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Abstract. Advanced non-traditional application domains such as geographic in
formation systems and digital library systems demand advanced data management 
support. In an effort to cope with this demand, we present the concept of a novel 
multi-model DBMS architecture which provides evaluation of queries on com
plexly structured data without sacrificing efficiency. A vital role in this architecture 
is played by the Moa language featuring a nested relational data model based on 
XNF2 , in which we placed renewed interest. Furthermore, extensibility in Moa 
avoids optimization obstacles due to black-box treatment of ADTs. The combina
tion of a mapping of queries on complexly structured data to an efficient physical 
algebra expression via a nested relational algebra, extensibility open to optimiza
tion, and the consequently better integration of domain-specific algorithms, makes 
that the Moa system can efficiently and effectively handle complex queries from 
non-traditional application domains. 

1 Introduction 

Advanced non-traditional applications, such as digital library systems (DL) and ge
ographic information systems (GIS), place high demands on their data management 
components. Data in these areas is intrinsically complex and voluminous in nature and 
queries are computationally intensive. Researchers have sought to cope with these de
mands in different directions. In section 2, we explore these directions focussing on data 
model and DBMS architecture as a motivation for our multi-model DBMS architecture, 
as well as the particular role the logical algebra Moa plays in this architecture. 

The multi-model DBMS architecture consists of three layers each supporting a dif
ferent data model. In this way, the top conceptual layer provides a data model supporting 
complexly structured data, while in the logical and physical layers, a query on complexly 
structured data is gradually transformed to efficient storage-level operations. To be able 
to bridge the gap between a conceptual-level data model (e.g., a hierarchical or object
oriented data model) and a storage-level data model, we place renewed interest in Non 
First Normal Form (NF2 ) data models, which were popular in the 80s, but proved diffi
cult to support efficiently with then available technology. The Moa data model, used in 
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showed that a pure relational schema performed better in most cases than a schema using 
OR features such as set-valued attributes. 

Furthermore, encapsulation of data and operations inside objects or ADTs affect 
query evaluation: optimization by the DBMS becomes infeasible, and query processing 
too often results in object-at-a-time evaluation. Predator's E-ADT concept [ 161 improves 
upon this by implementing an optimization interface to facilitate optimization of a query 
plan using its own algebraic operations. The E-ADT approach adheres to the open 
implementation approach, known from the software engineering field [14]. Instead of 
building an ADT as a black box, it provides a meta-interface (see Figure 1) allowing a 
client oftheADT to make certain performance choices. A typical example is a program's 
advice to the operating system to adjust its caching strategy to a (sequential) memory 
access pattern. 

Multi-model DBMS architecture. To be able 
to deal with the trade-off between complex 
data model and performance, [22] introduces 
the multi-model DBMS architecture with dif
ferent data models on different layers (see Fig
ure 2) as opposed to ordinary relational sys
tems, which use the relational model through
out the DBMS architecture. The conceptual 
layer typically has an 00 data model or a hi
erarchical semi-structured one (e.g., XML). 
We choose other, 'simpler' data models for 
the logical and physical layers. Obviously, this 

Physical ~j ~i 
layer ii 5 

>< >< 
"1.l "1.l 

Storage layer 

(flat) JNF 

comes at a cost, namely additional mappings Fig. 2. The multi-model DBMS architecture 
between layers, that map a query expression and our choice for data models. 

from one language to another. A typical choice 
for a data model and algebra on the physical level, is one close to the machine, for exam
ple, relational algebra, or, what we have used in some cases, the binary relational data 
model of main-memory DBMS MonetDB [3]. 

The XNF2-data model [ 15] is very suitable as intermediary data model for bridging 
the gap (logical layer) between a complex data model and a simple relational one. It 
handles complex data structures as nested relations, but still comes with an algebra that 
is not much more complex than an ordinary relational one. The idea of a DBMS based 
on XNF2 [9] lost interest when it appeared too difficult to build one that performed well. 
In the sequel, we show our adaptation of the XNF2 data model and its effective use in 
our multi-model DBMS prototype, called Moa. 

