
The Role of Commutativity m Constraint
Propagation Algorithms

KRZYSZTOF R. APT

CWI and University of Amsterdam

Constraint propagation algorithms form an important part of most of the constraint programming
systems. We provide here a simple, yet very general framework that allows us to explain several
constraint propagation algorithms in a systematic way. In this framework we proceed in two steps.
First, we introduce a generic iteration algorithm on partial orderings and prove its correctness
in an abstract setting. Then we instantiate this algorithm with specific partial orderings and
functions to obtain specific constraint propagation algorithms. In particular, using the notions
commutativity and semi-commutativity, we show that the AC-3, PC-2, DAC, and DPC algorithms for
achieving (directional) arc consistency and (directional) path consistency are instances of a single
generic algorithm. The work reported here extends and simplifies that of Apt [1999a].

Categories and Subject Descriptors: D.3.3 [Language Constructs and Features]: Constraints;
1.1.2 [Algorithms]: Analysis of Algorithms; I.2.2 (Automatic Programming]: Program Syn
thesis

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: Constraint propagation, generic algorithms, commutativity

1. INTRODUCTION

1.1 Motivation

A constraint satisfaction problem, in short CSP, is a finite collection of relations
(constraints), each on some variables. A solution to a CSP is an assignment of
values to all variables that satisfies all constraints. Constraint programming in
a nutshell consists of generating and solving CSP's means of general or domain
specific methods.

This approach to programming became very popular in the eighties and led
to a creation of several new programming languages and systems. Some of the
more known examples include a constraint logic programming system ECVPSe
(see Aggoun et al. [1995]), a multiparadigm programming language Oz (see, e.g.,
Smolka [1995]), and the ILOG Solver that is the core C++ library of the ILOG
Optimization Suite (see ILOG [1998]).

One of the most important general-purpose techniques developed in this area is
constraint propagation that aims at reducing the search space of the considered

This is a full, revised and corrected version of our article Apt [1999b].
Author's address: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 2000 ACM 0164-0925/00/1100-1002 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000, Pages 1002-1036.

The Role of Commutativity in Constraint Propagation Algorithms 1003

CSP while maintaining equivalence. It is a very widely used concept. For instance
on Google, http: I /www.google.com/ on March 21st, 2001, the query "constraint
propagation" yielded 6,840 hits. For comparison, the query "NP completeness"
yielded 14,400 hits. In addition, in the literature several other names have been
used for the constraint propagation algorithms: consistency, local consistency, con
sistency enforcing, Waltz, filtering, or narrowing algorithms.

The constraint propagation algorithms usually aim at reaching some form of
"local consistency," a notion that in a loose sense approximates the notion of "global
consistency." Over the last 20 few years many useful notions of local consistency
were identified, and for each of them one or more constraint propagation algorithms
were proposed.

Many of these algorithms were built into the existing constraint programming
systems, including the above three ones. These algorithms can be triggered either
automatically, e.g., each time a new constraint is generated (added to the "con
straint store") , or by means of specific instructions available to the user.

In Apt (1999a] we introduced a simple framework that allowed us to explain
many of these algorithms in a uniform way. In this framework the notion of chaotic
iterations, so fair iterations of functions, on Cartesian products of specific partial
orderings played a crucial role. We stated there that "the attempts offinding general
principles behind the constraint propagation algorithms repeatedly reoccur in the
literature on constraint satisfaction problems spanning the last twenty years" and
devoted three pages to survey this work. Two references that are perhaps closest
to our work are Benhamou (1996] and Telerman and Ushakov (1996].

These developments led to an identification of a number of mathematical prop
erties that are of relevance for the considered functions, namely monotonicity, in
:fl.ationarity, and idempotence (see, e.g., Saraswat et al. (1991] and Benhamou and
Older [1997]). Functions that satisfy these properties are called closures (see Gierz
et al. [1980]). Here we show that also the notions of commutativity and so-called
semi-commutativity are important.

As in Apt [1999a], to explain the constraint propagation algorithms, we proceed
here in two steps. First, we introduce a generic iteration algorithm that aims to
compute the least common fixpoint of a set of functions on a partial ordering and
prove its correctness in an abstract setting. Then we instantiate this algorithm with
specific partial orderings and functions. The partial orderings will be related to the
considered variable domains and the assumed constraints, while the functions will
be the ones that characterize considered notions of local consistency in terms of
fixpoints.

This presentation allows us to clarify which properties of the considered func
tions are responsible for specific properties of the corresponding algorithms. The
resulting analysis is simpler than that of Apt [1999a] because we concentrate here
on constraint propagation algorithms that always terminate. This allows us to
dispense with the notion of fairness. Moreover, we prove here stronger results by
taking into account the commutativity and semi-commutativity information.

1.2 Example

To illustrate the problems here studied consider the following puzzle from Mack
worth [1992]. Take the crossword grid of Figure 1 and suppose that we are to fill it

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1004 Krzysztof R. Apt

Fig. 1. A crossword grid.

Fig. 2. A solution to the crossword puzzle.

with the words from the following list:

-HOSES, LASER, SAILS, SHEET, STEER,
-HEEL, HIKE, KEEL, KNOT, LINE,
-AFT, ALE, EEL, LEE, TIE.

This problem has a unique solution depicted in Figure 2.
This puzzle can be solved by systematically considering each crossing and eliminating the words that cannot be used. Consider for example the crossing of the positions 2 and 4, in short (2,4). Neither word HOSES nor LASER can be used in position 2 because no four-letter word (for position 4) exists with S as the second letter. Similarly, by considering the crossing (2,8) we deduce that none of the words LASER, SHEET, and STEER can be used in position 2.
The question now is what "systematically" means. For example, after considering the crossings (2,4) and (2,8) should we reconsider the crossing (2,4)? Our approach clarifies that the answer is "No" because the corresponding functions /2,4 and '2,s that remove impossible words, here for position 2 on account of the crossings (2,4) and (2,8), commute. In contrast, the functions h,4 and !4,5 do not commute, so after considering the crossing (4,5) the crossing (2,4) needs to be reconsidered. In Section 6 we formulate this puzzle as a CSP and discuss more precisely the problem of scheduling of the involved functions and the role commutativity plays here.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1005

1.3 Plan of the Article

This article is organized as follows. First, in Section 2, drawing on the approach
of Monfroy and Rety [1999], we introduce a generic iteration algorithm, with the
difference that the partial ordering is not further analyzed. Next, in Section 3, we
refine it for the case when the partial ordering is a Cartesian product of component
partial orderings, and in Section 4 explain how the introduced notions should be
related to the constraint satisfaction problems. These last two sections essentially
follow Apt [1999a], but because we started here with the generic iteration algorithms
on arbitrary partial orderings we built now a framework in which we can also discuss
the role of commutativity.

In the next four sections we instantiate the algorithm of Section 2 or some of its
refinements to obtain specific constraint propagation algorithms. In particular, in
Section 5 we derive algorithms for arc consistency and hyper-arc consistency. These
algorithms can be improved by taking into account information on commutativity.
This is done in Section 6 and yields the well-known AC-3 algorithm. Next, in
Section 7 we derive an algorithm for path consistency, and in Section 8 we improve
it, again by using information on commutativity. This yields the PC-2 algorithm.

In Section 9 we clarify under what assumptions the generic algorithm of Section 2
can be simplified to a simple for loop statement. Then we instantiate this simplified
algorithm to derive in Section 10 the DAC algorithm for directional arc consistency
and in Section 11 the DPC algorithm for directional path consistency. Finally, in
Section 12 we draw conclusions and discuss recent and possible future work.

We deal here only with the classic algorithms that establish (directional) arc con
sistency and (directional) path consistency and that are more than 20, respectively
10, years old. However, several more "modern" constraint propagation algorithms
can also be explained in this framework. In particular, in Apt [1999a, page 203]
we derived from a generic algorithm a simple algorithm that achieves the notion of
relational consistency of Dechter and van Beek [1997]. In turn, by mimicking the
development of Sections 10 and 11, we can use the framework of Section 9 to derive
the adaptive consistency algorithmofDechter and Pearl [1988]. Now, Dechter [1999]
showed that the latter algorithm can be formulated in a very general framework of
bucket elimination that in turn can be used to explain such well-known algorithms
as directional resolution, Fourier-Motzkin elimination, Gaussian elimination, and
also various algorithms that deal with belief networks.

2. GENERIC ITERATION ALGORITHMS

Our presentation is completely general. Consequently, we delay the discussion of
constraint satisfaction problems till Section 4. In what follows we shall rely on the
following concepts.

Definition 2.1. Consider a partial ordering (D, !;;;) with the least element ..l.
and a finite set of functions F := {!i, .. ., fk} on D.

-By an iteration of F we mean an infinite sequence of values do, di, ... defined
inductively by

do :=..l.,

dj := lij (dj-1),
ACM 'Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1006 Krzysztof R. Apt

where each ii is an element of [1..k].

-We say that an increasing sequence do ~ di ~ d2 ..• of elements from D even
tually stabilizes at d if for some j ? 0 we have di = d for i ? j.

In what follows we shall consider iterations of functions that satisfy some specific
properties.

Definition 2.2. Consider a partial ordering (D, ~) and a function f on D.

-f is called inflationary if x ~ f(x) for all x.

-f is called monotonic if x ~ y implies f(x) ~ f(y) for all x,y.

The following simple observation clarifies the role of monotonicity. The subse
quent result will clarify the role of infiationarity.

LEMMA 2.3 (STABILIZATION). Consider a partial ordering (D, [;;;) with the least

element .l and a finite set of monotonic junctions F on D.
Suppose that an iteration of F eventually stabilizes at a common fixpoint d of the

functions from F. Then d is the least common fixed point of the functions from F.

PROOF. Consider a common fixpoint e of the functions from F. We prove that
d [;;; e. Let do, di, ... be the iteration in question. For some j ? 0 we have di = d
for i "?_ j.

It suffices to prove by induction on i that di [;;; e. The claim obviously holds for
i = 0 since do = .L Suppose it holds for some i ? 0. We have di+i = fj(di) for
some j E (1..k].

By the monotonicity of fj and the induction hypothesis we get fj(di) [;;; fj(e),
so di+1 [;;; e since e is a fixpoint of fj· D

We fix now a partial ordering (D, [;;;) with the least element .l and a finite set
of functions Fon D. We are interested in computing the least common fixpoint of
the functions from F. To this end we study the following algorithm inspired by a
similar, though more complex, algorithm of Monfroy and Rety (1999] defined on a
Cartesian product of component partial orderings.

GENERIC ITERATION ALGORITHM (GI)

d := .l;
G:=F;
while G =/=- 0 do

choose g E G;
G := G-{g};

od

G := GUupdate(G,g,d);
d := g(d)

where for all G, g, d the set of functions update(G, g, d) from Fis such that

A. {! E F - G I j(d) = d /\ f(g(d)) '/= g(d)} ~ update(G, g, d),

B. g(d) = d implies that update(G,g,d) = (/),

C. g(g(d)) '/= g(d) implies that g E update(G, g, d).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1007

The above conditions on update(G, g, d) look somewhat artificial and unneces
sarily complex. In fact, an obviously simpler alternative exists according to which
we just postulate that {! E F - G I f (g(d)) 'f. g(d)} ~ update(G, g, d), i.e., that we
add to G at least all functions from F - G for which the "new value," g(d), is not
a fixpoint.

