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A PARTIAL SURVEY OF THE USES OF ALGEBRAIC

GEOMETRY IN SYSTEMS AND CONTROL THEORY

Michiel Hazewinkel

PREFACE AND APOLOGY
This is an expanded version of the talk with this title which I
gave -at the occasion of the F.Severi centennial conference at
INDAM in Rome, April 1979,

By its very nature algebraic geometry ought to be applicable
virtually everewhere, but the applied side of the subject has not
been much in evidence in the last decennia it seems, untill a few
years ago when two new areas of applicability arose: one of these
is of course more or less described by the key words: Korteweg-
de Vries equations, solitons, finite gap ope rators, Yang-Mills
fields, instantons, and a selection of references is [AHS, AHDM,
pMi, DM2,DMN, BLS, GD, Kri, MT, Ve]; the other one concerns the uses of
algebraic geometric ideas (especially) and results (to a lesser
extent) in control and system theory, which is my subject today.

The word algebraic geonietry in the title must be understood
in a fairly wide sense. For one thing some of the applications
below rest on the underlying ring theory or commutative algebra
rather than on algebraic geometry itself; for another many of the
results have their topological analogues and use differential
topology rather than algebraic geometry. It is true though that
for most of the results below the original inspiration came from
algebraic geometry, even if the final, and for the moment most
important version (over the reals) bears few or no traces of that
fact.

The word partial in the title also reflects that I shall deal
only with (families of) linear systems, and that I shall not touch

upon various algebraic, geometric and topological ideas which
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already play, or are very likely to play an important role in
especially nonlinear system theory like Lie algebras of vector-
fields, connections, foliations and (analytic) stratifications.
Aselection of references dealing also yith such aspects of system
and control theory is [Brol, Bro2, Bro3, Bru, Her4, Her5, El11l, HH,
Hir, HKr, HM6, Kre, Lo, LoW, Js, MB, MMO, MW, SJ, So4, Sul, Su2, Wij.
Finally let me mention the recent survey paper [ BFl the paper
[Haz3], the recent collection [MH] , and the reasonably soon to be
expected proceedings of the NATO-AMS Advanced Study Inst. and
Summer Sem. on algebraic and geometric methods in linear system
theory (Harvard Univ.,June 1979) as good sources for similar
material, discussed in a variety of ways and styles, for those whose
appetite was awakened by the present paper and for those who could
not get through it, but still feel they cannot afford to neglect
the subject entirely.



1. INTRODUCTION

The basic object under consideration in this lecture is a linear

dynamical system Z. This is a set of linear differential or difference
equations

x(t) = Fx(t) + Gu(t) x(t+1) = Fx(t) + Gu(t)
(1.1) y(t) = Hx(t) y(t) = Hx(t)

(continuous time) (discrete time)

where the F, G and H are time independent matrices with coefficients in
some appropriate field k, and where x(t) € k" = state space,
u(t) € K = input space or control space, and y(t) € kP = output space.
We speak of a system of dimension n with m inputs and p outputs.
Occasionally one adds a direct feedthrough termto y(t), so that then
y(t) = Hx(t) + Ju(t) in (1.1) instead of y(t) = Hx(t). For the mathematical
problems discussed below the presence or absence of the term Ju(t) makes
little difference. Thus a system (whether discrete or continuous time)
is specified by giving three matrices F, G, H, and possibly a fourth one
J, of dimensions nxn, nxm, pxn, and p X m.
One common interpretation of the set of equations (1.1) is in terms
of some device which accepts input functions u(t) = (u1(t), cees um(t))

and produces output functions y(t)= (y1(t), cees yp(t)).

(1.2) u (e | L v, (%)

: x(t)
um(t) —>—1 —— yp(t)

Assuming that we start the device at time zero in state x(0) = 0 the

corresponding input/output map L. of £ is

t
(1.3) £o:ult) k> y(t) = i HeF(t_T)Gu(T)dr (continuous time)
' 0
¢ i1
(1.4) foo:ou(t) — y(t) = £ Ault-i), A, =HF G, i =1, 2, ...
z s=1 1

(discrete time)

In both cases fZ is completely determined by the matrices Ass sometimes
called the Markov parameters of the system.
Taking the Laplace transform in the continuous time case, and the

z-transform in the discrete time case, one finds the input/output relations



(1.5) v(s) = T(s)U(s), T(s) = H(sI - F)7 G

where T(s) is called the transfer function (matrix).
Two systems % = (F, G, H), L' = (F', G', H') over k are said to be
isomorphic if there is an invertible matrix S € GLn(k) such that

I =30 = (s.Fs‘1

, SG, HS_1). This notion of isomorphism corresponds to

a base change x' = Sx in state space. It also fits in well with the
input/output point of view in that the input/output maps of z and ZS are

the same for all S € GLn(k). The converse is not always true but holds generi-
cally, cf. section 3 below.

In principle thus a linear dynamical system seems a very simple object
indeed (if taken one at a time) of which it is hard to believe that any
sophisticated mathematics will be needed to deal with it. To a large
extend this appears to be true. The fun starts when instead of considering
single systems (1.1) one considers families of them; that is one considers
e.g. real continuous time systems there now the matrices F, G, and H are
allowed to vary continuously or polynomially on some extra parameters

o= (0-1,

Pees Ty

It is when studying families of systems and when trying to extend to
families various useful known simple system constructions and results
that we shall employ fairly sophisticated algebraic geometric ideas and
results like fine moduli spaces, vector bundles, the Quillen-Suslin
theorem, the quadratic Serre problem, Stein spaces, intersection numbers
and 1-st Cherm numbers.

One way to look at this study of families is to regard it as a systematic
investigation to see which of the standard constructions in control and
system theory are continuous in the system parameters. Viewed in this
way the study of families (rather than single systems) is obviously
relevant in an uncertain world full of (small) measurement errors.

As 1t happens there are - in this author's opinion - many more
compelling reasons for studying families rather than single systems.
Section 2 below is devoted to this. Section 3 discusses moduli (and
some of their uses) and section 4-10 treat of various standard system
theoretic notions like feedback, realizations, model matching, pole
assignment, completely reachable subsystems, .... In each case I shall
try to describe briefly the system/control theoretic idea, the single
system solution or construction {(in so far as this has not already been
done in the basic system thecry section 3) and then discuss the family-

wise versions of these (if available).



Thus our central object is a family of linear dynamical systems I,
that is a system valued function, which we shall regard from different
viewpoints proceeding along a contour around it. By the time we are
finished, adapting a method of Henri Petard [Pe] in big game hunting,

we shall presumably know all about the residue in the middle.
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©. Assorted reasons for studying families rather than single systems

2.1. Families of systems (definition).

Intuitively a family of systems is a set of equations (1.1) where
the matrices F,G,H depend in some way on a set of parameters o. For
various reasons this definition is not quite general enough, notably
if one wants to discuss and use universal families of systems (and this
is not the only reason for considering somewhat more general families).

A better definition ( in the topological case ) is:

A family of real or complex systems X over a topological space V

consists of an n-dimensional real or complex vector bundle E over V,

a vector bundle endomorphism F: E - E and two vector bundle homomorphism

G: Vxk© > E, H: E » Vxk®? where x = R or C. Taking n independent sections

of E in a small neighbourhood V' of v € V and writing out the matrices of
F,G,H with respect %o the obvious bases in {v'}ka, {v' kP and the basis of
E(v') defined by the n sections for all v' € V' we see that locally X is
given by a continuous map into Lm,n,p(k) the space of all triples of matrices
over k of sizes nxn, nxm and pxn- So locally £ is just like the intuitive
notiam & a family, but globally it need not be. The family ¥ is differentiable
(resp. analytic) if all the ingredients which go into its definition, i.e.
V,E,F,G,H are differentiable (resp. analytic).

Similarly an algebraic geometric family of systems Z over a scheme V
consists of an algebraic vector bundle E - V and morphisms of algebraic
vector bundles F: E -+~ E, G: VxAm + E, H: E » VxAp, where Ai is affine
i-space. Locally ghis corresponds to a morphism of schemes V - Lm,n,p
whereL m.n,p ~ A" +nmfpn in the obvious way. For every point of V with
residue field k(v) there is an associated system over k(v), viz.F(v):E & k(v) »
E 8 k(v), G(v): k(v)™ + E 8 k(v), H(v): E ® k(v) » k(v).

Two families £ = (E,F,G,H) and £' = (E',F',G',H') are said to be
isomorphic if there is an isomorphism of vector bundles ¢: E - E' such that
¢F = F'¢, ¢G = G', H'¢ = H.

2.2 Systems over rings.

The difference discrete time equations (1.1) also make perfect sense
if the matrices F,G,H are assumed to have their coefficients in a commutative

ring R and x(t) € B, y(t) € B®, u(t) € R™. In fact the linear machine



(2.2.1) x(t+1) = Fx(t) + Gu(t), y(t) = 1x(t)

sti1ll makes perfect sense in the more general setting that we have three
R ~modules: U = input module, X = state module, Y = output module, and
three R~ module homomorphisms G: U - X, F: X >~ X, H: X > Y,

Note that the input/output operator of the linear machine, cf. (1.4),
is a convolution operator so that the theory of linear discrete time systems
also has things to say about e.g. convolutional codes. There are more reasons
for studying systems over rings, some of which will be touched on below:
cf. also [So 1], [Kam 2].

Assuming that the input module U and the output module Y are free and
that the state module X is projective there is an obvious way of associating
a family of systems over Spec (R) in the sense of 2.1 above to the data
U,X,Y,F,G,H. Indeed let E be the vector bundle associated to the projective
module ¥ and let i,é,ﬁ be the bundle morphisms defined by F,G,H. Then
(E,%,é,ﬁ) is an algebraic geometric family in the sense of 2.1 above.

For each prime ideal‘? of R let kF?) be the quotient field of R/?

Then the system over the point p defined by this family is simply given by the
triple of matrices F%T) =F ® k(p), G(p) =G 8 ka), H(p) = H 8 k(p).

2.3.Delay-differential systems.

Consider a real delay differential system, e.g.

