
440

K. Apt

E.W. Dijkstra

PROVING CORREC'ftlESS OP CSP PllOGRAMS - A 'm'roRIAL
Krzysztof R. Apt

L.I.T.P., Universite Paris 7
2, Place Jussieu, 75251 Paris, FRANCE

A structured presentation of a proof system for CSP programs is given.
'I'he presentation is based on the approach of Apt, Francez and de Roever (AFRJ.
r-ts new aspects are the use of static analysis and of proofs from assumptions
instead of proof outlines. Also, in contrast to [AFR] total correctness is
s-tudied.

l.. • INTRODUCTION

In 1978 c.A.R. Hoare introduced in [H4l a language for distributed
programming called Communicating Sequential Processes - in short CSP.
SUbsequently this language has received a great deal of attention. In
particular various proof methods for its programs have been proposed ([AFRl,
[CC], [LG], [LS], [MC], [MP], [S]).

The aim of this paper is to provide a structured expc-sition of a proof
B"Y"stem for CSP programs based on the approach of Apt, Francez and De Roever
[.A.FR]. we attempt to show that this system is a logical - admittedly multistep
- extension of a proof system for disjoint parallel programs first studied by
Hoare in [H3 l. The new aspects of our approach with respect to that of [AFRl
a.re the use of static analysis and of proofs from assumptions instead of proof
outlines.

static analysis allows to reduce substantially the number of cases
"'7'tlich have to be considered at the level of interaction between the proofs of
tl'le component programs. It was suggested in the framework of program proving
in [A4l but was originally proposed earlier and independently by R.N. Taylor
in [Tl as a tool for study of ADA tasks.

In our approach proofs from assumptions replace proof outlines
originally introduced by owicki and Gries in [OGll and used in [AFRl. Proofs
from assumptions were introduced in the context of program proving by Hoare in
[.E:l2] to handle the case of recursive procedures. Here their use is even easier
to understand - assumptions are simply made about the appropriate subparts of
tl"l.e programs which do not have a meaning when viewed in isolation - the i/o
cormnands. The use of proofs from assumptions instead of proof outlines makes
the presentation simpler and more transparent.

NATO AS! Series, Vol. F14
Control Flow and Data Flow: Concepts of
Distributed Programming. Edited by M. Broy
© Springer-Verlag Berlin Heidelberg 1985

442

Finally, in contrast to [AF'R] total correctness of CSP programs is
studied. This also covers proofs of deadlock freedom already studied in [AFR]
but now considerably simplified thanks to the use of static analysis. Other
aspects of total correctness - proofs of absence of failures and of
termination require some care in the presence of i/o guards and do not seem to
have received sufficient attention in the literature.

2 • AN OVERVIEW AND PRELIMINAAIES

2 . l An overview

At the risk of not being fully understood during the first reading we
provide now a bird's eye view of our approach. Reader may find it useful to
return here while reading successive sections of the paper.

The basic vocabulary like partial and total correctness is introduced
in the next, very brief subsection. In contL·ast, various progranuning concepts
like i/o commands, processes, etc ... are introduced only gradually. The
exposition starts with a presentation of the proofs systems for partial and
total correctness of nondeterministic programs of Dijkstra [Dl, D2J in section
3. The proof systems of course are not new. A first incursion into the realm
of parallelism takes place in section 4. Here only the most trivial type of
parallelism is allowed - a parallel composition of nondeterministic programs
whose variables do not conflict with each other. The corresponding proof rule
for parallel composition is straightforward. A minor novelty of this section
is that already at this stage the concept of auxiliary variables is introduced
and it is indicated why they are needed.

The next step consists of allowing communication between the
components of a parallel program. In section 5 a minimal extension of the
language of section 4 is studied - i/o commands are allowed here to be used
but only as atomic actions. What changes should now be made with respect to
the proof system studied in section 4 ? consider a component of a parallel
program (called a process). If we knew the meaning of its i/o commands then we
could prove its correctness. In other words we can prove correctness of each
process relative to appropriate assumptions about its i/o commands. The next
step consist of discharging these assumptions. It is done as follows. First,
using the static analysis all pairs of i/o commands which can be synchronized
are identified. Next, for each such pair it is checked that the assumptions
about them are mutually consistent. If it is the case then we can discharge
all the assumptions and prove correctness of the parallel program in question.

This approach unfortunately fails when applied to more complicated
programs and has to be modified accordingly. The refinement makes use of
global Invariants, i.e. properties which hold throughout the executions of the
parallel program and of bracketed sections, i.e. sections which contain i/o
commands and within which the invariant actually does not need to hold. In the
modified version of the proof system one first proves correctness of each
process relative to assumptions about its bracketed sections and next
discharges them by checking their mutual consistency similarly as before.
Moreover, it is checked that the global invariant is preserved. It is done by
a combination of syntactic and semantic means. First, in order to "localize"

443

the possil:>le changes of the invariant it is required that its free varial:>les cannot be changed outside of the bracketed sections. Secondly, it is proved (during the verification of the assumptions al:>out the bracketed sections) that a joint execution of every pair of synchronized bracketed section preserves the invariant. All these checks allow to conclude that the parallel program under consideration is correct with respect to the originally chosen assertions and moreover preserves the global invariant. Global invariants are helpful because they allow to relate variables from different processes. The presentation of the system is completed by the introduction of auxiliary varial:>les.

The whole approach can be readily used to prove deadlock freedom of the parallel programs considered. First, using the static analysis one identifies all situations in Which deadlock could arise. With each such situation one can associate an appropriate assertion which will hold at the moment this situation is reached. This assertion can be constructed once the correctness proof of the parallel program is given. To prove deadlock freedom it now suffices to check that for every deadlock situation the appropriate assertion is inconsistent.

In section 6 this approach is generalized to handle the case of programs allowing i/o commands as guards. The necessary modifications are mostly routine and hardly necessitate additional colllll\ents.

2.2 Preliminaries

Throughout the paper we fix an arbitrary first order language with equality containing two boolean constants true and false. Its foJ:lllulae are called assertions and denoted by the letters p,q,r. Si.Jilple variables are denoted by the letters u,x,y,z and expressions by the letters s,t. Quantifier-free formulae are called boolean expressions and are denoted by the letter b. p[t/uJ stands for a substitution of t for all free occurrences of u in p. By free(p), free(t) we denote the set of all varial:>les which occur free in the formula p and expression t, respectively.

By a correctness formula we mean a construct of the form {p} s {q} where p,q are assertions and s is a program. The cJ.asses of programs considered wiJ.J. be defined in the subsequent sections.

Two types of interpretation of correctness formuJ.ae {p} s {q} will be considered in this paper. We say that {p} s {q} is true (or holds) in the sense of partial correctness if all properly terminating computations of s starting in a state satisfying p terminate in a state satisfying q. we say that {p} s {q} is true (or holds) in the sense of total correctness if it hoJ.ds in the sense of partial correctness and moreover all computations of S starting in a state satisfying p properly terminate.

we assume that variabJ.es are of type integer or booJ.ean. Thus programs are executed over a domain consisting of all integers and {true, ~} with the usuaJ. operations avaiJ.abJ.e.

444

3. NONDETERMINISTIC PROGRAMS

We start our analysis by concentrating on nondeterministic programs a
la Dijkstra [Dl, 02]. We allow as atomic actions the skip statement and
assignment u:=t. Programs are built up using the composition operation ";"
and allowing the alternative command

m m
CJ bi - Si] and repetitive command "'[CJ bi - Si] where

i = 1. i = 1
bi are boolean expressions (called guards) and Si are programs.

3.1. Partial correctness

The following proof system allows to prove partial correctness of the
nondeterministic programs introduced above :

AXIOM 1 : SKIP AXIOM

{p} skip {p}

AXIOM 2 ASSIGNMENT AXIOM

{p[t/uJ} u:=t {p}

RULE 3 COMPOSITION RULE

{p} s1 {r}, {r} s2 {q}

RULE 4 ALTERNATIVE COMMAND RULE

ROLE 5

ROLE 6

{p h bi} Si {q}, i=l, ... ,m

m
{p} [CJ bi - Si] {q}

i=<l.

REPETITIVE COMMAND RULE

{p A bi} Si {p}, i=l, ... ,m

m m
{p} * [CJ bi - Si] {p Ah -ib1}

i=J. i=l.

