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ABSTRACT 

In this paper we construct universal infinite dimensional formal group 

laws and formal A-modules, This requires the consideration of formal 

group laws and formal A-modules over topological rings because universal 

infinite dimensional formal group laws and formal A-modules over 

discrete rings obviously cannot exist. 

The main motivation for these constructions is the classification theory 

for formal A-modules. Two of the main operators in this theory 

"q-typification" and ~TI' a Frobenius type operator, are defined via the 

universal example making it desirable to have also infinite dimensional 

universal objects. This is all the more desirable because the proofs for 

the classification theory, even for finite dimensional formal A-modules 

only, unavoidably involve infinite dimensional formal A-modules. 
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I. INTRODUCTION AND MOTIVATION. 

Let B be a commutative ring with I E B. An n-dimensional commutative formal 

group law over B is an n-tuple of power series F(X,Y) in 2n variables 

X1, ••• , Xn; Y1 , ••• , Yn with coefficients in B such that F(X,O) = X, 

F(O,Y) - Y mod degree 2, F(F(X,Y),Z) • F(X,F(Y,Z)) (associativity) and 

F(X,Y) = F(Y,X) (commutativity). From now on all formal group laws will be 

commutative. 

Let A be a discrete valuation ring with finite residue field k. Let B E ~1~A' 

the category of commutative A-algebras with I. A n-dirnensional formal 

A-module over B is a formal group law F(X,Y) over B together with a ring 

homomorphism pF: A~ EndB(F(X,Y)) such that pF(a) = aX mod degree 2 for all 

a E A. One would like to have a classification theory for formal A-modules 

which is parallel to the classification theory of formal group laws over 

Zl (p)-algebras. Such a theory is sketched below and details can be found in 

[2], section 29. As in the case of formal group laws over Zl (p)-algebras 

the theory inevitably involves infinite dimensional objects. Now two 

important operators for the formal A-module 

and f , the analog~u of p-typification and 
•TI 

lifting back to the universal case, and, for 

of no other way of defining them, especially 

classification theory, viz. 

Frobenius, are defined by 

the moment at least, I know 

if char(A) = p > o. In case 

E 
q 

char(A) • O, cf. also [l].But by the very nature of the usual definition of 

infinite dimensional formal group law and formal A-module there cannot exist 

universal infinite dimensional formal group laws and formal A-modules, so 

that the definitions of E and f break down. In [2], this problem is q =TI 

surmounted by an ad hoe construction which works in the particular case 

needed (Witt.vector like formal A-modules). But this method decidedly lacks 

elegance. It is the second and main purpose of the present paper to remedy 

this by showing that after all, in a suitable sense, universal infinite 
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dimensional formal group laws and fonnal A-modules do exist (and have all 

the nice properties one could wish for). As a byproduct one obtains then 

of course such resultsas liftability to characteristic zero and existence 

and uniqueness of logarithms also for infinite dimensional formal group 

laws and formal A-modules. 

2. SKETCH OF THE (COVARIANT) CLASSIFICATION THEORY 

FOR FORMAL GROUP LAWS OVER 'll. (p) -ALGEBRAS. 

Let p be a fixed prime number. Let F(X,Y) be an m-dimensional formal 

group law over a 'll. (p)-algebra B. A curve in F over R is simply an 

m-tuple of power series y(t) in one variable t with coefficients in B 
such that y(O) a 0. 

Two curves can be added by means of the formula 

(2.1) y(t) +F oCt) = F(y(t),o(t)) 

giving us a complete topological abelian group C(F;B); the topology is 

defined by the subgroups of curves y(t) such that y(t) - 0 mod(degree n), 

n .. 1,2,3, 

b E: B. 

In addition one has operators V, f , <b>, for n EJN, 
•n =n 

These are defined as follows 

(2.2) 
n F . 1 I 

v y(t) - y(tn), <b>y(t) - y(bt), f y(t) a r y(~ 1 ~ n) 
•n =n i=l n 

where ~ is a primitive n-th root of unity. This last definition must n 
be rewritten slightly in case n-th roots of unity make no particular 

sense over B, cf. [2], section 16 for details. 

A curve y(t) is called p-typical if t y(t) = 0 for all prime numbers 
q 

q ~ p. The subgroup of p-typical curves, t (F;B), is complete in the 
p 

induced topology and stable under ~p and ¥p and the operators <b>. Moreover 

using that B is a 'll. ( )-algebra there is a projector £ : t(F;B) ~ t (F;B) p p p 
given by the formula 

(2.3) e: = 
p 

l: n-1µ(n)V f 
=n=n (n,p)=l 

where µ(n) is the Mobius function. We can assemble the operators !p' ~p' <b> 

into a ring of operators Cart (B) consisting of all sums p 
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with for all i only finitely many b .. # O. For the calculation rules in 
l,J 00 • • 

Cart (B), cf. [2],16.2, 28.l. The subring { r V1 <b.>f 1 } is naturally isomorphic 
p •p l •p i•o 

to W 00 (B), the ring of Witt vectors over B of infinite length associated to p, 
the prime p. Using this we see that C (F;B) is a module over W (B)[f ,V] 

P P 00 •• 

a ' CJ with calculation rules fV = p, Vf • (O,l,O, ••• ), fx = x f, xV = Vx for all 
-- -- - • = • 

x E W (R), where a is the Frobenius endomorphism of W (B). The functor p,co p,oo . 
F(X,Y)t-+- \': (F;B) turns out to be faithful and its image can be described 

p 
without much trouble. 

