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A PARTIAL SURVEY OF THE USES 

OF ALGEBRAIC GEOMETRY 

IN SYSTEMS .AND CONTROL THEORY (*) 

l\fiCHIEL H.AZEWINKEL 

Preface and apology. 

This is an expanded version of the talk with this title which I gave 
at the occasion of the F. Severi centennial conference at INDAM in 
Rome, April 1979. 

By its very nature algebraic geometry ought to be applicable vir­
tually everywhere, but the applied side of the subject has not been 
much in evidence in the last decennia it seems, until a few years ago 
when two new areas of applicability arose: one of these is of course 
more or less described by the key words: Korteweg-de Vries equations, 
solitons, finite gap operators, Yang-Mills fields, instantons, and a selec­
tion of references is [ABS, .AHDM, DM 1, DM2, DMN, BLS, GD, 
Kri, MT, Ve]; the other one concerns the uses of algebraic-geometric 
ideas (especially) and results (to a lesser extent) in control and 
system theory, which is my subject today. 

• The word algebraic geometry in the title must be understood in 
• a fairly wide sense. For one thing some of the applications below 

rest on the underlying ring theory or commutative algebra rather 
then on algebraic geometry itself; for another many of the results 
have their topological analogues and use difierential topology rather 
than algebraic geometry. It is true though that for most of the results 
below the original inspiration came from algebraic geometry, even if 
the final, and for the moment most important version (over the reals) 
bears few or no traces of that fact. 

The word partial in the title also reflects that I shall deal only 

(*} I risulta.ti conseguiti i11 questo laYoro sono stati esposti nella conferenza 
tenuta ii 13 aprile 1979. 
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·with (families of) linear systems, and that I shall not touch upon 
various algebraic, geometric and topological ideas which already play, 
or are very likely to play an important role in especially nonlinear 
::;yl.item theory like Lie algebras of vector-fields, connections, foliations 
and (analytfo) stratifications. A selection of references dealing also 
with such aspects of system and control theory is [Bro 1, Bro 2, Bro 3, 
Bru J, Her 4, Her 5, EU, HH, Hir, HKr, IDI 6, Kre, Lo, Lo\V, JS, 
~~IB, MM:O, ~1'\V, SJ, So 4, Su 1, Su 2, Wi]. 

Finally let me mention the recent survey paper [BF], the i)aper 
lHaz 3], the recent collection [MR], and the reasonably soon to be 
expected proceedings of the NATO-MIS Advanced Study Inst. and 
Summer Sero. on al~ebraic and geometric methods in lirn~ar_ systerr.tj 
theory (Harvard Umv., June 1979), as good sources for Slillllar ma- · 
terial, discussed in a variety of ways and styles, for those whose 
appetite 'Was awakened by the present paper, and for those who could 
not get through it, but still feel they cannot afford to neglect the 
xubject entirely. 

J . Introduction. 

The basic object under consideration in this lecture is a linear 
<lynamical system 2:. This is a set of linear differential or difference 
equations 

(1.1) l x(t) = Fx(t) + Gu(t), 

y(t) = Hx(t) , 
(continuous time) 

x(t + 1) = Fx(t) + Gu(t) ~ 

y(t) = Hx(t) , 
(discrete time) 

t 
where the F, G and H are time independent matrices with coefficients 
in some appropriate field k, and where x(t) E kn = state space, u(t) E 

E km = input space or control space, and y(t) E kP = output space. 
We speak of a system of dimension n with m inputs and p outputs. 

Occasionally one adds a direct feedthrough term to y(t), so that 
then y(t) = Hx(t) + Ju(t) in (1.1) instead of y(t) = Hx(t). J<'or the 
mnthrmatical problems discussed below the presence or absence of 
the term Ju(t) makes little difference. Thus a system (whether dis­
crete or eontinuous time) is specified by giving three matrices F, G, H, 
and possibly a fourth one J, of dimensions n x n, n x m, p x n and 
pxm. 

One common interpretation of the set of equations (1.1) is in terms 
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of some device which accepts input functions u(t) = ( Ui(t), ... , u,,.(t)) 
and produces output functions y(t) = (y1(t), ... , Y»(t) ). 

(1.2) 
U1(t)_.__T Lx(I) i= y,(t) 

?l,.,(t) ;. ~ ~ YP(t) 

Assuming that we start the device at time zero in state x(O) = O 
the corresponding input/output map fi: of E is 

t 

(1.3) f z: u(t) r-+ y(t) = J H exp (.F(t- -r) )Gu(£) d-r (continuous time) 
0 

I 

(1.4) fz: u(t) r-+y(t) = _L.A,u(t-i), A.= H.F1- 1 G , ·i = 1, 2, ... 
•-1 

(discrete time) 

In both cases f i: is completely determined by the matrices A;i some­
times called the Markov parameters of the system. 

Taking the Laplace transform in the continuous time case, and 
the z-transform in the discrete time case, one finds the input/output 
relations 

(1.5) y(s) = T(s)u(s) , T(s) = H(sl -.F)-1G 

where T(s) is called the transfer function (matria:). 
Two systems .E = (lf', G, H), E' = (F', G', H') over k are saicl to 

be isomorphic if there is an invertible matrix SE GLn(k) such that 
E' =_ES= (SFS- 1, SG, HS-1). This notion of isomorphism corresponds 
to a base change a;'= Bx in state space. It also fits in well with the 
input/output point of view in that the input/output maps of E and _ES 

are the same for all SE GL,.(k). The converse is not always true but 
holds generically, cf. section 3 below. 

In principle thus, a linear dynamical system seems a very simple 
object indeed (if taken one at a time), of which it is hard to believe 
that any sophisticated mathematics will be needed to deal with it. 
To a large extent this appears to be true. The fun starts when instead 
of considering single systems (1.1) one considers families of them; 
that is one considers e.g. real continuous time systems where now 
the matrices F, G, and H are allowed to depend continuously or 
polynomially on some extra parameters a = (a1 , ... , Gr). 
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It is when studying families of systems, and when t.rying to extend 
to families various useful known single system constructions and results, 
that we shall employ fairly sophisticated algebraic geometric ideas and 
results like fine moduli spaces, vector bundles, the Quillen-Suslin the­
orem, the quadratic Serre problem, Stein spaces, intersection numbers 
and 1-st Chern numbers. 

One way to look at this study of families is to rega.rd it as a sys­
tematic investigation to see which of the standard constructions in 
control and system theory are continuous in the system parameters. 
Viewed in this way the study of families (rather than single systems) 
is obviously relevant in an uncertain world full of (small) measure-
ment errors. i 

As it happens there are-in this author's opinion-many more 
compelling reasons for studying families rather than single systems. 
Section 2 below is devoted to this. Section 4 discusses moduli (and 
some of their uses) and section 5-11 treat of various standard system 
theoretic notions like feedback, realizations, model matching, pole 
assignment, completely reachable subsystems, ... . In each case I shall 
try to describe briefly the system/control theoretic idea, the single 
system solution or construction (in so far this has not already been 
done in the basic system theory section 3) and then discuss the 
family-wise versions of these (if available). 

Thus our central object is a family of linear dynamical systems E, 
that is a system valued function, which we shall regard from different 
viewpoints proceeding along a contour around it. By the time we 
are finished, adapting a method of Henri Petard [Pe] in big game 
hunting, we shall presumably know all about the residue in the middle. 

:! . Assorted reasons for studying families rather than single systems. 

2.1. Families of systems (definition). Intuitively a family of sys­
tems is a set of equations (1.1) where the matrices F, G, H depend 
in some way on a set of parameters a. For various reasons this defi­
nition is not quite general enough, notably if one wants to discuss 
and use universal families of systems (and this is not the only reason 
for considering somewhat more general families). A better definition 
(in the topological case) is: 

A family of real or complex systems .E over a topological space V 
consists of an n-dimensional real or complex vector bundle E over r, 
a vect-0r bundle endomorphism F: E-+ E and two vector bundle 
homomorphisms G: rx k"' ->-E, H: E ->- VXkP where k = R or C. 
Taking n independent sections of E in a small neighbourhood "V' of 

I 



A partial survey of the uses of algebraic geometry etc. 249 

v E V and writing out the matrices of F, G, H with respect to the 
obvious bases in {v'}X km, {v'}x k'P and the basis of E(v') defined by 
then sections for all v' E V', we see that locally Eis given by a con­
tinuous map into Lm,n,'P(k), the space of all triples of matrices over k 
of sizes n X n, n X m and p x n. So locally E is just like the intuitive 
notion of a family, but globally it need not be. The family Eis dif­
ferentiable (resp. analytic) if all the ingredients which go into its defi­
nition, i.e. V, E, F, G, H are differentiable (resp. analytic). 

Similarly an algebraic geometric family of systems 1: over a 
scheme Y consists of an algebraic vector bundle E --+ V and mo1·­
phisms of algebraic vector bundles 

where A' is affine i-space. J,ocally this corresponds to a morphism 
of schemes v--+ Lm,n,'P where Lm,n,'P ~ An'+nm+Pn in the obvious way. 
For every point of V with residue field k(v) there is an associated 
system over k(v), viz. F(r): E@k(v)--+ E® k(v), G(v): k(v)m--+ E@ 
0 k('l'), H(v): E@ k(v)--+ k(v)P. 

Two familieR .E = (E; P, G, H) and E' = (E'; P', G', H') are said 
to be isomorphic if there is an isomorphism of vector bundles q:: E--+ E' 
such that cpP = P'qi, cpG = G', H'cp =H. 

2.2. Systems over rings. The difference discrete-time equations (1.1) 
also make perfect sense if the matrices F, G, H are assumed to have 
their coefficients in a commutative ring R and x(t) ER", y(t) ERP, 
u(t) E Rm. In fact the linear machine 

(2.2.1) x(t + 1) = E'x(t) + Gu(t), y(t) = Hx(t) 

still makes perfect sense in the more general setting that we have 
three R-modules: U = input module, X = state module, Y = output 
module, and three R-module homomorphisms G: U--+ X, F: X-+ X, 
H: X--+ Y. 

Note that the input/output operator of the linear machine, cf. (1.4)~ 
is a convolution operator so that the theory of linear discrete time 
systems also has things to say about e.g. convolutional codes. There 
are more reasons for studying systems over rings, some of which will 
be touched on below; cf. also [Sol], [Kam 2]. 

Assuming that the input module U and the output module Y are 
free and that the state module X is projective there is au obvious 
way of associating a family of systems over Spee (R) in the sense of 
2.1 above to the data U, X, Y, P, G, H. Indeed let Ebe the Yector 
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bundle asaociated t-0 the projective module X and let P, 0, 11 be the 
bundle morphi11m11 defined by Ji', G, H. Then (E; P, 0, 11) is an alge­
braic geometric family in the sense of 2.1 above. 