The problem is that for each choice of the update function we wish to avoid the
computationally expensive task of computing the values of f(d) and f(g(d)) for the
functions fin F - G. Now, when we specialize the above algorithm to the case of a
Cartesian product of the partial orderings we shall be able to avoid this computation
of the values of f(d) and f(g(d)) by just analyzing for which components d and
g(d) differ. This specialization cannot be derived by adopting the above simpler
choice of the update function.

Intuitively, assumption A states that update(G, g, d) at least contains all the
functions from F - G for which the "old value", d, is a fixpoint but the "new
value," g(d), is not. So at each loop iteration such functions are added to the set
G. In turn, assumption B states that no functions are added to Gin case the value
of d did not change. Note that even though after the assignment G := G - {g} we
have g E F - G, still g E {! E F - G I f(d) = d /\ j(g(d)) =/= g(d)} does not hold,
since we cannot have both g(d) = d and g(g(d)) 'f. g(d). So assumption A does
not provide any information when g is to be added back to G. This information is
provided in assumption C.

On the whole, the idea is to keep in G at least all functions j for which the
current value of d is not a fixpoint.

An obvious example of an update function that satisfies assumptions A, B, and
C is

update(G, g, d) := {! E F - G I f(d) = d /\ f(g(d)) =/= g(d)} U C(g),

where

C(g) = {g} if g(g(d)) =/= g(d) and otherwise C(g) = 0.

However, again, this choice of the update function is computationally expensive
because for each function f in F - G we would have to compute the values f (g(d))
and f(d).

We now prove correctness of this algorithm in the following sense.

THEOREM 2.4 (GI).

(i) Every terminating execution of the GI algorithm computes in d a common fix
point of the junctions from F.

(ii) Suppose that all junctions in F are monotonic. Then every terminating ex
ecution of the GI algorithm computes in d the least common fixpoint of the
functions from F.

(iii) Suppose that all junctions in F are inflationary and that (D, [;;;;) is finite.
Then every execution of the GI algorithm terminates.

PROOF. (i) Consider the predicate I defined by

I:= 'VJ E F - G f(d) =d.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1008 Krzysztof R. Apt

Note that I is established by the assignment G :=F. Moreover, it is easy to check,
that by virtue of assumptions A, B, and C, I is preserved by each while loop
iteration. Thus I is an invariant of the while loop of the algorithm. (In fact,
assumptions A, Band Care so chosen that I becomes an invariant.) Hence upon
its termination

(G=0)/\J

holds, i.e.,

\ff E F f(d) =d.

(ii) This is a direct consequence of (i) and the Stabilization Lemma 2.3.
(iii) Consider the lexicographic ordering of the strict partial orderings (D, :::i) and
(N, <), defined on the elements of D x N by

(di, n1) <1ex (d2, n2) iff d1 :::J d2 or (d1 = d2 and n1 < n2)·
We use here the inverse ordering :::J defined by d1 :::J d2 iff d2 [;;di and d2 =/.di.

Given a finite set G we denote by card G the number of its elements. By assump
tion all functions in F are inflationary, so, by virtue of assumption B, with each
while loop iteration of the modified algorithm, the pair

(d,card G)

strictly decreases in this ordering <1ex· But by assumption (D, (;;:;;) is finite, so
(D, :::J) is well-founded, and consequently so is (D x N, <zex)- This implies termi
nation. D

In particular, we obtain the following conclusion.

COROLLARY 2.5 (GI). Suppose (D, [;;;;) is a finite partial ordering with the least
element J_. Let F be a finite set of monotonic and inflationary functions on D.
Then every execution of the GI algorithm terminates and computes in d the least
common fixpoint of the functions from F.

In practice, we are not only interested that the update function is easy to compute
but also that it generates small sets of functions. Therefore we show how the
function update can be made smaller when some additional information about the
functions in Fis available. This will yield specialized versions of the GI algorithm.
First we need the following simple concepts.

Definition 2.6. Consider two functions f, g on a set D.

-We say that f and g commute if f(g(x)) = g(J(x)) for all x.
-We call f idempotent if f(J(x)) = f(x) for all x.
-We call a function f on a partial ordering (D, [;;;;) a closure if f is inflationary,

monotonic, and itempotent.

Closures were studied in Gierz et al. [1980]. They play an important role in
mathematical logic and lattice theory. We shall return to them in Section 4.

The following result holds.

THEOREM 2.7 (UPDATE).
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1009

(i) If update(G, g, d) satisfies assumptions A, B, and C, then so does the function

update(G,g,d) - Idemp(g),

where

Idemp(g) = {g} if g is idempotent and otherwise Idemp(g) = 0.
(ii) Suppose that for each g the set of functions Comm(g) from F is such that

-g tf_ Comm(g),
-each element of Comm(g) commutes with g.
If update(G, g, d) satisfies assumptions A, B, and C, then so does the function

update(G,g,d) -Comm(g).

PROOF. It suffices to establish in each case assumption A and C. Let

A:={! E F - G I f(d) = d /\ f(g(d)) i= g(d)}.

(i) After introducing the GI algorithm we noted already that g tf_ A. So assumption
A implies A ~ update (G, g, d) - {g} and a fortiori A ~ update(G, g, d) - I demp (g).

For assumption C it suffices to note that g(g(d)) i= g(d) implies that g is not
idempotent, i.e., that Idemp(g) = 0.

(ii) Consider f EA. Suppose that f E Comm(g). Then f(g(d) = g(f(d)) = g(d)
which is a contradiction. So f tf_ Comm(g). Consequently, assumption A implies
A~ update(G, g, d) - Comm(g).

For assumption C it suffices to use the fact that g tf_ Comm(g). D

We conclude, that given an instance of the GI algorithm that employs a specific
update function, we can obtain other instances of it by using update functions
modified as above. Note that both modifications are independent of each other and
therefore can be applied together.

In particular, when each function is idempotent and the function Comm satisfies
the assumptions of (ii), then the following holds: if update(G, g, d) satisfies assump
tions A, B, and C, then so does the function update(G,g,d) - (Comm(g) U {g}).

3. COMPOUND DOMAINS

In the applications we study, the iterations are carried out on a partial ordering
that is a Cartesian product of the partial orderings. So assume now that the partial
ordering (D, [;;;) is the Cartesian product of some partial orderings (Di, [;;; i), for
i E [l..n], each with the least element .li. So D =Di x · · · x Dn.

Further, we assume that each function from F depends from and affects only
certain components of D. To be more precise we introduce a simple notation and
terminology.

Definition 3.1. Consider a sequence of partial orderings (D1, r;;;; 1), ... , (Dn, [;;; n)·

-By a scheme (on n) we mean a growing sequence of different elements from [l..n].
-Given a schemes:= ii, ... , i1 on n we denote by (D 8 , [;;; 8) the Cartesian product

of the partial orderings (D;j, [;;; ij), for j E [1..l].
-Given a function f on D 8 we say that f is with schemes and say that f depends

on i if i is an element of s.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1010 Krzysztof R. Apt

-Given an n-tuple d := d.1 1 ... ,dn from D and a schemes:= ii, ... ,i1 on n we
denote by d[s] the tuple dill ... , di1 • In particular, for j E [l..n] d[jJ is the jth
element of d.

Consider now a function f with scheme s. \Ve extend it to a function J+ from
D to Das follows. Take d ED. We set

j+(d):=e

where e[s] = f (d[s]) and e[n - s] = d[n - s], and where n - s is the scheme obtained
by removing from 1, .. ., n the elements of s. We call j+ the canonic extension of
f to the domain D.

So j+ (d1, ... , dn) = (e1, ... , en) impli<'!S cl, = e1 for any i not, in the schemes off.
Informally, we can summarize it by saying that j-t· does not change t!w components
on which it does not depend. This is what we meant above by stat.ing that each
considered function affects only ct>.rtain components of lJ.

We now say that two functions, f with scherne .'!and g with schmne t, commute
if the functions j+ and g+ commut<:.

Instead of defining iterations for the cruie of tlw functions with we rather
reduce the situation to the oue studied in the previotlH section and ('onsidm, c:quiv
alently, the iterations of the canonic (~xtern.;iomi of these to tlw common
domain D. However, because of this specific form of the c<mHidered functions, we
can use now a simple definition of the tq>ticLte function. More Wf' have the
following observation.

NOTE 3.2 (UPDATE). SiLpJXJse that tach function in Fis of thr
the following functi.on update s1itisfies A. B. mui C:

update(G,g+,d) ::::;; u+ E F' If dependB on .~ome ! in ,'J .mch that

where g is with scheme s.

PROOF. To deal with ~JSsumptfon A a function f
j+(d) =d. Then j+(e) = e for any f) thttt co!udd•:.fl with don al!
are in the scheme of f.

J+. Tht~n

(d)[i)},

G such that

""'"'"" that

Suppose now additionally that (g+
i;uch an e, i.e., g+(ci) differs from don sn1ne
other words, f depends on some i such that

!lw a!HiVP ii; not
in th1' ">chenw of f. In
. Thii; i i'I then in the

scheme of g and consequ<mtly f +
The proof for !l881m1ption B is immerfattn.
Finally, to dE1al with assumption C it 1mffke4' t{.1 not~· tlrnt I (d)

implies g+ (d)) oj:; d, which in tum

This, together with the GI idgorithm, hm i11 whkb '"''·'
introduc:ed a variable d' to hold the value of f f F}
and the functions with Rchemes of tlwir nuiouic •">:h,Hlliorn' to D.
GENERIC ITERATION ALGORITHM FOR

d := (J.1 •... , .111);
d' := d;
G :0 " F{i;

The Role of Commutativity in Constraint Propagation Algorithms 1011

while G -:f 0 do

od

choose g E G; suppose g is with schemes;
G := G- {g};
d'[s] := g(d[s]);
G :=GU {! E Fo I f depends on some i in s such that d[i] -:f d'[i]};
d[s] := d'[s]

The following corollary to the GI Theorem 2.4 and the Update Note 3.2 sum
marizes the correctness of this algorithm. It corresponds to Theorem 11 of Apt
[1999a] where the iteration algorithms were introduced immediately on compound
domains.

COROLLARY 3.3 (CD). Suppose that (D, r;;;;) is a finite partial ordering that is
a Cartesian product of n partial orderings, each with the least element l..i with
i E [l..n]. Let F be a finite set of functions on D, each of the form j+.

Suppose that all functions in F are monotonic and inflationary. Then every exe
cution of the CD algorithm terminates and computes in d the least common fixpoint
of the functions from F.

In the subsequent presentation we shall deal with the following two modifications
of the CD algorithm:

-CDI algorithm. This is the version of the CD algorithm in which all the functions
are idempotent and in which the function update defined in the Update Theorem
2.7(i) is used.