Summarizing, the Moa DBMS prototype with its multi-model architecture has the 
potential of better meeting the demands of advanced application domains. By using dif
ferent data models on different layers, it is possible to provide a complex data model 
at the top and still be able to evaluate queries efficiently. We achieve the latter through 
several provisions: (1) by utilizing an XNF2-based algebra as an intermediary, queries 
on complexly structured data are gradually and effectively translated to efficient storage
level operations, (2) extensibility at all layers allows to better integrate domain-specific 
algorithms into the DBMS, thus improving the performance of domain-specific opera-
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the logical layer of the architecture, is an adaptation and extension of (X)NF2 for which 
we developed an approach towards efficient query evaluation. Another key feature of our 
approach is extensibility on all layers to be able to integrate domain-specific algorithms 
such that certain optimization obstacles concerning ADTs are avoided. 

The strength of the Moa system lies in the combination of architecture, data models, 
the mappings between them, and the way extensibility is handled. This paper provides 
an overview of the entire concept necessarily leaving out much detail and focussing on 
architecture and data models. The more interested reader is referred to [21]. 

In Section 3, we present Moa's approach to query processing. The Moa language 
is illustrated by means of an example in Section 4. The ideas behind Moa have been 
validated and fine-tuned in various advanced application domains, such as GIS and 
multi-media retrieval, an overview of which is given in Section 5. Finally, we present 
our conclusions and future work in Section 6. 

2 Motivation and Related Research 

In the past decade, the following trade-off particularly eluded researchers when trying to 
make DBMS technology better suitable to non-traditional applications. On the one hand, 
it concerns data model expressiveness. The suitability of a DBMS for an application is 
closely related to the expressiveness of its data model. The data model of the conceptual 
level should fit the universe of discourse, since end-users have to understand this model 
of the real world in order to formulate their queries. To support the inherently complexly 
structure data of many application areas, advanced data models were proposed, such as 
the object-oriented and object-relational data models. On the other hand, performance 
is expected from the DBMS, which typically means that it should be able to effectively 
optimize queries. The more complex the data model, however, the harder it is to develop 
an effective optimizer, as research on OODBMSs clearly showed. 

Garlic [8] is an example of a system that integrates special-purpose data servers us
ing object wrappers. Unfortunately, even with its advanced optimizer that uses statistics 
from the wrappers, performing such processing outside the scope of the database system 
may cause serious performance degradation, see, e.g., [11). Full-fledged OODBMSs do 
not meet demands either. Often data independence is not handled well: the application 
class structure dictates physical layout of data and user-interfaces were non-declarative. 
As known from RDBMSs, data independence is essential for scalability and data distri
bution. But even with a declarative query language and the ability to convert 00 item
oriented thinking into set-oriented query plans, which 0 2 [1] both mastered, OODBMSs 
never became the success as anticipated. 

r---., 
base· base interface 

program j 
Bt";e~'.n~rface 

program 
L - - .J 

In the DBMS market today, the object-relational (OR) data 
model dominates claiming to be simple enough for query op
timization, but expressive enough to handle advanced applica
tion areas. As Date and Darwen point out in [10], extensibility 
with user-defined data types does not require a new data model 
per se. However, as the Bucky benchmark has shown, room for 

Fig. I. Open implemen- improvement concerning performance exists [6]. Designed to 
tation. evaluate especially the extra features of the OR data model, it 
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tions, and (3) extensibility in Moa is defined such that extensions are not black-boxes, 
but are open to the optimizer, hence, possible optimizations can be better exploited. 

In the following section, we present Moa's approach to XNF2-based query processing 
within the multi-model architecture. 

3 Query Processing in Moa 

As early as 1982, Schek and Pistor argued that the relational data model is inconvenient 
for a domain like information retrieval [15]. To overcome these shortcomings, they 
propose a NF2 data model dropping the first normal form (lNF) requirement to allow 
non-atomic attribute domains such as sets of values. Many theoretical properties of the 
relational model also hold for NF2 • The main difference between NF2 and eXtended 
NF2 (XNF2) data models such as that of the AIM DBMS [9], is that XNF2 supports 
additional data types such as lists and allows for arbitrary nesting of type constructors. 