For each prime ideal 'p of R let k(!J) be the quotient field of R/'p. 
Then the system over the point lJ defined by this family is simply 
gh·en by the triple of matrices F(lJ) = FG) k(j:>), G('p) = G@ k('p), 
HO))"·"" H<:i) k(13). 

2.3. Dtlay-dif feremial aystcma. Consider a real delay-differential 
system, e.g. 

(:!.a.1) 

.i\(tl =' x1(t-a1 ) + 2.r2(t) + ra(t-a1 ) + w(t), 

.i'1(t) = r 1(t) + 2.r1(t -a1) + tt(t-aa) , 

y(I) = 2.r1(t- 111 ) + X 3(t), ' 
where a1 and a1 are two incommensurable positive real numbers. 
Introducing the delay operators a1a(t) = oc(t - ai), a 2 oc(t) = oc(t - ll:t) 
we ean re\\Tite (2.3.l) formally as 

(:!.:~.:!) i(t) = P.r(t) + GH(t) ' y(t) = H.r(t) 

with tlw matrices l', G and H given by 

(2.3.3) (i·=G), H = (20'1 1) 

and in turn this triple of matri('es ean be viewed as a triple of matrices 
with coeffieients in the ring R[au 112] that is a syst.-m m·er the ring 
R[a,, a.,], or, equivalently, as a family 1_if ~ystems pammt-tr·ized by 
tilt' paramt•t(•rs a'""" (au a,). Thull the intinitt- dimt>nsioual sy~tem 
(:!.:U) get.; turnl•d into a family of finih• ilimt•n~ional ~:v~tt•ms. Tha. 
thh: is not a l'Ompletely formal exl'rch;e is shown by a nice paper o(­
Kamen [Kam 1] in which he relates the spectral theory of (:.!.3.1) to 
the (eommutative) algebra whieh goe:'; into the stmly of (2.3.2). 

One thing whieh is suggested by this point of ,·iew is that two 
delay-systems .E, 1:' like (2.3.1) be considered isomorphic if there is 
an invertible matrix SE Gln(R[a1 , a2]) whieh takes 1: into 1:1 ; i.e. 
they are isomorphie if one ean be obtained from the other by means 
of an invertible transformation x' = Sx where 8 may involve delays. 
'l'his t ums out to be precisely the right notion of isomorphism in 
conneetion with degeneracy phenomena for delay-differential equa­
tions, d. [Kap]. Similarly the system-over-rings-as-family-of-systems 
point of view also seems to suggest useful notions of e.g. complete 
reachability, cf. bl·low in section 10. 
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2.4. (Singular) perturbatfon, deformation, approximatfon. These 
reasons for studying families depending on a small parameters rather 
than only the objects themselYes are almost as olcl as mathematics 
itself. Certainly (singular) perturbations are a familiar topic in the 
theory of boundary values of differential equations. And in the control 
world O'Malley, [OM:a], for instance disC'usses a singularly perturbed 
regulator problem which consists of the following data 

(2.4.1) 

x1 = A11(e)X1 + A12(e)x2 + B1(e)u ~ 

BX2 = A21(B)X2 + A22(B)X2 + B2(f.)1l ' 

J(e) = tx1(l, e)n(e)x1(l, e) + 
1 

.t\(0, s) = x~(e) , 

x 2(0, e) = x~(e), 

+ J {tx1(r, e)Q(e)x1(r, e) + 1it(-r, e)R(e)u(r, e)) dr 
0 . 

where the upper t denotes transposes. 
Here the matrix R(s) is positive definite, the matrices Q(e) and 

n(s) are positive semidefinite, and it is desired to find the control 
which drives the initial state (x~(e), x~(e)) to (O, 0) in time 1 and 
which minimizes the cost J(e). All matrices may depend on time as 
well. For fixed small e there is a unique optimal solution. Here one 
is interested however in the asymptotic solut.ion as e -r O, which is, 
still quoting [OMa] a problem of considerable practical interest, in 
particular, in view of an example of Hadlock et al. [HJK] where the 
asymptotic results are far superior to the physically unacceptable 
results obtained by setting s = 0 directly in (2.4.1). 

Another interesting perturbation type problem arises may be when 
we have a system 

(2.4.2) y=Hx 

where w is some undesirable noise input, and where F, G1, G2 , H 
depend on a small parameter e. It is desired to try to remoYe the 
influence of the noise input w by means of state feedback 

H'(t)---+ 

~--y(t) 

u ( t) ~----+ 

I 1 
L 



That is one tri€''1 to find matrix J, sud1 that in HH' new with 
stllt{• fttdb~11·k which is the """"' '"'"" 

:If llx, 

the 1Ustmh<l!l!'e,, do not sl1ow up any m<m~ in the y. Suppose 
=--= o. Can we then find :t disturbance decoupfor 

i.e. as a power serfos in e whi<'h con­
for e small enough and of whfrh the various terms 

caleulatcd sm·cessiw~ approximation' 

::.:'.. There :in: ,~tm mort- reasons for .interested in familie-
:! --- d and n - d ;::ystems which we 

uncertainty, where 
certain wnstruetions so as to attain certain 

desirnbh.• for some of whose parameters are uncer-
1ain or for whie11 have wliieh may Yary some-
what; ef. also i below; identification problems; and. not least, time 

whirh ean on oeeasion he fruitfully viewed as 
on H parametl'r t, d. also 11.2 below. 

;\. A little basic system theory. 

fn this section we desc•ribe briefly as background material and for 
later use a few of the more elenwntary concepts and results pertaining 
to a single ~yl'tem over a field k. 

:u. and Let k be a 
field and l.' = (F, G, H) a linear dynamical sy::;tem over !.:. The triple 

, 0, H) can be interpn·ted either as a continuum; time syst.en. 
(given by differential equations) or as a discrete tinw system (g-iven · 
by difference equations), d. (1.1). Given }; one tlefint>s tht' reachabi­
lity matrix 

(3.1.1) R(E) = R{F, G) = (G :FG; ... ;F"G) 

as the n \. (n ~ 1) m matrix consisting of the n + 1 blocks G, PG, ... 
... , F•G. D1rnlly one• defines tlie ob&crcability matri.r 

(:3.1.2) (/(1.'} l)(F, H) = (~') 
HP" 



A partial survey of the uses of algebraic geometry .,tc. 253 

as the (n + l)p X n. matrix conisisting of the n + 1 blocks H, HP, ... 
... ,HP". 

The system 1: is said to be completely reachable, abbreviated er, 
if R(E) has its maximal rank n and the system is said to be com­
pletely observable, abbreviated co, if Q(E) has its maximal rank n. 

These notions have the following interpretation in terms of the 
sets of equations (1.1). The system is er if for every x E kn, there is 
an input function u(t) such that starting in x(O) = 0 at time zero the 
solution of the first equation using this control u(t) passes through x. 
The system. is co if for every two states x, :c' and input function u(t), 
the two output functions y(t), y'(t) resulting from starting in x, x' 
at time zero and· using this input function are equal if and only if 
x=x'. 

Mnally one associates to E its Hankel matrix Je(.l') which is defined 
as the infinite block Hankel matrix 

c A2 ..1.4.3 

.. ) (3.1.3) Je(.l') = A2 Aa A~ ... 
As A~ ...13 

built from the pxm blocks A;= H}t1i- 1G, i = l, ::!, ••• Note that 
Je(.l') depends only on the isomorphism class of I: because 

Je(.l'8 ) = Je(FfPH- 1, 8G, R- 1H) = Je(F, G, H) = Je(.l')). 

We note that 

so that rank Je(.l') "~ n for a ~ystem of dimension ?i and rank Je(.l') = n 
for a system .l' of dimension n iff .l' is both er and co (using the Ca.yley 
Hamilton theorem). 

3.2. Realization theo1·11. Let EE L,,,,n,,(k) be n system onr k. Then 
as we have seen, cf. (1.3), (1.4), ..l' determines an input/output map fi: 
which is completely determined by t11e infinite sequence of matrices 
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is processed through another linear system l:' and then fed back 
into J:. The block diagram is of course 

r-------------1 
I I 

I -
I I 

I u(t) y(t) I I 
I I 
I I 
I - I' I - -. 
I I L ____________ _J 

If the transfers function of J; is T(s) and that of J;' is T~(s), then th!' 
transfer function of the total system is 

(3.4.1) 
T(s) 

1- T(s) T'(s) · 

4. Fine moduli spaces, universal families and canonical forms, 

4.1. The quotient scheme M;;>;:,11 • Let k be any field, then GL,.(k) 
acts on L:,n,,,(k) the set of all er linear dynamical systems I:=(F, G, H) 
of dimension n with m inputs and p outputs. Let M!,,.,,,(k) be the set 
of orbits. We note that the stabilizer subgroup of each J; E L! •• ,,,(k) 
is trivial (because R(J.:8 ) = SR(I) and R(J:) has full rank), which 
(morally) goes some way towards suggesting the following theorem. 

4.1.1. THEOREM: There exists a scheme M:!,,.,21 over Z such that 
for each field k the k-rational points of M::!',11,,, are precisely the orbits 
of GL,,(k) acting on L~ .... v(k). There is an open subscheme M:;::=:zfj 
corresponding to the orbits of er and co systems. ' 

Locally M;;:-,n,p is isomorphic to affine space A nm+:im and the way 
these pieces are glued together is very reminiscent of Grassmann 
varieties. For details cf. [Haz 2] for the topological version, [Haz 3] 
and also [BH] for the case of varieties over a field, and [Haz 6] for 
the fact that M!,,.,P is defined and is classifying over Z. 

4.!:?. Universal families. There are a number of universal families 
of systems. Let us start with a topological one 

4.2.1. THEORE?.I: There exists a family J:u= (Eu; F", Gu, H") of 
real er systems over the smooth differentiable manifold M::!',n,p(R) 
such that the following universality property holds. For each con-
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tinuous family E of real er systems over a topological space V there 
is a unique continuous map <pz such that E is isomorphic to the 
pull back 

There are corresponding statements for differentiable and real ana­
lytic families over differentiable and real analytic varieties. ( .M:,11,:i>(R) 
is real analytic). There is also an analogous theorem for complex 
systems. 

On the algebraic-geometric side of things we have 

4.2.2. THEORJIJM: There exists an algebraic family £u of er systemR 
over the scheme M:;;,,,,:z> such that for every algebraic family E of er 
systems over a scheme V there is a unique morphism of schemes 
cpi:: V -·+ M~.n,i:> such that E is isomorphic over V to the pullback 
family qi_l.J:u. 