3. A CARTIER-DIEUDONNE MODULE CLASSIFICATION THEORY 

FOR FORMAL A-MODULES (l). 

Now let A be a discrete valuation ring with uniformizing element TI and finite 

residue field k of q elements, q = pr. Let K be the quotient field of A. We 

are going to describe a classification theory for formal A-modules which is 

completely analogous to the theory sketched in 2 ab.ove. In this theory ! 
ge.ts replaced by ~TI' V by V , W (B) by the appropriate ring of ramified 

iii • =q p,co 
Witt vectors WA (B), B E A.lgA' and t (F;B) by C (F;B). Of course we should 

q,oo --- p a q a 
have f V •TI, V f • (0,1,0,o,.), xV • V x , f x • x f • In case A is =TI•q •q•7T •q •q •TI. •TI 
of characteristic zero, p = urr; this shows that f and f should be ·related as 

""TI =p 

(3. 1) [u-1]f 
=p 

Here we shall not discuss the ramified Witt vector functor wA : AloA-+ Al~A' q, co ...... a =•!iii 
cf. [2[, [3], or [4]. It can be most easily o~tained by taking q-typical curves 

in the Lubin-Tate formal group law over A, just as W (-) can very nicely be p,co 
described via the p-typical curves in G , the multiplicative formal group 

-m 
law. Alternatively t.f'- (-) can be described via the polynomials q,co 

(3 .2) 
n n-1 

Xq + TIXq + ••• + n°x, n • 0,1,2, ••• o 1 n 

n 
exactly as W (-) is constructed via the Witt polynomials xP p,co o 
+ p°x • 

n 

n-1 
+ pXP 

1 + ••• 

We shall concentrate on the definition of f and the "q-typification" projector -rr 
e: : t (F ;B) -+ 'C (F ;B), partly also to illustrate the adagium "do everything q q 
first in the universal case", which appears to be particularly effective, 

in fact even necessary, when dealing with formal A-modules. 
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Now there seems to be no obvious analogues of the definitions for f and 
=p 

€ given in (2.2) and (2.3). Things become better if we restate these 
p ' 

definitions in terms of logarithms. Assume therefore that B is torsion free 

and let f(X) E B 9:Q[[X]]m be the logarithm of F(X,Y), i.e. f(X) is the 

unique m-tuple of power series over B 9~ such that f(X) = X mod(degree 2), 

F(X,Y) = f- 1 (f(X) + f(Y)). Setting 

(3 .3) 

we then have 

(3.4) 

(3. 5) 

00 

f(y(t)) = L: 
i=l 

x.t1, x. E B ia~P1 
i i 

00 

f(f y(t)) = L: nx .ti 
=n i=l 

ni 

00 
PJ 

f(s y(t)) = L: x . t p 
j=o PJ 

Now let (F(X,Y),pF) be an m-dimensional formal A-module over BE ~l~A· 
Assume that Bis A-torsion free. An A-logarithm for (F(X,Y), pF) is a power 

series f(X) E B ~ K[[X]]m such that f(X) = X mod degree 2 and such that 
-I A -I . 

F(X,Y) = f (f(X) + f(Y)) and pF(a) = f (af(X)) for all a EA. It is an 

innnediate consequence of the construction of a universal formal A-module 

below in section 5 that A-logarithms exist. Uniqueness is then easy. Given 

A-logarithms there are obvious analogues of (3.4) and (3.5) viz. 

(3. 6) 

(3. 7) 

00 
-] i 

fy(t)=f (L lTXqit) 
='TT i=I 

00 i 
s Y(t) = f-I ( L: x .tq ) 

q i=o q 1 

It remains of course to prove that the m-tuples of power series thus defined 

are integral (i.e. that they have their coefficients in B not just in B eA K). 

This again will be done by proving this to be the case in the universal 

example, which, fortunately, is defined over the kind of algebra to which 

the functional equation (integrality) lemma applies. This lemma is our main 

tool for proving integrality statements. It is remarkably "universally" 

applicable, cf. also [3] for some other illustrations. 
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4. THE FUNCTIONAL EQUATION LEMMA. 

The ingredients we need are the following 

( 4. I) B c L, Ot c B, a : L + L, p, q, SI, s2' ••• 

Here B is a subring of a ring L, (1\. is an ideal in B, a a ring endomorphism 

of L, p is a prime number, q is a powerof p and the s., i = 1,2,3, ••• 
l. 

are m x m matrices with coefficients in L, These ingredients are supposed 

to satisfy the following conditions 

(4. 2) p Eat. , a (b) = b q mod etc. for all b E B, ar(s.(j,k))Ot c B for all 
l. 

i,j ,k,r 

Here si(j,k) is the (j,k) entry of the matrix si' j,k E {1, ••• ,m}. 

If g(X) is an m-tuple of power series in x1 , ••• , Xn with coefficients in L 

then we denote with a*g(X) the m-tuple of power series obtained by applying 

a to the coefficients of g(X). 

