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Abstract. For singularly perturbed convection-diffusion problems with 
the perturbation parameter c multiplying the highest derivatives, we con­
struct a scheme based on the defect correction method and its parallel 
variant that converge €-uniformly with second-order accuracy in the time 
variable. We also give the conditions under which the parallel computa­
tion accelerates the solution process with preserving the higher-order 
accuracy of the original schemes. 

1 Introduction 

For several singularly perturbed boundary value problems, c-uniformly conver­
gent finite difference schemes have been constructed and analyzed (see, e.g., [l]­
[5]). The time-accuracy of such schemes for nonstationary problems usually do 
not exceed first order. The use of a defect correction technique allows us to 
construct c-uniform numerical methods with a higher order of accuracy in time 
(see e.g., [6,7]). Parallelization of the numerical method based on decomposition 
of the problem makes it possible to solve the discrete problem on a computer 
with several processors that may accelerate the computational process. However, 
this parallel process introduces additional errors in the numerical solutions. If 
the numerical method is accurate in time with order more than one, then the 
errors introduced by the domain decomposition (DD) can essentially exceed the 
discretization errors. Therefore, it is necessary to construct the parallel method 
such that the computation time is essentially less, and the accuracy is not lower 
than those for the corresponding nonparallel method. 
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In the case of singularly perturbed problems c-uniform parallel schemes based 
on the defect correction principle were studied in [8]. Parallel methods that 
allowed us to accelerate the numerical solution of the boundary value problems 
for parabolic reaction-diffusion equations on an interval were developed in [9,8]. 

In the present paper we consider the Dirichlet problem for a singularly per­
turbed convection-diffusion equation on a rectangle in that case when character­
istics of the reduced equation are parallel to the sides of the rectangle. In this 
case regular and parabolic layers appear for c -+ 0. To solve the problem, we 
construct an c-uniform scheme based on the defect correction method and its 
parallel variant convergent (c-uniformly) with second-order accuracy in time. We 
also write out the conditions under which the parallel computation accelerates 
the solution process without losing the accuracy of the original schemes. The 
technique for analysis of difference schemes is similar to that given in [8]. 

2 Problem Formulation 

On the domain G = D x (0, T], D = (0, 1) x (0, 1), with boundary S = G\ G, we 
consider the Dirichlet problem for the singularly perturbed parabolic equation 

Lu(x,t)={c2 L as(x,t)a822 +b1(x,t)>l8 -c(x,t)-p(x,t)aa }u(x,t)= 
s=l,2 Xs uX1 t 

= f(x, t), (x, t) E G, (la) 

u(x,t)=cp(x,t), (x,t) ES. (lb) 

Here a8 (x, t), b1 (x, t), c(x, t), p(x, t), f (x, t), (x, t) E G, and cp(x, t), (x, t) E 
S are sufficiently smooth and bounded functions, moreover, a8 (x, t) ~ ao > 
0, b1(x, t) ~ bo > 0, p(x, t) ~Po> 0, c(x, t) ~ 0, (x,t) E G; c E (0, l]. 

Let S = SL U S0 , 80 =So. We distinguish four faces in the lateral bound­
ary SL: sL = UJ=l Sj, Sj = I'j x (0, T], where I'i, I'2, I'3 and I'4 denote the 
left, bottom, right and top sides of the rectangle D respectively. 

When the perturbation parameter c tends to zero, regular and parabolic 
layers appear respectively in the neighborhood of the boundaries S1 and 82, 83. 

3 Special Finite Difference Scheme 

On G we construct the piecewise uniform grid (see, e,g, [10,3]) 

Gh = Dh x wo, Dh = W-1 x w2. (1) 

Here wo is a uniform mesh on [O, T] with step-size r = T /No, W 8 = ws(eis), 
s = 1, 2 is a piecewise uniform mesh with N 8 intervals on the x 8 -axis. To construct 
themeshw2(c;2), we divide [O, 1] in three parts [O, CT2], ['12, l-c;2], [ 1-0"2, 1 ]; we 
take 0"2=min[1/4, m2e lnN2 ]. In each part we place a uniform mesh with N2/2 

Throughout this paper we denote by M, M(i) (or mi, m(i)) arbitrary, sufficiently 
large (small) positive constants independent of e and the discretization parameters. 
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elements in [ a2, 1 - 0-2] and with N2/ 4 elements in each subinterval [ 0, 0-2] and 
[ 1 - a2, 1]. When constructing w1 ( a1), we divide [ 0, 1 ] in two parts with the 
transition point 0-1 = min[l/2,m;:-\:2 lnN1], where O < m 1 < m~, m~ = 
min 0 [a11(x, t)b1 (x, t)]. We place a uniform mesh in [ 0, a 1 ], [ o-1, 1] using Ni/2 
mesh elements in each subinterval. 