Here a family E = (E; F, G, H) over a scheme V is said to be er 
if for every v E V the system OYN' ii, i.e. the system (E® k(v); F@ 
@k(1J), G@lc(t'}, H@lc(v)) over th" residue field k(v), is er. 

4.3. The Krmiecker nfoe selection. Most will agree that, the J"ordau 
canonical form is a use.ful gadget when dealing with matric<'il. \Vhat 
it does is select oue particular element out of each orbit of GL,.(C) 
acting on JJI,.(C), the sp!tce of all nxn maLrices, by simila1·ity, i.e. 
as (S, A) 1-+ RAS-1• Similarly it would be nice to have a canonic~iJ 
form for GL,.(k) acting on L,,.,,,,,,(k), or n.t least _i::~i:>(k). For one 
thing they can be usofu1 when trying to identify a system from its 
input/output datn., because the inputioutput dntn, only specify .i.n 
orbit, (not the system itself, so that there a.re a number of re<lundant 
parameters to get rid off before trying to estimate the remaining ones, 
cf. also [GWJ). One p::i,rticular canonical form proceeds via what is 
called the Kronecker nice seleetion, which we now describe. It will 
also be useful in 10.3 below when studying feedback. 

Let E = (F, G, H) be a er system over a field le. Consitler a.n array 
of n X (n + l)m dots. For each (i, j), i = O, ... , n; j = 1, ... , m .. , in this 
array put a cross at this spot if and only if the column vector F'g1 

where g1 is the j-th column of G, is linearly independent of the vectors 
F"g~, with (a, b) < (i, j) where the order is the lexicographic one 
(i.e. (a, b) < (i, j) <::>a< ·i or (a= i and b < j)). This yields a pat­
tern of n crosses (because rank .R(E) is n). For example the result 
for. n = 6, m = 4 might be 

(4.3.1) 
x .. 
xxx 
xx· 
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which means e.g. that g1 = 0 and that .Fg2 is linearly dependant on 
gH g., 9s1 g,. 

Note that the pattern above has the property that whenever a X 
appears in a row than all positions in this row left of this X are also 
occupied by x 's. This is no accident (and it is this property that the 
word nice in the title of this subsection refers to). It follows that the 
pattern obtained is uniquely described by the m-numbers ;e(.E) = 
= (;e1(E}, ... , ;'.e,.(E)) of X 's in each row. This sequence of m. numbers 
;((.E), or more precisely the corresponding pattern of crosses, is what 
I call the Kronecker nice selection. 

Note that ;'.e(.E8 ) = ;e(.E) for all Se GL,.(k) so that these numbers 
are discrete invariants. -

4.4. Canonical forms. The Kronecker selection u(.E) defined above 
now can be used to define a canonical form on L: .... 11(k). We label 
the columns of R(.E) = R(F, G) = (G: FG: ... : .F"G) by the spots in 
the array of 4 3 above, i.e. by the pairs (i, j), i = O, ... , n; j = 1, ... 
. .. , m. For each subset ex of this set of pairs let R(.E)" be the matrix 
obtained from R(F, G) by removing all columns whose index is not 
in a. Note that for all Se GL,.(k), 

(4.4.1) (R(E8 ))., = S(R(E) .. ). 

It follows that each orbit of GL,.(k) in L!!,,.,11(k) contains precisely 
one element .E such that R(.E)K(L')= I,.. This defines a canonical form 

(4.4.2) c,.: L:;,:.;,(k) -+L:,:,-11(k), E ~,Es, where S = (R(E);;(L'))-1 • 

This is but one example of a large number of canonical forms in use 
in system and control theory, and one may ask whether this construc­
tion is continuous. The Jordan canonical form for matrices e.g. is 
discontinuous which severely limits its usefulness for instance in numera 
ical matters, [GWi]. Similarly it would be nice to have a continuouil" 
canonical form for systems for identification and numerical purposes. 
However, 

4.4.3. THEOREM: There exists a continuous canonical form c: 
L::!';!°,21(R) -+ L:;:,11(R) if and only if p = 1 or m = 1. 

There is a similar statement concerning canonical forms which are 
morphisms on the algebraic varieties L:;;;~~s>(k), k an algebraically closed 
:field. For details and more theorems like this, cf. [Haz 2, Ha2' 3]. 
The reason behind this theorem is the following. .As is easily seen, 
a continuous canonical form exists on all of L::~:s>(R) if and only if 
the universal bundle Eu restricted to L:::;:,s>(R) is trivial. It turns 
out that this is the case if and only if m = 1 or p = 1. 
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4.5. Pointioise-looal isomorph.ism problems. It is an immediate con­
sequence of the fine moduli space theorems 4.2.1, 4.2.2 that if two 
families J; and I' of er systems over V are pointwise isomorphic then 
thay are isomorphic as families over V. A similar statement holds 
for families which are co everywhere; in fact the whole body of 
definitions and statements has a co (i.e. output) counterpart. 

In general, however, such a statement is definitely false just as 
in the case of matrices depending holomorphically on a parameter 
with respect to similarity, [Wa]. In analogy with the positive results 
one has in that case. 

4.5.1. THEOREM: Let E, I' be two families of dynamical systems 
over V. Suppose that I(v) and E'(v) are isomorphic for all v e V. 
Suppose moreover that the stabilizer subgroup of 2'(v) has constant 
dimension as a function of v in some neighbourhood of v0 E V. Then 
there exists an open neighbourhood U of v0 such that E and 2'' are 
isomorphic as families over U. 

The theorem holds both for continuous real families over a topo­
logical space and for algebraic families over schemes, so in particular 
for systems over rings. Cf. [HP] for details of the proofs and various 
examples. 

5. Realization w_ith parameters and variations. 

5.1. Pointwise realization theory. As was remarked in section 3 a 
strictly proper rational matrix function T(s) with coefficients in a 
field k, or, equivalently, a sequence of matrices A= (A1, A2, ... ) with 
finite rank Hankel matrix can be realized by means of a finite dimen­
sional system, i.e. we can find a £ = (F, G, H) over k such that 

(5.1.1) T(s) = H(sl -F)-1G, A,= HF'-1G , i = 1, 2, ... 

and it is even possible to find a realization which is co and er. A more 
or less standard way of proving the first statement is as follows. The 
hypothesis that the rank of the Hankel matrix 

Je = (~: ~: ~: :::) 

is finite means that there is an rand that there are matrices T1 , ... , T, 
such that the (r + 1)-th column of Je is equal to T,(1-st column) + 
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Then -=HF•-1G for all ·i=l, ::!, ••• because (A,, ... , A 

'"" (A,, 1 , ... , Thus the system I.: defined by (5.1.3) 
rPalizes .{. One then proct•eds to find the canonical er subsystem E"' 
of tht1 <"f. 11.1 below, and then construets 
the eanuniral co quotient system of the }}'' just constructed, to find 
a rr and eo whieh rN!lizes d. also 6.2. 

0.2. RoiH:alion n:iih ([By !]). It is not at all clear, 
the re:dizat.ion constrnetion of 5.1 above is continuous 

of .-t in the of . Also one 
c<>•u·''""'''u of minimal i.e. a co and er 

and it is al::m not clear that the construction which asso­
dates to a E its er and co with the same input/ 
out.put map is continuous. This question is in fa.et the t-0pic of sec­
tion 11 below, d. also 6.2. 

Let be a family of sequences of matrices depending on a para-
nwter with bounded "'.Vfadlillrm degree, or, equivalently, lef 
(•i.2.1) 

he a family of mti.onal strietly proper transfer fu.ndions (with the 
sa.me boundedne:-;s prffperty). Then an obvious nem'ssary condition for 
I be existence of a family E( a) in the sense of 2 .1, which is co and er 
Huywherc, .mch that E(a) realizes .. ~(a) (or, equivalently T .. (s)) for 
all a is that the ~fae:'.'11illan degree of A:(a) (ef. 3.2 above) be eonstant. 
a~ a function of a. This is also sufficient. 

5.2.2. THEORE~1: Let A:(a) be an algebraic (resp. continuous) fa­
mily of sequences of matrices of coustant MacMillan degree. Then 
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ere exists an algebraic (resp. continuous) family of systems .E(a) 
alizing A( a). 

Indeed, one shows without too much difficulty (using the Zariski 
ain theorem as in [By 4]1 or by constructing local inverses rnaz 3]) 
at I: r-+ A:(E) induces an isomorphism of Jt~:,1> with the spa.ce of 
l sequences of MacMillan degree n. Thus the family A:(a) defines 
morphism into M;;';:,P and the pullback of the universal family by 
eans of this morphism is the desired family. 

This does not mean that we can always find a family of co and er 
itrix triples (.F(a), G(a), H(a)) realizing .rt(a). Indeed this will be 
1ssible if and only if the pullback of the underlying bundle Eu of 
e universal family of systems by means of the morphism defined 
r the family .. 1t(a) is trivial. Yet precisely such a family of matrix 
lples is what is desired on occasion; in particular when .,,{;(a) is a, 
mily of matrix sequences coming from a sequence A:= (A 1 , A 2 , ... ) 

matrices with coefficients in a ring R. 

5.2.3. COROLLARY: Let R be a ring such that all projective mod· 
es of rank n are free. Let A = (Au A 21 ••• ) be a sequence of matric.es 
[th coefficients in R, such that the :~.fac::\Iillan degree of A(.p) = 
. (A1(\:i), A 2 (,\.1), ••• ) over the quotient field k(.p) of R/'J,> is equal to n 
r all prime ideals '!,). Then there exists a triple of matrices (F, G, II) 
·er R, i.e. a system over R, which realizes A (i.e. such that A;= 
HF 1- 1 G, i=l, 2, ... )and which is such that (.F(p), G(.p), H(.p)) is co 
Ld er for all .p. (I.e. we have a split realization in the terminology 
'[So 3].) 

By the Quillen-Suslin theorem the condition on R h; in particular 
lfilled for rings of polynomials over a field, which is e.g. the case 
interest when discussing realization by means of delay-differential 

·stems. 

5.3. Realization by means of delay-differential systems. Let .E(a) = 
• (F(a), G(a), H(a)) be a delay-differential system with r incommeu­
.rable delays. Here a = (a11 ... , ar) and a; stands for t,he delay 
>era tor a, z(t) = z(t - a;), so that we have written L'(a) as a system 
<er the ring of polynomials k[a1 , ••• ,a,]. The transfer function of 
(a) is 

(s) = H(exp (-a1 s), ... ,exp (-a,s)) · 

(sI-F(exp (-a1 s), ... , exp (-a,sJ))-1 G(exp (-a1 s), ... , exp (-a,s)) 

hich can be seen as a rational function in s whose coefficients are 
)lynomials over k in exp (- a1 s), ... , exp (-a, s). 
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Now inversely suppose that we have a transfer function T(s) which 
can be written as a rational function in s with coefficients which are 
polynomials in the exponential functions exp (- al 8)' •.• ' exp (- ar 8)' 
and we ask whether it can be realized by means of a delay-differential 
system E(a). Now if the a; are incommensurable then the functions s, 
exp (-a1 s), ... ,exp (-a,s) are algebraically independent, and there 
is precisely one transfer function T'(s) = T'(s; a1 , ••• a.) whose coef­
ficients are polynomials in the a1 , ••• , a. such that 

T(s) = T'(s; exp (-a1 s), ... ,exp (-a.s)) . 