4.3. Functional Equation Lemma, Let f(X) E L[[X]]m be an m-tuple of power 
- - - m series in m determinates x1, ••• , Xm and f(X) E L[[X]] an m-tuple of power 

series inn indeterminates X1, x2, ••• , Xn. Suppose that f(X)::: b1X 

mod(degree 2) where b 1 is a matrix with coefficients in B which is invertible 

(over B). Suppose moreover that 

( 4. 4) f(X) -

i 
where xq 

(4. 5) 

(4. 6) 

00 • i 00 

E s.q..if(Xq ) E B[[X]]m, f(X) - E 
i=I 1 . i=l 

i i i i 
( q q -q -q are short for x1 , ••• ,Xm) and (X 1 , ••• ,Xn ), Then we have 

F(X,Y) = f-l(f(X) + i(Y)) E B[[X;Y]]m 

Let h(X) E B[[X]]m, f(X) = f(h(X)). Then 

(4. 7) f(X) - E 
i=J 
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Let a.(X) E B[[~]]m, S(X) E L[[~]Jm and r E JN {J,2,3, ••• }.Then 

(4.8) a. (X) r - S (X) mod at. - f(a.(X)) - f(S(X)) mod <11.r 

For a proof cf. [2], section 10. 

5. A UNIVERSAL m-DIMENSIONAL FORMAL A-MODULE. 

For each multiindex a. = (nl, ••• ,nm) of length m, n. E JN U {o} let 
l. 

I a. I = nl + ... + n and sa = (sn1, ••• ,snm) for all s ElN U {O}. For each m 
a. such that I a. I > 2 - and i E {I , ••• ,m} let U(i,a.) be an indeterminate. We 
denote with E(i) the multiindex (O, ••• ,O,l,O, ••• ,O) with I in the i-th spot. 

We set U(i,E(j)) = 0 if i # j and U(i,E(i)) =I. For each a# qrE(i) for 

all r = I ,2, ••• , i. E {1, ••• ,m} we let Ua. denote the column vector 

U(l,a.), ... ' U(rn,a.) and for each r E JN' u denotes the m x m matrix r 
nl 

q n 
u (U(i,qrE(j)). Finally a. X rn • For each Illultiindex let X x1 • .... r m q 

a such that la.I .:_1 we now define them-vector aa.(U) E K[U]m by 

(5. 1) 

where the sum is over all (r 1, ••• ,r ,d), r. ElN, t ElN U {O} such that t = l. 

r 
••• q tS =a and B 1 qrE(i) for all r ElN, i E {I, ••• ,m}. Here 

is the matrix obtained from U by raising each of its entries to the 
r 

q 
l. q -th power. We now define 

(5.2) 
A 

f 0 (X) = L aa.Xa. E K[U][[X)]m 
la.!~1 

-I Now let L = K[U] ~ A[U] = B, 01.= TIA(U], S. =TI U . and cr : L + L the 
l. l. 

q 

K-algebra endomorphism that sends each U(i,a.) into its q-th power. Then the 

conditions (4.2) hold. Also we have 



(5.3) f~(X) - X mod(degree 2), f~(X) 

It follows that if we define 

(5,4) 

co • 1 

E s.cr:f~(Xq ) E A[U][[X]]m. 
i=I 1 
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A A then (FU(X,Y),pu) is a formal A-module over A[U] (by parts (4.5) and (4.6) 

of the functional equation lemma 4.3). 

5.5. Theorem. 

A A (FU(X,Y),pU) is a universal m-dimensional formal A-module. 

I.e. if (G(X,Y),pG) is any m-dimensional formal A-module over an A-algebra 

B then there is a unique A-algebra homomorphism ~: A[U] + B such that 
A A 4* FU(X,Y) = G(X,Y) and ~PU(a) = pG(a) for all a EA. 

For a proof cf. [2], section 25. 

6. A CARTIER-DIEUDONNE MODULE CLASSIFICATION THEORY 

FOR FORMAL A-MODULES (2). 

For each n EJN, i E {1, ••. ,m} let C(n,i) be an indeterminate. Let C be the 
n 

columnvector (C(n,l), ... , C(n,m). Now consider the curve 

co 

( 6. I ) 

A A in the universal formal A-module (FU(X,Y),p0) considered as a formal 

A-module over A(U;C]. This is again the sort of ring to which the functional 

equation lemma applies. It follows by part (4,7) of lemma 4.3 that the 

m-tuple of power series in one variable 

( 6. 2) x. E K[U;C]m 
1 

satisfies the functional equation condition (4.4). An easy check shows that 

then the m-tuples of power series 

co 

E 
n=I 

n 
1TX t 

qn 

also satisfy this condition. It now follows from part (4.6) of the functional 



equation lemma that 

(6.3) 

(6.4) 
00 

= (f~)-I ( L 1TX t1) 
n=I qn 

have in fact their coefficients in A[U;C]. 
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A A Now (FU(X,Y),Pu,Yc) over A[U;C] is (given theorem 5,5) clearly universal 

form-dimensional formal A-modules together with a curve. 

Let (F(X,Y),PF) be a formal A-module over B € ~1~A and let y(t) be a curve 

in F(X,Y) over B. Let ~: A[U;C] ~ B be the unique A-algebra homomorphism 

taking (F~,p~) into (F,pF) and Yc(t) into y(t). Then we define 

(6.5) 

(6.6) 

It follows immediately that this agrees with the tentative definitions 

(3. 6), (3. 7) of section 3 above (if B is A-torsion free so that we have 

a unique A-logarithm available). 

