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LEMMA AND SOME OF ITS APPLICATIONS. 

par 

Michiel Hazewinkel 

(Rotterdam) 

I. INTRODUCTION, Let R be a ring and let F(X,Y) be an n-dimensional commutative 

formal group law over R. Assume that R is torsion free and let f(X) over Rill 

be the logarithm of F(X,Y). Roughly, the functional equation lemma to be 

discussed below says what kind of regularity f(X) ER il)[[X]]n must exhibit 

in order that it be the logarithm of a formal group law with coefficients in R, 

The precise statement of the lenma is in section 2 below, The lemma turns out 

to have many more applications (then just the construction of universal formal 

group laws), It is the purpose of the present paper to outline a few of these 

and to try to convince the reader of the power of the lemma in proving a large 

variety of integrality statements, (Because commutative formal group laws over 

:Q-algebras are trivial, the theory of commutative formal group laws over torsion 

free rings is largely a matter of integrality statements), To cite of few 

instances: the integrality of the addition and multiplication polynomials of the 

Witt vectors, the Atkin-Swinnerton Dyer congruences, the construction of 

generalized Lubin-Tate formal group laws ("tapis de Cartier") can all be seen as 

applications of the functional equation lemma, Many more applications of the 

functional equation lemma can be found in [7] and [8], Th~s paper contains no 

new results or proofs which are not also in [7], with the exception of the 

proof of "v(M,n)(X) reduces to V(X)" in section 6 below, which in [7] is done 

in a needlessly cumbersome fashion, 
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ingredients we n~ed dre the following 

Here B is J s~brin~ 01 J rin~ L, ~is ideal 1n R, ,, ring endomorphism of L, 

s.' j 

" 
1,2, ••• art! m x n~ 

satisfy the fcl L .. -v,,,;~n& ccnditions 

. ' '' E 'b 1 - · q d £ 11 . c B r ( ' . ' ) ) - B f 1 1 • • 1 ~ :..: 0 ;.,; i p <n. , ;~~ \ D m.:J 01. 0 !'.' a D ~ .. , ,:; s i \ J , K. . \jl.. c or a .i. JL 1 , J , ?'-, r 

Here ~i (j,k) is tht: (j,k)- entry of the matrix si. For example if O"L = B then 

the last Lt.!nditi•Jn mt!ans that si (j ,k) E. B; and if e.g. B : ~, L = ~' 
-I 

'-~ = id, q = p then the C(.)nditions are satisfied iff si (j,k) E p ?Z for all i,j,ko 

If g(X) is an m-tuple of po~er s~ries in X1, o•c, Xn with coefficients ln 

L tl1~n we d0n0te with :*g(X) the m-tuple of power series obtained by applying .J 

t0 the coeffi~i~nts of g(X). 

Functional Equation Lemma, Let f(X) E L[ [X]]m be an m-tuple ~ power =====d2',W1DD -~-=~~=~ #=-~·· ~- ~ - ·~ 

series iE m indeterninate-s x1, .•• , Xm and f(X) ~ m-tuple of power series in 

n indeterminato=s x1, ... , Xn. Suppose that f(X) ::: b 1X mod(degree 2) where bi is 

~matrix with cc>efficients in B which is invertible (over B). Supposo= moreover 

that 

. i 
(2. ~) f (X) 

i=I 
i(X) - = s.o!icxq E B[[X]]m 

i= I 1 

i i i i i i 
where xq and 

-q x q q -q -q 
~ short for (X 1 , ••• ,Xm ) and (X 1 , ••• ,Xn ) • Then ~ have 

( 2. 5) F(X,Y) f-l (f(X) + f(Y)) E B[[X;Y])m 

(2,6) 

Let h (X) E B[ [ X]J 0 be ~ m-tuple of po~e: series ~i th coefficients in ~ in yet 

another~ of indeterr:iinates and.!:.;:! f(X) f(h(X)). Then 

( 2. 7) f(X) -

74 



FUNCTIONNAL EQUATION LEMMA 

Finally let a(X) E B[[X]]m. B(X) E L[[X]]m, r E JN= {1,2,, •• }. Then 

(2. 8) a(X) _ B(X) mod r 
en. - f(a(X)) - f (S(X)) mod 111.r 

For a proof cf. [7], sections 2 and 10. 