(2.3.1) k1(t) = x1(t—a1) + 2x2(t) + xe(t—ag) + u(t)
kg(t) = xl(t) + 2x2(t—a1) + u(t-az)
y(t) = 2x1(t—a2) + x2(t)

where a, and a, are two incommensurable positive real numbers. Introducing

the delay operators o.a(t) = u(t—a1), o

1 alt) = a(t—ae) we can rewrite (2.3.1)

2
formally as

(2.3.2) %(t) = Fx(t) + Gu(t) , Hy(t) = Hx(t)

with the matrices F,G and H given by

o1 2+02‘ 1
(2.3.3) F = ) , G = , H= (202 1)
2

and in turn this triple of matrices can be viewed as a triple of matrices with
coefficients in the ring R [01,02] that 1s as a system over the ring
R [01,02] or equivalently as a family of systems parametrized by the parameters

o= (01,02). Thus the infinite dimensional system (2.3.1) gets turned into a



family of finite dimensional systems. That this is not a completely formal
exercise is shown by a nice paper of Kamen [Ka 1 ] in which he relates the
spectral theory of (2.3.1) to the commutative algebra which goes into the
study of (2.3.3).

One thing which is suggested by this point of view is that two delay-
systems X,X' like (2.3.1) be considered isomorphic if there is an invertible
matrix S € Gl CR[01,02]) which takes ¥ into IZ' ; i.e. they are isomorphic
if one can be obtained from the other by means of an invertible transformation
x' = Sx where S may involve delays. This turns out to be precisely the right
notion isomorphism in connection with degeneracy phenomena for delay-
differential equations, cf. [Kapl. Similarly the system-over-rings-as-family.
of-systems point of view also seem to suggest useful notions of e.g. complete

reachability, cf. below in section 10.

2.4, (Singular) perturbation, deformation, approximation.

These reasons for studying families depending on a small parameters
rather than onl§hgbjects themselves are almost as old as mathematics itself.
Certainly (singular) perturbations are familiar topic in the theory of
boundary values of differential equations. And in the control world O'Malley,[0Ma],
for instance discusses a singularly perturbed regulator problem which consists

of the following data

(2.4.1) X, = A11(€) X, + A12(e) X, + B1(e) u x1(0,e) = X?(e)

ek, = A21(e) x, + A () x (0,e) = Xg(e)

o ¥ Ay + Byle) u X

2 2

T A T
J(e) = x,(1he) nle) x,(1he) + JL0x,(rae)” Qle) %, (1he) + ulrse)
R(e) ultse) dr
Where the matrix R(e) is positive definite and where the matrices

Q(e) and m(e) are positive semi definite. Here it is desired to find that
control which drives the initial state (x?(e), xg(e)) t0{0,0) in time 1 and
which minimizes the cost J(e). All matrices may depend on time as well. For
fixed small ¢ there is a unique optimal solution. Here one is interested
however in the asymptotic solution as € + 0, which is, still quoting [OMal

a problem of considerable practical interest, in particular in view of an
example of Hadlock et al. [HJK] where the asymptotic results are far superior
to the physically unacceptable results obtained by setting € = 0 directly

in (2.3.1).

Another interesting perturbation type problem arises maybe when we have
a system



(2.h.2) x = Fx + G]u + (};)w, Y = Hx

where w is some undesirable noise input, and where F,G1,G2,H depend on a
small parameter e. It is desired to try to remove the influence of the

noise input w by means of state feedback

_—.+
u(t)

A 4

L

That is one tries to find a matrix L such that in the new system with state

feedback loop L, which is given by the equations

(2.4.3) x=(F + GL) x + G1u + Gw , ¥ = Hx

The disturbances do not show up any more in the output Y. Suppose we can
solve this for ¢ = 0. Can we then find a disturbance decoupler L(e)

by perturbation methods, i.e. as a power series in e which converges
(uniformly) for e small enough and of which the various terms can be

calculated by successive approximation?

2.5. There are still more reasons for being interested in families rather
then single systems. E.g. 2-d and n-d systems which we shall meet briefly

in section 6.3 below; parameter uncertainty, where one tries to

perform certain constructions to attain certain desirable properties for
systems some of whose parameters are uncertain or for systems which have
parameters which may vary somewhat; cf. also 7T below; identification
problems; and, not least, time varying systems which can on occasion be
fruitfully viewed as triples of matrices depending on a parameter t, cf. also

11.2 below.



3. A LITTLE BASIC SYSTEM THEORY.

In this section we describe briefly as background material and for
later use a few of the more elementary concepts and results pertaining

to a single system over a field k.

3.1. Complete reachability and complete observability. Let k be a field

and £ = (F,G,H) a linear dynamical system over k. The triple (F,G,H) can
be interpreted either as a continuous time system (given by differential
equations) or as a discrete time system (given by difference equations),

c¢f. (1.1). Given I one defines the reachability matrix

!

(3.1.1) R(Z) = R(F,G) = (G | FG; ... | FG)

as the n x (n+l)m matrix consisting of the n x 1 blocks

G, FG, ..., F'G. Dually one defines the observability matrix
H
HF

(3.1.2) Q(Z) = Q(F,H) =] :
HF

n

as the (n+l)p x n matrix consisting of the n + 1 blocks H, HF, ..., HF".
The system L is said to be completely reachable, abbreviated cr,
if R(I) has its maximal rank n and the system is said to be completely
observable, abbreviated co, if Q(I) has its maximal rank n.
These notions have the following interpretation in terms of the sets of
equations (1.1). The system is cr if for every x € kn, there is an
input function u(t) such that starting in x(0) = 0 at time zero the solution
of the first equation using this control u(t) passes through x. The
system is co if for every two states x, x' and input function u(t), the
two output functions y(t), y'(t) resulting from starting in x, x' at time
zero and using this input function are equal if and only if x = x'.
Finally one associates to I its Hankel matrix H(Z) which is defined

as the infinite block Hankel matrix

A A A
1 2 3"

A, A A ...

(3.1.3) HE) = Ay fa ?5 ...
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1

built from the p x m blocks Ai = HF'” G, i =1,2, ... . Note that H(I)

depends only on the isomorphism class of I, as 1{(25) =32(SFS“1,SG,S~1H) -
=H(F,G,H) = H(Z)). We note that

H
)
H 2

() = 2) (GIFGi{ F'G ...)

F

see I

I
|
/

;

!

so that rank H{(T) < n for a system of dimension n and rank HE) = n for
a system Z of dimension n iff I is both er and co (using the Cayley

Hamilton theorem).

3.2. Realization theory.

Let I €L (k) be a system over k. Then as we have seen,
m,n,p

cf (1.3), (1.4), T determines an input/output map f. which is completely

z
determined by the infinite sequence of matrices

3.2.1) oD = (A (D),4,E), ..., A (D) = i, i=1,2, ...

Inversely let there be given an input/output map f i.e. a sequence

Z’
of p x m matrices

(3.2.2) A = (Al,Ay,Ay,.00)
We say that I realizes A if 7)4(2) =s. An obvious necessary condition

for # to be realizable by a finite dimensional system I is that the

rank of the Hankel matrix of 4

-

be finite. (In view of the remarks made just above in 3.1). It turns out

3
4

Hed) =

R

A A
A A4...
A A

that this condition is also sufficient. Moreover ifod is realizable

then it is realizable by means of a system which is both cr and co and

any two realizations of A which are both cr and co are isomorphic.
Note that the condition Ai = HFidG,i =1,2,3,... is completely

equivalent to (power series development around s = ©)



o
|
}

1

<)

(3.2.3) LA = H(sI-F) " 'c

i=1
Thus we also say that L = (F,G,H) realizes the proper rational matrix

function T(s) if
(3.2.4) T(s) = H(sI-F) 'g

(It is of course a quite well known and old result that the power
(o]

. -i . . . . cp s .
series L a.s is a rational function if and only if its associated
i=1

Hankel matrix has finite rank).

The rank of the Hankel matrix of # is called the MacMillan degree

ofd4. If T(s) is a proper matrix valued rational function than the
MacMillan degree of T(s) is that of the sequence‘4 determined by

(development around s = ©)
(3.2.5) T(s) = I As "
i=1

By the above the Mac Millan degree of T(s) is the dimension of any

co and cr system which realizes T(s).

3.3. Invariants and isomorphisms. As has already been noted above in 3.2

two systems L, L' € Lm n p(k) which are both cr and co are isomorphic

iff they have the same’i;put/output functions, i.e. if and only if

Tz(s) = TZ'(S) or equivalently if and omly if Ai(Z) = Ai(Z'), i=1,2,3,...
An invariant (for GLn(k) acting gn Lm,n,p(k)) is a function

a: Lm,n,p(k) -+ k such that a(Z) = a(£") for all S € GLn(k), T € Lm,n,p(k)'

The entries of the matrices Ai(Z) are obviously invariants (as functions of

L). And under suitable continuity restrictions they are the only invariants.

Thus if k =R or £ the only continuous invariants are the entries of the

Ai(Z) and if k is algebraically closed the only Zariski continuous invariants

Lm n p(k) - k are again the entries of the Ai(Z), which are of course
b L]

. 1

rphisms L -+ .
morp m,yn,p &

3.4, Feedback. Given a system § = (F,G,H) the introduction of a state

feedback loop L changes the system to (L) = (F+GL,G,H). In terms of

block diagrams this is often depicted as follows



Y
4

u(t) e ’ y(t)

Quite often, in design problems e.g.,one has obtained a system I of which
some characteristics are not yet as desired, and for which one still has
the option of introducing (extra) feedback loops. Mathematically the
problem thus is to what extent the transformation I+ I(L) can

change the characteristics (invariants) of I.

One also considers on occasion output feedback for which the block

diagram is

Y

A\ 4

u(t) y(t)

~

which changes Z = (F,G,H) to (F+GLH,G,H). And more generally one

considers dynamic output feedback, where the output y(t) is processed

through another linear system Z' and then fed back into I. The block

diagram is of course

u(t)> ?i [
S
;L_ AR

A 4

i
1
T
] y(t)
:
;
|
1

If the transfer function of T is T(s) and that of L' is T'(s), then the

transfer function of the total system is

T(s)

(3.4.1) —_—
1-T(s)T"'(s)

4. FINE MODULI SPACES, UNIVERSAL FAMILIES AND CANONICAL FORMS.

4.1. The quotient scheme M2 €T et k be any field, then GLn(k) acts
’ b
on L;rn p(k) the set of all linear dynamical systems I = (F,G,H) of
b b

dimension n with m inputs and p outputs. Let M;rn p(k) be the set of
2 H

orbits. We note that the stabilizer subgroup of each L€ chrn p(k) is

bR ]

trivial (Because R(ZS) = SR(Z) and R(Z) has full rank), which goes some

way towards suggesting the following theorem.
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4.1.1. Theorem. There exists a scheme MCr over Z such that for each
- 5 ]

field k the k-rational points of Mot . are precisely the orbits of

b ’
GLn(k) acting on L;r (k). There is an open subscheme MCT 2¢O

s Iy m,n,
to the orbits of cr and co systems.

corresponding

. . +
Locally M;rn . is isomorphic to affine space ATTTPD
b 9

pieces are glued together is very reminiscent of Grassmann varieties.

and the way these

For details cf.