Let 't (F;B) be the image of s : 'e(F,B) ~ 'e(F;B). One now easily proves that 
q q 

€ is thP. identity on t. (F;B) and that 'C (F;B) is stable under 
q q q 

f v =1T' =q, 
<b> for all b E B. (Recall that V Y(t) = Y(tq), =q <b>Y(t) = Y(bt)). One 

checks that 

(6. 7) f V = [rr) 
=1T=q 

where (rr] is the operator induced by the endomorphism PF(1T) of F(X,Y). 

Further 

(6.8) 

We can assemble all these operators into a ring CartA(B) 

(6.9) CartA(B) = { 
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with for every i only finitely many b .. ~ O. The 
00 l,J subset 

{ E Vi<b.>fTii} turns out to be a·subring naturally . ..q l .. 
i=-o 

isomorphic to v/'- (B), 
q 'Cl) 

the ring of ramified Witt vectors associated to A with coefficients in B. 

There results a classification theory of (finite dimensional) formal 

A-modules in terms of~ _(B)[fTI,V ] modules which, both in statements 
q,~ = =q 

and proofs, is completely analogous to the theory for formal group laws 

over 2l (p)-algebras. In particular there is an ana;ogue of Cartier's 

first theorem. It states that the formal A-module WA (X;Y) represents 
q,oo 

the functor F.-.. t (F;B) going from formal A-modules over B to their 
q ':'A 

modules of q-typical curves. Here w- is the (infinite dimensional) q,oo 
formal A-module with as A-logarithm the column vector 

I I 2 2 
- q - q + TI- Xq (X0 , Xl + TI X0 , X + TI X 

2 1 0 ' 
... ) 

As in the case of formal group laws this theorem is important for the 

proofs of the classification results. This makes it necessary to be able 

to define E and £TI also for curves in ~ , which can be done by an ad hoe q = q,oo 
method. It would be nicer to be able to do it also for all other infinite 

dimensional formal A-modules. It would also be more elegant to be able to 

extend the classification theory sketched above to all formal A-modules. 

To do this it is necessary to define Eq and !TI also in those cases. This, 

judging from what we did in the finite dimensional case,will involve 

something like universal infinite dimensional formal A-modules, a gadget 

which, in terms of the usual definitions, obviously cannot exist. This, the 

main topic of this paper, is what I take up next. 

Before I do so let me remark that the analogy: "formal group laws over 

2l -algebra" - "formal A-modules" also extends to give a "tapis de Cartier" 
(p) 

and relat.ed type results for lifting formal A-modules; cf. [ 2], section 30 · 

7. "CLASSICAL" INFINITE DIMENSIONAL FORMAL GROUP LAWS AND 

FORMAL A-MODULES. 

Let (Xi)iEI be a set of indeterminates indexed by an arbitrary index set I. 

The formal power series ring B[[X.;iEI]] is now defined as the ring of all 
1 

formal (infinite) sums E c Xa where a runs through all functions 
ex 
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a: I +m U {O} wtth finite support, i.e. supp(a) = {i E rja(i) ~ O} is finite. 

We shall call such functions multiindices. Here Xa is short for l1 X~(i). 
iEsupp(a) 1 

One can now consider elements F(i)(X,Y) E B[[X.,Y.;i EI]] and at first 
l. l. 

sight one could define an infinite dimensional commutative formal group law 

as a set of power series F(i)(X,Y) E B[[X;Y]] indexed by I such that 

F(i)(X,Y) = X. + Y. mod(degree 2), F(i)(X,Y) = F(i)(Y,X) and such that 
i l. 

(7. 1) F(i)(X,F(Y,Z)) = F(i)(F(X,Y),Z) for all i EI 

However, in general this associativity condition (7.1) makes no sense because 

the calculation of the coefficient of a monomial xC\SzY in F(i)(X,F(Y,Z)) or 

F(i) (F(X,Y) ,Z) involves infinite sums of elements of B. The "classical 11 

solution is to require a finite support condition in the following sense. 

7.2. Definition. 

Let I and J be index sets. Let f(X) be an I-tuple of power series in the 

indeterminates X.,j E J. We say that f(X) satisfies the monomials have 
J 

finite support condition if for all rnultiindices a: J +JN U {O} there 

are only finity many i EI such that the coefficient of Xa in f(i)(X) is 

nonzero. 

This property is stable under composition and taking inverses in the sense 

of the following lemma. 

7 . 3 . Lennna. 

Let I, J, K be index sets. Let f(X) be an I-tuple of power series in the 

Xj' j E J and g(Y) a J-tuple of power series in the Yk, k EK. Suppose 

that f(X) and g(Y) both satisfy the monomials have finite support condition. 

Then f(g(Y)) is well defined and satisfies the same condition. Further 
-1 if f(X) = X mod degree 2 then f (X) is well defined and also satisfies 

the monomials have finite support condition. 