-1 p 2 2 
3. SOME ALMOST TRIVIAL APPLICATIONS. Let H(X) = X + p X + p- Xp + ,,, 

and .Q, (X) log(l+X) l: (-l)n+ln-lXn, One notes that H(X) - p- 1H(Xp) = x 
n=l 

and .Q,(X) - p- 1.Q,(Xp) 
-I 

E 7l (p) [xl. So taking B = 7l (p), (J1 = pB, L =I)• q = p, 

sl = P • s2 = s3 = ... = 0 and 0 = id, we obtain from (2. 6) Hasse's old 

that exp(H(X)) has its coefficients in 'll (p)' 

More generally let d(X) = d X + d 1XP + ••• ,d. E :Q. Using the same 
0 l 

ingredients and combining (2.6) and (2,7) above one finds that 

exp(d(X)) E 'll (p)[[X]] if and only if di-p-ldi-l E 7Z (p) for all i (where 

one takes d_ 1 = 0). This a lemma of Dieudonne [3]. 

result 

An easy application with a non trivial is the following, Let B be the ring 

of integers of the completed maximal unramified extension T of Il ; let L = T, 
-I p 

p = q, s 1 = p , s 2 = s3 = ••. = 0, and o the Frobenius automorphism of T. 

2 Let h(X) = 1 + a 1X + a2x + ••. E T[[X]]. In this setting the combination of 

(2.6) and (2.7) yields that h(X) E B[[X]] if and only if o*h(Xp)/h(X)p E 

1 + pXB[[X]], which is lemma I of Dwork [6], 

For an easy more dimensional application consider the slightly modified 
- - -I P , 

Witt vector polynomials w0 (X) = X0 , w1 (X) = x1 + p X0 , •• , , 

- -I p -n..pn 
wn(X) = Xn + p Xn-l + ... +p x0 • Take B = 7l, 01.= p7Z, L =Il, a= id, 

-1 q = p, s 2 ,s3 , ••• = 0 and let s 1 be the (n+l) x (n+l) matrix with p on the 

first subdiagonal and zero's elsewhere; i.e. s 1 (j,k) = 0 unless j = k + 1 and 
-1 - - -s 1 (k+l ,k) = p , k = 1,2, ,,,, n. Let w(X) be the column vector (w0 (X), ••• ,wn(X)). 

Then, obviously, w(X) = X + s 1w(XP). It now follows from (2.5) that 
--1 - -l:(X) = w (w(X) + w(Y)) has integral coefficients; or, multiplying both sides 

of w(l::(X)) = w(X) + w(Y) with pn, we see that we have shown that the addition 

polynomials of the Witt vectors have integral coefficients, 

4. ATKIN-SWINNERTON DYER CONGRUENCES. Let E be an elliptic curve over I) 

and let L(s) =!I (I - a p-s 
p 

( -s local factors I - app + b 
p 

+ b pl-2s)-l be its global L-function, where the 
p 

p1- 2s)-l are defined as follows in terms of the 
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reductions mod p of a global minimal model D over Z for E 

(i) 
-s l-2s . 

if p is good, i.e. if D Q 7Z /(p) is nonsingular then (I-a p +b p ) is p p 
the numerator of the zetafunction of the elliptic curve D Q 7l /(p) over 

71/(p); 
-s l-2s 

(ii) if D ~ 7l /(p) has an ordinary doublepoint then I - a p + b p 
p p 

where E = ~ I depending on whether the tangents in the double point 
p 

rational over 7l/(p) or not; 

(iii) if D 9 7l I (p) has a cusp I -
-s J-2s 

a p + b p = I. 
p p 

00 

Now let fE(X) = E 
n=I 

n- 1a Xn where L(s) = E a n-s. Then an immediate and 
n n=l n 

obvious consequence of the Euler product structure of L(s) is that for all p 

(4. I) 

-1 
It now follows from (2,5) that FE(X,Y) = fE (fE(X) + fE(Y)) is a formal group 

law over 7l. Let GE(X,Y) be the formal completion along the identity of the 

minimal model D over 7l. The formal group law GE(X,Y) can be explicitly described 

as follows. Let D be given by y2 + c 1XY + c3Y = x3 + c2x2 + c4X + c6 ; let 

w = (2Y+c 1X+c 3)- 1dX be the invariant differential and z = (2Y)- 1X a local 
n-1 -I n 

parameter at zero. Let, locally, w = ES(n)z dz and define gE(X) = E n S(n)X , 
n=l 

-1 
then GE(X,Y) = gE (gE(X) + gE(Y)). This comes from the fact that if f (X) is 

the logarithm of a formal group law F(X,Y) over a torsion free ring R then 

df(X) is an invariant differential for F(X,Y). 