Thus the problem is mathematically identical with the one just dis­
cussed above in 5.2, and by Corollary 5.2.3 and the Quillen-Suslin 
theorem we get a positive answer in the case that the MacMillan 
degree of T'(s; a11 ••• ,a.) is constant for all complex values of the 
parameters a1 , ••• , a,. 

5.4. Network synthesis. An n-port is an electronic gadget with n 
pairs of terminals (over which voltages and currents can be meas­
ured). An n-port which is constructed on a, finite graph consisting 
only of lumped resistors, inductors, capacitators, ideal transformers 
and gyrators can be described by an ?iXn scattering matrix S(p) 
which essentially, after a normalization, relates the voltages and the 
currents across the n ports. The matrix S(p) is rational and it is 
symmetric if no gyrators are present. When discussing the inverse 
problem of how to realize an S(p) by means of a network (i.e. the 
network synthesis problem, which has been solved) one hits the fol­
lowing symmetric version of the system realization problem discussed 
above. 

Given a symmetric, rational, proper nxn matrix W(s) {the matrix 
W(s) is related to the scattering matrix S(p) by a simple fractiona~ 
:mbstitution), find an internally symmetric realization, where the last 
phrase means that we want to find a triple (F, G, H) of matrices of 
sizes rxr, rxn, nxr such that 

where the upper 1 denotes transposes, and where Ip,Q, p + q = r, is 
the fltnndard symmetric. form of signature p- q (consisting of p + l's 
and q -l's on the diagonal and zero's elsewhere). Note that r and 
p - q are given by W(.<t) as the MacMillan degree of W(s) and the 
signature of the Hankel matrix of W(s). 

In [YT] Youla and Tissi show that internally symmetric realiza­
tions of minimal degree always exist (op. cit. Lemma 8) and that any 
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two of them are transformed into one another by an element of 
O(p, q) c GLn(R). 

The situation is now entirely analogous to the one for linear dynam­
ical system (realization) theory discussed above, and one can ask 
about fine moduli spaces, etc. In pa.rticular one can ask about the 
existence of continuous symmetric canonical forms. It turns out that 
these exist only in the case where they have long been known to 
exist, [BD]. (The Foster and Cauer canonical forms for RL and RO 
networks). Again, the problem is ruled by a certain universal bundle, 
which, again, is nontrivial as soon as it has a decent chance to be so. 
(There seems to ·be a kind of Murphy's law also in this highly theo­
retical branch of electrical engineering.) 

Another question which it is now natural to ask is whether there 
exist polynomial families of internally symmetric realizations for poly­
nomial families of symmetric matrices W(s). Especially in connection 
with delay networks, i.e. networks with transmission lines, [An, Ko, 
RMY, Yo]. Here instead of the old Serre problem, one hits the 
quadratic .analogue which asks whether any quadratic space over 
k[a11 ••• , O'r] is induced from one over k, [Ba]. Here the general answer 
is negative ([Pa], k = R, r = 2), but the answer is yes if r = 1 
([Har]), if k is algebraically closed ([Ra]), and if the quadratic space 
is not definite ([Oj]). 

6. Realization over rings ( 2). 

Let~= (A17 A 2 , ••• )be a sequence of p xm matrices over a ring R. 
Suppose we want to realize A over R, i.e. we want to find matrices 
(F, G, H) with coefficients in R such that A;= HFi- 1 G, i = 1, 2, .... 
One way to tackle this was discussed above and consists of treating A 
as a family over Spee (R) and using the fine moduli space of co and er 
systems and the Quillen-Suslin theorem ([Sus, Qu]). The hypotheses 
to make this work, however, are rather strong: viz. the MacMillan 
degree of A(,\:>) must be constant as a function of .):>, and R must be 
projective free in the appropriate dimensions. 

Another way to get realizations of ~ goes as follows. Assume 
for simplicity that R is an integral domain; if R is not an integral 
domain but is reduced, then these ideas generalize rather easily. Let K 
be the quotient field of R. Then A is realizable over K if and only 
if the rank of the Hankel matrix of A, viewed as a matrix over K, 
is finite. Let d(A:) denote this number. Thus we are left with the 
problem: which integra.I domains are such that if a sequence of ma­
trices over R is realizable over K, then it is also realizable over R 
(possibly using higher dimensional matrices). 
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This method is not particularly thrifty in terms of the dimension 
of the realization obtained, but has the advantage of requiring far 
weaker hypotheses, as we shall see. 

6.1. The Fatou property . .An integral domain R is said to be Fatou 
if for every rational function p(s)/q(s), where p(s) and q(s) are poly­
nomials with coefficients in the quotient field K of R, such that it.s 
expansion p(s)/q(s) = ! a,s-• has all its coefficients in R, there exist 
polynomials p'(s), q'(s) over R such that q'(s) has leading coefficient 
equal to 1 and such that p'(s)/q'(s) = ! a,s-•. 

Fatou proved in 1906 that the ring of integers Z has this prop-A 
erty, whence the name. The Fatou property is actually equivalent~ 
to the realization property: if A over R is realizable over K then it 
is realizable over R. 

For the one input/one output case this is immediate because firstly 
the polynomial part of T(s) = 2 a,s-• causes no difficulties at all, 
showing that the realization property for the one input/one output 
case implies the Fatou property. Secondly, a power series 2 a,s-• is 
the expansion of a rational function p'(s)/q'(s) with the leading coef­
ficient of q'(s} equal to one iff a,+,= t,a,+ ... ti°''+•-l for all i = 1, 2, ... , 
(where the t1 are the coefficients of q'(s)), and then the realization 
]_)rocedure 5.1 above gives the desired realization. In the more input/ 
more output case one simply observes that T(s) consists of rational 
functions as entries. Realizing each of these we find in the case of 
three inputs and two outputs the realizations (Fu, Gu, H 11 ), i = 1, 2; 
j = 1, 2, 3, of 2 a,(i, j) s-•, where a,(i, j) is the (i, j)-th coefficient of A, 
nnd T(s) = ~A,s-•. Now put all these together in the following way 

Fu 0 0 0 0 0 Gu 0 0 

0 Fu 0 0 0 0 0 G12 0 

" 0 0 F1a 0 0 0 0 0 Gia 
F= G= 

0 0 0 F21 0 0 G21 0 0 

0 0 0 0 Fu 0 0 G22 0 

0 0 0 0 0 F23 0 0 GS3 

H = (~11 Hu Hl3 0 0 ;J. 
0 0 Hu Hu 

Then Ar= HFr- 1G for all r, and of course this trick works in general. 

6.1.1. THEOREM ([RWK]): Every noetherian integral domain is 
Fatou. 
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I~oOF ([So 1]): Let A be a sequence of p x rn matrices over R 
which is realizable over K. The first step now consi!:.;;ts of the fol­
lowing elegant realization procedure by means of a not necessarily 
free state module ([Rou, Fl 1, FI 2]). Write down the Hankel ma­
trix Je of A, and let X be the R module generated by the columns 
of JC. Now define G': Rm-.--.. X by G1(a11 ••• , am) = a1 b1 + ... + amb,,., 
where the b1 arc the columns of JC; define I!'': X -- X by P'(b;) = 
= bi+m• and let H' (b 1) be the column vector consisting of the first p 
entries of b1 • (Note that Ji'' is ·well defined because by the structme 
of the Hankel matrix any linear relation c1 b11 + ... + crb,.1 = 0 implies 
C1b;,+m -t- ... + e,b;r+m = 0.) 

The second step consists in showing that the module X is finitely 
generated. J~et Vu ... , V,. be n columns Of JC Which form a basis for 
X ®R K over K. Then every column of JC can be written as a sum 
2. d- 1d1·0 1 , ·where d1 ER and where d ER is the determinant of a full 
rank nxn submatrix of the matrix formed. by the V;. Let X' be the 
R module generated by the vectors d- 1 v1 , 'i = 1, ... , n. Then X is a 
submodule of the finitely ge1wrated module X' and so is finitely gen­
erated because R is noetheriau. 

}i'inally let Rn _,... X (different n iu general) be any surjective mod­
ule homomorphi8m. Then because R 11 is free there are homomorphisms 
Ji', G, H such that the following diagram is conunutativt-, 

and then HP1- 1 G = H' F'•- 1 G1 =A;, i = 1, 2, ... , proving the theorem. 
Not all integrnl domains are Fatou, cf. [Cha, CCh]. A closely re­

lated property called strong Fatou is also relevant for system theoretic 
considerations ([SH 2]), and it in turn implies that the ring in ques­
tion is almost projective free. (For such rings it suffices to add one 
copy of R to a projective module to make if free.) 

6.2. Minimal realizati<m.s, ([Eil]). Let Ji': X _,... X, G: R"' -·>- X, 
H: X -- RP be a (discrete time) system over a ring R whose state 
module is not necessarily free. Define G: R"'[z] -- X by azi 1-> Ji'iGa 
and define H: X --R~[z] by Hx = 'J..HJi'"xz". Then the appropriate 
(and obvious) notions of er and co for systems over rings a1·e: the 
system is (ring) er if Q_ is surjective, and the system is (ring) co if ll 
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is injective. (For the family over Spee (R) associated to the system 
the property « ring er » is equivalent to the requirement that every 
member of the family be er; but the property that every member 
of the family be co is stronger than the property « ring co ».) The 
system is said to be minimal if it is both er and co. 

Now let xer c X be the image of Q.. Then G(Rm) c xcr and 
.E''(Xcr) c xcr, and the induced er system (Xcr; F, G, H) has the same 
input/output behaviour as the original system (X; F, G, H). More or 
less dually let 0 be the kernel of i1 and let xco be the R-module X 00 = 
= X/C. Now F(G) c 0 and H(O) = 0 so that we have an induced 
system (X00 ; F, G, H), 'lvhich is co and which has the same input/ 
output behaviour as the original system. 

Performing both constructions we find a co and er system ( (Xerr; 
F, a, H) with the same input/output, behaviour as the original system; 
i.e. we find a minimal system. All minimal systems realizing a given A 
are isomorphic (so that in particular it does not matter which of the 
two constructions is canied out first). 

