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1. Introduction 

The theory of mechanical systems with symmetry has a long and rich history. 
Most of the techniques appear in their classical form in Whittaker [25], while the 
modem "geometric" approach is due to several authors, including Marsden and 
Weinstein [14); see especially [l, 19, 13} for excellent treatments. Within a Hamilto
nian formulation the basic idea is that if there exists a, say abelian, symmetry group 
acting by canonical transformations on the phase space which leaves the Hamiltonian 
(total energy) of the mechanical system invariant, then the equations of motion may 
be reduced to the lower-dimensional space of orbits of the symmetry group. Further
more, by Noether's theorem, this reduced dynamics possesses conserved quantities 
(first integrals) directly related to the group action, whose existence admits a further 
reduction of the equations of motion. In this way the study of the dynamics of the 
mechanical system has been reduced to the study of a lower-order (still Hamiltonian) 
dynamics, since in some sense the full-order dynamics can be reconstructed from the 
lower-order dynamics. This is of obvious interest for analysis, but also for control 
and simulation purposes. 

Recently, there has been a revival of interest for mechanical systems subject to 
nonholonomic kinematic constraints, as arising e.g. from non-slipping conditions. Such 
constraints are frequently encountered in mechanisms and robotic systems (see e.g. 

[203] 
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[17] for a beautiful classical reference). One of the aims of the recent work in this 
area, see e.g. [9, 2, 4, 6], is to clarify the relation between the existence of symmetry 
for such systems (e.g. rotational invariance) and the possibilities for reduction. The 
main obstacle is the fact that systems with nonholonomic kinematic constraints cannot 
be cast into the standard Lagrangian or Hamiltonian setting, and thus appropriate 
generalizations of these frameworks have to be sought for. For the Lagrangian side 
this has been pursued e.g. in [9, 4], while the description of nonholonomic systems 
as generalized Hamiltonian systems has been undertaken e.g. in [2, 6, 12, 22] (see 
also [10] for the relation between the Lagrangian and Hamiltonian approach). 

In our previous work [22, 15, 20, 21] we have shown that not only nonholonomic 
mechanical systems give rise to a generalized Hamiltonian formulation, but other 
energy-conserving physical systems (such as electrical LG-circuits) as well. Further
more, it has been argued in [3, 7, 20, 21, 23] that a proper Hamiltonian formulation 
of all such systems can be based on the geometric notion of a (generalized) Dirac 
structure, as introduced as a generalization of Poisson and symplectic structures by 
Courant [5] and Dorfman [8]. In fact, the concept of a Dirac structure allows to 
give a simple intrinsic definition of an implicit (generalized) Hamiltonian system, that 
is, a mixed set of differential and algebraic equations of "Hamiltonian form" as fre
quently encountered in modelling. From a physical point of view the Dirac structure 
seems to capture naturally the geometric structure of the system as arising from the 
interconnection of simple subsystems [7, 23, 16, 3]. 

The purpose of the present paper is to treat a notion of symmetry for (generalized) 
Dirac structures and general implicit Hamiltonian systems, which properly generalizes 
the notion of symmetry for symplectic and Poisson structures and (standard) Hamil
tonian systems. A basic starting point herein is the definition of a symmetry of a 
Dirac structure given by Dorfman [8], see also [5]. Further, we deduce some basic 
results on the characterization of such symmetries and the reduction of generalized 
Dirac structures and implicit Hamiltonian systems, as well as a few results on the 
relation with conserved quantities. These general results will then be applied to the 
particular case of nonholonomic mechanical systems, leading to the study of the same 
type of symmetries as considered in the previous papers [9, 2, 4, 6]. This will be done 
in Section 3 after a concise treatment of generalized Dirac structures and implicit 
Hamiltonian systems in Section 2. Finally, in Section 4 we illustrate our approach on 
three simple examples; two of which are in the realm of nonholonomic systems and 
have been treated before in [2, 4]. Conclusions follow in Section 5. 

2. Dirac structures and implicit Hamiltonian systems 

The notion of Dirac structures has been introduced by Courant [5] and Dorfman 
[8] as a generalization of symplectic and Poisson structures. Let X be a manifold with 
the tangent bundle T X and the co-tangent bundle T* X. We define T X $ T* X as 
the smooth vector bundle over X with the fibre at each x E X given by TxX x r; X. 
Let X be a smooth vector field and a a smooth one-form on X, respectively. Given 
a smooth vector subbundle V c TXEBT*X, we say that the pair (X,a) belongs to V 
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(denoted (X,o:) E V) if (X(x),o:(x)) E V(x) for every x EX. Furthermore we define 
the smooth vector subbundle "DJ. c T X Ee T* X as 

VJ. = {(X, a) E T X Ell T* X I (o: I X} + (& I X) = 0, \f(X, &) E "D} (1) 

with (I) denoting the duality inner product between a one-form and a vector field. 
In (1) and throughout in the sequel the pairs (X, a), (X, &) are assumed to be pairs 
of smooth vector fields and smooth one-forms. 

