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Constraint propagation algorithms form an important part of most of the constraint programming 
systems. We provide here a simple, yet very general framework that allows us to explain several 
constraint propagation algorithms in a systematic way. In this framework we proceed in two steps. 
First, we introduce a generic iteration algorithm on partial orderings and prove its correctness 
in an abstract setting. Then we instantiate this algorithm with specific partial orderings and 
functions to obtain specific constraint propagation algorithms. In particular, using the notions 
commutativity and semi-commutativity, we show that the AC-3, PC-2, DAC, and DPC algorithms for 
achieving (directional) arc consistency and (directional) path consistency are instances of a single 
generic algorithm. The work reported here extends and simplifies that of Apt [1999a]. 

Categories and Subject Descriptors: D.3.3 [Language Constructs and Features]: Constraints; 
1.1.2 [Algorithms]: Analysis of Algorithms; I.2.2 (Automatic Programming]: Program Syn­
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1. INTRODUCTION 

1.1 Motivation 

A constraint satisfaction problem, in short CSP, is a finite collection of relations 
(constraints), each on some variables. A solution to a CSP is an assignment of 
values to all variables that satisfies all constraints. Constraint programming in 
a nutshell consists of generating and solving CSP's means of general or domain­
specific methods. 

This approach to programming became very popular in the eighties and led 
to a creation of several new programming languages and systems. Some of the 
more known examples include a constraint logic programming system ECVPSe 
(see Aggoun et al. [1995]), a multiparadigm programming language Oz (see, e.g., 
Smolka [1995]), and the ILOG Solver that is the core C++ library of the ILOG 
Optimization Suite (see ILOG [1998]). 

One of the most important general-purpose techniques developed in this area is 
constraint propagation that aims at reducing the search space of the considered 
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CSP while maintaining equivalence. It is a very widely used concept. For instance 
on Google, http: I /www.google.com/ on March 21st, 2001, the query "constraint 
propagation" yielded 6,840 hits. For comparison, the query "NP completeness" 
yielded 14,400 hits. In addition, in the literature several other names have been 
used for the constraint propagation algorithms: consistency, local consistency, con­
sistency enforcing, Waltz, filtering, or narrowing algorithms. 

The constraint propagation algorithms usually aim at reaching some form of 
"local consistency," a notion that in a loose sense approximates the notion of "global 
consistency." Over the last 20 few years many useful notions of local consistency 
were identified, and for each of them one or more constraint propagation algorithms 
were proposed. 

Many of these algorithms were built into the existing constraint programming 
systems, including the above three ones. These algorithms can be triggered either 
automatically, e.g., each time a new constraint is generated (added to the "con­
straint store" ) , or by means of specific instructions available to the user. 

In Apt (1999a] we introduced a simple framework that allowed us to explain 
many of these algorithms in a uniform way. In this framework the notion of chaotic 
iterations, so fair iterations of functions, on Cartesian products of specific partial 
orderings played a crucial role. We stated there that "the attempts offinding general 
principles behind the constraint propagation algorithms repeatedly reoccur in the 
literature on constraint satisfaction problems spanning the last twenty years" and 
devoted three pages to survey this work. Two references that are perhaps closest 
to our work are Benhamou (1996] and Telerman and Ushakov (1996]. 

These developments led to an identification of a number of mathematical prop­
erties that are of relevance for the considered functions, namely monotonicity, in­
:fl.ationarity, and idempotence (see, e.g., Saraswat et al. (1991] and Benhamou and 
Older [1997]). Functions that satisfy these properties are called closures (see Gierz 
et al. [1980]). Here we show that also the notions of commutativity and so-called 
semi-commutativity are important. 

As in Apt [1999a], to explain the constraint propagation algorithms, we proceed 
here in two steps. First, we introduce a generic iteration algorithm that aims to 
compute the least common fixpoint of a set of functions on a partial ordering and 
prove its correctness in an abstract setting. Then we instantiate this algorithm with 
specific partial orderings and functions. The partial orderings will be related to the 
considered variable domains and the assumed constraints, while the functions will 
be the ones that characterize considered notions of local consistency in terms of 
fixpoints. 

This presentation allows us to clarify which properties of the considered func­
tions are responsible for specific properties of the corresponding algorithms. The 
resulting analysis is simpler than that of Apt [1999a] because we concentrate here 
on constraint propagation algorithms that always terminate. This allows us to 
dispense with the notion of fairness. Moreover, we prove here stronger results by 
taking into account the commutativity and semi-commutativity information. 

1.2 Example 

To illustrate the problems here studied consider the following puzzle from Mack­
worth [1992]. Take the crossword grid of Figure 1 and suppose that we are to fill it 
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Fig. 1. A crossword grid. 

Fig. 2. A solution to the crossword puzzle. 

with the words from the following list: 

-HOSES, LASER, SAILS, SHEET, STEER, 
-HEEL, HIKE, KEEL, KNOT, LINE, 
-AFT, ALE, EEL, LEE, TIE. 

This problem has a unique solution depicted in Figure 2. 
This puzzle can be solved by systematically considering each crossing and elim­inating the words that cannot be used. Consider for example the crossing of the positions 2 and 4, in short (2,4). Neither word HOSES nor LASER can be used in position 2 because no four-letter word (for position 4) exists with S as the second letter. Similarly, by considering the crossing (2,8) we deduce that none of the words LASER, SHEET, and STEER can be used in position 2. 
The question now is what "systematically" means. For example, after considering the crossings (2,4) and (2,8) should we reconsider the crossing (2,4)? Our approach clarifies that the answer is "No" because the corresponding functions /2,4 and '2,s that remove impossible words, here for position 2 on account of the crossings (2,4) and (2,8), commute. In contrast, the functions h,4 and !4,5 do not commute, so after considering the crossing (4,5) the crossing (2,4) needs to be reconsidered. In Section 6 we formulate this puzzle as a CSP and discuss more precisely the problem of scheduling of the involved functions and the role commutativity plays here. 

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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1.3 Plan of the Article 

This article is organized as follows. First, in Section 2, drawing on the approach 
of Monfroy and Rety [1999], we introduce a generic iteration algorithm, with the 
difference that the partial ordering is not further analyzed. Next, in Section 3, we 
refine it for the case when the partial ordering is a Cartesian product of component 
partial orderings, and in Section 4 explain how the introduced notions should be 
related to the constraint satisfaction problems. These last two sections essentially 
follow Apt [1999a], but because we started here with the generic iteration algorithms 
on arbitrary partial orderings we built now a framework in which we can also discuss 
the role of commutativity. 

In the next four sections we instantiate the algorithm of Section 2 or some of its 
refinements to obtain specific constraint propagation algorithms. In particular, in 
Section 5 we derive algorithms for arc consistency and hyper-arc consistency. These 
algorithms can be improved by taking into account information on commutativity. 
This is done in Section 6 and yields the well-known AC-3 algorithm. Next, in 
Section 7 we derive an algorithm for path consistency, and in Section 8 we improve 
it, again by using information on commutativity. This yields the PC-2 algorithm. 

In Section 9 we clarify under what assumptions the generic algorithm of Section 2 
can be simplified to a simple for loop statement. Then we instantiate this simplified 
algorithm to derive in Section 10 the DAC algorithm for directional arc consistency 
and in Section 11 the DPC algorithm for directional path consistency. Finally, in 
Section 12 we draw conclusions and discuss recent and possible future work. 

We deal here only with the classic algorithms that establish (directional) arc con­
sistency and (directional) path consistency and that are more than 20, respectively 
10, years old. However, several more "modern" constraint propagation algorithms 
can also be explained in this framework. In particular, in Apt [1999a, page 203] 
we derived from a generic algorithm a simple algorithm that achieves the notion of 
relational consistency of Dechter and van Beek [1997]. In turn, by mimicking the 
development of Sections 10 and 11, we can use the framework of Section 9 to derive 
the adaptive consistency algorithmofDechter and Pearl [1988]. Now, Dechter [1999] 
showed that the latter algorithm can be formulated in a very general framework of 
bucket elimination that in turn can be used to explain such well-known algorithms 
as directional resolution, Fourier-Motzkin elimination, Gaussian elimination, and 
also various algorithms that deal with belief networks. 

2. GENERIC ITERATION ALGORITHMS 

Our presentation is completely general. Consequently, we delay the discussion of 
constraint satisfaction problems till Section 4. In what follows we shall rely on the 
following concepts. 

Definition 2.1. Consider a partial ordering (D, !;;; ) with the least element ..l. 
and a finite set of functions F := {!i, .. ., fk} on D. 

-By an iteration of F we mean an infinite sequence of values do, di, ... defined 
inductively by 

do :=..l., 

dj := lij (dj-1), 
ACM 'Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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where each ii is an element of [1..k]. 

-We say that an increasing sequence do ~ di ~ d2 ..• of elements from D even­
tually stabilizes at d if for some j ? 0 we have di = d for i ? j. 

In what follows we shall consider iterations of functions that satisfy some specific 
properties. 

Definition 2.2. Consider a partial ordering (D, ~ ) and a function f on D. 

-f is called inflationary if x ~ f(x) for all x. 

-f is called monotonic if x ~ y implies f(x) ~ f(y) for all x,y. 

The following simple observation clarifies the role of monotonicity. The subse­
quent result will clarify the role of infiationarity. 

LEMMA 2.3 (STABILIZATION). Consider a partial ordering (D, [;;; ) with the least 

element .l and a finite set of monotonic junctions F on D. 
Suppose that an iteration of F eventually stabilizes at a common fixpoint d of the 

functions from F. Then d is the least common fixed point of the functions from F. 

PROOF. Consider a common fixpoint e of the functions from F. We prove that 
d [;;; e. Let do, di, ... be the iteration in question. For some j ? 0 we have di = d 
for i "?_ j. 

It suffices to prove by induction on i that di [;;; e. The claim obviously holds for 
i = 0 since do = .L Suppose it holds for some i ? 0. We have di+i = fj(di) for 
some j E (1..k]. 

By the monotonicity of fj and the induction hypothesis we get fj(di) [;;; fj(e), 
so di+1 [;;; e since e is a fixpoint of fj· D 

We fix now a partial ordering (D, [;;; ) with the least element .l and a finite set 
of functions Fon D. We are interested in computing the least common fixpoint of 
the functions from F. To this end we study the following algorithm inspired by a 
similar, though more complex, algorithm of Monfroy and Rety (1999] defined on a 
Cartesian product of component partial orderings. 

