBMS with enhanced data types. In Procs
of ACM SIGMOD'97, Tucson, USA, pages 568-571, May 1997.

17. H. Steenhagen. Optimization of Object Query Languages. PhD thesis, Uni. ofTwente, 1995.
18. H.J. Steenhagen, P.M.G. Apers, and H.M. Blanken. Optimization of nested queries in a

complex object model. In ?roes of EDBT'94, Cambridge, U.K., pages 337-350, 1994.
19. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000 benchmark. In Procs

of ACM SIGMOD'93, Washington, D.C., USA., pages 2-11, May 1993.
20. The SUMMER project website, 2003. http: I /WVIVI. cs. utwente.nlrsummer.
21. M. van Keulen, J. Vonk, A.P. de Vries, J. Flokstra, and H.E. Blok. Moa: extensibility and

efficiency in querying nested data. Technical Report 02-19, Centre for Telematics and Infor
mation Technology, University of Twente, The Netherlands, 2002.

22. A.P. de Vries. Content and Multimedia Database Management Systems. PhD thesis, University
of Twente, 1999.

23. XQuery 1.0: An XML query language, 2003. http: I !ww .vi3 .org/TR/xquery/.