The main part of the work on NF2 concerns the definition of algebras, not their 
function: facilitate efficient query evaluation. With the latter, problems are encountered 
including inefficient nested-loop processing, data redundancy, restructuring overhead 
and the infamous COUNT-bug [18), since in the presence of empty subsets, unnest is not 
the inverse of nest. [17) has made a large contribution to the area of query optimization 
of nested relational algebras with, e.g., the introduction of a special nestjoin-operator. 

Moa is an extension of XNF2, where not only 
type constructors can be arbitrarily nested, but also 
new type constructors can be added. Moa addition
ally incorporates a solution to the mentioned NF2 

query processing problems. It does this by keep
ing an explicit structure definition in the form of 

!Di 
type constructors connected to unnested (flat) data, 
and by having both nest/unnest operators as well as 
navigators, such as map. Furthermore, it deals with 
the COUNT-bug by explicitly generating counter
acting operations where needed. ~ 6 

7 I b 
c 

Example (see Figure 3). Suppose, our database 
db is structured as a set of sets of n-tuples: db E 

Fig. 3. Nested data and flat data. 

PP Vi x ... x Vn where P is the powerset operator and Vi are domains of atomic values. 
Choosing subsets of Vi as v1 = {a, b, c} and v2 = {11, 12, 13}, a concrete db can look 
like db = {{(a, 11), (b, 12)}, {}, { (c, 13)}}. Our generic mapping represents db as type 
constructors (rounded rectangles) connected to the following flat data: 

ID1 =set of as many unique id's as there are subsets in the database. (1) 

I D2 =set of as many unique id's as there are n-tuples in the database. (2) 

SI = subset index as a set of pairs ~ I D 1 x I D2 (3) 

Ai= columns as a set of pairs~ ID2 x Vi (i E {1, 2}) (4) 

The figure furthermore illustrates the distinction between a value and an identified 
value set (or ivs). A column does not represent one atomic value, but a set of atomic val
ues. The TUPLE structure constructed from A1 and A2 represents a set of tuples, called 
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Fig- 4. Moa query evaluation steps. 

an ivs, rather than one tuple value. The SET structure above it introduces a partitioning 
of this set of tuples according to SI, hence representing a set of sets, rather than one set, 
so it too is an ivs. The top-most SET doesn't introduce another partitioning, but only 
wraps things in a proper (nested) value and, therefore, is a value. All stmctures in Moa 
have a value and an ivs form. 

Note that, based on SI alone, it is impossible to determine that one or more empty 
subsets exists. Part of solving the COUNT-bug is the representation of an empty subset 
as an occurrence in the third argument of SET ivs (I D 1 ) and no occurrence in the first 
(SI). 

Each operator in our language is defined on structure and data level. For example, the 
count has the effect of converting a set-of-set-structured argument to a set-of-atomic
structured result (structure level), while at the same time generating a grouped count 
operation on the flat data connected to that result structure (data level). In other words, 
a query in Moa is translated into both a physical algebra expression on fiat data, and an 
explicit conversion from argument to result structure. 

This two-level approach to query evaluation is illustrated in Figure 4. The general 
form of a query is a Moa expression which uses columns from underlying tables 1 (the 
leftmost pyramid). In the first rewrite step, Moa operations are mapped onto their re
spective column operations and result structure (second pyramid). This step converts a 
query on a nested structure to operations on flat data, which, being a rewrite operation 
independent of data volume, causes only minimal overhead. In the third pyramid, the 
column operations have been translated to the table operations of the physical layer. The 
third step performs the actual execution of the table operations producing result tables 
connected to a Moa result structure. An example of the rewrite process is given at the 
end of the next section. 

4 Moa Logical Language 

As explained, the Moa logical language is based on XNF2 and is described here by 
means of the well-known example of an organisation that has departments and employees 
that work in those departments. In terms of XNF2 , an organisation consists of a set of 
departments, which in turn consist of sets of employees. 

1 Until now, we have used relational tables as physical storage representation of a column, but 

this is theoretically not obligatory. 
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A specific instantiation of such an organisation 1s 
shown in the organisation diagram presented in Figure 5. 
It contains three departments, one with three, another 
with two employees, and the technical healtcare depart
ment has no employees (yet), as it is a newly founded 
department. Each department has a name and address at
tribute. Each employee has a name and a salary attribute. 

