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ABSTRACT 
We present evaluation results of a generative probabilistic 
image retrieval model using 'easy data'. Previous research 
into our model's retrieval effectiveness has used the test col­
lection developed at TREC's Video Track, but as discussed 
in detail in [17], its search task has been too difficult to mea­
sure actual performance of the retrieval model. The 'easy 
data' experiments presented here evaluate our model under 
varying model parameters on the Corel set. The Corel data 
set is relatively easy because images are nicely grouped into 
coherent themes, the within theme similarity is high and 
the across theme similarity relatively low. These properties 
make Corel a nice vehicle for testing, presenting or selling 
new content based retrieval techniques and models. In con­
trast to the TREC data, the Corel collection gives statis­
tically significant differences between varying experimental 
conditions, so we get more insight in the model's behaviour. 
We then discuss at length the limitations of the results ob­
tained using this data set, comparing the experiments per­
formed here to those on the TREC data. 

1. INTRODUCTION 
This paper presents another experimental evaluation of 

the generative probabilistic image retrieval model presented 
in [19], developed for (among others) our participation in 
TREC video track. Unfortunately, recent video tracks at 
TREC [14, 13] show merely that content based retrieval from 
generic collections still is too hard a task, for which metric­
based evaluation on topical relevance is perhaps not the most 
useful evaluation methodology. Westerveld and De Vries 
have therefore argued in [17] that a deep analysis of results 
is a useful alternative for evaluation, while still using the 
TREC data. This paper pursues a supplementary study, by 
looking into the same model's effectiveness on a different 
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collection, the Corel set. 
The Corel set is a collection of stock photographs, which 

is divided into subsets of images each relating to a specific 
theme (e.g. tigers, sunsets, or English pub signs). This im­
age collection is used to evaluate retrieval results or to il­
lustrate the effectiveness of a given retrieval method in a 
large number of publications in the field of content based 
image retrieval (e.g., [3, 7, 4, 1, 2, 16, 8]). A recent study 
by Muller et al. [9] showed however that evaluations using 
Core! are highly sensitive to the subsets and evaluation mea­
sures used. In addition, as an image retrieval test collection, 
Core! data can be qualified as 'easy' because of the clear dis­
tinctions between themes and the high similarity within a 
theme. Therefore, good results on Corel do not guarantee 
good results in a more realistic setting. Yet, we were not cer­
tain whether this could explain the differences in conclusions 
on the feasibility of image retrieval from our negative expe­
riences at TREC relative to the positive results presented in 
the 'Corel papers' cited above. 

The goal of this paper is therefore twofold. First, to show 
that the Corel data set is indeed a relatively easy data set 
that can give misleadingly good results (Section 4). Sec­
ond, to show that, because of its relative easiness, the Corel 
data is useful for testing different system settings to increase 
our understanding of the model's behaviour. In contrast to 
experiments with the TREC collection, Corel data gives sig­
nificant differences for varying parameters (Section 5). 

We start describing the model (Section 2) and experi­
mental setup (Section 3). Section 6 finishes with some dis­
claimers on using Carel data, and compares results obtained 
with Carel and TREC respectively. 

2. GENERATIVE DOCUMENT MODELS 
Our retrieval model (see also [19]) is based on generative 

document models similar to the language models for infor­
mation retrieval [11, 5]. Each document in our collection 
(i.e. each image) is modelled as a probabilistic process that 
generates visual samples (feature vectors representing small 
blocks of pixels). Thus, for each model Wi we have a prob­
ability density function P(xlwi) defining the likelihood of 
samples x. These densities are assumed to be mixtures of 
Gaussian distributions (see Section 2.1). 

Given a query (i.e. an example image), documents in the 
collection are ranked based on the ability of the correspond­
ing models to explain the set of query samples. We smooth 
using background probabilities, calculated by marginalising 
over all documents in the collection P(x) = Ei P(xlwi)· 



Thus, the retrieval status value (RSV) of a document model 
Wi is computed as its probability of generating the query X 
consisting of N samples (X = { :t:1, :t:2, ... , x N}): 

N 

RSV(wi) = L log [11:P(x; jw;) + (1 - 11:)P(x; )), (1) 
j=l 

where 11: is a mixing parameter, which can be estimated on a 
training collection. Section 3 discusses how we convert query 
images to samples. Here we first describe the generative 
models. 