[Haz 2] for the topological version, [Haz 31 and also [BH1 for the caca

of varieties over a field, and [Haz 6] for the fact that M°T is defined

and does the job over Z . 7

4.2, Universal families. There are a number of universal families of

systems. Let us start with a topological one

u u .u

4.2.1. Theorem. There exist a family (E",F",G ,H ) of real cr systems over

the smooth differentiable manifold Mcfn,pGR) such that the following
universality property hold. For each continuous family I of real cr
systems over a topological space V there is a unique continuous map
¢Z such that Z is isomorphic to the pullback

_ wu L lou tu Ty
95 ¥ = (0;E", 055", 006" 0HY) .

There are corresponding statement for differentiable and real analytic
families over differentiable and real analytic varieties. (M;rn pGR) is
b 5
real analytic). There is also an analogous theorem for complex systems.

On the algebraic geometric side of things we have

4.2.2. Theorem. There exist an algebraic family I" of cr systems over the

scheme M;rn . such that for every algebraic family I of cr systems over

> cr

a scheme V there is a unique morphism of schemes ¢Z : V> M such
A

b 2

that § is isomorphic over V to the pullback familydkfz

Here a family I = (E,F,G,H) over a scheme V is said to be cr if
for every v€ V the system over v, i.e. the system (E & k(v), F ® k(v),
G 8 k(v), HR k(v)) over the residue field k(v), is cr.
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4.3. The Kronecker nice selection. Most will agree that the Jordan canonical

form is a useful gadget when dealing with matrices. What ik does is select
one particular element of each orbit of GLnGC) acting on MnGC),the space
of all n x n matrices,by similarity, i.e. as (S,A)~ SAS—]. Similarly

it would be nice to have a canonical form for GLn(k) acting on Lm’ ’p(k),

co,cr(

or at least L k). For one thing they can be useful when trying to

n
identify a sys;e; from its input/output data, because the input/output
data only specify an orbit, (not the system itself, so that there are a
number of redundant parameters to get rid off before trying to estimate
the remaining ones, cf. also[ GW]. One particular canonical form proceeds

via what is called the Kronecker nice selection, which we now describe.

It will also be useful in 10.3below when studying feedback.

Let Z = (F,G,H) be a cr system over a field k. Consider an array
of n x (n+t1)m dots. For each (1,j), i =0, ..., n; j =1, ..., m in
this array put a cross at this spot if and only if the column vector Figj,
where gj is the j-th column of G, is linearly independant of the vectors
Fagb, with (a,b) < (i,j) where the order is the lexicographic one
(i.e. (a,b) < (i,j) = a < i or (a =1 and b < j)). This yields a pattern
of n crosses (because rank R(Z) is n). For example the result for n = 6,

m = 4 might be

(4.3.1) x -

X X X ¢ .

XX o o

Note that the pattern above has the property that whenever a x appears
in a row than all positions in this row left of this x are also occupied
by x's. This is no accident (and it is this property that the word nice
in the title of this subsection refers to). It follows that the pattern
obtained is uniquely described by the m-numbers ¥(I) = (EI(Z), cons Em(Z))
of x's in each row. This sequence of m numbers ¥(I), or more precisely
the corresponding pattern of crosses, is what I call the Kronecker nice
selection.

Note that ?(ZS) = (%) for all S € GLn(k) so that these numbers are

discrete invariants.
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4.4. Canonical forms. The Kronecker selection K(Z) defined above now

can be used to define a canomnical form on L;fn’p(k). We label the

columns of R(£) = R(F,G) = (G! FG! ... ! F'G) by the spots in the

array of 4.3 above, i.e. by the pairs (i,j), i =0, ..., n; j =1, ..., m.
For each subset o of this set of pairs let R(Z)a be the matrix obtained
from R(F,G) by removing all columns whose index is not in o. Note that

for all S € GLn(k),
4h.4.1) r(zS) = SR(Z),

It follows that each orbit of GLn(k) in L;rn p(k) contains precisely
2

bl
one element I such that R(Z)K(Z) = In. This defines a canonical form

cr cr S -1
4.4.2 c :L k) ~ L k), +w» I, where S = (R(Z

( ) K m’n’p( ) m,n,p( )5 > (R( )K(Z))
This is but one example of a large number of canonical forms in use in
system and control theory, and one may ask whether this construction
is continuous. The Jordan canonical form for matrices e.g. is discontinuous
which severely limits its usefulness for instance in numerical matters,[GWil.

Similarly it would be nice to have a continuous canonical form for

systems for identification and numerical purposes. However,

. . . cr,co

4.4.3. Theorem. There exists a continuous canonical form c: Lm ; PGR)~—*?
9 b

co,cr

m,n,p

L R) if and only if p =1 or m = 1.

Thete is a similar statement concerning canonical forms which are

morphisms on the algebraic varieties L2 %9%k), k an algebraically closed
b 5
field. For details and more theorems like this, cf. [Haz2, Haz3]. The

reason behind this theorem is the following. As is easily seen,a continuous

canonical form exists on all of LCO’C;GR) if and only if the universal

. co,cr 2R L. ..

bundle E" restricted to Lm ; pGR) is trivial. It turns out that this 1is
b b

the case if and only if m = letp = 1.
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4.5. Pointwise-local isomorphism problems. It is an immediate consequence

of the fine moduli space theorems 4.2.1, 4.2.2 that if two families I and

Z' of cr systems over V are pointwise isomorphic then they are isomorphic
as families over V. A similar statement holds for families which are co
everywhere; in fact the whole body of definitions and statements has a
co (i.e. output) counterpart.

In general, however, such a statement is definitely false just as
in the case of matrices depending holomorphi”cally on a parameter with

respect to similarity, [Wa ]. In analogy with the positive results one

has in that case

4.5.1. Theorem. Let £, L' be a two families of dynamical systems over V.
Suppose that Z(v) and I'(v) are isomorphic for all v € V. Suppose moreover
that the stabilizer subgroup of Z(v) has constant dimension as a function

of v in some neighbourhood of v € V. Then there exists an open neighbourhood
U of v, such that ¥ and L' are isomorphic as families over U.

The theorem holds both for continuous real families over a topological space
and for algebraic families over schemes, so in particular for systems over

rings. Cf. [HP] for details of the proofs and various examples.



5. REALIZATION WITH PARAMETERS AND VARIATIONS

5.1. Pointwise realization theory. As was remarked in section
3 a strictly proper rational matrix function T(s) with coefficients in a field

kK, or equivalently, a sequence of matrices 4= (A],A?,...) with finite rank
Hankel matrix can be realized by mefns of a finite dimensional system. I.e.

we can find a £ = (F,G,H) over k such that

(5.1.1) T(s) = H(sI - F) g, A= HF'G, i=0,1, ...

and it is even possible to find a realization which is co and cr.
A more or less standard way of prov1ng the first statement is as
follows. The hypothesis that the/Hankel matrix

1 2 3

A, A, A, ...
H=1[A, 25 A, ...

is finite means that there is an r and that there are matrices
'rl,...,TP such that the (r+l)-th column of H is equal to
Tr(l—st column) + Tr_1(2—nd column) + ... Tl(r—th column), which

means that

(5.1.2) A

i
3
>
+
=3

+ ... + T A . i=1,2,...

r+i ri r—lAi+1 1" r+i-1"

Now let

O H O

|

(5.1.3) . = F, !
: |

|

C
-3

0O ... 0TI Tl/ \O/

1 — i 1 = ~ ~ " —
Then Ai+1~ HF™G for all 1i=0,1,... because (Ai""’Ai+rw1)r =

(A1+1""’Ai+r) by (5.1.2). Thus the system I defined by (5.1.2)

realizes o4 . One then proceeds to find the canonical c¢r subsystem

2T of the system just constructed, and then constructs the

cr

canonical co quo tient system of the I just constructed to find

a cr and co system which (also) realizes A , ¢cf. 6.2 and 11.1 below.
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5.2. Realization with parameters ([By4] ). It is not at all

clear, however, that the realization construction of 5.1 above

is continuous in the parameters ofa‘ ( or in the parameters of

T(s)). Also one usually prefers a realization of minimal dimension,

i.e. a co and cr realization, and it is also not clear that the

construction which associates to a system § its cr and co

subquotient with the same input/output map is continuous. This

question is in fact the topic of section 11 below, cf. also 6.2.
Let o4 (a) be a family of sequences of matrices depending

on a parameter with uniformly bounded MacMillan degree, or,

equivalently, let

oo}

(5.2.1) T (s) = 1.—2.1 Ai(a)s“i

be a family of rational proper transfer functions (with the same
boundedness property). Then an obvious necessary condition for

the existence of a family I (a) in the sense of 2.1, which is co
and cr everywhere, such that I (a) realizes A(a) (or, equivalently
Ta(s)) for all a is that the MacMillan degree of of (a) (cf. 3.2
above) be constant as a function of a.This is also sufficient.

——— —— - —

family of sequences of matrices of constant MacMillan degree, Then
there exists an algebraic (resp.) continuous) family of systems
I (a) realizing J(a).

Indeed, one shows without too much difficulty 1) that T~ AC)
co,cr
m,n,p
of MacMillan degree n. Thus the family A (a) defines a morphism
R co,cr

induces an isomorphism of M with the space of all sequences
and the pullback of the universal family by means of
this morphism is the desired family.

This does not mean that we can always find a family of co
and cr matrix triples (F(a),G(a),H(a)) realizing A(a). Indeed
this will be possible if and only if the pullback of the underlying
bundle E* of the universal family of systems by means of the
morphism defined by the family HA(a) is trivial., Yet precisely such
a family of matrix triples is what is desired on occasion; in
particular when d‘(a) is a family of matrix sequences coming from
a sequence d‘ = (Al’Aa"“) of matrices with coefficients in a
ring R.