University 

Name: Mathematks 
Address: Park lane 5 

Name: Jones 
Salar : 175.000 

Name: Field 
Salary: 275.000 

Name: Technical Healthcare 
Address: Ocean Drive 20 

Name: Computer Science 
Address: Part Jane 5 

Name: Smith 
Salary: I 00.000 

Name: Johnson 
Salary: 75.000 

Name: Bing 
Salary: 150.000 

In traditional lNF relational terms, the department 
entity has a multi-valued attribute (i.e., the employees), 
which requires a transformation into a seperate entity and 
relationship if stored in a strict lNF relational database. 
In the Moa system however, the nested structure of the 
schema can be preserved. Figure 6 shows the entire struc
ture specification of the example organisation in the Moa 
logical language. At first glance, without knowing the 
Moa language, one sees that the organisation is modeled Fig. 5. Example organisation 
more naturally, since the nesting is preserved and not structure. 
flattened as in lNF. 

The structures Atomic, TUPLE, and SET in Figure 6 together form the kernel struc
tures available in the Moa system. They constitute the NF2 data model. Moa is open to 
the definition of additional structures, called extensions, that may support NF2 's arbi
trary nesting. An example is the FV structure representing a feature vector intended for 
multi-media retrieval applications. 

SET( jDepartment:_keyj, 
TUPLE( Atanic( !Department: DNamel ) : dname, 

Atanic( !Department: DAddressl ) : dllifdrt.«, 
SET( IDepEmp:_matchl, 

TOPLE( AtOllli.c( !Employee: ENamel ) : ename, 
Atomic( JEmp~: Salary! ) : .ia/ary 
) : Employee, 

!Department: _keyJ 
) :Employm 

) : Department 
) : University 

Fig. 6. Schema of University. 

The syntax for type construction is a struc
ture identifier, followed by a number of argu
ments and an optional label. The argument for 
Atomic is a column identifier which directly 
references the data stored in the underlying 
DBMS (cf., A.1 and A.2 in Figure 3). For ex
ample, I Department: DNamel refers to the 
DName column of the Department table in an 
RDBMS. The label is used as a convenience 
mechanism to be able to reference the struc-
ture. 

The TUPLE type constructor represents the theoretical notion of a product structure 
that consists of one or more Moa structures of any type. The SET type constructor 
represents a collection of Moa structures. The unrestricted nesting of type constructors 
makes it, in particular with this type constructor, possible to support the arbitrary nesting 
of the NF2 data model. The arguments of SET include an index2 mapping, the structure 
of the elements of this set, and the index of the set that encloses the specified set (cf., 
SI, TUPLE( A1, A2 ), and I D1 in Figure 3, respectively). 

In the example above, the index mapping and enclosing set index are represented by 
I DepEmp : _match I and I Department: _keyl, respectively. Those are special column 
identifiers disclosing database schema information. In this case, it maps primary keys of 

2 ln relational terms, an index is the same as the primary key of a table. 
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departments to primary keys of employees. Thus, the IDepEmp : _match I column con
tains the relationship (CS,Smith), (CS,Johnson), (CS,Bing), (M,Jones), and (M,Field), 
where CS is 'Computer Science' and M is 'Mathematics'. 

Several operations are defined on the kernel structures, of which the most important 
ones are listed below. 

select [ m] ( op); The select-operation is similar to the select-operation ofrelational 
algebra. The modifier m specifies the selection criterion and the operand op specifies 
the argument on which the selection should be applied. 

attr ( op, l ); The attr-operation is Moa's equivalent of projection, i.e., it evaluates 
to the attribute referenced by label l of its tuple-valued argument. In a modifier, it 
can be abbreviated by '%l'. 
map [ m] ( op ); The map-operation is a navigational operator: it evaluates modifier 
m for each of the elements of operand op and collects the results in a SET structure. 

- join [ m1, m2 ] ( op 1 , op2 ); The join-operation joins the two operands op 1 and 
op2 based on equality of the modifiers m1 and m2 , similar to the join-operation in 
relational algebra. 

flatten ( op ); The flatten-operation converts a set of subsets to one set by taking the 
union of all subsets, i.e., it removes one level of nesting. 
count ( op ); This is an example of an aggregate function and shown in the example 
of Figure 7 to illustrate that Moa correctly handles the COUNT-bug as explained in 
Section 3. 