Of course the minimal realization of a given A need not have a 
free, or even projective, state module, however, if the family E(:p) 

has constant MacMillan degree than the realization obtained by the 
methods of section 5 above is minimal and the realization obtained 
by the constructions described above has a projective state space 
module. 

6.3. 2 - d and n - d systems. Consiller a linear discrete time 
system with direct feed-through term 

(6.3.1) x(t + 1) = F,r(t) + Gu(t) , y(t) = Hx(t) + Ju(t) . 

The associated input/output operator is a convolution operator, viz. 

I 

(6.3.2) y(t) = L; A;u(t-i), A 0 = J, A;= HFHG, i = 1, 2, .... 
i=O 

Now there is an obvious more dimensional (north-east, causal) gen­
eralization of such a convolution operator, viz. 

h k 

(6.3.3) y(h, k) = L 2;A;;U(h-i, k-j)' h, k = o, 1, 2, .... 
;~,o i~o 

.A (Givone-Roesser) realization of such an operator is a <( 2 - d system» 

I X1(h + 1, k) = F11x1(h, k) + F12X2(h, k) + G1u(h, k), 

(tl..3.4) x~(h, k-;-- 1) = F 21 x1 (h, k) + F 22 x2(h, k) + G2 u(h, k) , 

y(h! k) = H 1:r1(h, k) + H 2 x2(h, k) + Ju(h, k), 
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which yields an input/output operator of the form (6.3.3) \vith the .A1,; 

determined by the power series development of the 2 - d transfer 
function T(s1, s2) 

(6.3.5) 

(6.3.6) 

~A1,;S1is;i"1 = T(81 , s~), 
;,i 

where lr is the r X r unit matrix and where n 1 and n2 are the dimen­
siorn; of the sta.te spaee Yectors x1 and x2 • There are ob1.rious gen­
eralizations to n - d systems. The question now arises ·whether eYery 
J>roper (d. e.g. [Eisl] for a definition) 2 - il transfer function can 
indeed be realized by a set of «processing equations 1> like (6.3.4). 

One way to approach this is to treat one of the 8 1 as a parameter 
which then gives us a 1·ealization problem over a ring (or a realization 
problem with l)arametcrs). 

1\.fore precisely let R. ]Je the ring of all proper ratioual functimrn 
in s1 • Now eonsider '1'(s11 82 ) as a proper rational funetion in H2 with 
c.:.ief'fleient,.; in Ra. This transfer function can be realized over R., 
giving us a quadruple of matriC'es (F(s1), G(s1)), H(H1), ,](81)). Bach 
of these rnatricl"S is proper as a function of s1 and hf\nee «an be 
rnalized by a quadruple of matrices with coefficients in wluitever field 
we happen to work over. Suppose that 

Then, as is easily checked, a realizrttion in the ::;ense of (6.~.4) IS 

defined by 

Jp H/i' HG 0 0 Jo 
---- ----·-----
(JJ. Fp 0 0 () 0 

p =(Fu ~::) =o 
(G) 0 0 Fa 0 0 G = i = Go 

F21 G2 
GH 0 l!'u 0 0 0 

0 () () () ]j'J (JJ 

H =(H1 H2) = (JH ! 0 0 Hu HJ)' J =JJ. 
I 

This is the procedure followed in (Eis l]: a, somewhat difft>rent ap­
proach with essentially the same first step and also bnsed on realiza­
tion over rings i8 m;ed in [So 2]. 
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'i. Output feedback, blending and Stein spaces. 

'i.l. Dynamic output feedback. Consider a scalar (for simplicity) 
transfer function T(s} = p(s)/q(s). Then the introduction of a dy­
uamfo output feedback loop with transfer function L(s} = a(s}/b(s) 
results, as was mentioned in 3.4 above, in a new system with transfer 
function 

(7.1.1) 
T(s) p(s)b(s) 

1- T(s)L(s) = b(s}q(s)-= a(s)p(s) · 

The system described by T(s} = p(s)/q(s}, where p(s) and q(s) a.i·e 
without common factors, is stable if q(s} has all its roots in the left 
half plane. 

Now sup})OSe that the system T(s) depends on some only approxi­
matedly known parameters c varying in some compact set O; i.e. we 
ha'\'e a certain amount of parameter uncertainty. And suppose that 
we -..vant to stabilize Tc(s) = pc(s)/q.(s} by means of a dynamic output 
feedback loop L(s) for all c simultaneously. Then our problem is to 
find polynomials a(s) and b(s) such that all the roots of 

(7.1.'.!) b(s}q.(s) - a(s)p0 (s) 

are in the. left halfplane for all c E 0. 

'i -~. The blending problem. Consider the single input/single output 
control system represented by 

p(s) - aM 

-
- q(s) b(s) -

where the transfer polynomials p(s) and q(s} are given, but there is 
some uncertainty about their parameters, and where it is desired to 
find polynomials a(s) and b(s) such that the total system has only 
left halfplane zero's, a property which is sometimes called minimum 
phase. Thus it is desired to find a(s) and b(s} such that 

(7.::?.l) a(.~)p,(s) + b(.r,;) q.(s) 
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has only left halfplane .zero's. This has been called the blending 
problem and mathematically it is the same problem as the dynamic 
output stabilization problem of 7.1 above. 

If it is required that b(s) is minimum phase also one speaks about 
the strong blending problem. For the dynamic output feedback 
stabilization variant this corresponds to the requirement that the 
feedback loop system L(s) be itself stable. 

The (strong) blending problem can not always be solved. For 
instance if there are points d, e in the right half plane such that 
p 0 (d) = p.(e) = O for all c and such that q0 (<l) cicles around zero as 
c varies, while qc(e) is a fixed constant, then the blending problem 
has no solution ([Ta]). 

7 .3. Connection with Stefo spaces. Let E be the right halfplane: 
then we want to find polynomials a(.~), b(s) such that a(s)p.(s)+ 
+ b(s)q.(s) =fa 0 for all s EE and c E 0. Let T.(s) = p.(s)fq.(s) and 
L(s) = a(s)/b(s). Then we want to find a rational L(s) such that 
T.(s) =fa - L(s) for all c E C and s EE. For rt fixed o let 

Zc = {(s, T.M)lseE}c ExP1(C), 

z~ = {(s, TcM) Is EE, T.(s) * oo}c E' xC' 

and let Z= LJZ,, Z'= LJZ~, Y=ExP1 (C)"-.._Z, 1·1 =EX~Z'. \Ve 
c c 

have the natural mappings Y --+ E, Y1 -+ E, inducecl by (s, w) i-+ s 
Solving the blending problem now consists of finding a meromorphic 
section of Y-+ E and a bolomorpbic section of Y' ->- E gives a solu­
tion of the strong blending problem. Now it turns out that (op. cit.) 
Y' is a Stein space, which helps in obtaining some positive results 
for the blending problems, (Ta]. 

I should add that in the case that the uncertainty in T 0 (s) is of 
the form T.(s) = cT(s), where T(s) is a fixed rational function, so 
that the undertainty is just a gain factor, Tannenbaum in op. cit. 
gives a complete solution using very different met.hods (complex inter­
polation). 

8. Matrix polynomials. 

In this section I bl'iefl.y discuss a few variations on the theme 
matrix polynomials. It will be clear, I hope, that the V'arious « mor­
ceau.x » mentioned below are intimatedly related, though the oYerall 
picture does not seem, as yet, to be completely clear. 
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8.1. Preliminary remarks concerning matrix polynomials. I~et k be 
a. field. \Ye denote with kpXm[s] (resp. kpXm(s)) the module of all 
p x m matrices ·with entries in k[s] (resp. k(s)) and with km[s] (resp. 
k"'(s)) the module of column m-vectors of polynomials (resp. ra.tional 
functions) in s over k. Matrix multiplication makes k"X"[s] a ring. 
An element U(s) of this ring is called uni-modular if it is invertible 
in this ring; i.e. if det (U(s)) Ek*. An element .D(s) in k"x"[s] is 
called nonsingular if det (.D(s)) ~ 0. 

A first most useful fact about the ring k"X"[s] is that it is a left 
and right principal ideal ring. Thus in particular any two elements 
A, B have a greatest right common divisor D (that is, there are 
0, C' such that A.= CD, B = C'D, and if D' is a.ny other common 
right divisor of A. and B then D is a left multiple of D', i.e. of the fom1 
D =ED' for some E in J.;PXP[s]). This greatest common right divisor 
is simply any generator of the left ideal generated by A and B, and 
is of course determined up to a left unimodular factor. Similarly 
there are left greatest common divisors. As an immediate consequence 
one has: 

8.1.1. PROPOSITIO::\: Let 0 "F T(s) E kPXm(s) be a matrix of rational 
functions. Then there are N(s) E kP><m[s] and a nonsingular .D(s) E 

E k"''< 11•[s] such that T(s) = .N(s)D(s)-1 and such that there are .A(s) E 

E kmXP[s], B(s) E k"'x"'[s] \.Yith A(s)N(s) + B(s)D(s) =Im· These N(s) 
and D(s) are unique up to a common right unimodular factor. 

One interesting fact in this connection is that if T(8) is a strictly 
proper rational matrix function a.nd T(s) = N(s)D(s)- 1 is the factori­
zation of 8.1.1 above, then the MacMillan degree of T(B) is the degree 
of dct (D(s)). 

8.2. The d·isturbance decoupling problem. Suppose we have a con­
trol system 1'ith an extra noise input; i.e. we have a set of equa­
tions 

(8.2.1) i = Fx + Git + G' w , y=Hx 

(or the discrete time version of this). One now tries to find a state 
space feedback matrix L (cf. also the picture in 2.4 above), such 
that for the system with this feedback loop 

(8.2.2) x = (F + GL)x +Gu+ G' w , y=Hx 

the output no longer depends on the noise w. In terms of matrix 
formulas this means that one tries to find a matrix L such that 
H(F + GL)iG' = 0 for all i. 
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8.3. The model matching problem. The model matching problem is 
defined as follows: given transfer function matrices T(s), T'(s), find 
a strictly proper Q(s) such that T'(s)Q(s) = T(.<t). 

I.e. by first processing our inputs by means of Q(s) and then by 
T'(s) we match exactly the input/output behaviour defined by T(s). 

This problem (.M.MP) and the disturbance decoupling problem 
(DDP) have been shown to be equivalent in [EH], in the sense that 
each J)])P gives rise to an .M MP and -vice versa and that the one is 
solvable iff tlle other is. 