1) (Using the Zariski main theorem as in [By 4], or by constructing local inverses
[Raz 3]).
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5.2.3.Corollary. Let R be a ring such that all projective
modules of rank n are free. Let A = (Al’Az"") be a sequence
of matrices with coefficients in R, such that the MacMillan
degree of 04($:) = (Al(?),Ag(? ),...) over the goutient field
k(P ) of R/r is equal to n for all prime ideals P . Then there
exists a triple of matrices (F,G,H) over R,i.e. a system over R,
which realizes d‘ (i.e. such that Aiu= HFiG,i=0,1,...) and which
is such that (F('¢),G(Pp),H(P)) is co and cr for all P .(I.e. we

have a split realization in the terminology of [So 3]).

By the Quillen-Suslin theorem the condition on R is in
particular fulfilled for rings of polynomials over a field, which
is e.g. the case of interest when discussing realization by means

of delay-differential systems.

5.3. Realization by means of delay-differential systems. Let

5( g) = (F(g ),G( g),lI( g)) be a delay-differential system with

r incommensurable delays. Here o = (o l,...,o'r) and o3 stands
for the delay operator oiz(t) = z(t-ai), so that we have written

Z( ) as a system over the ring of polynomials k [gl,..., %J'
The transfer function of ¢ ( ¢g) is

-a, s ~-a -a,s -a a.s -a._8s
1 1 r

S s -
T(s) = H(e yee. e T )(sI - F(e s eeese T )N)G(e 1 cee,€

b

which can be seen as a rational function in s whose coefficients

—als —qrﬁ
are polynomiald over Kk 1In e y e e es€ .

Now inversely suppose that we have a transfer function T(s)
which can be written as a rational function in s with coefficients
which are polynomials in the exponential functions exp(—als),...,
exp(-ars), and we ask whether it can be realized by means of a
delay-differential system I( o). Now if the a; are incommensurable
then the functions s, exp(-als),...,exp(—ars) are algebraically
independant, and there is precisely one transfer function T'(s) =
T'(S;O’l,..., Or) whose coefficients are polynomials in the

Oyreees O such that T(s) =T'(s;exp(—als,...,exp(—ars)). Thus the
problem is mathematically identical with the one just discussed
above in 5.2, and by corollary 5.2.3 and the Quillen-Suslin theorem
we get a positive answer in the case that the MacMillan degree of

T (s 01,..., Or) is constant for all complex values of the parameters
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5.4. Network synthesis. An n-port is an electronic gadget

with n pairs of terminals (over which voltages and currents can be
measured). An n-port which is constructed on a finite graph
consisting only of lumped resistors, inductors, capacitators,
ideal transformers and gyrators can be described by an n xn
scattering matrix S(p) which essentially, after a normalization
relates the voltages and the currents across the n ports. The
matrix S(p) 1is rational and it is symmetric if no gyrators are
present. When discussing the inverse problem of how to realize
an S(p) by means of a network (i.e. the network synthesis problem,
which has been solved) one hits the following symmetric version of
the system realization problem discussed above.

Given a symmetric,rational, proper nxn matrix W(s) (the matrix
W(s) is related to the scattering matrix S(p) by a simple fractional
substitution), find an internally symmetric realization, where the
last phrase means that we want to find a triple (F,G,H) of matrices

of sizes rxXxr, rxn, n xr such that

(5.4.1) W(s) = H(sI-F)~ ¢, I F = CFI L

) I ¢l
p,q P,q’ P,q

9!
1l
jen)

where the upper t denotes transposes, and where Ip,q’ p+q = o,
is the standard symmetric form of signature p-q (consisting of
p +1's and g -1's on the diagonal and zero's elsewhere). Note that
r and p-q are given by W(s) as the MacMillan degree of W(s) and
the signature of the Hankel matrix of W(s).

In [YT] wYoula and Tissi show that internally gmmetric realizations
of minimal degree always exist (op. cit. lemma 8) and that any two
of them are transformed into one another by an element of 0(p,q) c
GL (R ).

The situation is now entirely analogous to the one for linear
dynamical system (realization) theory discussed above, and one can
ask about fine moduli spaces, etc. In particular one can ask about

the existence of continuous symmetric canonical forms. It turns
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out that these exist only in the cases where they have long heen
known to exist [ BD]. (The Foster and Cauer canonical forms for RL
and RC ncetworks). Again the problem is ruled by a certain universal
bundle, which again is nontrivial as soon as it has a decent chance
to be so. (There seems to be a kind of Murphy's law also in this
highly theoretical branch of electrical engeneering).

Another question which it is now natural to ask is whether
there exist polynomial families of internally symmetric realizatior
for polynomial families of symmetric matrices W(s). Especially in
connection with delay networks, i.e. networks with transmission
lines, [An, Ko , RMY, Yol . llere instead of the old Serre problem, <
hits the quadratic analogue which asks whether any quadratic space
over k| Tinenns Or] is induced from one over k,[Bal. Here the
general answer is negative ( [Pal, k=R, r=2), but the answer is yc:
if r=1 ([Hat),il k is algebraically closed ([Ral) and if the

gquadratic space is not definite ([0j]).
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6. REALTZATION OVER RINGS (2)

Let o = (Al’AZ"") be a sequence of p Xm matrices over a
ring R. Suppose we want to realize A over R, i.e. we want to find
matrices (F,G,H) with coefficients in R such that Ay = HFialG,
i=1,2,... . One way to tackle this was discussed above and consists
of treating o as a family over Spec(R) and using the fine moduli
space of co and cr systems and the Quillen Suslin theorem ([Sus, Qul).
The hypotheseés to make this work, however, are rather strong: viz.
the MacMillan degree of1ﬂv(? ) must be constant as a function of‘r ,
and R must be projective free in the appropriate dimensions.
Another way to get realizations of A goes as follows. Assume
for simplicity that R 1s an integral domain; i1f R is not an integral
domain but is reduced, then these ldeas generalize rather easily.
Let K Dbe the quotient field of R. Then A is realizable over K
if and only if the rank of the Hankel matrix of A , viewed as a
matrix over K 1is finite. Let dh4 ) denote this number. Thus we a
are left with the protlem: which integral domains are such that if
a sequence of matrices over R is realizable over K, then it is
also realizable over R ( possibly using higher dimensional matricesz).
This method is not particularly thrifty in terms of the dimension
of the realization obtained, but has the advantage of requiring far

weaker hypotheses as we shall see,.

6.1. The Fatou property. An integral domain R is said to be

Fatou if for every rational function p(s)/q(s), where p(s) and
q(s) are polynomials with coefficients in the quotient field K of
R, such that its expansion p(s)/q(s) = I ais"i has all its
coefficients in R, there exist polynomials p'(s), q'(s) over R
such that q'(s) has leading coefficient equal to 1 and such that
p'(s)/q'(s) = L ais_i.

Fatou proved in 1906 that the ring of integers Z has this
property, w“nence tinne name. The Fatou property is actually equivalent
to the realization property: if 04 over R is realizable over K

then it is realizable over R.
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For the one input/one output case this is immediate bhecause
firstly the polynomial part of T(s) = I ais—i causes no difficulty
at all, showing that the realization property for tnhe one input/ one
output case implies the Fatou property. Secondly, a power series

T a,s_i is the expansion of a rational function p'(s)/q'(s) with
the ieading coefficient of q'(s) equal to one iff ai,p = trai + ..
tlai+r-1 for all i=1,2,... ,(where the tj are the coefficients
of q'(s)), and then the realization procedureof 5.1 above gives the
desired realization., In the more input/ more output casc one simply
observes that T(s) consists of rational functions as entries,
Realizing each of these we find in thecase of threc inputs and two
oulputs the 6 realizations (Fij’Gij;Hij)’ i=1,2;3=1,2,3, of

T ar(i,j)s—r , where a_(1,3) is the (i,j)-th coefficient of A

and T(s) = I Ars”r. Now put all thesc together in the following
way
Fll 0 0 0 0 0 \ Gll 0 0
o F, O 0 0 O ) 0 G,, O
0 O F 0 0 0 0 0 G
F o= 13 | G = 13
0 9) 0 F21 0 0 G21 O
: 0 0 0 0 F22 0 ‘ 0 G?,(2 0
\ 0 0 0 0 0 F233 \ 0 @] G23
g H11 le H13 0 0 0
0 0 0 H21 H22 H23
Then Ar = HFP'lG for all r, and of course this trick works in
gencral,

6.1.1. Theorem. ([RWK]). Every noetherian integral domain is

Fatou.

Proof ([Soll). Let A be a sequence of pxm matrices over R
which is realizable over K. The first step now consists of the
following elegant realization procedure by means of a not necessaril
free state module ([Rou, F11, Fl2]).Write down the Hankel matrix H

ofe4 , and let X De the R module pencrated by the columns of A .

Now define G':R™ —-> X by G'(a,,...,a_) = a.b.+ ... + a b _, whenrt
1 m 1 m'm

1
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where the bi are the columns of H ; define F':X » X by F'(bj) =
bj+m’ and let H'(bj) be the column vector consisting of the first
p entries of bj.(Note that F 1is well defined because by the
structure of the Hankel matrix any linear relation clbil+ ...+crbiln
= 0 implies clbil+m + ee. + Crbir+m = 0.)

The second sten consists in showing that the module X is

finitely generated. Let Vl""’vn be n columns of # which form

a basis for X QR K over K. Then every column of H can be written
as a sum I d d v, i where di€.R and where d €R 1is the determinant

of a full rank n xn submatrix of the matrix formed by the K
Let X' Dbe the R module generated by the vectors d—lvi,i=l,...,n.

Then X 1s a submodule of the finitely generated module X' and so
is finitely generated because R i1s noetherian.

Finally let R"—— X (different n in general) be any
surjective module homomorphism. Then because R® is free there are

homomorphisms F,G,H such that the following diagram is commutative,

n F
m
R G!' i l H!
\ F' /
X ————>3 X
. i-1 ' i-1., . .
and then HF G = H'F? G' = Ai,1=l,2,... proving the theorem.

Not all integral cdomains are Fatou, cf. [ Cha, CCh]. A closely
related property called strong Fatou is also relevant for system
theoretic considerations ([SR 2]), and it in turn implies that the
ring in question is almost projective free.(It suffices to add one

copy of R to a projective module to make it free).