For problem (1) we use the difference scheme [ll] 

A(2)z(x, t) = f (x, t), (x, t) E Gh, z(x, t) = r.p(x, t), (x, t) E Sh, (2) 

where A(2) == t:2 L as (x, t)O"xsxs +bi (x, t)O"x1 - c(x, t) - p(x, t)O"r, O"r z(x, t), 
s=l,2 

8x1 z(x, t) and O"xsxs z(x, t) are the first and the second differences of z(x, t). 

Theorem 1. The solution of finite difference scheme (2), (1) converges E:­
uniformly to the solution of (1) with an error bound given by 

Ju(x, t) - z(x, t)I:::; M(N11 lnN1 + N;2 ln2 N2 + r), (x, t) E Gh. 

Remark 1. Let u E Cf3,f3!2 (G), /3 = K +2+a, K 2 0, a> O. Then the derivatives 
(8k0 /8tk0 )u(x, t) and the divided differences O"a; z(x, t) satisfy the estimates 

I [)ko I (ko) 
EJtko u(x, t) :::; M(3) ' (x, t) E G, ko:::; K + 2; (3) 

!Ja z(x, t)I :::; MC~)' t 2 lT, l :::; K + 1. (4) 

Here 8a z(x, t) = (81_ 1 t z(x, t) - 81_ 1 t z(x, t - r))/r, (x, t) E Gh, t;:: lr, l 2 1, 
80rz(x, t) = z(x, t), and b"az(x, t) denotes the backward difference of order l. 

4 Parallelization of Finite Difference Scheme (2), (1) 

We derive the difference scheme to be solved on P 2 1 parallel processors [8]. 
1. First we describe a partitioning of the domain D 

(1) 

where d~ are open intervals in (0,1) on the x2-axis. Let Gk =Dk x (0, T], k = 
1, ... , K. We denote the minimal overlap of the sets Dk and D[k] = LJ~1 , i# Di 
by Jk, and by J the smallest value of Jk, i.e., 

min p(x1, x 2 ) = J, 
k, xl, :z::2 

(2) 

x 1 E Dk, x2 E D[kJ, x1, x2 5i { Dk n D[k] } , k = 1, ... , K. 

In general, the value J may depend on the parameter c. 
Let each Dk be partitioned into P disjoint (possibly empty) parts 

k_ p k - -k -k - . ·. k - k D - up=l DP, k - 1, ... 'K, Di n Dj - 0, i =I= J, DP - (0, 1) x d2p· (3) 
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We set G; = n; x (O,T], p = 1, ... ,P, k = 1, ... ,K. 
-k -k 

We introduce the rectangular grids on each of the sets G and GP: 

-k -k - -k -k -
Gh = G n Gh(l)' Gph =Gp n Gh(l)• (4) 

We define the prizm G(t1) with the boundary S(ti) = G(t1) \ G(t1) by 

G(t1) = { (x, t) : (x, t) E G, ti < t s; ti + r }, ti, t1 + r E wo. 

Let the discrete function v(x, t; t 1) be defined at the boundary mesh points 
Sh(t1) = S(t1) n Gh, ti E wo. By v(x, t; t1) we denote the extension of this 
function to the grid set Gh(t1) = G(t1) nGh· The "prizm" Gh(li) consists of 
only two time levels Gh(t1) = { Dh x [t = ti]} LJ { Dh x [t = ti + r] }. 

2. Before to describe the difference scheme designed for parallel implementa­
tion on P processors, we assume that z(x, t) is known for t s; tn. Then we solve 

k 

A(2) zf (x, t) = f(x, t), (x, t) E a;h(tn), (5a) 

z{ (x, t) = k-1 , 
J:L {z(x,t;tn), k=l,} 

z""""K""(x,t), k~2 

-k 
for (x, t) E Gph(tn), k = 1, ... , K, tn E wo, n ~No - l; 

J:L { zf (x, t), (x, t) E G~h(tn), p = 1, ... , P,} 
k-1 , (x,t) E Gh(tn) \ LJ Gph(tn) 

zK(x,t)= z(x,t;tn), k=l,} - p -k 

z--rr (x, t), k ~ 2 p=l 

for (x, t) E Gh(tn), k = 1, ... , K, tn Ewa. 