Proof. Write f(i)(X) = L: r. lJ., g(j)(Y) = Z:: s. SYB. Formally one has 
i,a J, 

6 + .•• +B 
( 7 • 4 ) f ( i) ( g (Y) ) Z:: r . s . B s . S Y 1 t 

i,a 3 1• I Jt' t 

where the sum is over all a and sequences (j 1, •. ,,jt), (6 1, ... ,Bt) such that 
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~\ :/:. 0, the zero. multiindex1 and j 1+ ••• + jt = o., where j € J is identified 

with the multiindex £(j): J -+JN U {O}, jt-+ l, j 1 i-+- O if j :/:. j'. Given 

y: K -+JN U {O} there are only finitely many sequences (S1, ••• ,8t) such 

that 8i :/:. 0 and S1+ ••• + 8t = y. For each Si there are only finitely 

many j such that sj, 8 . 1 O; finally o. = j 1 + ••• + jt. It follows that 

in the sum (7.4) onlyifinitely many coefficients of yY are nonzero 

(for a given y). Thus f(g(Y)) is welldefined. Also for every y there are 

only finitely many o., such that there exist nonzero sj
1

, 81 , ••• , sjt,Bt 

such that o. = j 1+ •.. + jt' 81+ ... + 8t = y. For each o. there are only 

finitely many i such that r. :/:. 0. It follows that the coefficient of 
i ,o. 

yY in f(i)(g(Y)) .is nonzero for only finitely many i. The second statement 

of the lemma is proved similarly by comparing coefficients in f- 1(f(X)) = X. 

Using these ideas we can now give the 11 classical 0 definition of infinite 

dimensional formal group laws and formal A-modules as follows. 

7.5. Definitions. 

An (infinite) dimensional formal group law F(X,Y) over B with index set I 

is an I-tuple of power series F(X,Y) = (F(i)(X,Y))i€I' 

F(i)(X,Y) € B[[X.,Y.;i EI]] such that F(X,Y) satisfies the monomials 
i i 

have finite support condition and such that F(X;O) = X, F(O,Y) = Y, 

F(F(X,Y),Z) = F(X,F(Y,Z)). If moreover F(X,Y) = F(Y,X) the formal group 

law is said to be commutative. All formal group laws will be commutative 

from now on. A homomorphism from F(X,Y) with index set I to G(X,Y) with index 

set J is an J-tuple of power series o.(X) in X., i EI with coefficients 
i 

in B, which satisfies the monomials have finite support condition such 

that o.(F(X,Y)) = G(o.(X),o.(Y)). Finally a formal A-module 0'1er BE ~!~A 

with index set I is a formal group law F(X,Y) over B together with 

a ring homomorphism pF: A-+ EndB(F(X,Y)) such that pF(a) = aX mod(degree 2) 

for all a E A. (This implies of course that all the PF(a) satisfy the 

monomials have finite support condition). Note that the various formulas 

above like F(X,F(Y,Z)) • F(F(X,Y),Z) and a(F(X,Y)) = G(o.(X),o.(Y) make 

sense because of lemma 7.3. 

7. 6. It is now immediately obvious .that a universal formal group law with 

infinite index set I cannot exist because there is no predicting for which 
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finitely many i E I the coefficient of a given monomial xCl.rB in F(i)(X,Y) 

will have nonzero coefficient. The way to remedy this is to extend the 

definition a bit by considering complete topological rings B whose topology 

is defined by a (filtered) set of ideals (JI. , s E S such that n 01. = {O} 
s s 

s 
(so that Bis Hausdorff). 

7.7. Definition. 

Let B be as above in 7.6 and let I and J be index sets. An I-tuple of power 

series f(X) in X., j E J with coefficients in Bis said to be continuous 
J 

if for all multiindices a: J +JN U {O} and all s ES there are only finitely 

many i EI such that the coefficient of Xa in f(i)(X) is not in 0\. It is 
s 

an immediate consequence of lemma 7.3 that the composite of two continuous 

sets of power series is welldefined and continuous and that the inverse 

power series f- 1 (X) of a continuous power series f(X) such that f(X) = X 

mod(degree 2) is also welldefined and continuous, 

7.8. Definitions. 

Let B be as above in 7.6 and let I be an index set. A commutative infinite 

dimensional formal roup law over B is now a continuous I-tuple of power 

series over B in X., Y., i EI such that F(X,O) = X,F(O,Y) = Y, 
l. l. 

F(F(X,Y),Z) = F(X,F(Y,Z)), F(X,Y) = F(Y,X). Note that the condition 

F(F(X,Y),Z) = F(X,F(Y,Z)) makes sense again (because it makes sense 

mod 01. for alls and because Bis complete). The definitions for homo-s 
morphisms and formal A-modules are similarly modified by requiring all 

I-tuples of power series to be continuous. The definitions of 7.5 correspond 

to the case of a discretely topologized ring B (defined by the single ideal 

0) • 

8. CONSTRUCTION OF AN INFINITE DIMENSIONAL UNIVERSAL 

FORMAL GROUP LAW. 

8.1. Let R be any ring. Let I be an index set. The first thing to do is 

to describe the appropriate ring "of polynomials" over which a universal 

formal group law with index set I will be constructed. For each multiindex 

a : I +lN U {O} (with finite support) such that la] ~ 2 and each i EI 

let U(i,a) be an indeterminate. Consider the ring of polynomials 

l{U(i,a)ji EI, a: I +lN U {O}, !al~ 2']. 

Let T be the set of all functions on the set of multiindices on I to the 



set of finite subsets of I. For each t E T let~ c R[U] be the ideal 

generated by all the U(i,a) such that i ~ t(a). We now denote with 

R<U;I> the completion of R[U] with respect to the topology defined by 

these ideals, and with OlT the closure of~ in R<U;I> for all TE T. 

