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l. INTRODUCTION 

The aim of this paper is to explain a particular approach to correctness of concurrent programs. 

Design of concurrent programs is a difficult art and construction of correctness proofs of concurrent 

programs is an equally nontrivial task. To better understand the issues at stake, let us study a very 

simple example program. 

1.1. An example of a concWTent program 

Consider the following simple problem. 

Problem. Write a program that finds a zero of a function f from integers into integers. 

We wish to explore the fact that a search for positive and non-positive zero's can be done in 

parallel. 

Solution 1 

Consider the following program S 1: 

S 1 = found: - false; x: == O; 

while .. found do x: == x + 1; 

found:= f(x) == 0 

od. 

Then s 1 stops when a positive zero of f is found. Similarly, the following program S2 stops 

when a non-positive zero of f is found: 

S2 = found: == false; x: = O; 

while ... found do y. = y - 1; 

found: - f(y) - 0 

od. 

Thus the program [S 1 II S2], the parallel composition of S 1 and S2, stops when a·zero of f is found 

and is a solution to the problem. 

Unfortunately, this is not always the case. Imagine the following scenario. Let f have only 

one zero, a positive one. Consider now an execution of [S 1 II S2] in which initially only its first com­

ponent is activated until it terminates once the zero of f is found. At this moment the second 
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component is activated, found is reset to false and since no other zero's of f exist found will never 

be reset to true. In other words, this execution of [S 1 II S2] will never terminate. 

Obviously our mistake consisted of initializing found to false twice - once in each component. 

A straightforward fix-up consists of initializing found onJy once, outside the parallel composition. 

This brings us to the following solution. 

Solution 2 

Let 

and 

S1 = x: = O; 

while..., found do x: = x + 1; 

found:== f(x) ... 0 

S2 = y:.., O; 

Then 

is a solution to the problem. 

while .., found do y: ... y - 1; 

found: ""f(y) - 0 

od. 

But is it actually? Suppose once again that f bas exactly one zero, a positive one and consider 

an execution of S in which only its first component is activated until found is set to true upon finding 

the zero of f. Suppose that at this moment the second component is activated until found is reset to 

false. Now, since no other zero's of f exist, found will never be reset to true and this execution of 

S will never terminate. Thus the above solution is incorrect. 

What went wrong here? A close inspect.ion of the scenario just presented reveals that the 

problem arose due to the fact that found could be reset to false once it was already true. In this way 

the information that a zero of f was found got lost. 
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One way of correcting this mistake is by ensuring that found is never reset to false inside of the 

parallel composition. To this purpose it is sufficient to replace the unconditional assignment 

found:= f(x) == 0 

by the conditional one: 

if f(x) == 0 then found: = true fi 

and similarly with the other assignment to found. 

In such a way we obtain the following solution. 

Solution 3 

Let 

and 

Then 

is a solution to the problem. 

S1 = x: = O; 

while -. found do x: = x + 1; 

S2 sy: == O; 

if f(x) - 0 then found: ""' true fi 

od 

while ..... found doy: = y- 1; 

if f(y) - 0 then found: =true fi 

od. 

s = found: = false; [S 1 II S2] 

But is it really? Suppose that f has only positive zero's and consider an execution of S in 

which the first component S 1 of the paraUel program [S 1 11 S2] is never activated. Then this execution 

will never terminate even though f has a zero. 

The above scenario is a debatable one. One might object that an execution sequence in which 

one component of a parallel program is never activated is not a legal one. After all the main reason 
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for writing parallel programs is that the components can and will be executed in parallel In more 

technical terms we should decide whether we adopt the hypothesis off airness which here means that 

every component of a parallel program is eventually activated. H we adopt it then the last solution 

is a correct one and the just exhibited execution sequence of Sis illegal If we reject it then the last 

solution is incorrect as the exhibited execution sequence of Sis legal 

We shall now presenl a solution which is appropriate when the fairness hypothesis is not 

adopted. Surprisingly, as it will tum out in Section 3.5 the proof of correctness of the above solution 

under the assumption of fairness will amount to the proof of correctness of the final solution we shall 

present here under no assumption of fairness. 

The solution consists of building into the above program S an abstract scheduler which will 

ensure that each component of the parallel program is eventually executed. To this purpose we need 

a new programming construct - await B then R end allowing to temporarily suspend an execution of 

a component. Informally, a component of a parallel program executes an await-statement if the 

Boolean expression B evaluates to true. The statement R is then executed as an indivisible action, i.e. 

an action which cannot be interrupted by an activation of another component. 

With each parallel component we associate a priority variable which is used by the scheduler. 

The scheduler activates the component with the lowest priority and updates the priorities of all the 

components. A component with the higher priority is suspended until its priority becomes the lowest. 

Summarizing, this solution has the following form: 

Solution 4 

Let 

S1 ::x: = O; 

while .... found do 

·---------·····• ---·- ·-. ---·--1 await z1 ~ Zi. then 

z1: "'" ?; Zi.: = Z2 - 1 

end; 

x: ... x + 1; 

if f(x) == 0 then found: == true fi 

od 



and 

Then 

S2::y:=-O; 

while ... found do 

await z2 :5 z1 then 

.zi: -= ?; Z1: .,. ZJ - 1 

end; 

y.-y-1; 

if f(x) - 0 then found: - true fi 

od. 

S = z1: • ?; Zi= • ?; found: == false;[S1 llS2] 

is a solution to the problem when the fairness hypothesis is not adopted. 

-S-

z: .... ? stands here for a random assignment which denotes an assignment of an arbitrary non-

negative integer to the variable z. (If you feel uncomfortable about this instruction you can replace 

it everywhere in the above program by an assignment to a fixed non-negative integer, say O.) The 

scheduling parts are framed. Note that they are activated only once per a loop round. An infinite 

execution sequence in which only one parallel component is activated is now impossible because of 

the continuous decrease of the priority variable of the other component and the continuous resetting 

of the component priority variable to a non-negative value. 

But is S really a solution to the problem? Consider an execution sequence of S in which a zero 

is found by the first component at the moment whenz1 :S Zi holds and the second component is sus­

pended in front of the await-statement Then the first component will terminate and the second 

component will remain suspended forever. Thus this execution sequence will terminate but in an 

improper way. This might be still considered as unharmful because after all the program eventually 

stops as desired when a zero is found. However, such a solution is unacceptable in the context in 

which the above program is to be followed by another one and thus activated upon proper termination 

of the first one. 
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In other words, we are interested here in solutions free from deadlock - a situation in which no 

progress is possible even though not all parallel components have property terminated. 

A deadlock free solution to our problem can be obtained by an appropriate modification of the 

last solution. To this purpose it is enough to build into the program a signa/ing scheme that will releare 

one component in case of the (proper) termination of the other one. We thus introduce two new 

variables, called end1 and end2 which will indicate whether the first resp. the second component has 

terminated. A suspended component will always be released when the other component has term.i-

nated due to an additional disjunct in the await-condition. 

Summarizing, this solution has the following form: 

Solution 5 

Let 

and 

S1 ex:== O; 

while .. found do 

awaitz1 S z2Und2jthen 

z1: - ?; z2: - z2 - 1 

end; 

x: ... x + 1; 

if /(x) - 0 then found : - true fi 

od; 
}-en_d_1 :-... -true-) 

Si ray:-= l; 

while ... found do 

await 22 S z1 fv end1Jthen 

.zi: • ?; Zt: - Zt - 1 

end; 

y: -·y- 1; 

if /(y) - O then found: - true fi 

od; 

l ~~d2~= tru~~J 
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Then 

is a deadlock-free solution to the problem when the fairness hypothesis is not adopted. 

The signaling scheme built into the previous solution is framed. 

We assure the reader that the above solution is correct. It is by no means an efficient solution 

- for example, the assignments to the priority variables can be performed outside the await-state­

ments. On the other band, the last two transformations are special cases of the transformations we 

study in this paper and the above discussion should facilitate their understanding. 

1.2. The correctness problem 

We hope to have convinced the reader that the design and correctness of concurrent programs 

is not a simple issue. The problem we discussed in the previous subsection seemed to be completely 

trivial and yet several, sometime subtle errors crept in. It should be dear that an informal justification 

of the correctness of concurrent programs is not sufficient. After all we produced in the previous 

subsection at least two incorrect correctness proofs. 

There has been a number of formal approaches to correctness of concurrent programs. Before 

we briefly discuss them we should perhaps first agree what program properties we actually wish to 

prove. 

Jn the case of sequential programs, i.e. those in which a control resides at each moment in only 

one control point, these usually are: 

1. Deliverin~ correct results. 

For example a sorting program should indeed sort the input. 

2. Termination. 

For example a sorting program should always terminate. 

