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ABSTRACT : In this paper we will indicate how Bayesian methods could be applied to 
feature detection and object recognition problems. 
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1 Introduction 

The Bayesian methods developed by Geman and Geman [4] and Besag [3] have become an 
important tool in a wide range of problems concerned with image reconstruction and segmen­
tation. In this approach a prior probability distribution is selected for the true scene, typically 
assigning low probability to rough or irregular images. Usually the prior is chosen from the class 
of MarkoTJ random fields. These are pixel based models with nice local characteristics. Their 
global behaviour can. be unrealistic, but the posterior distribution is chiefly sensitive only to the 
local properties of the prior. 

In the context of object recognition the input is a digital image, but the desired output is a 
graphical object such as a line drawing or a list of filled circles. The most popular techniques to 
find the object are multi stage procedures, combining data smoothing with some form of tem­
plate matching. The Bayesian approach handles these two phases simultaneously by effectively 
minimizing a linear combination of two error criteria, one associated with the degree of fit to 
the data. and the other with the 'roughness' of the output image. As the Markov models from 
stochastic geometry [8] provide an adequate tool to model interaction between the objects, we 
will use them as our prior. 

2 Notation 

We assume that the objects to be recognized can be represented uniquely by a. small number of 
parameters that determine size, shape and location. The space of all possible parameter values 
is denoted by U and assumed to be finite ( WI = N ). Every u E U represents precisely one 
object S(u) in the ima.ge space T. An image or object con.figuration is an unordered, finite list 
of objects : 

The region covered by the objects S(:i:;) will be denoted by 

n 

B(z) = LJ S(:i:;). 
i=l 
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The images encountered in practice are usually digitized. Moreover they are degraded by 
blurring and noise. These considerations lead to the following model. Let T be a finite pixel 
lattice, ITI = M, and denote the observed value at pi.xei' t by Yt· Then 

where H is a. deterministic blurring function, n is noise and ef> is an arbitrary transformation. 

We will make the following asswnptions: 

1. ni, · · ·, nM are independent 

2. for every constant c, if>( c, n) has a probability density f ( c, ·) depending only on c. 

Under these assumptions, the likelihood of observing y given. the true pattern :r: is given by 

l(ylz) =IT /(H(:::)i.ye). 
tET 

3 Likelihood ratio method 

The aim of object recognition is to extract the objects from noisy data.. In statistical terms, 
we want to estimate the true image z using the observations y. In general it is not possible 
to compute the maximum likelihood estimator of z directly. Therefore we need an iterative 
method, which in this case investigates the effect of adding and deleting objects. A new object 
S( u) is added to :r: if the conditional likelihood l(yi:e U u) is sufficiently larger than l(yiz ), i.e. if 

l(ylz U u) C -----> . /(yi:e) 

where C is a.n arbitrary constant larger than or equal to l. An existing object S( u) is removed 
from the scene ii 

/(y/:e \ u) C 
l(yj:i:) > . 

In most a.pplica.tions, the likelihood ratio depends only on a. small number of pixels. Let .., be 
a.n equivalence relation representing the region over which. the bhu spreads. Set 

,13(!) = LJ{.s: 3"" t}, 
tEl 

where I is a subset of pixels. So the observed intensity values in I a.re influenced only by the 
values at pixels in ;3(1). 
Then 

logl(y1zu u) - log/(y1;i:) = 

2:: [log f( H(:i: U u)1, Yt) - log J( H( z)c, Yi)] 
tE.Ll(S(u)\B(:)) 

so that we have to evaluate the probability density f only for pixels in the region p(S( u) \ B( z)). 

There a.re several possibilities to decide at what pixels objects should be added or deleted. 
The choice depends both on the hardware facilities a.nd the kind of data. on hand. For instance, 
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if there are only a few objects and the noise variance is low, simple algorithms suffice, but if 
the image conta.im a. lot of noise or many overlapping objects more sophisticated algorithms are 
required. Pa.ra.llel algorithms can only be used if suitable processors are available. 

A simple sequential algorithm is the following. Given a visitation schedule { u1 , · · ·, V.N}, 

step 0 : :z:(O) = 0. 

step 1 : for i = 0, 1,2,. · ·: 

for j = 1,-· ·,N and le= j +iN, 

:z:(lc) = :z:(lc-1) U V.. if u. ~ :z:(lc-1) and l(yjzC •-1luui) > C 
' J l(111;;l •-11 l 

:z:(lc) = :z:(lc-1) \ v.. if u. E :z:(lr-1) and l(11i:<•-1 l\u,) > C 
' , 1(111;;'1'-il i 

:z:(lc-l) else. 

To speed up the algorithm, one can ignore the background region by using a mask. The 
criterion is evaluated only in those areas where objects a.re likely to be added or deleted. 

The parameters can be scanned in an arbitrary way. At every step the conditional likelihood 
of y given z is increased. As there are only a. finite number of possible configurations, convergence 
is guaranteed and we end in a local maximum. of the likelihood function. At worst there is cycling 
between images of equal conditional likelihood. 

The method rem.a.ins valid if an other initial pattern is chosen. For instance, one may 
initialize the likelihood ratio algorithm by means of the Hough transform [2], but according to 
our experience the final reconstruction will be less accurate. 