GENERIC ITERATION ALGORITHM (GI) 

d := .l; 
G:=F; 
while G =/=- 0 do 

choose g E G; 
G := G-{g}; 

od 

G := GUupdate(G,g,d); 
d := g(d) 

where for all G, g, d the set of functions update(G, g, d) from Fis such that 

A. {! E F - G I j(d) = d /\ f(g(d)) '/= g(d)} ~ update(G, g, d), 

B. g(d) = d implies that update(G,g,d) = (/), 

C. g(g(d)) '/= g(d) implies that g E update(G, g, d). 

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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The above conditions on update( G, g, d) look somewhat artificial and unneces­
sarily complex. In fact, an obviously simpler alternative exists according to which 
we just postulate that {! E F - G I f (g(d)) 'f. g(d)} ~ update(G, g, d), i.e., that we 
add to G at least all functions from F - G for which the "new value," g(d), is not 
a fixpoint. 

The problem is that for each choice of the update function we wish to avoid the 
computationally expensive task of computing the values of f(d) and f(g(d)) for the 
functions fin F - G. Now, when we specialize the above algorithm to the case of a 
Cartesian product of the partial orderings we shall be able to avoid this computation 
of the values of f(d) and f(g(d)) by just analyzing for which components d and 
g(d) differ. This specialization cannot be derived by adopting the above simpler 
choice of the update function. 

Intuitively, assumption A states that update(G, g, d) at least contains all the 
functions from F - G for which the "old value", d, is a fixpoint but the "new 
value," g(d), is not. So at each loop iteration such functions are added to the set 
G. In turn, assumption B states that no functions are added to Gin case the value 
of d did not change. Note that even though after the assignment G := G - {g} we 
have g E F - G, still g E {! E F - G I f(d) = d /\ j(g(d)) =/= g(d)} does not hold, 
since we cannot have both g(d) = d and g(g(d)) 'f. g(d). So assumption A does 
not provide any information when g is to be added back to G. This information is 
provided in assumption C. 

On the whole, the idea is to keep in G at least all functions j for which the 
current value of d is not a fixpoint. 

An obvious example of an update function that satisfies assumptions A, B, and 
C is 

update(G, g, d) := {! E F - G I f(d) = d /\ f(g(d)) =/= g(d)} U C(g), 

where 

C(g) = {g} if g(g(d)) =/= g(d) and otherwise C(g) = 0. 

However, again, this choice of the update function is computationally expensive 
because for each function f in F - G we would have to compute the values f (g( d)) 
and f(d). 

We now prove correctness of this algorithm in the following sense. 

THEOREM 2.4 (GI). 

(i) Every terminating execution of the GI algorithm computes in d a common fix­
point of the junctions from F. 

(ii) Suppose that all junctions in F are monotonic. Then every terminating ex­
ecution of the GI algorithm computes in d the least common fixpoint of the 
functions from F. 

(iii) Suppose that all junctions in F are inflationary and that (D, [;;;; ) is finite. 
Then every execution of the GI algorithm terminates. 

PROOF. (i) Consider the predicate I defined by 

I:= 'VJ E F - G f(d) =d. 
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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Note that I is established by the assignment G :=F. Moreover, it is easy to check, 
that by virtue of assumptions A, B, and C, I is preserved by each while loop 
iteration. Thus I is an invariant of the while loop of the algorithm. (In fact, 
assumptions A, Band Care so chosen that I becomes an invariant.) Hence upon 
its termination 

(G=0)/\J 

holds, i.e., 

\ff E F f(d) =d. 

(ii) This is a direct consequence of ( i) and the Stabilization Lemma 2.3. 
(iii) Consider the lexicographic ordering of the strict partial orderings (D, :::i) and 
(N, <), defined on the elements of D x N by 

(di, n1) <1ex (d2, n2) iff d1 :::J d2 or (d1 = d2 and n1 < n2)· 
We use here the inverse ordering :::J defined by d1 :::J d2 iff d2 [;;di and d2 =/.di. 

Given a finite set G we denote by card G the number of its elements. By assump­
tion all functions in F are inflationary, so, by virtue of assumption B, with each 
while loop iteration of the modified algorithm, the pair 

(d,card G) 

strictly decreases in this ordering <1ex· But by assumption (D, (;;:;; ) is finite, so 
(D, :::J) is well-founded, and consequently so is (D x N, <zex)- This implies termi­
nation. D 

In particular, we obtain the following conclusion. 

COROLLARY 2.5 (GI). Suppose (D, [;;;; ) is a finite partial ordering with the least 
element J_. Let F be a finite set of monotonic and inflationary functions on D. 
Then every execution of the GI algorithm terminates and computes in d the least 
common fixpoint of the functions from F. 

In practice, we are not only interested that the update function is easy to compute 
but also that it generates small sets of functions. Therefore we show how the 
function update can be made smaller when some additional information about the 
functions in Fis available. This will yield specialized versions of the GI algorithm. 
First we need the following simple concepts. 

Definition 2.6. Consider two functions f, g on a set D. 

-We say that f and g commute if f(g(x)) = g(J(x)) for all x. 
-We call f idempotent if f(J(x)) = f(x) for all x. 
-We call a function f on a partial ordering (D, [;;;; ) a closure if f is inflationary, 

monotonic, and itempotent. 

Closures were studied in Gierz et al. [1980]. They play an important role in 
mathematical logic and lattice theory. We shall return to them in Section 4. 

The following result holds. 

THEOREM 2.7 (UPDATE). 
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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(i) If update(G, g, d) satisfies assumptions A, B, and C, then so does the function 

update(G,g,d) - Idemp(g), 

where 

Idemp(g) = {g} if g is idempotent and otherwise Idemp(g) = 0. 
(ii) Suppose that for each g the set of functions Comm(g) from F is such that 

-g tf_ Comm(g), 
-each element of Comm(g) commutes with g. 
If update(G, g, d) satisfies assumptions A, B, and C, then so does the function 

update(G,g,d) -Comm(g). 

PROOF. It suffices to establish in each case assumption A and C. Let 

A:={! E F - G I f(d) = d /\ f(g(d)) i= g(d)}. 

(i) After introducing the GI algorithm we noted already that g tf_ A. So assumption 
A implies A ~ update ( G, g, d) - {g} and a fortiori A ~ update( G, g, d) - I demp (g). 

For assumption C it suffices to note that g(g(d)) i= g(d) implies that g is not 
idempotent, i.e., that Idemp(g) = 0. 

(ii) Consider f EA. Suppose that f E Comm(g). Then f(g(d) = g(f(d)) = g(d) 
which is a contradiction. So f tf_ Comm(g). Consequently, assumption A implies 
A~ update(G, g, d) - Comm(g). 

For assumption C it suffices to use the fact that g tf_ Comm(g). D 

We conclude, that given an instance of the GI algorithm that employs a specific 
update function, we can obtain other instances of it by using update functions 
modified as above. Note that both modifications are independent of each other and 
therefore can be applied together. 

In particular, when each function is idempotent and the function Comm satisfies 
the assumptions of (ii), then the following holds: if update( G, g, d) satisfies assump­
tions A, B, and C, then so does the function update(G,g,d) - (Comm(g) U {g}). 

3. COMPOUND DOMAINS 

In the applications we study, the iterations are carried out on a partial ordering 
that is a Cartesian product of the partial orderings. So assume now that the partial 
ordering (D, [;;; ) is the Cartesian product of some partial orderings (Di, [;;; i), for 
i E [l..n], each with the least element .li. So D =Di x · · · x Dn. 

Further, we assume that each function from F depends from and affects only 
certain components of D. To be more precise we introduce a simple notation and 
terminology. 

Definition 3.1. Consider a sequence of partial orderings (D1, r;;;; 1), ... , (Dn, [;;; n)· 

-By a scheme (on n) we mean a growing sequence of different elements from [l..n]. 
-Given a schemes:= ii, ... , i1 on n we denote by (D 8 , [;;; 8 ) the Cartesian product 

of the partial orderings ( D;j, [;;; ij), for j E [1..l]. 
-Given a function f on D 8 we say that f is with schemes and say that f depends 

on i if i is an element of s. 
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-Given an n-tuple d := d.1 1 ... ,dn from D and a schemes:= ii, ... ,i1 on n we 
denote by d[s] the tuple dill ... , di1 • In particular, for j E [l..n] d[jJ is the jth 
element of d. 

Consider now a function f with scheme s. \Ve extend it to a function J+ from 
D to Das follows. Take d ED. We set 

j+(d):=e 

where e[s] = f (d[s]) and e[n - s] = d[n - s], and where n - s is the scheme obtained 
by removing from 1, .. ., n the elements of s. We call j+ the canonic extension of 
f to the domain D. 

So j+ (d1, ... , dn) = ( e1, ... , en) impli<'!S cl, = e1 for any i not, in the schemes off. 
Informally, we can summarize it by saying that j-t· does not change t!w components 
on which it does not depend. This is what we meant above by stat.ing that each 
considered function affects only ct>.rtain components of lJ. 

We now say that two functions, f with scherne .'!and g with schmne t, commute 
if the functions j+ and g+ commut<:. 

Instead of defining iterations for the cruie of tlw functions with we rather 
reduce the situation to the oue studied in the previotlH section and ('onsidm, c:quiv­
alently, the iterations of the canonic (~xtern.;iomi of these to tlw common 
domain D. However, because of this specific form of the c<mHidered functions, we 
can use now a simple definition of the tq>ticLte function. More Wf' have the 
following observation. 

NOTE 3.2 (UPDATE). SiLpJXJse that tach function in Fis of thr 
the following functi.on update s1itisfies A. B. mui C: 

update(G,g+,d) ::::;; u+ E F' If dependB on .~ome ! in ,'J .mch that 

where g is with scheme s. 

PROOF. To deal with ~JSsumptfon A a function f 
j+(d) =d. Then j+(e) = e for any f) thttt co!udd•:.fl with don al! 
are in the scheme of f. 