3. Lack of failures. 

For example there should be no division by zero, no overflow etc .. 
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In the case of concurrent programs, i.e. those in which a control can reside at the same 

time in several control points, as observed before we are additionally interested in establishing: 

4. Deadlock freedom. 

5. Correctness under the fairness assumption. 

It should be stressed that this list is by no means exhaustive. In fact, there is an important class 

of continuously operating concurrent programs, i.e. those which never terminate, that is left out of 

considerations in this paper. Mutual exclusion algorithms belong to this class of programs. For this 

type of program different properties than termination are of relevance. 

There has been a number of formal approaches to program correctness which were proposed 

and used in the literature. The most common of them is that based on an operational reasoning. It 

consists of an analysis in terms of the execution sequences of the given program. To tills purpose an 

informal understanding of the program semantics is used. While this analysis is usually successful in 

the case of sequential programs it is much less so in the case of concurrent programs. Tue number 

of possible execution sequences is then most often forbiddingly large and it is all too easy to overlook 

a possible execution sequence. 

A different approach is that based on an axiomatic reasoning. According to this approach in 

order to prove that a program S satisfies a property P we should find a proof system T with a language 

L(n such that 

i) T is sound for the program S, i.e. any theorem of T is true for S, 

ii) the property of P can be expressed in L(T) by a formula rp, 

ill) cp can be proved in T. 

(Strictly speaking, the operational reasoning is a special, degenerate case of the axiomatic reasoning 

in which the property P constitutes the only axiom of the proof system. Theo the properties ii) and 

ill) are trivial and the whole burden of the proof lies on the property i).) 

This approach started with the seminar paper of Hoare [Hl] where an axiomatic proof has been 

proposed to prove correctness of simple while-programs. His approach, often called Hoare's logic, 

has received a great deal of attention since then. An interested reader may wish to consult Apt [Al] 
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f or a survey of various Hoare style proof systems proposed for severctl programming constructs used 

in the imperative programming languages. In 1976 this approach has been extended to the case of 

concurrent programs by Owicki and Gries [001, 002] and Lamport [LI]. 

This aim of this paper is to provide a systematic exposition of this method applied to various 

types of concurrent programs. 

It should be stressed here that there are other approaches to the correctness of concurrent 

programs. They are not discussed in this paper. Perhaps the most important among them is the one 

started by Pnueli [P] and further developed in Manna and Pnueli [MPl, MPP2, MP3] which is based 

on temporal logic. This approach allows to study more complicated properties than those listed above 

and is particularly useful when dealing with continuously operating concurrent programs. 

t .3. Preliminaries 

Throughout the paper we fix an arbitrary assertion language containing two Boolean constants 

true and false. Its formulas are called assertions and denoted by the letters p, q, r. Quantifier free 

formulas are called Boolean expressions and are denoted by the letter B. 

We assume that the variables are of the type integer or Boolean. Variables are denoted by the 

letters x, y, z, u, a, b. Their type is fixed by the context in which they are used. Expressions are 

denoted by the letters s, t. p[t/u] stands for a substitution of t for all free occurrences of u in p. 

By a correctness formula we mean a construct of the form {p}S{q} where p, q are assertions and Sis 

a program. The classes of programs considered will be defined in the subsequent sections. 

The programs are executed over a domain consisting of all integers and {true, false} with the 

usual operations available. By a (proper) state we mean a function assigning to all variables a value 

from the domain. States are denoted by the letters a, 1". The notions of a value of an expression t 

in a state a (written as o(t)) and truth of an assertion p in a state o (written as ._. p(o)) and truth 

of.an assertion are defined as usual. By a[d/x], where d is a value from the domain, we mean the 

state obtained from a by assigning to x the value d and retaining the values of other variables. 

We allow three special states: .l. reporting nontennination of a program, fail reporting a failure 

in an execution of a program and !J,, reporting deadlock in an execution of a program. We have by 
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definition ;.... p(J..), ;.... p(fail) and I== p(D.) for all fommlas p. We define [p] to be the set of all 

states <J which satisfy p, i.e. such lhat P. p(t1) holds. 

We say that {p}S{q} is true in the sense of partial correctness (and write ;.... {p}S{q}) if all 

properly terminating computations of S starting in a state satisfying p terminate in a state satisfying 

q. We say that {p}S{q} is true in the sense of total correctness (and write I= 10tfp}S{q}) if it is true 

in the sense of partial correctness and moreover, all computations of S starting in a state satisfying 

p properly tenninate. We shall consider in this paper various other notions of program correctness. 

A program semantics .A'ln[[S]] of a program Sis a mapping from the set }: of proper states into 

the subsets of ~ u { l., fail, t:.}. Each program semantics dl11[[ .. ]] fixes a notion of program correct-

ness defined by 

where 

We shall consider here various semantics, among others partial correctness semantics..,(/[[ • ]] 

and total correctness semantics .A'tot[[ • ]] related to the notions of partial and total correctness, re-

spectively. 

All proof systems discussed in this paper are geared towards proving correctness formulas in 

various senses. All considered proof systems are sound in the sense that every provable correctness 

formula is true in an appropriate sense. Soundness proofs of the discussed proof systems are omitted 

but relevant lemmas are often exhibited. 
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2. NONDETERMINISTIC PROGRAMS 

To make this paper self-contained, we review in this section the correctness of 

nondeterministic programs in the style of Dijkstra [Dl, 02]. We concentrate here on the issue 

of fairness as the results concerning it wm be of relevance in the following section. More 

extensive treatment of the subject can be found in [A4]. 

We allow as atomic actions the skip statement and assignment statement. Programs 

are built using tbe composition operator ";" and allowing 

- the alternative command 

m 
[ 0 B ...... S.] 

i=l I I 

and 

- the repetitive command 

m 
*[ 0 Bi - Si] 

i=1 

where Bi are Boolean expressions (called guards) and Si are programs. 

Nondetenninistic programs form a good starting point to study parallel programs. This 

is due to the fact that every parallel program [S 1 II ... II Sn] is equivalent in an appropriate sense 

to the nondeterministic program 

n 
•[O enabled (Si) ...... execute Si one step] 

i== 1 

where the definition of executing Si pne step depends on the way the atomic actions are 

defined in the context of parallel composition. 

The nondeterministic programs in which only the alternative commands of the form 

[B - s1 O ..,B - S2] and repetitive commands of the form •[B - S] are used and are called 

deterministic programs or while -programs. Note that the above commands correspond to the 

customary commands if B then S 1 else S2 fi and while B do S od, respectively. while -programs 



- 12 -

are detenninistic in the sense that they produce at most one final state. 

We shall also use other constructs which can be straightforwardly defined in temis of 

the alternative and repetitive commands. 

l. l Semantics 

We recall bere a simple semantics of nondeterministic programs due to Hennessy and 

Plotkin [HP]. This semantics is based on the consideration of a transition relation 1 - ' 

between pairs <S,o> consisting of a program S and a state a. The intuitive meaning of the 

relation 

is the following: executing S1 one step in a state a can lead (nondeterministically) to a state 1' 

with S2 being remainder of S1 still to be executed. It is convenient to assume the empty 

program E. lben S2 is E if the considered step of S1 leads to state -r with s1 properly or 

improperly terminated. We assume that, for any S, E; S - S; E - S. 

We define the above relation by the foJlowing clauses where a :;i! .L, fail, t:,. : 

(i) 

(ii) 

(ill) 

(iv) 

(v) 

(vi) 

(vii) 

<skip, a> - <E. a>. 

<X:• t,a> - <E.a[a (t)/x]> , 

m 
< [ 0 Bi + Si],a> + <Si'a> if I= Bi(a), 

i=l 

m m 

< [ 0 Bi - Si],a> + < E, fail> if I= /\ ... B.(a), 
. 1 l 
I= i=J 

m m 
< ·c.o Bi .... Sj],a> - <Si;•[ 0 Bi - Sj],a> if I- B.(a), 

I= I io= I l 

m m 

< •[ 0 Bi• S1],a> - <E,a> if I- A ... Bi(a), 
i=l i=l 

Let • • stand for the transitive, reflexive closure of ..... 

We now introduce the following definitions. 



Definition 2.1. 

(i) We say that S can diverge from a if there exists an infinite sequence <Si,ai> 

(i .... 0,1, ... ) such that 

(ii) We say that S can fail from o if for some S1 

(ill) A finite or infinite sequence <Si,ai > (i ... 0,1, ... ) such that 

which cannot be extended is caUed a computation of S starting in a. 
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We now define two types of semantics for the nondeterministic programs by putting 

and 

.....U[[S]](a) - {T: <S,o> -• <E,T>} 

.....Ut01[[S]](a)-= J([[S]](a) u {.i. : Scan diverge from a} 

u {fail : S can fail from o}. 

Next, we provide four different proof systems to prove different types of correctness 

of nondeterministic programs. 