6.2. Minimal realizations,([Eill). Let F:X - X, G:R" » X,

H:X > RP be a (discrete time) system over a ring R whose state
module is not necessarily free. Define Q:Rm 2] » X by az =
n

F'Ga and define H:X - RPIE]] by HAx = £ HF"'xz". Then the
appropriate (and obvious) notions of cr and co for systems over rings
are: the system is (ring) cr if G 1is surjective, and the system

is (ring) co if H 1is injective.(For the family over Spec(R)
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associated to the system the property "ring cr' is equivalent to
the requirement that every mem_ber of the family be cr; but the
property that every member of the family be co is stronger than
the propery "ring co".) The system is said to be minimal if it is
both cr and co.

Now let xSF < X be the image of G. Then G(R™) < x°F ang
F(xCTy <x°F, and the induced cr  system (x°F;F,G,H) has the same
input/output behaviour as the original system (X; F,G,H). More or
less dually let C be the kernel of T and let X°° be the R
module x%° = Xx/Cc. Now F(C) € C and H(C) = 0 so that we have
an induced system (XCO;F,G,H), which is co and which has the same
input/output behaviour as the original system.

Performing both constructions we find a co and cr system
(x®T)C®°;F,G,H)with the same input/output behaviour as the original
system; i.e. we find a minimal system. All minimal systems realizing
a given‘# are isomorphic ( so that in particular it does not matte:
which of the two constructions is carried out first).

Of course the minimal realization of a given A need not hav
a free, or even projective, state module, however, if the family
c‘(‘P) has constant iacMillan degree than the realization obtained
by the methods of section 5 above is minimal and the realization
obtained by the constructions described above has a projective

state space module.

6.3. 2-d and n-d systems. Consider a linear discrete time
system with direct feed-through term

(6.3.1) x(t+1) = Fx(t) + Gu(t), y(t) = Hx(t) + Ju(t)

The associated input/outpul operator is a convolution operator, vi

t .
(6.3.1) y(t) = I A.u(t-i), A. =J, A. = HF " Yg, 1=1,2,...
=0 i 0 i ’

Now there is an obvious more dimensional (north-east causal)
generalization of such a convolution operator, viz.

h k
(6.3.3) y(h,k) = I I A; .u(h-i,k-j), h,k=0,1,2,.
i=0 j=0 *t*9

A (Givone-Roesser) realization of such an operator is a "2-d systt
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xl(h+1,k) = Fllxl(h,k) + F12x2(h’k) + Glu(h,k)
(6.3.4) x2(h,k+1) = F21xl(h,k) + F22x2(h,k) + Ggu(h,k)
y(h,k) = Hlxl(h’k) + ngz(h,k) + Julh, k)

which yields an input/output operator of the form (6.3.3) with the
A, . determined by the power series development of the 2-d transfer

l’\

function T(Sl’SZ)

(6.3.5) T A, .sTtsTd = T(s

. .S yS,)
1,3 i,J°71 T2 1’72
-1
s, I 0
1™ n F F G
(6.3.6)  T(s,,5,) = (H, H,) T N IS BT
. 22 n2 21 22 2

where Ir is the r xr wunit matrix and where n1 and n2 are the

dimensions of the state space vectors xland X e There are obvious
generalizations to n-1 systems. The question now arises whether
every proper (cf. e.g. [Eisllfor a definition) 2-d transfer function
can indeed be realized by a set of'processing equations" like
(6.3.4).

One way to appraoch this is to treat one of the s; as a parameter,
which then gives us a realization problem over a ring (or a
realization problem with parameters).

More precisely let Rg be the ring of all proper rational
functions in Sq- Now consider T(sl,sg) as a proper rational function
in Sy with coefficients in Rg‘ This transfer function can be
rcalized over Rg’ giving us a quadruple of matrices (F(sl),G(nl),
H(sl),J(sl)). Each of these matrices is proper as a function of o

1
and hence can be realized by a quadruple of matrices with coefficients

in whatever field we happen to work over, Suppose that
(FF,GF,HF,JF) realizes F(sl) (FG,GG,HG,JG) realizes u(Sl)
(FH,GH,HH,JH) realizes H(sl) (FJ,GJ,HJ,JJ) realizes J(sl).

Then, as is easily checked, a realization in the sense of (6.3.4)
is defined by
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Jp|fe Hg O 0 g
Fiq Fio Gy 'F, 0 0 0O Gl\ 0
P o= = F. O O G = i =
P Fa1 Fo2 2 g FG 0o 0 Gp/ ‘ng
- H H ; & \ |
o lo o 0 ¥y ‘)
= (H Hy) = (JH| 0 0 Hy Hy, J o= J,

Ihis is the procedure followed in [Eis1l]; a somewhat different
approach with essentially the same first step and also based on

realization over rings is used in[ So 2].
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7.0UTPUL FEEDBACK, BLENDING AND STEIMN SPACES

7.1. Dynamic output feedback. Consider a scalar (for simplicity)

transfer function T(s) = p(s)/q(s). Then the introduction of a
dynamic output feedback loop with transfer function L(s) = a(s)/b(s)
results, as was mentioned in 3.4 above, in a new system with transfer

function

T{s ~ p(s)b(s)
(7.1.1) ljﬁfgjf(s) - b(s)qg(s)-als)p(s)

The system described by 1(3) = p(s)/q(s), where p(s) and 1q(s) arc
without common factors, is stable if g(s) has all its roots in the
left half plane.

Now suppose that the system 1(s) depends on some
only approximatedly known parameters c¢ varying in some compact sect
C; i.e. we have a certain amount of parameter uncertainty. And
suppose that we want to stabilize Tc(s) = pc(s)/qc(s) by means of
a dynamic output feedback loop L(s) for alll c¢ simultaneously. Then
our problem is to find polynomials a(s) and b(s) such that all

the roots of
(7.1.2) b(s)qc(s) - a(s)pc(s)

are in the left halfplane for all ¢ €C.

7.2. The blending problem. Consider the single input/single

output control system represented by

i _% p(s) 1 > - a(s)

T o ot

where the transfer polynomials p(s) and g(s) are given, but there

is some uncertainty about their parameters, and where it is desired
to find polynomials a(s) and b(s) such that the total system has
only left halfplane zero's, a properh,which is somctimes called

minimum phase. Thus it is desired to find a(s) and b(s) such that
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(7.2.1) a(s)pc(s) + b(s)qc(S)

has only left halfplane zero's. This has been called the blending
problem and mathematically it is the same problem as the dynamic
output stabilization problem of 7.1 above.

If it is required that b(s) is minimum phase also one speaks
about the strong blending problem. For the dynamic output feedback
stabilization variant this corresponds to the requirement that the
feedback loop system L(s) be itself stable.

The(strong) blending problem can not always be solved. For
instance if thereare points d,e in the right half plane such that
pc(d) = pc(e) = 0 for all c¢ and such that qc(d) cicles around

zero as ¢ varies, while qc(e) is a fixed constant, then the

blending problem has no solution ([Tal).

7.3. Connection with Stein spaces. Let E be the right halfplar

then we want to find polynomials a(s),b(s) such that a(s)pc(s) +
b(s)qc(s) # O for all s€E and c €C. Let Tc(s) = p.(s)/q_(s) and
L(s) = a(s)/b(s). Then we want to find a rational L(s) such that
Tc(s) # -L(s) for all c€ ¢ and s €E. For a fixed ¢ let

z, = {(s,7,(s))] s€E} € E x pl(C)

2! = {(s,Tc(s,‘)l s€E, T (s)é=} < ExC

and let 2Z = Uc Zc, ' = Uc Zé, Y = EX m%rrxz, Y' = E XC~ 2', Ve
have the natural mappings Y =+ E, Y' -+ E, induced by (s,w) * s.
Solving the blending problem now consists of finding a meromorphic
section of Y. = E and a holomorphic section of Y' =+ E gives a
solution of the strong blending problem. Now it turns out that
(op. cit.) Y' is a Stein space, which helps in obtaining some positi
results for the blending problems.

I should add that in the case that the uncertainty in Tc(s) is
of the form Tc(s) = cT(s), where T(s) is a fixed rational function,
so that the uncertainty is just a gain factor, Tannenbaum in op.cit.

gives a complete solutinn using very different methods (complex
interpolation).
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In this section I briefly discuss a few variations on the theme
matrix polynomials. 1t will oe clear 1 nope tnat tne various morceaux
mentioned below are intimatealy related, tnough tne overall picture
does not seem, as yet, to be completely clear.
8.1. Preliminary remarks concerning matrix polynomials. Let k

be a field. We denote with kpxm[s] (resp. kP*M(s)) the module of

all pxXm matrices with entries in k([s] (resp. k(s)) and with k" [s]
(resp. k" (s)) the module of column m-vectors of polynomials (resp.
rational functions) 1in s over k. Matrix multiplication makes kp*p[s]
a ring. An element U(s) of this ring is called unimodular if it is
invertible in this ring; i.e. if det(U(s))E€E Eﬁ An element D(s) in
kP™P[s] is called nonsingular if det(D(s)) Z O.

A firstmost useful fact about the ring k° Pld is that it is
a left and right principal ideal ring. Thus in particular any two
elements A,B have a greatest right common divisor D ( that is, there
are C,C' such that A =CD, B = C'D, and if D' 1is any other common
right divisor of A,B then D is a left multiple of D',i.e. of the
form D = ED' for some E in kP P[4 ). This greatest common
right divisor is simply any generator of the left ideal generated
by A and B, and is of course determined up to a left unimodular
factor. Similarly there are left greatest common divisors., As an

immediate conseguence one hLas:

8.1.1. Proposition. Let T(s) € kP ™(s) be a matrix of rational
functions. Then there are N(s) € kP*™[s] and a nonsingular D(s)

€ k™ d such that T(s) = N(s)D(s)™! and such that there are
A(s)E K" PLs], B(s)€ K™ ™s]  with A(s)N(s) + B(s)D(s) = I . These

N(s) and D(s) are unique up to a common right unimodular factor.

One interesting fact in this connection is that if T(s) is a
strictly proper rational matrix function and T(s) = N(s)D(s)“1 is
the factorization of 8...1 above, then the MacMillan degree of T(s)
is the degree of det(D(s)).

8.2. The disturbance decoupling problem. Suppose we have a

control system with an extra noise input; i.e. we have a set of
equations

((8.2.1) X = Fx + Gu + G'v, y = Hx

(or the discrete time version of this). One now tries to find a

state space feedback matrix L (cf. also the picture in 2.4 above),
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such that for the system with this feedback loop
(8.2.2) X = (F+GL)x + Gu + G'w, y = Hx

the output no longer depends on the noise w. In terms of matrix
formulas this means that one tries to find a matrix L such that
H(F+GL) G' = 0 for all i.