J+. Tht~n 

(d)[i)}, 

G such that 

""'"'"" that 

Suppose now additionally that (g+ 
i;uch an e, i.e., g+(ci) differs from don sn1ne 
other words, f depends on some i such that 

!lw a!HiVP ii; not 
in th1' ">chenw of f. In 
. Thii; i i'I then in the 

scheme of g and consequ<mtly f + 
The proof for !l881m1ption B is immerfattn. 
Finally, to dE1al with assumption C it 1mffke4' t{.1 not~· tlrnt I (d) 

implies g+ (d)) oj:; d, which in tum 

This, together with the GI idgorithm, hm i11 whkb '"''·' 
introduc:ed a variable d' to hold the value of f f F} 
and the functions with Rchemes of tlwir nuiouic •">:h,Hlliorn' to D. 
GENERIC ITERATION ALGORITHM FOR 

d := (J.1 •... , .111); 
d' := d; 
G :0 " F{i; 
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while G -:f 0 do 

od 

choose g E G; suppose g is with schemes; 
G := G- {g}; 
d'[s] := g(d[s]); 
G :=GU {! E Fo I f depends on some i in s such that d[i] -:f d'[i]}; 
d[s] := d'[s] 

The following corollary to the GI Theorem 2.4 and the Update Note 3.2 sum­
marizes the correctness of this algorithm. It corresponds to Theorem 11 of Apt 
[1999a] where the iteration algorithms were introduced immediately on compound 
domains. 

COROLLARY 3.3 (CD). Suppose that (D, r;;;; ) is a finite partial ordering that is 
a Cartesian product of n partial orderings, each with the least element l..i with 
i E [l..n]. Let F be a finite set of functions on D, each of the form j+. 

Suppose that all functions in F are monotonic and inflationary. Then every exe­
cution of the CD algorithm terminates and computes in d the least common fixpoint 
of the functions from F. 

In the subsequent presentation we shall deal with the following two modifications 
of the CD algorithm: 

-CDI algorithm. This is the version of the CD algorithm in which all the functions 
are idempotent and in which the function update defined in the Update Theorem 
2.7(i) is used. 

-CDC algorithm. This is the version of the CD algorithm in which all the functions 
are idempotent and in which the combined effect of the functions update defined 
in the Update Theorem 2.7 is used for some function Comm. 

For both algorithms the counterparts of the CD Corollary 3.3 hold. 

4. FROM PARTIAL ORDERINGS TO CONSTRAINT SATISFACTION PROBLEMS 
We have been so far completely general in our discussion. Recall that our aim is to 
derive various constraint propagation algorithms. To be able to apply the results of 
the previous section we need to relate various abstract notions that we used there 
to constraint satisfaction problems. 

This is perhaps the right place to recall the definition and to fix the notation. 
Consider a finite sequence of variables X := x1, .. ., Xn, where n ;::::: 0, with respective 
domains V := D1, .. ., Dn associated with them. So each variable Xi ranges over 
the domain Di. By a constraint Con X we mean a subset of D1 x ... x Dn. 

By a constraint satisfaction problem, in short CSP, we mean a finite sequence of 
variables X with respective domains V, together with a finite set C of constraints, 
each on a subsequence of X. We write it as (C ; x1 E D1, .. ., Xn E Dn), where 
X := x1, .. ., Xn and D := D1, .. ., Dn· 

Consider now an element d : = d1 , ... , dn of D1 x ... x Dn and a subsequence 
Y := Xi1 , .• ., Xie of X. Then we denote by d[Y] the sequence di1 , •• ., die. 

By a solution to (C ; x1 E D1, ... , Xn E Dn) we mean an element d E D1 x ... x Dn 
such that for each constraint C EC on a sequence of variables Y we have d[Y] EC. 
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We call a CSP consistent if it has a solution. Two CSPs 'P1 and 'P2 with the same 
sequence of variables are called equivalent if they have the same set of solutions. 
This definition extends in an obvious way to the case of two CSPs with the same 
sets of variables. 

Let us return now to the framework of the previous section. It involved: 

(i) Partial orderings with the least elements: 
These will correspond to partial orderings on the CSPs. In each of them the 
original CSP will be the least element and the partial ordering will be deter­
mined by the local consistency notion we wish to achieve. 

(ii) Monotonic and inflationary functions with schemes: 
These will correspond to the functions that transform the variable domains or 
the constraints. Each function will be associated with one or more constraints. 

(iii) Common fi.xpoints: 
These will correspond to the CSPs that satisfy the considered notion of local 
consistency. 

Let us be now more specific about items (i) and (ii). 

Re: (i) 
To deal with the local consistency notions considered in this paper we shall 

introduce two specific partial orderings on the CSPs. In each of them the considered 
CSPs will be defined on the same sequences of variables. 

We begin by fixing for each set D a collection :F(D) of the subsets of D that 
includes D itself. So F is a function that given a set D yields a set of its subsets 
to which D belongs. 

When dealing with the notion of hyper-arc consistency :F(D) will be simply the 
set P(D) of all subsets of D, but for specific domains only specific subsets of D will 
be chosen. For example, to deal with the the constraint propagation for the linear 
constraints on integer interval domains, we need to choose for :F(D) the set of all 
subintervals of the original interval D. 

When dealing with the path consistency, for a constraint C the collection :F( C) 
will be also the set P(C) of all subsets of C. However, in general other choices may 
be needed. For example, to deal with the cutting planes method, we need to limit 
our attention to the sets of integer solutions to finite sets of linear inequalities with 
integer coefficients (see Apt [1999a, pages 193-194]). 

Next, given two CSPs, if; := (C ; X1 E Di, .. ., Xn E Dn) and 'l/; := (C' ; x 1 E 
Di, ... , Xn E D~), we write if; r;d 'ljJ iff 

-D: E :F(Di) (and hence D; i:;;; Di) for i E [l..n], 
-the constraints in C' are the restrictions of the constraints in C to the domains 

Di, ... ,D~. 

Next, given two CSPs, if;:= (01, .. ., Ck ; VE) and 'ljJ := (CJ., .. ., Ck ; 'DE.), we 
write if; !;c 'ljJ iff 

-C: E :F(Ci) (and hence qi:;;; Ci) for i E [1..k]. 

In what follows we call ~d the domain reduction ordering and ~c the constraint 
reduction ordering. To deal with the arc consistency, hyper-arc consistency, and 
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directional arc consistency notions we shall use the domain reduction ordering, and 
to deal with path consistency and directional path consistency notions we shall use 
the constraint reduction ordering. 

We consider each ordering with some fixed initial CSP P as the least element. 
In other words, each domain reduction ordering is of the form 

( {P' I p ~d P'}, ~d), 
and each constraint reduction ordering is of the form 

({P' IP ~c P'}, ~c)· 

Re: (ii) 
The domain reduction ordering and the constraint reduction ordering are not 

directly amenable to the analysis given in Section 3. Therefore, we shall rather use 
equivalent partial orderings defined on compound domains. To this end note that 
(C; X1 E Di,. .. ,Xn ED~) hd (C'; X1 E Dr, ... ,xn ED~) iff D~ 2 D~' for i E 
[1..n]. 

This equivalence means that for P = (C ; x1 E D1, ... , Xn E Dn) we can identify 
the domain reduction ordering ( {P' I P ~d P'}, hd) with the Cartesian product of 
the partial orderings (F(Di), 2), where i E [1..n]. 

Additionally, each CSP in this domain reduction ordering is uniquely determined 
by its domains and by the initial P. Indeed, by the definition of this ordering the 
constraints of such a CSP are restrictions of the constraints of P to the domains of 
this CSP. 

Similarly, 

(C~, . .. ,c~; V£) he (C~, ... ,er; V£) iff c; 2 c;' for i E (1..k]. 
This allows us for P = (C1, ... , Ck ; 'D&) to identify the constraint reduction 
ordering ( {P' I P he P'}, G;;c) with the Cartesian product of the partial orderings 
(F(Ci), 2), where i E [l..k]. Also, each CSP in this constraint reduction ordering 
is uniquely determined by its constraints and by the initial P. 

In what follows instead of the domain reduction ordering and the constraint re­
duction ordering we shall use the corresponding Cartesian products of the partial 
orderings. So in these compound orderings the sequences of the domains (respec­
tively, of the constraints) are ordered componentwise by the reversed subset ordering 2- Further, in each component ordering (F(D), 2) the set Dis the least element. 

The reason we use these compound orderings is that we can now employ functions 
with schemes, as used in Section 3. Each such function f is defined on a sub­
Cartesian product of the constituent partial orderings. Its canonic extension j+, 
introduced in Section 3, is then defined on the "whole» Cartesian product. 

Suppose now that we are dealing with the domain reduction ordering with the 
least (initial) CSP P and that 

j+(D1 x · · · x Dn) =Di x · · · x D~. 
Then the sequence of the domains (D1, ... , Dn) and P uniquely determine a CSP 
in this ordering and the same for (Di, ... , D~) and P. Hence j+, and a fortiori f, 
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can be viewed as a function on the CSPs that are elements of this domain reduction 

ordering. In other words, f can be viewed as a function on CSPs. 
The same considerations apply to the constraint reduction ordering. We shall use 

these observations when arguing about the equivalence between the original and 

the final CSPs for various constraint propagation algorithms. 
The considered functions with schemes will be now used in presence of the com­

ponentwise ordering;;;?. The following observation will be useful. 
Consider a function f on some Cartesian product F(E1) x ... x :F(Em)· Note 

that f is inflationary w.r.t. the componentwise ordering 2 if for all (X1, ... , Xm) E 

F(E1) x ... x :F(Em) we have Yi ~ Xi for all i E [l..m], where f (X1, ... , Xm) = 

(Y1, ... , Ym)· 
Also, f is monotonic w.r.t. the componentwise ordering 2 if for all (X1, ... , Xm), 

(XJ., ... , x:n) E :F(E1) x ... x :F(Em) such that Xi ~ Xf for all i E [l..m], the 

following holds: if 

f(X1, ... , Xm) =(Yi, ... , Ym) and f (X{, .. . , x:n) = (Y{, .. . , Y~), 

then Yi ~ Y/ for all i E [l..m]. 
In other words, f is monotonic w.r.t. 2 iff it is monotonic w.r.t. ~· This reversal 

of the set inclusion of course does not hold for the inflationarity notion. 
Let us discuss now briefly the functions used in our considerations. In the pre­

ceding sections we clarified which of their properties account for specific properties 

of the studied algorithms. It is tempting then to confine one's attention to closures, 

i.e., functions that are inflationary, monotonic, and itempotent. The importance of 

closures for concurrent constraint programming was recognized by Saraswat et al. 

[1991] and for the study of constraint propagation by Benhamou and Older [1997]. 

However, as shown in Apt [1999a], some known local consistency notions are 

characterized as common fixpoints of functions that in general are not itempotent. 

Therefore when studying constraint propagation in full generality it is preferrable 

not to limit one's attention to closures. On the other hand, in the sections that 

follow we only study notions of local consistency that are characterized by means 

of closures. Therefore, from now on the closures will be prominently present in our 

exposition. 