2.1 Gaussian Mixture Models 
We model each image in our collection as a random pro­

cess that generates image samples (i.e. feature vectors de­
scribing pixel blocks). This is assumed to be a mixture of 
multivariate Gaussian processes, where the number of Gaus­
sian components N c is fixed for all images in the collec­
tion [15, 19]: 

where 

(2) 

Here Ci,c is component c of class model w; and (x; - µ)T 
is the matrix transpose of (x; - µ). The samples x; are 
n-dimensional feature vectors describing an 8x8 pixel block 
(details in Section 3). A model is completely specified by 
the parameters of its components (µ;,c, :E;,c and P(C;,c)) 
These parameters are estimated using standard EM. 

3. EXPERIMENTAL SETUP 
The experiments reported in this paper are carried out us­

ing a subset of the Core! data. One problem with evaluation 
using Core! is that the data is sold commercially on separate 
thematic CDs, and a single 'Core! set' does not exist. We 
have access to over 600 classes or themes. To improve the 
comparability across different publications, the experiments 
in this paper have used the intersection of these 600 with 
the classes used by Duygulu et al. [4] and Jeon et al. [7]. 
The resulting 39 classes are listed in table 1. 

To test the model from Section 2, we estimate generative 
models for each document in our collection using EM on 
the image samples. This is visualised in Figure 1. First, an 
image is converted to the YCbCr colour space, and we cut 
each channel into blocks of 8 by 8 pixels and compute the 
discrete cosine transform (DCT) for each block. Then, we 
take a fixed number of the most important DCT-coefficients 
from the Y-channel and a fixed number of the most im­
portant coefficients from the Cb and Cr channels. 1 These 
feature vectors are then fed to the EM algorithm to estimate 
a generative mixture model with 8 mixture components. Af­
ter convergence, we describe the position in the image plane 
of each mixture component as a 2D Gaussian with mean and 
covariance computed from the positions of the pixel blocks 
associated with the component. 

1 Usually, we take 10 coefficients from the Y channel and only 
1 from Cb and Cr. These numbers are varied in Section 5. 

A query image is transformed into a set of samples using 
the same procedure without the EM step. Each query fea­
ture vector consists of a number of DCT coefficients and a 
position in the image plane. Documents can now be ranked 
by calculating the RSV conforming Equation 1. 
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Figure 1: Building a Gaussian Mixture Model from 
an Image. 

4. TESTING THE MODEL ON COREL 
To evaluate the retrieval effectiveness of the model, we 

assume that a document is relevant to a query if and only 
if document and query are from the same class. We run 
each document in our collection as a query, rank the full 
document set (i.e., we do not take a top K) and compute 
average precision values for each query. We then compute 
mean average precision (MAP) scores per image class. Since 
there is some variety in the specificity of the classes, some 
classes might be harder than others (something as specific 
as English pub signs might be more easy than a generic 
class like Israel). Table 1 shows the MAP scores for the 
individual classes (sorted from high to low). Indeed, we see 
a fair amount of variation ( .05 to .36). Figure 2 shows an 
example of a query with the top 5 documents from one of 
the classes with the highest scores: Arabian Horses. 



4.1 

Table 1: MAP per class. 
Class 
English Pub Signs 
English Country Gardens 
Arabian Horses 
Dawn & Dusk 
Tropical Plants 
Land of the Pyramids 
Canadian Rockies 
Lost Tribes 
Elephants 
Tigers 
Tropical Sea Life 
Exotic Tropical Flowers 
Lions 
Indigenous People 
Nesting Birds 
Images of Thailand 
Greek Isles 
Cowboys 
Mayan and Aztec Ruins 
Wildlife of Antarctica 
Israel 
Beaches 
Holland 
Hong Kong 
Sweden 
Ireland 
Wildlife of the Galapagos 
Hawaii 
Rural France 
Zimbabwe 
Images of Death Valley 
Nepal 
Foxes & Coyotes 
North American Deer 
California Coasts 
North American Wildlife 
Peru 
Alaskan Wildlife 
Namibia 
mean 