8.3. The model matching problem. The model matching problem is

defined as follows: given transfer function matrices T(s), T'(s),
find a strictly prorer Q(s) such that T'(s)Q(s) = T(s).
I.e. by first processing our inputs by means of Q(s) and then
by T'(s) we match exactly the input/output behaviour defined by T(s).
This problem (MMP) and the disturbance decoupling problem (DDP)
have been shown to be equivalent in [EH ], in the sense that each
DDP gives rise to an MMP and vice versa and that the one is solvable
iff the other is.

8.4.F mod G invariant subspaces, [ Wol], Let (F,G,H) bea systenm

of dimension n over a field k. A subspace Vc:kn is called an

F mod G invariant subspace if
(8.4.1) FV « V + <&

where <G> = Gk™ is the subspace of k" spanned by the columns of G
These subspaces are naturally called A mod B invariant subspaces
by those who write their equations X =AX + Bu, ¥y = Cx rather than

x = Fx +Gu, y = Hx; a less notation dependant name 1is sorely needed.

—————— o ——

is an F mod G invariant subspace V such that <G'> cVc Ker H.

This rests on the observation that V is an F mod G invariant
subspace iff there is a matrix L such that (F+GL)V cV.

Obviously the sum of two F mod G invariant subspaces is an
F mod G invariant subspace. Thus there is a largest F mod G invaria
subspace contained in any subspace.

There are still a number of (largely) open problems concerning

F mod G invariant subspaces. For instance a description of all of the
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(of a given dimension r) as, say, a4 suhset of the Grassmann variety
Gn,r(k)‘ Also open is the problem of finding a good minimal F mod G
invariant subspace which contains a given space. (There need not be
a smallest one as the intersection of two F mod G invariant subspaces
need not be F mod G invariant).

Geometrically F mnd G invariant subspaces V of kn are those
subspaces with the property that once one is in it one can stay in
it by a Jjudicious choice of controls. This gives a natural notion
of an almost F mod G invariant subspace ( as a subspace for which
once one is in it one can stay arbitrarily close to it), and this

notion then solves an approximate DDP ([wi2]),

8.5. Matrix polynomial factorization. Consider a matrix

polynomial

rl It
(8.5.1) D(s) = Ars +  ee. o+ Als + AO

where the Ai are mxm matrices. Two such matrix polynomials
are sald to be equivalent if there exist polynomial unimodular
matrices U(s), V(s) such that D(s) = U(s)E(s)V(s).

A linearization of D(s) 1is an (m+1)x(m+1l) matrix L such that
sT - L and D(s) eI

are equivalent., If Ar is invertible such

m+1 1
a linearization always exists. One particular one is obtained as
follows. Let A! = A —lA., i=0,1,...,r-1 and substitute T . =
i r i r-i

-A}{ in the F matrix of (5.1.3) above to obtain a matrix F(D). Then
this matrix F(D) is a linearization of dimension rm. Of course
equivalent matrix polynomials have the same sets of linearizations,
but here it is also true that all linearizations of D(s) of dimension
rm are similar ( [GLR1]l ). Gohberg a.o. ([GLR1-5,GMR, GKV, GKL 1) make
this notion of linearization a cornerstone of their (spectral)
analysis of operator polynomials and in their study of factors and
multiples of such po’ynomials. E.g. by theorem 8 of [ GLR1 ] there is
a nice correspondence between monic factors of D(s) (still assuming
Ar to be invertible) and certain F(D) invariant subspaces.

It is not true however, that every matrix polynomial is
linearizable in this sense. For instance if A is nilpotent then a
contradiction is obtained by taking determinants on hoth sides of
the equation (Im + SA) 81 = U(s)(sIm+l - L)V(s). (But it is

1
true that one can always find L,M such that (D(s)e Il is equivalent

to L - sMecf. [ GKL L
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Now this lincasization described above (by a hlock companion
matrix) is a special case of what has becen called the Fuhrmann model
of a matrix polynomial ([Ful]), which is what we describe next.

For each raticnal function f(s)e¢ k(s) 1let 7f(s) be its

strictly proper part; i.e. if f(s) = p(s)/q(s), p(s),a(s)e k[s],

write p(s) = n(s)q(s) + r(s) with degree r(s) < degree q(s) and
define 1mf(s) = r(s)/q(s). We use the same notation for the analogous
map k™(s) > k™(s). Now let D(s) be a nonsingular matrix polynomial
(with mX*Xm matrices as coefficients) and define

"

(8.5.2) T k" [s] -+ k

-1,
D S],ﬂDf = Dm (D °f)

(If n(f) 1is the integral part of D‘lf, then Ter = f-Dn(f), showing
that ﬂDf is indeed polynomial again.) This map is a projection with
kernel Dk™lal . Its image V(D) 1is a vectorspace of dimension

degree det(D(s)). Now cdefine ®
(8.5.3) F(D):v(D) —V(D), i+~ 7m_(sf)

which gives V(D) a k[s] module structure for which V(D) =
x™[s]1/Dk™ & .(Of course, abstractly (V(D), F(D)) is simply this

quotient module).

8.5.4. Proposition([Ful, theorem 4.8). Let D(s),D'(s) be mxm

matrix polynomials. Then F(D) and F(D') are similar if and only
if D(s) and D'(s) are equivalent.

Thus it is not unreasonable to expect that the invariant
subspaces of F(D) and the polynomial factors of D(s) correspond.
This does indeed turn out to be the case([ Ant,EH]). The Fuhrmann
model of D(s) is also closely related to realization theory. In fact
if D(s)ml is proper (and by changing, if necessary, D(s) by a
unimodular factor this can always be assured) then F(D) 1is the
F matrix of a minimal dimensional realization (F,G,H,J) of D(s)—l.
This fact, together vith the remark that the F mod G invariant
subspaces are the (F+GL) invariant subspaces for some L, lies at the
basis of a correspondence between factors of D(s) and F mod G

invariant subspaces ([ EH,F§l).
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9. THE FEEDBACK GROUP AND ITS INVARIANTS

Y.1. The fecdback group and the Kronecker indices. In this and

and the following subsection we consider control systems X = Fx + Gu,
rather than input/output systems x = Fx +Gu, y = lix, and we consider
a larger group of transformations than just state space isomorphisms,
viz. the socalled feedback group, which is generated by "base change

in state space', base change in input space" and state space feedback".
More precisely let Lm,n(k) be the sct of all pairs of matrices over

kK of dimensions nxn and n xm and let L;?n(k) be the subhset

of all completely reachable pairs. Then the feedback group, acting

on these spaces is generated by the transformations

(9.1.1) (F,G) +— (S‘lFS,G), S€(H?$k) (state space base chango)
(9.1.2) (F,G) +— (F,GT"l) , T‘eGLm(k) (input space base change)

(9.1.3) (F,G) — (F+GL,G) , l,ekmxn (state space feedback)

This group is readily seen to be a linear algebraic group, viz. the

closed subgroup of GLm+n of all matrices of the form

acting as follows

S 0 - -1 -
((L o) s (rF,0) — (srs™! + ser™lisTl, sgr7l

Let %(F,G) be the Kronecker nice selection defined in 4.3 above
(which was independant of the matrix H). Now let (F,G) = ( Kl(F,G),
ey Km(F,G)) be the set of numbers %(F,G) arranged according
to magnitude with the Zargest one first. So in the example of 4.3
above we have Ky = 3, K> = 2, Ky = 1, Kgq = 0.

We claim that the Ki(F,G) are invariant under the feedback
group. This can be seen as follows. Let di be the dimension of the

subspace of kn generated by the columns of the matrices G,FG,..
i-1
F G

, i=1,2,...,n. Then the di are clearly invariant under the

transformations (9.1.1) - (9.1.3). But the di determine the K
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as follows.Let e. = d, - d i=2,...,0n, €

i i i-1 1 = dq- Then xy s
the number of ey which are > 1, K2 is the number of ey which
are > 2,..., k. 1s the number of e, which are > m. (And inversely

the l% determine the ey by analogous rules and hence the di')

Thus the Ki are indeed invariants.

9.2. The block companion canonical form. In this subsection we

show how all the elements in O(% ), which is the set of all (F,G)
such that B (F,G) = b , can be brought into a certain special form by
transformations which vary continuously with the parameters of (F,G)
(as long as (F,G) varies within a fixed O(E )), a result which we

shall also need in section 10 below. We shall assume that + e

K
+ K =n, which is equivalent to o(¥ ) < Lgfn, and which i;
necessary for the arguments below. The "proof" is by a, hopefully,
sufficiently complicated example. For even more details cf.[ Haz3,
Kal ].In fact below there are already more details than is normally
appropriate for a survey type paper, for which I apologize. We shall
need however, the fact that this construction is continuous in section
10 below to give a new proof of a theorem of Chris Byrnes. In view of
the pletnora of constructions in the field which are discontinuous,
it seemed worthwhile to make it absolutely clear that this one is
continuous for a change.

For the sufficiently complicated example we shall take m=4,
n=6 and ¥ = (2,3,0,1), so that the corresponding pattern of dots
and crosses looks like

x - * L] .
(9.2.1)
x . L] . . . .
By the definition of the pattern ¥ we have for each i = 1,2,3,4
a relation
¥,
s 3 Al L - k k fed
(9.2.2) F g, + I agy F gy = 0
where the sum on the left runs over all (k,j) € ¥ such that (¥.,1)
i
> (k,3J) in the lexicographic order on Jm N cf. 4.3 above,.
?

