
Alma-0: An Imperative language that Supports
Declarative Programming

KRZYSZTOF R. APT

CWI and University of Amsterdam

and
JACOB BRUNEKREEF and VINCENT PARTINGTON
University of Amsterdam

and

ANDREA SCHAERF
Universita di Roma "La Sapienza"

We describe here an implemented small programming language, called Alma-0, that augments the
expressive power of imperative programming by a limited number of features inspired by the logic
programming paradigm. These additions encourage declarative programming and make it a more
attractive vehicle for problems that involve search. We illustrate the use of Alma-0 by presenting
solutions to a number of classical problems, including a-/3 search, STRIPS planning, knapsack,
and Eight Queens. These solutions are substantially simpler than their counterparts written in the
imperative or in the logic programming style and can be used for different purposes without any
modification. We also discuss here the implementation of Alma-0 and an operational, executable,
semantics of a large subset of the language.

Categories and Subject Descriptors: D.3.2 [Language Classifications]: Nondeterministic Lan
guages; F.3.2 [Semantics of Programming Languages]: Operational Semantics; F.3.3 [Stud
ies of Program Constructs]: Control Primitives; I.2.8 [Problem Solving, Control Methods
and Search]: Backtracking; I.5.5. [Implementation]: Special Architectures

General Terms: Languages

Additional Key Words and Phrases: Declarative programming, imperative programming, search

1. INTRODUCTION

In this article we describe a programming language, Alma-0, that combines advan
tages of logic and imperative programming in order to deal in a natural way with
algorithmic problems that involve search. Alma-0 extends imperative programming
with some features that are inspired by the logic programming paradigm. In our

Authors' addresses: K. R. Apt, CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands;
J. Brunekreef and V. Partington, Department of Mathematics, Computer Science, Physics & As
tronomy, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Nether
lands; A. Schaerf, Dipartimento di Informatica e Sistemistica, Universita di Roma "La Sapienza,"
Via Salaria 113, 00198 Roma, Italy.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 1998 ACM 0164-0925/98/0900-1014 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998, Pages 1014-1066.

Alma-0: An Imperative Language that Supports Declarative Programming 1015

design we were guided by the following four principles:

-The proposed extension should be downward compatible with the underlying

imperative programming language.

-This extension should be upward compatible with a future extension that will

support constraint programming.

-The proposed constructs should support declarative programming.

-This extension should be small. (In fact, we propose nine new features.)

We believe that these postulates make our proposal distinct and substantially

simpler from previous proposals that dealt with integration of constructs inspired

by declarative programming languages (for example, automatic backtrncking) into

imperative programming.
In fact, Alma-0 should not be viewed only as a specific programming language

proposal but rather as an instance of a generic method for extending (essentially)

any imperative programming language with facilities that encourage declarative

programming.
To demonstrate the feasibility of our approach we went through the full process

of the implementation of the language and the description of its semantics for a

specific base imperative language, namely a subset of Modula-2.

The proposed features include

-use of boolean expressions as statements and vice versa,

-a statement dual to the FOR statement that introduces ("don't know") nondeter-

minism in the form of choice points and backtracking,

-a FORALL statement that introduces a controlled form of iteration over the back

tracking,

-unification-here limited to a use of equality as assignment; this yields a new

parameter-passing mechanism.

In such an amalgamated language we can freely profit from the advantages of

both programming styles.
The assignment, shunned in declarative programming and, a fortiori, in logic

programming, is in our opinion needed in a number of natural situations, which

we illustrate by means of several examples. In general, assignment seems to be

needed for counting or for recording purposes, and means of expression of such

uses offered within the logic programming paradigm are unnatural. In particular,

in Prolog, assignment is either used in a space inefficient and limited form, like

in X1 is X+1, or is simulated using assert and retract. In our view the direct

use of assignment, as in imperative programming, is in such cases simpler and

more efficient. Further, we can use a rich variety of data types, including arrays

and records, in presence of strong type checking and several traditional control

structures that support structured programming.

In turn, the logic programming paradigm provides a number of useful features.

The built-in backtracking mechanism supports nondeterministic programming in a

simple way. The use of unification to assign values allows us to use the same program

for testing, computing one, some, or all solutions, or for completing a partial solu

tion. This versatile use of programs is also available in Alma-0. It should be pointed

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1016 Krzysztof R. Apt et al.

out, however, that our use of unification is extremely restricted, and consequently
another important aspect of logic programming-symbolic programming-is not
realized in Alma-0.