2.2 Partial correctness 

The following proof system allows proof of partial correctness of the nondeterministic 
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programs: 

AXIOM 1: SKIP AXIOM 

fp} skip {p} 

AXIOM 2: ASSIGNMENT AXIOM 

{p[t/x]} x:-t {p} 

RULE 3: COMPOSmON RULE 

{p} S1 {r}, {r} S2{q} 

{p} S1 ; S2 {q} 

RULE 4: ALTERNATIVE COMMAND RULE 

{p" Bi} Si {q}, i-1, ... ,m 
m 

{p} [O Bi - Si] {q} 
i=l 

RULE 5: REPETITIVE COMMAND RULE 

{p A Bi} Si {q}, i .. l, ... ,m 

m m 

{p} • [0 Bi .. Si] {p " /\ -.Bi} 
i=l i=l 

RULE 6: CONSEQUENCE RULE 

p .. pi' {pi} s {qi}. qi .. q 

{p} s {q} 

We call this proof system PC and write I-pc cp to denote the fact that the correctness 

formula cp can be proved in PC using for the consequence rule all true assertions as axioms. 

We use an analogous notation for the other proof systems. 
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2.3 Total correctness 

Nondetenninistic programs can fail to terminate properly because of failures. Accord-

ing to (02] a failure arises if at the moment of starting an execution of an alternative corn-

mand all its guards evaluate to false. Obviously the rule of alternative command does not 

exclude such a possibility. The following modification of this rule ensures the desired 

property. 

RULE 7: ALTERNATIVE COMMAND RULE Il 

m 
{p} (0 Bi - Si] {q} 

i=l 

The first premise guarantees that at the moment an alternative command is to be 

executed at least one of its guards evaluates to true. 

Next. we have to take care of termination of repetitive commands. The current 

version of the rule of repetitive commands is clearly insufficient for this purpose. We follow 

here the approach of [APS] and modify rule 5 as follows. 

RULE 8: REPETITIVE COMMAND RULE II 

{p(n) A Bi} Si {3 m < n p(m)}, i • 1, ... ,m 

m m 

{3 n p(n)} • (0 Bi - Si] {3 n p(n) A A -.Bi} 
i=l i= 1 

Here p (n) is an assertion with a free variable n which does not appear in 
m 

• (0 Bi - Si] and ranges over natural numbers. We call n a parameter variable. 
i=l 

We call the resulting proof system TC. 

2.4 Weak fairness 

We observed in the introduction that fairness is a natural assumption concerning 

parallel programs. The modeling of parallel programs by the nondeterministic ones given at 

the beginning of this section is appropriate only if the assumption of fairness is adopted for 
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nondeterministic programs, as well. The exact form of this assumption depends on the type of 

paraHel programs we wish to simulate. 

There are at least two natural fairness assumptions which can be adopted in the case 

of nondeterministic programs. The first of them is weak fairness. 

Definition 2.l 

Let a computation E of a nondeterministic program S be given. 

i) We say that a guard B of S is enabled if it evaluates to true at the moment tbe 

control in tbe program is just before it. 

ii) We say that E is weakly unfair if it is infinite and there exists a guard B of S which 

from a certain moment on is continuously enabled and never selected for execution. 

ill) We say that ~ is weakly fair if it is not weakly unfair. 

For example, the only infinite computation of the program 

b:= true; 

•[b - skip 0 -.b - b:= false] 

is weakly unfair, i.e., it is not weakly fair. On the other band the infinite computation of the 

program 

a:= true; 

• [a - b: "" .., b 0 b - a: • false] 

in which only the first guard is selected is weakly fair since the second guard is not continu­

ously true in it. 

We now define the weakly fair semantics of nondeterministic programs by putting 

.At v.iai:r [[S]] (a) -

Jt[[S]] (a) u { .1 : S can diverge from a by a weakly fair computation} 

u {fail : S can fail from o}. 
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We say that {p} S {q} holds under the assumption of weak fairness (J-wfair {p} S {q} in 

short) if every weakly fair computation of S starting in a state satisfying p properly termi­

nates in a state satisfying q. 

We now present a proof system appropriate for proving correctness of nondetenninis­

tic programs under the assumption of weak fairness. We follow here the approach of Apt and 

Olderog [AO] and of Apt, Pnueli and Stavi [APS]. 

Let S be a given nondeterministic program. We proceed by the following steps. 

Step 1 Transform S into a program T wfair(S) that generates exactly all weakly fair computa­

tions of S. 

By Step 1, J-wfair {p} S {q} iff I-tot {p} T wfair(S) {q} (under certain restric-

tions). 

Step l. Find a proof system allowing to prove total correctness of the programs of the form 

T v.iair(S). 

Step 3. Transform the proof from Step 2 into a proof system allowing to prove 1-wrair 

{p} S {q} directly without reference to Twrair(S). 

ad Step 1 

Consider the following program 

x:- 0 ; b:- true ; 

•[b - x:- x + 1 0 b - b:- false]. 

Under the assumption of weak fairness this program always terminates but any 

non-negative integer can be the final value of x. It is known (see essentially Dijkstra [D2]) 

that this effect cannot be achieved by the nondeterministic programs studied here. 

To control this unbounded nondetenninism we allow in T v.iair(S) the random 

assignment 

x:-? 

which sets x to an arbitrary non-negative integer and thus has the following semantics: 

< x:= ? , o > - <E, o[d/x]> for every 0 :S d. 



- 18 -

Observe that under the assumption of weak fairness the above program is equivalent 

to 

x:- ? ; b: ... false. 

To make the approach easier to follow, consider first a special case. 

m 
Case 1. Sis of the form •[ D Bi - Si] where each Si is deterministic. Following Apt 

i=l 

and Olderog [AO] we define T' v.iair (S) ·as follows: 

TI (S) - z . ?· • z .... ?• wfair == l ·= .,. . ., m · '' 
m 

111 [ O B. I\ tum "" i - s. ; z. :- ?; I l l 
i=l 

for j :;I: i do 

[B. - z. :- z--10 -.B. - zJ. :""' ?] J J J J 

od 

where tum - i = i"" min {j I zj"" min {zk I Bk} k=l .... ,ml and the variables z 1 ,. . .,zm do not 

occur in S. 

The variables z 1 , •. .,zm can be interpreted as priorities assigned to the subprograms 

S1 ,. . .,Sm, respectively. The addition of the conjuncts tum '"" i to the guards Bi makes the 

guards deterministic (i.e., mutually exclusive). At each moment when the control is at the 

main loop entry a guard with the smallest priority is selected for execution. After the 

execution of the corresponding subprogram Si the priorities are recomputed. 

The exact relation between S and T' wfair (S) is expressed by the following lemma 

Lemma 2.1. For all states 11 ..JI wfair[(S]](a) • JI tot[[T' "'iair(S)]](o) mod Z. 0 

The notalion "mod Z" suggests that lbe states produced by the programs agree on all 

variables except those in Z. 

Corollary l. For an assertions p and q which do not contain z 1 , .... zm as free variables 

1=-wrair {p} S {q} iff I-tot {p} T' wfair(S) {q}. D 

Consider now the general case. 



Case 2. S is an arbitrary nondetenninistic program. 

We proceed by tbe foiiowing successive steps (see Apt, Pnueli and Stavi [APS]): 

m 
1 °. Replace each subprogram • [ D Bi - Si] of S by 

i= 1 

m m 
0 [ V B. - [ 0 B. - s. ]] 

i=l I i=] I I 

m 
2°. Replace each subprogram [ 0 Bi - Si] of S by tbe following subprogram: 

i= l 

for j: -1 to m do [B. - z .: ... z. - 1 D ..., BJ. - z.I.: ... ?] od ; 
J J J 

m 
[ 0 Bl. A z > 0 - z. : ... ?·, s. ]. 

- l I 
i=l 

where z ~ 0 stands for z 1 ~ 0 "···" zm ~ O. 
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3 °. Rename all variables z1 , •.. ,zm appropriately so that each alternative command bas 

its "own" set of these variables. 

Call the resulting program T wfair (S). 

This transformation is not a straightforward generalization of the first transfonnation. 

First of all the guards in the transformed program are not deterministic. Secondly, this 

transformation introduces failures which wm result once a priority variable is decreased below 

zero. More formally tbe following holds. 

Lemma 2.2. For all states o 

.,,(( 'll<iair[[S]] (o) .. J([[T wfair(S)]] (a)- {fail} mod Z. D 

The presence of failures allows us only to conclude the following. 

Corollary 2.2. For all assertions p and q which do not contain z 1 , ••• ,zm as free variables 

and all programs S 

l=wrair {p} S {q} iff l=v.101 {p} T wfair (S) {q} 

and Va [ I= p( a) => S does not fail from a] . O 

Here the subscript "wtot" refers to weak total correctness - a notion obtained by 

disregarding possible failures in the definition of total correctness. 
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ad Step 2. 