5. A HYPER-ARC CONSISTENCY ALGORITHM 

We begin by considering the notion of hyper-arc consistency of Mohr and Masini 

[1988] (we use here the terminology of Marriott and Stuckey [1998]). The more 

known notion of arc consistency of Mackworth [1977] is obtained by restricting 

one's attention to binary constraints. Let us recall the definition. 

Definition 5.1. 

-Consider a constraint C on the variables x1 , ... , Xn with the respective domains 

D1, ... , Dn, i.e., C ~Di x · · · x Dn. We call C hyper-arc consistent if for every 

i E [l..n] and a E Di there exists d EC such that a= d[i]. 

-We call a CSP hyper-arc consistent if all its constraints are hyper-arc consistent. 

Intuitively, a constraint C is hyper-arc consistent if for every involved domain 

each element of it participates in a solution to C. 
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To employ the CDI algorithm of Section 3 we now make specific choices involving 
the items (i), (ii), and (iii) of the previous section. 

Re: (i) Partial orderings with the least elements. 
As already mentioned in the previous section, for the function :F we choose the 

powerset function P, so for each domain D we put :F(D) := P(D). 
Given a CSP P with the sequence Di, ... , Dn of the domains we take the domain 

reduction ordering with P as its least element. As already noted we can identify 
this ordering with the Cartesian product of the partial orderings (P(Di), 2), where 
i E [l..n]. The elements of this compound ordering are thus sequences (X1, ... , Xn) 
of respective subsets of the domains D 1 , ... , Dn ordered componentwise by the 
reversed subset ordering ;2. 

Re: (ii) Monotonic and inflationary functions with schemes. 
Given a constraint Con the variables y1, ... , Yk with respective domains E 1 , ... , Ek, 

we abbreviate for each j E [1..k] the set {d[j] Id EC} to TIJ(C). Thus TIJ(C) con­
sists of all jth coordinates of the elements of C. Consequently, IIJ ( C) is a subset 
of the domain EJ of the variable YJ. 

We now introduce for each i E [1..k] the following function 'Tri on P(E1) x · · · x 
P(Ek): 

where 

x: := Ili(C n (X1 x · · · x Xk)). 
That is, X{ = {d[i] Id E X1 x · · · x Xk and d EC}. Each function ?ri is associated 
with a specific constraint C. Note that x; ~ Xi, so each function 'Tri boils down to 
a projection on the ith component. 

Re: (iii) Common fixpoints. 
Their use is clarified by the following lemma that also lists the relevant properties 

of the functions 'Tri (see Apt [1999a, pages 197 and 202]). 

LEMMA 5.2 (HYPER-ARC CONSISTENCY). 
(i) A CSP (C ; x1 E D1, ... , Xn E Dn) is hyper-arc consistent if! (D1, ... , Dn) is a 

common fixpoint of all functions nt associated with the constraints from C. 
(ii) Each projection function 'Tri associated with a constraint C is a closure w.r.t. 

the componentwise ordering 2. 
By taking into account only the binary constraints we obtain an analogous char­

acterization of arc consistency. The functions n1 and ?r2 can then be defined more 
directly as follows: 

n1(X, Y) := (X', Y), 

where X' :={a EX J 3b E Y (a,b) EC}, and 

n2(X, Y) := (X, Y'), 

where Y' := {b E Y J 3a EX (a,b) EC}. 
Fix now a CSP P. By instantiating the CD! algorithm with 

F0 := {f J f is a 11'i function associated with a constraint of P} 
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and with each ..Li equal to Di we get the HYPER-ARC algorithm that enjoys the 
following properties. 

THEOREM 5.3 (HYPER-ARC ALGORITHM). Consider a CSP p := (C ; X1 E 
D1, .. ., Xn E Dn), where each Di is finite. 

'The HYPER-ARC algorithm always terminates. Let P' be the CSP determined by 
P and the sequence of the domains D~, ... , D~ computed in d. Then 

(i) P' is the !;;;d-least CSP that is hyper-arc consistent, 
(ii) P' is equivalent to P. 

Due to the definition of the ~d ordering the item ( i) can be rephrased as follows. 
Consider all hyper-arc consistent CSPs that are of the form (C' ; X1 E Di, ... , Xn E 
D~) where D~ i;;; Di for i E [l..n] and the constraints in C' are the restrictions of 
the constraints in C to the domains Di, .. ., D~. Then among these CSPs P' has 
the largest domains. 

PROOF. The termination and (i) are immediate consequences of the counterpart 
of the CD Corollary 3.3 for the CDI algorithm and of the Hyper-arc Consistency 
Lemma 5.2. 

To prove (ii) note that the final CSP P' can be obtained by means of repeated 
applications of the projection functions ?ri starting with the initial CSP P. (Con­
forming to the discussion at the end of Section 4 we view here each such function 
as a function on CSPs). As noted in Apt [1999a, pages 197 and 201] each of these 
functions transforms a CSP into an equivalent one. D 

6. AN IMPROVEMENT: THE AC-3 ALGORITHM 

In the HYPER-ARC algorithm each time a 'lri function associated with a constraint 
C on the variables Yi. ... , Yk is applied and modifies its arguments, all projection 
functions associated with a constraint that involves the variable Yi are added to 
the set G. In this section we show how we can exploit information about the 
commutativity to add less projection functions to the set G. Recall that, in Section 
3, we modified the notion of commutativity for the case of functions with schemes. 

First, it is worthwhile to note that not all pairs of the 'lri and 7rj functions com­
mute. 

Example 6.1. (i) We consider the case of two binary constraints on the same 
variables. Consider two variables, x and y with the corresponding domains Dx := 
{a,b}, Dy:= {c,d} and two constraints on x,y: C1 := {(a,c),(b,d)} and C2 := 
{(a,d)}. 

Next, consider the 7r1 function of C1 and the ?r2 function of C2. Then apply­
ing these functions in one order, namely 7r27r1, to (D:i:, Dy) yields Dri: unchanged, 
whereas applying them in the other order, 7r17r2, yields Dx equal to {b}. 
(ii) Next, we show that the commutativity can also be violated due to sharing of 
a single variable. As an example take the variables x, y, z with the corresponding 
domains Dx := {a,b}, Dy:= {b}, Dz := {c,d}, and the constraint C1 := {(a,b)} 
on x,y and C2 := {(a,c),(b,d)} on x,z. 

Consider now the 7rt function of C1 and the 7rt function of C2 • Then applying 
these functions in one order, namely 7rt7rt, to (Dx, Dy, Dz) yields Dz equal to {c}, 
whereas applying them in the other order, 7rt7rt, yields Dz unchanged. 
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The following lemma clarifies which projection functions do commute. 
LEMMA 6.2 (COMMUTATIVITY). Consider a CSP and two constraints of it, C 

on the variables Y1, ... , Yk and E on the variables z1, ... , ze. 
(i) For i,j E [1..k] the functions 11"i and 11"j of the constraint C commute. 
(ii) If the variables Yi and ZJ are identical then the functions 1ri of C and 7rj of E 

commute. 

PROOF. See the Appendix. D 

Fix now a CSP. We derive a modification of the HYPER-ARC algorithm by instan­
tiating this time the CDC algorithm. As before we use the set of functions 

Fo := {! I f is a 7ri function associated with a constraint of P} 
and each J_i equal to Di. Additionally we employ the following function Comm, 
where 1Ti is associated with a constraint C and where E differs from C: 

Comm( 7ri) := { 1l"J I i =F j and 7rj is associated with the constraint C} 
U { 1l"J I 1TJ is associated with a constraint E and 

the ith variable of C and the jth variable of E coincide}. 
By virtue of the Commutativity Lemma 6.2 each set Comm(g) satisfies the as­

sumptions of the Update Theorem 2.7(ii). 
By limiting oneself to the set of functions 7r1 and 7r2 associated with the binary 

constraints, we obtain an analogous modification of the corresponding arc consis­
tency algorithm. 

Using now the counterpart of the CD Corollary 3.3 for the CDC algorithm we 
conclude that the above algorithm enjoys the same properties as the HYPER-ARC 
algorithm, i.e., the counterpart of the HYPER-ARC Algorithm Theorem 5.3 holds. 

Let us clarify now the difference between this algorithm and the HYPER-ARC 
algorithm when both of them are limited to the binary constraints. 

Assume that the considered CSP is of the form (C ; VE). We reformulate the 
above algorithm as follows. Given a binary relation R, we put 

RT:= {(b, a) I (a,b) ER}. 
For Fo we now choose the set of the 7r1 functions of the constraints or relations 

from the set 

So := { C I C is a binary constraint from C} 
U {er IC is a binary constraint from C}. 

Finally, for each 7r1 function of some C E So on x, y we define 
Comm(7r1 ) :={the 7r1 function of er} 

u {f I f is the 7r1 function of some E E So on x, z where z i= y}. 
Assume now that 

for each pair of variables x, y at most one constraint exists on x, y. (1) 
Consider now the corresponding instance of the CDC algorithm. By incorporating 

into it the effect of the functions 7r1 on the corresponding domains, we obtain the 
following algorithm known as the AC-3 algorithm of Mackworth [1977]. 
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We assume here that 1)£ := X1 E Di, . .. , Xn E Dn. 

AC-3 ALGORITHM 

So := { C I C is a binary constraint from C} 
u {er I c is a binary constraint from C}; 

S :=So; 
while S f. 0 do 

od 

choose C E S; suppose C is on Xi, Xj; 

Di:= {a E Di I ::lb E Dj (a,b) EC}; 
if Di changed then 

S :=SU {C' E So IC' is on the variables y, Xi where y ;/=. Xj} 

fl: 
' S:=S-{C} 

It is useful to mention that the corresponding reformulation of the HYPER-ARC 
algorithm for binary constraints differs in the second assignment to S which is then 

S := SU { C' E So I C' is on the variables y, z where y is Xi or z is xi}· 

So we "capitalized" here on the commutativity of the corresponding projection 
functions 7rl as follows. First, no constraint or relation on Xi, z for some z is added 
to S. Here we exploited part (ii) of the Commutativity Lemma 6.2. 

Second, no constraint or relation on Xj,Xi is added to S. Here we exploited part 
(i) of the Commutativity Lemma 6.2, because by assumption (1) er is the only 
constraint or relation on Xj, Xi and its 7r1 function coincides with the 7T2 function 
of C. 