DEFINITION 1 [S, 8, 7]. A generalized Dirac structure on a manifold X is a 
smooth vector subbundle 1J c T X Ell T* X such that vJ. = 'D. A Dirac structure is a 
generalized Dirac structure 1J satisfying the closedness (or integrability) condition 

(2) 

for all (X1, a1), (X2, a2), (Xs, 0:3) E 'D. 

EXAMPLE 1 [5, 8, 7]. Let {,} be a Poisson bracket on X with the structure 
matrix J(x). Then the graph of J(x), that is, V = {{X, a) E T X E9 T* X I X(x) = 
J(x)o:(x),x EX}, is a Dirac structure on X. The Jacobi identity for{,} is equivalent 
to (2). 

EXAMPLE 2 [S, 8, 7]. Let w be a two-form on .X. Then 'D = {(X,a) E TXEBT*X I 
ixw = a} is a generalized Dirac structure on X, which satisfies (2) if and only if 
dw = 0. 

EXAMPLE 3 [7]. Let G be a smooth constant-dimensional distribution on .X, and 
let ann G be its annihilating smooth co-distribution. Then D = { ( X, a) E T X Ell T* X I 
X E G, a E annG} defines a generalized Dirac structure on X, which satisfies (2) if 
and only if G is involutive. 

DEFINITION 2 [20, 21, 7]. Let X be a manifold with (generalized) Dirac structure 
V, and let H: X-+ R. be a smooth function (the Hamiltonian). The implicit (gener
aUzed) Hamiltonian system corresponding to (X, V,H) is given by the specification 

(x,dH(x)) E V(x), x Ex. (3) 

REMARK 3. By substituting a= & = dH(x), and X = X = x in (1) one immedi
ately obtains for every implicit generalized Hamiltonian system the energy-conservation 
property dd~ == (dH(x) I ±) = 0. 

Note that (3) describes in general a mixed set of differential and algebraic equa
tions (DAE's) of the form F(x, x) = 0. If the Dirac structure is defined by a Poisson 
bracket with the structure matrix J as in Example 1, then (3) reduces to the (explicit) 
Hamiltonian system 

:i; = J(x)~~ (x) (4) 

with ~(x) denoting the column vector of partial derivatives of H. In [7, 23, 16] 
it has been shown that power-conserving interconnections of conservative mechanical 
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systems naturally lead to implicit generalized Hamiltonian systems as in (3), which in 
general are not of the explicit fonn as in (4). 

In [7], expanding on [5], different ways of representing (generalized) Dirac structures 
and implicit (generalized) Hamiltonian systems have been introduced. We recall the 
following two representations. First, we associate with a generalized Dirac structure V 
on X the smooth distributions 

Go:= {X E TX I (X,O) E 'D}, 

G1 := {X E TX i 3a E T'"X s.t. (X,a) E 'D}, 

and the smooth co-distnbutions 

Po:= {a ET* X I (0,a:) E V}, 

Pi:= {a E T*X j 3X E TX s.t. (X,a:) E V}. 

It immediately follows that Go c G1, Po c P1, while by 1> = 1).L. one obtains [7] 

Go= kerP1 

Po= annG1. 

(5) 

(6) 

(7) 

If D satisfies the closedness condition (2), then (cf. [8]) the (co-)distributions G0 , Gi. P0 , 

P1 are all involutive. 

REMARK 4. The distribution G1 descnbes the set of admissible flows of any implicit 
generalized Hamiltonian system corresponding to 'D. In particular, if Gi is constant
-dimensional and involutive then we may find by Frobenius' theorem local coordinates 
(xi, ... , xn) for X such that Po = span{dx1, ... ,dxk}, implying that x1 , ••• , Xk are inde
pendent conserved quantities for (3). Dually, the co-distribution P1 describes, together 
with the Hamiltonian H : X --+ R, the algebraic constraints of the implicit generalized 
Hamiltonian system (3), that is 

dH(x) E P1(x), x EX. (8) 

REMARK 5. A (generalized) Dirac structure is of the type as descnbed in Example 
3 if and only if Go = Gi =: G, with G constant-dimensional. 

THEOREM 6 [7] 
(a) Let 1) be a generalized Dirac structure on X, with P1 constant-dimensional. Then 

there exists a skew-symmetric linear map 

J(x): P1(x) c r;x-+ (P1(x))* ~ Ta:X/Go(x) 

with kernel P0 (x) such that 

(9) 

V = {(X, a) I X(x) - J(x)a(x} E ker P1(x), x E X, a E Pi}. (10) 

Conversely, define 1J for any skew-symmetric linear map J(x): T; X -+ Ta:X and 
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constant-dimensional co-distribution P1 as in (10), then 'D is a generalized Dirac 
structure on X. 

(b) Let V be a generalized Dirac structure on X, with G1 constant-dimensional. Then 
there exists a skew-symmetric linear map 

w(x): G1(x) c T,,X ~ (G1(x))* '.:::'. r;x I Po(x) (11) 

with kernel G0 (x) such that 

V = {(X, a:) I a(x) - w(x)X(x) E annG1(x), x EX, X E G1 }. (12) 

Conversely, define V for any skew-symmetric linear map w(x): T,,X-> r; X and 
constant-dimensional distribution G1 as in (12), then V is a generalized Dirac 
structure on X. 