8.4. F mod G ·invariant subspaces, [Wo 1]. !Jet (F, G, H) be a 
system of dimension n over a field k. A subspace V c kn is called an 
F mod G invariant subspace if 

(8.4.1) FYcV +(G) 

where (G) = Gk"' is the subspace of kn spanned by the columns of G. 
These subspaces are naturally called A mod B invariant subspaces by 
those who write their equations x =Ax+ Bu, JI= Cx rather than 
x = Fx + Gu, y = Hx; a less notation dependant name is sorely 
needed. 

8.4.2. PROPOSITION, ([,Vo lJ): A given DDP has a solution iff 
there it~ an F mod G invmfant subspace V such that (G') c V c Ker H. 

This rests on the observation that 17 is an lJ' mod G invariant 
subspace iff there is a matrix L such that (F + GL) V c V. 

Obviously the sum of two F mod G invariant subspaces is au 
F mod G invariant subspace. Thus there is a largest F mod G in­
variant subspace contained in any subspace. 

There are still a number of (largely) open problems concerning 
lJ' mod G invariant subspaces. For instance n. description of all of 
them (of a given dimension r) as, say, a subset of the Grassmann 
variety G,,,.(k). Also open is the problem of finding a good minimal 
F mod G invariant subspace which contains a given space. (There 
need not be a smallest one as the intersection of two F mod G inva­
riant subspaces need not be F mod G invariant.) 

Geometrically F mod G im-ariant subspaces l' of kn are those sub­
spaces with the property that once one is in it one can stay in it by 
a judicious choice of controls. This gives a natural notion of an 
almost F mod G invariant subspace (as a. subspace for which once 
one is in it one can stay arbitrarily close to it), and this notion then 
solves an approximate DDP (['Yi 2]). 
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8.5. Matrix polynomial factorization. Consider a matrix polynomial 

(8.5.1) D(s) = Ars'+ ... + A 1 s + A 0 

where the .A; are mxm matrices. Two such matrix polynomials are 
said to be equivalent if there exist polynomial unimodular matrices 
U(s), 'V(s) such that D(s) = U(s)E(s) V(s) . 

.A. linearization of D(s) is an (m + l) X (m + l) matrix L such 
that sl,,.+ 1-L and D(s) Ee 11 are equivalent. If .A,. is invertible such 
a linearization always exists. One particular one is obtained as fol­
lows. Let A;= A;:-1 A1, i= O, 1, ... , r-1, and substitute T,._ 1 =-.A~ 
in the 1J' matrix of (5.1.3) above to obtain a matrix F(D). Then this 
matrix J!(D) is a linearization of dimension rm. Of course equivalent 
matrix polynomhtls have the same sets of linearizations, but here it 
is also true that all linearizations of D(s) of dimension t'm are similar 
([GLR 1]). Gohberg a.o. ([GLR 1-5, GMR, GKV, GKLJ) make this 
notion of linearization a cornerstone of their (spectral) analysis of 
operator polynomials and in their study of factors and multiples of 
such polynomials. E.g. by theorem 8 of [GLR 1) there is a nice cor­
respondence between monic factors of D(s) (still assuming A,. to be 
invertible) and certain F(D) invariant subspaces. 

It is not true however, that every matrix polynomial is linearizable 
in this sense. For instance if A is nilpotent then a contradiction is 
obtained by taking determinants on both sides of the equation 

(But it is true that one can always find L, M such that (D(s)Ee I,) 
is equivalent to L-sffI, cf. [GKLJ.) 

Now this linearization described above (by a block companion 
matrix) is a special case of what has been called the Fuhrmann model 
of a matric polynomial ([Fu 1]), which is what we describe next. 

For ea.-0h rational function f(s)E k(s) let nf(s) be its strictly proper 
part; i.e. if f(s) = p(s)/q(s), p(s), q(s) E k[s], write p(s) = n(s)q(s) + r(s) 
-with degree r(s) <degree q(s) and define nf(s) = r(s)/q(s). We use the 
same notation for the analogous map km(s) -+ km(s). Now let D(s) 
be a nonsingular matrix polynomial (-with m x m matrices as coeffi­
cients) and define 

(8.5.2) 

(If n(/) is the integral part of D-1 /, then nDf =f-Dn(f), showing 
that :iDf is indeed polynomial again.) This map is a projection with 



A partial suw•ry of the uses of algebraic geometry etc. 273 

kernel Dk"'[;1]. Its image V(D) is a vectorspace of dimension degree 
det ( D(.Y)). Now define 

(8.5.3) F(D): r(D) ·-?- Y(D), 

which gives V(D) a k[s] module structure for which V(D) c::::'. 7.;m[s]/ 
/Dk"'[s]. (Of course, abstractly (V(D), F(D)) is simply this quotient 
tnodule.) 

8.5.4. PROPOSITION ([Ful, Theorem 8.8]): Let D(s), D'(s) be mxm 
matrix polynomials. Then F(D) and F(D') are similar if and only 
if D(s) and D'(s) are equivalent. 

Thus it is not unreasonable to expect that the invariant subspaces 
of F(D) and the polynomial factors of D(s) correspond. This does 
indeed turn out to be the case ([Ant, EH]). The Fuhrmann model 
of D(s) is also closely related to realization theory. In fact if D(s)-1 

is proper (and by changing, if necessary, D(s) by a unimodular factor 
this can always be assured) then F(D) is the ~p matrix of a minimal 
dimensional realization (F, G, H, J) of D(s)-1• This fact, together wit.h 
the remark that the F mod G invariant Rubspaces are the (]!' + GL) 
invariant subspaces for some L, lies at the basis of a correspondence 
between factors of D(s) and F mod G invariant subspaces ([EH, FW]). 

9. The feedback group and its invariants. 

9.1. The feedback grov,p and the Kronecker indices. In this and the 
following subsection we consider control systems x = Fx + Gu rather 
than input/output systems x = Fx +Gu, y = Hrc, and we consider 
a larger group of transformations than just state space isomorphisms 
viz. the socalled feedback group, which is generated by « base change 
in state space», base change in input space and «state space feed­
back». More precisely let Lm,n(k) be the set of all pairs of matrices 
over k of dimensions n X n and n X m, and let L::!',,.(k) be the subset 
of all completely reachable pairs. Then the feedback group acting 
on these spaces, is generated by the transformations 

(9.1.1) (F, G) ...... (S- 1FS, SG), SEGLn(k) (state space base change), 

(9.1.2) (F, G) ...... (F, GT-1), TE GL,,.(k) (input space base change), 

(9.1.3) (F, G) ...... (F + GL, G) , LE k"'n (state space feedback) . 

This group is readily seen to be a linear algebraic group, viz. the 
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closed subgroup of GLm+" of all matrices of the form 

(~ ~) 
acting as follows 

( (~] ; ) ~G~) 1-+ (SFS-1 + SGT-1 LS-1, SGT-1) . 

Let i(F, G) be the Kronecker nice selection defined in 4.3 above 
(which was independant of the matrix H). Now let "(F, G) = 
= (u1(F, G), ... , u,,.(F, G)) be the set of numbers x(F, G) arranged ac­
cording to magnitude with the largest one first. So in the example 
of 4.3 above we have "i = 3, "2 = 2, "a= 1, "' = 0. 

'Ye claim that the ",(F, G) are invariant under the feedback group. 
This can be seen as follows. Let d, be the dimension of the subspace 
of k11 generated by the columns of the matrices G, FG, .•. , Jl'i-1 G, 
i = 1, 2, ... , n. Then the d, are clearly invariant under the transfor­
mations (9.l.1)-(9.1.3). But the d, determine the "' as follows. Let 
e, = d;- d;_11 i = 2, ... , n, e1 =di· Then "i is the number of e, 
which are ;;..1, "2 is the number of e, which are >2, ... , ""' is the 
number of e; which are ;;..m. (An inversely the "' determine the e, 
by analogous rules and hence the d,.) Thus the "' are indeed inva­
riants. 

9.2. The block companion canonical form. In this subsection we 
show that all the elements in O(u), which is the set of all (F, G) such 
that u(F, G) = u, can be brought into a certain special form by 
transformations which vary continuously with the parameters of (F, G) 
(as long as (F, G) varies within a fixed O(u)), a result which we shall 
also need in section 10 below. We shall assume that x1 + ... +um= n, 1 

which is equivalent to Q(;'.&) c L::!',n, and which is necessary for the 
arguments below. The «proof» is by a, hopefully, sufficiently com­
plicated example. For even more details cf. [Haz 3, Ka 1]. In fact 
below there are already more details than is normally appropriate 
for a survey type paper, for which I apologize. We shall need, how­
ever, the fact that this construction is continuous in section 10 below 
to give a new :proof of a theorem of Chris Byrnes. In view of the 
:plethora of constructions in the field which are discontinuous it seemed 
worthwhile to make it absolutely clear that this one is continuous 
for a change. 

For the sufficiently complicated example we shall take m = 4, 
n = 6 and u = (2, 3, o, 1), so that the corresponding pattern of dots 
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anu erosses looks like 

(9.2.1) 

xx· 
xxx 

x .. 

By the definit.ion of tlle pattern ;c we have for each i = 1, 2, 3, 4 a 
relation 

(9.2.2) 

where the sum on the left runs over all (k, j) E u such that (u1 , i) > 
> (k, j) in the lexicographic order on Jm,n' cf. 4.3 abo•re. (•lm,n is 
the set of all pairs (i, j), i = o, 1, ... , n; j = 1, ... , m.) 

A first preliminary step is now to find an m x m matrix T(F, G) 
which is up1)el' diagonal (with ones on the diagonal) :mch tha.t if 
we write down the corresponding relations for the pair (F, G') cc=: 

"'"' (F, GT(F, G)) then (9.2.2) has a;j = O for all k>'i°c;. In our example 
the relevant four relations are 

F 2g1 + (ai1Fg1 + a.L.Pg,J + (a~1Y1 ·+- lt~202 -+ a~4g4) = 0 

1/3g2 + (a~2F2 g~) (a~1 Fg1 + aJ2 Fg2) + 
(9.2.3) + (ag1Y1 + ag2Y2 + a~4g4) = 0 

Us+ (11g1Y1 + a~&i) = 0, 

Fg4 + (a!1FY1 + a!2FY2) + (a~1Y1 -t a~~Y2 + a~4!'f4) =-~ 0 · 

Note that for example the third relation does not involve fh by the 
definition of u. Jn this case T(F, G) is the matrix 

Ti>', !I)~ (~ 
0 ag1 •l,) 

(9.2.4) 
1 ag:.! ~J, 0 1 

0 0 0 

Note tha,t we are only using those at for which le= x;, note that 
1.'(F, G) comes out to be upper diagonal because in (9.2.3) at = O 
if (k, j);;:, (~;, i), and finally note that a transformation (F, G) 1-> 

,..... (F, GT) does not change u provided 1.' is upper diagonal (even 
though in general a base change transformation in input space doe;; 
change the Kronecker selection ;;: even it if leaves the Kronecker 
indices x unchanged). Now let (}' = GT(P, G), then an easy cheek 
shows that in the relations for the pair (F, G') corresponding to 
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(9.2.2) we have a~f = 0 if k = x;, so that 

(9.2.5) 

where now the sum runs over all (j, k) E."' 1".lr which k < ui. We now 
define a new basis (b11 ••• , b,.) of k" such that with respect to this basis 
F and G' look like 

0 1 i 0 0 0 0 0 u 0 0 

* * I * * * * 1 0 0 0 
- -·--------- -

0 0 0 1 0 0 0 0 0 0 
(9.~.6) F"= Gn= 

0 0 0 0 1 0 0 0 0 0 

** ***\* 0 1 0 0 

;-;-!-~ --;---.;-,--; 0 0 0 1 

To this end we use the relations (!l.2.5) whi. b written out in our 
example result from the f01mulas (9.2.3) by replacing gi with g;, and 
a;~ with a,;; for k < x,, and by setting a~1 = ag2 = a!1 = a!2 = 0. Now 
define 

b1 = Fg~ + a~tg; + a~~g~ , 
b2 = g~, 

b3 =1!'2g~ + a~pt'g~ + a~~g~ + a~~g;, 
b4 = Fg~ + a~~g~ , 
b5 = g~' 

b6= g~. 