II Que1Y 4· no couni-bug with Moa: 
map[TUPLE<%dname, count(%Emplo'i"es)> )(UniwrsilV); 

JI QueryS example join operation· 
·a1n)%daddress. %addressJ(UnM!rsitV. Z1pcodes)) 

II Que1Y 6: optimization example 
II structure-operation (flatten) = cheap 

ounl( flatten( map{%Employees) (Umwrsil\r) ) ). 
If count + groupby + sum • e•penslve 

sum[THISJ( map(count(%Employees)J (Unl"l!rsl1',l ); 

Fig. 7. Screendump of Moa System. 

Note that the structure specification 
of Figure 6 is stored in the data dic
tionary of the system under the name 
"University" and can be used in queries 
directly. 

Figure 7 shows a screen dump of 
the graphical user interface (GUI) of 
the Moa system. In the figure, the top
part of the GUI represents the input 
area and shows a number of exam
ple queries. The results of a query ex
ecution are presented in the bottom
part of the GUI. In this case, Query 4 
has been executed. The resulting ele
ment ("Technical Healthcare", 0) 
illustrates the correct handling of the 

COUNT-bug, which would otherwise be missing from the result. Although without 
showing results, query 5 shows the use of the join-operation, and query 6 illustrates two 
equivalent expressions for the same query, hence offering an optimization opportunity. 
The underlying database used here is a relational DBMS.3 

3 The Moa system currently supports IBM DB2, PostgreSQL, MySQL, and MonetDB. 
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l<fD<ry) c<p{Tlll'LE( 'Miamt, count(%£mp/11yee.r) )l(Univmil)') 
(step I) SIT( C1, TUPLE( Atcaiic( !Department: O~amel ), Atomic( C2))) 

C1 = fDepartment:_keyJ 
c, = gtrcm:(OJterJoir,(!Oepartment: _key!.!EmpDll?: _i11Verael)) 

(step l) S&T(!Department :_key!, 
TUPLE( Atomic( !Department: DNamel ), Atomic( jtmp1: _cntl ) ) 
) 

:rpC,ou:er'.oinlD•partment.:Jllt:r.ll>er • E•floyee.DNO) 
·.rp':•agq:egat•(count (tlil>O .mn:berJ, :mp(l.ONl:lllb<;rJ 

As an illustration of the rewrite 
steps of Figure 4, the rewrite process for 
example Query 4 is shown in Figure 8. 
The map and attr operations rewrite to 
the result structure representing a set of 
department tuples identified by C1. The 
count operation rewrites to the column 
expression C2. In the second step, col-

Fig. 8. Query rewrite steps for Query 4. umn expression c2 produces a column 
that takes the _cnt attribute from the result of the extended relational algebra (XRA) 
expression4 tmpl (table operation). 

Besides the operations and structures described in this section, others are available in 
the Moa system, e.g., the nest and unnest operations. However, due to space limitations, 
it is infeasible to present an exhaustive list. The reader is referred to [21]. 

5 Application Areas and Context 

The validity of the Moa concept described so far, can best be seen by looking at the 
various projects in which Moa played a central role. The ideas for Moa and multi-model 
architecture originate from the Magnum-project [5,4]. In this project, a structurally 
object-oriented DBMS was developed for the purpose of efficiently integrating spatial 
and thematic data in a single data manager. Decomposition and extensibility were the key 
features of this project. In terms of the multi-model architecture, the Magnum system 
consisted of two layers: the main-memory DBMS MonetDB as physical layer and Moa as 
logical layer. This architecture could be extended in two ways. First, new base types could 
be defined in MonetDB, e.g., polygon, together with a large set of spatial operators on 
these primitive base types. Secondly, Moa's structural extensibility was used to support 
structures like polygonal maps and triangulations, next to the conventional tuple and 
set. Moa mapped these structures to MonetDB's binary data model, meaning that the 
structured data was decomposed in binary tables. Experiments showed that the Magnum 
system performed well on the Sequoia benchmark [19]. ,.--, ,---------"'\ 