Combining two programming styles is always a debatable endeavor, and it is
important to reflect what, if any, are the advantages of such an amalgamation. We
try to answer this question by presenting solutions to several classical problems.
We consider these programs superior to their counterparts written as imperative
programs or as programs in the logic programming style for the following reasons:

-In each case the programs are closer to the specifications than the alternative
solutions. This suggests that the proposed additions make the programming
task simpler and improve readability.

-The presented programs, or program fragments, that do not use assignment can
be viewed as declarative in the sense that they admit an alternative reading as
logic formulae. Development and verification of such programs is considerably
simplified due to their logical meaning. In some cases programs are equal to their
specifications--e.g., see our solutions to Problems 3 (Straight String Search), 7
(Remarkable Sequence Revisite<i), and 9 (Linear Search)-and are therefore ob
viously correct.

-All the programming constructs introduced in Alma-0 are guaranteed to termi
nate. As a result we can now write programs, like the solutions to the just
mentioned problems or solutions to Problems 6 (Knapsack) and 10 (Squares in
the rectangle), termination of which is guaranteed by their syntactic form.

-When passing from specifications to a solution the introduction of additional
variables should be viewed as a drawback, because their relation to the variables
present in the specifications has to be properly explained. From this viewpoint
constructs or solutions (of the same complexity) that do not call for the use
of additional variables should be considered as superior. Now, the proposed
solutions do introduce less variables than the traditional ones.

In our opinion, the proposed additions blend well with the conventional way we
look at imperative programs.

As the underlying language for Alma-0 we use Modula-2 of Wirth [1985]. More
precisely, Alma-0 is an extension of a subset of Modula-2. An alternative choice, C,
in contrast to Modula-2, would have required a change of the semantics of the base
language. Indeed, in C, boolean expressions followed by a semicolon (;) are already
legal statements, the presence of which has no effect on the flow of computation.

It should be stressed, however, that the base language is completely inessential
in our investigations. The presented programs in Alma-0 should be understandable
by anybody familiar with the basics of an imperative language. Moreover, the
proposed additions can be naturally incorporated into most of the programming
languages supporting the imperative programming paradigm.

To substantiate the claim that Alma-0 supports declarative programming we in
troduce for it a declarative semantics. Admittedly, this semantics is applicable only
to the programs built out of a limited number of constructs. Therefore, we also
present an alternativ~perational and executable--semantics for a larger subset
of Alma-0 that focuses on the most relevant features of the languages.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1017

The implementation of the language is based on an abstract machine that com
bines the features of a RlSC architecture and the WAM abstract machine. In the
current implementation the abstract machine instructions are translated into C
code. The Alma-0 compiler is available via the Web at http://www. cwi .nl/alma.

The article is organized as follows. In Sections 2, 3, 4, and 5, we introduce in
stages the extensions of the language, and summarize them in Section 6, where we
also discuss the features of Modula-2 which are at this stage not implemented in
Alma-0. In Sections 7 and 8 we describe the declarative and operational semantics
of Alma-0, respectively, and in Section 9 we explain its implementation. Finally,
related and future work are discussed in Section 10.

2. BOOLEAN EXPRESSIONS AND STATEMENTS

We begin by identifying boolean expressions and statements.

2.1 Boolean Expressions as Statements

First, we allow boolean expressions to be used as statements. We denote this ex
tension by BES. In what follows we refer to boolean expressions used as statements
as tests.

An evaluation of a test can yield TRUE, FALSE or can cause a run-time error if
an uninitialized variable is encountered. The notion of an uninitialized variable is
further elaborated in Section 5.1 where we shall also relax the last possibility for
tests of the form s = t.

A specific interpretation of tests during a computation is crucial for our purposes.
We stipulate the following.

Definition 1.

(1) If a test evaluates to TRUE, the computation upon reaching the test continues.
(2) If a test evaluates to FALSE, the computation upon reaching the test fails.
(3) If the subcomputation of a procedure (resp. function) call fails, then the com

putation upon reaching this procedure (resp. function) call fails.
(4) A finite, error-free computation succeeds if it does not fail.