To prove weak total correctness of the programs of the form T wfair (S) we have to 

take care of the random assignments. To this purpose we introduce the following axiom. 

AXIOM 9 : RANDOM ASSIGNMENT AXIOM 

{ Vx ~ 0 p} x: ... ? {p}. 

However, it is not sufficient to add the above axiom to the proof system defined in 

Section 2.3. The reason is that in the presence of random assignments some programs always 

terminate but the actual number of steps does not depend on the initial state and is unbound-

ed. An example of such a program is 

S 5 "'[b A 0 < y..,.. 

[b ..,.. y: .... ? ; b: .... false 

0 .... b - y:-y-1 

] 

] 

To prove total correctness of such programs the repetitive command rule II (rule 8) is 

not sufficient. An appropriate modification is obtained by allowing the parameter variable to 

range over ordinals instead of natural numbers. We thus adopt the following rule instead of 

rule 8: 

RULE 10: REPETITIVE COMJ\.1.AND RULE lU 

m 
m 

{3ap(a:)} • [ 0 Bi ..,.. Si] {3a:p(a:) A /\ -.Bi} 
~1 ~1 

where p(a) is an assertion with a free variable a which does not appear in the 

programs and ranges over ordinals. 
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ad Step 3 

Corollary 2 slates that in order ~o prove total correctness of a nondeterministic 

program S under the assumption of weak fairness it essentially suffices to prove weak total 

correctness of T \Vfair(S). But instead of proving the correctness of T wfair(S) directly we rather 

transform the proof into a direct proof of S by "absorbing" tbe transformation into the 

assertions of existing rules. Finally, we take care of the problem of failures in the same way 

as in Section 3.3, i.e., by adding a new premise to the hypotheses of the (new) alternative 

command rule. 

This procedure leads to the following new proof rules for alternative and repetitive 

commands. 

RULE 11: WFAIR ALTERNATIVE COMMAND RULE 
m 

p - VB., 
i=l I 

{q} i .... 1, ... ,m 

m 
{p} [ 0 Bi - Si] {q} 

j.,. 1 
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RULE 12: WFAIR REPETITIVE CO.MMAND RULE 

{3~ <a p(#)}, i· 1, ...• m 

m m 
{3a p(a)} • [ 0 B1 - Si] {3a p(a) " A -.Bi} 

i== I i= l 

where p(a) is as in rule 10. 

Summarizing, the proof system appropriate for proving total correctness of nondeter-

ministic programs under the weak fairness hypothesis consists of axioms 1.2 and rules 3, 11, 

12 and 6. The random assignment axiom is not needed - it was only used to derive the final 

form of the above two rules. 

2.5. Strong fairness 

Another natural fairness assumption is that of strong fairness. 

Definition 2.3 

Let E be a computation of a nondeterministic program S. 

i) We say that E is strongly unfair if it is infinite and there exists a guard B of S which 

from a certain moment on is infinitely often enabled and never selected for execution. 

ii) We say that ~ is strongly fair if it is not strongly unfair. 

Now, the hypothesis of strong fairness can be treated in an analogous way as that of 

weak fairness. To obtain a transformation realizing strong fairness we simply replace in the 

corresponding transformations from Step 1 in the previous section the updating of priority 
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[B ..... z.: ... z- - 1 0 -.B. - skip] 
J J J J 

The remaining steps in the development of the proof system for strong fairness are the 

same as before and omitted. 
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3. PARALLEL PROGRAMS 

We now consider parallel programs. These are programs of the form 

where s0 - called an initial part - consists of a (possibly empty) sequence of assignments and. 

S1 , ... ,Sn - called the components of the parallel program - are deterministic programs. For a 

moment we disallow synchronization constructs in the component programs. 

3.1 Semantics 

Their semantics are obtained by augmenting the list of clauses given in Section 2.1 by 

the following one handling the parallel composition. 

This leads to two types of semantics of parallel programs - .At and .Al tot defined 

similarly as before but this time with <[Ell ... ff E] , r> as the final configuration. We shall 
n times 

also consider a third semantics taking into account the fairness assumption. To this purpose 

we introduce the following notion. 

Definition 3.l 

Let ~ be a computation of a parallel program S = S0 ; [S 1 U ... II Sn] . 

i) We say that the component Si (1 =:;; i :$ n) has terminated in ~ if for some 

R 1 , .•. ,Rn :and T where Ri = E, <[R 1 U •.• U Rn], r> is an element of ~· 

ii) We say that the component Si is active in the step 

ill) We say that~ is unjust if some component Si did not terminate in ~ and is only 



finitely many times active in ~-

iv) We say that ~ is just if it is not unjust. 

We now define the just semantics of parallel programs by putting 

..Hjust [[S]] (a)• JI [[S]] (a) 

u {J.: Scan diverge from a by a just computation} 

u {fail: S can fail from a} 
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This semantics takes care of the fairness assumption mentioned in the introduction. Thus 

Solution 3 from the introduction is a correct solution to the zero finding problem in the case 

when the above semantics is adopted. 

It should be observed that all three semantics introduced here handle parallelism by 

reducing it to an arbitrary interleaving of the executions of the components programs - at each 

step only one component of the program is active. Whether this is a realistic approximation of 

a truly parallel execution of a parallel program depends on bow atomic actions of parallel 

programs are defined. By an atomic action we mean a statement within a component whose 

execution cannot be interrupted by the activation of another component. 

The usual requirement concerning the parallel execution is that concurrent reading and 

writing is disallowed, i.e., an execution of an assignment to a variable x cannot be interrupted 

by any other action referring to L This requirement implies that assignments and evaluations 

of the guards are considered as atomic actions. One can prove that for this choice of atomic 

actions the above defined semantics are indeed equivalent to appropriately defined "parallel" 

semantics. Consequently the above semantics are sufficient to anaJyze the behavior of the 

parallel programs. 

The granularity of interleaving can be increased here by decreasing the size of atomic 

actions. This can be achieved by allowing only very simple types of assignments and Boolean 

expressions whose execution blocks other components for a more negligible amount of time. 
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3.2 Disjoint parallelism 

The main difficulty in studying parallel programs lies in the use of shared variables A 

variable is called shared if it cao be modified within one component of a parallel program and 

moreover is referred to within another. Then the behavior of the latter component can depend 

on the bebavior of the first one. This can result in a nondetenninistic behavior of a parallel 

program with deterministic components. To see this, consider, for example, the program 

x: == O; [ x: • 1 U y: • x ] in which the final value of y is either 0 or 1 . 

Due to these difficulties it is natural to study first parallel programs without shared 

variables. Such programs are called disjoint parallel programs and were originally studied in 

Hoare (H2]. 

More formally, let free (S) stand for the set of all variables which occur in S and let 

change (S) stand for the set of all variables of S which can be modified by it, i.e., which 

appear on the left band side of an assignment 

Then S = S0 ; [S 1 U ..• II S0 ] is called a disjoint parallel program if 

Thus the program [x:- z U y:- z ] is a disjoint parallel program but [x:- z B y:- x ] 

or [x:- z II x:- y] is not 

The following proof rule dealing with disjoint parallel programs was proposed by 

Hoare in [H2]: 

RULE 13: RULE OF DISJOINT PARALLEL COMPOSmON 

n D 

{ /\ Pi} [S1 ft··· 8 Sn] { /\ qi} 
i=l i=l 
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Observe that the proviso of the rule is indeed needed. For example. the true premises 

{ y = 1} x: ... 0 { y ... 1} and { true} y:"" 0 {true} should not lead to the conclusion 

{y = 1} [x:- o 11 y:= O] {y .... 1}. 

Note the natural connection between the condition imposed on the programs Si and 

the condition of the rule. 

The above rule is a useful one but it does not suffice to prove all properties of disjoint 

parallel programs. It is not difficult to prove that the correctness formula 

{x = y} [x:= x + 1 D y:- y + 1] {x - y} cannot be proved in the proof system PC from 

Section 2.2 augmented by the above rule. Let us see where a possible proof actually breaks 

down. 

We dearly have 

{x ... z} x:= x + 1 {x ... z + 1} 

and 

{y .... z} y: .... y + 1 {y ... z + 1} 

so by the rule of disjoint parallel composition 

{x = z " y - z} [x: ... x + 1 II y: ... y + 1] {x - z + 1 " y ... z + 1} . 

Now by the rule of consequence 

{x ... z " y .... z} [x:== x + 1 II y:- y + 1] {x == y} . 