Class Confusion 

MAP 
.36 
.33 
.31 
.21 
.19 
.19 
.18 
.17 
.17 
.16 
.16 
.16 
.15 
.15 
.13 
.13 
.10 
.10 
.09 
.09 
.09 
.09 
.08 
.08 
.07 
.07 
.07 
.07 
.07 
.07 
.07 
.07 
.06 
.06 
.06 
.06 
.05 
.05 
.05 
.12 

In addition to computing the mean average precision per 
class, we can also look at confusion between classes by re­
computing the scores with different sets of relevant docu­
ments. For example, to see how often we find lions when 
searching for tigers, we can simply rank the collection using 
a tiger query and then evaluate the results under the as­
sumption that only images from the lions class are relevant. 
We computed these confusion MAP scores for all pairs of 
classes in the collection. The results are visualised in Figure 
4, showing the log MAP scores for all pairs; darker squares 
indicate higher scores and the scores are printed inside the 
squares. Along the y-axis, the query class is plotted, the 
x-axes shows the class that was assumed relevant to the 
query. Thus looking at row X we can learn what we find if 
we search for X, and column X shows what would be a good 
query to retrieve X. The MAP scores are averaged over all 

• 
••••• Figure 2: Example Query with top 5 documents. 

documents in a given query class. 
The diagonal of the Figure is darker than the rest, in­

dicating that, on average, queries are better at retrieving 
images from their own class than images from a different 
class. Some interesting confusions are the following: When 
querying for beaches we also find Greek Islands; a query for 
Tropical Plants returns also Tropical Sea life, and searching 
for Indigenous People we find Lost Tribes. Moreover, we see 
some lighter and darker columns showing that some classes 
get retrieved hardly ever when using examples from outside 
that class (Wildlife of Antarctica, Dawn & Dusk) and others 
are returned more often for any query (Indigenous People, 
Lost Tribes). Also noticeable is the fact that country gar­
dens and tropical plants get mixed up sometimes and that 
these two classes are retrieved relatively often when Arar 
bian horses are used are used as query examples. The latter 
probably because of the similarity in background; all have 
green, grassy backgrounds. 

This background matching is exactly why we often can 
find the correct documents - essentially on sheer luck. In 
the Core! set, photographs from one class are often taken 
in one or a few locations and therefore have highly similar 
backgrounds. In more heterogeneous image collections re­
trieving images from the same "class" 2 is not as easy. When 
experimenting with the Core! data set, one might conclude it 
is easy to retrieve horses, tropical fish or English pub signs, 
while in fact one has learnt to retrieve respectively, grass 
with yellow flowers, dark sea, and clear blue sky. Figures 3 
and 5 illustrate this effect using subsets of the horses exam­
ple from Figure 2 as a query. Clearly, we identify the green 
background rather than the horses. 

Q: 

• 
••• Figure 3: Horses query with top 5 results. 

2Here class means similar semantics; a generic image collec­
tion does not have classes like Core!. 
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Figure 4: Confusion between classes. MAP scores for different classes of relevant images. Darker squares 
indicate higher scores, the scores are listed inside the squares. 
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Figure 5: Grass query with top 5 results. 

5. TUNING THE MODELS 
Summarising the previous, results on the Core! data may 

cause overestimation of retrieval capabilities and one should 
be very careful with generalising conclusions drawn from 
experiments performed on Core!. Still, this data set can be 
useful for tuning a model (although Section 6 will give some 
disclaimers). This section uses the Corel data to investigate 
the performance effects of various model parameters. In or­
der to be able to try a large number of different settings in 
a fair amount of time, we only use each tenth image from a 
theme, thus reducing the data set to contain only 10 images 
per theme. We then index this reduced collection for each 
setting, and use each of the 390 images as a query and cal­
culate average precision scores for them. These scores are 
averaged over all queries and we report the MAP scores per 
setting. 

We use the general procedure described in Section 4 to 
build models, but we vary the following parameters3 : 

NY: Number of DCT coefficients from Y channel (1, 3, 6, 
10, 15 or 21). 

NCbCr: Number of DCT coefficients from Cb and Cr chan­
nels (0, 1 or NY). 

XYpos: Way of using sample position information of pixel 
blocks (0, do not use, 1, add to feature vector before 
training or 2, add to mixture components after training 
on DCT coefficients only) 

c: Number of Gaussian mixture components (1, 2, 4, 8, 16 
or 32). 