Representation (a) of the generalized Dirac structure yields the 
representation of the implicit generalized Hamiltonian system (3): 

. 8H 
x = J(x) ax (x) + g(x)A, 

fJH 
0 = gT(x)a;(x), 

following local 

(13) 

where the full-rank matrix g(x) has been chosen such that lmg(x) = G0(x) = 
ker P1(x), and J(x) in (9) has been arbitrarily extended to a skew-symmetric map 
r; X __, T,,X. Here the vector .\ are Lagrange multipliers corresponding to the alge
braic constraints 0 = gT(x)~(x); under nondegeneracy conditions on H they will be 
uniquely determined (see the discussion later on). Analogously, representation (b) of 
the generalized Dirac structure yields the following local representation of the implicit 
generalized Hamiltonian system (3) 

~~ (x) = w(x)x + p(x)>., 

o = pr(x)x, 

where the full-rank matrix p(x) is such that Imp(x) = Po(x) = annG1(x). 

(14) 

EXAMPLE 4 [7]. A classical mechanical system with Hamiltonian H(q,p) subject 
to k independent kinematic constraints AT(q)q = 0 (with AT(q) of full row-rank) can 
be either written as in representation (a) 

(15) 
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or as in representation (b) 

(16) 

(Note that in this case the Lagrange multipliers >. have the physical interpretation of 
being constraint forces!). The underlying generalized Dirac structure satisfies the closed
ness condition (2) if and only if the kinematic constraints AT(q)q = 0 are holonomic 
[7, 22]. 

Remark. The generalized Hamiltonian representation of systems with kinematic con

straints as proposed in(;, ~Lco)mbines in some sense (15) and (16), by noting that the 

symplectic form w = n in (16) is rumdegenerate when restricted to the tangent 
I.,. O 

space of the constraint manifold defined by the last equations of (15) intersected with 
the distnbution defined by the last equations of (16), provided the Hamiltonian H is as 
in Remark 11 below. 

A coordinate-free description of the underlying (generalized) Dirac structure in Ex
ample 4 can be given as follows. Let q be local coordinates for the configuration mani
fold Q. The rows of the matrix AT(q) are local coordinate expressions of independent 
one-forms a:1, •. ., a:k on Q. The cotangent bundle T*Q is endowed with the natural 
symplectic form w (and (q,p) are canonical coordinates with respect tow), yielding a 
bundle isomorphism w: TT*Q-+ T*T*Q, also denoted by w. Define the co-distribution 
Po := span{ 11'"*0:1,. • ., 7r*a.1:} (with 71': T*Q -t Q the natural projection), let G1 := ker P0 , 

and define the generalized Dirac structure as in (11) by restricting w(x) to G1(x). Note 
that 

(17) 

Summarizing, we have the following intrinsic characterization of the (generalized) Dirac 
structure in Example 4. 

PROPOSITION 7. Let 0:1, ... , o:,. be independent one-forms on Q. Let w be the canoni
cal 2-form on T*Q. Define the co-distribution Po := span{7r*a1 , ••• , 71"*01,.} on T*Q, with 
1f : T*Q -t Q the natural projection. Then 'D defined as in (11) is a generalized Dirac 
structure on X = T* Q, which satisfies the closedness condition (2) ijf P0 is involutive 
(cf. [7]). 

For a Dirac structure, that is, a generalized Dirac structure satisfying the closedness 
condition (2), we can in some sense combine representations (a) and (b). In fact, see 
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[5, 8], around every point x 0 where G1 and P1 have constant dimension, condition (2) 
will be satisfied if and only if there exist local (canonical) coordinates 

about x0 such that 

'D(q,p,r,s) = {(X,a) IX= (Xq,Xp,xr,xs), a= (aq,aP,ar,a 8 ), 

xq = aP,XP = -aq,xr = O,a8 = O}. 

In these coordinates the implicit Hamiltonian system takes the simple form 

. 8H( ) q = ()p q, p, r, s , 

. 8H 
p = -aq-(q,p,r, s), 

r =O, 

8H 
0 = a;(q,p, r, s) 

(18) 

(19) 

(20) 

with conserved quantities r 1, .•. , re, and algebraic constraints ~~ ( q, p, r, s) = 0. (Note 
that Po= span{dr} and Go= span{%8 }.) 

Remark. This form of an implicit Hamiltonian system is very close to the definition 
proposed by Tulczyjew [24]. 

Following (8) we can define the constraint manifold X,, c X of an implicit gener
alized Hamiltonian system (3) as 

Xc = {x EX I dH(x) E P1(x)}. (21) 

(This descnoes the algebraic constraints present in (3)). The implicit generalized 
Hamiltonian system (3) can now be reduced to an explicit generalized Hamiltonian 
system on Xc provided the following Assumption is satisfied. 

AsSUMPTION 8. Let D be a generalized Dirac structure with P1 constant-dimension
al, so that 'D can be represented as in (10). Denote G0(x) = lmg(x) = span{g1(x), 
... ,gm(x)}, with g1 (x),. . .,gm(x) linearly independent. Assume that the m x m matrix 
[L9,L9jH(x)L,J=l, ... ,m is invertible for all x EX satisfyi,ng L9jH(x) = 0, j = l,. . .,m. 