In case assumption (1) about the considered CSP is dropped, the resulting al­
gorithm is somewhat less readable. However, once we use the following modified 
definition of Comm(7r1) 

Comm(7r1) := {f If is the 7r1 function of some EE So on x, z where z ;/=. y} 

we get an instance of the CDC algorithm which differs from the AC-3 algorithm in 
that the qualification "where y ;/=. x/ is removed from the definition of the second 
assignment to the set S. 

To illustrate the considerations of this section let us return now to the crossword 
puzzle introduced in Section 1.2. 

As pointed out by Mackworth [1992] this problem can be easily formulated as a 
CSP as follows. First, associate with each position i E [1..8] in the grid of Figure 
1 a variable. Then associate with each variable the domain that consists of the 
set of words that can be used to fill this position. For example, position 6 needs 
to be filled with a three-letter word, so the domain of the variable associated with 
position 6 consists of the above set of five three-letter words. 

Finally, we define constraints. They deal with the restrictions arising from the 
fact that the words that cross share a letter. For example, the crossing of the 
positions 1 and 2 contributes the following constraint: 

C1,2 :={(HOSES, SAILS), (HOSES, SHEET), (HOSES, STEER), 
(LASER, SAILS), (LASER, SHEET), (LASER, STEER)}. 
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This constraint formalizes the fact that the third letter of position 1 needs to be 
the same as the first letter of position 2. In total there are 12 constraints. 

Each projection function 7r1 associated with a constraint C or its transpose cT 
corresponds to a crossing, for example (8,2). It removes impossible values from the 
current domain of the variable associated with the first position, here 8. 

The above Commutativity Lemma 6.2 allows us to conclude, that for any pairwise 
different a, b, c E [1..8], the projection functions 7r1 associated with the crossings 
(a, b) and (b, a) commute and also the projection functions 7r1 associated with the 
crossings (a, b) and (a, c) commute. This explains why in the AC-3 algorithm applied 
to this CSP after considering a crossing (a, b), for example (2,4), neither the crossing 
(4,2) nor the crossings (2,7) and (2,8) are added to the set of examined crossings. 

To see that the AC-3 algorithm applied to this CSP yields the unique solution 
depicted in Figure 2 it is sufficient to observe that this solution viewed as a CSP is 
arc consistent and that it is obtained by a specific execution of the AC-3 algorithm, 
in which the crossings are considered in the following order: 

(1,2), (2,1), (1,3), (3,1), (4,2), (2,4), (4,5), (5,4), (4,2), (2,4), 
(7,2), (2,7), (7,5), (5,7), (8,2), (2,8), (8,6), (6,8), (8,2), (2,8). 

The desired conclusion now follows by the counterpart of the CD Corollary 3.3 
according to which every execution of the AC-3 algorithm yields the same outcome. 

7. A PATH CONSISTENCY ALGORITHM 

The notion of path consistency was introduced in Montanari [1974]. It is defined 
for a special type of CSPs. For simplicity we ignore here unary constraints that are 
usually present when studying path consistency. 

Definition 7 .1. We call a CSP P standardized if for each pair x, y of its variables 
there exists exactly one constraint on x, yin P. We denote this constraint by Cx,y· 

Every CSP is trivially equivalent to a standardized CSP. Indeed, it suffices for 
each pair x, y of the variables of P first to add the "universal" constraint on x, y 
that consists of the Cartesian product of the domains of the variables x and y and 
then to replace the set of all constraints on x, y by their intersection. 

At the cost of some notational overhead our considerations about path consis­
tency can be generalized in a straightforward way to the case of CSPs such that for 
each pair of variables x, y at most one constraint exists on x, y, i.e., to the CSPs 
that satisfy assumption (1). 

To simplify the notation given two binary relations R and S we define their 
composition · by 

R · S :={(a, b) I 3c ((a,c) ER, (c, b) ES)}. 

Note that if R is a constraint on the variables x, y and S a constraint on tr 
variables y, z, then R · S is a constraint on the variables x, z. 

Given a subsequence x, y of two variables of a standardized CSP we introduc 
"supplementary" relation Cy,x defined by 

Cy,x := CI.u· 
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 



1020 Krzysztof R. Apt 

y 

Cy,z 

x z 

Fig. 3. Three relations on three variables. 

Recall that the relation cT was introduced in the previous section. The supple­
mentary relations are not parts of the considered CSP, as none of them is defined 
on a subsequence of its variables, but they allow us a more compact presentation. 
We now introduce the following notion. 

Definition 7.2. We call a standardized CSP path consistent if for each subset 
{ x, y, z} of its variables we have 

Cx,z ~ Cx,y · Cy,z· 

In other words, a standardized CSP is path consistent if for each subset { x, y, z} 
of its variables the following holds: 

if (a,c) E Cx,z, then there exists b such that (a,b) E Cx,y and (b,c) E Cy,z· 

To employ the CD! algorithm of Section 3 we again make specific choices in­
volving the items (i), (ii), and (iii) of Section 4. First, we provide an alternative 
characterization of path consistency. 

Note that in the above definition we used the relations of the form Cu,v for any 
subset { u, v} of the considered sequence of variables. If u, v is not a subsequence 
of the original sequence of variables, then Cu,v is a supplementary relation that is 
not a constraint of the original CSP. At the expense of some redundancy we can 
rewrite the above definition so that only the constraint of the considered CSP are 
involved. This is the contents of the following simple observation that will be useful 
in a moment. 

NOTE 7.3 (ALTERNATIVE PATH CONSISTENCY). A standardized CSP is path con­
sistent iff for each subsequence x, y, z of its variables we have 

Cx,z ~ Cx,y · Cy,z, 

Cy,z ~ C'I_y · Cx,z· 

Figure 3 clarifies this observation. For instance, an indirect path from x to y via 
z requires the reversal of the arc (y, z). This translates to the first formula. 
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Now, to study path consistency, given a standardized CSP P := (C1, ... , Ck ; 'De) 
we take the constraint reduction ordering of Section 4 with P as the least element 
and with the powerset function as the function :F. So, as already noted in Section 
4 we can identify this ordering with the Cartesian product of the partial orderings 
(P(Ci), 2), where i E [l..k]. The elements of this compound ordering are thus 
sequences (X1 , ... ,Xk) of respective subsets of the constraints C1, ... ,Ck ordered 
componentwise by the reversed subset ordering 2. 

Next, given a subsequence x, y, z of the variables of P we introduce three functions 
on P(Cx,y) x P(Cx,z) x P(Cy,z): 

f;,y(P,Q,R) := (P',Q,R), 

where P' := p n Q . RT' 

f%,z(P,Q,R) := (P,Q',R), 
where Q' := Q n P · R, and 

J;,z(P,Q,R) := (P,Q,R'), 
where R' :=Rn pT. Q. 

In what follows, when using a function f ;,y we implicitly assume that the variables 
x, y, z are pairwise different and that x, y is a subsequence of the variable of the 
considered CSP. 

Finally, we relate the notion of path consistency to the common fixpoints of the 
above defined functions. This leads us to the following counterpart of the Hyper-arc 
Consistency Lemma 5.2. 

LEMMA 7.4 (PATH CONSISTENCY). 
(i) A standardized CSP (C1, ... ,Ck; Ve:) is path consistent iff (C1 ,. .. ,Ck) is a 

common fixpoint of all functions U;,y)+, U'f,z)+, and u:.z)+ associated with 
the subsequences x, y, z of its variables. 

(ii) The functions J:,y, JX,z, and JJ,z are closures w.r.t. the componentwise order­
ing 2. 

PROOF. (i) is a direct consequence of the Alternative Path Consistency Note 7.3. 
The proof of (ii) is straightforward. These properties of the functions J:,y> J%,z> 
and J:,z were already mentioned in Apt [1999a, page 193]. 0 

We now instantiate the CDI algorithm with the set of functions 

Fo := {f Ix, y, z is a subsequence of the variables of p and f E u;,y, n,z> f;,z} }, 
n := k, and each l..i equal to ci. 

Call the resulting algorithm the PATH algorithm. It enjoys the following proper­
ties. 

THEOREM 7.5 (PATH ALGORITHM). Consider a standardized CSP 

P := (C1, .. .,Ck; V£). 
Assume that each constraint Ci is finite. 

The PATH algorithm always terminates. Let P' : = ( Cf, ... , C~ ; Ve), where the 
sequence of the constraints Cf, ... , Ck is computed in d. Then 
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(i) P' is the ~c-least CSP that is path consistent, 

(ii) P' is equivalent to P. 

As in the case of the HYPER-ARC Algorithm Theorem 5.3 the item (i) can be 
rephrased as follows. Consider all path consistent CSPs that are of the form 
(C~, ... , Ck ; 'D&) where C~ ~ Ci for i E [1..k]. Then among them P' has the 
largest constraints. 

PROOF. The proof is analogous to that of the HYPER-ARC Algorithm Theorem 
5.3. The termination and ( i) are immediate consequences of the counterpart of the 
CD Corollary 3.3 for the CDI algorithm and of the Path Consistency Lemma 7.4. 

To prove (ii) we now note that the final CSP P' can be obtained by means of 

repeated applications of the functions J:,y• !¥,z• and J;,z starting with the initial 
CSP P. (Conforming to the discussion at the end of Section 4 we view here each 
such function as a function on CSPs). As noted in Apt [1999a, pages 193 and 195]) 
each of these functions transforms a CSP into an equivalent one. D 

8. AN IMPROVEMENT: THE PC-2 ALGORITHM 

In the PATH algorithm each time a J;, 11 function is applied and modifies its argu­
ments, all functions associated with a triplet of variables including x and y are 
added to the set G. We now show how we can add fewer functions by taking into 
account the commutativity information. To this end we establish the following 
lemma. 

LEMMA 8.1 (COMMUTATIVITY). Consider a standardized CSP involving among 
others the variables x, y, z, u. Then the functions J:, 11 and f'/:,y commute. 

In other words, two functions with the same pair of variables as a subscript 
commute. 

PROOF (SKETCH). The following intuitive argument may help to understand the 
more formal justification given in the Appendix. First, both considered functions 
have three arguments but share precisely one argument, the one from P(Cx,y), and 
modify only this shared argument. Second, both functions are defined in terms of 
the set-theoretic intersection operation "n" applied to two, unchanged arguments. 
This yields commutativity since "n" is commutative. D 

Fix now a standardized CSP P. We instantiate the CDC algorithm with the same 
set of functions Fo as in Section 7. Additionally, we use the following function 
Comm: 

Comm(!:,) = {J'/:,y I u tj. { x, y, z }}. 