CONSEQUENCE RULE

{p} s {q}

We call this proof system N. It is an appropriate modification of the
original proof system for while-programs proposed by Hoare in [Hll.

445

3.2 Total correctness

Nondeterministic programs can fail to terminate properly because of
fa/lures. According to (02 J a failure arises if at the moment of starting an
execution of an alternative command all its guards evaluate to false.
Obviously the rule of alternative command does not exclude such a possibility.
The following modification of this rule ensures the desired property.

RULE 7 ALTERNATIVE COMM.AND RULE II

m

p V bi, {p h bi} Si {q}, i=l, •.. ,m
i=l

m
{p} D bi - Si] {q}

i=l

The first premise guarantees that at the moment an alternative command
is to be executed at least one of its guards evaluates to true.

Next, we have to take care of termination of repetitive connnands. The
current version of the rule of repetitive commands is clearly insufficient for
this purpose. we follow here the approach of CAPS] and modify rule 5 as
follows.

RULE B REPETITIVE COMM.AND RULE II

<P<n> h b1J si {3- m <n P<m>J, i=1, ... ,m

m m
{3- n p(n)} * [D bi - Si] {3- n p(n} h h (bi}

i=J. i=l

Here p(n) is an assertion with a free variable n which
m

does not appear in * [o bi - Si] . Both n and m range
i=l

over natural numbers. we call n a parameter variable.

we denote the resulting system NT. we refrain here from a further
discussion of the issue of correctness of nondeterministic programs. A
theoretical analysis of the above two proof systems can be found in [A3] •

4. DISJOINT PARALLELISM

As a next step towards the analysis of CSP programs we introduce
disjoint parallelism, a concept first studied by Hoare in [H2). Given a program
s we denote by free(S) the set of all variables which occurs in it and by
change(S) the set of all its variables which are subject to change, i.e. which
appear on the left hand side of an assigrunent. we call the variables from the
set free(s) - change(s) "read only· variables of s.

446

we now introduce disjoint parallelism by allowing the construct

standing for a parallel composition of the programs s 1 , ... ,Sn, under the
condition that :

Thus some of the programs s 1 , ... ,Sn can have a variable in common
but if this is the case then none of Si can change its value. In other words
the programs s 1 , ... ,Sn can share only "read only" variables. so for example
[x:-zlly:-zJ is allowed but [x:-zlly:=-xl or [x:=zllx:=z] not.

Programs of the above type are called dls/ofnt parallel programs.
s 1 , ... ,Sn are activated in parallel and the execution of [s1 11 ••• II Sn]
terminates when all Si have terminated.

4.1. Proof rules

Hoare suggested in [H2l the following proof rule for disjoint parallel
programs.

RULE 9 RULE OF DISJOINT PARALLEL COMPOSITION

n n
hpi} [S1 11 ••• ll Sn]

i=1
provided free (pi,qi)

l\. qi}
i=1

n change(Sj) = ~ for i ;.: j.

Observe the natural connection between the condition imposed on the
programs Si and the condition of the rule. we can say informally that the
proof rule follows the syntax of the programs.

Obviously the condition imposed on the free variables of Pi and qi
is necessary. Consider for example the correctness formulae {y = O} x:=O {y =
O} and {true} y:=l {true}. They both can be proved but {y = O} [x:=O II y:=1]
{y - O} obviously does not hold.

The above rule does not suffice to prove all properties of disjoint
parallel programs. It is quite easy to prove that the correctness formula
{x-y} [x:-x+1 II y:-y+1] {x-y} cannot be proved using rule 9 (and possibly the
rule of consequence) only.

Therefore we supplement the proof system by the following substitution
rule being a special case of a proof rule first introduced by Gorelick in [GJ
(see also section 3 of [Al].

447

RULE 10 SUBSTITOTION RULE

{p} s {q}

{p[t/zJ} s {q}
provided z ~ free(S,q)

'l'hiS rule allows to initialize variables not appearing in the program
or a post-assertion to an arbitrary value.

~le1

we now illustrate the use of the su:bstitution rule by proving the
,P:reviously introduced formula

{x = y} [x:=x+l II y:=y+1J {x = y}.

we obviously have :

{x • z} x:-x+l {x • z+l}
and

{y = z} y:=y+l {y = z+l}.

we can now apply the rule of disjoint parallel composition. we obtain

{x • z 11. y = z} [x:-x+1 II y:-y+l] {x = z+l /I. y = z+1}

so by the consequence rule

{x - z /I. y = z} [x:-x+l II y:-y+l] {x "' y}

'l'he variable z does not appear in the program or in the post
a.ssertion so we can apply the sW:>stitution rule. Using the su:bstitution [y/z]
-we obtain the desired result. a

4. 2. Auxiliary variables

Note that the last step in the above proof could have been
alternatively obtained as follows.

We have
{x = y} z:=y {x • z /I. y = z}

so by the composition rule
{x - y} z:=y ; [x:=x+1 II y:-y+1J {x • y}.

We can now obtain the desired formula by dropping the assignment
z:-y. Formally this step requires use of a new rule allowing to delete
assignments to the so-called auxiliary variables.

Definition l. Let A be a set of variables of a program s. A is caned the
set of auxl/lary variables of s if

i) all variables of A appear in s only in assignments,

ii) no variable of s from outside of A depends on the variab1es

z =""Y

448

from A. In other words there does not exist an assignment x:=t
within s such that x ~ A and free(t) n A~~.

Thus for example
[x:=x+l II y:.ay+l]

{Z}
but

is a set of auxiliary variables of the program
(Y} is not as z depends on y.

The following proof rule was first introduced by OWicki and Gries in
[OGl, 002].

RULE 11 : RULE OF AUXILIARY VARIABLES

Let A be a set of auxiliary variables of a program s. Let s' be
obtained from s by deleting all assignments to the variables in A.
Then

(p} s {q}

{p} s. (q}
provided free(q) n A ~.

It is useful to note that the substitution rule can be derived using
the above rule. Indeed, suppose that {p} s {q} holds and that z ~
free(S,q). We have {p[t/z]} z:=t {p} so by the composition rule {p[t/z]}
z:=t ; S {q}. we now obtain {p[t/z]} s {q} applying the rule of auxiliary
variables.

5. I/O COMMANDS AS ATOMIC ACTIONS

We now extend the syntax by introducing commands allowing
communication between the components of a disjoint parallel program. First we
introduce names for each of the component; Pi:: Si denotes that Pi is the
name of the component Si· components will be called from now on processes.

Processes can address each other using i/o commands being either the
Input command Pj?x or an output command Pj! t. Input command Pj ?x
within the process Pi expresses a request to Pj to assign a value to the
variable x of Pi. output command Pi!t within the process Pj expresses a
request to Pi to receive from Pj the value of t. Execution of Pj?x
within the process Pi and of Pi!t within the process Pj is synchronized
and results in assigning the value of t to x. Thus the joint effect of the
execution of Pj?t and Pi!t is that of the assignment x:=t.

When studying parallel composition of processes we have to modify the
definition of the set change(S) by putting into it also all variables
appearing in the input commands of s.

we now allow parallel composition of processes

[Pl :: s1 U ••• 11 Pn :: Sn]
under the same condition as before i.e. that

free(Si) n change(Sj) = ~ for i ~ j.

Thus similarly as before only "read only" variables can be shared among the
processes.

449

The programs introduced above are special cases of CSP programs.

s.1 static analysis

For reasons that will become clear in the next subsections we shall
now try to identify all pairs of i/o commands which can be synchronized during
executions of a parallel program

We follow here the approach of [A4J. Given a pair a,~ of i/o
commands we say that they match, when one of them is an input command, the
other an output command and they address each other, i.e. for some i,J i ~

j, a is from Pi, ~ is from Pj, a adresses Pi and ~ addresses Pj. If
a pair of i/o commands can be synchronized then it necessarily matches. The
converse is obviously not true. We now propose another, more restrictive
necessary condition for a pair of i/o commands to be able to synchronize.

Given a parallel program P = [P1 : : s 1 II··· II Pn : : SnJ we first
label all its i/o commands in order to distinguish different occurrences of
the same command.

We proceed in two stages.

1) With each process Pi we associate a regular language L(Pi) defined by
structural induction on Si. We put

L(Skip) =

L(k:Pj?X)
L(k:Pj!t)
L(S11S2)

L{ x: =t) = { E} I

= {k:<j,i>},
= {k: (i, j >}I

L(s 1)L(s2),

rn m

L([o bi Si])= u L(bi - Si},
i=l i=l

L(bi - Si} = L(bi}L(Si},
L(bi) = {e},
L(* S) = L(S)*.