Clause (3) explains how the failure propagates due to the use of functions and
procedures. In particular, when the computation reaches a test like f (1) = 0 and
the call f (1) of the function f fails, the test fails, as well. We stress the fact that
failure differs from a run-time error.

As a first example of the use of this extension consider the problem of checking
whether a sequence represented by an array a: ARRAY[l. .M] OF INTEGER, where
M ~ 2, is ordered. The solution is immediate-it suffices to use the following
statement:

FOR i := 1 TO M-1 DO a[i] <= a[i+1] END

When the array is not ordered, the above statement fails, and the loop is exited as
soon as the least value of i is encountered for which the test a [i] <= a [i +1] fails.

2.2 Statements as Boolean Expressions

In the above definition we postulated that finite, error-free computations either
succeed or fail. So it is natural to introduce the following definition.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1018 Krzysztof R. Apt et al.

Definition 2.

-If a computation of a sequence of statements succeeds, then we say that this
statement sequence evaluates to TRUE.

-If a computation of a sequence of statements fails, then we say that this statement
sequence evaluates to FALSE.

This definition allows us to use statement sequences as boolean expressions. We
call this extension by SBE.

We postulate that the control variable of a FOR statement retains its value once
the FOR statement is exited, be it due to a failure or due to a successful termination.
This facility is used in the following program fragment that checks whether for two
arrays a and b of type ARRAY [1 .. N] OF INTEGER, where N ;::=: 1, a precedes b in the
lexicographic ordering:

NOT FOR i:= 1 TO N DO a[i] = b[i] END;
a [i] < b [i]

Operationally, this program fragment searches for the least i in the range [1 .. N]
such that a [i] differs from b [i] (and fails if no such i exists) and then succeeds if
and only if for this i the test a [i] < b (i] succeeds.

As another example of the use of BES and SBE consider the problem of counting
the number of different elements in an array x: ARRAY [1. . M] OF CHAR. A natu
ral solution (although not the most efficient one) uses a statement as a boolean
expression:

count := O;
FOR i : = 1 TO M DO

IF FOR j := 1 TO i-1 DO x[i] <> x[j] END
THEN count := count+1
END

END

The identification of boolean expressions and statements allows us to apply nega
tion to a statement. This, in combination with the provision for failures, allows us
to realize within Alma-0 the powerful "negation as failure" mechanism of logic pro
gramming and Prolog. To illustrate its use consider the following two classical
problems that deal with game trees.

By a game tree we mean a finite tree such that each leaf of it has an integer
value. We call a node a max-node (resp. min-node) if it is at an odd (resp. even)
level. We assume here that the root is at level 1 and that the levels are counted
from the root downward.

Recall that the idea of the minimax search is as follows. Given a game tree, the
values are assigned in a depth-first search manner to each node of the tree in such
a way that the value of each nonleaf node a equals

-the minimum of the values of its children if a is a min-node or
-the maximum of the values of its children if a is a max-node.

A 0-1 game tree is a game tree such that each leaf of it has the value 1 or 0. As
an example see the tree in Figure 1.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1019

1 1

Fig. 1. A 0-1 game tree.

In what follows we call a node of a 0-1 tree game a winning position if by means
of the minimax search

-the value 0 is assigned to it when it is a min-node and
-the value 1 is assigned to it when it is a max-node.

In the 0-1 game tree of Figure 1 the internal nodes a, b, and g are the only winning
positions.

From now on assume that the game tree is such that each leaf of it at an even level
has the value 1 and at an odd level has the value 0. In other words, we assume that
all leaves are losing positions. Under this assumption, the values 0 and 1 associated
with the leaves of the tree do not need to be represented explicitly because they
can be computed from the level of each leaf.

Problem 1 (1 (Minimax 0-1 Search). Determine whether the root of a 0-1 game
tree is a winning position using the minimax search (e.g., see Barr et al. [1981]).

To solve the problem we represent a 0-1 game tree by assuming that the labels
of its nodes are elements of some further unspecified type node and by using a
procedure Move(x:node; VAR y:node) the successive calls of which for a given
node x generate in y upon backtracking all its direct descendants. For the 0-1 game
of Figure 1 the code for procedure Move is provided in the next section, in which
the programming constructs that support backtracking are introduced.

We define the procedure Win that solves this problem in such a way that if a node
a is the winning position, then the call Win(a) succeeds, and otherwise it fails. The
procedure Win is remarkably concise: it simply defines when a position is a winning
one, namely when a move exists which leads to a losing, that is nonwinning, position:

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1020 Krzysztof R. Apt et al.