Under Assumption 8 the constraint manifold Xc is given as 

Xc = { x EX I gT(x)°: (x) = 0} = {x EX I L9;H(x) = 0, j = l,. . .,m}, (22) 

and is either empty or a submanifold of X with codimension m. Consider for every 
Xc E Xc the canonical projection 

(23) 
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and its restriction to T.,cXe C T.,cX, denoted as pr(xc): 

P'"(xc): T.,cXc-+ T.,cX/G0 (xc)· (24) 

We claim that P'"(zc) is injective, and thus invertible. Indeed, let v E T:i:cXc be such 
that pr(xc)v = 0, or equivalently v E Go(xc). Then L11 L9;H(xc) = 0, j = 1, ... , m, 
v E G0(xc), and thus by Assumption 8 v = 0. Hence we may define 

{25) 

Now consider the diagram 

T* v n·(:i:c) G ( ) P"(z.) T* x J(zc) ,,., x P(:i:c) T v;c ( ) R(:i:c) T. x. 
lllcrLc --+ ann 0 Xc --+ lllc - J.:i:c - "'•/!. 0 Xc - "'• C• (26) 

and define by composition the skew-symmetric mapping 

{27) 

It follows (see [21] for details) that (13) reduces to the (explicit) generalized Hamiltonian 
system on Xc given as 

. {}He ( ) ( 
Xc = Jc(Xc)~(xc) =: XHc Xc 28) 

vXc 

with He: Xc-+ R. denoting the restriction of H to Xc. Summarizing, we have obtained 
the following proposition. 

PROPOSmON 9. Let (X, V, H) define an implicit generalized Hamiltonian system, 
and let Assumption 8 be satisfied. Then (X, 1',H) reduces to the (explicit) generalized 
Hamiltonian system (28) on the constraint manifold Xe. 

REMARK 10. Proposition 9 can be also understood from the following point of view. 
Following the construction in Courant [5, in particular Section 1.4] we may restrict the 
generalized Dirac structure 1J to a generalized Dirac structure 1' e on Xc in the following 
manner. Let 1) be given in representation (b). Then for x E Xc we restrict w(x) to a 
skew-symmetric form wc(x) on the subspace T:i:XcnG1(x), defining Ve. Since the kernel 
of the skew-symmetric form w(x) on G1(x) equals G0(x), it follows from Assumption 
8 that the kernel of the form wc(x) on T:i:Xc n G1(x) is zero, and thus if we go to 
representation (a) of Ve we obtain the dynamics (28) without constraints and Lagrange 
multipliers. 

REMARK 11. The generalized Dirac structure as given in Proposition 7 satisfies As
sumption 8 if H(q,p) is of the form H(q,p) = ~pTG(q)p + V(q) (kinetic plus potential 
energy), with G(q) a positive definite matrix. 

The above transition from implicit to explicit generalized Hamiltonian systems be
comes very transparent in case the implicit Hamiltonian system takes the form (20). 
Indeed, in this case Assumption 8 amounts to the symmetric matrix 8:J (q,p, r, s) being 
nonsingular. Hence, by the implicit function theorem applied to the last equations of 
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(20), one may locally express the variables s as functions of q,p, r, that is, s = s(q,p, r). 
Defining the constrained Hamiltonian Hc(q,p, r) := H(q,p, r, s(q,p, r)), one then ob
tains the standard Hamiltonian equations of motion on the constraint manifold Xc with 
coordinates q,p, r: 

. 8Hc( ) 
q == op q, p, r ' 

. 8Hc( ) 
p= - 8q q,p,r, 

(29) 

r= o. 

3. Symmetries 

Following Dorfman [8], see also Courant [5], we give the following definition of 
an (infinitesimal) symmetry of a Dirac structure. 

DEFINITION 12 [8]. Let 1) be a generalized Dirac structure on X. A vector field 
f on X is an infinitesimal symmetry of V (briefly, a symmetry of 'D) if 

(L1X,L1a) E '.D, for all (X,a) E 'D. (30) 

REMARK 13. It can be shown [8] that if V is given as in Example 1 or Example 
2 then f is a symmetry of D iff L1{,} = 0, respectively L1w = 0. 

REMARK 14. Analogously, we say that a diffeomotphism <p: X-+ X is a symmetry 
of V if 

(cp; 1X,<p*a) E'D, for all (X,a)E'.D. (31) 

Note that (31) is consistent with (30). Indeed, denote the time -t flow of the vector 

field f by cp{ : X -+ X. Then cp{ is a symmetry of V iff (since (cp{)- 1 = 'P~t) 

((cp~tLX-X,(cp{)*a-a) E'D, for all (X,a)EV. (32) 

Thus, dividing by t and letting t-+ 0, (L1X, L 1a) E V iff cp{ is a symmetry of V for 
all small t. 

We immediately obtain the following 

PROPOSITION 15. Let f be a symmetry of the generalized Dirac structure 1), with 
associated distributions Go, G1 and co-distributions Po, P1. Then L1Gi c Gi, L1Pi c 
Pi, i = 0, 1. 