Since we are mainly interested in the influence of different 
ways of using colour and position information, we fix the 
number of DCT coefficients from the Y channel (NY) at 10 
while varying the other parameters. We leave the variation 
of the number of coefficients from the Y channel for future 
research. 

Table 2 shows the results for different values of NCbCr, 
XYpos and c. Figure 6 shows visualisations of models esti­
mated using different parameter settings.4 The images show 
mean colour and texture representations of the components 

3 In Section 4 we used the following setting: NY=lO, 
NCbCr=l, XYpos=2, c=8. 
4 Figures 6 and 7 are best viewed in colour. For a colour 
version of this paper see 
http://www.cwi.nl/-thijs/pub/SIGIR2003MMIR.html 

at the position in the image plane where the standard devia­
tion from the mean position is below 2; prior probabilities of 
the components are not visualised. Figure 7 shows come im­
ages constructed by randomly sampling from the Gaussian 
mixture model (Equation 2). We then perform the inverse 
discrete cosine transform on the DCT part of the feature 
vectors to get pixel blocks and use the position information 
in the feature vector to place the pixel block in the image 
plane. For models without position information, we scatter 
the blocks randomly across the image plane. 

5.1 Statistical significance 
The scores in Table 2 do not differ a lot. One could con­

clude that as long as one uses a mixture (c>l) rather than a 
single Gaussian ( c= 1), it does not matter much which model 
one chooses. However, a small difference in average scores 
might still be significant: Run A might be consistently bet­
ter than run B, but a few outliers or errors for which run B is 
better can cancel out this effect resulting in a similar MAP 
score for both runs. For this reason, researchers in Informa­
tion Retrieval have recommended using a statistical test for 
significance instead of the aggregated run score. This Sec­
tion highlights some of the significant differences between 
the parameter settings, but first we describe the statistical 
test we use to compare two runs. 

Different statistical tests for significance make different 
assumptions about the process in which the measurements 
were acquired, and the distribution of the values measured. 
We preferred to use non-parametric tests (see [10]), to stay 
away from too many assumptions of normality. We have 
chosen to use the non-parametric 'Wilcoxon matched-pairs 
signed-ranks test' to test for significance on the outcomes of 
our experiments, the decision mainly based on the discus­
sions in [20] and [6]. Zobel found that the Wilcoxon test 
gave best reliability and greater power than its alternatives, 
and Hull also argues in favour of this test. The test analyses 
the differences between measurements per query, replacing 
the difference by the rank of its absolute value. These ranks 
are multiplied by the sign of the difference, and the sum of 
the ranks for each group is compared to its expected value 
under the assumption that the two groups are equal. The 
test assumes that the errors come from a continuous dis­
tribution symmetric about 0, and can only be used if the 
number of measurements is sufficiently large. According to 
[6] however, these constraints should not cause too many 
worries as long as one remains pragmatic about interpreting 
the results carefully. 

So, we applied the paired Wilcoxon signed-rank test at a 
significance level of 53 to each pair of parameter settings. 
For each setting we then counted the number of other mod­
els that are significantly better, the number of significantly 
worse models and the number of other models that did not 
differ significantly. Table 3 shows the best models according 
to these counts (i.e., the models with the lowest number of 
significantly better models). While the top scoring models 
share a few interesting properties (like the number of CbCr 
coefficients used), it is more interesting to look at the influ­
ence of changes in the individual parameters. Consecutively, 
we discuss the influence of changing c, NCbCr and XYpos. 

When varying the number of components (c) in the mix­
ture model, we expect that a low number gives insufficient 
resolution to describe well all image samples, whereas a high 
number of components is bound to result in overfitting. Ta-



Example image used to estimate models from 

•• 
c=4 c=8 c=16 c=32 

Varying number of components (fixed parameters: NY=lO, NCbCr=l, XYpos=l) 

-
~ 

NCbCr=O NCbCr=l NCbCr=lO 
Varying number of colour coefficients (fixed parameters: NY=lO, XYpos=l, c=8) 

- -•••• 
•••• -

XYpos=O XYpos=l XYpos =2 
Varying position information, (fixed parameters: NY=lO, NCbCr=l, c=8) 

For visualisation purposes, the components in the XYpos=O setting are distributed uniformly across the image plane, while 
in fact no position information is available in this setting. 