Fig. 2. A search tree for the a-/3 algorithm.

PROCEDURE Win(x: node);
VAR y: node;

BEGIN
Move(x,y);
NOT Win(y)

END Win;

In this recursive procedure the base case appears when the internal call to the
Move fails-then the corresponding call of Win also fails. It is useful to note that
in this way we obtained a replica of the corresponding solution in Prolog (e.g., see
Apt [1997, p. 302]).

Problem 2 (a-(3 Search). Compute the value of the root of a game tree using the
o:-(3 search (e.g., see Barr et al. [1981]).

Recall that the idea of the a-(3 search is that, in order to compute the value of
a node, it is possible in some cases to identify nodes that cannot contribute to the
solution, as a result of which some subtrees do not have to be explored.

As our solution at one point conceptually differs from the customary one, we
explain the a.-(3 search in more detail by means of the example in Figure 2, where
the root a is a max-node (and consequently b, c, and f are min-nodes, and d, e,
and g are max-nodes).

In order to compute the value for the root a, the a-(3 search recursively computes
the values for all its children starting from the left. The values of o: and f3 initially
are equal to -oo and oo and are dynamically adjusted during the search. In par
ticular, during the computation of the value of the min-node c, when the value 7
is found at node d, there is no more reason to compute the values of nodes e and
g. Indeed, the value returned by node c cannot be bigger than 7 which is less than
9 already found at node b.

In our solution we exploit the use of failure to implement the procedure in a
different (and simpler) way than the customary imperative solution.

In what follows (as is usually done) we dispense with the distinction between
max-nodes and min-nodes by alternating the sign and position of o: and f3 while
switching levels. Now, during the computation of the value of node c, the value val
returned by each of its children is tested against the current value of beta. When

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1021

the test val < beta fails, the procedure call fails, and no value is returned. In our
example, the opposite (-9) of the value found at node b is passed as argument beta
to the invocation of the procedure search at node c. Therefore no value is returned
by node c, because a failure occurs when the value -7 returned by node d fails the
test val < beta for beta equal to -9.

Notice that, in the program below, the computation of the value of each child is
inside an IF statement, so after the failure at node c, the computation for node a
continues with node f without getting any value from c.

Differently from the preceding Win procedure, we assume here to have at our
disposal an explicit representation of the tree, together with the customary func
tions that allow us to traverse the given game tree, the meaning of which should
be obvious.

PROCEDURE AlphaBeta(node: TreeNode; alpha, beta: INTEGER;
VAR val: INTEGER);

VAR child: TreeNode;
BEGIN

IF IsLeaf(node)
THEN val := Value(node)
ELSE

child := FirstChild(node);
WHILE child <> EmptyNode DO

IF AlphaBeta(child,-beta,-alpha,val)
THEN val < beta; alpha := Max(alpha,val)
END;
child := NextChild(node,child)

END;
val := alpha

END
END AlphaBeta;

The difference with respect to the customary imperative solution is in the way the
information that the value for node c does not have to be computed is carried. In
the customary solution (e.g., see Barr et al. [1981]), when the search is interrupted,
value 7 is assigned to node c, which is somewhat misleading because the actual
value of c has not been computed and can differ from 7.

In contrast, in our solution the search procedure for c automatically ends in
a failure, which supplies the information that node c fails to contribute to the
computation of the value of node a. In the initial call to AlphaBeta the value of
beta must be assigned to a value, say Maxint, higher than all the values appearing
in the leaves of the tree. Analogously, the value of alpha must be assigned to an
appropriate value, say Minint. These settings ensure that no pruning (i.e., failure)
takes place before the first value for val is computed, and therefore the initial call
always succeeds and yields the desired value in the last actual parameter.

3. NON DETERMINISTIC STATEMENTS

Failures on their own can be used only as a means of evaluating a sequence of
statements to FALSE in the SBE extension. In some situations it is useful to
employ failures also to generate successive candidates that satisfy some conditions.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1022 Krzysztof R. Apt et al.

To this end we need some language constructs that introduce choice points and
backtracking into the computational process.