Proof: Let X E Gi. that is (X, 0:) E V for some a. Then by (30) (L1X, Lia.) E V, 
and thus L1X E G1. Hence, L1G1 c G1. Similarly, LtP1 c P1. Since Go = ker Pi 
and Po = ann Gi. it follows that L 1Go c G0 , Lt Po c Po (see e.g. {18, Prop. 3.46]). 

0 

REMARK 16. If V is given as in Example 3, then f is a symmetry of V iff 
L1G c G. 
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For implicit generalized Hamiltonian systems we obtain the following. 

PROPOSITION 17. Let ( X, V, H) be an implicit generalized Hamiltonian system. 
Let f be a symmetry of 'D. Moreover, let f be a symmetry of the Hamiltonian 
H: X-> lR, that is, L1H = 0. Then for all (possibfy partially defined) vector fields X 
such that (X, dH) E 1J we have L1X E G0• Furthermore, if Assumption 8 is satisfied, 
then f is tangent to the constraint manifold Xc. while the restriction f c of f to Xc 
satisfies 

(33) 

with Xnc on Xc defined in (28). 

Proof: Let X be such that (X, dH) E 'D. Since f is a symmetry of V and H we 
obtain (L1X,L1dH) = (L1X,O) E V, and thus L1X E Go. Furthermore, since f is a 
symmetry of 1J it follows from Proposition 15 that L1Go c Go. Hence, since L1H == 0, 

(34) 

for some g E Go, and thus L1(LgjH) = 0 on Xc, implying that f is tangent to Xc. By 
construction (Xn0 (xc), dH(xc)) E V(xc) for all Xc E Xc (see the discussion following 
Assumption 8), and thus as in the first two sentences [Jc, XnJ(xc) E G0(xc)· On the 
other hand, since le and XH0 are vector fields on Xc, their Lie bracket is also a vector 
field on Xc. By Assumption 8 this implies that actually [fc, Xecl is zero. 1 D 

The following subclass of symmetries of Dirac structures has been identified in [8, 
Theorem 7.7]. 

PROPOSITION 18. Let 1J be a Dirac structure on X (that is, satisfying the closedness 
condition (2)). Let f be a vector field on X for which there exists a smooth function 
F : X -+ lR such that (!, dF) E 'D. Then f is a symmetry of V. 

REMARK 19. For a partial converse we refer to [8, Theorem 7.7]. 

Note, however, that the condition (!, dF) E V puts quite some restrictions on f (and 
F). Indeed, (!, dF) E V implies (see (2)) that f E G1, and also that dF E P1 . 

The following generalization of [8, Proposition 7.3] provides a "Noether type" of 
result on the existence of conserved quantities. 

PROPOSITION 20. Let ( X, V, H) be an implicit generalized Hamiltonian system with 
1J satisfying Assumption 8. Let f be a vector field on X for which there exists a smooth 
function F such that (f(x),dF(x)) E V(x), x E Xc. Furthermore, let f be a symmetry 
for H on Xc. that is L1H(x) = 0, x E Xc. Then Lx8 c<F) == 0 on Xc, that is, F is a 
conserved quantity for X H 0 on Xc. 

Proof: By the defining property V == VJ. of a generalized Dirac structure we have 

(dH(x) I /(x)) + (dF(x) I XH0 (x)) = 0, x E Xc, 

since (f(x), dF(x)) E V(x), x E Xc, by assumption, and (XH«x), dH(x)) E V(x), x E Xc, 
by construction. o 
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Now let us consider instead of a single (infinitesimal) symmetry, a symmetry Lie 
group G of the generalized Dirac structure 1) on X. That is to say, the Lle group G acts 
on X by diffeomorphisms i/J9 : X ___, X, g E G, see e.g. [13, 19], and ~9 is a symmetry 
of 1) for every g E G (see Remark 14). Equivalently, for every ~ E g (the Lie algebra 
of G) the infinitesimal generator Xe of the group action is an (infinliesimal) symmetry 
of 1>. Throughout we assume that the quotient space X := X /G of G--orbits on X is a 
manifold with smooth projection map p : X -+ X. Then the generalized Dirac structure 
'D reduces to X as follows. 

PROPOSITION 21. Let G be a symmetry Lie group of the generalized Dirac structure 
'D on X, with quotient manifold X and smooth projection p : X -+ X. Then there 
exists a generalized Dirac structure i:> on X, called the reduced generalized Dirac 
strncture, defined as follows 

(X,a) E i> if there exists X with p,.X = X such that (X,Q) E 'D, where o: == p•a. 
(35) 

Furthermore, if 'D satisfies the closedness condition (2), then so does iJ. 

Proof: First we show that f> is a generalized Dirac structure. In order to show 
that f)l. c i>, let (X', O::') ET X e:i r X be such that 

{a' IX)+ (ii IX')= 0, for all (X,&) E f>. 