-CDC algorithm. This is the version of the CD algorithm in which all the functions
are idempotent and in which the combined effect of the functions update defined
in the Update Theorem 2.7 is used for some function Comm.

For both algorithms the counterparts of the CD Corollary 3.3 hold.

4. FROM PARTIAL ORDERINGS TO CONSTRAINT SATISFACTION PROBLEMS
We have been so far completely general in our discussion. Recall that our aim is to
derive various constraint propagation algorithms. To be able to apply the results of
the previous section we need to relate various abstract notions that we used there
to constraint satisfaction problems.

This is perhaps the right place to recall the definition and to fix the notation.
Consider a finite sequence of variables X := x1, .. ., Xn, where n ;::::: 0, with respective
domains V := D1, .. ., Dn associated with them. So each variable Xi ranges over
the domain Di. By a constraint Con X we mean a subset of D1 x ... x Dn.

By a constraint satisfaction problem, in short CSP, we mean a finite sequence of
variables X with respective domains V, together with a finite set C of constraints,
each on a subsequence of X. We write it as (C ; x1 E D1, .. ., Xn E Dn), where
X := x1, .. ., Xn and D := D1, .. ., Dn·

Consider now an element d : = d1 , ... , dn of D1 x ... x Dn and a subsequence
Y := Xi1 , .• ., Xie of X. Then we denote by d[Y] the sequence di1 , •• ., die.

By a solution to (C ; x1 E D1, ... , Xn E Dn) we mean an element d E D1 x ... x Dn
such that for each constraint C EC on a sequence of variables Y we have d[Y] EC.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1012 Krzysztof R. Apt

We call a CSP consistent if it has a solution. Two CSPs 'P1 and 'P2 with the same
sequence of variables are called equivalent if they have the same set of solutions.
This definition extends in an obvious way to the case of two CSPs with the same
sets of variables.

Let us return now to the framework of the previous section. It involved:

(i) Partial orderings with the least elements:
These will correspond to partial orderings on the CSPs. In each of them the
original CSP will be the least element and the partial ordering will be deter
mined by the local consistency notion we wish to achieve.

(ii) Monotonic and inflationary functions with schemes:
These will correspond to the functions that transform the variable domains or
the constraints. Each function will be associated with one or more constraints.

(iii) Common fi.xpoints:
These will correspond to the CSPs that satisfy the considered notion of local
consistency.

Let us be now more specific about items (i) and (ii).

Re: (i)
To deal with the local consistency notions considered in this paper we shall

introduce two specific partial orderings on the CSPs. In each of them the considered
CSPs will be defined on the same sequences of variables.

We begin by fixing for each set D a collection :F(D) of the subsets of D that
includes D itself. So F is a function that given a set D yields a set of its subsets
to which D belongs.

When dealing with the notion of hyper-arc consistency :F(D) will be simply the
set P(D) of all subsets of D, but for specific domains only specific subsets of D will
be chosen. For example, to deal with the the constraint propagation for the linear
constraints on integer interval domains, we need to choose for :F(D) the set of all
subintervals of the original interval D.

When dealing with the path consistency, for a constraint C the collection :F(C)
will be also the set P(C) of all subsets of C. However, in general other choices may
be needed. For example, to deal with the cutting planes method, we need to limit
our attention to the sets of integer solutions to finite sets of linear inequalities with
integer coefficients (see Apt [1999a, pages 193-194]).

Next, given two CSPs, if; := (C ; X1 E Di, .. ., Xn E Dn) and 'l/; := (C' ; x 1 E
Di, ... , Xn E D~), we write if; r;d 'ljJ iff

-D: E :F(Di) (and hence D; i:;;; Di) for i E [l..n],
-the constraints in C' are the restrictions of the constraints in C to the domains

Di, ... ,D~.

Next, given two CSPs, if;:= (01, .. ., Ck ; VE) and 'ljJ := (CJ., .. ., Ck ; 'DE.), we
write if; !;c 'ljJ iff

-C: E :F(Ci) (and hence qi:;;; Ci) for i E [1..k].

In what follows we call ~d the domain reduction ordering and ~c the constraint
reduction ordering. To deal with the arc consistency, hyper-arc consistency, and
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1013

directional arc consistency notions we shall use the domain reduction ordering, and
to deal with path consistency and directional path consistency notions we shall use
the constraint reduction ordering.

We consider each ordering with some fixed initial CSP P as the least element.
In other words, each domain reduction ordering is of the form

({P' I p ~d P'}, ~d),
and each constraint reduction ordering is of the form

({P' IP ~c P'}, ~c)·

Re: (ii)
The domain reduction ordering and the constraint reduction ordering are not

directly amenable to the analysis given in Section 3. Therefore, we shall rather use
equivalent partial orderings defined on compound domains. To this end note that
(C; X1 E Di,. .. ,Xn ED~) hd (C'; X1 E Dr, ... ,xn ED~) iff D~ 2 D~' for i E
[1..n].

This equivalence means that for P = (C ; x1 E D1, ... , Xn E Dn) we can identify
the domain reduction ordering ({P' I P ~d P'}, hd) with the Cartesian product of
the partial orderings (F(Di), 2), where i E [1..n].

Additionally, each CSP in this domain reduction ordering is uniquely determined
by its domains and by the initial P. Indeed, by the definition of this ordering the
constraints of such a CSP are restrictions of the constraints of P to the domains of
this CSP.

Similarly,

(C~, . .. ,c~; V£) he (C~, ... ,er; V£) iff c; 2 c;' for i E (1..k].
This allows us for P = (C1, ... , Ck ; 'D&) to identify the constraint reduction
ordering ({P' I P he P'}, G;;c) with the Cartesian product of the partial orderings
(F(Ci), 2), where i E [l..k]. Also, each CSP in this constraint reduction ordering
is uniquely determined by its constraints and by the initial P.

In what follows instead of the domain reduction ordering and the constraint re
duction ordering we shall use the corresponding Cartesian products of the partial
orderings. So in these compound orderings the sequences of the domains (respec
tively, of the constraints) are ordered componentwise by the reversed subset ordering 2- Further, in each component ordering (F(D), 2) the set Dis the least element.

The reason we use these compound orderings is that we can now employ functions
with schemes, as used in Section 3. Each such function f is defined on a sub
Cartesian product of the constituent partial orderings. Its canonic extension j+,
introduced in Section 3, is then defined on the "whole» Cartesian product.

Suppose now that we are dealing with the domain reduction ordering with the
least (initial) CSP P and that

j+(D1 x · · · x Dn) =Di x · · · x D~.
Then the sequence of the domains (D1, ... , Dn) and P uniquely determine a CSP
in this ordering and the same for (Di, ... , D~) and P. Hence j+, and a fortiori f,

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1014 Krzysztof R. Apt

can be viewed as a function on the CSPs that are elements of this domain reduction

ordering. In other words, f can be viewed as a function on CSPs.
The same considerations apply to the constraint reduction ordering. We shall use

these observations when arguing about the equivalence between the original and

the final CSPs for various constraint propagation algorithms.
The considered functions with schemes will be now used in presence of the com

ponentwise ordering;;;?. The following observation will be useful.
Consider a function f on some Cartesian product F(E1) x ... x :F(Em)· Note

that f is inflationary w.r.t. the componentwise ordering 2 if for all (X1, ... , Xm) E

F(E1) x ... x :F(Em) we have Yi ~ Xi for all i E [l..m], where f (X1, ... , Xm) =

(Y1, ... , Ym)·
Also, f is monotonic w.r.t. the componentwise ordering 2 if for all (X1, ... , Xm),

(XJ., ... , x:n) E :F(E1) x ... x :F(Em) such that Xi ~ Xf for all i E [l..m], the

following holds: if

f(X1, ... , Xm) =(Yi, ... , Ym) and f (X{, .. . , x:n) = (Y{, .. . , Y~),

then Yi ~ Y/ for all i E [l..m].
In other words, f is monotonic w.r.t. 2 iff it is monotonic w.r.t. ~· This reversal

of the set inclusion of course does not hold for the inflationarity notion.
Let us discuss now briefly the functions used in our considerations. In the pre

ceding sections we clarified which of their properties account for specific properties

of the studied algorithms. It is tempting then to confine one's attention to closures,

i.e., functions that are inflationary, monotonic, and itempotent. The importance of

closures for concurrent constraint programming was recognized by Saraswat et al.

[1991] and for the study of constraint propagation by Benhamou and Older [1997].

However, as shown in Apt [1999a], some known local consistency notions are

characterized as common fixpoints of functions that in general are not itempotent.

Therefore when studying constraint propagation in full generality it is preferrable

not to limit one's attention to closures. On the other hand, in the sections that

follow we only study notions of local consistency that are characterized by means

of closures. Therefore, from now on the closures will be prominently present in our

exposition.

5. A HYPER-ARC CONSISTENCY ALGORITHM

We begin by considering the notion of hyper-arc consistency of Mohr and Masini

[1988] (we use here the terminology of Marriott and Stuckey [1998]). The more

known notion of arc consistency of Mackworth [1977] is obtained by restricting

one's attention to binary constraints. Let us recall the definition.

Definition 5.1.

-Consider a constraint C on the variables x1 , ... , Xn with the respective domains

D1, ... , Dn, i.e., C ~Di x · · · x Dn. We call C hyper-arc consistent if for every

i E [l..n] and a E Di there exists d EC such that a= d[i].

-We call a CSP hyper-arc consistent if all its constraints are hyper-arc consistent.

Intuitively, a constraint C is hyper-arc consistent if for every involved domain

each element of it participates in a solution to C.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1015

To employ the CDI algorithm of Section 3 we now make specific choices involving
the items (i), (ii), and (iii) of the previous section.

Re: (i) Partial orderings with the least elements.
As already mentioned in the previous section, for the function :F we choose the

powerset function P, so for each domain D we put :F(D) := P(D).
Given a CSP P with the sequence Di, ... , Dn of the domains we take the domain

reduction ordering with P as its least element. As already noted we can identify
this ordering with the Cartesian product of the partial orderings (P(Di), 2), where
i E [l..n]. The elements of this compound ordering are thus sequences (X1, ... , Xn)
of respective subsets of the domains D 1 , ... , Dn ordered componentwise by the
reversed subset ordering ;2.

Re: (ii) Monotonic and inflationary functions with schemes.
Given a constraint Con the variables y1, ... , Yk with respective domains E 1 , ... , Ek,

we abbreviate for each j E [1..k] the set {d[j] Id EC} to TIJ(C). Thus TIJ(C) con
sists of all jth coordinates of the elements of C. Consequently, IIJ (C) is a subset
of the domain EJ of the variable YJ.

We now introduce for each i E [1..k] the following function 'Tri on P(E1) x · · · x
P(Ek):

where

x: := Ili(C n (X1 x · · · x Xk)).
That is, X{ = {d[i] Id E X1 x · · · x Xk and d EC}. Each function ?ri is associated
with a specific constraint C. Note that x; ~ Xi, so each function 'Tri boils down to
a projection on the ith component.