Figure 6: Example image with different models estimated using various parameter settings. The images show 
mean colour and mean texture of the components where the standard deviation from the mean position in 
the image plane is below 2. Note that prior probabilities of the components and the variance in colour and 
texture are not represented in these visualisations. 

Table 2: MAP scores for different parameter settings (fixed: NY=lO). 
NY NCbCr XYpos c=l c=2 c=4 c=8 c=16 c=32 

10 0 0 0.08 0.18 0.20 0.21 0.21 0.21 
10 0 1 0.09 0.19 0.21 0.21 0.21 0.20 
10 0 2 0.09 0.19 0.21 0.21 0.22 0.21 
10 1 0 0.13 0.22 0.23 0.23 0.23 0.23 
10 1 1 0.13 0.22 0.23 0.23 0.23 0.22 
10 1 2 0.13 0.22 0.23 0.24 0.23 0.23 
10 10 0 0.12 0.22 0.23 0.24 0.24 0.23 
10 10 1 0.13 0.21 0.24 0.24 0.24 0.23 
10 10 2 0.13 0.22 0.23 0.24 0.24 0.23 



Example image used to estimate models from 

c=4 c=8 c=16 c=32 
Varying number of components (fixed parameters: NY=lO, NCbCr=l, XYpos=l) 

NCbCr=O NCbCr=l NCbCr=lO 
Varying number of colour coefficients (fixed parameters: NY=lO, XYpos=l, c=8) 

XYpos=O XYpos=l XYpos =2 
Varying position information, (fixed parameters: NY=lO, NCbCr=l, c=8) 

Figure 7: Random samples from the models visualised in Figure 6. The images are constructed by randomly 
sampling from the Gaussian mixture model (Equation 2) and then transforming the thus obtained feature 
vectors to pixel blocks. 



Table 3: Top scoring parameter settings based on 
pair wise comparisons. 

NY NCbCr XYpos c #better #equal #worse 
10 10 1 8 0 8 45 
10 10 2 8 0 9 44 
10 10 0 8 0 11 42 
10 10 0 16 0 12 41 
10 10 1 16 0 12 41 
10 10 2 32 0 20 33 
10 10 1 4 0 23 30 
10 10 0 32 1 19 33 
10 1 2 8 1 19 33 
10 10 1 32 3 18 32 

Table 4: Comparing different models, varying the 
number of components c (with fixed NCbCr=lO, 
XYpos=2). The numbers indicate if we see a signif­
icant difference when changing from row to column 
setting: 0 for no significant difference; 1 for signifi­
cant improvement; -1 for significant deterioration. 

c 1 2 4 8 16 32 
10111 1 1 
2 -1 0 1 1 1 1 
4 -1 -1 0 1 1 0 
8 -1 -1 -1 0 0 0 

16 -1 -1 -1 0 0 -1 
32 -1 -1 0 0 1 0 

ble 4 shows that this intuition is confirmed by the experi­
ments. We initially find significant improvements when us­
ing more components. But we reach an optimum at c=8. 
After that no significant improvements are measured and 
sometimes using more than 8 components even harms re­
sults (because of over-fitting). Comparable results are found 
for settings of NCbCr and XYpos not shown in Table 4. For 
some settings we already reach an optimum at c=4. 

We expect the colour information in the image representa­
tion to be a valuable source for the purpose of image match­
ing. When we vary the number of coefficients used from the 
Cb and Cr channels (NCbCr), we see that colour informa­
tion is important for each setting of XYpos and c. Both 
NCbCr=l and NCbCr=lO yield significantly better MAP 
scores than NCbCr=O. Thus it is important to use at least 
1 DCT coefficient from each colour channel and thus to en­
code colour information in the models. For some settings in 
which we use more components ( c>=8), we see that using 10 
coefficients from the colour channels is significantly better 
than using only 1 (see Table 5 for an example). So, it seems 
wise to use as much information as possible for describing 
the images, as long as the models can accommodate all this 
information (i.e., as long as we have enough components). 