Now let X' E TX be such that p.X1 = X' and define o.' = p•c/. Since 

(6: I p .. X) == (p*a IX) 

for every a E T* X and every X E T X with p,,X well defined, (36) yields 

(c/ I X) + (Q I X') = 0 

(36) 

(37) 

(38) 

for all (X, a) E 1) such that p,,X is a well-defined vector field on X and a = p"a 
for some & E T* X. Since G is a symmetry group of '!>, it follows from Remark 14 
that 

(39) 

Thus, (38) also holds for all (X, a) E 1> such that a = p•a for some a E T* X. 
Hence, 

(X', a') E (V n Cl = 1> + ci, (40) 

with C denoting the vector subbundle of T X ffi T* X spanned by all (X, a) such .that 
a = p• o for some 0:: E T* X, and where we have used 1JJ. == 1J (1J is a generalized 
Dirac structure). We claim that 

CJ..= {(X,O) I p~X = O}. (41) 

Indeed, the inclusion :J is obvious, while for the reverse inclusion we note that if 
(X,&) is such that (& I X} + (0: I X) = 0 for all (X, a) E C, then (taking X "" 0) 
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(a I X) = 0 for all a = p*ii, ii E T* X, and thus p.X = 0. Hence, 0 = (a I X) 
+ (a / X) = (a / X) for all X, implying a = 0. Therefore, by (40) and (41) there 
exists a vector field X with p.X = 0 such that (X' + X, a') E V. Since p.(X' + X) = 
p.X' = X', this implies (X',&') E iJ, showing that 1).J.. c 'b. The reverse inclusion 
iJ c fJ.J.. follows easily. 

Finally, let V be closed. Tuke (Xi, ai) E iJ, i = 1, 2, 3, that is, (Xi, p*ai) E 'D, p.Xi = 
Xi, i = 1,2,3. Using the general equality (37) and p"(Lp.x&.) = Lxp*& we obtain 

(Lx1 <i2 I X3) + (Lx2 <i3 I X1) + (Lg8 &1 I X2) 

= (Lx1 &2 / p .. Xa) + {L.x2 &3 I p .. X1) + (Lx3 &1 I p .. X2) 

= (Lx1p*&2 I X3) + (Lx2P*iia I X1) + (Lxap"ii1 / X2) = 0, 

since V satisfies (2). Hence, also tJ is closed. D 

Next question is how we can effectively compute the reduced (generalized) Dirac 
structure iJ from 'D. We will only do this under the following 

AssUMPTION 22. The co-distribution P1 of the generalized Dirac shucture V on X 
is constant-dimensional. Denote by V the distribution on X tangent to the orbits of G 
(that is, spanned by the infinitesimal symmetries). The co-distribution P1 n ann V is also 
constant-dimensional. 

By Theorem 6 the generalized Dirac structure V on X can now be represented as 
in (10). Then define the reduced skew-symmetric linear map 

J(x): P1(x) n ann V(x) ~ (P1(x) n ann V(x))'" ~ T:i:X j(G0(x) + V(x)) (42) 

by simple restriction of J(x) to P1(x)nannV(x). Since J(x1) = J(x2 ) for all xi,x2 with 
p(xi);;: p(x2 ), 'b can be seen to be given as in (10), that is 

V(x) = {(X, a)/ X(x) - J(x)a(x) E ker P1(x), x E X,ii E P1}- (43) 

with j o p = J, and P1 the reduced constant-dimensional co-distribution on X defined 
as 

Pi = span{a / p*a E Pi}. (44) 

(Note that p•a is zero on V.) 
Based on Proposition 21, we immediately obtain the following result on reduction 

of implicit generalized Hamiltonian systems. 

PROPOSITION 23. Let (X, V, H) be an implicit generalized Hamiltonian system. Let 
G be a symmetry Lie group of the generalized Dirac shucture 'D on X, with quotient 
manifold X, smooth projection p : X -+ X, and reduced generalized Dirac structure f> on 
X as in Proposition 21. Furthermore, suppose the action of G on X leaves H invariant, 
leading to a reduced Hamiltonian fI : X -+ lR such that H = H o p. Then the implicit 
generalized Hamiltonian system ( X, V, H) projects to the implicit generalized HamiJ.tonian 
system (X, tJ, iI). 
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Proof: By definition of b we have (note that p•dif = dH) 

(X(:i),dif(z)) E i>(z) {::::;> (X(:r),dH(:c)) E V(:r) 
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for some X with p,.X = X and all x E X such that p(x) = x. Substituting i for 
X(x). and .i: for X(x) we obtain the result. o 

Finally, let us now specialize the theory of symmetries of implicit generalized 
Hamiltonian systems to the systems arising from mechanical systems subject to kine
matic constraints, as dcscn"bed in Example 4 and fonnalized in Proposition 7. First, 
we may identify the following important class of symmetries of the underlying gen
eralized Dirac structure. 

PROPOSmON 24. Consider the generalized Dirac structure V on T"Q given in 
Proposition 1. Let f 'be a '!«tor field on T*Q satisfying L1w = 0 and L1 Po C Po. 
Then f is a symmd1y of V. 

Proof: Let (X,a) E 'D. Then a= ixw + /3, with f3 E Po. Thus, since L1w = 0, 

(L1X,L1a) = (L1X, ii1 xw + L1/3) 

which is again in 'D, since L1/3 E L1 Po C Po. 0 

From the property L1w = 0 it follows, see e.g. [11, 13J, that at least locally 
there exists a function F such that i 1w = dF. (Thus f is a (locally) Hamiltonian 
vector field on T*Q with respect to the natural symplectic form w oo T•Q, and 
Hamiltonian F). In view of Proposition 20 one may thus wonder when the additional 
condition L 1 H -= 0 on x.. implies that F is a conserved quantity for the constrained 
Hamiltonian system corresponding to 'D and H. This is answered in the following 
proposition. 