If I is a finite set then R<U;I> is simply R[U(i,a)] because one of 

the possible functions t in this case is t(a) = I for all a and then 

cnt = 0. For each finite subset Kc I there is a natural surjection 
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~K : R<U;I> + R<U;K> = R[U(i,a)jsupp(a) U {i} c K]. In fact the kernel 

is the ideal Ol.t(K) defined by the function T(K) ET, t(K)(a) =~if 

supp(a) ~Kand T(K)(a) =Kif supp(a) c K. The OtT(K)' Kc I, K finite 

define another, coarser, topology in R[U(i,a)] which is, however, still 

Hausdorff. This means that R<U;I> is a certain subalgebra of lim R<U;K>, 
+ 

which in turn is a proper subalgebra of the projective limit of the 

polynomial rings in finitely many U(i,a)'s over R. For example if 
co 

I =JN then ~ U(i,2s(i)) where s(i) is the multiindex s(i)(j) = 0 if 
j =I 

J -:/:- i, £ ( i) ( i) = I is an element of 1 .im R<U; K> because for each K it is 

a polynomial modcn.T(K)' But this element is not an element of R<U;JN> 

because it is not a polynomial modulo~ if t is, e,g.,the function 

T (a) = supp (a). 

The R-algebra R<U;I~ has an obvious freeness property with respect to 

topological R-algebras Bas in 7.6. Let B be such an algebra. And for 

every a: I +JN U {O}, !al,::_ 2 and i EI let b(i,a) be an element of B. 

Suppose that for every a and every s E S there are only finitely many 

b(i,a) f 0\. • Then there is a unique continuous R-algebra homomorphism s 
~: R<U;I> + B such that ~(U(i,a)) = b(i,a) for all i,a. 

8,2. Finite Dimensional Universal Formal Group Laws, 

We recall the construction of an m-dimensional universal formal group law 

in [2], section ll. Let I be a finite set. For each multiindex 

a : I +JN U {O} such that la.I· 2:: 2 and each i E I let U(i,a) be an 

indeterminate. Let 7l (U] (= 7l <U;I> if I is finite.) be the ring of 

polynomials in these indetenninates. 

In addition we define U(i,s(j)) = l if i = j and= 0 if i 1 j, where E(j) 

is the multiindex s(j)(k) = O if k ~ j, s(j)(k) c 1 if k = j. For each 

multiindex a let U0 be the columnvector U(i,a.}iEI' For each prime power 

q_ = pr, r EJN, pa prime number we use U to denote the matrix 
q 



Uq = (U(i,qE(j))i,jEr· Using all this notation we now define for all 

a : I +lN U {O} with laJ >I a column vector aa with entries in Q[U) 
by means of the formula 

(8.3) n(qt-1 ,qt) n(qt) 

pt-I pt 

(qi .. ,qt-I) (qi ... q ) 
u u t 

qt s 

where the sum is over all sequences (q 1, ... ,qt,8), t ElN U {O}, 

s. 
l 

qi= Pi, si ElN, Pi a prime number, Sa multiindex not of the form 

6 = prE(j), r E lN, J E I, p a prime number, such that q1 ... qtS =a; 

U(r) is the matrix obtained from U by raising each of its entries to 
q (s) q 

the power r and u8 has the obvious analogous meaning. The numbers 

n(q 1, ... ,qt) are integers which can be chosen arbitrarily subject to 

the conditions 

=Pr:; Pr+l' < r < t 

(8.4) 
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Sometimes, in order to have reasonable formula for the U's in terms of the 

a's it is useful to choose the n(q 1, ... ,qt) in a very special way, cf. 

[2] section 5.6 and section 34.4. 

We now define 

(8. 5) 

Then, as is proved in section II of [2), FU(X,Y) is a universal formal 

group law with finite index set I. The integrality of FU(X,Y) is a consequence 

of the functional equation lemma 4.3. 

8.6. Construction of an Infinite Dimensional Universal Formal Group Law. 

Now let I be an infinite index set. Let 7.l<U;I> be the ring constructed 

above in 8.1 .For each finite subset Kc I let 7l<U;K >be the natural quotient 

'll [U(a,i) I supp(a) U {i} c K] of 'l.l <U;I>. For each K let fU,K(X) and 

FU,K(X,Y) be the power series in Xi, i EK and Xi,Yi' i EK defined by (8.5). 

Fix a choice of the n(q 1, ... ,qt) for all sequences of prime powers 
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(ql, .. .,qt), t E:W. 

For each pair of finite subsets K,A c I such that Kc A we use~ : 
A,K 

7l·<U;A> ·-+ 'll <U;.K>, IQ<U;A> + CQ<U;K>, 111<U;!..>[[X. ·iE ).]) + m<U·J.>[[X. ·iEK]] 
"' l' "(- ' l' ' 

7l<U;A>[[X.,Y.;iEA)] -+ 7l<U;K>[[X.,Y.;iEK]] to denote the natural l l l. l 

projections (U(a,i)i-+- 0 if A~ supp(a) U {i} 4 K, U(a,i).- U(a,i) if 
supp(a) u {i} c K, Y.,x.~ o if i E).' K, x.,Y.t--+ x.,Y. if i EK). 

l. l. l l. l. l. 