However, we cannot replace the pre-assertion x "" z " y ... z by x .. Y since clearly the 

latter does not imply the former. On the other hand we have 

{x == y} z:== x {x ... z " y - z} 

so by the composition rule 

{x .... y} z:-= x ; [x:- x + 1 II y: ... y + 1] {x ,.. y} . 
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We can now obtain the desired formula by dropping the assignment z:= x. FormaUy 

this requires use of a new rule allowing to delete assignments to tbe so-called auxiliary 

variables. This brings us to the following definition. 

Definition 3.2 

Let A be a set of variables of a program S. We call A the set of auxiliary variables 

of S if 

i) All variables of A appear in S only in assignments, 

ii) No variable of S from outside of A depends on the variable from A. In other 

words there does not exist an assignment x:"" t within S such that x (. A and 

free (t) n A #- 0. 

For example, {z} is a set of auxiliary variables of the program 

z:= x ; [x: ... x + 1 U y:= y + l] but {x} not as z depends on x.. 

Infonnally, i) states that the auxiliary variables do not affect the control flow of the 

program and ii) states that they do not affect the data flow of the program. 

The following rule was first introduced by Owicki and Gries in [OGl] for the case of 

arbitrary parallel programs. 

RULE 14: RULE OF AUXILIARY VARIABLES 

Let A be a set of auxiliary variables of a program S and let S' be obtained 

from S by deleting all assignments to the variables in A. Then 

provided free (q) n A == o. 

{p} s {q} 

{p} s' {q} 

Now, using the above rule we can complete the proof of the correctness formula 

{x ... y} [x: ... x + 1 II y:- y + 1] {x .... y} by dropping the assignment to z . 
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Adding the last two rules to the proof systems for partial, respectively total correctness 

we obtain proof systems appropriate for proving partial, respectively total correctness of 

disjoint parallel programs. 

Consider now the problem of justice. It may come out as a surprise that this is not a 

real issue for disjoint parallel programs. This follows from the following simple lemma. 

Lemma 3.1. For all disjoint parallel programs S 

JI wt [[S]] ... .,,(/just [[S]] 

holds. 

Proof. For any given state o and a parallel program S we have 

JI just [[S]] (o) s JI oot [[S]](o) . Consider now the converse implication. The only possible 

difference can lie in the existence of an infinite computation. So suppose that 

.L e JI tot [[S]](a) and let (be an infinite computation of S starting in a. 

Due to disjointness of the components, ( is infinite because of a looping within a 

single componenL Now, if ( is not just then it can easily be transformed into a just computa­

tion by simply activating sufficiently often the components of S which did not terminate in (. 

Insertion of these steps does not affect the behavior of other components due to their 

disjointness. The resulting computation is an infinite just computation of S starting in (. So 

.L E J/just [[S]](u). 0 

This lemma implies that there is no difference in proving total correctness of disjoint 

parallel programs with or without the assumption of justice. 

3.3 Parallel programs with shared variables 

Consider now the general case. Then, rule 13 is still sound. However, this time it is 

completely inadequate. Take, for example, the program Se [x:• x + 1 Ux:• x + 1]. Then 

{x - O} S {x - 2} is true. However, due to the restriction of the rule in the case of S x 
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cannot be referred to in the assertions. A possible use of the rule of auxiliary variables cannot 

remedy this problem and consequently the correctness formula 

{x - O} S {x ... 2} cannot be proved in the proof system studied in the previous section. 

3.3.1 Partial correctness 

To overcome this difficulty we have to find a proof rule for parallel composition which 

allows references in assertions to the shared variables. We follow here the approach of Owicki 

and Gries [001]. 

First we introduce the notion of a proof outline. Consider the following proof of 

(partial) correctness of the g..:d program: 

where 

{x .. a A y - b} 

{p} 

* (X > y - {p A X > y} 

x:- x - y 

{p} 

a x < y - {p /\ x < Y J 

y:- y- x 

{p} 

] 

{X - y A p} 

{x - y ... gcd (a,b)} 

p a gcd(x,y) - gcd(a,b) . 

The proof is presented here in a special form, called a proof outline. A proof outline 

consists of a program interspersed with assertions. Each subprogram R is preceded and 

succeeded by an assertion called pre(R) and post(R), respectively. These assertions satisfy 

certain natural conditions (see below) which make the application of the appropriate rules 

justified. Observe that we refer here to the proofs of partial correctness. 
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The following lemma due to Ow:icki [O] clarifies the notion of a proof outline. 

Lemma 3.2 

Let S be a deterministic program and let S1 ,...,Sk be the list of all subprograms of S. 

Then 1-pc {p} S {q} iff there exist assertions pre(Si) and post(Si) for i - 1, ... ,k such that 

(i) p - pre(S), post(S) - q, 

(ii) pre(S.) - post(S. )[t/x] if S. is x: ... t, 
l 1 I 

(ill) pre(S) - pre(Si)' post(Sj) - pre(S1), post(S1) ..... post(Si) 

if Si is S j ; S 1, 

(iv) pre(S) A B _,,. pre(Si)' pre(Si) A -.B - pre(S1 ), post(Si) ..... post(Si)' 

post(S 1) ..... post(S) if Si is if B then Sj else S1 n., 

(v) pre(Si) ..,,. post(Si). post(Sj) A B - pre(Si)' post(Sj) A ... B - post(Si) 

Proof. See (essentially) Owicki. [O]. O 

The proof outlines satisfy the following easy-to-prove lemma. 

Lemma 3.3 (Strong soundness for deterministic programs) 

Suppose that a proof outline of {p} S {q} is given. Then for every computation of S 

which starts in a state a satisfying p if 

for a subprogram R of S and some Rp o and a0, then 

Informally, the conclusion of this lemma states that for every computation of S 

starting in a state satisfying p and every substatement R of S if the control is in front of 

R then pre(R) holds and if the control is just after R then post(R) holds. In other words 

the pre- and post-assertions hold at the appropriate moments. 
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This lemma is a generalization of the usual soundness theorem concerning the proof 

system PC. 

Now observe that the above lemma does not hold any more when we consider proof 

outlines of the components of a parallel program simultaneously. Indeed, consider the proof 

outlines 

{x - O} x:- x + 1 {x - 1} 

and 

{x - O} x:- 0 {x - O} 

and a computation of the program [x: ... x + 1 U x:- O] starting in a state in which x .. 0 

holds. Then it is not true that whenever the control is after x: - x + 1 , x - 1 holds. And 

similarly with the other control points. 

The reason is that the above proof outlines do not take into account a possible 

interaction of the other components. This brings us to the following definitions. 

Definition 3.3. Given a proof outline of {p} S {q} and a statement R with a pre-assertion 

pre(R), we say that R does not interfere with the proof outline of {p} S {q} if the following 

two conditions hold 

i) for all subprograms T of S : 

ii) 

{pre(T) " pre(R)} R {pre(T)} 

(R preserves all pre-assertions) 

{Q ,., pre(R)} R {Q} 

(R preserves the final post-assertion) 

Definition 3.4. The proof outlines of {p1} S1 {q1}, ... ,{pn} Sn {qn} are interference-free if no 

assignment from one component interferes with the proof outline of another component. 



We now introduce the following proof rule 

RULE 15: RULE OF PARALLEL COMPOSITTON 

proof outlines of {pi} Si {qi} , i- l, ... ,n 

are interference-free 
n n 

{ /\ Pi} [S l 0 ••• U Sn] { /\ qi} 
i=l i=l 

- 33 -

The following lemma constitutes a counterpart of Lemma 3.3. and justifies the above 

rule. 

Lemma 3.4. (Strong soundness for parallel programs) 

Suppose that interference-free proof outlines of {p1} S1 {q1}, •.. ,{pn} S0 {q8 } are 
n 

given. Then for every computation of [S 1 U ••. II S0 ] which starts in a state u satisfying /\ Pi if 
i=l 

for a subprogram R of Si such that Ri = R; Ti, then 

In particular, if 

n 

then I= /\ qi(u 1). 
i=l 

I=- pre(R) (a0) and I- post(R) (a1). 

Proof. Straightforward by induction on the length of the computation. D 

To see the use of this rule consider the correctness formula 

Ix ... O} [x:• O II x:- x + 1] {x ..,. 0 v x ... 1} with the following proof presented in the form 



of proof outlines: 

{x ... O} 

[{x ... 0 v x == 1} x:- O {x = O v x == 1} 

!Hx == O} x:== x + 1 {x == O v x ... 1} 

] 

{x ... O v x = 1} 

Note that the proof outlines are indeed interference-free. 

Unfortunately, as in the case of disjoint parallelism the above proof rule is not 

sufficient for provi.ng all properties of parallel programs. 

It is easy to see that this rule does not suffice to prove the· correctness formula 

{x = O} [x:== x + 1 II x:== x + 1] {x ... 2}. Indeed, suppose by contradiction that for 

interference-free proof outlines 

holds. 