4,2, !b~~~~fil (Honda, Hill;[11] , [JO] and [12]). The~ group~ 

FE(X,Y) and GE(X,Y) ~strictly isomorphic~ 7Z (i,e, there exists.!:. power 

series ~(X) = X + b2X2 + ••• ,bi E 7Z ~ ~ ~(FE(X,Y)) = GE(~(X),~(Y)). 
-I 

It follows that gE(X) = fE(~ (X)). So that by (2.7) we have that gE(X) 

also satisfies the integrality conditions (4,1). Writing this out in terms of 

coefficients one finds the Atkin Swinnerton-Dyer congruences. 

(4. 3) s-1 S(np) - a S(n) + b S(n/~) = 0 mod psif n = 0 mod p p p 

where S(n// p) = S(n/p) if pin and S(n// p) =O otherwise. 

5, LUBIN-TATE FORMAL GROUP LAWS. The socalled Lubin-Tate formal group laws 

are constructed as follows in [13]. Let K be a local field with finite residue 

field (i,e, K is a finite extension of :Q orlF (x)); let A be the ring of 
p p 

integers of K, let rr be a uniformizing element and let q be the number of 
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elements of k, the residue field of K. Let e(X) E A[[X]] be any power series 

in one variable such that 

(5. I) e(X) _ nX mod(degree 2), e(X) _ Xq mod TI 

Then there is a unique power series Fe(X,Y) such that Fe(e(X),e(Y)) = e(Fe(X,Y)) 

and Fe(X,Y) _ X + Y mod(degree 2). This is a formal group law over A. Moreover 

for all a EA there is a unique power series [a]e(X) such that 

e([a] (X)) = [a] (e(X)) and [a] (X) =:: aX mod degree 2; the map a- [a)e(X) 
e e e 

defines a ring homomorphism A+ EndA(F(X,Y)) and [TI]e(X) = e(X). Finally if 

both e(X) and e'(X) satisfy (5.1) (with respect to the same TI) then Fe(X,Y) 

and Fe 1 (X,Y) are strictly isomorphic over A. 

In the ingredients (2.1) for the functional equation lemma now take 
. -I 

B = A, L = K, en.= TIA, p char (k), q = ~ k, 0 = id, s I = TI 0 = s 2 = s3 

Then the conditions (2.2) are satisfied. Let g(X) E A[[X]] be any power series 

such that g(X) =:: X mod(degree 2), and consider f(X) E K[[X]] defined (recursively) 

by the function~l equation 

(5.2) f (X) 
-I q 

g (X) + TI f (X ) 

Then parts (2.5) and (2.6) of the functional equation lemma say that the power 

series 

(5. 3) F(X,Y) f-l(f(X) + f(Y)), [a](X) -I 
f (af (X)) , a € A 

have their coefficients in A and hence define a formal A-module over A. (A 

formal A-module, where A is as above, over an A-algebra R is a formal group law 

F(X,Y) over R together with a ring endomorphism pF: A+ EndR(F(X,Y)) such that 

PF(a) - aX mod(degree 2) for all a € A)• Now consider [TI] (X). We have 

(5, 4) f([TI] (X)) Tif (X) 

It follows by part (2.8) of the functional equation lemma that [TI](X) =:: Xq mod v 

Also of course (cf. (5.3)) F([TI](X),[TI](Y)) = [TI](F(X,Y)) so that F(X,Y) is a 

Lubin-Tate formal group law with e(X) = [TI](X)). As all Lubin-Tate formal group 

laws constructed via the same uniformizing element TI are strictly isomorphic, 

it follows from part (2.7) of the functional equation lemma that all Lubin-Tate 

formal group laws are obtained by the construction (S.2), (5.3) by varying 
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g(X). 

Finally we use the functional equation lemma to show that Lubin-Tate formal 

group laws constructed via different uniformizing elements TI and TI become 

isomorphic over A , the completion of the ring of integers of the completion 
nr 

K nr 
of the maximal unramified extension K of K. Let therefore f(X), f(X)EA[[X]] nr 

satisfy 

(5.5) 

Now take as functional equation ingredients B 

-1-

Anr' 01, = TIB, L Knr' a the 

Frobenius substitution in Gal(Knr/K) extended by continuity to Knr' p, q, 

s 1,s 2 , ,,, as before. Let u E A~r' the units of Anr' be such that u- 1o(u) 

(Such au exists). Then we have 

TI TI. 