Re: (iii) Common fixpoints.
Their use is clarified by the following lemma that also lists the relevant properties

of the functions 'Tri (see Apt [1999a, pages 197 and 202]).

LEMMA 5.2 (HYPER-ARC CONSISTENCY).
(i) A CSP (C ; x1 E D1, ... , Xn E Dn) is hyper-arc consistent if! (D1, ... , Dn) is a

common fixpoint of all functions nt associated with the constraints from C.
(ii) Each projection function 'Tri associated with a constraint C is a closure w.r.t.

the componentwise ordering 2.
By taking into account only the binary constraints we obtain an analogous char

acterization of arc consistency. The functions n1 and ?r2 can then be defined more
directly as follows:

n1(X, Y) := (X', Y),

where X' :={a EX J 3b E Y (a,b) EC}, and

n2(X, Y) := (X, Y'),

where Y' := {b E Y J 3a EX (a,b) EC}.
Fix now a CSP P. By instantiating the CD! algorithm with

F0 := {f J f is a 11'i function associated with a constraint of P}
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1016 Krzysztof R. Apt

and with each ..Li equal to Di we get the HYPER-ARC algorithm that enjoys the
following properties.

THEOREM 5.3 (HYPER-ARC ALGORITHM). Consider a CSP p := (C ; X1 E
D1, .. ., Xn E Dn), where each Di is finite.

'The HYPER-ARC algorithm always terminates. Let P' be the CSP determined by
P and the sequence of the domains D~, ... , D~ computed in d. Then

(i) P' is the !;;;d-least CSP that is hyper-arc consistent,
(ii) P' is equivalent to P.

Due to the definition of the ~d ordering the item (i) can be rephrased as follows.
Consider all hyper-arc consistent CSPs that are of the form (C' ; X1 E Di, ... , Xn E
D~) where D~ i;;; Di for i E [l..n] and the constraints in C' are the restrictions of
the constraints in C to the domains Di, .. ., D~. Then among these CSPs P' has
the largest domains.

PROOF. The termination and (i) are immediate consequences of the counterpart
of the CD Corollary 3.3 for the CDI algorithm and of the Hyper-arc Consistency
Lemma 5.2.

To prove (ii) note that the final CSP P' can be obtained by means of repeated
applications of the projection functions ?ri starting with the initial CSP P. (Con
forming to the discussion at the end of Section 4 we view here each such function
as a function on CSPs). As noted in Apt [1999a, pages 197 and 201] each of these
functions transforms a CSP into an equivalent one. D

6. AN IMPROVEMENT: THE AC-3 ALGORITHM

In the HYPER-ARC algorithm each time a 'lri function associated with a constraint
C on the variables Yi. ... , Yk is applied and modifies its arguments, all projection
functions associated with a constraint that involves the variable Yi are added to
the set G. In this section we show how we can exploit information about the
commutativity to add less projection functions to the set G. Recall that, in Section
3, we modified the notion of commutativity for the case of functions with schemes.

First, it is worthwhile to note that not all pairs of the 'lri and 7rj functions com
mute.

Example 6.1. (i) We consider the case of two binary constraints on the same
variables. Consider two variables, x and y with the corresponding domains Dx :=
{a,b}, Dy:= {c,d} and two constraints on x,y: C1 := {(a,c),(b,d)} and C2 :=
{(a,d)}.

Next, consider the 7r1 function of C1 and the ?r2 function of C2. Then apply
ing these functions in one order, namely 7r27r1, to (D:i:, Dy) yields Dri: unchanged,
whereas applying them in the other order, 7r17r2, yields Dx equal to {b}.
(ii) Next, we show that the commutativity can also be violated due to sharing of
a single variable. As an example take the variables x, y, z with the corresponding
domains Dx := {a,b}, Dy:= {b}, Dz := {c,d}, and the constraint C1 := {(a,b)}
on x,y and C2 := {(a,c),(b,d)} on x,z.

Consider now the 7rt function of C1 and the 7rt function of C2 • Then applying
these functions in one order, namely 7rt7rt, to (Dx, Dy, Dz) yields Dz equal to {c},
whereas applying them in the other order, 7rt7rt, yields Dz unchanged.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1017

The following lemma clarifies which projection functions do commute.
LEMMA 6.2 (COMMUTATIVITY). Consider a CSP and two constraints of it, C

on the variables Y1, ... , Yk and E on the variables z1, ... , ze.
(i) For i,j E [1..k] the functions 11"i and 11"j of the constraint C commute.
(ii) If the variables Yi and ZJ are identical then the functions 1ri of C and 7rj of E

commute.

PROOF. See the Appendix. D

Fix now a CSP. We derive a modification of the HYPER-ARC algorithm by instan
tiating this time the CDC algorithm. As before we use the set of functions

Fo := {! I f is a 7ri function associated with a constraint of P}
and each J_i equal to Di. Additionally we employ the following function Comm,
where 1Ti is associated with a constraint C and where E differs from C:

Comm(7ri) := { 1l"J I i =F j and 7rj is associated with the constraint C}
U { 1l"J I 1TJ is associated with a constraint E and

the ith variable of C and the jth variable of E coincide}.
By virtue of the Commutativity Lemma 6.2 each set Comm(g) satisfies the as

sumptions of the Update Theorem 2.7(ii).
By limiting oneself to the set of functions 7r1 and 7r2 associated with the binary

constraints, we obtain an analogous modification of the corresponding arc consis
tency algorithm.

Using now the counterpart of the CD Corollary 3.3 for the CDC algorithm we
conclude that the above algorithm enjoys the same properties as the HYPER-ARC
algorithm, i.e., the counterpart of the HYPER-ARC Algorithm Theorem 5.3 holds.

Let us clarify now the difference between this algorithm and the HYPER-ARC
algorithm when both of them are limited to the binary constraints.

Assume that the considered CSP is of the form (C ; VE). We reformulate the
above algorithm as follows. Given a binary relation R, we put

RT:= {(b, a) I (a,b) ER}.
For Fo we now choose the set of the 7r1 functions of the constraints or relations

from the set

So := { C I C is a binary constraint from C}
U {er IC is a binary constraint from C}.

Finally, for each 7r1 function of some C E So on x, y we define
Comm(7r1) :={the 7r1 function of er}

u {f I f is the 7r1 function of some E E So on x, z where z i= y}.
Assume now that

for each pair of variables x, y at most one constraint exists on x, y. (1)
Consider now the corresponding instance of the CDC algorithm. By incorporating

into it the effect of the functions 7r1 on the corresponding domains, we obtain the
following algorithm known as the AC-3 algorithm of Mackworth [1977].

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1018 Krzysztof R. Apt

We assume here that 1)£ := X1 E Di, . .. , Xn E Dn.

AC-3 ALGORITHM

So := { C I C is a binary constraint from C}
u {er I c is a binary constraint from C};

S :=So;
while S f. 0 do

od

choose C E S; suppose C is on Xi, Xj;

Di:= {a E Di I ::lb E Dj (a,b) EC};
if Di changed then

S :=SU {C' E So IC' is on the variables y, Xi where y ;/=. Xj}

fl:
' S:=S-{C}

It is useful to mention that the corresponding reformulation of the HYPER-ARC
algorithm for binary constraints differs in the second assignment to S which is then

S := SU { C' E So I C' is on the variables y, z where y is Xi or z is xi}·

So we "capitalized" here on the commutativity of the corresponding projection
functions 7rl as follows. First, no constraint or relation on Xi, z for some z is added
to S. Here we exploited part (ii) of the Commutativity Lemma 6.2.

Second, no constraint or relation on Xj,Xi is added to S. Here we exploited part
(i) of the Commutativity Lemma 6.2, because by assumption (1) er is the only
constraint or relation on Xj, Xi and its 7r1 function coincides with the 7T2 function
of C.

In case assumption (1) about the considered CSP is dropped, the resulting al
gorithm is somewhat less readable. However, once we use the following modified
definition of Comm(7r1)

Comm(7r1) := {f If is the 7r1 function of some EE So on x, z where z ;/=. y}

we get an instance of the CDC algorithm which differs from the AC-3 algorithm in
that the qualification "where y ;/=. x/ is removed from the definition of the second
assignment to the set S.

To illustrate the considerations of this section let us return now to the crossword
puzzle introduced in Section 1.2.

As pointed out by Mackworth [1992] this problem can be easily formulated as a
CSP as follows. First, associate with each position i E [1..8] in the grid of Figure
1 a variable. Then associate with each variable the domain that consists of the
set of words that can be used to fill this position. For example, position 6 needs
to be filled with a three-letter word, so the domain of the variable associated with
position 6 consists of the above set of five three-letter words.

Finally, we define constraints. They deal with the restrictions arising from the
fact that the words that cross share a letter. For example, the crossing of the
positions 1 and 2 contributes the following constraint:

C1,2 :={(HOSES, SAILS), (HOSES, SHEET), (HOSES, STEER),
(LASER, SAILS), (LASER, SHEET), (LASER, STEER)}.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1019

This constraint formalizes the fact that the third letter of position 1 needs to be
the same as the first letter of position 2. In total there are 12 constraints.

Each projection function 7r1 associated with a constraint C or its transpose cT
corresponds to a crossing, for example (8,2). It removes impossible values from the
current domain of the variable associated with the first position, here 8.

The above Commutativity Lemma 6.2 allows us to conclude, that for any pairwise
different a, b, c E [1..8], the projection functions 7r1 associated with the crossings
(a, b) and (b, a) commute and also the projection functions 7r1 associated with the
crossings (a, b) and (a, c) commute. This explains why in the AC-3 algorithm applied
to this CSP after considering a crossing (a, b), for example (2,4), neither the crossing
(4,2) nor the crossings (2,7) and (2,8) are added to the set of examined crossings.

To see that the AC-3 algorithm applied to this CSP yields the unique solution
depicted in Figure 2 it is sufficient to observe that this solution viewed as a CSP is
arc consistent and that it is obtained by a specific execution of the AC-3 algorithm,
in which the crossings are considered in the following order:

(1,2), (2,1), (1,3), (3,1), (4,2), (2,4), (4,5), (5,4), (4,2), (2,4),
(7,2), (2,7), (7,5), (5,7), (8,2), (2,8), (8,6), (6,8), (8,2), (2,8).

The desired conclusion now follows by the counterpart of the CD Corollary 3.3
according to which every execution of the AC-3 algorithm yields the same outcome.

7. A PATH CONSISTENCY ALGORITHM

The notion of path consistency was introduced in Montanari [1974]. It is defined
for a special type of CSPs. For simplicity we ignore here unary constraints that are
usually present when studying path consistency.

Definition 7 .1. We call a CSP P standardized if for each pair x, y of its variables
there exists exactly one constraint on x, yin P. We denote this constraint by Cx,y·

Every CSP is trivially equivalent to a standardized CSP. Indeed, it suffices for
each pair x, y of the variables of P first to add the "universal" constraint on x, y
that consists of the Cartesian product of the domains of the variables x and y and
then to replace the set of all constraints on x, y by their intersection.

At the cost of some notational overhead our considerations about path consis
tency can be generalized in a straightforward way to the case of CSPs such that for
each pair of variables x, y at most one constraint exists on x, y, i.e., to the CSPs
that satisfy assumption (1).