3.1 ORELSE Statement
We begin by introducing an ORELSE statement with the following syntax:

EITHER <statement-sequence>
ORELSE <statement-sequence>

ORELSE <statement-sequence>
END

We denote this extension by ORELSE, and we refer to the parts of the ORELSE
statement as branches.

The ORELSE statement introduces choice points to which the computation can
return. With the introduction of the choice points the rules explaining the compu
tation process given in Definitions 1 and 2 have to be modified to take into account
the possibility of backtracking. In the operational semantics given in Section 8 a
choice point is a pair formed by a statement sequence and an environment in which
it is to be executed. The description of the implementation of a choice point will
be given in Section 9.2.1.

We postulate the following.

Definition 3. If a computation of a sequence of statements fails, then backtrack
ing takes place, which means that

(1) if no choice point exists, the computation fails;
(2) otherwise the control returns to the last created choice point. This implies that

the environment is restored, so all the assignments performed since the creation
of this choice point are undone.

We can now explain the computational interpretation of the ORELSE statement.

Definition 4. The computation of an ORELSE statement starts by creating a
choice point. This choice point consists of the other branch if only two branches
exist and otherwise of the ORELSE statement formed by the remaining branches.
Then the computation proceeds through the first branch.

This definition implies that if the computation that started with some but not
last branch eventually fails, possibly beyond the end of the ORELSE statement,
backtracking takes place, and the computation resumes with the next branch in
the state in which the previous branch was entered. In case the computation that
started with the last branch fails, the ORELSE statement fails.

As an example consider the program fragment

EITilER x := x - 2•a; x > 0
ORELSE x > a; y := x
END

If the initial value of x is larger than 2•a, the computation passes through the
first branch and succeeds. In turn, if the initial value of x is between a and 2•a the
computation passes through the first branch and fails upon encounter of the test

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1023

x > O. Then backtracking takes place; the initial value of x is restored; and the
computation passes through the second branch and eventually succeeds, assigning
the initial value of x to y. Finally, if the initial value of x is less than a, both
branches fail, and no value is assigned to y.

Consider now another example, where we assume that initially the value of :x:
equals a positive number a:

EITHER y := x
ORELSE x > O; y := -x
END;
x := x + b;
y < 0

Here the computation that passes through the first branch eventually fails upon
encounter of the test y < O, and backtracking takes place. The second branch
of the ORELSE statement is then entered with the initial value of x restored, and
eventually the whole computation succeeds, with x equal to a+b and y equal to -a.

Note that in the second example the failure occurs outside the scope of the ORELSE
statement; that is, the backtracking takes place here after the control has left the
ORELSE statement. The example shows that upon backtracking the assignments
outside the scope of the ORELSE statement are also "undone."

This interpretation of the meaning of the ORELSE statement allows the user to
write programs in which the creation of choice points and the testing of the se
lections made by them are done in separate parts of the program. Consider the
following typical structure

Generate(x);
Test(x)

in which the first procedure generates successive values for x by the introduction of
choice points and in which the second one tests these values. The correct functioning
of this program is achieved only if the choice points remain active after the execution
of the procedure Generate.1

As an example of use of the ORELSE statement, we now show the definition of the
procedure Move of Problem 1 that corresponds to the tree of Figure 1.

TYPE node = (a,b,c,d,e,f,g,h,i);

PROCEDURE Move(x:node; VAR y:node);
BEGIN

IF x = a THEN EITHER y := b ORELSE y := c ORELSE y := d END
ELSIF x • b THEN EITHER y := e ORELSE y := f END
ELSIF x = d THEN y := g
ELSIF x • g THEN EITHER y : = h ORELSE y : "' i END
ELSE FALSE;
END

END Move;

1This point will be further illustrated in Section 4.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1024 Krzysztof R. Apt et al.

3.2 SOME Statement
One of the limitations of the ORELSE statement is that it generates a number of
choice points fixed in advance. In some situations, for example when processing an
array, it is useful to generate choice points the number of which depends paramet
rically on some constants or is determined only at run-time.

This facility is realized by the SOME extension that provides the SOME statement
with the following syntax:

SOME <ident> := <expression> TO <expression> DO
<statement-sequence>

END

The intention is that the SOME statement is a "dual" of the FOR statement. In
particular, given an integer variable i we wish

SOME i := 1 TO 10 DO T END

to be equivalent to

EITHER i := 1; T
ORELSE SOME i := 2 TO 10 DO T END
END

More precisely, we stipulate the following meaning of the SOME statement.