Note that the three groups of basis vectors b11 b2 ; b3 , b4 , b5 ; b1 (cor­
responding to the three nonzero ;eu u2 , u,) are obtained by « dividing 
as best as one can» the left hand sides of the first; second; fourth 
equation of (9.2.3) by F, F 2 ; F, F2, 1!'3; F. 

Now let L be the 4 x 6 matrix whose first row is the second row 
of F", whose second row is the fifth row of F", whose third row is 
zero, and whose fourth row is equal to the sixth row of F". Then 
(F''-G"L, G") looks like (9.2.6) with all the *'s replaced by zero's. 

Finally let S be the permuta.tion matrix consisting of the columns 
e3 , e,, e11 e2, e3 , e, where the e; are the standard basis vectors in l .. , 
and let T be the 4 X 4 permutation matrix formed by the standard 
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basis vectors of k' in the order 1, 2, 4, 3. Then 

SJJ111S-1 = 

(9.2.7) 
0 

0 

1 
SG"T= 

0 

0 

0 

o 1 o I o 
0 0 1 0 

0 0 0 0 

0 

0 

0 

0 

0 

0 
-·-·-- 0-110 0 0 0 

0 0 0 0 o I o 
0 0 0 0 o 1-0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

which matrices depend only on the Kronecker indices x1 , x2 , u3 , ~,. 

9.2.8. COROLLAR.Y ([Bru 2, WM, Ros, Kal]). The Kronecker in­
dices "i are the only invariants of the feedback group acting on L: .... 

For results concerning the feedback group acting on L':.,n."' cf. 
e.g. [WD]. The form (9.2.7) has been called Brunovsky canonical 
form. 

9.2.9. REM.ARK: Note that on O(ie), the set of all pairs (J!, G) 
such that x(F, G) = ie the construction is clearly continuous. On O(x), 
the orbit of the feedback group labelled by x, the construction is in 
fact not continuous in general. 

9.2.10. REM.ARK: The quotient map L: ... -+ {x} is continuous if 
the set of Kronecker indices {x} is given the topology belonging to the 
partial order (x;;;. x') <=> (x1 < x~ and x1 + Xi < "1 + "~ and ... and "1 + 
+ ... + x.,<;x~ + ... + x;,.), and this is then in fact the quotient topo­
logy. This is the same order of partitions of n as turns up in the 
study of degeneration of vectorbundles over algebraic va.rieties {[Sh, 
Theorem 3]), which fact is explained by what comes next in subsec­
tion 9.3; it is also the same order which turns up in the theory of the 
representations of t.he symmetric groups ([Sn, LVi]), an« accident», 
which still needs explaining (1 ) and it is also the degeneration order 

( 1) This has meanwhile been done: Hazewinkel and Martin, Jan 1980, to appear. 
(Footnote added March 1980). 
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among the orbits whose rlosure contains zero for 8L,. acting on its 
Lie algebra by the adjoint action, ([Ger, Hes]). Cf. [Bry] for yet more 
oecurences of this partial order in various parts of mathematics. 

9.3. 'l'hc Mart-in-Hermann vectorbundle of a system. Now let L' = 
CC-"' (F, G, H) E L:;:-;:;<:17(C) be a er a,nd co input/output system, and let 
T z(8) be its transfer function, and write 

(9.3.1) Ti:(s) = N(s)D(s)- 1 

with .Y(s) and D(s) right coprime matrices of respective dimensionsf 
pxm and ·mxm, D(s) nonsingular; cf. 8.1 above. 

I .. et Gm,m+P be the complex Grassmann variety of complex m-planes 
in complex m + p space. Define 

(9.3.2) 

by the formula 

(9.3.3) { 
q;.i:(s) ={(N(s)u, D(s)u)juEC}, 
qi.i:( oo) = {(O, u) Ju EC} . 

This defines a continuous, and in fact a holomorphic, morphism. 

9.3.4. PRoPOSITIO:N, ([H:M 3]): The Mac::Yiillan degree of T i:(s), i.e. 
the degree of det D(s), i.e. the dimension of .E, is equal to the inter­
section number of <ps(P1 (C)) with the hyperplane at infinity in Gm,mHJ. 

Let E' _,,_ G m,m+P be the canonical m-dimensional bundle over the 
Grassmann variety whose fibre over x is the m-plane represented 
by x, and let E over Gm,m+» be the dual bundle to E'. Define E{E), 
over P 1(Z) as the pullback of Eby means of rps. Now by [Gro] every 
holomorphic m-dimensional bundle E over the Riemann sphere P 1(C) 
splits as a sum of line bundles and is classified (up to isomorphism) 
by m integers K(E) = (K1(E), ... , K 111(E) ), K 1(E) > ... >Km(E), where 
the K,(E) are the degrees of the line bundles in question; i.e. up to 
isomorphism a holomorphic bundle on P 1{C) is a direct sum EB O(x1). 

9.3.5. THEOREM, ([ill! 3]): x(.E) = K(E(E)}. 

9.4. The Kronecker matrix pencil of a control system. A pencil of 
matrices over a field k is a polynomial matrix of degree 1 

(9.4.1) K(s) =A+ Bs. 
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Two such pencils K, K' are said to be equivalent if there exist invertible 
matrices PE kmxm, Q E k•X• such that K' = PKQ. Kronecker ([Kro]) 
classified such pencils, cf. also [Ga, Her 1]. Now let .E = (F, G} be a 
control system and associate to it the nx (m + n) pencil 

(9.4.2) Kz(s) = (G: sI-F) . 

Let .E' = (l!'', G') be a seconu control system. Partitioning Q as indi­
cated below and considering the equation 

(9.4.3) (G' : sI - F') = P(G: sI - F} (Q11 <112) 

Qu Qu 

it readily follows that Q:!.1 = O, Q22 = P--1 so that G' = PGQ11 , F' = 
= PFP-1 -PGQm so that the pencils K.z:(s) and Kz,(s) are equi­
valent iff the control systems E and .E' a,re feedback equivalent, i.e. 
equivalent under the feedback group. 

Most of the invariants of Kronecker for the elassification of matrix 
pencils are zero for pencils of the form (9.4.2). The remaining ones 
are certain nonnegative integers which are precisely the numbers 
" 1 (.E), ... , "m(.E) ([Kal]), whence the names «Kronecker indices» for 
"(.E) and «Kronecker selection» for ;e(E). 

10. Pole placement and coefficient assignability. 

10.1. Ooefficient assignability over a fieW. Let R be a ring and let 
.E = (F, G, H) be a system over R. Let x(.E) = x(F) = det (sin - F) 
(the characteristic polynomial of I). The system is said to be coef­
ficient assignable if for all a1 , ••• , an ER there is a state feedback 
matrix L such that 

.A slightly weaker property is pole assignability which means that 
for all b1 , ••• , b.,. E R there is an L such that 

x(F + GL) = (s-b1 ) ••• (s-b,.). 

Because Tr(s) = H(sl -F)- 1G these properties (and their weaker 
variants of which stabilizability, cf. 7.1 above, is one) say things about 
how the poles of the transfer function can be shifted. Over a field 
things are quite clear. 
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10.1.1. PROPOSITION, ([Wo 2]}: Let k be a field, then a system 
over k is pole assignable i:ff it is coefficient assignable iff if it is er. 

This follows fairly immediately from the Brunovsky eanonical form 
discussed above in 9.2. 

There are of course entirely straightforward definitions of pole 
<tssignability and coefficient assignability for families of systems, which 
fit with the ones for systems over rings when a system over a ring is 
viewed as a family. 

10.~. Pole placement over a ring. Over a ring R things are not so 
simple, and in fact largely unsettled. Two easy facts are 

10.!1.1. LEMMA: If m = 1 then coefficient assignability is equi­
Yalent to er (meaning that R(F, G) defines a surjective map Rr ->- R", 
r= m(n+ 1)). 

10.:1.2. LEMMA. If I over R is pole assignable then I is er. 
In general it is not known whether cr implies pole assignability 

but over a ring with only finitely many maximal ideals it is still true 
that er implies coefficient assignability (lSo 1]), which takes care of 
the case of linear sequential circuits (where R is finite). For R = k[a], 
polynomials in one variable over a field, Steve Morse ([Mo]) has shown 
that er implies pole assignability, a result which then (cf. section 2 
above) also says things about the stabilization of delay-differential 
;;ystems with only one delay operator. Morse's result holds more 
generally over i)rincipal ideal domains. There is also a simple example 
that Hhows that over k[a] er need not imply coefficient assigna­
bility, [BS]. 

Apart from a result for polynomial families (and more generally 
for systems over rings which are projective free) which we describe 
below, this is about all that is known. lJet me remark though that 
when m = 1 and I is not er, Wyman in [Wy] describes the extent 
to which the system fails to be coefficient assignable in terms of a 
certain Ext group. 

10.3. Ooef;icient assignability for polynomial families. In this sub­
section I give a new proof of the following theorem of Chris Byrnes. 