Then also 

{x = O} 

[ {p1} x:= x + 1 {q1} 

11 {p2 } x: ... x + 1 {q2} 

{x ... 2} 

{x = 0} 

[ {p} x:= x + 1 {q} 

11 {pl x:- x + 1 fq} 

] 

{ x ... 2} 

is a valid proof where p = p1 A p2 and q = q 1 " q2 • We thus have 

i) x = 0 ..... p 
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ii) {p} x:- x + l {p} by interference freedom, i.e., for an x p(x) ..... p(x + 1 ). 
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Then by induction Vx ~ 0 p(x) and since {p} x:- x + 1 {q} holds, Vx ~ 1 q(x) is true. But 

then q cannot imply x ... 2. Contradiction. 

As in the case of disjoint parallelism we strengthen the proof system by supplementing 

it with the rule of auxiliary variables. This time, however, we also need an additional con­

struct allowing to tum a deterministic program R into an indivisible action: <R> . To 

understand better its function in conjunction with the rule of auxiliary variables consider the 

following correctness proof. 

The proof outlines 

{x ... z} x:== x + 1 {x ... z + 1} 

and 

{z ... O} < x:- x + 1 ~ z:= 1 > {z == 1 } 

are interference-free. Using the parallel composition rule and the composition rule we obtain 

{x = O} z:= 0; [x:== x + 1 II < x:== x+t ; z:= 1 >] {x == z + 1 A z "" 1} , so by the 

consequence rule 

{x == O} z:== 0; [x:= x + 1 II < x:- x + 1 ; z:== 1>] {x - 2}. 

Now by the rule of auxiliary variables 

{x""' O} [x:= x + 1 II < x:= x + 1 >] {x ... 2} . 

But the assignments are by assumption indivisible actions so we can drop the brackets around 

x:""" x + 1 and obtain the correctness formula discussed before. 

To justify the above proof we need to modify the notions of a proof outline and of 

interference freedom. 

In the definition of a proof outline we simply do not put any assertion within a 

subprogram of the form <R>. On the other band we require that {pre(R)} R {post(R)} be 

provable in the proof system PC. In the definition of interference freedom we now require 

that no assignment and no subprogram of the fonn <R> of one component interferes with the 

proof outline of another component 

Finally we need the following natural rule. 
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RULE 16: REDUCTION RULE 

Let s' be obtained from S by replacing each subprogram of S of the form 

<R>. where R is an assignment, by R Then 

{p} s {q} 

fp} s' {q} 

This completes the presentation of the proof system. Observe that the above proof 

system is appropriate for proofs of partial correctness only as the proof outlines referred to the 

proof system PC. 

3.3.2 Total correctne~ 

In order to prove total correctness of parallel programs we first introduce a notion of a 

proof outline appropriate for total correctness. As before a proof outline consists of a 

program interspersed with assertions. They now satisfy the same conditions as before with the 

exception of the following ones for the case of while -subprograms: 

(v') r(n) A B -pre(Si), post(S;) - 3m < n r(m), pre(Si) - 3n r(n), 

3n r(n) A -.B ..,.. post(Si) if Si is while B do S; oo, where r(n) is an assertion 

with a free variable n which does not appear in Si and ranges over natural numbers. 

The following lemma justifies this new definition of a proof outline. 

Lemma 3.5 

Let S be a detenninistic program and let S p···•Sn be the list of all subprograms of S. 

Then I-Tc {p} S {q} iff there exist assertions pre(Si) and post(Si) for i == 1, ... ,k such that the 

conditions (i) - (iv) of Lem.ma 3.2 and (v') listed above are satisfied. 

Proof. The proof proceeds by induction on the structure of the program S. We consider here 

only the case of while -programs. The proofs of other cases are the same as in Lemma 3.2. 

Let S be of the form while B do S0 oo . 

if part 
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Suppose that I-Tc {p} S {q} holds for some assertions p and q. The last steps of the 

proof must have consisted of an application of rule 8 (the rule of repetitive command Il) 

followed by a possibly empty number of applications of the consequence rule which can be 

combined into exactly one application. We thus have p .... 3n r(n) , 3n r(n) A -.B - q and 

~TC {r(n) A B} S0 {3m <n r(m) } 

for some assertion r(n) with a free variable n which does not occur in S and ranges over 

natural numbers. 

We now define the pre- and post-assertions for S and S0 putting 

pre(S) = p. post(S) = q , pre(S0) = r(n) A B, post(S0) = 3m < n r(m). 

Note that the relevant conditions listed in (i) and (v') are obviously satisfied. 

(1) 

Since (1) holds, by the induction hypothesis there exist appropriate pre- and post~ 

assertions for all subprograms of S0 which satisfy the conditions listed in the lemma. Disre­

gard the new definitions of pre(S0) and post(S0) which satisfy the condition (i) w.r.t. (1) . 

All other pre- and post-assertions together with those defined above satisfy the conditions of 

the lemma w.r.t. {p} S {q}. 

Only if part 

Suppose that the appropriate assertions satisfying the conditions of the lemma for 

{p} S {q} exist Delete now from this list the assertions pre(S) - 3n r(n) and 

3 n r(n) " -.B ..... post(S) concerning the program S and listed in (v'). In such a way we 

obtain appropriate assertions which satisfy the conditions of the lemma in the case of the 

correctness formula {r(n) " B} S0 {3m < n r(m)}. 

By the induction hypothesis I-Tc {r(n) " B} S0 {3m < n r(m)}. By the assumption 

the assertions p ..... pre(S), pre(S) - 3n r(n), 3n r(n) " -.B ...,. post(S) and post(S) -+ q hold, 

so by the consequence rule ~TC {p} S {q} holds as desired. D 

To prove total correctness of parallel programs it is sufficient to use the same proof 

rules as before but now using proof outlines for total correctness. 
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As an example consider the program S = [while x >Odo x: ... x-1 od II x:== O]. We 

now prove {true} S {x ... 0 v x ... -1} in the sense of total correctness. We present the proof 

in the fonn of proof outlines together with an appropriate commentary. 

{true} 

z:= 0; 

{z == O} 

[ {3 n p(n)} 

] 

while x > 0 do {n 2:: x + 1 A if z '"" 1 then x ... O else x > O fi} 

x:= x - 1 

{ 3m < n(m ;:: x + 1) A if z ... 1 then x - 0 v x == - 1 else x 2:: 0 fi} 

od 

{3 n p(n) A x $ O} 

{z == O} 

<X:= 0 ; z:== 1> 

{z = 1} 

3 n p(n) A x $ O A z = l J 

x = 0 v x"" - 1} 

where p(n) := n 2:: x + 1 A if z == 1 then x ... 0 v x = - 1 else x ;:: 0 fi. 

and 

Consecutive occurrences of assertions indicate an application of the consequence rule. 

First, observe that we indeed deal with proof outlines. The assertions to verify are 

p(n) A x > O .... n ~ x + 1 A if z = 1 then x - 0 else x > 0 fi 

3m < n(m ~ x + l) A if z ... 1 then x == 0 v x "" - 1 else x ~ 0 fi ..... 3m < n p(m). 
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They are clearly satisfied. Next we prove the interference freedom. The variable x is 

not mentioned in the second proof outline. Thus the assignment x:- x - 1 does not interfere 

with the second proof outline. Consider now the statement < x:= O ; z:- 1 > and the first 

proof outline. 

We clearly have 

{3np(n) A z ... O} <x:= 0; z:== 1> {3n p(n)}. 

The other two cases are equally straightforward to verify. The desired result now 

follows by the parallel composition rule, rule of auxiliary variables and the reduction rule. 

There still remains an issue of total correctness of parallel programs with shared 

variables under the assumption of justice. We shall handle this problem after discussing the 

synchronization constructs. 

3.4 General parallel programs 

In a realistic situation parallel programs are executed in the presence of some syn­

chronization constraints. These constraints cannot be expressed using the syntax discussed so 

far. Following Owicki and Gries [OG 1] we now additionally allow within the context of 

parallel composition of programs the construct of the fonn await B then R and where R is a 

detenninistic program. Informally, a component program executes an await -statement iff with 

its tum to execute the Boolean expression B evaluates to true. R is then executed as an 

indivisible action. 

Tue await -construct is of course too powerful to be implemented efficiently but it 

allows to model various other more realistic synchronization constructs. For the purpose of 

correctness proofs of the parallel programs using the latter constructs such as modeling, 

however inefficient, suffices. 

The above programs are subsequently called general parallel programs (GP programs, 

in short). 
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We now define the semantics of GP programs by adding the following clause to the 

list considered up until now: 

ix) <await B then R end, o> - <E, T> 

if ~ B(u) and <R, u> -.."' <E, r>. 

Introduction of the await -statements leads to a new possibility of abnormal termination 

of a program - that of a deadlock. 