The experiences with the Moa!MonetDB combination, es- ' ' , Ne~ :r~i".'.'t~n~ _ ,, 
I 

pecially with the combination of base type and structural ex- , ""§ , "==c="=""=·e=rtu=a=11=ay=er==: 
tensibility, sparked off new efforts. In the Mirror and AMIS : :~] : 
projects, the ideas for an extensible DBMS architecture based : ui g: : 

Logical layer 

Moa n!gchra 

on Moa and MonetDB were further developed in the realm I I column algehra ' - - ,, of text and multi-media retrieval. Mirror concentrated on a i. Physical layer 
generic multi-media retrieval framework based on belief net- F=1 F==1 
works. Experiments showed its feasibility for content-based ~ ~ 
retrieval for text, images, and music [ 12,22]. Since paralleli
sation and fragmentation in the physical layer is orthogonal 
to the logical layer, the architecture design seems to be better 

Fig. 9. SUMMER feder-
ated architecture. 

4 XRA [ 13] is a relational algebra extended with aggregates. The aggregate operation preforms 
the aggregate function in the first argument on the groups determined by the second argument. 
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prepared to scale up. The AMIS-project explored this idea by studying the optimization 
of top-N IR-queries in a fragmented context [2]. 

In all three projects described above, the integration of data and algorithms from non
traditional application domains in a single data manager was a central theme. Much the
matic (tabular) data related to GIS or multi-media objects, however, resides in RDBMSs 
with existing applications running on them. Therefore, in the SUMMER-project [20], 
the multi-model architecture was taken one step further by using Moa as a kind of data 
management middleware, driving both MonetDB and 'normal' RDBMSs (see Figure 9) 
simultaneously. This allows the 'addition' of, for example, multi-media retrieval func
tionality to an existing federated information system. Also in SUMMER, we developed 
an XML-based conceptual layer providing a subset ofXQuery [23]. This will make the 
DBMS suitable to be used in web-based environments, providing a more convenient 
way of managing large XML data volumes with, among others, integrated and efficient 
multi-media retrieval. 

6 Conclusions and Future Work 

In this paper, we presented the concepts behind the Moa system: the multi-model DBMS 
architecture and the Moa logical algebra which plays an important role therein. In order 
to support demanding applications like GIS or digital libraries, one needs an expressive 
conceptual data model supporting complexly structured data. Expressiveness is not the 
only requirement. Since the managed data is often voluminous and queries complex, 
performance is an important aspect as well. The multi-model architecture supports ex
tensibility in all three layers thus enabling to integrate domain-specific algorithms in an 
effective way. Furthermore, the extensibility mechanism of the Moa language used in 
the logical layer, has been designed in such a way that optimization across extensions 
is possible. This alleviates the black-box ADT problem, which prohibits the optimizer, 
for example, to push projections and selections through ADT-operators. 

To be able to bridge the gap between an expressive conceptual data model and an 
efficient simple physical data model, the nested relational intermediary proved effective. 
We placed renewed interest in XNF2 algebra, adapted and extended it, and worked on 
new ways for efficient query evaluation. This resulted in the Moa language. We regard 
its role to be vital in the success of the multi-model architecture. 

In several projects, a prototype DBMS evolved into what is now called the Moa 
system. The genericity, extensibility, and performance of the system were put to the test 
in real-life applications. 

In current and future projects, the Moa system continues to be used as our experi
mentation platform, which imposes a ongoing demand for perfecting the extensibility 
and efficiency of the system. Moreover, we are exploring the realm of category theory in 
search for ways to fundamentally improve the Moa and column algebra. Further effort 
on distribution support is aimed at facilitating the construction of federated systems in 
more advanced ways. Finally, the focus of the CIRQUID-project [7] is the integration 
of information retrieval and databases to provide support for full text search in XQuery. 



76 M. van Keulen et al. 

References 

1. F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-Oriented Database 
System: The Story of 02. Morgan Kaufmann Publishers, 1992. 

2. H.E. Blok, A.P. de Vries, H.M. Blanken, and P.M.G. Apers. Experiences with IR Top N 
optimization in a main memory DBMS: Applying 'the database approach' in new domains. 
In ?roes of BNCOD 18, LNCS 2097, pages 126-151, July 2001. 