Intuitively, L(Pi) is the set of all a priori possible communication
sequences arising in the computations of Pi during which the boolean
expressions are not intezpreted. Each communication sequence consists of the
elements of the form k: <i, j > or k: < j, i > where k is a label of an i/o
command uniquely identified and <i,j> (<j,i>} records the fact that this i/o
command stands for a communication from Pi(Pj) to Pj(Pi)·

Example 2

Then

and

Let p""
[P1::*[i < 10
llP2 : :*[j < 10

i:=i+l; k1:Pz!O; k2:P2!i]
11:P1?X; lz:P1?j]].

L(P 2) {(li: <l,2> }(12: <1,2>}}*, D

450

2) we associate with p a regular language L(P). Its letters are of the form
k,l:<i,j> standing for an instance of a communication between the output
command of Pi labeled by k and the input command of Pj labeled by 1.

First we define a projection function [.Ji (l~i~n) from the alphabet
of L(P) into the alphabet of L{ Pi) • we put

[k,l:<i,j>]i - k:<i,j>,
[k,l:<i,j>lj l:<i,j>,
[k,l:<i,j>]h - E if h ~ i,j,

and naturally extend it to a homomorphism from the set of words of L(P) into
the set of words of L(Pi)·

we now define

L(P) {h: [h]i E L(Pi), i=l., •. , ,n}.

Intuitively, L(P) is the set of all possible communication sequences
of P which can arise in properly terminating computations of P during which
the boolean expressions are not interpreted.

Finally we define

STAT - {(k:a, 11~) : kra is from Pi, l:~ is from Pj,
& 3 h .3 a [h E L(P), a is an element of h,
L(k:a): {Cali} and L(l:~) • {[aJj}}.

Intuitively, STAT (standing for static match) is the set of all pairs
of i/o commands which can be synchronized during a properly terminating
computation of P which ignores the boolean guards.

The set STAT should be compared with two other sets of pairs of i/o
commands :

SYNT • {(k:a, l:~) : k:a and l:~ match}
SEK ~ {(k:a, l:~) : in some "real" properly terminating

computation of P k:a and l:~ are synchronized}.

Obviously, in contrast to STAT and SYNT the set SEM as a function of P
is not computable. We have SEK c STAT c SYNT.

Example 3

Consider the program P from example 2. We have
L(P) = {(k1,11 : <l,2>)(k2 ,l2 : <1,2>)}*

and consequently

On the other hand

451

s.2 proofs from assumptions

The proof systems presented in section 3 are appropriate for proving
correctness of nondeterministic programs. While trying to extend these systems
to deal with the CSP programs introduced above we first have to take care of
the i/o commands.

consider a parallel program
p ~ EP1 :: S1 "···" Pn :: Snl·

To be able to provide a proof of a formula {Pi} si {qi} for a given
process Pi we lack information about the behaviour of its i/o commands.
consider them for a moment as actions with unspecified meaning, black boxes so
to say, about which we shall make some assumptions.

Let Ai be a set of correctness formulas, one for each i/o command
from Si In other words

Ai - {{Po) 0: {~} : 0: is an i/o command from Si}•

we now write

Ai 1- {Pi} Si {qi} (or Ai I- {Pi} Pi {qi}) to denote the
fact that {Pi} Pi : : Si {qi} can be proved from the set of assumptions Ai.
If we want to stress which proof system is used - N or NT we shall subscript
the provability sign " I -" appropriately. La.Clc of subscript in the example
proofs will mean that both options hold. We shall freely use labels to
distinguish different occurrences of the i/o commands.

Example 4

Consider the following trivial CSP program
P ~ EP1 :: P2?z; [x:;.z - P2 !x a x~z - P2 !zJ

tt Pz :: P1!Y; P1?ul.

P1 and Pz hold values x and y, respectively. P1 computes
maxi.mum of these two values and sends the result to P2 • A desired property of
P to be proved is thus

{true} P {u = max(x,y)).

Consider now the following lists of asswnptions

Ai - {{true} Pz?z {y = z},
{x = max(x,y)} P2!x {x = max(x,y)},
{z = max(x,y)) P2!z {z = max(x,y))),

Az - {{true) Pi!Y {true),
{true} P1?u {u = max(x,y)}).

We now claim that

A1 I- {true} Pi {x - max(x,y) v z = max(x,y)}
and

Az I- {true) Pz {u - max(x,y)}.

(1)

(2)

452

The proofs are straightforward. Let q stand for the formula
x - max(x,y) v z = max(x,y).

To prove (l) it suffices to prove

A1 I- {y = z} [x>ioz - P2 !x o x~z - P 2 !zJ{q}
i.e. thanks to the rule of alternative commands

A1 ,_ {y = z A x»z} P2!x {q}
and

But
(y = z h x»z) - x = max(x,y)

and
(y = z A x~z) - z = max(x,y),

so by the rule of consequence (3) and (4) hold.

The proof of (2) is obvious.a

5.3 Tying proofs together - the cooperation test

(3)

(4)

So far we have only introduced a way of writing that behaviour of a
process depends on the behaviour of its i/o cormnands. The next step consists
of discharging the introduced assumptions by checking their mutual
consistency.

Consider statements (l) and (2) from example 4. we would like now to
check that the assumptions made about the i/o commands were justified. How can
we do that ? The idea is quite simple.

Take for example the assumption {true} P2?z {y=z}. From the text of
the program we see that the only output command of P2 Which can synchronize
with P2?z is P1!y . .!'Ind indeed, after the communication between P2?z and
P1 !y, y - z holds.

We formalize this idea as follows. First, the effect of a
communication is that of an assigrunent. Thus we adopt the following natural
axiom

AXIOM 12 COMMUNICATION AXIOM

{p[t/X]} Pi?X II Pj!t {p}
where Pi?x and Pj!t are taken from Pj and Pi
respectively.

Next, given two assumptions {pi} Pi?x {qi} and {Pj} pj~t {qj} used
in the proofs of Pj and Pi, respectively, we say that they
coop9rate if

(5)

can be proved.

Intuitively speaking, (5) guarantees that if pi
the control is before Pi?x and Pj!t, respectively then
when the control is after Pi?x and Pj!t, respectively.

and pj hold when
qi and qj hold

The notion of

453

cooperation is due to [AFRl and to [LG] where it is called satisfaction.

Remark l

Note that (5) can be proved iff

{pi /I. pj} x:=t {qi II. qj} can be proved which in turn can be proved
iff (pi /I. Pj) - (qi II. qj)Ct/xl holds.a

Generalization to the case of sets of assumptions makes use of the
static analysis carried out in section 5.1.

Definition 2 We say that two assumptions and statically match if the pair of
their i/o commands statically matches, i.e. belongs to STAT.

Definition 3 Let Ai, ... •An be sets of assumptions for the proofs of
processes P1, ... ,Pn, respectively. we say that A1 , ... ,An cooperate if every
statically matching pair of assumptions from A1 u ... u An cooperates.

A given assumption in general will have to be checked against several.
other assumptions for cooperation. The choice of the set STAT in the above
definition is motivated by the fact that it is the best known for us
computable approximation to the set SEM. Note that the cooperation test takes
care of aJ.l pairs of i/o conmands from the set SEM.

If the sets of assumptions A1 , ... , An cooperate then we can discharge
them. This leads us to the following proof rule being a general.ization of the
rule of disjoint parallel composition.

RULE 13 : RULE FOR PARALLEL COMPOSITION

Ai I- {Pi} Si {qi}, i=l, ... ,n,
free(pa•<Ioc•Pi,qi) n change(Sj) ~ for all {Pa} a {<Ioc} e Ai and i~j,

n n

/I. Pi} CP1 :: s1 II ••• II Pn : : Sn] II. qi}
i=l i=l

Note that the list of hypotheses in the second line is an obvious
extension of the appropriate condition from the rule of disjoint paral.lel
composition. It is easy to see that this extension is necessary.

Example 5

we illustrate the use of the above rule by considering the program P
from example 4. Let us now try to prove the desired formula

{true} P {u - max(x,y)}.

we use the proofs from assumptions listed under (1) and (2). Note that
the appropriate disjointness conditions are satisfied (y is not changed by
P2) • we now prove that Ai and ~ cooperate. To this purpose we first

454

identify the statically matching pairs of i/o commands. These are

P2?z, P1! y ;
Pz~X, Pz?U ;
Pz!Z, Pz?U.