Now note that <l>;..,,KFU,A (X,Y) = FU,K(X,Y) and ~A,KfU,A (X) = fU,K(X). This 
means that we can define I-tuples of power series fU(X) and FU(X,Y) as 
follows. For each multiindex a: I +lN U {O} and pair of multiindices 
a,B: I +:WU {O} and element i EI consider the finite subsets K such 
that K ~ supp(a) U supp(B) U {i}. Now consider the coefficients 
e K(i) and e B (i) of x0 and x~B in fu (i)(X) and FU (i)(X,Y) a, a, ,K ,K ,K 
respectively. In virtue of the compatibility of the fU (X) and FU (X,Y) 

,K ,K 
under the ~' the systems of elements e (i) and e a (i) determine ..... ,K a,K a,µ,K 
welldefined elements e0 (i), e0 ,B(i) in lim IQ<U;K> and lim 7l<U;K> 
respectively. 

We now define fu(X) and FU(X,Y) by 

l: e (i)x0 

ja[~l a 

I claim that in fact e (i) E !Q<U;I> c lim IQ<U;K>. a + 

Indeed we clearly have 

q 
(8.7) e0 (i) = L: U(i,q1 e:(i 1))U(i 1,q2e:Ci 2)) 1 

qi'" .qt-I qi' .. qt 
U(it-l'qts(it)) U(it,B) d(ql, .•. ,qt) 

where d(ql, ..• ,qt) = p~l .. ·P~ln(ql' .•. ,qt)n(q2' ... ,qt) ... n(qt-1 'qt)n(qt) 
and where the sum is over all sequences (q 1, ... ,q ,S) as in the sum 8.3 t . 
and all i 1, •.• ,it EI. Let TE T. Because q1 ... qtS =a we have that 
supp(S) .. supp(a). So there are only finitely many it such that U(it'S) tO\-, 
for each of these it there are only finitely many it-I such that U(it,qts(it)) 
f 01.T, ••• , and for each of the i 2 there are only finitely many i 1 such that 
U(i q e:(i )) ~ O'l. Finally there are only finitely many factorizations I' I 2 'f T' 
q1 ... qtB =a. It follows that e0 (i) is a polynomial mod~ for all T 



proving that ea.(i) E <Q<U;I>. Because for every i 1 there are but finitely 

many i such that U(i,q 1£(i 1)) ~ 01. it also follows that e (i) = O mod en. 
T a T 
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for all but finitely many i. It follows that f (X) is a continuous I-tuple 
u 

of power series in the sense of definition 7.7. This in turn means that 
-I 

fu (fU(X) + fu(Y)) makes sense and has itscoefficients in <Q<U;I>. And this 

finally means that 

(8. 8) 

so that FU(X,Y) has its coefficients in ll<U;I> c 

lim ~<U;K>. 

9. PROOF OF THE UNIVERSALITY OF THE INFINITE 

DIMENSIONAL UNIVERSAL FORMAL GROUP LAW 

FU (X, Y) over 7l <U; I>. 

This proof is in it essentials exactly like the proof in [2], section 11.4 

of the universality of the finite dimensional formal group law described 

in 8.2 above. 

If B,a.: I +lN U {O} are multiindices we write a> S if a.(i) > S(i) for all 

i EI and la.I > IBI. We use 0 to denote the multiindex O(i) = 0 all i EI. 

We define v(a.) =I unless a is of the form a= pr£(j), r ElN, j EI, p 

a prime number and v(pr£(j)) = p. Then v(a.) is the greatest common 

divisor of the (a) = TI (~~~~) for o < B < a. 
B iEsupp(a.) 

For each a > 8 choose A. S E 'll as in [2], 11,3.5 such that 
a' 

(9. I) 

Then exactly as in (2) , lemma I l. 3. 7 we have the following lemma 

9.2. Lemma. Let a: I +:JN U {O} be a multiindex, la.I ~ 2. For each 0 < S <a 

let XS be an indeterminate and let XB = Xa.-B' Then every x8, 0 < B < a. 

can be written as a linear expression with coefficients in 'll of the 

expressions 

a,8,y,o > 0 



9.3. Proof of the Universality of FU(X,Y). 

From formula (8.7) above we see that 

(9.4) 

It follows that 

(9. 5) FU(X,Y) - X + Y + 

L: \)(a) - l (X+Y) a. 
I a I =n 

mod(degree n+l, U(S,j) with IBI < n). Now write 

(9. 6) 

and define 

(9. 7) y(i,a) = - L: A e (i) 
O< B<a a, S B , a- B 
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for all a: I -+JN U {O}, lal ..::_ 2, i. EI. It follows immediately from (9.6) 

that 

(9.8) y(i,a) - U(i,a) mod(U(j,8) with IBI <la!). 

Also y(i,a) is a polynomial mod 01 for all T, i.e. y(i,a) E 7l <U;I>, 
T 

because (9.7) is a finite sum. From this it follows that we can, so to 

speak, describe 7l <U;I> also as 7l <y;I>, or, in other words, the y(i,a.) 

are a "free polynomial bas is" for ll <V; I> meaning that the images of the 

y ( i ,a.) , i E T (a.) are a free polynomial bas is for ~ <U; I> I ''"r for all T • 

Now let G(X,Y) over B, where Bis as in 7.6, be any formal group law 

(in the sense of 7.8) with index set I. We write 

(9.9) G(i)(X,Y) = x. + y. + 
l. l. 