We define the function z(5) (x, t) on the prizm Gh(tn) by the relation 

z(5)(x, t) = zif (x, t), (x, t) E Gh(tn), tn E wo. (5b) 

The difference scheme (5) can be written in the operator form 

Q(5)(z(5)(x, t); !(·), <p(·), '1/;(·)) = 0, (x, t) E Gh. (5c) 

Here the function 'lj;(x,t;tn), (x,t) E G(tn) defines the prolonged function 

{
v(x,t;tn), (x,t)ES(tn),} _ 

z(x,t;tn) = v(x,tn;tn)+'lf;(x,t;tn), (x,t)EG(tn) ' (x,t) EG(tn), 

where 

{ 
<p(x, t), 

v(x,t;tn) = <p(x,t), 

z(x, t), 

(x, t) E Sh(tn), 

(x, t) E Sh(tn) n Sh, 

(x, t) E Sh(tn) \ Sh, 

(x, t) E Sh(tn), n = 0, 1, ... , No -1. 

(5d) 

(5e) 
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In the specific problem (5) we take 'ljJ(x, t; tn) = O. 
Note that the intermediate problems in the discrete DD method (5), (4) 

are solved on the subsets D~h = D~(3) n Dh independently of each other ("in 
parallel") for all p = 1, ... , P. 

Let the following condition be satisfied 

c5 = c5(2) (c:) > 0, t: E (0, l], (6) 

A technique similar to the one exposed in [6,7] gives us the error estimate 

lu(x, t) - z(5)(x, t)I :::; M(N!1 lnN1 + N22 ln2 N2 + N0 1), (x, t) EGh. (7) 

Theorem 2. Under condition ( 6) and for N, N 0 -t oo, the solution of the dif­
ference scheme (5), (4) converges to the solution of (1) c:-uniformly. The estimate 
( 1) holds for the solution of this difference scheme. 

5 Improved Time-Accuracy. Parallel Scheme 

1. Constructing the defect-correction difference scheme on Gh, we rewrite the 
finite difference scheme (2) as in [7]: 

A(2)z(ll(x, t) = f(x, t), (x, t) E Gh, z(1l(x, t) = rp(x, t), (x, t) E Sh, (1) 

where z(l) (x, t) is the uncorrected solution. To find the corrected solution 
z(2l(x, t), we solve the problem 

(2) { 2- 1p(x, t) T ~u(x, 0), t = T, } A(2)z (x, t) = f(x, t) + t , (x, t) E Gh, 
2- 1p(x, t) T c52 t z(l) (x, t), t 2:: 2T 

z(2)(x,t) = r_p(x,t), (x,t) E Sh. 
(2) 

Here the derivative (82 /fJt2 )u(x, 0) is obtained from equation (la). 
In the remainder of this section we consider a homogeneous initial condition 

rp(x,0)=0, xED. (3) 

Under this condition, for the solution of problem (2), (1) we have 

Proceeding in a similar way, one can construct difference schemes with a 
higher order of time-accuracy 0 ( T 1), l > 2 (see [7 ,8] for l = 3). 
2. Let us consider a parallel version for the defect correction scheme. In the 
operator form the above difference scheme is written as follows 

Q(5)(z(ll(x, t); j(l)(·), rp(·), 'l/J(l)(-)) = 0, (x, t) E Gh, 

Q(5)(z(2)(x, t); f(2)(·), rp(-), 'l/J(2)(·)) = 0, (x, t) E Gh, 
(5) 
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where 

jCll(x, t) = f(x, t), f(2l(x, t) = j(2l(x, t; z(1\)) = f(x, t) + 

+ { 2- 1p(x,t)r(82 /ot2 )u(x,O),t=r, }, 

2- 1p(x, t) rJ2tz(1l(x, t), t;::: 2r 
(x, t) E G~, 

'lj;(ll(x,t;tn) = 0, 'lj;(2l(x,t;tn) ='l/J(2l(x,t;tn,z(1\)) = 

= z(1l(x, tn+l) - z(l)(x, tn), (x, t) E Gh(tn), t = tn+l. 

It is easy to see that z(ll(x, t) = z{5; 4)(x, t). 

Following the arguments from [6,7,9] we obtain the main convergence result. 

Theorem 3. Let condition ( 3) hold. Then, under condition ( 6), the solution of 

the difference scheme (5), (4) converges, as N, No --> oo, to the solution of the 

boundary value problem (1) €-uniformly. For the discrete solution the estimate 

(4) holds. 

6 Acceleration of Computations by the Parallel Scheme 

To solve the problem (1), we use scheme (2), (1) with improved time-accuracy 

as the base scheme. One can also use the parallel variant of scheme (5), (4). We 

say that the use of parallel computations leads to the real acceleration of the 

solution process if such a scheme with P > 1 parallel processors can be found 

for which the computation time turns out to be smaller and the accuracy of the 

approximate solution is not lower than those for the base scheme. 