For each corresponding pair of the assumptions we have to establish
the cooperation test. Take for example the second pair. we have to prove

{x = max(x,y) A true} P2 !x II P2 ?u {x = max(x,y) A u=max(x,y)},

According to remark l it suffices to check that

x = max{x,y) - (x = max(x,y) Au= max(x,y))[x/u)

which is obvious. Other tests are equally straightforward.

Applying now the rule of parallel composition we get

{~rue) P {u = max(x,y) A (x = max(x,y) v z = max(x,y)))

from which the desired formula follows.a

5.4 A discussion

In contrast to the input command the output command seems to have an
obvious meaning. Its execution changes no variable of the process to which it
belongs. Thus one could naturally adopt the following output command axiom

After all this is the form of the assumptions about the output commands used
in the proofs in the examples 4 and 5.

The cooperation test would then reduce to a verification that the
post-assertions of the input commands hold, i.e. that {p} Pi?x II pjlt {q}
holds for every statically matching pair (Pi?x, Pj!t) and assumption
{p) Pi?X {q) ·

Unfortunately such a simplification does not work. First, to establish
the post-assertion of the input command one needs in general some information
about the value sent. Consider for example the case when P1 is of the form
... P2?x ... and P2 is of the form ... y:=2 ; P1! y ... where the exhibited i/o
commands statically match. The above simplification does not allow to prove
that after the cormnunication has taken place, x=2 holds, an information which
can be needed. In contrast, the adopted cooperation test allows to infer such
an information - it suffices to use the assumption {y = 2} P1!y {y = 2}, or
even {y = 2 J P1! y {true}.

secondly, in some cases one has to make specific assumptions about the
i/o commands which will never be executed.

455

ExampJ.e 6

consider the following program

II P3 : : skip].

Note that {true} P {x = l} holds in the sense of partial correctness
- whenever P terminates properly, x = J. holds. (Of course p does not
need to terminate properly as a deadlock can arise - an issue we shaJ.J. deal
with in the next section).

To prove the desired formula we have to use the post-assertion x = l
for the process Pz. This requires to use assumptions {true} Pi?x {x = l}
and {true} P3!x {x = l} in the proof of P2 . The second assumption seems to
be completely arbitrary but it passes the cooperation test voidly.

It is now clear how to complete the proof and we leave it to the
reader. o

In general, assumptions about the i/o commands will be of one of two
types depending whether a given i/o command statically matches another i/o
command. If it does then the assumption of an input command Pi?x will in
generaJ. be of the form {p[t/x]} Pi?x {p} where t is an anticipated value
of x after the communication and for an output conmand Pi t it will be
simpJ.y {p} Pi!t {p} for an appropriately chosen p. If on the other hand the
i/o command does not statically match any other i/o command then the
corresponding assumption can be arbitrary.

5.5 Deadlock freedom

Once the syntax has been extended by allowing i/o commands another
possibility of abnormal termination of programs has been introduced - that of
deadlock. Formally, deadlock arises when not all processes have terminated but
none of them can proceed. such a situation can arise only when the following
three conditions are satisfied :

l) each processes is in front of an i/o command or has terminated,

2) no pair of i/o commands mentioned in l) matches,

3) not all processes have terminated.

As an example of a deadlock situation consider the program from the
example 6. If process P2 happens to choose the second branch of its
alternative command then deadlock will arise once P3 terminates.

In order to prove deadlock freedom of a given parallel program P we
shalJ. first have to identify all situations in which deadJ.ock could arise.
SimilarJ.y as it was the case with matching of i/o commands the set of such
situations as a function of p is not computable. We once again resort to

456

static analysis.

Given a process Pi let C(Pi) be the set of all i/o commands
occuring in Pi augmented by the element end Pi.

if

i) 3 i ai ir end Pi
(not all processes have terminated),

ii) 13 i,j (ai,aj) E SYNT
(no communication can take place).

we now identify all blocked tuples which can be reached during
computations which ignore the boolean guards.

Let Init(L) denote for a formal language L its left factor, i.e. the
set {u : 3 w (uw e L)}.

we say that a tuple <a1 , ... ,an> from C{P1)x ... x C(Pn) is statically
blocked if

i) it is blocked,

ii) ::l h Vi
[ai ir end Pi - [h]ic e Init(L(Pi)) where L(ai) {c}
r. ai =end Pi - [h)i e L(Pi)]

The second condition states that there exists a communication sequence
which reaches the vector of the control points associated with <a1 , ... ,an>·
Reachability is checked by considering the projections [h]i of the sequence
h. If ai ~ end Pi then [h]ic Where L(ai) = {c} should be an initial part
of a sequence from L(Pi)· If ai = end Pi then [h]i should be a sequence
from L(Pi).

we now return to the issue of proving deadlock freedom. consider a
situation when n proofs from assumptions

;atisfying the hypotheses of the rule of parallel composition are given.

With each statically blocked tuple <a1 , ..• ,an> we associate a tuple
<r1 , ... ,rn> of assertions defined as follows :

if ai - k:a then ri = Pa Where {Pal a {~} e Ai,
if ai = end Pi then ri =qi.

If the parallel program P is executed in an initial (global) state
satisfying the pre-assertions p1 , ... ,pn then at the moment when the deadlock
situation corresponding with a statically blocked tuple <a1 , ... ,an> is
reached, the corresponding assertions ri, ... ,rn hold. This fact can be
formally proved once a formal semantics of CSP programs is given (see [A2)),

457

This observation leads us to the following theorem allowing to prove deadlock
freedom.

we say that the program P is deadlock free relative to the assertion p
if in the computations of P starting in a global state satisfying p

deadlock cannot arise. If p = true then we simply say that p is deadlock

tree.

Theorem 1 Let a proof of {p} P {q} be given. Then p is deadlock free
n

relative to p if for all statically blocked tuples <a1 , ... ,an> I h ri
i=l

holds for the corresponding tuple of assertions <ri, ... ,rn>.a

The theorem holds because as observed above every deadlock situation
corresponds with a statically blocked tuple.

To illustrate use of the theorem consider the following two examples.

Example 7

Take the program P from example 4. We prove that P is deadlock
free. To this purpose we first have to identify all statically blocked pairs.
But it is easy to see that their set is empty. Thus P is automatically
deadlock free. Here no proof theoretic analysis is necessary.a

Example 8

Consider the following program

II P3 .. skip].

we now prove that P is deadlock free with respect to the assertion
JGJO. We first identify all statically blocked triples. It is easy to see that
there is only one such tuple, namely <Pz!l, P3!x, end P3>. we now have to
find appropriate proofs from assumptions. It is easy to see that

where

A3 is empty and s 1 ,s2,s3 are bodies of the processes P1,P2 and

P3, respectively.

458

Note that the above proofs from assumptions satisfy the disjointness
proviso from the rule of parallel composition. Also the cooperation test is
easily established. Now consider the above identified statically blocked
triple <P2 J1, P3!x, end P3>. The corresponding triple of assertions is <Erue,
false, true> Whose conjunction obviously cannot be realized. Thus P is
deadlock free. Moreover, applying the rule of parallel composition we get
{~O} P {x-1} but now, thanks to the deadlock freedom of P, in the sense of
total correctness.a

5.6 Global invariants and bracketed sections

The proposed approach unfortunately fails when dealing with more
complicated programs. Consider the following example.

Example 9

Let P e [Pi :: *[i<lO
llP2 : : *[j <10

we clearly have

i:=i+i ; P2! i]

P1?j]] •

{i = 0 !I. j - O} P {i = 10 !I. j = 10} (6)

and we can prove this formula in the sense of partial correctness. Indeed, it
is easy to see that

{i .. 10} P2!i {i ~ 10 } I~ {i = O} Pi {i = 10)
and

Moreover, the disjointness proviso is satisfied and the cooperation test
obviously holds. By the rule of parallel composition we get (6) in the sense
of partial correctness.

A problem arises if we wish to prove (6) in the sense of total
correctness. We have to use appropriately modified proofs from assumptions. rt
is easy to see that

{i .. 10 h 10-(i-l) - n} Pz!i {i .. 10 h 10-(i-l) = n} I~ {i=O} P1 {i = io}

holds where for the loop invariant p1(n) we choose p1(n) e i .. 10 /\. 10-i n.