10.3.1. THEOREM, [By 4]: Let I(a) be a polynomial family of 
systems over a field k parametrized by a1 , ••• , <Tr (or, equivalently) 
let .E(a) be a er system over k[a11 ••• , <Tr] (Quillen-Suslin theorem). 
Suppose that the sets of Kronecker indices of I'(a) are constant as 
functions of a for all values of a e "fer, where k is the algebraic closure 
of k. Then I(a) is coefficient assignable. 
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P.RooF: 1,et l.' =- , a-, ~1nd let for all <f E ~ the 
dimension of tlle imbspaee of spanned by the columns of the ma-
trices G(a), l'(a)G(a), ... , ll(a)HG(a). 'rhen, d. 9.1 above, the hypoth­
esiti that the u,(a) = ui( E(a}) are constant implies tliat the d' ;(a) are 
also constant. For i = 1 this means that E 1 ={(a, {G(<1)))}, where 
(JI) is the subspace llpanned by the columns of the matrix ]{, is 
a vector subln.mdle of the tfrdal n dimensional bundle over affuw r 
space. By the QuiHen-Suslin theorem this means that there is an 
invertible matrix T 1 with coefficients in k[a] such that the first d1 

columns of G(a) T 1 are linearly independent for an a. Because 
is also constant E2 ={(a, <O(a), F(a)U(a)))} is also a wctorbundle and 
applying the Quillen-Suslin theorem again we have that the quotient 
bundle E2/E1 is free. Thls one is generated fibre-wise by the first d1 

columns of Jl(a)G(a) mod (G(a)), which means that there is a ma­
trix T 2 with coeftldents in k[a] of the form 

~) 
where T~ is a d1 x matrix, such that the first - d1 colnmru;; of 
_F(a)G(a)T1 T 2 generate the fibre at a of E,/E\, and becaui<e T 2 , so 
to speak, only acts on the first d 1 columns it is still true that the 
first d1 columns of G(a) generate the fibres of Bi- In t-erms of the 
Kronecker selection this means tllat after two base changes in input 
o>pace we ha-ve arranged things in such a way that the first two columns 
of the Kronecker selection ;IC(L(a)) for all <J E k,r look like 

I 
x I ··- .. "·' >< di 

,,, 

>< .. 
x .. 
• .. 
.. " 

Continuing in this way (the next matrix, T3 , is of the form 

with T~ a (d2-d 1 ) X (d2-d1) matrix we see that by a polynomial 
base change T in input space we can see t-0 it that the Kronecker 
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selection of (.F(a), G(a)1') is constant. But then, by means of the con­
struction which we so elaboratedly described in 9.2 above we can 
bring .E(a) in the Brunovsky canonical form (9.2.7) by means of poly­
nomial base changes and polynomial feedback. .A further polynomial 
feedback operation then puts precisely those polynomials in the *-spots 
in (9.2.6) which we need, proving the theorem. 

The original proof of this theorem ([By 4]) relies instead of on 
the Qt1illen-Suslin theorem on results of Hanna ([Han]) on decomposi­
tions of vector bundles which are applied to the family of Martin­
Hermann bundles (cf. 9.3 above) which is defined by the family .E(a). 

Of course the proof given above works over any ring over which all 
finitely generated project}ve bundles are free; the same proof also q 
gives, of course, results for continuous (differentfable) families over 
homotopically trivial spaces (manifolds). 

By the interpretation of delay-differential systems as polynomial 
families of systems Theorem 10.3.1 tells us things about the stabiliza­
tion of delay systems (which are in principle infinite dimensional gad­
gets, showing the power of the family interpretation). For these 
Rystems the proof of the theorem has the following corollary. 

10.3.2. COROLLARY: If .E(a) is a delay-differential system such that 
the conditions of the theorem hold for the associated polynomial 
family of systems, then the system ..E'(a) is up to feedback equivalent 
to a system involving no delays. 

10.4. Pole placement for delay systems. Let .E(a) be a delay-dif­
ferential system. Assume, which is reasonable and even customary 
in many cases, that all the functions x(t), u(t), y(t) are zero for t far 
enough in the past. Then it makes perfect sense to talk about base 
changes and feedback by mea.ns of matrices which are power series 
over the rea.l numbers in the delay operators a 1 , ••• , a,. Now this ~ 
ring of power series is local and hence certainly projective free so ' 
that the proof of Theorem 10.3.1 gives coefficient assignability and 
stabilization results for delay systems for which the two Kronecker 
indices xQ(.l') and x(.E0) are equal. Here x12 (.l') is the set of Kro­
necker indices of .E(a) considered as a system over the quotient field 
R(au ... ,a,) and x(.E0 ) is the set of Kronecker indices of the residual 
system over R obtained from .E(a) by setting all the a; equal to 0. 

11. The (canonical) completely reachable subsystem. 

11.1. _Ecr for systems over fields. Let .E = (F, G, H) be a system 
over a field k. Let xcr be the image of R(F, G): k' ~ kn, r = m · 
· (n + 1). Then oh\iously F(X0') c X 0', G(km) c X 0•, so that there is 
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an irnluced subsystem J.,-Cr = (Xcr; l!'', H', H') which is called the ea­
nonical er subsystem of E. In termi-< of matrices this meanR that there 
is an SE GL,,(k) such that E" has the form 

(11.1.1) 

with (F1u G1 , H 1 ) = J;cr, the canonieal er subsystem. The words Kal­
man « decomposition i> are also used in this context. There is a dual 
construction relating to co and combining these two constructions 
«decomposes» the system into four parts. 

In this section we examine ·whether this com;truction ean be globa­
lized, i.e. we ask whether this construction is continuous, and we ask 
whether something similar can be done for time varying linear tly­
namical systems. 

11.2. J;er for time varying systems. Now let E = (F, G, H) be a 
time varying system, i.e. the coefficients of the matrices F, G, H are 
alowed to vary, say continuously, with time. For time varying systems 
the controlability matrix R(I:) =c-.= R(l!', G) must he redefined as follo"~rn 

(11.2.1) R(F, G) = (0(0): G(l): ... ; G(n)) 

where 

(11.2.2) G(O)=G; G(i) = llG(i-1)-G(i-1) 

·where the denotes differentiation with respect to time, as us1rnl. 
Note that this gives back the old R(F, G) if F, G do not depend on 
time. The system is said to be er if this matrix R(E) has full rank. 
These seem to be the appropriate notions for time varying systems; 
cf. e.g. ['We, Raz 5] for some supporting results for this claim. 

A time variable base change x' = 8,r ehanges I: to ;p with 

(11.2.3) I:8 = (SFS-1 + SS- 1 , 8G, HS- 1). 

Note that R(E) hence transformi:; as 

(11.2.4) R(E8 ) = SR(E) . 

11.2.5. THEOREJ\I: Let I: be a time varying system with contin­
uously varying parameters. Suppose that rank R(I:) is constant as a 
function of t. Then there exists a continuous time varying matrix S, 
invertible for all t, such that I:8 has the form (11.1.1) with (F11 , 

G1, Hi) er. 
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PROur': Consider the submodule of the trivial (n + l)m dimen­
sional bundle over the real line generated by the rows of R(I). This 
is a •ec·torbundle because of the rank assumption. This bundle is 
trhial. It follows that there exist r sections of the bundle, where 
r =rank R(l:), which are linearly independant everywhere. The con­
tinuous sections of the bundle are of the form I a,(t) z,(t), where 
z1(t), ...• Zn(t) are the rows of R(I) an<l. the a,(t) are continuous func­
tions of t. Let b1(t), ... , b,(t) be the r everywhere linearly indepen­
dant sections and let Mt) = I a1t(z) z,(t), j = 1, ... , r; i = 1, ... , n. 

Let E' be the r dimensional subbundle of the trivial bundle E of 
dimen.sion ti over the real line generated by the r row vectors ai(t) = 
= (a;1(t), ••• , ain(t)). Because the quotient bundle E/E' is trivial we 
can ('omplete the r vectors a1(t), ... , a,(t) to a set of n vectors a1(t), ... 
... , a.(t) such that the determinant of the matrix formed by these 
vectors is nonzero for all t. Let S 1(t) be the matrix formed by these 
wetors, then S1R(I) has the property that for all t its first r rows 
are linearly independent and that it is of rank r for all t. It follows 
that there are unique continuous functions C1:1(t), k = r + 1, ... , n; 
i = 1, ... , r such that z~(t) = I Ck;(t) z~(t), where z;(t) is the j-th row 
of S1R(E). Now let 

I~_) 
where C(t) is the (n-r) x1· matrix with entries ck1(t). 

Then S(t) = S2(t)S1(t) is the desired transformation matrix (as fol­
lows from the transformation formula (11.2.4)). 

Virtually the same arguments give a smoothly varying S(t) if the 
coefficients of I vary smoothly in time, and give a polynomial S(t) 
if the coefficients of I are polynomials in t (where in the latter case 
we need the constancy of the rank also for all complex values of t 
anrl use that projective modules over a principal ideal ring are free). 

11.3. };CJ: for families. For families of systems these techniques 
€,rive 

11.3.1. THEOREM: Let I be a continuous family parametrized by 
a contractable topological space {resp. a differentiable family para­
metrized by a contractible manifold; resp. a polynomial family). Sup­
pose that the rank of R(I) is constant as a function of the parameters. 
Then there exists a continuous (resp. differentiable; resp. polynomial) 
family of invertible matrices S such that _Es has the form (11.1.1) 
with (Fu i Gu H1) a family of er systems. 
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The proof is virtually the same as the one given above of theorem 
11.2.5; in the polynomial case one of course relies on the Quillen­
Suslin theorem again to conclude that the appropriate bundles are 
trivial. Note also that, inversely, the existence of an S as in the 
theorem implies that the rank of R(.E) is constant. 

For delay-differential systems thiR gives a «Kalman decomposi­
tion » provided the relevant, obviously necessary, rank condition is 
met. There is also again a power series version of this result (as in 
10.4) which requires a far weaker hypothesis. 

Another way of proving Theorem 11.3.1 for systems over certain 
rings rests on the following lemma which is also a basic tool in the 
study of isomorphisms of families in [HP] and which implies a gen­
eraJization of the main lemma of [OS] concerning, the solYability of 
sets of linear equa.tions over rings. 

11.3.2. LEMMA: Let R be a reduced ring (i.e. there are no nil­
:potents # 0) and let A be a matrix over R. Suppose that the rank 
of A(.\)) over the quotient field of R/t> is constant as a function of t> 
for all prime ideals tJ. Then Im (A) and Coker (A} are projective 
modules. 

Now let .E over R be such that rank R(E(ll)) is constant and let 
B be projective free (i.e. all finitely generated projective modules 
over R are free). Then Im R(.E) c R" is projective and hence free. 
Taking a. basis of Im R(E) and extending it to a basis of all of Rn, 
which ca.n be done because B 11/Im R(.E) = Coker R(E) i1> projective 
and hence free, now gives the desired matrix S. 

There is a complete set of dual theorems concerning co. 

Testo pervenuto il 7 settembre 1979. 

Bozzo licenziate il 20 maggio 1980. 
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