3. P.A. Boncz and M.L. Kersten. MIL primitives for querying a fragmented world. VLDB 
Journal, 8(2):101-119, 1999. 

4. P.A. Boncz, W. Quak, and M.L. Kersten. Monet and its geographic extensions: A novel 
approach to high performance GIS processing. In Procs of EDBT'96, Avignon, France, 
LNCS 1057, pages 147-166, March 1996. 

5. P.A. Boncz, A.N. Wilschut, and M.L. Kersten. Flattening an object algebra to provide per
formance. In Procs of ICDE'98, Orlando, USA, pages 568-577, February 1998. 

6. M.J. Carey, D. J. De Witt, J.P. Naughton, M. Asgarian, and et al. The BUCKY object-relational 
benchmark (experience paper). In Procs of ACM SJGMOD '97, Tucson, Arizona, USA, pages 
135-146, May 1997. 

7. The CIRQUID project website, 2003. http: I /viww. cs. utwente .nl/-cirquid. 
8. W.F. Cody, L.M. Haas, W. Niblack, M. Arya, and et al. Querying multimedia data from 

multiple repositories by content: the Garlic project. In Procs ofVDB 3, Lausanne, Switzerland, 
IFIP 34, pages 17-35, March 1995. 

9. P. Dadam, K. Klispert, F. Andersen, H.M. Blanken, and et al. A DBMS prototype to support 
extended NF2 relations: An integrated view on flat tables and hierarchies. In Procs of ACM 
SIGMOD'98, Washington, D.C., USA., pages 356-367, May 1986. 

10. C.J. Date and H. Darwen. Foundation for Object/Relational Databases: the Third Manifesto. 
Addison-Wesley, 1998. 

11. A.P. de Vries, B. Eberman, and D.E. Kovalcin. The design and implementation of an infras
tructure for multimedia digital libraries. In Procs of IDEAS'98, Cardiff, U.K., pages 103-120, 
July 1998. 

12. A.P. de Vries, M.G.L.M. van Doorn, H.M. Blanken, and P.M.G. Apers. The Mirror MMDBMS 
architecture. In Procs ofVWB'99, Edinburgh, U.K., pages 758-761, Sep. 1999. 

13. Paul W. P. J. Grefen and Rolf A. de By. A multi-set extended relational algebra - a formal 
approach to a practical issue. In Procs of ICDE'94, Houston, USA, pages 80-88, Feb. 1994. 

14. G. Kiczales, J. Lamping, C. Videira Lopes, C. Maeda, and et al. Open implementation design 
guidelines. In Procs of ICSE'97, Boston, USA., pages 481-490, 1997. 

15. H.-J. Schek and P. Pistor. Data structures for an integrated data base management and infor
mation retrieval system. In ?roes ofVWB'82, Mexico City, pages 197-207, Sep. 1982. 

16. P. Seshadri and M. Paskin. PREDATOR: An OR-DBMS with enhanced data types. In Procs 
of ACM SIGMOD'97, Tucson, USA, pages 568-571, May 1997. 

17. H. Steenhagen. Optimization of Object Query Languages. PhD thesis, Uni. ofTwente, 1995. 
18. H.J. Steenhagen, P.M.G. Apers, and H.M. Blanken. Optimization of nested queries in a 

complex object model. In ?roes of EDBT'94, Cambridge, U.K., pages 337-350, 1994. 
19. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000 benchmark. In Procs 

of ACM SIGMOD'93, Washington, D.C., USA., pages 2-11, May 1993. 
20. The SUMMER project website, 2003. http: I /WVIVI. cs. utwente.nlrsummer. 
21. M. van Keulen, J. Vonk, A.P. de Vries, J. Flokstra, and H.E. Blok. Moa: extensibility and 

efficiency in querying nested data. Technical Report 02-19, Centre for Telematics and Infor
mation Technology, University of Twente, The Netherlands, 2002. 

22. A.P. de Vries. Content and Multimedia Database Management Systems. PhD thesis, University 
of Twente, 1999. 

23. XQuery 1.0: An XML query language, 2003. http: I !ww .vi3 .org/TR/xquery/. 