Unfortunately things are not that simple in the case of P2 .

we clearly have

{j<lO h 10-j~n} P1?j {j .. 10 h io-(j-l)=n} l""NT{j=O} Pz{j=lO}

where we take the loop invariant P2(n) "' j.;10 !I. 10-j = n. However, this
choice of assumptions does not pass the cooperation test. The pre-assertions
of the assumptions do not allow to relate the old value of j to the new one
(i.e. to the value of i) and any other choice of assumptions seems to suffer
from the same drawback. Moreover, this problem does not seem to have a
solution even if the rule of auxiliary variables were allowed to be used.a

459

More complicated examples can be constructed to show that the proposed
approach can fail for proofs of partial correctness, as well. To resolve these
difficulties we introduce the notion of a global Invariant. we intend to use in
the proof the fact that i-j holds whenever the control within p1 is not
immediately after the assignment i:=i+l. To express this fact we introduce
braekets - here putting .•• <i:=i+l; P1 !i> •.. - in order to delimit program
sections within which the invariant - here i=j - does not need to hold.

Definition 4 A process Pi
interspersed in its text, so
<Si ; ex ; s 2> where Si and
possibly empty and ex is an
bracketed sections.

bracketed if the brackets "<" and ">" are
that each program section <S> is of the form

S2 do not contain any i/o command and are
i/o command. Program sections <S> are called

once all processes are bracketed we can envisage a more restricted way
of executing of CSP programs where a simultaneous execution of a matching pair
of i/o commands is replaced by an uninterupted execution of the corresponding
bracketed sections. This view of computations of CSP programs leads to the
fol.lowing modification of the approach so far adopted.

First, proofs of the individual. processes use as assumptions
hypotheses about bracketed sections rather that about i/o commands. secondly,
the cooperation test is now applied to the assumptions about the braeketed
sections. Finally a global invariant I is introduced. This invariant is to
be preserved by the given parallel program. To this purpose it is enough to
ensure that

i) no free variable of I is subject to change outside a bracketed
section. Thanks to this restriction I cannot be invalited by
executing a command being outside a bracketed section.

ii) a parallel execution of any pair of bracketed sections associated
with a statically matching pair of i/o commands preserves I.

summarizing, we introduce the following definitions.

Definition 5

i) we say that two bracketed sections <S1 > and <S2 > statically match
if they contain statically matching i/o commands.

ii) Given two assumptions {pi} <S1 > {qi} and {pj} <S2 > {qj} used in the
proofs of Pi and Pj, respectively, we say that they statically match if the
pair of their bracketed sections statically matches.

Definition 6 Let an invariant I be given.

i) Given two assumptions {pi} <S1 > {qi} and {pj} <S2 > {qj} used in the
proofs of Pi and Pj, respectively, we say that they cooperate with
respect to I if

can be proved.

460

ii) Given sets of assumptions A1 , ... ,An used in the proofs of
processes P1 , ..• ,Pn, respectively, we say that Ai, ..• ,An cooperate
with respect to I if every statically matching pair of assumptions

from A1u .•. u An cooperates with respect to I.

To prove the correctness formula mentioned in the last definition we
need a new proof rule.

RULE 14 : FORMATION ROLE

provided a
commands, are
to change in

and a match, s 1 ,s2 ,s3 and s 4 do not contain any i/o
possibly empty, and no variable in s 1 ; s 2 is subject
s 3 ; s 4 and vice versa.

This rule is sound due to the fact that under the above stated
restrictions any execution of the program (s 1 ; ex ; ~2) II (s 3 ex ; s 4) is
equivalent to an execution of the program S1;S3;(exllex);S2 ;s4 •

Finally the following rule is introduced.

RULE 15 : ROLE OF PARALLEL COMPOSITION II

suppose that all processes Pi, i=l, ..• ,n, are bracketed.

Ai I- {Pi} Si {qi}, i=l, ... ,n,
free(p<S>• q<S>• Pi.qi) n change(Sj) = ~

for all {P<s>}<S>{q<S>} ~Ai and i~j.
no variable free in I is subject to change outside

a bracketed section,

A1••••1An cooperate w.r.t. I

n n
h Pih I}[P1: :S1 II ••. II Pn: :Snl {ii. qi h I}

i=l i=l

The conclusion of the rule refers to the original form of the
processes.

Intuitively, this rule is sound because every execution of a parallel
program P corresponds to an execution of its bracketed version in which all
pairs of matching bracketed sections are executed in an uninterupted manner.

To clarify the introduced notions we now reconsider the program
studied in example 9.

Example 10

consider the following bracketed version of the program P

P ~ [Pi::* [i<lO - <i:=i+l; Pz!i>l

461

"P2 :: • [jclO - cP1?j>ll

We choose I~ i=j. Note that neither i nor j can be changed
outside a bracketed section. Similarly as in example 9 we choose the following
proofs from assumptions which clearly hold :

{i<lO h 10-i = n} <i:=i+l;P2!i> {i~lO A 10-(i-l)=n} l~{i=O} pl {i=lO},

{jclO A lO-j=n}<P1?j>{j~lO h 10-(j-l)=n) l""""NT{j=O}Pz{j=lO}·

We now have to establish the cooperation test, i.e. to prove

{i<l.O A 10-i = n A j<lO A 10-j = n A i=j}
<i:=i+l ; Pz!i> II <P1?j>

{i~lO A 10-(i-l) = n h j~lO A 10-(j-l) = n h i=j}

which is straightforward due to the formation rule. All the premises of rule
15 are now satisfied and we obtain

{i~o A j=O A i=j} P {i=lO A j=lO A i=j},

and hence

{i=O h j=O} P {i=lO A j=lO}.

This formula is now proved in the sense of total correctness provided
deadlock freedom of P relative to i=O h j=O can be established. The issue
of deadlock freedom will be treated in the next section.a

Remark 2

Note that in the proo!s from asswnptions we used here different
parameter variables n and n. Even though here no problems would result if
the same parameter variables were chosen, in general caution has to be
exercised because of possible clashes of variables in the cooperation test.

5.7 Deadlock freedom revisited

once we modified our approach using global invariants we have to
modify our way of dealing with deadlock freedom accordingly. First, we revise
the definition of a blocked tuple. Suppose that all processes P1 , ... ,Pn are
bracketed. Let now B(Pi) be the set of all bracketed sections occuring in
Pi augmented as before by the element end Pi.

To each tuple <Bi, ... ,Bn> from B(P1)x ... x B(Pn) naturally corresponds
a tupie <ai, ... ,an> from C(P1)x ... x C(Pn) where each bracketed section is
replaced by its i/o command. Now, a tuple <bi,·· .bn> from B(P1)x ... x B(Pn)
is statically blocked if the corresponding tuple cai, ... ,an> is statically
blocked.

suppose now that n proofs from assumptions

462

and a global invariant I satisfying the hypotheses of the rule of parallel
composition II are given. With each statically blocked tuple <B1 , ... Bn> we
associate a tuple <r1 , ... rn> of assertions defined analogously as in section
5.5 :

if Bi= <S> then ri = P<S> where {P<s>} <S> {q<S>} 6 Ai,
if Bi end Pi then ri =qi.

The corresponding theorem about deadlock freedom takes now the
following form :
Theorem 2 consider a parallel program P = [Pi: : Si II ••• 11 Pn: : Sn J. Let a proof
of {p} p {q} with a global invariant I be given. Then P is deadlock free
relative top if for all statically blocked tuples <B1•···•Bn>

n
I (11. ri !\.I) holds for the corresponding tuple of assertions <r1 , ... ,rn>

i=l
Intuitively speaking, this theorem holds because of the following.

Assume a bracketing of P used in the proof of {p) P {q). Consider a
computation of P which starts in a global state satisfying the assertion p
and which leads to a deadlock. Delete from this computations all steps
performed by the processes P1 , ... Pn within the last bracketed sections
entered but not left. rn other words each process which in the considered
deadlock situation finds itself before an i/o command is "moved back" to the
entrance of the associated bracketed section. With the resulting vector of n
control points there corresponds a statically blocked tuple <b1 , .•. bn>· It now
suffices to show that for the corresponding tuple <r1 , ... rn> of

n
assertions the assertion l\. ri 11. I is satisfiable. But this is a direct

i=l
consequence of the following theorem (see [A2J).