Thus for each function g the set Comm(g) contains precisely m - 3 elements, 
where m is the number of variables of the considered CSP. This quantifies the 
maximal "gain" obtained by using the commutativity information: at each "up­
date" stage of the corresponding instance of the CDC algorithm we add up to m - 3 

fewer elements than in the case of the corresponding instance of the CDI algorithm 
considered in the previous section. 
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By virtue of the Commutativity Lemma 8.1 each set Comm(g) satisfies the as­
sumptions of the Update Theorem 2.7(ii). We conclude that the above inst>ance of 
the CDC algorithm enjoys the same properties as the original PATH algorithm, i.e., the 
counterpart of the PATH Algorithm Theorem 7.5 holds. To make this modification 
of the PATH algorithm easier to understand we proceed as follows. 

Below we write x-< y to indicate that x, y is a subsequence of the variables of the 
CSP P. Each function of the form l/:,y where x-< y and u <i {x,y} can be identified 
with the sequence x, u, y of the variables. (Note that the "relative" position of u 
w.r.t. x and y is not fixed, so x, u, y does not have to be a subsequence of the 
variables of P.) This allows us to identify the set of functions F0 with the set 

Vo:= {(x,u,y) Ix-< y,u <i {x,y}}. 

Next, assuming that x -< y, we introduce the following set of triples of different 
variables of P: 

Vx,y := {(x,y,u) Ix-< u} U {(y,x,u) I y-< u} 
U {(u,x, y) I u-< y} U {(u, y,x) I u-< x}. 

Informally, Vx,y is the subset of V0 that consists of the triples that begin or end 
with either x, y or y, x. This corresponds to the set of functions in one of the 
following forms: !%,u, J:,ui f;:},,y, and f1f.,x· 

The above instance of the CDC algorithm then becomes the following PC-2 algo­
rithm of Mackworth [1977]. Here initially Ex,y = Cx,y· 

PC-2 ALGORITHM 

Vo:= {(x,u,y) Ix-< y,u t/. {x,y}}; 
V:= Vo; 
while V-:j:. 0 do 

od 

choose p E V; suppose p = (x, u, y); 
apply /:,y to its current domains; 
if Ex,y changed then 

V :=VU Vx,yi 
fi· , 
V := V-{p} 

Here the phrase "apply J:t,y to its current domains" can be made more precise if 
the "relative" position of u w.r.t. x and y is known. Suppose for instance that u is 
"before" x and y. Then J::,y is defined on P(Cu,x) x P(Cu,y) x P(Cx,y) by 

J::,y(Eu,x. Eu,y, Ex,y) := (Eu,x, Eu,y, Ex,y n E'£.x · Eu,y), 

so the above phrase "apply f'/:,y to its current domains" can be replaced by the 
assignment 

Ex,y := Ex,y n E~x · Eu,y· 

Analogously for the other two possibilities. 
The difference between the PC-2 algorithm and the corresponding representation 

of the PATH algorithm lies in the way the modification of the set V is carried out. 
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In the case of the PATH algorithm the second assignment to V is 

V :=VU Vx,y U {(x, u,y) I u '/. {x,y}}. 

9. SIMPLE ITERATION ALGORITHMS 
Let us return now to the framework of Section 2. We analyze here when the while loop of the GENERIC ITERATION ALGORITHM GI can be replaced by a for loop. 
First, we weaken the notion of commutativity as follows. 

Definition 9 .1. Consider a partial ordering ( D, S: ) and functions f and g on D. We say that f semi-commutes with g (w.r.t. ~)if f(g(x)) S: g(f(x)) for all x. 
The following lemma provides an answer to the question just posed. Here and 

elsEl_where we omit brackets when writing repeated applications of functions to an 
argument. 

LEMMA 9.2 (SIMPLE ITERATION). Consider a partial ordering (D, ~ ) with the 
least element .L Let F := f1, ... , fk be a finite sequence of closures on (D, [;:;; ). 
Suppose that fi semi-commutes with fj for i > j, i.e., 

fdj(x) [;:;; fjfi(x) for i > j and for all x. 
Then fif2 .. . fk(j_) is the least common fixpoint of the functions from F. 

PROOF. We prove first that for i E [l..k] we have 

fd1h . . fk(j_) r;;; fif2 .. ·fk(j_). 

(2) 

Indeed, by the assumption (2) we have the following string of inclusions, where the 
last one is due to the idempotence of the considered functions: 

Additionally, by the infiationarity of the considered functions, we also have for 
i E [l..k] 

fih . .fk(j_) r;;; fd1f2.. ·fk(j_). 
So fif2 .. . fk(j_) is a common fixpoint of the functions from F. This means that any iteration of F that starts with J_, fk(1-), fk-ifk(l_), ... ,fih .. fk(j_) eventually stabilizes at fih .. fk(l_). By the Stabilization Lemma 2.3 we get the desired conclusion. 0 

The above lemma provides us with a simple way of computing the least common 
fixpoint of a finite set of functions that satisfy the assumptions of this lemma, in particular condition (2). Namely, it suffices to order these functions in an appro­
priate way and then to apply each of them just once, starting with the argument 
J_. 

The following algorithm is a counterpart of the GI algorithm. We assume in it 
that condition (2) holds for the sequence of functions Ji, ... , fk· 
SIMPLE ITERATION ALGORITHM (SI) 
d := j_; 
for i : = k to 1 by -1 do 
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od 

The following immediate consequence of the Simple Iteration Lemma 9.2 is a 
counterpart of the GI Corollary 2.5. 

COROLLARY 9.3 (SI). Suppose that (D, G;; ) is a partial ordering with the least 
element .L Let F := /1, ... , fk be a finite sequence of closures on (D, !;;;; ) such that 
(2) holds. Then the SI algorithm terminates and computes in d the least common 
fixpoint of the functions from F. 

Note that in contrast to the GI Corollary 2.5 we do not require here that the 
partial ordering is finite. We can view the SI algorithm as a specialization of the 
GI algorithm of Section 2 in which the elements of the set of functions G are selected 
in a specific way and in which the update function always yields the empty set. 

In Section 3 we refined the GI algorithm for the case of compound domains. An 
analogous refinement of the SI algorithm is straightforward and omitted. In the 
next two sections we show how we can use this refinement of the SI algorithm to 
derive two well-known constraint propagation algorithms. 

10. DAC: A DIRECTIONAL ARC CONSISTENCY ALGORITHM 

We consider here the notion of directional arc consistency of Dechter and Pearl 
[1988]. Let us recall the definition. 

Definition 10.1. Assume a linear ordering -< on the considered variables. 

-Consider a binary constraint C on the variables x, y with the domains Dx and 
Dy. We call C directionally arc consistent w.r.t. -< if 
-Va E Dx:'3b E Dy (a, b) EC provided x-< y, 
-\:/b E Dy3a E Dx (a, b) EC provided y-< x. 
So out of these two conditions on C exactly one needs to be checked. 

-We call a CSP directionally arc consistent w. r. t. --< if all its binary constraint. 
are directionally arc consistent w.r.t. -<. 
To derive an algorithm that achieves this local consistency notion we first char­

acterize it in terms of fixpoints. To this end, given a P and a linear ordering --< on 
its variables, we rather reason in terms of the equivalent CSP P-< obtained from P 
by reordering its variables along -< so that each constraint in P-< is on a sequence 
of variables X1, ... , Xn such that X1 -< x2 -< ... -< Xn. 

The following simple characterization holds. 

LEMMA 10.2 (DIRECTIONAL ARC CONSISTENCY). Consider a CSP P with a 
linear ordering-< on its variables. Let P-< := (C; x1 E D1, .. . ,Xn E Dn)· Then P 
is directionally arc consistent w.r.t. -< iff (D1, .. ., Dn) is a common fixpoint of the 
functions Jrt associated with the binary constraints from P-<.. 

We now instantiate in an appropriate way the SI algorithm for compound do­
mains with all the 7!'1 functions associated with the binary constraints from P-< . 
In this way we obtain an algorithm that achieves for 'P directional arc consis­
tency w.r.t. -<. First, we adjust the definition of semi-commutativity to func­
tions with different schemes. To this end consider a sequence of partial orderings 
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(Di, !; 1), .•• , (Dn, !; n) and their Cartesian product (D, i:;; ~· Take two ~nc­
tions, f with scheme s and g with scheme t. We say that f semi-commutes with g 
(w.r.t. i;;;;) if j+ semi-commutes with g+ w.r.t. !;;; , i.e., if 

t+(g+(d)) b g+(!+(d)) 

for all d ED. 
The following lemma is crucial. To enhance the readability, we replace here the 

irrelevant variables by -· 

LEMMA 10.3 (SEMI-COMMUTATIVITY). Consider a CSP and two binary con­
straints of it, C1 on_, z and C2 on-• y, where y j z. 

Then the 7rl function of C1 semi-commutes with the 1!"1 function of C2 w. r. t. the 
componentwise ordering 2. 

PROOF. See the Appendix. D 

To be able to apply this lemma we order appropriately the 7r1 functions of the 
binary constraints of 'P-<.· Namely, given two 7r1 functions, f associated with a 
constraint on _, z and g associated with a constraint on _, y, we put f before g if 
y ~ z. Then by virtue of this lemma. and the Commutativity Lemma 6.2(ii) if 
the function f precedes the function g, then f semi-commutes with g w.r.t. the 
componentwise ordering 2. 

Observe that we leave here unspecified the order between two 7r1 functions, one 
associated with a constraint on x, z and another with a constraint on y, z, for some 
variables x, y, z. Note that if x and y coincide then the semi-commutativity is 
indeed a consequence of the Commutativity Lemma 6.2(ii). 

We instantiate now the refinement of the SI algorithm for the compound domains 
by the above-defined sequence of the 7r1 functions and each ..Li equal to the domain 
Di of the variable x;.. In this way we obtain the following algorithm, where the 
sequence of functions is Ji, ... , fk· 

DIRECTIONAL ARC CONSISTENCY ALGORITHM (DARC) 

d := (D1,. .. , Dn)i 
for j := k to 1 by -1 do 

suppose fj is with scheme s; 
d[s] := fj(d[s]) 

od 

This algorithm enjoys the following properties. 