PR.oPOSmoN 25. Consider the generalized Dirac structure V on 'rQ given in 
Proposition 7, satisfying Assumpti,on 8. Let f 'be a Hamiltonian vector field on 'rQ, 
that is, i1w = dF for some F : T*Q ---+ R. Additionally, let f satisfy L1H(:c) = 0, x EX.,. 
Thm LxHc (F) = 0 on X0 if f(:c) E G1(:r), x E X.,. 

Proof: Following Proposition 20 we only have to show that (f(x),dF(x)) E 'D(x), 
x E x ... However, this is obvious from the assumption /(x) E G1(x), x E X.,, since 
i 1w = dF and 'D is given as in representation (b) of Theorem 6. o 

Usually, a symmetry f as in Propositions 24 and 25 occurs by first considering 
a vector field fq on the configuration manifold Q which leaves the constraint co
distn"bution Po:-= span{a1, ... ,llk} on Q invariant, that is L10 PQ c Pq. Then the 
vector field /o naturally lifts to a vector field f on r·Q which satisfies L1w = 0 
and L1 Po c Po. (In fact, f is defined as the Hamiltonian vector field on T•Q with 
respect to w and the Hamiltonian F(q,p) := pT /Q(q).) This is precisely the class 
of "symmetries of nonholonomic mechanical systems" as treated in [2} and, within 
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a Lagrangian framework, in (4, 9]. (Note that the class considered in [1] is more 
restrictive.) As in these references and as above, we then look at symmetry groups 
that are defined by a Lie group G acting on T* Q by canonical transformations and 
leaving the co-distnbution Po invariant (or acting on Q and leaving PQ invariant). 

4. Examples 

The theory of Section 3 will be illustrated on three simple examples. The first two 
examples have been treated before in (2, 4] and concern mechanical systems with non
holonomic constraints as formalized in Proposition 7, while the last example is concerned 
with a simple LC electrical circuit. 

Example 4.1. Motion of a particle subject to a nonholonomic constraint ([2}) 

Consider a particle in R.3 with kinetic energy ~(:i:2 +r? + .i2) subject to the nonholonomic 
constraint i = yx. In the formulation of Proposition 7 this means that Q = lR3, with 
coordinates (x,y,z), T*Q = JR3 x lR.3 with canonical coordinates (x,y,z,p:i:,Py,P:z), and 
the generalized Dirac structure 1J on T*Q is defined as in (11) for 

Po= span{dz - ydx}. (45) 

After Legendre transformation the Hamiltonian (total energy) is given by 

(46) 

Oearly, the generalized Dirac structure 1J as well as the Hamiltonian H are invariant 
under translations of the x- and z--coordinates, so that (cf. Assumption 22) 

V=span{:x.:z}· (47) 

(Note that :"' and I; are vector fields as in Proposition 24.) We compute 

Go =span{_!___ - y_!___} , 
8pz op"' 

P1 = span{dx,dy,dz,ydp:z + dp:i:,dPy}, (48) 

P1 nann V = span{dy,ydpz + dp:i;,dpy}· 

The reduced space..\' is given by lR4 with coordinates (y,p"',p11 ,pz), whereas 

Pi= span{dy,ydpz + dp:i;,dp11 }, (49) 
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and thus 

ker P1 = Go = span y- - - . _ - { a a } 
op"' IJp., 

(50) 

It follows that the reduced implicit generalized Hamiltonian system on X (see Propo
sition 23) is given in representation (a) as 

iJ 0 0 1 0 0 0 

i>z 0 0 0 0 Pz y 
= + >., 

Py -1 0 0 0 Py 0 (51) 

i>z 0 0 0 0 Pz -1 

0 = YP!I! - Pz· 

Note furthermore that Po = span{ydp.z + dp!I!}, representing the (again nonintegrable) 
constraint yp., + p!I! = 0. (This is, however, not anymore a kinematic constraint!) Since 
neither lo: nor 1z are contained in G1 = ker P0, Proposition 25 does not yield first 
integrals for the constrained system on Xc. 

On the other hand, we can easily eliminate the constraint 0 = YPo: - p., and the 
multiplier >. from (51) leading to 

{ y = py, 

Py= o, (52) 
. y 

Po: = - 1 + y2 PxPy· 

The last differential equation can be solved as Px = ~, c E ~ leading to the 

same solutions as obtained in [2]. 

Example 4.2. The rolling penny (see e.g. (4, 22]). 