To simplify the notation given two binary relations R and S we define their
composition · by

R · S :={(a, b) I 3c ((a,c) ER, (c, b) ES)}.

Note that if R is a constraint on the variables x, y and S a constraint on tr
variables y, z, then R · S is a constraint on the variables x, z.

Given a subsequence x, y of two variables of a standardized CSP we introduc
"supplementary" relation Cy,x defined by

Cy,x := CI.u·
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November

1020 Krzysztof R. Apt

y

Cy,z

x z

Fig. 3. Three relations on three variables.

Recall that the relation cT was introduced in the previous section. The supple
mentary relations are not parts of the considered CSP, as none of them is defined
on a subsequence of its variables, but they allow us a more compact presentation.
We now introduce the following notion.

Definition 7.2. We call a standardized CSP path consistent if for each subset
{ x, y, z} of its variables we have

Cx,z ~ Cx,y · Cy,z·

In other words, a standardized CSP is path consistent if for each subset { x, y, z}
of its variables the following holds:

if (a,c) E Cx,z, then there exists b such that (a,b) E Cx,y and (b,c) E Cy,z·

To employ the CD! algorithm of Section 3 we again make specific choices in
volving the items (i), (ii), and (iii) of Section 4. First, we provide an alternative
characterization of path consistency.

Note that in the above definition we used the relations of the form Cu,v for any
subset { u, v} of the considered sequence of variables. If u, v is not a subsequence
of the original sequence of variables, then Cu,v is a supplementary relation that is
not a constraint of the original CSP. At the expense of some redundancy we can
rewrite the above definition so that only the constraint of the considered CSP are
involved. This is the contents of the following simple observation that will be useful
in a moment.

NOTE 7.3 (ALTERNATIVE PATH CONSISTENCY). A standardized CSP is path con
sistent iff for each subsequence x, y, z of its variables we have

Cx,z ~ Cx,y · Cy,z,

Cy,z ~ C'I_y · Cx,z·

Figure 3 clarifies this observation. For instance, an indirect path from x to y via
z requires the reversal of the arc (y, z). This translates to the first formula.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1021

Now, to study path consistency, given a standardized CSP P := (C1, ... , Ck ; 'De)
we take the constraint reduction ordering of Section 4 with P as the least element
and with the powerset function as the function :F. So, as already noted in Section
4 we can identify this ordering with the Cartesian product of the partial orderings
(P(Ci), 2), where i E [l..k]. The elements of this compound ordering are thus
sequences (X1 , ... ,Xk) of respective subsets of the constraints C1, ... ,Ck ordered
componentwise by the reversed subset ordering 2.

Next, given a subsequence x, y, z of the variables of P we introduce three functions
on P(Cx,y) x P(Cx,z) x P(Cy,z):

f;,y(P,Q,R) := (P',Q,R),

where P' := p n Q . RT'

f%,z(P,Q,R) := (P,Q',R),
where Q' := Q n P · R, and

J;,z(P,Q,R) := (P,Q,R'),
where R' :=Rn pT. Q.

In what follows, when using a function f ;,y we implicitly assume that the variables
x, y, z are pairwise different and that x, y is a subsequence of the variable of the
considered CSP.

Finally, we relate the notion of path consistency to the common fixpoints of the
above defined functions. This leads us to the following counterpart of the Hyper-arc
Consistency Lemma 5.2.

LEMMA 7.4 (PATH CONSISTENCY).
(i) A standardized CSP (C1, ... ,Ck; Ve:) is path consistent iff (C1 ,. .. ,Ck) is a

common fixpoint of all functions U;,y)+, U'f,z)+, and u:.z)+ associated with
the subsequences x, y, z of its variables.

(ii) The functions J:,y, JX,z, and JJ,z are closures w.r.t. the componentwise order
ing 2.

PROOF. (i) is a direct consequence of the Alternative Path Consistency Note 7.3.
The proof of (ii) is straightforward. These properties of the functions J:,y> J%,z>
and J:,z were already mentioned in Apt [1999a, page 193]. 0

We now instantiate the CDI algorithm with the set of functions

Fo := {f Ix, y, z is a subsequence of the variables of p and f E u;,y, n,z> f;,z} },
n := k, and each l..i equal to ci.

Call the resulting algorithm the PATH algorithm. It enjoys the following proper
ties.

THEOREM 7.5 (PATH ALGORITHM). Consider a standardized CSP

P := (C1, .. .,Ck; V£).
Assume that each constraint Ci is finite.

The PATH algorithm always terminates. Let P' : = (Cf, ... , C~ ; Ve), where the
sequence of the constraints Cf, ... , Ck is computed in d. Then

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1022 Krzysztof R. Apt

(i) P' is the ~c-least CSP that is path consistent,

(ii) P' is equivalent to P.

As in the case of the HYPER-ARC Algorithm Theorem 5.3 the item (i) can be
rephrased as follows. Consider all path consistent CSPs that are of the form
(C~, ... , Ck ; 'D&) where C~ ~ Ci for i E [1..k]. Then among them P' has the
largest constraints.

PROOF. The proof is analogous to that of the HYPER-ARC Algorithm Theorem
5.3. The termination and (i) are immediate consequences of the counterpart of the
CD Corollary 3.3 for the CDI algorithm and of the Path Consistency Lemma 7.4.

To prove (ii) we now note that the final CSP P' can be obtained by means of

repeated applications of the functions J:,y• !¥,z• and J;,z starting with the initial
CSP P. (Conforming to the discussion at the end of Section 4 we view here each
such function as a function on CSPs). As noted in Apt [1999a, pages 193 and 195])
each of these functions transforms a CSP into an equivalent one. D

8. AN IMPROVEMENT: THE PC-2 ALGORITHM

In the PATH algorithm each time a J;, 11 function is applied and modifies its argu
ments, all functions associated with a triplet of variables including x and y are
added to the set G. We now show how we can add fewer functions by taking into
account the commutativity information. To this end we establish the following
lemma.

LEMMA 8.1 (COMMUTATIVITY). Consider a standardized CSP involving among
others the variables x, y, z, u. Then the functions J:, 11 and f'/:,y commute.

In other words, two functions with the same pair of variables as a subscript
commute.

PROOF (SKETCH). The following intuitive argument may help to understand the
more formal justification given in the Appendix. First, both considered functions
have three arguments but share precisely one argument, the one from P(Cx,y), and
modify only this shared argument. Second, both functions are defined in terms of
the set-theoretic intersection operation "n" applied to two, unchanged arguments.
This yields commutativity since "n" is commutative. D

Fix now a standardized CSP P. We instantiate the CDC algorithm with the same
set of functions Fo as in Section 7. Additionally, we use the following function
Comm:

Comm(!:,) = {J'/:,y I u tj. { x, y, z }}.

Thus for each function g the set Comm(g) contains precisely m - 3 elements,
where m is the number of variables of the considered CSP. This quantifies the
maximal "gain" obtained by using the commutativity information: at each "up
date" stage of the corresponding instance of the CDC algorithm we add up to m - 3

fewer elements than in the case of the corresponding instance of the CDI algorithm
considered in the previous section.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1023

By virtue of the Commutativity Lemma 8.1 each set Comm(g) satisfies the as
sumptions of the Update Theorem 2.7(ii). We conclude that the above inst>ance of
the CDC algorithm enjoys the same properties as the original PATH algorithm, i.e., the
counterpart of the PATH Algorithm Theorem 7.5 holds. To make this modification
of the PATH algorithm easier to understand we proceed as follows.

Below we write x-< y to indicate that x, y is a subsequence of the variables of the
CSP P. Each function of the form l/:,y where x-< y and u <i {x,y} can be identified
with the sequence x, u, y of the variables. (Note that the "relative" position of u
w.r.t. x and y is not fixed, so x, u, y does not have to be a subsequence of the
variables of P.) This allows us to identify the set of functions F0 with the set

Vo:= {(x,u,y) Ix-< y,u <i {x,y}}.

Next, assuming that x -< y, we introduce the following set of triples of different
variables of P:

Vx,y := {(x,y,u) Ix-< u} U {(y,x,u) I y-< u}
U {(u,x, y) I u-< y} U {(u, y,x) I u-< x}.

Informally, Vx,y is the subset of V0 that consists of the triples that begin or end
with either x, y or y, x. This corresponds to the set of functions in one of the
following forms: !%,u, J:,ui f;:},,y, and f1f.,x·

The above instance of the CDC algorithm then becomes the following PC-2 algo
rithm of Mackworth [1977]. Here initially Ex,y = Cx,y·

PC-2 ALGORITHM

Vo:= {(x,u,y) Ix-< y,u t/. {x,y}};
V:= Vo;
while V-:j:. 0 do

od

choose p E V; suppose p = (x, u, y);
apply /:,y to its current domains;
if Ex,y changed then

V :=VU Vx,yi
fi· ,
V := V-{p}

Here the phrase "apply J:t,y to its current domains" can be made more precise if
the "relative" position of u w.r.t. x and y is known. Suppose for instance that u is
"before" x and y. Then J::,y is defined on P(Cu,x) x P(Cu,y) x P(Cx,y) by

J::,y(Eu,x. Eu,y, Ex,y) := (Eu,x, Eu,y, Ex,y n E'£.x · Eu,y),

so the above phrase "apply f'/:,y to its current domains" can be replaced by the
assignment

Ex,y := Ex,y n E~x · Eu,y·

Analogously for the other two possibilities.
The difference between the PC-2 algorithm and the corresponding representation

of the PATH algorithm lies in the way the modification of the set V is carried out.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1024 Krzysztof R. Apt

In the case of the PATH algorithm the second assignment to V is

V :=VU Vx,y U {(x, u,y) I u '/. {x,y}}.

9. SIMPLE ITERATION ALGORITHMS
Let us return now to the framework of Section 2. We analyze here when the while loop of the GENERIC ITERATION ALGORITHM GI can be replaced by a for loop.
First, we weaken the notion of commutativity as follows.

Definition 9 .1. Consider a partial ordering (D, S:) and functions f and g on D. We say that f semi-commutes with g (w.r.t. ~)if f(g(x)) S: g(f(x)) for all x.
The following lemma provides an answer to the question just posed. Here and

elsEl_where we omit brackets when writing repeated applications of functions to an
argument.

LEMMA 9.2 (SIMPLE ITERATION). Consider a partial ordering (D, ~) with the
least element .L Let F := f1, ... , fk be a finite sequence of closures on (D, [;:;;).
Suppose that fi semi-commutes with fj for i > j, i.e.,

fdj(x) [;:;; fjfi(x) for i > j and for all x.
Then fif2 .. . fk(j_) is the least common fixpoint of the functions from F.

PROOF. We prove first that for i E [l..k] we have

fd1h . . fk(j_) r;;; fif2 .. ·fk(j_).