(5.6) uf(X) - n- 1o*(uf(Xq)) = uf (X) - n- 1o(u)f (Xq) 

u(f(X) - TI- 1£(Xq)) E A ([X]] 
nr 

that by part (2,6) of the functional equation lemma we have that 

(5. 7) <jl(X) £-1 (uf(X)) EA [(X]] nr 

which defines as an isomorphism <P(X) between the formal A-modules defined by 

f(X) and f(X) as in (5.3), 

6, TAPIS DE CARTIER. Let A be the ring of integers of an unramified extension 

K of :Qp. Let o E Gal(K/.Qp) be the Frobenius automorphism. Now suppose we have 

given a free A-module M of finite rank h < oo together with a semilinear 

endomorphism n : M + M (i,e, n(m+m') = n(m) + n(m'), n(am) o(a)n(m)). To these 

data we associate a formal group law over A as follows, Let D(n) be the matrix 
h of n with respect to some basis for 11. Define g(M,n)(X) E K[[X 1, ••• ,Xh]] by 

the equation 

(6, I) g(M,n)(X) 

By part (2.5) of the functional equation lenuna (with B = A, L = K, ~ = pA, a 
-I 

as above, q p, s 1 = p D(n), s 2 = s3 = .•• = O) it follows that 

G(M,n)(X,Y) g(M,n)- 1(g(M,n)(X) + g(M,n)(Y)) is a formal group law over A. This 
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construction is functorial in the following sense, Let a : (M,n) + (M',n') be 

a morphism, This means that a : M + H' is A-linear and that n'a =an. Let E(a) 

be the matrix of a with respect to the chosen bases of Mand M'. Then we have 
-1 p h' 

E(a)g(M,n) (X) - p D(n')a*(E(a)g(M,n)(X) = E(a)X E A[[X]] , because 

n'a = an , together with the semilinearity of n and n', precisely means that 

D(n')a*(E(a)) = E(a)D(n). It follows in particular that G(M,n)(X,Y) does not 

depend (up to isomorphism) on the choice of a basis for M, 

For each (M,n) as above let (M0 ,n) be the pair obtained by leaving the 

additive group M and the map n unchanged but by changing the A-action to 
-1 a 

a,m = a (a)m. One easily checks that G(M ,n) = o*G(M,n). There is an obvious 

morphism (M0 ,n) -> (M,n), viz. n itself. Let v(M,n) : o*G(M,n) + G(M,n) be the 

corresponding morphism of formal groups, We claim that v(M,n) reduces mod p 

to the Verschiebung morphism V(X): o*G(X,Y) + G(X,Y) over k where the bar 

denotes reduction mod p and where we omitted to write (M,n). (If F(X,Y) is a 

formal group law over k, then V(X): o*F(X,Y) + F(X,Y) is the power series over 

k defined by V(Xp) = [p] (X) (because char(k) p, [p](X) is necessarily a 

power series in xP)). This is seen as follows. We have 

It follows by part (2. 8) of the functional equation lemma that 

v(Xq) = g(M,n)-l (pg(M,n)(X)) = [p] (X) mod pB, proving our claim. 

Thus we have a functor (M,n)t->- (G(M,n), v(M,n)), There is an obvious 

functor in the inverse direction, viz. taking Lie-algebras, And we clearly have 

Lie(G(M,n)) = M, Lie(v(M,n)) = n. The Tapis de Cartier ([1], [2], [7]) now 

says that these functors are inverse equivalence of categories, To prove this 

we have to show that every formal group law F(X,Y) together with a morphism 

v: o*F(X,Y) + F(X,Y) over A which reduces to V(X) mod pA comes from a pair 

(H, n), 

To prove this we first remark that, because A is unramified, every F(X,Y) 

over A is of functional equation type (Honda [12], cf. [7], section 20,3) i.e. 

if f(X) is the lo~arithm of F(X,Y) then there are s 1,s 2, ••• such that 

f(X) - Z s.a:f(XPi) E A[[X]]h, where h = dim(F(X,Y)). Now a homomorphism 
i -1 

v(X): o*F(X,Y) + F(X,Y) is necessarily of the form v(X) = f (Eo*f(X)) for 

some matrix E. 