THEOREM 10.4 (DARC ALGORITHM). Consider a CSP 'P with a linear ordering 
~ on its variables. Let 'P-< := (C ; x1 E D1, .. . ,Xn E Dn)· 

The DARC algorithm always terminates. Let 'P' be the CSP determined by p-< and 
the sequence of the domains Di, ... , D~ computed in d. Then 

(i) P' is the ~d-least CSP in {Pi I 'P-< bd P1} that is directionally arc consistent 
w.r.t. ~, 

(ii} P' is equivalent to 'P. 
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PROOF. The termination is obvious. (i) is an immediate consequence of the 
counterpart of the SI Corollary 9.3 for the SI algorithm refined for the compound 
domains and of the Directional Arc Consistency Lemma 10.2. 

The proof of (ii) is analogous to that of the HYPER-ARC Algorithm Theorem 
5.3(ii). D 

Note that in contrast to the HYPER-ARC Algorithm Theorem 5.3 we do not need 
to assume here that each domain is finite. 

Assume now that the original CSP P is standardized, i.e., for each pair of its 
variables x, y precisely one constraint on x, y exists. The same holds then for P-<.. 
We now specialize the DARC algorithm by ordering the 7r1 functions in a deterministic 
way. Suppose that P-<. := (C; X1 E D1, ... , Xn E Dn)· Denote the unique constraint 
of P-<. on Xi,Xj by Ci,j· 

Order now these constraints as follows: 

That is, the constraint Ci' ,j' precedes the constraint Ci" ,j" if the pair (j", i') lexico­
graphically precedes the pair (j', i"). Take now the n1 functions of these constraints 
ordered in the same way as their constraints. 

The above DARC algorithm can then be rewritten as the following double for loop. 
The resulting algorithm is known as the DAC algorithm of Dechter and Pearl [1988]. 

for j := n to 2 by -1 do 
for i := 1 to j - 1 do 

Di:= {a E Di I :lb E Dj (a,b) E Ci,j} 
od 

od 

ll. DPC: A DIRECTIONAL PATH CONSISTENCY ALGORITHM 

In this section we deal with the notion of directional path consistency defined in 
Dechter and Pearl [1988]. Let us recall the definition. 

Definition 11.1. Assume a linear ordering -< on the considered variables. We 
call a standardized CSP directionally path consistent w. r. t. -< if for each subset 
{x, y, z} of its variables we have 

Cx,z ~ Cx,y · Cy,z provided x, z -< y. 

This definition relies on the supplementary relations because the ordering -< may 
differ from the original ordering of the variables. For example, in the original 
ordering z can precede x. In this case Cz,x and not Cx,z is a constraint of the CSP 
under consideration. 

But just as in the case of path consistency we can rewrite this definition using the 
original constraints only. In fact, we have the following analogue of the Alternative 
Path Consistency Note 7.3. 

NOTE 11.2 (ALTERNATIVE DIRECTIONAL PATH CONSISTENCY). A standardized 
CSP is directionally path consistent w. r. t. -< ifj for each subsequence x, y, z of its 
variables we have 
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Cx,y ~ Cx,z · C~z provided x, y-< z, 

Cx,z ~ Cx,y · Cy,z provided X, Z-< y, 

Cy,z ~ CI,y · Cx,z provided y, z-< x. 

Thus out of the above three inclusions precisely one needs to be checked. 
As before we now characterize this local consistency notion in terms of fixpoints. 

To this end, as in the previous section, given a standardized CSP P we rather 
consider the equivalent CSP P-<- The variables of P-< are ordered according to-<, 
and P-< is standardized, as well. 

The following counterpart of the Directional Arc Consistency Lemma 10.2 is a 
direct consequence of the Alternative Directional Path Consistency Note 11.2. We 
use here the functions J;,y defined in Section 7. 

LEMMA 11.3 (DIRECTIONAL PATH CONSISTENCY). Consider a standardized 
CSP P with a linear ordering -< on its variables. Let P-< := ( C1, .. ., Ck ; Ve?. 
Then P is directionally path consistent w.r.t. -< iff (Ci, ... , Ck) is a common fixpoint 
of all functions u:,y)+' where x -< y-< z. 

To obtain an algorithm that achieves directional path consistency we now instan­
tiate in an appropriate way the SI algorithm. To this end we need the following 
lemma. 

LEMMA 11.4 (SEMI-COMMUTATIVITY). Consider a standardized CSP with a lin­
ear ordering-< on its variables. Suppose that x1-< Y1 -< z, X2 -< Y2 -< u, and u :::5 z. 
Then the function gl>Yl semi-commutes with the function r:2,Y2 w.r.t. the compo­
nentwise ordering 2. 

PROOF. See the Appendix. 0 

Consider now a standardized CSP P with a linear ordering -< on its variables 
and the corresponding CSP P-<. To be able to apply the above lemma we order 
the J;,y functions, where x-< y -< z, as follows. 

Assume that x 1 , .. ., Xn is the sequence of the variables of P-<, i.e., x 1 -< x2 -< 
... -< Xn. Let form E [3 .. n] the sequence Lm consist of the functions J;:nx , where 

" J i < j < m, ordered in an arbitrary way. Consider the sequence resulting from 
appending the sequences Ln, Ln-1, ... , La, in that order. Then by virtue of the 
Semi-commutativity Lemma 11.4 if the function j precedes the function g, then f 
semi-commutes with g w.r.t. the componentwise ordering ;2. 

We instantiate now the refinement of the SI algorithm for the compound domains 
by the above-defined sequence of functions J;,y and each ..Li equal to the constraint 
Ci. This yields the DIRECTIONAL PATH CONSISTENCY ALGORITHM (DPATH) that 
apart from the different choice of the constituent partial orderings is identical to the 
DIRECTIONAL ARC CONSISTENCY ALGORITHM DARC of the previous section. Con­
sequently, the DPATH algorithm enjoys analogous properties as the DARC algorithm. 
They are summarized in the following theorem. 
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THEOREM 11.5 (DPATH ALGORITHM). Consider a standardized CSP P with a 
linear ordering -< on its variables. Let P-1.. := (C1, ... , Ck ; Ve). 

The DPATH algorithm always terminates. Let P' := (Ci, .. . ,Ck; Vt:), where the 
sequence of the constraints CJ., ... , Ck is computed in d. Then 

{i) P' is the r;c-least CSP in {P1 I P-1.. r;d P1} that is directionally path consistent 
w.r.t. -<, 

{ii) P' is equivalent to P. 

As in the case of the DARC Algorithm Theorem 10.4 we do not need to assume 
here that each domain is finite. 

Let us order now each sequence Lm in such a way that the function f;:n ~. pre-
....,.,,,,~,, cedes f;,:;; ,x311 if the pair (j', i') lexicographically precedes the pair(j'', i"). Denote 

the unique constraint of P-1, on Xi,XJ by Ci,J· The above DPATH algorithm can then 
be rewritten as the following triple for loop. The resulting algorithm is known as 
the DPC algorithm of Dechter and Pearl [1988]. 

form:= n to 3 by -1 do 

od 

for j := 2 tom -1 do 
for i := 1 to j - 1 do 

Ci,J := Ci,J n Ci,m · CJ.m 
od 

od 

12. CONCLUSIONS AND RECENT WORK 
In this article we introduced a general framework for constraint propagation. It 
allowed us to present and explain various constraint propagation algorithms in a 
uniform way. By starting the presentation with generic iteration algorithms on 
arbitrary partial orders we clarified the role played in the constraint propagation 
algorithms by the notions of commutativity and semi-commutativity. This in turn 
allowed us to provide rigorous and uniform correctness proofs of the AC-3, PC-2, 
DAC, and DPC algorithms. 

The following table summarizes the results of this article. 

Local Consistency Algorithm Generic Lemmata Accounting 
Notion Algorithm used for Correctness 
arc AC-3 CDC Hyper-arc Consistency 5.2, 
consistency (Section 3) Commutativity 6.2 
path PC-2 CDC Path Cop.sistency 7.4, 
consistency (Section 3) Commutativity 8.1 

directional arc DAC SI Hyper-arc Consistency 5.2, 
consistency (Section 9) Semi-commutativity 10.3 
directional path DPC SI Hyper-arc Consistency 5.2, 
consistency (Section 9) Semi-commutativity 11.4 
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Since the time this article was submitted for publication the line of research 
here presented was extended in a number of ways. First, Gennari [2000a] extended 
slightly the framework of this article and used it to explain the AC-4 algorithm of 
Mohr and Henderson [1986], the AC-5 algorithm of Van Hentenryck et al. [1992], 
and the GAC-4 algorithm of Mohr and Masini [1988]. The complication was that 
these algorithms operate on some extension of the original CSP. 

Then, Bistarelli et al. [2000] studied constraint propagation algorithms for soft 
constraints. To this end they combined the framework of Apt [1999a] and of this 
paper with the one of Bistarelli et al. [1997]. The latter provides a unified model 
for several classes of "nonstandard" constraint satisfaction problems employing the 
concept of a semiring. 

Recently Gennari [2000b] showed how another modification of the framework 
here presented can be used to explain the PC-4 path consistency algorithm of Han 
and Lee [1988] and the KS algorithm of Cooper [1989] that can achieve either k­

consistency or strong k-consistency. 
We noted already in Apt [1999a] that using a single framework for presenting 

constraint propagation algorithms makes it easier to automatically derive, verify, 
and compare these algorithms. In the meantime the work of Monfroy and Rety 
[1999] showed that this approach also allows us to parallelize constraint propaga­
tion algorithms in a simple and uniform way. This resulted in a general framework 
for distributed constraint propagation algorithms. As a follow up on this work Mon­
froy [2000] showed that it is possible to realize a control-driven coordination-based 
version of the generic iteration algorithm. This shows that constraint propagation 
can be viewed as the coordination of cooperative agents. 

Additionally, as already noted to large extent in Benhamou [1996], such a general 
framework facilitates the combination of these algorithms, a property often referred 
to as "solver cooperation." For a coordination-based view of solver cooperation 
inspired by such a general approach to constraint propagation see Monfroy and 
Arbab [2000]. 

Let us mention also that Fernandez and Hill [1999] combined the approach of Apt 
[1999a] with that of Codognet and Diaz [1996] to construct a general framework 
for solving interval constraints defined over arbitrary lattices. Finally, the generic 
iteration algorithm GI and its specializations can be used as a template for deriving 
specific constraint propagation algorithms in which particular scheduling strategies 
are employed. This was done for instance in Monfroy [1999] for the case of non­
linear constraints on reals where the functions to be scheduled were divided into two 
categories: "weaker" and "stronger" with the preference for scheduling the weaker 
functions first. 