We now define a continuous homomorphism ll<U;I>-+ B by requiring that 

(9.10) cp(y(i,a)) = - L: A b (i) 
O< S<a a, B S ,a.-B 
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for all i,a. This <P is welldefined and determined uniquely because of 9.8 

and the remarks just below 9.8. The homomorphism is continuous because 

G(X,Y) is continuous I-tuple of power series in the sense of definition 

7.7, and because the sum on the right of (9.10) is finite. 

Certainly~ is the only possible continuous homomorphism 7l<U;I> + B 

such that ~FU(X,Y) = G(X,Y). It remains to show that <f>(e 8Ci)) = b 8Ci) a, a, 
for all a,S,i. This is obvious if la+ BI = 2. So by induction let us 

assume that this has been proved for all a,8 with ia+BJ < n. Commutativity 

and associativity of FU(X,Y) and G(X,Y) mean that we have relations. 

e 8Ci) = e8 (i) a, ,a b 8Ci) = bS (i) a, ,a 

(a+S)b (i) - (S+y)b (') Q (b (')) s a.+6,y y S+y,a l = a,B,y,i o,E J 

where the Q 8 . are certain universal expressions involving only the a, ;y, i 

e~ (j), b~ (y) with lo+t:I < la+B+y!. By induction we therefore know that u,£ u,£ 

= Ca.+S)b (i) - cB+y)b (i) B a+8,y y S+y,a 

for all a,8,Y > 0 with ia+S+yl n. We also have by the definition of <P 

for all a, l 

~(ea,B(i)) 

finishes the 

<P< L A BeB -s(i)) = L A b (i) 
O<S<a a, ,a o<S<a a, B S,a-8 

with !al = n. Using lemma 9.2 it follows that 

ba,B(i) for all a,6,i with !a+S! = n. With induction this 

proof. 

9. 11. Corollary. 

Every infinite dimensional formal group law in the classical sense 

(cf. definition 7.5) can be lifted to characteristic zero. 

Indeed these formal group laws correspond to continuous homomorphisms 

<P: 7l <U; I> -+ B where B has the discrete topology. This means that q, (01.1') = 0 

for a certain T and 7Z<U;I>/ITL is a ring of polynomials. 
T 

9 .12. Corollary. 

Every infinite dimensional formal group law over a torsion free ring has 



a unique logarithm. 

10. INFINITE DIMENSIONAL UNIVERSAL FORMAL 

A-MODULES. 
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Let A be as in section 3 above, Let I be an index set, The construction of 
an infinite dimensional formal A-module is completely analogous to the 

constructions of section 8 above. For each finite subset K let fU {X) 
,K 

be the logarithm of the universal formal A-module with index set K over A 

[U(a,i)jsupp(a) U {i} c K, !al > 2]. By taking projective limits of the 
coefficients we obtain a formal-power series f~(X) over 

lim A[U(a,i)jsupp(a) U {i} c K] and by making use of the explicit formula 
(5. I) one shows that in fact the coefficients of ft(x) are in the sub-A-algebra 
A<U;I> and that ft(x) is a continuous I-tuple of power series. Now let 

Then (F~(X,Y),p) is a formal A-module over A<U;I>. This can be shown either 
by performing the same projective limit construction with respect to the 
finite dimensional objects FUA (X,Y), [a](X) and observing that the ,K K 
relations (JO, I) hold in li.m A[U(i,a) ! supp(a) U {i} c Kl. This is what 
we used in section 8 above. Or one can state and prove an a·ppropriate 

infinite dimensional version of the functional equation lemma. This version 
is simply obtained by requiring all I-tuples of power seri1~s to be continuous. 
The proof that the formal A-module (10.1) is indeed universal is an entirely 
straightforward adaptation of the proof in [2], section 25.4 that the finite 
dimensional formal A-modules described in section 5 above are universal. 

10.2. Corollary. 

Every infinite dimensional formal A-module in the sense of 7.5 above can 
be lifted to formal A-module over an A-torsion free A-algebra, 

10.3. Corollary. 

Every infinite dimensional formal A-module over an A-torsion free algebra B 

has a unique A-logaritlun. 
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. A A 
10.4. The A-logarithm fu(X) of the universal formal A-module FU(X,Y) over 

A<U;I> is of functional equation type, and there does exist a topological 

analogue of the functional equation lennna 4.3. In the case of A<U;I> 

and ?l<U;I> this analogue is probably most easily proved by first 

remarking that the proofs in [2] also work in the infinite dimensional 

case provided that all the I-tuples of power series involved satisfy 

the monomials have compact support condition. The topological version 

alluded to above then results by proving things over A<U;I>/6t and 
t 

?l<U;I>/m. forall'T. 
T 

This permits us to define sq and ~TI for curves in F~(X;Y) and hence by 

specialization for curves over arbitrary infinite dimensional formal 

A-modules. 

The construction of the infinite dimensional formal group laws FU(X,Y) 

over ?l<U;I> and the infinite dimensional universal formal A-modules 

over A<U;I> also permit us to extend the Cartier-Dieudonne module 

classification theory of [2], chapter V to cover infinite dimensional 

case. The proofs are entirely straightforward adaptations of the proofs 

given in [2]. 
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