(Jm n is the set of all pairs (i,j), 1 =0,1, ..., n; j =1, ..., m).
9’
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A ffirst preliminary step is now to ffind an mxm matrix  T(F,G)
which i1s upper diapgonal (with ones on the diagonal) such that if we

write down the corresponding relations for the pair (F,G') =

(F,GI€,G)) then (9.2.2) has af, =0 for all k>¥. In our
example the relevant four relations are
p) 1 1. 0 0 0 _
Fog, + (aj Feyvar,7eg,) + (a8 +a;,8,+a7,48,) = 0
3 > 2 1 1 0 0 0
Flgy + (ay,Fa,) + (ay FeivazFe,y) + (aj g +as,m,+a,5,8,) = O

(9.2.3)
g+ (ao g +ao g.,) =0

'3 31=1 732%2

0

4484) = 0

1 1 0 0
Feo + (2 Fryragpliey) + (2,8 a0 ,+a

Note that for example the third relation does not involve %4 by the
o
definition of K. In this case T(F,G) is the matrix
0 1
L0 a3 ay
0 1
O 1 a3, 3y

(9.2.4) T(F,G)=
\O 0 1 0
0 0 0 1/

Note that we are only using those a?j for which k = %i’ note that
T(F,G) comes out to be upper diagonal because in (9.2.2) a?j = 0
it (k,3) > ( Ei,i), and finally note that a transformation (F,G)
(F,GT) does not change ¢ provided T 1is upper diagonal (even
though in general a base change transformation in input space does
change the Kronecker selection % even if it leaves the Kronecker
indices unchanged). Now let G' = GT(F,G), then an easy check shows
that in the relations for the pair (F,G') ccrresponding to (9.2.2)

we have ai? 0O 1if k = %i’ sO that

Ae

(9.2.5) F oigr o, arkeky - 0o
gl + T aliFa,

where now the sum runs over all (j,k) € € for which k< %i' We now

define a new basis (b bn) of b such that with respect to

1,-00,
this basis F and G look like
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0 1 i 0 0 0 0 0 0 0
% % ‘ x * x i x 1 0 0
"“,‘{
0 0 ‘ 0 1 0 g 0 0 0 0
(9.2.6) FY = ; G" =
0 0 0 0 1 0 ‘ 0 0 0
x x | % x * * 1 0 1 0

*
U

x ® i x x x 0 0 0

To this end we use the relations (9.2.5) which written out in

example result from the formulas (9.2.3) by replacing £; wit

e . Kk n . o _ 0 _
aid aij with aij for k < Ky and by setting Ayq = 85, =
Ay = 0. Now define

b = Fg' + a' ?' + a'lg|
1 °1 1171 12=2
— ]
b2 =g
2 1 1
- ] 1 ] ] ' ' ]
by = Frgy + a5,F8; + 353181 + 275585
b, = Fg', + a'zg'
4 22 2222
- ]
bg = 83
— ]
be = 84
Note that the three groups of basis vectors bl’bg; b3,b4,b5;
(corresponding to the three nonzero %1, EZ’ E4) are ot

by "dividing as best as one can' the left hand sides of the f£
second; fourth equation of (9.2.3)' by F,F2; F,FZ,F3; F.

Now let L be the 4 x6 matrix whose first row is the
row of F", whose second row is the fifth row of F", whose tt}
row is zero, and whose fourth row isequal to the sixth row o:
Then (F"-G"L,G") 1looks like (9.2.6) with all the =%'s repla
zero's. '

Finally let S be the permutation matrix consisting of
columns e3,e ,el,e2,e3,e6 where the e; are the standard
vectors in k , and let T be the 4x 4 permutation matrix

by the standard basis vectors of k4 in the order 1,2,4,3, T
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0 1 0|0 0O 0O 0 0 O
0 0 1{0 0O 0O 0 0 O
1 O 0 0/0 O0]O 1 0 0 O
(g2 S¥'S " = {6 0 olo0 1|0 SG"T = 150 o0 0
0O 0 0|0 O0]O lo 1 0 o
0o 0 nlo o]o \bﬁii’i"'d
which matrices deper.d only on the Kronecker indices Kl’ K2, K3, Kge

———— o v e S

ki are the only invariants of the feedback group acting on L;rn.
3
For results concerning the feedback group acting on L;Pn D
y ’

cf. e.g. [wpl . The form (9.2.7) has been called Brunovsky canonical
form.

9.2.9. Remark. Nofe that on 0( ®), the set of all pairs (F,G)
such that %(FﬁG) = ¥ the construction is clearly continuous. On
O(k )y the orbit of the feedback group labelled by Ky the construction

is in fact not continuous in general.

c

9.2.10., Remark.The quotient map Lmrn - {x} is continuous
?

if the set of Kronecker indices {kx} 1is given the topology belonging

to the partial order (x > k' )*= ( 1< and + <

31 K1 Ko 2
Ki + Ké and ... and K ¥ eee t ko < Ki.+ cee + K é), and
this is then in fact the quotient topology. This is the same order
of partitions of n as turns up in the study of degeneration of
vectorbundles over algebraic varieties ([Sh, theorem 3]), which fact
is explained by what comes next in subsection 9.3; it is also the
same order which turns up in the theory of the representation of the
symmetric groups([&hLvﬂ)an'accident", which still needs explaining;
and it 1s also the degeneration order among the orbits whose
closure contains zero for SLn acting on its Lie algebra by the
adjoint action, ([ Gev, Hes] ).Cf. Bry for yet more occurences of this

partial order in various parts of mathematics.
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9.1. The Martin-l.ermann vectorbundle of a system. [ow let
no= (1,6, H) € LCF;C?([?) be a or and co inpubt/outpul system, and let
m,n,n
'r>.( 1) be ils Lransfer function, and wrile
- oy n - —1
(9.3.1) Lz(s) = N(s)D(s)

with N(s) and D(s) right coprime matrices of respective dimensions
pxm and m xm, D(s) nonsingular; cf. 8.1 above.

Let Gm,m+p be thz complex Grassmannn variety of complex m-planes
in complex m+p spare. Define

. 1
(9.3.2) gt P (r) — Gm,m+p

by the formula

{ (N(s)u,D(s)u)| u €T}
{(0, u)| u €T}

¢Z(s)

(9.3.3) by (o)

This defines a continuous, and in fact a holomorphic morphism.

—— o S ——— —— o —

9,3.4. Proposition, ([HM3]). The MacMillan degree of TZ(S)’
i.e. the degree of det D(s), i.e. the dimension of I, is equal to
the intersection number of ¢Z (P 1(D )) with the hyperplane at

infinity in G

m,m+p’
Let E' - Gm m+p be the canonical m-dimensional bundle over
b
the Grassmann variety whose fibre over x 1is the m-plane represented
by X, and let E over Pm mp be the dual vectorbundle. Define E(I) over
s

PJGE) as the pullback of E bv means of ¢Z.Now by [Gro] every holomorphic
m—-dimensional bundle-E over~the~Riemann-sphere—P]{E)-splits as a sum of line
bundles and is classified (up to isomorphism) by m integers K(E) =
(KI(E)""’Km(E))’ KI(E) z,..z_Km(E), where the Ki(E) are the degrees of the

line bundles in question.
9.3.5. Theorem. ([HM3]). k(Z) = K(E(Z)).

9.4. The Kroneclier matrix pencil of a control system. A pencil

of matrices over a field k 1is a polynomial matrix of degree 1

(9.4.1) K(s) = A + Bs
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Two such pencils K,K' are said to be equivalent if there exist
mxm’ Q€kn<r such that K' = PKQ. Kronecker

([Krol ) classified such pencils, cf, also [Ga, Herl]). Now let

invertible matrices PE€ k

v = (F,G) be a control system and associate to it the pencil
(9.4.2) KE(S) = {({Gi{ sI - F)
Let ' = (F',G') be a second control system. Partitioning @ as

indicated below and considering the equation

. Q Q
(9.4.3) (G' i nI - F') = P(G | sT - F)| *1 12
Q21 9
it readily follows that Q,, = 0, Q,, = Pl so that G' = PGQ,
F' = PFP™" - PGQ,,, So that the pencils K.(s) and K, (s) are

equivalent iff the contiol systems I and L' are feedback
equivalent, i.e. equivalent under the feedback group,

Most of the invariants of Kronecker for the classification of
matrix pencils are zero for pencils of the form (9.4.2). The
remaining ones are certain nonnegative integers which are precisely
the numbers Kl(Z )y eees Km( £) ([Kal), whence the names "Kronecker

indices" for «k( £) and "Kronecker selection" for ¢(7I ).
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10. POLE PLACEMENT AND COEFFICIENT ASSIGNABILITY

10.1. Coefficient assignability over a field. Let R be a
ring and let I = (F,G,h) be a system over R. Let x (£ ) = x(F) =
det(sIn - F) ( the characteristic polynomial of £). The system

is said to be coefficient assignable if for all al,...,an € R

there is a state feedback matrix L such that

y(F +GL) = s + a n-1

A slightly weaker property is pole assignability which means that

for all bl,...J%]e R there is an L such that

X(F + GL)

1

(s—bl) .o (s~bn)

Because TZ(S) = HksI—F)—lG these properties (and their
weaker variants of which stabilizability, cf. 7.1 above, is one)
say things about how the poles of the transfer function can be

shifted. Over a field things are quite clear

10.1.1.25939§1§199,[WO2]. Let k Dbe a field, then a system

over k 1is pole assignable iff it is coefficient assignable

iff it is cr.

This follows fairly immediately from the Brunovsky canonical
form discussed above in 9.2.

There are of course entirely straightforward definitions of
pole assignability and coefficient assignability for families
of systems which fit with the ones for systems over rings when

a system over a ring is viewed as a family.

10.2. Pole placement over a ring. Over a ring R things are

not so simple, and in fact largely unsettled. Two easy facts are

10.2.1.Lemma. If m = 1 then coefficient assignability is

equivalent to cr (meaning that R(F,G) defines a surjective map

R — Rn, r = m(n+l1)).

10.2.2.Lemma. If ¢ over R 1is pole assignable then I is cr.
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In general it is not known whether cr 1implies pole assignability,
but over a ring with only finitely many maximal ideals it is still
true that cr implies coefficient assignability ([ Sol] ), which
takes care of the case of linear sequential circuits (where R is
finite). For R = k[ 0] . poynomials in one variable over a field,
Steve Morse ([Md ) has shown that c¢cr implies pole assignability,

a result which then (cf. section 2 above) also says things about
the stabilization of delay-differential systems with only one delay
operator. Morse's result holds more generally over principal ideal
domains. There is also a simple example that shows that over

ko] cr need not imply coefficient assignability.

Apart from a roesult for polynomial families (and more generally
for systems over rings which are projective free) which we describe
below this is about all that is known. Let me remark though that
when m =1 and g is not cr, Wyman in le] describes the extent
to which the system fails to be coefficient assignable in terms of

a certain Ext group.

10.3. Coefficient assignability for polynomial families. In this

subsection I give a new proof of the following theorem of Chris

Byrnes.