Another possibility is steepest ascent. Objects are added or deleted in such a way that 

l(ylz(lrl) 
l(yjz(.lc-l)) 

is maximized at every step. The reconstruction will be more accurate, but requires more com­
putation. 

step 0 : z(o) = 0. 

step 1 : for every pixel v. compute w(u), where 

( ) _ l(yj:C•-Lluu) if t:f (/c-l) 
w V. - l(yjzlk-1)) u l" Z 

w(u) - l(11i:e<•-1l\u) if v. E :z:(lr-1) 
- l(yjzl'-llJ • 

step 2 : find the pixel u1c that maximizes w( u) 

:z:(lr) = :z:(lr-1) U UJr if UJr ~ :z:(/c-1) 

:z:(lc) = z(/c-1) \ u1r if v.i. E :z:(lr-1). 

step 3 : go to step 1. 

It is important to stop at the right time. Iterating for too long yields poor results, because 
too many objects are added to the scene. If the data is not too noisy, usua.lly the increase 
in. likelihood will suddenly decrease when the 'best' reconstruction is reached. Again there is 
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convergence to a. local maximum of the likelihood function or cycling between images of equal 
conditional likelihood. 

Each of these algorithms has its own merits. As mentioned before, it depends on the appli­
cation which algorithm to use: For simple images with little noise, we recommend the iterative 
procedure, which gives quick convergence to a good solution. On the other hand, if there is a 
lot of noise but not too many objects, it is better to use the steepest ascent algorithm. 

4 The Bayesian approach 

The sequential likelihood ratio algorithm tends to form clusters of overlapping objects. In 
applications where we want to estimate the number of objects, this phenomenon is unwanted. 
Also the procedure is unstable in the sense that the results depend on the way the parameters 
are scanned. Furthermore, small changes in the data can imply large changes in the results. 

Analogous to the introduction of prior models for the true image in segmentation problems 
(3], used a.s a penalty for rough or irregular images, we too introduce a. prior model p( ·) to solve 
this identification problem. The Stro:u.1111 model (l] for instance can be used to model repusion 
between objects : 

p( Z) IX 1r(:i:) 

where r(.i:) denotes the number of overlapping objects in image z. 

The MAP estimator i: of the true image is given by 

.e = argmax l(yiz)p(:z:). 

It is sometimes called the penali:ed marimum likelihood estimator because i maximizes 

log l(yix)., logp(z). 

Here the second term serves as a. penalty on too tightly clustered patterns. 
The situation described above strongly resembles the one in image segmentation. Here too, 

the MAP estimator is not directly computable. Therefore we first try to solve a more simple 
problem. As before, denote the current reconstruction by J: and the data by y. Suppose we are 
currently visiting parameter u and want to decide whether object S( u) should be part of the 
scene or not based on all available information. That is, we compare 

P(u belongs to the image 1y, .l:(u)) 

with 
P(u does not belong to the image IY,Z(u)l· 

Hence we include object u iif 

l(yiuU Zlu))p(uU .l:(u)) > l 
l(ylz(,_.))p(ziu)) . 
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Summarizing, the algorithm is 

step 0 : z(o) = 0. 

step 1 : for i = 0, 1, · · · : 

for j = 1, · · ·, N and k = j + iN, 

z(lc) = :z:(lc-1) U u· ifu.· ~ :z:(lc-1) and l(yj:z;l•-1luu;)Pl:z:<"-'luu1) > 1 
] ' l{lli:z:l•-1) )p(,,l •-1)) 

:z:(lc) - :z:(lc-1) \ u.. if u. E z(.r.-1) and l(y\:z:l•-l)\uj )p(z<•-11\u, l > l 
- :J ' l(y\zl•-1 )p(z(•-11) 

:z:(lc-l) else. 

Note that the static threshold value used in the likelihood ratio algorithm is replaced by one 
that depends on the cunent reconstruction and parameter value. As before, we can use different 
initial :{lattems. Also at every step 

/(y!:z: )p( :i:) 

does not decrease, so that we have convergence to a local maximum of the posterior distribution, 
or a.t worst cycling between states of equal posterior probability. 

If we take the prior distribution from the class of Markov models [l, 5] 

p(uUZ(u)) 

p(Z(u)) 

depends only on the neighbours of u. This property replaces the local properties of the Markov 
random fields used in segmentation problems. 

There is a steepest ascent version of this algorithm as well. 

step 0 : z(o) = 0. 

step 1 : for every pixel u compute w(u), where 

( ) _ l(y\zl•-1luu)p(y\,.{•-1luu) if d. (lr-l) 
w u - /(yf:z:l'-l))p{Zl"-dJ u jZ: z 

( ) _ l(yj:z;lh-ll\u)p(yjzl•-1)\u) if E (le-!) 
w u - l(ylzl'-•l)p(yizlL-1)) u :i: · 

step 2 : find the pixel u1c that maximizes w( u) 

:l!(Jc) = :z:(Jc-l) U U.Jc if U/c ~ z(Jc-l) 

z(lc) = z(lc-l) \ ur. if UJc E :i:(Jc-l). 

step 3 : go to step 1. 

5 Discussion 

We have indicated how likelihood based procedures could be used to extract objects from noisy 
data. There are many interesting connections with existing techniques, including template 
matching methods (6], the Hough transform [2] and mathematical morphology [7]. Details and 
illustrations will be given in a forthcoming pa.per. 
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