Theorem 3 Let a proof of partial (total) correctness of {P} P { q} with a
global invariant I be given. Consider a computation of P which starts in a
global state satisfying p. If in this computation a process Pi is about to
enter a bracketed section or has terminated then the corresponding assertion
ri (3 n1•···~ri where n1 , ... ,~ are parameter variables occuring in ri)
holds. If none of the processes is within a bracketed section then I holds.o

This concludes our discussion of theorem 2. we now return to the
program from examples 9 and 10.

consider the proofs from assumptions and the global invariant I
provided in example 10. We now prove that P is deadlock free with respect to
the assertion i=O l\. j=O. Let a1 and a2 denote the bracketed sections of
Pi and P2, respectively. The only statically blocked pairs are <a1 ,end Pz>
and <end P1,a2>. The corresponding pairs of assertions are <i<lO 11. 10-i=n,
j=lO> and <i-10, j<lO 11. 10-j-n>, respectively.

Clearly -1((i<lO11. 10-i=n) l\. (j=lO) 11. (i=j) holds and analogously
for the second pair of assertions. According to theorem 2 P is deadlock free
relative to i=O l\. j=O.

Summarizing, we have proved the formula {i-=O 11. j=O} P {i=lO l\. j=lO}
in the sense of to ta I correctness. o

463

s.s Auxiliary variables

The final point we have to consider is the use of auxiliary variables.
They have been introduced in section 4 in the context of disjoint parallel
programs. Since the class of programs we consider here contains those studied
in section 4, we naturally need them here, as well. In fact it is not
sufficient to use here the substitution rule (rule 10) only. consider the
following example.

EXalllple 12

Let P £ P1:: *[i<lO - i:=i+l; Pz?X
tt Pz:: *[j<lO P1!l P1?j]]

We would like now to prove

{i=O A j=O} P {i=lO A j=lO}

in the sense of total correctness.

(7)

Unfortunately, contrary to example 10 we cannot now "couple" the
execution of the assigrunent i:=i+l with that of the i/o command P2 !i
within P1 . A solution which naturally suggests itself is to use an auxiliary
variable, say k, which would play the "role" of i. we thus modify the
program P obtaining

P' e [P1 :: *[i<lO i:=i+l
llP2 :: *[j<lO- <P1!1>

where P' is already bracketed.

<Pz?x > ; <k:=k+l
<P1 ?j >]]

Pz] i>]

we use the following proofs from assumptions which are easily
justified

{i<lO 11. 10-(i-l) - n 11. k-i-1} <Pz?X> {i<lO A 10-(i-l)=n A k=i-1},
{i .. 10 A 10-(i-l) = n A k=i-1} <k:=k+l;P2!i> {i<lO A 10-(i-l)=n A k=i}
I~ {i=O 11. k=O) P1 {i=lO 11. k=lO}

where for the loop invariant p(n) we choose p(n) =" i<lO A 10-i=n A k*i

and

{j<lO A 10-j-n) cP1 !1> {j<lO A 10-j=n},
{j<lO 11. 10-j=n} <P1?j> {j<;;.10 A 10-(j-l)=n}
I~ {j=O} Pz {j-10}

where for the loop invariant p(n) we choose p(n) e j•HO A 10-j=n.

Let I E k=j. Note that neither k nor j can be modified outside a
bracketed section. Also the proofs from assumptions satisfy the disjointness
proviso of rule 15.

we now handle the cooperation test. There are only two pairs of
statically matching bracketed sections. The case of the pair <Pz?X> and <P1!l>
is trivial. For the second case we have to show

464

{i~lO II. 10-(i-l) = n II. k=i-1 II. j<lO II. 10-j=n II. k=j}
<k:=k+J. ; Pz!i> II <P1?j>
{i~lO 11. 10-(i-l)=n II. k=i II. j~lO II. 10-(j-l)=n II. k=j}

which is obvious as thanks to the communication axiom and the formation rule
we can simply replace the program considered by k:=k+l ; j:=i.

By the rule of parallel composition II we now get

{i=O II. k=O II. j=O II. k=j} P' {i=lO II. k=lO II. j=lO II. k=j}.

To complete the proof we only need to get rid of the references to the
variable k both in the assertions and in the program. First note that by the
consequence rule

{i=O II. k=O II. j=Q II. k=j} P'{i=lO II. j=lO}.

Applying now the rule of auxiliary variables from section 4 we obtain

{i=O II. k=O II. j=O II. k=j} P (i=lO II. j=lO}.

It is now sufficient to apply the substitution rule with the
substitution [0/k] to get the desired formula (7).

To be more precise we still have to prove deadlock freedom of P
relative to i-o II. j=O. To this purpose we use the proofs from assumptions
given above. The only statically blocked pairs are

consider the first pair. According to theorem 2 we have to check that

I { (i.,;10 II. 10-(i-1)=n II. k=i-1) II. (j=lO) II. (k=j))

which is obvious. For the second pair we have to check

-I (j<lO II. 10-j=n) II. i=lO II. k=lO II. k=j)

which is equally obvious.

Thus by theorem 2 the program P' is deadlock free relative to i=O II.
j=O. To conclude the proof it now suffices to use the following theorem.

Theorem 4 Let A be a set of auxiliary variables of a parallel program P'
and let P be obtained from P' by deleting all assignments to the variables
in A. Then for any assertion p P' is deadlock free relative to p iff P
is deadlock free relative to p.o

This concludes the proof of (7).o

We thus add to our proof system the substitution rule and the rule of
auxiliary variables. Also, when proving deadlock freedom of parallel programs

465

we use theorem 2 in conjunction with theorem 4.

'l'he presentation of our proof system for the language introduced at
the beginning of this section is now complete.

6. I/O COMMANDS AS GUARDS

'l'he approach presented in the previous section can be easily extended
to handle other constructs of CSP. we deal in this section with an aspect of
the language so far left out of the considerations - i/o commands used as
guards.

6.1 New proof rules for alternative and repetitive commands

we extend the syntax of the processes by generalizing the notion of a
guard. So far guards were simply boolean expressions. we now allow the i/o
commands to occur as guards. In general, a guard will be a boolean expression,
an i/o command (called a pure i/o guard) or a boolean expression followed by
an i/o command, Thus a general form of an alternative command is now

m2
a kj :aj

j=l

m3

sj a c11km2+l'°'m2+l - T1J
l=l

(8)

where m1,m2,m3 ~ O, bi,cl are boolean expressions and Ri,sj and T1
programs. We labelled here for further reference the i/o guards. Repetitive
commands are as before of the form *S for an alternative command s. A
communication can now take place between two i/o commands either of which can
be in a guard position. A guard a or b;a can be passed if its boolean part
(if it exists) evaluates to true and the i/o command a gets executed by
performing a communication with a ma.tching i/o collllllaild of another process. The
following example clarifies the type of nondeterminism arising When the i/o
guards are used.

Example l.3

Consider the following program·

P3 : : skip]

Here in P2 the second guard cannot be passed since no communication
with p 3 can take place. Eventually the first guard will be passed and the
program will terminate with x equal l. we in fact have

{true} P {x=l}

in the sense of total correctness as we shall prove later. This should be
contrasted with the case of the parallel program studied in example 6 in which
P2 was of the form [true - pl. ?x a true - P3 j xJ. There a deadlock could arise
because in P2 the second guard could have been chosen.a

466

Repetitive commands are exited once all guards fall. we assume here
tha.t a guard fails if it has a boolean part which evaluates to false. Thus
repetitive commands containing a pure i/o guard cannot be exi.ted.

To prove correct:ness of the programs allowing the i/o guards we
provide new proof rules for alternative commands and repetitive commands.

RULE 16 : ALTERNATIVE COMMJt.ND RULE III

{p} cxj - sj {q}, j-i, •.• ·mi·

mi mi m3
{P} [0 bi - Ri 0 <Xj - Sj a c11~+1 - T1J {q}

i•l j•l l•l

RULE 17 1 REPETITIVE COMMl\ND RULE III

mi mi m3 m1 m3
{P}*[0 bi-Ri 0 <Xj-Sj a C11CXmi+1-T1l{p /I. 11.lbi/I. /I. "1 c1}

i•l j•l l•l i-1 l•l

Of course these rules are appropriate for proofs of partial
correctness only a.s absence of failure and termination are not guaranteed.