Definition 3.5 

i) A configuration <[S 1 II .•. !I S11], a> is called deadlocked if for some i Si ~ E and 

moreover <[S1 11 ... 11 S11],a> has no successor w.r.t. the relation "..., ". 

ii) We say that a GP program S can deadlock from u if for some deadlocked 

configuration <S', T>, <S,a> _ .. <S', T> . 

We now define a new J( tot semantics of GP programs taking into account the 

possibility of dead.Jocks: 

J/tot [[S]] (u)=.....« [[S]] (u) u {.t: Scan diverge from a} 

u {fl.: S can deadlock from u} 

where fail is not mentioned because by the syntax restrictions no failure can now arise. 

Two different semantics of GP programs taking into account the fairness or justice 

assumption will be defined and discussed later. 

To prove correctness of GP programs we have to in the first place provide a proof rule 

concerning the await -statement. The following rule was proposed in [OG 1]. 

RULE 17: AWAIT RULE 

{p A B} R {q} 

{p} await B then Rend {q} 

Using this rule in conjunction with the proof system PC or TC we can prove partial or 

total correctness of the components of GP programs. However, in order to deal adequately 
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with the semantics of the await -statements we adopt the following refined definitions of proof 

outlines. By a normal subprogram of a GP program we mean a subprogram which is not a 

proper subprogram of an await-statement. Then a proof outline of {p} S {q} , where S is a 

component program, is the program S together with the assertions p, q and pre(Si), post(Si) 

for all normal subsets Si of S which satisfy the following conditions: 

a) for partial correctness 

1°. I-pc {pre(Si) A B} R {post(Si)} 

if Si is await B then R end , 

2°. conditions (i) - (v) of Lemma 3.2; 

b) for total correctness 

3°. 1-rc { pre(Si) A B} R { post(SiH 

if Si is await B then R end , 

4°. conditions (i) - (iv) of Lemma 3.2. 

5°. conditions (v') of Section 3.3.2. 

Similarly as before it is easy to prove the following lemma: 

Lemma 3.6. Let S be a component of a GP program. Then 

i) I-Pc+ rule 16 {p} S {q} iff there exists a proof outline for partial correctness of 

{p} s {q}. 

ii) I-Tc+ rule 16 { p} S { q} iff there exists a proof outline for total correctness of 

{p} s {q}. 0 

Also, in the same way as before we accommodate the definition of proof outlines to 

cater for the case of subprograms of the form <R>. We intend to use rule 15 to prove 

correctness of GP programs. To this purpose we have to modify appropriately tbe definition 

of interference freedom. We now say that proof outlines for components of a GP program are 

interference-free if no assignment or an await -statement or a subprogram of the form <R> of 

one component interferes with the proof outline of another component. 
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Using now rules 14 - 16 we can prove partial correctness of GP programs. However, 

to prove total correctness of GP programs it is not sufficient to use proof outlines for total 

correctness for the component programs - in presence of the await -statements wt: still have to 

handle the problem of deadlock freedom. 

We follow here the approach of [001). Let S = [S1 II .•• U Sn] be a GP program. An 

n-tuple of programs <R1 , ...• Rn> is called a blocked tup/e if 

i) each Ri is either an await-statement being a subprogram of Si or E , 

ii) 3 i Ri ~ E. 

Suppose that interference-free proof outlines for partial correctness of 

associate an n-tuple <r 1, .•• ,rn> of assertions defined as follows: 

if Ri = await B then R end then ri = pre(Ri) A -.B , 

Suppose now that interference-free proof outlines for total correctness of 

<R1 , •.• ,Rn> of S the corresponding n-tuple of assertions as before but we prefix each 

assertion with 3n 1 ... 3nk where n 1, ... ,nk are parameter variables occurring in iL 

The following can be proved for proof outlines for both partial and total correctness. 

H S is executed in an initial state satisfying the assertions p 1 ····•Pn and deadlocks then the 

corresponding assertions r 1, ... ,rn associated with the reached blocked tuple are satisfied 

We say that S is deadlock-free relative to the assertion p if in the computations of S 

starting in a state satisfying p deadlock cannot arise. The following lemma is a direct 

consequence of the above. 

n 

given. Then s = [SI n ... n SR] is deadlock-free relative to A Pi if for all blocked tuples 
R i=J 

<Rl' .. .,Rn> ... A ri holds for the corresponding tuple of assertions <rp ... ,rn> . 0 
i=l 
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This lemma allows us to handle the proofs of deadlock-freedom. Thus to prove total 

correctness of a GP program it is enough to find appropriate proof outlines for total correct­

ness wbicb satisfy the conditions of tbe above lemma. Then the conclusion of rule 15 holds in 

the sense of total correctness. 
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3.5. Justice and fairness 

3.5.1 Justice 

Consider the program 

b: =true; [while b do skip od ll b: =false]. 

Under the assumption of justice this program always terminates and without this assumption termi-

nation is not guaranteed. Thus in the presence of shared variables there is a difference between total 

correctness of parallel programs under and without the assumption of justice. To prove total cor-

rectness of parallel programs under the assumption of justice we follow the approach of Olderog and 

Apt [OA] and as in the case of nondeterministic programs we use program transformations. 

Let S = S0 ;[S1 II •.. II Sn] be a parallel program with shared variables. We define Tjust(S) as 

the program obtained from S by the following steps: 

1. prefix S with an initialization part 

2. replace every loop whlle B do R od of a component Si by 

whlle B do 

await z ;;:: 1 then z;: = ?; 

for j '#: i do 

R 

od, 

3. suffix every component Si by 

[ .... endr~ z;: = zj - 1 0 endj- skip] 

od; 

end; 

ENDi - end;: = true. 



-45-

We assume that none of the variables in the set Z == {z1 •... ,zn, end1, ... , endn} occurs in the 

original program S. 

The following lemma clarifies the relation between the programs Sand T;ust(S): 

Lemma 3.8. For every parallel program S and a state a 

.A'fjus1HS]](a) = .A(tot[[1jus1(S)]](a) - {1.'i} mod Z. D 

A proof can be found in [ OA]. The following corollary is immediate. 

Corollary 3.1. For ail assertions p and q without free variables from the set Z 

I= just{p}S{q} 1!! I= tot-ti{plJjustCS){q}. D 

Here the subscript "tot-1.'i" refers to total correctness modulo deadlocks - a notion obtained by dis­

regarding possible deadlocks in the definition of total correctness. 

Now, to prove total correctness modulo deadlocks of T;us1(S) we first have to take care of 

random assignments. To this purpose it is necessary to refine the notion of a proof outline for total 

correctness in the presence of random assignments. While proving total correctness of the component 

programs we shall now use repetitive command rule m instead of repetitive command rule ll. This 

requires replacement of the conditions concerning the while-subprograms ((v') of subsection 3.3.2) 

by the following ones: 

(v") r(a:)AB-pre(S). post(S)-3,B < ar(/3), pre(S;)-3ar(a), 3ar(a)A-.B-post(S;) 

if S; is while B do Sj, od, where r( a) is an assertion with a free variable a which does not appear 

in S1 and ranges over ordinals, 

and add the following one concerning random assignments: 

(vi) pre(x: = ?) - Vx ~ 0 post(x: = ?). 

Thus to prove total correctness of a parallel program S under the assumption of justice it is 

enough to: 

1. Find proof outlines for the total correctness of the component programs of 1Just(S). They are to 

satisfy the conditions listed under b) in Section 3.4 but with (v') replaced by (v"), and (vi) added. 
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2. Prove that they are interference free. 

3. Apply the rule of parallel composition (rule 15) and possibly the composition rule, the nde of 

auxiliary variables, reduction rule and consequence rule. 

4. Apply the following rule. 

RULE 18: JUSTICE RULE 

{p} T;ust(S) {q} 

{p} s {q} 

Observe that in contrast to the case of nondeterministic programs we did not "absorb" the 

transformation T;ust(S) into the assertions of existing rules. For parallel programs the idea of ab-

sorption does not work properly. This is due to the interface freedom test whkh bas to deal with the 

assignments to the auxiliary variables from the set Z and perhaps some other ones. Even if assign-

ments to these variables were absorbed into the assertions of the proof outlines for the components 

of S, they would reappear in the final test of interference freedom. Therefore, we rather propose to 

apply the transformations as a part of the correctness proofs. 

3.5.2. Weak fairness 

In the presence of the await-statements the assumption of justice is not any more an appropri-

ate one. To see this consider the program 

S = [while true do skip od B await false then skip end]. 

Then for any state a 

J(just[[S]](a) = cp 

i.e. the program S neither diverges nor converges! Intuitively, the program S should diverge as there 

is no way to activate its second component and the first one diverges. 
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An appropriate notion of fairness is obtained by replacing in the definition of justice the notion 

of tenuination of a component by the notion of enabledness. 