Consider a vertical wheel rolling without slipping on a horizontal plane. Let x, y be 
the Cartesian coordinates of the point of contact of the wheel with the plane. Fur
thermore, () denotes the rotation angle of the wheel, and cp the heading angle on 
the plane. The rolling constraints x - 0 cos cp = 0, iJ - 0 sin ip = 0 are nonholonomic. 
In the formulation of Proposition 7 we have Q = JR.2 x S1 x S1 with coordinates 
(x,y,6,cp), T•Q with canonical coordinates (x,y,6,cp,p"',p11 ,pe,p"'), and the general
ized Dirac structure 'D on TQ is defined as in (11) for 

Po= span{dx - coscpd6, dy- sincpd9}. (53) 
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The Hamiltonian (setting all parameters equal to 1) is given as H(x,y,fJ,1.p,pz,p11 ,p8 ,p"') 
= !(p~ + p; + p~ + p~). The generalized Dirac structure 1J as well as the Hamiltonian 
H are invariant under translation of the x- and y-coordinates, and rotation of the 
fJ-coordinate, so that 

{ & a a} v =span ox' 8y' {J(J • (54) 

We compute 

{ 8 8 8 . 8} Go= span - -cosip-,- -smtp- , 
0pz 8p9 op11 8pe (55) 

P1 = span{dx,dy,dfJ,d<p,coscpdp:1: + sin<pdp11 + dp9,dp"'}. 

The reduced space X has coordinates (t.p,pz,p11 ,pe,p<p) with 

P1 = span{dt.p,coscpdpz + sincpdp11 + dp9,dp"'}, (56) 

and thus 

- - {a a 8 . a} G0 = kerP1 =span - -cos<p-,- -smtp- , 
8pm ope 8p,, 8p9 

(57) 

leading to the reduced implicit generalized Hamiltonian system 

cp 0 0 0 0 1 0 0 0 

Pz 0 0 0 0 0 Pz 1 0 

[~J P11 = 0 0 0 0 0 Py + 0 1 

i>e 0 0 0 0 0 p9 -COS<p -sintp (58) 

p<p -1 0 0 0 0 p'P 0 0 

0 = Pz - cos <p · pe, 

0 =Py - sin<p · p9. 

Furthermore, one computes Po = span{ cos ipdpz + sin <pdp11 + dpe} representing the 
(nonintegrable) constraint cos t.p • Pz +sin 'P · p11 + Pe = 0. 

This example can be modified in a number of directions by adding to the Hamiltonian 
H potential energy terms depending on x and/or y (inclined versus horizontal plane), 
or depending on () (a torsional spring attached to the wheel). For instance, by adding 
a potential energy Hpot(9), the symmetiy distnbution becomes V = span{/;,~}, and 

P0 = 0 on the reduced space with coordinates {9,cp,pz,p11 ,pe,p<p}· 
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Example 4.3. Consider the following LG circuit 

L 
c 

where the most left capacitor C represents a large (parasitic) capacitance. Using 
Kirchhoff's laws. the dynamics is described by the differential-algebraic equations 

oH 
1 0 0 0 rjJ 0 -1 0 -1 

8cp 
oH 

0 0 0 0 <h 0 -1 1 0 8q1 
;::: 

8H 
(59) 

0 1 l -1 <h 0 0 0 0 
8q; 

0 0 () 1 q 1 0 0 0 {)H 

oq 
with rp the magnetic flux of the inductor, q1 , q2 and q the electric charges of the 
capacitors Ci,C2 and C, and H(ip,q1 ,q2 ,q) = fr;cp 2 + 2b 11i + 2J:2 q~ + tcq2 the total 
(magnetic and electric) energy (for simplicity assumed ta be quadratic). This describes 
an implicit Hamiltonian system on ~, with the Dirac structure solely determined by 
Kirchhoffs laws, that is, by the two square matrices in (59) (see [20, 7] for further 
details}. In the limit C-. oo (corresponding to short-circuiting the most left branch of 
the circuit), the system admits the infinitesimal symmetry gq, and the system reduces 

to the following implicit Hamiltonian system on the reduced space R3 

ail 

[~ 
0 ;j [f l [; -1 

:J 
8<p 

0 -1 
EJiI (60) = 
8q1 

1 0 afi 
&q2 

'h "( ) 1 2 1 2 1 2 wit H tp,q1,q2 = 2Ltp + Wi"ql + 20;q2. 
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S. Conclusions 

After a brief expose of generalized Dirac structures and implicit generalized Hamil
tonian systems, including the special case of mechanical systems subject to kinematic 
constraints, we have shown how the notion of symmetry of Dirac structures as proposed 
in [8] can be naturally used for the study of implicit (generalized) Hamiltonian systems 
with symmetry. The main results concern the reduction of the (generalized) Dirac struc
ture and the implicit Hamiltonian system to the quotient manifold of the orbits of the 
symmetry group. Some results concerning the existence of conserved quantities (first 
integrals) have been also derived. 

We hope to have demonstrated that the use of Dirac structures offers a conceptually 
clear approach to handle implicit Hamiltonian systems with symmetry, even for the 
special case of mechanical systems with nonholonornic constraints as already treated in 
[2, 6, 10]; see [9, 4] for the Lagrangian picture. 

Clearly, many aspects of implicit Hamiltonian systems with symmetry have not been 
covered in this brief paper. Especially the further reduction using first integrals and 
its relation with the structure of the group action (see e.g. [14, 13, 19, 1, 11] for the 
"standard" Hamiltonian case) should be a topic for further research. 
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