(2)

Indeed, by the assumption (2) we have the following string of inclusions, where the
last one is due to the idempotence of the considered functions:

Additionally, by the infiationarity of the considered functions, we also have for
i E [l..k]

fih . .fk(j_) r;;; fd1f2.. ·fk(j_).
So fif2 .. . fk(j_) is a common fixpoint of the functions from F. This means that any iteration of F that starts with J_, fk(1-), fk-ifk(l_), ... ,fih .. fk(j_) eventually stabilizes at fih .. fk(l_). By the Stabilization Lemma 2.3 we get the desired conclusion. 0

The above lemma provides us with a simple way of computing the least common
fixpoint of a finite set of functions that satisfy the assumptions of this lemma, in particular condition (2). Namely, it suffices to order these functions in an appro
priate way and then to apply each of them just once, starting with the argument
J_.

The following algorithm is a counterpart of the GI algorithm. We assume in it
that condition (2) holds for the sequence of functions Ji, ... , fk·
SIMPLE ITERATION ALGORITHM (SI)
d := j_;
for i : = k to 1 by -1 do
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1025

od

The following immediate consequence of the Simple Iteration Lemma 9.2 is a
counterpart of the GI Corollary 2.5.

COROLLARY 9.3 (SI). Suppose that (D, G;;) is a partial ordering with the least
element .L Let F := /1, ... , fk be a finite sequence of closures on (D, !;;;;) such that
(2) holds. Then the SI algorithm terminates and computes in d the least common
fixpoint of the functions from F.

Note that in contrast to the GI Corollary 2.5 we do not require here that the
partial ordering is finite. We can view the SI algorithm as a specialization of the
GI algorithm of Section 2 in which the elements of the set of functions G are selected
in a specific way and in which the update function always yields the empty set.

In Section 3 we refined the GI algorithm for the case of compound domains. An
analogous refinement of the SI algorithm is straightforward and omitted. In the
next two sections we show how we can use this refinement of the SI algorithm to
derive two well-known constraint propagation algorithms.

10. DAC: A DIRECTIONAL ARC CONSISTENCY ALGORITHM

We consider here the notion of directional arc consistency of Dechter and Pearl
[1988]. Let us recall the definition.

Definition 10.1. Assume a linear ordering -< on the considered variables.

-Consider a binary constraint C on the variables x, y with the domains Dx and
Dy. We call C directionally arc consistent w.r.t. -< if
-Va E Dx:'3b E Dy (a, b) EC provided x-< y,
-\:/b E Dy3a E Dx (a, b) EC provided y-< x.
So out of these two conditions on C exactly one needs to be checked.

-We call a CSP directionally arc consistent w. r. t. --< if all its binary constraint.
are directionally arc consistent w.r.t. -<.
To derive an algorithm that achieves this local consistency notion we first char

acterize it in terms of fixpoints. To this end, given a P and a linear ordering --< on
its variables, we rather reason in terms of the equivalent CSP P-< obtained from P
by reordering its variables along -< so that each constraint in P-< is on a sequence
of variables X1, ... , Xn such that X1 -< x2 -< ... -< Xn.

The following simple characterization holds.

LEMMA 10.2 (DIRECTIONAL ARC CONSISTENCY). Consider a CSP P with a
linear ordering-< on its variables. Let P-< := (C; x1 E D1, .. . ,Xn E Dn)· Then P
is directionally arc consistent w.r.t. -< iff (D1, .. ., Dn) is a common fixpoint of the
functions Jrt associated with the binary constraints from P-<..

We now instantiate in an appropriate way the SI algorithm for compound do
mains with all the 7!'1 functions associated with the binary constraints from P-< .
In this way we obtain an algorithm that achieves for 'P directional arc consis
tency w.r.t. -<. First, we adjust the definition of semi-commutativity to func
tions with different schemes. To this end consider a sequence of partial orderings

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1026 Krzysztof R. Apt

(Di, !; 1), .•• , (Dn, !; n) and their Cartesian product (D, i:;; ~· Take two ~nc
tions, f with scheme s and g with scheme t. We say that f semi-commutes with g
(w.r.t. i;;;;) if j+ semi-commutes with g+ w.r.t. !;;; , i.e., if

t+(g+(d)) b g+(!+(d))

for all d ED.
The following lemma is crucial. To enhance the readability, we replace here the

irrelevant variables by -·

LEMMA 10.3 (SEMI-COMMUTATIVITY). Consider a CSP and two binary con
straints of it, C1 on_, z and C2 on-• y, where y j z.

Then the 7rl function of C1 semi-commutes with the 1!"1 function of C2 w. r. t. the
componentwise ordering 2.

PROOF. See the Appendix. D

To be able to apply this lemma we order appropriately the 7r1 functions of the
binary constraints of 'P-<.· Namely, given two 7r1 functions, f associated with a
constraint on _, z and g associated with a constraint on _, y, we put f before g if
y ~ z. Then by virtue of this lemma. and the Commutativity Lemma 6.2(ii) if
the function f precedes the function g, then f semi-commutes with g w.r.t. the
componentwise ordering 2.

Observe that we leave here unspecified the order between two 7r1 functions, one
associated with a constraint on x, z and another with a constraint on y, z, for some
variables x, y, z. Note that if x and y coincide then the semi-commutativity is
indeed a consequence of the Commutativity Lemma 6.2(ii).

We instantiate now the refinement of the SI algorithm for the compound domains
by the above-defined sequence of the 7r1 functions and each ..Li equal to the domain
Di of the variable x;.. In this way we obtain the following algorithm, where the
sequence of functions is Ji, ... , fk·

DIRECTIONAL ARC CONSISTENCY ALGORITHM (DARC)

d := (D1,. .. , Dn)i
for j := k to 1 by -1 do

suppose fj is with scheme s;
d[s] := fj(d[s])

od

This algorithm enjoys the following properties.

THEOREM 10.4 (DARC ALGORITHM). Consider a CSP 'P with a linear ordering
~ on its variables. Let 'P-< := (C ; x1 E D1, .. . ,Xn E Dn)·

The DARC algorithm always terminates. Let 'P' be the CSP determined by p-< and
the sequence of the domains Di, ... , D~ computed in d. Then

(i) P' is the ~d-least CSP in {Pi I 'P-< bd P1} that is directionally arc consistent
w.r.t. ~,

(ii} P' is equivalent to 'P.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1027

PROOF. The termination is obvious. (i) is an immediate consequence of the
counterpart of the SI Corollary 9.3 for the SI algorithm refined for the compound
domains and of the Directional Arc Consistency Lemma 10.2.

The proof of (ii) is analogous to that of the HYPER-ARC Algorithm Theorem
5.3(ii). D

Note that in contrast to the HYPER-ARC Algorithm Theorem 5.3 we do not need
to assume here that each domain is finite.

Assume now that the original CSP P is standardized, i.e., for each pair of its
variables x, y precisely one constraint on x, y exists. The same holds then for P-<..
We now specialize the DARC algorithm by ordering the 7r1 functions in a deterministic
way. Suppose that P-<. := (C; X1 E D1, ... , Xn E Dn)· Denote the unique constraint
of P-<. on Xi,Xj by Ci,j·

Order now these constraints as follows:

That is, the constraint Ci' ,j' precedes the constraint Ci" ,j" if the pair (j", i') lexico
graphically precedes the pair (j', i"). Take now the n1 functions of these constraints
ordered in the same way as their constraints.

The above DARC algorithm can then be rewritten as the following double for loop.
The resulting algorithm is known as the DAC algorithm of Dechter and Pearl [1988].

for j := n to 2 by -1 do
for i := 1 to j - 1 do

Di:= {a E Di I :lb E Dj (a,b) E Ci,j}
od

od

ll. DPC: A DIRECTIONAL PATH CONSISTENCY ALGORITHM

In this section we deal with the notion of directional path consistency defined in
Dechter and Pearl [1988]. Let us recall the definition.

Definition 11.1. Assume a linear ordering -< on the considered variables. We
call a standardized CSP directionally path consistent w. r. t. -< if for each subset
{x, y, z} of its variables we have

Cx,z ~ Cx,y · Cy,z provided x, z -< y.

This definition relies on the supplementary relations because the ordering -< may
differ from the original ordering of the variables. For example, in the original
ordering z can precede x. In this case Cz,x and not Cx,z is a constraint of the CSP
under consideration.

But just as in the case of path consistency we can rewrite this definition using the
original constraints only. In fact, we have the following analogue of the Alternative
Path Consistency Note 7.3.

NOTE 11.2 (ALTERNATIVE DIRECTIONAL PATH CONSISTENCY). A standardized
CSP is directionally path consistent w. r. t. -< ifj for each subsequence x, y, z of its
variables we have

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1028 Krzysztof R. Apt

Cx,y ~ Cx,z · C~z provided x, y-< z,

Cx,z ~ Cx,y · Cy,z provided X, Z-< y,

Cy,z ~ CI,y · Cx,z provided y, z-< x.

Thus out of the above three inclusions precisely one needs to be checked.
As before we now characterize this local consistency notion in terms of fixpoints.

To this end, as in the previous section, given a standardized CSP P we rather
consider the equivalent CSP P-<- The variables of P-< are ordered according to-<,
and P-< is standardized, as well.

The following counterpart of the Directional Arc Consistency Lemma 10.2 is a
direct consequence of the Alternative Directional Path Consistency Note 11.2. We
use here the functions J;,y defined in Section 7.

LEMMA 11.3 (DIRECTIONAL PATH CONSISTENCY). Consider a standardized
CSP P with a linear ordering -< on its variables. Let P-< := (C1, .. ., Ck ; Ve?.
Then P is directionally path consistent w.r.t. -< iff (Ci, ... , Ck) is a common fixpoint
of all functions u:,y)+' where x -< y-< z.

To obtain an algorithm that achieves directional path consistency we now instan
tiate in an appropriate way the SI algorithm. To this end we need the following
lemma.

LEMMA 11.4 (SEMI-COMMUTATIVITY). Consider a standardized CSP with a lin
ear ordering-< on its variables. Suppose that x1-< Y1 -< z, X2 -< Y2 -< u, and u :::5 z.
Then the function gl>Yl semi-commutes with the function r:2,Y2 w.r.t. the compo
nentwise ordering 2.

PROOF. See the Appendix. 0

Consider now a standardized CSP P with a linear ordering -< on its variables
and the corresponding CSP P-<. To be able to apply the above lemma we order
the J;,y functions, where x-< y -< z, as follows.

Assume that x 1 , .. ., Xn is the sequence of the variables of P-<, i.e., x 1 -< x2 -<
... -< Xn. Let form E [3 .. n] the sequence Lm consist of the functions J;:nx , where

" J i < j < m, ordered in an arbitrary way. Consider the sequence resulting from
appending the sequences Ln, Ln-1, ... , La, in that order. Then by virtue of the
Semi-commutativity Lemma 11.4 if the function j precedes the function g, then f
semi-commutes with g w.r.t. the componentwise ordering ;2.