Definition 3.6 

Let S := So;[S1 II ..• II Sn] be a GP program and let~ be a computation of S. 

i) We say that the i-th component is enabled in the configuration< [T1 II .•. II Tn], a > if 1/ is not 

terminated, i.e. Tz-i=E and whenever 1j is of the form await B then Rend; Ti then I= B(a) holds. 

ii) We say that~ is weakly unfair if it is infinite and some component is from a certain moment 

on continuously enabled, but is only finitely many times active in ~-

ill) We say that~ is weakly fair if it is not weakly unfair. 

Note the dose correspondence between the notions of weak fairness for nondeterministic and 

general parallel programs. We now define a weakly fair semantics of GP programs by putting 

i.e. 

dtwfair[[S]](a) - .....«[[S]](a) 

u { J.: S can diverge from a by 

a weakly fair computation} 

u { ll.: S can deadlock from a}. 

Observe that under the assumption of weak fairness the program S considered above diverges, 

.,It 1,1,iair[[S]]( a) == { J.} · 

To prove total correctness of GP programs under the assumption of weak fairness similarly as 

before we first exhibit an appropriate program transformation provided in [OA]. 

Let S = S0;[S 1 II .•. II Sn] be a GP program. We first need to formalize the notion of 

enabledness. To this purpose we introduce new auxiliary variables pc1, ••• , pen which will be used 

as a restricted form of program counters indicating when the component S; is in front of an 

await-statement, and if so in front of which one. To this end, we assign to every occurrence of an 

await-statement in S; a unique number! ~ 1 as a label. Let L; denote the set of all these labels for 

Si and let Be denote the Boolean guard of the await-statement labeled by!. We assume tbat O~L;. 

We now put 
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In contrast to the case of justi~e we have to check here the enabledness of a component in front 

of every while-statement or an atomic statement (see [OA]). More precisely we need the following 

notion. 

Definition 3.7 By an immediate atomic statement of a loop while B do Rod we mean an atomic state-

ment, an await-statement or a while-statement which is a subprogram of R but which lies outside any 

while-statements within R. 

For example in the program 

while B do while C do x: ... 1 od od 

the assignment x: ... 1 is an immediate atomic statement of the inner loop and while C do x : - 1 od 

is the only immediate atomic statement of the outer loop. 

The program T wfair(S) is now obtained from S by 

1. prefixing S with an initialization part 

INIT s Z1: - ? ; ... ; zn: ""' ?; 

end 1: ... ? ; ... ; endn: "" ?; 

pcl: ,.. 0 ; ... ; pen: - 0, 

2. replacing every substatement !: await B1 then Rend of S; by 

pc;: == !; await B1 then R; pc;: ... 0 end, 

3. inserting in every loop while B do R od of a component S; 

a in front of the first immediate atomic statement of R: 



TEST; == await i ~ l then z;: = ?; 

for j #:- i do 

[enabled) - Z/ = zJ - 1 0 ... enabled-+ Z/ == ?] 

od 

e111d, 

b. in front of every other immediate atomic statement of R: 

RESET; :s await true then 

for j :ft i do 

[enabled)-+ skip 0 ... enabledj- Z/ ... ?] 

od 

4. suffixing every component Si of S with END; == end; : == true. 
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We assume that none of the variables in the set z = {z1, ..• , zn, end1, ... , en~, pc1, •.. , pen} 

occurs in the original program S. 

The following lemma whose proof can be found in [OA] relates the programs Sand TwraiS): 

Lemma 3.9. For every GP program S and a state o 

..Nwfair[[S]](o) - {ll} ""Jt[[Twfair(S)]](o) - {~} modZ. 0 

Corollary 3.2. For an assertions p and q without free variables from the set Z 

J= wfair-li{p}S{q} iff P tot-li{p}Twfair(S){q}. D 

Here the subscript "wfair-b" refers to total correctness under the assumption of weak fairness but 

modulo deadlocks. 

This corollary shows that in order to prove total correctness of a GP program under the as-

sumption of weak fairness it is enough to 

1. Prove total correctness modulo deadlocks of Twrair in the same way as in the case of justice. 

2. Prove deadlock freedom of S using lemma 3.5 from section 3.4. 

3.5.3. Strong fairness 
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Analogously to the case of nondeterministic programs there is another natural fairness as-

sumption concerning GP programs - that of strong fairness. According to this hypothesis a compo-

nent of a GP program will be activated if it is infinitely often enabled. This is a stronger requirement 

than that of weak fairness which guarantees activation of a component only if it is continuously ena-

bled. More precisely we adopt the following definition. 

Definition 3.8 

Let S = S0;[S1 II ... II Sn] be a GP program and let~ be a computation of S. 

i) We say that~ is strongly unfair if it is infinite and some component is infinitely often enabled 

but is only finitely many times active in ~-

ii) We say that~ is strongly fair if it is not strongly unfair. 

The strongly fair semantics .A'fsfair is defined in an analogous manner as the .A'tv.'fair semantics. 

To prove total correctness of GP programs under the strong fairness assumption we proceed through 

the same steps as in the case of weak fairness. The corresponding transformation T;;rair(S) is defined 

by applying steps 1, 2 and 4 of Twrair(S) but with the following new step 3. 

3. Insert in front of every immediate atomic statement of every while-loop of Si 

TESTi = await z ;:::: l then z;: = ?; 

forj ~ i do 

[enabledj- Z/ = zj - 1. D .., enabled - Zf ,.,. ?] 

od 

end. 

As in the case of weak fairness the following lemma relates the programs S and '.I'srair(S) (see 

[OA]): 

Lemma 3.10. For every GP program Sand a state a 

.A'(sfair[[S]](o) - {.ll} = ...ll[[T5rair(S)]](o) - {.6} mod Z. 

where Z is defined as in the previous subsection. D 

The remaining steps in proving total correctness under the strong fairness are exactly the same 

as in the previous section and are omitted. 
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Further Reading 

The approach to program correctness studied in this paper has been applied to several other 

classes of concurrent programs. For the benefit of the reader we now provide a number of pointers 

to the literature. 

The await - statement considered in sections 3.4 and 3.5 is a very inefficient synchronization 

construcL A more efficient synchronization statement - the conditional critical regioo statement 

coupled with the use of resources, originally suggested in Hoare [H2], is studied from the point of 

view of program correctness in Owicki and Gries [OG2]. Clarke [C] discusses the issue of systematic 

construction of resource invariants for the programs written in the above language. 

The correctness of programs written in CSP - Communicating Sequential Processes, a language 

introduced in Hoare [H3], has been studied in several papers. A proof system motivated by the proof 

system from section 3.4 for the GP programs is introduced in Levin and Gries [LG]. A proof system 

motivated by the proof system of [OG2] for the language using resources, is presented in Apt, 

Francez and De Roever [AFR]. Apt [AS] provides a simpler and structured exposition of the latter 

system and lists other entries to the literature on the subject of correctness of CSP programs. 

The correctness of programs written in DP - Distributed Processes, a language introduced in 

Brinch Hansen [B], bas been studied in Gerth, De Roever and Roncken [GRRl]. 

The correctness of a fragment of ADA involving tasks bas been most extensively studied in 

Gerth and De Roever [GR]. Alternative proof systems were presented in Barringer and Mearns 

[BM] and Schlichting and Schneider [SS]. In the last paper also proof rules for asynchronous message 

passing are introduced. 

In Francez, Hailpern and Taubenfeld [FHT] a communication abstraction mechanism called 

Script is introduced and proof rules for programs using it are presented. Finally, De Roever (R] 

provides an overview of the proof systems introduced in Apt, Francez and De Roever [AFR], Gerth, 

De Roever and Roncken [GRRl] and Gerth and De Roever [GR]. 

In none of the above papers the issue of fairness bas been considered. Correctness of CSP 

programs under the assumption of fairness is studied in Grumberg, Francez and Katz [GFK]. 
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Correctness proofs of nontrivial concurrent programs using the above methods have been 

given in various papers. We only mention here correctness proofs of a parallel garbage collector given 

in Gries [Gr], of a distributed algorithm maintaining message - routing tables in a network given in 

Lamport [L2], of the "Dutch National Torus," a program written in DP, given in [GRR2], and of a 

solution to the distributed termination problem of Francez [F] given in Apt [AS]. 

Finally, the issue of soundness and completeness of the above systems has been studied - for 

the language studied in Section 3.4 in Apt [A2], for the language using critical section statement in 

Owicki [01], for CSP in Apt [A3] and for a fragment of ADA in Gerth [G]. 

Acknowledgements. E. Borger talked me into writing this paper. The exposition owes much to the 

joint work done with E.-R. Olderog and profited from the discussions with A. Pnueli. N. Perry and 

B. White typed the paper fast and efficiently. 
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