Appropriate rules for proofs of total correctness are the following
modifications of the above two rules.

RULE 18 1 AL'l'ERWl.TIVE COMM1IND ROLE IV

ID]. mi
p - V bi V V Cj) ,

i•l j•l

{p /I. b1} Ri {q}. 1-i, .•• ,m1 ,

{p /I. Cj} cxj - sj {q}, j-1, ... ·mi

mi mi
{p) c bi - Ri o cj 1 <Xj - Sjl {q}

i•l j•l

467

RULE 19 : REPETITIVE COMM1\.ND RULE IV

{p(n) h bi} Ri {3m <n p(m)}, i=l, .•. ,m1 ,

{p(n) A Cj} aj - Sj {3m < n p(m)}, j=l, .•. ,mz

- m1
{3 n p(n)}*[a bi

i=l

mz
Ri 0 Cj;aj - Sj]{3 n p(n) A

j=J.

m1 mz
A !bi Ah I Cj}

i=l j=J.

where p(n) is an assertion with a free variable n which does not appear
in the considered repetitive command. Both n and m range over natural
numbers.

The above four rules have to be used in conjunction with the following
natural rule allowing to prove their premises.

RULE 20 : ARROW RULE

{p} a;S {q}

{p} a - S{q}

Note that in rules 18 and 19 no alternative commands or repetitive
commands with pure i/o guards are taken care of. This is natural. A failure
arises if all guards of an alternative command fail. But according to the
definition of a failure of a guard this can arise only if the alternative
command has no pure i/o guards. Thus the appropriate rule needs to be provided
only for such a type of alternative commands. For alternative commands with
pure i/o guards rule 16 should be used.

In contrast, repetitive commands with pure i/o guards can never be
exited. Thus their termination can be proved only if no pure i/o guards are
present. consequently for repetitive commands with pure i/o guards no rule for
proofs of total correctness is provided.

Summarizing, for proofs (from assumptions) of partial correctness
rules 16 and 17 are used. For proofs (from asslU!lptions) of total correctness
rules 16, 18 and 19 are used where for alternative commands with no pure i/o
guards exclusively rule J.8 is used.

6.2 Proofs of partial correctness

The above introduced proof rules allow us to provide proofs of
processes from the assumptions about their i/o commands - now also allowed as
guards. What is left to do is to complete the approach by appropriately
extending its other building blocks - static analysis and bracketed sections.

consider first the issue of static analysis. Things are simple - it
suffices to extend the approach of section 5.1 to programs admitting i/o
guards. We complete the definition of the language L(Pi) given in section 5.J.
by putting for the guards of the form b;k:a L(b;k:a) = L(b) L(k:a) and
retaining aJ.J. other cJ.auses but now understood in a wider context where guards
can contain i/o commands.

468

we can now adopt the approach of section 5.3 without any changes provided the proofs of partial, respectively total correctness are used as explained above. The next step consists of refining this approach along the lines of section 5.6. To this purpose we generalize the notion of a bracketed section. They can be now of one of the following forms :

where s1 and s2 do not contain any i/o conunands. No other changes are needed for proofs of partial correctness - the arrow rule together with the formation rule allows to handle the case of cooperation when one or both bracketed sections are of the fonn a - s.

6.3 Deadlock freedom I

To prove deadlock freedom of the programs here considered we have to in the first place revise the definitions of blocked and statically blocked tuples originally given in sections 5.5 and 5.7 as in the presence of i/o guards other deadlock situations can arise.

Given a process Pi we define

D(k:a) = { {k:a}}

where k:a occurs in the process as an atomic command,

m2 m3
Ri c kj:aj - Sj c c11km2+1=CXm +l - T1J) =

j=l l=l 2

{A:A = {ki:ai i•l, .•. m2 } u B where A is non-empty and B ~ {kzn2+1:CXm2+1 l=l, ..• ,m3 }}, where m1 ~ o and m2 + m3 ~ 1,
DC* S) = D(S) where S contains at least one i/o guard.

For other types of commands S D(S) is not defined. Note that a typical set belonging to D(S) for an alternative command s consists of a// i/o guards which occur without the boolean guards together with a subset of those i/o guards which occur with a boolean guard.

Given a process Pi we define now G(Pi) to be the union of all sets D(s) for s being a subprogram of Pi together with the element {end Pi}. Each element of G(Pi) corresponds to a unique control point within Pi - the control resides either in front of an i/o command, or an alternative or repetitive command with i/o guards or at the end of the process. With each control point of the second type we associated a set of i/o commands which can be at this point executed. This set should not be empty - if it were this would correspond to a failure situation.

We say that a tuple <D1 , ... ,Dn> from G(P1)x ••. x G(Pn) is blocked if i) :::ii Di ;t {end Pi}
(not all processes have terminated),

ii) (u Di X Dj) n SYNT = ~
i>!j
(no communication can take place).

469

Alternatively ii) can be stated as
Dj (i~j) matches.

no pair of elements from Di and

As in section 5.5 we now identify all blocked tuples which can be reached during computations which ignore the boolean guards.

we say that a tuple <D1 , .•. ,Dn> from G(P1)x ... x G(Pn) is statically blocked if

i) it is blocked
ii) 3- h Vi

(Di~ {end Pi} - (h]i c E Init(L(Pi))
for all c e {L(a)

A Di~ {end Pi} - [h]i E L(Pi)].

The second condition is a straightforward modification of the corresponding condition from section 5.5. It simply states that there exists a sequence of communications which reaches the vector of control points associated with the tuple <D1 , ... ,Dn>·

suppose now that n proofs from the assumptions about the i/o commands

which satisfy the hypotheses of the rule of parallel composition (rule 13) are given. With each statically blocked tuple <D1 , .•. ,Dn> from G(P1)x ... x G(Pn) we associate a tuple <r1 , ... ,rn> of assertions defined as follows:

if Di = {k:a} Where k:a is an i/o command
from Pi then ri "" Pa where {Pa} a {<ia} E Ai,

if Di {ki'ai: i=l, ... ,m2 } u B where
B = fkro2+1•~2+1: l=l, ... ,m3} and Di is associated with an alternative command (9) or a repetitive command then

ri "" l\ P13 l\
k:{3EDi

where :B

m1
l\ _ -J Cl l\ l\ -, bi

l)l!B i=l

The second clause of the above definition requires some explanation. All i/o guards belonging to Di can be, informally speaking, executed. Thus the corresponding preconditions p 13 should hold for all of them. Moreover, the boolean guards associated with the i/o guards from B should hold (because these guards can be executed), the boolean guards associated with the i/o guards not in B should evaluate to !alse (because these guards are not listed in Di and consequently cannot be executed) and the boolean guards bi for i=l, ... ,m1 should all evaluate to false (because otherwise a progress in the process Pi could be made - remember that we are trying to identify deadlock situations).

470

To prove deadlock freedom of parallel programs admitting i/o guards theorem 1 from section 5.5 can now be used without any changes.

we now illustrate the approach of this section by considering the
following two examples.

Example 14

Consider the program P from example 13. we clearly have

{true} P2 !1 {true} 1-rl {true} P1 {true},
{true} P1?x {x=l}, {true} P3!x {x=J.} 1-N {true} P2 {x=l},
I """N {true} P3 {true} .

The cooperation test is easily established so by the parallel
composition rule {true} P {x=l} holds.

To prove this formula in the sense of total correctness we need only to show that p is deadlock free. To this purpose we should identify first all statically blocked triples. But their set is empty. Thus the condition of theorem 1 is voidly satisfied and P is indeed deadlock free.

Note that in the above proofs from assumptions we used an assumption about the i/o guard P3!x which passed the cooperation test voidly (see also the discussion in section 5.4).o

A more interesting program to consider is

P3 : : skip].

We now prove {b} P {x=J.} in the sense of total correctness. It is easy to see that

Taking for P1 and P3 the proofs from assumptions given in the previous example we get by the parallel composition rule {b} P {x=l} in the sense of total correctness "modulo" deadlock freedom.

To prove deadlock freedom we first list all statically blocked triples. There is only one such triple - <{P2 !1}, {P3 !x}, {end P3 }>.