We shall consider the difference scheme for P parallel solvers on the meshes 

(1) 

where Dh = Dh(l)' wf: is a uniform mesh on [O,T] with the number of nodes 

Nf + 1 and the mesh step rP; generally speaking, w~l) =/= wo(l). 

1. We now describe the decomposition of the set D which can ensure the 

acceleration of the solution process. 
Let the domain D consist of J non-overlapping rectangles 

D<j>, j = 1, ... , J, (2a) 

< '> < '> - J -<j> 
where D ' n D 1 = 0 for i =/= j, D = LJi=l D ; J:::; M. On each of the 

sets c<j> = D<i> x [O, T], the mesh Gh with the given distribution of its nodes 
-<j> -<j> - . - -P 

generates the meshes Gh = G n Gh, J = 1, ... , J, Gh = Gh(l)· For each 

of the sets D<i> we construct the rectangle Dj containing D<i> together with 

some neighborhood. This set Dj satisfies the three conditions: 
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(a) Di contains the set of the points distant from D<j> on the distance which 
is not smaller than 60 , where 

(2b) 

-j -j -
(b) the sides of the set G = D x [O, T] pass through the nodes of the mesh Gh; 

( c) the number of nodes in each of the meshes D~ = Di n D h is the same and 
it does not depend on the number j. 

Let the work time of the processors, assigned for resolving the discrete prob­
lem on the level t = t 1 of the mesh set~ from Dh(l)• be defined by the value 

µ(Jfii), that is the number of nodes in the set ~. 
The sets 

GJ = Dj x (0, T], j = 1, ... , J, (2c) 

form the preliminary covering of the set G, that is, G = Uf=1 CJ. Assume 

(Dj ) ( (2) ) (-<j>) µ h = 1 + m (2) µ D h , j = 1, ... , J. (2d) 

The sets (2c) are used for the construction of the special DD scheme (5), (1) 
with P processors. For this, we construct the sets 

Q{k}, k = 1, ... ,K (3a) 

which cover the set G, where the value K = K(P) is chosen from the condition 
KP = J. The each of the sets Q{k} is multiply connected (for P > 1) and 
formed by the union of the P non-overlapping domains from (2c). Thus, for the 
subsets c; which form the sets from (3a), the following condition holds: 

a;c{Gj, j=l, ... ,J}(2c)' k=l, ... ,K, p=l, ... ,P, (3b) 

where µ(D:h) = µ0 , Q{k} = u:=l G~. With such decomposition the processors 
are loaded more effectively. 

2. By definition, we denote the work time, which is required to solve problems 
(2), (1) and (5), (4) respectively, by 

K 
p p p )- p~ (-k) iJ =iJ (N0 ,P =No wmaxµ Dph. 

k=l p 

Then the rate of acceleraton for our computations is defined by 

K(P) 1 

C = C(No, Nt, P) = t9(iJP)-1 = No(N6)-1 µ(Dh) { L max µ(D:h) }- . 
k=l p 

3. We now give the conditions ensuring the acceleration of the solution process 
based on parallelization of scheme (2), (1). Here we assume that the derivative 
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(83 /8t3)u(x, t) on the set G is not too small. Precisely, let the following condition 
hold 

1
83 ( I (3) ot3 u x, t) '2: m , (x, t) E G* (4) 

on some set a*= {(x t) : x*1 < x < x*2 s = 1 2 t* 1 < t < t*2 } a* c_ c. ' s-S-s' '' -- ' 
In the case when the number P of processors is sufficiently large, i.e., 

( (2)) ( (3) )-1 [ (3) (4) (5)] - * P > M 1 +m(2) m(4) M(3) + M(3) + M(3) = P, (5) 

the acceleration can be really attained for the numerical solution of the boundary 
value problem. In fact, the acceleration is achieved under the condition 

1\TP ( (2))-l"r * 
Ho = 1 + m(2) ivo P . (6) 

The value of C, which characterizes the attained rate of acceleration, is defined 
by 

(7) 

Theorem 4. Let conditions (3), (4), (4) hold for the solutions of the boundary 
value problem (1) and scheme ( 2), (1). Then, in the class of difference schemes 
(5), (1) for P parallel processors, c-uniform acceleration of solving problem (1), 
as compared to the base scheme ( 2), ( 1), can be achieved in general; in particular, 
for the decomposition ( 3), (1) the acceleration is achievable under condition ( 5). 
Moreover, for scheme ( 5), ( 3), ( 1) the acceleration is attained under conditions 
( 5), ( 6), and the rate C of acceleration is defined by ( 1). 
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