Finally, it is unclear how varying the use of position in­
formation (XYpos) influences the MAP scores. For many 
settings of c and NCbCr, there is no significant difference 
between different values of XYpos. When there is, it is some­
times an improvement, sometimes a deterioration. Only 
when we use just a single component (c=l), we see a con­
sistent significant improvement for models that do use po-

Table 5: Comparing different models, varying the 
number of OCT coefficients from the colour channels 
NCbCr (with fixed XYpos=l, c=8). See Table 4 for 
explanation. 

NCbCr 0 1 10 
0 0 1 1 
1 -1 0 1 

10 -1 -1 0 

sition information. But when we use a single component to 
describe an image, all samples must be assigned to the same 
component and the position of this single component must 
be the centre of the image plane with a variance related to 
the size of the image. Still, the position information is differ­
ent for portrait and landscape images since the position of 
the blocks in these will have different variance. Thus, adding 
position information in the single Gaussian case, acts as a 
portrait vs. landscape classifier, which, not surprisingly5 , 

improves retrieval results. One thing we can learn from 
analysing the results for different XYpos settings is that it 
never harms to use position information: in all cases using 
it either significantly improves results or it does not change 
results. Still, the experimental results do not clarify whether 
we should incorporate this information directly (XY pos= 1) 
or after training the models (XYpos=2}. 

6. DISCUSSION: COREL VS TREC 
As stated before, the Core! data set is a relatively easy 

dataset and we have to be careful to carry over results to 
other data sets. This section compares the results on the 
Core! data to the ones obtained on TREC data using the 
same model [18, 17]. 

First of all, the MAP score on Core! (.12, see Table 1) 
is much higher than the .03 obtained using TREC data6 , 

indicating that indeed Core! is a much easier collection (at 
least for the retrieval model under study). However, the 
Core! dataset is not a very realistic one; real-life unanno­
tated multimedia collections are often not as well organised 
into disjoint and coherent themes and the data is often of 
much lower quality. Of course the classes in Core! are not 
strictly disjoint either: for example, the class Thailand con­
tains images of beaches, elephants, and tropical flowers. In 
the experiments reported in this paper, we ignored these ad­
ditional relevant images. This fact can be used to claim that 
the results are underestimated (we may have found more 
elephants then we think), but we think actual scores will 
be lower if full relevance judgements are available, since we 
probably will not retrieve many of the extra documents be­
cause of the lack of high similarity to the query image (the 
additional relevant images will have different backgrounds). 
Thus, we will miss more relevant images, and MAP will 
drop. 

Section 5 showed that different parameter settings cause 
measurable (and significant) differences in retrieval scores. 
One has to take into account though that statistical signif-

5Images within a class tend to have the same orientation. 
6For full example queries. With the TREC data we had 
the additional problem of combining multiple example im­
ages, but even using the best scorin~ single example for each 
query, MAP never exceeded .04 (18j. 



icance does not imply practical significance. If one param­
eter setting is only slightly (but significantly) better than 
another, but a user will not notice this in practise when 
looking at say the top 20 results, it is of not much use. On 
the other hand if we are able to find the right parameters 
this might be a small step in the right direction. Many of 
these small, but statistically significant, steps can in the end 
lead to an improvement that is noticeable in practise. 

The fact that we did find measurable differences for dif­
ferent parameter settings, contrasts our findings with the 
TREC data [17], where we concluded that content based 
multimedia retrieval from generic archives is not mature 
enough for metric based evaluation. The question now is, 
how well the optimal settings found in Section 5 transfer 
to other collections. An argument in favour of this trans­
ferability is the fact that the Core! data set might be easy, 
but it does not have a clear bias toward one of the tested 
models. Furthermore, in experiments not reported in this 
paper, we saw that the Corel data suffers from the same 
colour prevalence we found on TREC data [17]. 

Still, results from one collection cannot directly be gen­
eralised for all collections. To show one technique is better 
than another one needs to test this using a variety of dif­
ferent collections, user types and relevance judgements [12]. 
Thus, on the one hand it is important to have a test col­
lection which is representative of a certain realistic search 
task. This is what TREC tries to build. On the other hand 
we need to be able to measure (differences in) results, like 
we can when using Core!. It remains an open question still 
what kind of collections and retrieval scenarios are at once 
realistic and doable. 
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