10.3.1. Theorem, [Byd. Let L[] be a polynomial family of
systems over a field k parametrized by 01,..., Gr ( or, equivalently
let I be a cr system cver k([0 ,..., 0.] (Quillen-Suslin theorem)).
Suppose that the sets of Kronecker indices of £ (o ) are constant

as functions of ¢ for all values of o€ k', where K 1is the

algebraic closure of k. Then I(r)is coefficient assignable.

Proof. Let X = (F,G,H) and let di( o) for all 0 € k' be
the dimension of the subspace of K" spanned by the columns of the
matrices G(o ), F(o)G(o), ... ,F(o )i_lG(o ). Then, cf. 9.1 above,
the hypothesis that the |ﬁ(o ) = K (£ (o)) are constant implies
that the di( o) are also constant. For i=1 this means that
E1 ={ (o ,<G(0o)>} , where <M > is the subspace spanned by the
columns of the matrix M, is a vector subbundle of the trivial
n dimensional bundle over affine r space. By the Quillen-Suslin
theorem this means that there ig an invertible matrix T with

1

coefficients in k[ o ] such that the first d1 columns of G( O)T1
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are linearly independant for all o . Because de(o ) is also

constant E2 ={(o, <G( o), F(o)G(o)> 1is also a vectorbundle

and applying the Quillen-Suslin theorem again we have that the quotien
bundle EQ/E1 is free. This one is generated fibre wise by the first
d columns of F(o )G(o ) mod <G( o)>, which means that there is a

1
matrix 'I‘2 with coefficients in Kol of the form

]
TS o)
T, =
0 I

where Té is a dlx dl matrix, such that the first d2—-d1 colummns

of F(0o)G(0o) T generate the fibre at 0 of E2/E1, and because
T2,
true that the first d columns of G(O0 ) generate the fibres of

1
El’ In terms of the Kronecker selection this means that after two
base changes in input space we have arranged things in such a way

T
1°2
so to speak, only acts on the first d1 columns it is still

V]
that the first two columns of the Kronecker selection K (I (0 ))
for all 0 € k¥ 1look like

b4 X

: - dy -4y
d1 X X

X ®

X ®

0 ®

® @

Continuing in this way (the next matrix, T3, is of the form

with TL a (d2—dl)>< (dg‘dl) matrix) we see that by a polynomial
base change T 1in input space we can see to it that the Kronecker
selection of (F( 0),G(0)T) 1is constant. But then, by means of th

construction which we so elaboratedly described in 9.2 above, we can

bring I(o) in the Brunovsky canonical form (9.2.7) by means of
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polynomial base changes and polynomial feedback. A further polynomial
feedback operation chan putls precisely those polynomials in the x -

spols in (9.7.6) which we nced, proving the theoren.

The original proof of this theorem ([ By4]) relies instead of on
the Quillen-Suslin theorem on results of Hanna ([Had]) on decomposition
of vector bundles which are applied to the family of Martin-Hermann
bundles (cf. 9.3 above) which is defined by the family T (o ).

Of course the proof given above works over any ring over which all
finitely generated yrojective bundles are free; the same proof also
gives, of course, results for continuous (differentiable) families
over homotopically trivial spaces (manifolds)

By the interpretation of delay-differential systems as polynomial
families of systems, theorem 10.3.1 tells us things about the
stabilization of delay systems (which are in principle infinite
dimensional gadgets, showing the power of the family interpretation)

For these systems the proof of the theorem has the following corollary.

— v — e o S

that the conditions of the theorem hold for the associated
polynomial family of systems, then the system I(0) is up to feedback

equivalent to a system involving no (delays.

10.4.Pole placement for delay systems. Let Z(o0) be a

delay-differential system. Assume, which is reasonable and even
customary in many casecs, that all the functions x(t),u(t), y(t)

are zero for t far enough in the past. Then it makes perfect sense

to talk about base changes and feedback by means of matrices which
are power series over the real numbers in the delay operators o R
Vr. Now this ring of power seriles is local and hence certainly
projective free so that the proof of theorem 10.3.1 gives
coefficient assignability and stabilization results for delay
systems for which the¢ two Kronecker indices « Q(Z ) and K(Zo)

are equal., Here «k.( I) is the set of Kronecker indices of ZI(0)

Q
considered as a system over the quotient field R ( 01,..., cr)
and  k( ZO) is the set of Kronecker indices of the residual system

over R obtained from L (0 ) Dby setting all the S equal to Q.
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11 . Till "CAHOMITCALY™ COUPLETELY REACHABLE SUBDYSTEM,

11.1. Zcr for systems over fields. Let I = (F,G,lI) bhe a
system over a field k. Let x°T pe the image of R(F,G):kr > k",
r = m(n+l). Then obviously F(X®T) < Xcr’ G(km) c Xcr’ s0 that there
is an induced subsystem x°F = (X®T;F',G',H') which is called the

canonical cr subsystem of L . In terms of matrices this means that

there is an S¢€ GLn(k) such that ZS has the form

G E F
S 1 11 12
(11.1.1) > = (] Y co(wy o 1,))
\o 0 F,,
with (Fll’Gl’Hl) = ZCF, the canonical cr subsystem., The words

Kalman "decomposition"are also used in this context. There is a dual
construction relating to co and combining these two constructions
"decomposes'" the system into four parts.

In this section we examine whether this construction can be
pglobalized,i.e. we ask whether this construction is continuous, and
we ask whether something similar can be done for time varying
linear dynamical systems.

11.2. Xcr for time varying systems. Now let ¢ = (F,G,H) be

a time varying system,i.e. the coefficients of the matrices F,G,!1
are alowed to vary, say continuosly, with time. For time varying
systems the controlability matrix R(L ) = R(F,G) must be redefined

as follows

(11.2.1) R(F,G) = (a(0) ! a()! ... G(n))
where
(11.2.2) G(O) =G: G(i) = FG(i=1) - 3(i-1)

where the °  denotes differentiation with respect to time, as usual
Note that this gives back the old R(F,G) 1if F,G do not depend

on time. The system is seid to be cr if this matrix R(Z) has full
rank. These seem to be the appropriate notions for time varying
systems; cf. e.g. [We, Haz5] for some supporting results for this
claim.,
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A Uime variable base choange x! Sx O chanpges N to 2.

with

(11.72.3) v 5 - (sFs”

Note that R(y ) hence transforms as

(11.2.4) R( ¢ = SR(y )

11.2.5. Theorem. Let b be a time varying system with
continuously varying parameters. Supposc that rank R(Z ) 1is
constant as a function of t. Then there exists a continuous time
varying matrix S, invertible for all t, such that ZS has the form

(11.1.1) with (F cr.

11°%1M)

Proof. Consider the subbundle of the trivial (n+l)m
dimensional bundle over the real line generated by the rows of
R(Z). This is a vectorbundle bhecause of the rank assumption.

This bundle is trivial., It follows thatlt there exist r sections

of the bundle, where r = rank R(Z), which are linearly independant
everywhere., The continuous sections of tLhe bundle are of the form

z ai(t)zi(t), where zl(t),...,zn(t) are the rows of R(ZI ) and
the ai(t) are continuous functions of t. Let bl(t),...,br(t)

be the r everywhere linearly independant sections and let

bj(t) = X aji(t)zi(t)’ j=1,...,r; i=1,...,n.

Let E' Dbe the r dimensional subbundle of the trivial bundle
E of dimension n over the real line penerated by the r row vectors
aj(t) = (ajl(t),...,ajn(t)). Because the quotient bundle E/E' 1is
trivial we can complete the r vectors al(t),..,ar(t) to a sytem
set of n vectors al(t),...,an(t) such that the determinant of the
matrix formed by these vectors is nonzero for all t. Let Sl(t) be
the matrix formed by these vectors, then SlR( ¥ ) has the property
that for all t 1its first 1r rows are linearly independant and
that it is of rank r for all t. It follows that there are uniquc
continuous functions cki(t)’ k=r+l,...,n; i=1,...,r such that
z&(t) = L Cki(t)zi(t)’ where z&(t) is the j-th row of SlR( z).
Now let
1, 0

5,(t) =

~c(t) I,

where C(t) 1is the (n-r) Xr matrix with entries Cki(t)-
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Then S(t) = Sz(t)Sl(t) is the desired transformation matris ( as

follows from the transformation formula (11.2.4)).

Virtually the came arguments give a smoothly varylhg S(t)
if the coefficients of L varysmoothly in time, and give a polynomial
S(t) if the coefficients of LI are polynomials in t ( where in the
latter case we need the constancy of the rank also for all complex
values of t and use that projective modules over a principal ideal

ring are free).

11.3. £ T for families.For families of systems these techniques

give

11.3.1. Theorer. Let z be a continuous family parametrized
by a contractible topplcgical space (resp. a differentiable family
parametrized by a contractible manifold; resp. a polynomial family).
Suppose that the rank of R( I) 1is constant as a function of the
parameters. Then there exists a continuous (resp. differentiable;
resp, polynomial) family of invertible matrices S such that g S

has the form (11.1.1) with (Fll’Gl’Hl) a family of cr systems.

The proof i1s virtually the same as the one given above of theorm
11.2.5; in the polynomial case one of course relies on the Qulllen-
Suslin theorem again to conclude that the appropriate bundles are
trivial. Note also Lthat, inversely, the existence of an S as in the
theorem implics that the rank of R(I ) 1is constant.

For delay-differential systems this gives a "Kalman decomposition
provided the relevant, obviously necessary rank condition is met.
There is also again « power series version of this result (as in 10.4)
which requires a far weaker hypothesis,

Another way of proving theorem 11.3.1 for systems over certain
rings rests on the following lemma which is also a basic tool in
the study of isomorphisms of families in [HP ] and which implies a
generalization of the main lemma of [OS] concerning the solvability

of sets of linear equaltions over rings.
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1l1.3.2. Lemma, Let R be a reduced ring (i.c. there are no
nilpotents  # 0) and let A be a malrix over R. Suppose that the
rank of AOP ) over the quotient field of R/P is constani as a
function of P for all prime ideals } . Then Im(A) and Coker(A)

arc projective modules,

Now let Z over R be such thal rank R( (P )) is constant,
and let R Dbe projective free (i.e. all finitely generated projective
modules over R are free). Then Im R(I ) < R" s projective and
hence free. Taking a basis of TIm R( £) and extending it to a
basis of all of R", which can be done because R"'/Im R( £) =
Coker R(Z) is projective and hence free, now gives the desired
matrix S.

There is a complete set of dual Lheorems concerning co.
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