Currently we investigate whether existing constraint propagation algorithms could 
be improved by using the notions of commutativity and semi-commutativity. 

APPENDIX 

PROOF OF COMMUTATIVITY LEMMA 6.2. (i) It suffices to notice that for each 
k-tuple X1, ... , Xk of subsets of the domains of the respective variables we have 

7rj(7ri(X1, ... , Xk)) = (X1, ... , Xi-1,X:, Xi+1, ... , Xj-1, Xj, XH1, ... , Xk) 
= 7ri(7rj(X1, ... , Xk)), 
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where 

x: := IIi(C n (Xi x · · · x Xk)), 

Xj := Ilj(C n (Xi x · · · x Xk)), 

and where we assumed that i < j. 

(ii) Let the considered CSP be of the form (C ; xi E Di, .. . , Xn E Dn). Assume 
that some common variable of Yi, ... , Yk and zi, .. . , Zt is identical to the variable 
Xh· Further, let Sol(C,E) denote the set of d E Dix ... x Dn such that d[s] EC 
and d[t] E E, where s is the scheme of C and t is the scheme of E. 

Finally, let f denote the 1T'i function of C and g the 1T'j function of E. It is easy 
to check that for each n-tuple X1, ... , Xn of subsets of Di, ... , Dn, respectively, we 
have 

7rj"('n-j(X1, ... , Xn)) = (X1, .. . ,Xh-i,Xh,Xh+i, ... ,Xn) 
= 1rf(1rt(Xi. ... ,Xn)), 

where 

Xfi := IIh(Sol(C,E) n (X1 x · · · x Xn)). 

0 

PROOF OF COMMUTATIVITY LEMMA 8.1. Note first that the "relative" posi­
tions of z and of u w.r.t. x and y are not specified. There are in total three 
possibilities concerning z and three possibilities concerning u. For instance, z can 
be "before" x, "between" x and y, or "after" y. So we have to consider in total 
nine cases. 

In what follows we limit ourselves to an analysis of three representative cases. 
The proof for the remaining six cases is completely analogous. Recall that we write 
x-< y to indicate that x, y is a subsequence of the variables of P. 

Case 1. y-< z and y-< u. 
It helps to visualize these variables as in Figure 4. Informally, the functions J;,y and 
f'/t,y correspond, respectively, to the upper and lower triangle in this :figure. The 
fact that these triangles share an edge corresponds to the fact that the functions 
J;,y and J:i,y share precisely one argument, the one from P(Cz,y). 

Ignoring the arguments that do not correspond to the schemes of the functions 
1;,y and f'/:,y we can assume that the functions u;,y)+ and u:,y)+ are both defined 
on 

P(Cx,y) x P(Cx,z) x P(Cy,z) x P(Cx,u) x P(Cy,v.)· 

Each of these functions changes only the :first argument. In fact, for all elements 
P, Q, R, U, V of, respectively, P(Cz,y), P(Cx,z), P(Cy,z), P(Cx,v.), and P(Cy,.u), we 
have 

(J;,y)+(J'/:,y)+(P,Q,R, U, V) = (Pn U ·VT n Q · RT,Q,R, U, V) 
= (PnQ. RT nu. vT,Q,R,U, V) 
= U'/t,y)+(!;,y)+(P, Q, R, u, V). 

Case 2. x -< z -< y -< u. 
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z 

x y 

u 

Fig. 4. Four variables connected by directed arcs. 

The intuitive explanation is analogous as in Case 1. We confine ourselves to noting 
that u;,y)+ and UJ:,y)+ are now defined on 

P(Cx,z) x P(Cx,y) x P(C,,,y) x P(Cx,u) x P(Cy,u), 
but each of them changes only the second argument. In fact, we have 

(f;,y)+(JJ;,y)+(P,Q,R, U, V) = (P,Q n U ·VT n P · R,R, U, V) 
= (P,Q nP· Rn u. vT,R,U, V) 
= (J;,y)+(J;,y)+(P, Q, R, U, V). 

Case 3. z -< x and y -< u. 
In this case the functions u:,y)+ and u;,y)+ are defined on 

P(Cz,x) x P(Cz,y) x P(Cx,y) x P(Cx,u) x P(Cy,u), 
but each of them changes only the third argument. In fact, we have 

(f; y)+(JJ;y)+(P, Q, R, U, V) = (P, Q, Rn U · vT n pT · Q, U, V) ' ' T T = (P,Q,RnP ·QnU·V ,U,V) 
= (f;,y)+(J;,y)+(P,Q,R,U, V). 

D 

PROOF OF SEMI-COMMUTATIVITY LEMMA 10.3. Suppose that the constraint C1 
is on the variables u, z and the constriant C2 is on the variables x, y, where y ::::5 z. 
Denote by fu,z the 7r1 function of C1 and by fx,y the n1 function of C2. The fol­
lowing cases arise. 

Case 1. {u, z} n {x,y} = 0. 
Then the functions fu,z and fx,y commute since their schemes are disjoint. 
Case2. {u,z}n{x,y}#0. 
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000. 
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Subcase 1. u = x. 

1033 

Then the functions f a d f b . 
6.2( ii). u,z n x,y commute y virtue of the Commutativity"-'""'""'"' 

Subcase 2. u = y. 

Let the considered CSP be of the form {C · x E D D ) ur 
th I · £ ' 1 11 · • ., Xn E n . ne can rerlnr:ase 

e c aim as ollows, where we denote now f by f . Flor - 'l r ,.. v ·1 
P(D1) X ..• x P(Dn) we have u,z y,z· ru \""-li · . . ,,''1.n, E 

J::,zCJ:,y(X1, · · .,Xn)) 2 J:,y(f;i,;:(X1, .. . , Xn)). 

To prove it note first that for some i,j, k E [1..n] such that i < j < k we 
x = Xi, Y = Xj, and z = Xk. We now have 

f:t,AJ:,y(X1, ... ,Xn)) = (fy,z)+(X1,. .. ,Xi-i,X:,xi+1,. • .,Xn) 
= (Xi, ... , Xi-i,XJ,Xi+i, ... ,Xj-11 Xj, XJ+l• ... , 

where 

and 

whereas 

where 

fx,y(Xi, Xj) = (x:', X.D· 
By the Hyper-arc Consistency Lemma 5.2(ii) each function 7l"; is inflationary and 

monotonic w.r.t. the componentwise ordering ;2. By the first property applied to 
fy,z we have Xj 2 Xj, so by the second property applied to fx,y we have x:;;;? 

This establishes the claim. 

Subcase 3. z = x. 
This subcase cannot arise, since then the variable z precedes the variable y whereas 
by assumption the converse is the case. 

Subcase 4. z = y. 
We can assume by Subcase 1 that u :f x. Then the functions fu,z and rom1m1te, 
since each of them can change only its first component and since this component 
does not appear in the scheme of the other function. 0 

PROOF OF SEMI-COMMUTATIVITY LEMMA 11.4. Recall that we assumed that 
x1 -< Y1 -< z, x2 -< y2 -< u and u ::5 z. We are supposed to prove that the function 
f z semi-commutes with the function f'!: ,, w.r.t. the componentwise ordering 

X1 ,y1 .... ~:ih~2 

2. The following cases arise. 

Case 1. (x1,Y1) = (x2,Y2). 
ACM Transactions on Programming Languages and System~, Vol. 22, No. 6, N<>vembie.r 20il!l. 
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In this and other cases by an equality between two pairs of variables we mean that 
both the first component variables, here x1 and x2, and the second component 

variables, here Y1 and Y2, are identical. 
In this case the functions J;1 ,y1 and f'/:2 ,y2 commute by virtue of the Commuta-

tivity Lemma 8.1. 

Case 2. (x1,y1) = (x2,u). 
Then u and z differ, since y1 -< z. Ignoring the arguments that do not correspond 
to the schemes of the functions J;1 ,y1 and f;t2 ,y2 we can assume that the functions 
(!; 1 ,yJ+ and (f'/:2 ,yJ+ are both defined on 

P(Cx 1 ,yJ X 'P(Cxi,z) X 'P(Cy1 ,z) X 'P(Cx2,y2) X 'P(Cy2,u) 0 

The following now holds for all elements P, Q, R, U, V of, respectively, P(Cx1 ,yi}, 
'P(Cx 1 ,z), 'P(Cy 1 ,z), 'P(Cx2,y2 ) and 'P(Cy2,u): 

(f;1 ,y1 )+(!;2 ,y2 )+(P, Q, R, U, V) = (f;1 ,y1 )+(1i Q, R, Un P ·;:T, V) 
= (P n Q. R 'R, u n p. v 'V) 
2 (P n Q · RT, R, u n (P n Q . RT) . yT, V) 
= U'/:2 ,y2 )+(P n Q ·RT, Q, R, u, V) 
= U'!:2,y2)+(J;1,yJ+(P,Q,R,U, V). 

Case 3. (x1, Y1) = (y2, u). 
In this case u and z differ as well, since Y1 -< z. Again ignoring the arguments that 
do not correspond to the schemes of the functions J;1 ,y1 and f'/:2 ,y2 we can assume 
that the functions (!;1,yJ+ and (f;t2 ,yJ+ are both defined on 

'P(Cx 1 ,yi) X 'P(Cx1 ,z) X 'P(Cy1 ,z) X 'P(Cx2 ,y2) X 'P(Cx2,u)· 

The following now holds for all elements P, Q, R, U, V of, respectively, P(Cxi,y1 ), 

'P(Cx 1,z), 'P(Cy1,z), 'P(Cx2 ,yz}, and 'P(Cx2 ,u): 

(f;1,yJ+(f'/:2 ,y2 )+(P, Q, R, U, V) = (!;1 ,yJ+(P, Q, R, Un V · pT, V) 
= (PnQ. RT,R,U n v. pT, V) 
2 (P n Q ·RT, R, u n v. (P n Q. RT)T, V) 
= (JJt2 ,y2 )+ ( P n Q · RT, Q, R, U, V) 
= U'/:2,y2)+U;1,yJ+(P, Q,R, u, V). 

Case 4. (xi,y1) r/. {(x2,Y2),(x2,u),(y2,u)}. 
Then also (x2,Y2) tf. {(x1,Y1),(x1,z),(yi,z)}, since (x2,Y2) =/= (x1,Y1) and Y2-/=- z 

as Y2 -< u ::S z. 
Thus the functions f:1,y1 and r:2,Y2 commute since each of them can change only 

its first component and since this component does not appear in the scheme of the 
other function. 0 
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