We instantiate now the refinement of the SI algorithm for the compound domains
by the above-defined sequence of functions J;,y and each ..Li equal to the constraint
Ci. This yields the DIRECTIONAL PATH CONSISTENCY ALGORITHM (DPATH) that
apart from the different choice of the constituent partial orderings is identical to the
DIRECTIONAL ARC CONSISTENCY ALGORITHM DARC of the previous section. Con
sequently, the DPATH algorithm enjoys analogous properties as the DARC algorithm.
They are summarized in the following theorem.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1029

THEOREM 11.5 (DPATH ALGORITHM). Consider a standardized CSP P with a
linear ordering -< on its variables. Let P-1.. := (C1, ... , Ck ; Ve).

The DPATH algorithm always terminates. Let P' := (Ci, .. . ,Ck; Vt:), where the
sequence of the constraints CJ., ... , Ck is computed in d. Then

{i) P' is the r;c-least CSP in {P1 I P-1.. r;d P1} that is directionally path consistent
w.r.t. -<,

{ii) P' is equivalent to P.

As in the case of the DARC Algorithm Theorem 10.4 we do not need to assume
here that each domain is finite.

Let us order now each sequence Lm in such a way that the function f;:n ~. pre-
....,.,,,,~,, cedes f;,:;; ,x311 if the pair (j', i') lexicographically precedes the pair(j'', i"). Denote

the unique constraint of P-1, on Xi,XJ by Ci,J· The above DPATH algorithm can then
be rewritten as the following triple for loop. The resulting algorithm is known as
the DPC algorithm of Dechter and Pearl [1988].

form:= n to 3 by -1 do

od

for j := 2 tom -1 do
for i := 1 to j - 1 do

Ci,J := Ci,J n Ci,m · CJ.m
od

od

12. CONCLUSIONS AND RECENT WORK
In this article we introduced a general framework for constraint propagation. It
allowed us to present and explain various constraint propagation algorithms in a
uniform way. By starting the presentation with generic iteration algorithms on
arbitrary partial orders we clarified the role played in the constraint propagation
algorithms by the notions of commutativity and semi-commutativity. This in turn
allowed us to provide rigorous and uniform correctness proofs of the AC-3, PC-2,
DAC, and DPC algorithms.

The following table summarizes the results of this article.

Local Consistency Algorithm Generic Lemmata Accounting
Notion Algorithm used for Correctness
arc AC-3 CDC Hyper-arc Consistency 5.2,
consistency (Section 3) Commutativity 6.2
path PC-2 CDC Path Cop.sistency 7.4,
consistency (Section 3) Commutativity 8.1

directional arc DAC SI Hyper-arc Consistency 5.2,
consistency (Section 9) Semi-commutativity 10.3
directional path DPC SI Hyper-arc Consistency 5.2,
consistency (Section 9) Semi-commutativity 11.4

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1030 Krzysztof R. Apt

Since the time this article was submitted for publication the line of research
here presented was extended in a number of ways. First, Gennari [2000a] extended
slightly the framework of this article and used it to explain the AC-4 algorithm of
Mohr and Henderson [1986], the AC-5 algorithm of Van Hentenryck et al. [1992],
and the GAC-4 algorithm of Mohr and Masini [1988]. The complication was that
these algorithms operate on some extension of the original CSP.

Then, Bistarelli et al. [2000] studied constraint propagation algorithms for soft
constraints. To this end they combined the framework of Apt [1999a] and of this
paper with the one of Bistarelli et al. [1997]. The latter provides a unified model
for several classes of "nonstandard" constraint satisfaction problems employing the
concept of a semiring.

Recently Gennari [2000b] showed how another modification of the framework
here presented can be used to explain the PC-4 path consistency algorithm of Han
and Lee [1988] and the KS algorithm of Cooper [1989] that can achieve either k

consistency or strong k-consistency.
We noted already in Apt [1999a] that using a single framework for presenting

constraint propagation algorithms makes it easier to automatically derive, verify,
and compare these algorithms. In the meantime the work of Monfroy and Rety
[1999] showed that this approach also allows us to parallelize constraint propaga
tion algorithms in a simple and uniform way. This resulted in a general framework
for distributed constraint propagation algorithms. As a follow up on this work Mon
froy [2000] showed that it is possible to realize a control-driven coordination-based
version of the generic iteration algorithm. This shows that constraint propagation
can be viewed as the coordination of cooperative agents.

Additionally, as already noted to large extent in Benhamou [1996], such a general
framework facilitates the combination of these algorithms, a property often referred
to as "solver cooperation." For a coordination-based view of solver cooperation
inspired by such a general approach to constraint propagation see Monfroy and
Arbab [2000].

Let us mention also that Fernandez and Hill [1999] combined the approach of Apt
[1999a] with that of Codognet and Diaz [1996] to construct a general framework
for solving interval constraints defined over arbitrary lattices. Finally, the generic
iteration algorithm GI and its specializations can be used as a template for deriving
specific constraint propagation algorithms in which particular scheduling strategies
are employed. This was done for instance in Monfroy [1999] for the case of non
linear constraints on reals where the functions to be scheduled were divided into two
categories: "weaker" and "stronger" with the preference for scheduling the weaker
functions first.

Currently we investigate whether existing constraint propagation algorithms could
be improved by using the notions of commutativity and semi-commutativity.

APPENDIX

PROOF OF COMMUTATIVITY LEMMA 6.2. (i) It suffices to notice that for each
k-tuple X1, ... , Xk of subsets of the domains of the respective variables we have

7rj(7ri(X1, ... , Xk)) = (X1, ... , Xi-1,X:, Xi+1, ... , Xj-1, Xj, XH1, ... , Xk)
= 7ri(7rj(X1, ... , Xk)),

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1031

where

x: := IIi(C n (Xi x · · · x Xk)),

Xj := Ilj(C n (Xi x · · · x Xk)),

and where we assumed that i < j.

(ii) Let the considered CSP be of the form (C ; xi E Di, .. . , Xn E Dn). Assume
that some common variable of Yi, ... , Yk and zi, .. . , Zt is identical to the variable
Xh· Further, let Sol(C,E) denote the set of d E Dix ... x Dn such that d[s] EC
and d[t] E E, where s is the scheme of C and t is the scheme of E.

Finally, let f denote the 1T'i function of C and g the 1T'j function of E. It is easy
to check that for each n-tuple X1, ... , Xn of subsets of Di, ... , Dn, respectively, we
have

7rj"('n-j(X1, ... , Xn)) = (X1, .. . ,Xh-i,Xh,Xh+i, ... ,Xn)
= 1rf(1rt(Xi. ... ,Xn)),

where

Xfi := IIh(Sol(C,E) n (X1 x · · · x Xn)).

0

PROOF OF COMMUTATIVITY LEMMA 8.1. Note first that the "relative" posi
tions of z and of u w.r.t. x and y are not specified. There are in total three
possibilities concerning z and three possibilities concerning u. For instance, z can
be "before" x, "between" x and y, or "after" y. So we have to consider in total
nine cases.

In what follows we limit ourselves to an analysis of three representative cases.
The proof for the remaining six cases is completely analogous. Recall that we write
x-< y to indicate that x, y is a subsequence of the variables of P.

Case 1. y-< z and y-< u.
It helps to visualize these variables as in Figure 4. Informally, the functions J;,y and
f'/t,y correspond, respectively, to the upper and lower triangle in this :figure. The
fact that these triangles share an edge corresponds to the fact that the functions
J;,y and J:i,y share precisely one argument, the one from P(Cz,y).

Ignoring the arguments that do not correspond to the schemes of the functions
1;,y and f'/:,y we can assume that the functions u;,y)+ and u:,y)+ are both defined
on

P(Cx,y) x P(Cx,z) x P(Cy,z) x P(Cx,u) x P(Cy,v.)·

Each of these functions changes only the :first argument. In fact, for all elements
P, Q, R, U, V of, respectively, P(Cz,y), P(Cx,z), P(Cy,z), P(Cx,v.), and P(Cy,.u), we
have

(J;,y)+(J'/:,y)+(P,Q,R, U, V) = (Pn U ·VT n Q · RT,Q,R, U, V)
= (PnQ. RT nu. vT,Q,R,U, V)
= U'/t,y)+(!;,y)+(P, Q, R, u, V).

Case 2. x -< z -< y -< u.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1032 Krzysztof R. Apt

z

x y

u

Fig. 4. Four variables connected by directed arcs.

The intuitive explanation is analogous as in Case 1. We confine ourselves to noting
that u;,y)+ and UJ:,y)+ are now defined on

P(Cx,z) x P(Cx,y) x P(C,,,y) x P(Cx,u) x P(Cy,u),
but each of them changes only the second argument. In fact, we have

(f;,y)+(JJ;,y)+(P,Q,R, U, V) = (P,Q n U ·VT n P · R,R, U, V)
= (P,Q nP· Rn u. vT,R,U, V)
= (J;,y)+(J;,y)+(P, Q, R, U, V).

Case 3. z -< x and y -< u.
In this case the functions u:,y)+ and u;,y)+ are defined on

P(Cz,x) x P(Cz,y) x P(Cx,y) x P(Cx,u) x P(Cy,u),
but each of them changes only the third argument. In fact, we have

(f; y)+(JJ;y)+(P, Q, R, U, V) = (P, Q, Rn U · vT n pT · Q, U, V) ' ' T T = (P,Q,RnP ·QnU·V ,U,V)
= (f;,y)+(J;,y)+(P,Q,R,U, V).

D

PROOF OF SEMI-COMMUTATIVITY LEMMA 10.3. Suppose that the constraint C1
is on the variables u, z and the constriant C2 is on the variables x, y, where y ::::5 z.
Denote by fu,z the 7r1 function of C1 and by fx,y the n1 function of C2. The fol
lowing cases arise.

Case 1. {u, z} n {x,y} = 0.
Then the functions fu,z and fx,y commute since their schemes are disjoint.
Case2. {u,z}n{x,y}#0.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms

Subcase 1. u = x.

1033

Then the functions f a d f b .
6.2(ii). u,z n x,y commute y virtue of the Commutativity"-'""'""'"'

Subcase 2. u = y.

Let the considered CSP be of the form {C · x E D D) ur
th I · £ ' 1 11 · • ., Xn E n . ne can rerlnr:ase

e c aim as ollows, where we denote now f by f . Flor - 'l r ,.. v ·1
P(D1) X ..• x P(Dn) we have u,z y,z· ru \""-li · . . ,,''1.n, E

J::,zCJ:,y(X1, · · .,Xn)) 2 J:,y(f;i,;:(X1, .. . , Xn)).

To prove it note first that for some i,j, k E [1..n] such that i < j < k we
x = Xi, Y = Xj, and z = Xk. We now have

f:t,AJ:,y(X1, ... ,Xn)) = (fy,z)+(X1,. .. ,Xi-i,X:,xi+1,. • .,Xn)
= (Xi, ... , Xi-i,XJ,Xi+i, ... ,Xj-11 Xj, XJ+l• ... ,

where

and

whereas

where

fx,y(Xi, Xj) = (x:', X.D·
By the Hyper-arc Consistency Lemma 5.2(ii) each function 7l"; is inflationary and

monotonic w.r.t. the componentwise ordering ;2. By the first property applied to
fy,z we have Xj 2 Xj, so by the second property applied to fx,y we have x:;;;?