Hence f- 1(pf(X)) = [p](X) = v(Xp) = f- 1(Ea*f(Xp)), It follows by part (2.8) 

of the functional equation lemma that pf(X) = Eo*f (Xp) mod pA, i,e. that 

f(X) - p- 1Ea*f(Xp) E A[[X]], so that by part (2,6) of the functional equation 
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Let k be th0 residue field 

<.1nifQrni2.ing elt:·r.1Pnt.~ Consider the power st:rit:s 

+ ••• , C. (X, Y) ( X) + g (Yi l 

su tt1at by svcticn 5 ~hove, 

ti1e f0llo~ing s~t of p0~~r series in one variabl~ 

i 
~ x.tq for certain 

1 i=o 

Fdr arbitrarv A-algebras !lone can define \{A. (B) = lli*r(t)r)(t) E 1l (B'·~ q ,u· Q .:;i. 

where B' is any A-tc>rsion free A-algebra with a surjeetive A-algebra 

h.,momorphism I· B' -• B. The sets 1,/ (B) have a natural group structure defined 
q ,' .. <' 

bv \ ( t) + (t) (": (t) ,5( t)) and a topology defined by the subgroups 

··, ( t )t-·• 

B>-· \{A. 
q 

n 
0 (8):,(t)" 
q,x 

mod tq 1, There is an obvious morphism 

-- i/ (B,i attached 
q~·,;;, .!.. 

to an A-algebra homomorphism •P : B1 -> B2 , viz. 

•'.·*·' \t). So that we have a complete topological group valued functor 

h'e are now going to define a functorial ring structure on ~ .. A (B). The 
q,ro 

definition for A-torsion free A-algebras B is: 

1 

\7.3) ifg,:(t) ( t) r y.tq then y(t)6(t) 
1 

To show that this is \>'elldefined we must show that the coefficients of y(t)o(t) 

are in B (and not just in B ~AK). This is seen as follows, 

Assume that B is A-torsion free and admits an A-algebra endomorphism o 

such that o(b) ~ b q mod rrB for all b E B. By part (2.7) of lemma 2.3 we then 
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-1 -I 
have xi - 1T xi-I = ai E B, yi - TI xi-l =bi E B for all i (with x_ 1 = y_ 1 = O). 

i i i -I i-1 
Renee 'ff xi,TI yi E B for all i. It follows that ·11 xiyi - 1T (TI xi-lyi-l) 

i i-1 i-1 
1T aibi + 1T aiyi-I + 1T bixi-I E B, so that by part (2.6) of lemma 2.3 we 

-I i qi 
have indeed that g1T (L:Tr xiyit ) has its coefficients in B. To extend this 

definition to the case of arbitrary A-algebras B use an argument similar as 

just below (7.2) using that every A-algebra B is a quotient of an A-algebra B' 

which satisfies our assumptions, e.g. B' = A[Zblb E BJ. There is also a natural 

A-module structure on if' (B) defined by y(t)--+ [a](Y(t)) where q 00 

(a](X) = g; 1(ag1T(X)), a EA, cf. also section 5. All in all this defines a functor 

~, 00 : *lll!A 7 ~lll!A' which, we claim1 possibly deserves the name "ramified Witt 

vector functor". To bolster this claim we remark the following 

- There is an additive Verschiebung morphism V defined by V y(t) = y(tq) 
- =q •q 

and a Frobenius A-algebra functor endomorphism f • The latter is defined for 
=TI - l ,,, i 

A-torsion free A-algebras B by the formula f y (t) = g ( l: TTX, 1 t q ) where the =TI 1T • l+ 
i=o 

xi are as in (7,3). Of course the integrality of ~1Ty(t) is proved by means of 

the functional equation lemma. We have tTI~q [n], ~Tiy(t) = Y(t)q mod [1T]~, 00 (B). 
- Let A' be the ring of integers of an unramified extension K' of K. Let k' 

be the residue field of K' 

For each a' E A' let 6(a') 

and let a E Gal(K'/K). be the Frobenius automorphism, 
-I 00 -i i 1 . .A g ( Z TI a (a' )tq ) E W- (B). (Integrality of 
TI i=o q ' 00 

6(a') is of course proved by means of the functional equation lemma), Then 

a•,_.. 6(a') is 

A' !;_ i,f (A') 
q. co 

a homomorphism of A-algebras and 

-.. 1/ (k') is an isomorphism. In 
q, 00 

the composite 

particular 1/ (k') q ,oo 
= A' with a 

corresponding to ~TI' generalizing a wellknown property of the Witt vectors. 

- There is an A-algebra homomorphism 6 : if' (-) ~-> WA (WA (-)) the ramified q,m q,co q,oo ' 

Artin-Hasse exponential, characterized by wA . o 6 = fi where wA , : WA (B) -> B 
q, i =rr' q, l q, 00 

is the functorial A-algebra homomorphism wA .(y(t)) = Tii times the coefficient of 
q,1 

in 

For more details concerning this construction cf. [7], section 25 ; for a 

twisted version of these constructions which also works for local fields with not 

necessarily finite residue field cf. also [9]. Another construction of the functors 

if' has independently been given by Ditters [4] and Drinfel'd [5]. q,co 
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