The corresponding triple of assertions is <true, b II. I b, true>. Their conjunction is inconsistent so according to theorem-i~P is deadlock free relative to b.a

471

6.4 Deadlock freedom II

we now consider the case when bracketed sections and global invariants
are used. The approach of the previous section has to be refined
appropriately. The modifications are analogous as those which have been made
in section 5.7.

suppose that all processes P1 , •.. ,Pn are bracketed. Let now F(Pi)
be the set of all non-empty sets of bracketed sections of Pi augmented by
the set {end Pi}·

With each tuple <F1, •.. ,Fn> from F(P1)x .•• x P(Pn) we can associate
a tuple <D1, ... ,Dn> where each Di is either a non-empty set of i/o
commands of Pi or the set {end Pi} by simply replacing every bracketed
section by its i/o command. we now say that a tuple <F1 , •.. ,Fn> from
F(P1)x ••. x F(Pn) is ststlce.l/y blocked if the corresponding tuple <D1 , •.. ,Dn>
is statically blocked.

suppose now that n proofs from assumptions

and a global invariant I satisfying the hypotheses of the rule of parallel
composition II are given. With each statically blocked tuple <F1 , •.. ,Fn> we
associate a tuple <r1 , •.. ,rn> of assertions defined as follows :

if Fi is a singleton { <S>} associated with an i/o command of Pi
then ri s P<S> where {P<S>} <S> {q<S>} E Ai,

if Fi is associated with an alternative command (8) or a repetitive
command then

ri ~ h P<S> h h_c1 h
<S>EFi lEB

where B = {l: k.rn2+1=CXmz+l E B} and for each bracketed section <S>

{P<S>} <S> {q<S>} E Ai,

The second clause of this definition is motivated by the same reasons
as the corresponding clause provided in the previous section. To prove
deadlock freedom one can now use without any changes theorem 2 in conjunction
with theorem 4. we conclude this section by considering the following simple
example which necessitates the use of bracketed sections.

Example 16

Take the following program P being a modification of the program
considered in examples 9 and 10

P ~ [Pl :: * [i<lO
II Pz:: * [j<lO

P2 i i:=i+l]
P1?j - skip]

472

we now prove

{i=l h j=O} P {i=ll h j=lO} (9)

in the sense of total correctness.

we choose I = i=j+l and a natural bracketing of P1 and Pz used
in the following proofs from assumptions :

{i<ll n 11-i=n} <Pz!i - i:=i+l> {i~ll h 11-(i-l)=n) 1-NT{i=l} P1 {i=ll},

{j<lO J'.. 10-j=n} <P1?j skip>{j~lO /',. 10-(j-l)=n} '""NT {j=O) Pz (j=lO}.

which clearly hold. The appropriate loop invariants are respectively

p1(n) = i~ll h 11-i = n

and

Pz(n) = j~lO h 10-i = n.

To prove the cooperation test we have to show

{i~ll I'.. 11-i = n h j<lO h 10-j = n h i=j+l}
<Pz!i i:=i+l> II <P1?j - skip>
{i~ll J'.. 11-(i-1) = n h j~lO h 10-(j-1) = n h i=j+l)

which is straightforward as the parallel subprogram considered is equivalent
to j:=i i:=i+l.

By the rule of parallel composition II we get (9) provided we can
establish deadlock freedom of P relative to the assertion i=l h j=O.

we first identify all statically blocked pairs. There are two such
pairs

<{<Pz!i - i:=i+l>}, {end Pz}>

and

The corresponding pairs of assertions are

<i<ll h 11-i = n, j = 10>

and

<i=ll, j<lO h 10-j = n>.

To prove deadlock freedom it now suffices to use theorem 2.

This concludes the proof of (9).o

473

6.5 The distributed termination convention

According to the original convention of [H4) a guard fails if either its boolean part evaluates to false or its communication part addresses a process which has terminated. For the simplicity sake we have not taken here into account the second possibility of a failure. The above convention when applied to repetitive commands is usually called a distributed termination convention (DTC). This convention is taken care of in the proof system of [A.FR].

we also mention here a result of Apt and Francez [AFJ which states that there exists a transformation T that transforms a parallel program P which uses the above convention into an equivalent parallel program T(P) which uses the convention of section 6.1. An equivalence is understood here in the sense of satisfying the same correctness formulae. Thus to prove correctness of a program P in the presence of the OTC it suffices to prove correctness of T(P) in the sense of this paper.

REl"ERENCES

[Al J APT, K. R. , Ten years of Roare • s logic, a survey, part I, ACM TOPI.AS 3, No. 4, pp. 431-483, 1981.

[A2 J APT, K. R., f'o:r:mal justification of a proof system for Communicating sequential Processes, Journal ACM 30, No. 1, pp. 197-216, 1983.

[A3J APT, K.R., Ten years of Roare•s logic, a survey - nondetellllinism, part II, Theoretical Computer Science 28, pp. 83-109, 1984.

[A4J

[Af']

[Af'R]

[APSJ

[CC]

[DJ.)

APT, K.R., A static analysis of CSP programs, in : Logics of Programs, Proceedings 1983, Lecture Notes in Computer Science 164, Springer
verlag, New York, pp. 1-17, 1984.

APT, K.R., and FRANCEZ, N. Modeling the distributed tellllination of CSP, ACM TOPI.AS, 6, No.3, pp. 370-379, 1984.

APT, K.R. I FRANCEZ, N. and DE ROEVER, W.P.' A proof system for
communicating sequential processes, ACM TOPLAS 2, No. 3, pp. 359-385,
1980.

APT, K.R., PNUELI, A. and STAVI, J., Fair termination revisited with delay, in : Proc. 2nd Conference FCT and TCS, pp. 146-170, Bangalore, 1982. (Also to appear in Theoretical computer Science).

COUSOT, P., and COUSOT, R., Semantic analysis of communicating
sequential processes, in : Proceedings ICALP 80, Lecture Notes in computer science 85, springer verlag, New York, pp. 119 - 133,
1980.

DIJKSTRA, E.W., Guarded commands, nondeterminacy and formal derivation of programs, communications ACM 18, No. 8, pp. 453-457, 1975.

474

[D2J DIJKSTRA, E.W., A Discipline of Programming, Prentice Hall, Englewood
Cliffs, 1976.

[GJ GORELICK, G.A., A complete axiomatization system for proving
assertions about recursive and nonrecursive programs, Tech. Rep. 76,
oep. Computer Science, University of Toronto, 1975.

[Hl] HOARE, C.A.R., An axiomatic basis for computer programming,
communications ACM 12, No. 10, pp. 576-580, 583, 1969.

[H2J HOARE, c.A.R., Procedures and parameters : an axiomatic approach, in
Leeture Notes in Mathematics, vol. 188 : Semantics of Algorithmic
Languages, Springer Verlag, New York, pp. 102-116, 1971.

(H3] HOARE, c.A.R., Towards a theory of parallel programming, in
operating systems Techniques (C.A.R. Hoare, R.H. Perrot, eds.),
New York, Academic Press, 1972.

[H4]

[LS]

[LG]

[MP]

[MC]

[OGl]

[OG2]

(S]

[T]

HOARE, C.A.R., Communicating Sequential Processes, Communications ACM
21, No. 8, pp. 666-677, 1978.

LAMPORT, L. and SCHNEIDER, F.B., The "Hoare Logic" of CSP, and all
that, ACM TOPI.AS 6, No. 2, pp. 281-296, 1984.

LEVIN, G. and GRIES, D., A proof technique for communicating
sequential processes, Acta Informatica 15, No. 3, pp. 281-302,
1981.

MANNA, z. and PNUELI, A., How to cook a temporal proof system for
your pet language, in : Proceedings lOth Annual ACM Symp. on
Principles of Progr. Lang., pp. 141-154, 1983.

MISRA, J. and CHANDY, K.M., Proofs of Networks of Processes, IEEE
Transactions on Software Engineering, Vol. SE-7, No. 4, pp. 417-426,
1981.

OWICKI, s. and GRIES, D., Verifying properties of parallel programs
an axiomatic approach, Communications ACM 19, No. 5, pp. 279-285,
1976.

OWICKI, s. and GRIES, D., An axiomatic technique for parallel
programs, Acta Informatica, pp. 319-340, 1976.

SOUNDARARAJAN, N. , Correctness proofs of CSP Programs, in : Proc. lst
conference FCT and TCS, pp. 135-142, Bangalore, 1981 (also in
Theoretical Computer Science 24, No. 2, pp. 131-142, 1983).

TAYLOR, R.N., A general purpose algorithm for analyzing concurrent
programs, Communications ACM 26, No. 5, pp. 362-376, 1983.