This establishes the claim.

Subcase 3. z = x.
This subcase cannot arise, since then the variable z precedes the variable y whereas
by assumption the converse is the case.

Subcase 4. z = y.
We can assume by Subcase 1 that u :f x. Then the functions fu,z and rom1m1te,
since each of them can change only its first component and since this component
does not appear in the scheme of the other function. 0

PROOF OF SEMI-COMMUTATIVITY LEMMA 11.4. Recall that we assumed that
x1 -< Y1 -< z, x2 -< y2 -< u and u ::5 z. We are supposed to prove that the function
f z semi-commutes with the function f'!: ,, w.r.t. the componentwise ordering

X1 ,y1 ~:ih~2

2. The following cases arise.

Case 1. (x1,Y1) = (x2,Y2).
ACM Transactions on Programming Languages and System~, Vol. 22, No. 6, N<>vembie.r 20il!l.

1034 Krzysztof R. Apt

In this and other cases by an equality between two pairs of variables we mean that
both the first component variables, here x1 and x2, and the second component

variables, here Y1 and Y2, are identical.
In this case the functions J;1 ,y1 and f'/:2 ,y2 commute by virtue of the Commuta-

tivity Lemma 8.1.

Case 2. (x1,y1) = (x2,u).
Then u and z differ, since y1 -< z. Ignoring the arguments that do not correspond
to the schemes of the functions J;1 ,y1 and f;t2 ,y2 we can assume that the functions
(!; 1 ,yJ+ and (f'/:2 ,yJ+ are both defined on

P(Cx 1 ,yJ X 'P(Cxi,z) X 'P(Cy1 ,z) X 'P(Cx2,y2) X 'P(Cy2,u) 0

The following now holds for all elements P, Q, R, U, V of, respectively, P(Cx1 ,yi},
'P(Cx 1 ,z), 'P(Cy 1 ,z), 'P(Cx2,y2) and 'P(Cy2,u):

(f;1 ,y1)+(!;2 ,y2)+(P, Q, R, U, V) = (f;1 ,y1)+(1i Q, R, Un P ·;:T, V)
= (P n Q. R 'R, u n p. v 'V)
2 (P n Q · RT, R, u n (P n Q . RT) . yT, V)
= U'/:2 ,y2)+(P n Q ·RT, Q, R, u, V)
= U'!:2,y2)+(J;1,yJ+(P,Q,R,U, V).

Case 3. (x1, Y1) = (y2, u).
In this case u and z differ as well, since Y1 -< z. Again ignoring the arguments that
do not correspond to the schemes of the functions J;1 ,y1 and f'/:2 ,y2 we can assume
that the functions (!;1,yJ+ and (f;t2 ,yJ+ are both defined on

'P(Cx 1 ,yi) X 'P(Cx1 ,z) X 'P(Cy1 ,z) X 'P(Cx2 ,y2) X 'P(Cx2,u)·

The following now holds for all elements P, Q, R, U, V of, respectively, P(Cxi,y1),

'P(Cx 1,z), 'P(Cy1,z), 'P(Cx2 ,yz}, and 'P(Cx2 ,u):

(f;1,yJ+(f'/:2 ,y2)+(P, Q, R, U, V) = (!;1 ,yJ+(P, Q, R, Un V · pT, V)
= (PnQ. RT,R,U n v. pT, V)
2 (P n Q ·RT, R, u n v. (P n Q. RT)T, V)
= (JJt2 ,y2)+ (P n Q · RT, Q, R, U, V)
= U'/:2,y2)+U;1,yJ+(P, Q,R, u, V).

Case 4. (xi,y1) r/. {(x2,Y2),(x2,u),(y2,u)}.
Then also (x2,Y2) tf. {(x1,Y1),(x1,z),(yi,z)}, since (x2,Y2) =/= (x1,Y1) and Y2-/=- z

as Y2 -< u ::S z.
Thus the functions f:1,y1 and r:2,Y2 commute since each of them can change only

its first component and since this component does not appear in the scheme of the
other function. 0

ACKNOWLEDGMENTS

Victor Dalmau and Rosella Gennari pointed out to us that Assumptions A and B
in Apt [1999b, page 4] are not sufficient to establish Theorem 1. The added now
Assumption C was suggested to us by Rosella Gennari. The referees, the editor
Alex Aiken, and Eric Monfroy made useful suggestions concerning the presentation.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

The Role of Commutativity in Constraint Propagation Algorithms 1035

REFERENCES

A. AGGOUN ET AL. 1995. EGL' PS" S.5 User Manual. Munich, Germany.
APT, K. R. 1999a. The essence of constraint propagation. Theoretical Computer Science 221, 1-2,

179-210. Available via http://arXiv.org/archive/cs/.
APT, K. R. 1999b. The rough guide to constraint propagation. In Fifth International Conference

on Principles and Practice of Constraint Programming {CP'99), J. Ja.ffar, Ed. Lecture Notes
in Computer Science 1713. Springer-Verlag, Alexandra., Virginia., USA, 1-23. Invited Lecture.
Available via http://arXiv.org/archive/cs/.

BENHAMOU, F. 1996. Heterogeneous constraint solving. In Proceeding of the Fifth International
Conference on Algebraic and Logic Programming (ALP 96), M. Hanus and M. Rodriguez
Artalejo, Eds. Lecture Notes in Computer Science 1139. Springer-Verla.g, Berlin, 62-76.

BENHAMOU, F. AND OLDER, w. 1997. Applying interval arithmetic to real, integer and Boolean
constraints. Journal of Logic Programming 92, 1, 1-24.

BISTARELLI, s., GENNARI, R., AND ROSSI, F. 2000. Constraint propagation for soft constraint
satisfaction problems: Generalization and termination conditions. In Proc. of Constraint Pro
gramming 2000 (CP2000}, R. Dechter, Ed. Lecture Notes in Computer Science 1894. Springer
Verlag, Berlin, 83-97.

BISTARELLI, s., MONTANARI, u., AND ROSSI, F. 1997. Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44, 2 (Mar.), 201-236.

CODOGNET, P. AND DIAZ, D. 1996. Compiling constraints in clp(FD). Journal of Logic Program
ming 27, 3, 185-226.

COOPER, M. C. 1989. An Optima.I k-Consistency Algorithm. Artificial Intelligence 41, 89-95.
DECHTER, R. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Intelli

gence 119, 1 & 2, 41-85.
DECHTER, R. AND PEARL, J. 1988. Network-based heuristics for constraint-satisfaction problems.

Artificial Intelligence 34, 1 (Jan.), 1-38.
DECHTER, R. AND VAN BEEK, P. 1997. Local and global relational consistency. Theoretical

Computer Science 173, 1 (20 Feb.), 283-308.
FERNANDEZ, A. AND HILL, P. 1999. Interval constraint solving over lattices using

chaotic iterations. In ERCIM/COMPULOG Workshop on Constraints, K. Apt,
C. Kakas, E. Monfroy, and F. Rossi, Eds. Paphos, Cyprus. Available via
http://www.cwi.nl/ERCIM/WG/Constraints/Workshops/Workshop4/Program/index.html.

GENNARI, R. 2000a. Arc consistency via subsumed functions. In Proc. of Computational Logic
2000 (CL2000}, J. Lloyd, Ed. Lecture Notes in Artificial Intelligence 1861. Springer-Verlag,
Berlin, 358-372.

GENNARI, R. 2000b. The GIF algorithm: A general schema for constraint propagation. Manuscript.
Available via http://www. wins. uva.nlrrgemiari.

G!ERZ, G., HOFMANN, K., KEIMEL, K., LAWSON, J., MISLOVE, M., AND SCOTT, D. 1980. A
Compendium of Continuous Lattices. Springer-Verlag, Berlin.

HAN, C. AND LEE, C. 1988. Comments on Mohr and Henderson's path consistency algorithm.
Artificial Intelligence 36, 125-130.

ILOG. 1998. ILOG optimization suite - white paper. Available via http://www.ilog.com.
MACKWOR.TH, A. 1977. Consistency in networks of relations. Artificial Intelligence 8, 1, 99-118.
MACKWOR.TH, A. 1992. Constraint satisfaction. In Encyclopedia of Artificial Intelligence, S. C.

Shapiro, Ed. Wiley, 285-293. Volume 1.

MARRIOTT, K. AND STUCKEY, P. 1998. Programming with Constraints. The MIT Press, Cam
bridge, Massachusetts.

MOHR, R. AND HENDERSON, T. 1986. Arc-consistency and path-consistency revisited. Artificial
Intelligence 28, 225-233.

MOHR, R. AND MASINI, G. 1988. Good old discrete relaxation. In Proceedings of the 8th European
Conference on Artificial Intelligence (ECAI}, Y. Kodratoff, Ed. Pitman Publishers, 651-656.

MONFROY, E. 1999. Using "Weaker" Functions for Constraint Propagation over Real Numbers.
In Proceedings of the 14th ACM Symposium on Applied Computing, ACM SAC'99, Scientific

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

1036 Krzysztof R. Apt

Computing Track, J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and G. Lamont, Eds. ACM

Press, San Antonio, Texas, USA, 553-559.

MONFROY, E. 2000. A Coordination-based Chaotic Iteration Algorithm for Constraint Propaga

tion. In Proceedings of the !WOO ACM Symposium on Applied Computing (SAC'2000). ACM

Press, Villa Olmo, Como, Italy, 262-270.

MoNFROY, E. AND ARBAB, F. 2000. Coordination of Internet Agents: Models, Technologies, and
Applications. Springer-Verlag, Chapter Constraints Solving as the Coordination of Inference

Engines. To appear.

MONFROY, E. AND RETY, J.-H. 1999. Chaotic iteration for distributed constraint propagation.

In Proceedings of the 14th ACM Symposium on Applied Computing, ACM SAC'99, Scientific
Computing Track, J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and G. Lamont, Eds. ACM

Press, San Antonio, Texas, USA, 19-24.

MONTANARI, U. 1974. Networks of constraints: Fundamental properties and applications topic

ture processing. Information Science 7, 2, 95-132. Also Technical Report, Carnegie Mellon

University, 1971.

SARASWAT, V., RINARD, M., AND PANANGADEN, P. 1991. Semantic foundations of concurrent con

straint programming. In Proceedings of the Eighteenth Annual A CM Symposium on Principles
of Programming Languages {POPL 'gJ). 333-352.

SMOLKA, G. 1995. The Oz programming model. In Computer Science Today, J. van Leeuwen,

Ed. Lecture Notes in Computer Science, vol. 1000. Springer-Verlag, Berlin, 324-343.

TELERMAN, V. AND USHAKOV, D. 1996. Data types in subdefinite models. In Artificial Intelligence
and Symbolic Mathematical Computations, J. A. C. J. Calmet and J. Pfalzgraf, Eds. Lecture
Notes in Computer Science 1138. Springer-Verlag, Berlin, 305-319.

VAN HENTENRYCK, P., DEVILLE, Y., AND TENG, c. 1992. A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57, 2-3 (Oct.), 291-321.

Received November 1999; accepted November 2000

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 6, November 2000.