Definition 5. Let S be the statement SOME i : = e1 TO e2 DO T END, where i
is an integer variable, and in the current state e1 evaluates to an integer m1, and
e2 evaluates to an integer m2. The following cases arise.

-m2 < mi. Then Sis equivalent to FALSE.

-m2 = mi. Then Sis equivalent to i : = m1; T.

-m2 > m1. Then S is equivalent to

EITHER i := mi
ORELSE i := mi+i

ORELSE i : = m2
END;
T

As in the case of the FOR statement we postulate that the control variable of the
SOME statement retains its value once the SOME statement is exited, be it due to a
success or due to a failure. Also, we assume for simplicity that the variable i is not
modified in T. 2

The next problem illustrates the use of a SOME-FOR combination.

Problem 3 (Straight String Search). Consider two arrays of characters, p (the
pattern) and s (the string), declared respectively as variables of the following two
types:

2This is not required but, like in the ca.se of the FOR statement, is a common-sense restriction. In
fact, a variable processed automatically should not be modified explicitly by the programmer.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative language that Supports Declarative Programming 1025

Pattern= ARRAY [0 .. M-1] OF CHAR;
String= ARRAY [O .. N-1] OF CHAR;

with M :S N. Find the first occurrence of pin s.

The following procedure is a naive solution to this problem. It is much more

straightforward than its imperative counterpart given in Wirth [1986, p. 60].

PROCEDURE StringMatch(p: Pattern; s: String): INTEGER;
VAR i, j: INTEGER;

BEGIN
SOME i := 0 TO N-M DO

FOR j := 0 TO M-1 DO
s[i+j] = p[j]

END
END;
RETURN i

END StringMatch;

In turn, the following problem illustrates the use of a FOR-SOME combination.

Problem 4 (Remarkable Sequence). (See Coelho and Cotta [1988, p. 193].) Call

a sequence of 27 elements remarkable if it consists of three 1 's, three 2's, ... , three

9's arranged in such a way that for all i E [1..9] there are exactly i numbers between

successive occurrences of i. For example, the sequence

(1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7)

is remarkable. Write a program that tests whether an array of 27 elements is a

remarkable sequence.

The desired program is almost a verbatim specification of the problem (though

not the most efficient solution).

TYPE Sequence= ARRAY [1 .. 27] OF INTEGER;
PROCEDURE Remarkable(VAR a: Sequence);

VAR i, j: INTEGER;
BEGIN

FOR i := 1 TO 9 DO
SOME j := 1 TO 25-2*i DO

a [j] = i;

a[j+i+1] = i;
a[j+2*i+2] = i

END
END

END Remarkable;

The bound 25-2*i comes from the requirement that j+2*i+2 :S 27. In Section 5

we shall analyze the related problem of finding remarkable sequences.
Finally, we discuss a linear planning problem, known in the Artificial Intelligence

literature as the propositional STRIPS problem (see Fikes and Nilsson [1971]). In

propositional STRIPS, actions and goals are members of two (disjoint) alphabets

of propositional letters. A STRIPS action rule is composed of an action and three

sets of goals: the preconditions, the add-list, and the delete-list. A state is a set of

ACM 'Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1026 Krzysztof R. Apt et al.

goals. An action is applicable in a given state if all its preconditions are members of
the state. The result of the application of an action in a current state is a new state
where the goals in the add-list and the delete-list of the action are, respectively,
added to and deleted from the current state. An action library is a set of action
rules.

Problem 5 (Propositional STRIPS Planner). Given an action library, an initial
state, and a final state, find a sequence of actions the application of which leads
from the initial state to a state that includes the final state.

The above problem is PSPACE-complete (see Bylander [1991]) and is generally
solved using backtracking algorithms. In particular, the so-called STRIPS algo
rithm works (nondeterministically) as follows: guess a goal g in the final state not
already satisfied in the current state, guess an action a which has g in its add-list,
and compute (recursively) the subplan p to reach the preconditions of a. If the
algorithm reaches a state in which all goals in the final state are included, then the
concatenation of the sequences po (a) for all g chosen during the search provides
the complete plan.

The STRIPS algorithm involves guessing (realized by backtracking) and conse
quently it is natural to implement it in Prolog. Such a Prolog implementation is
provided, e.g., by Shoham [1994]. In this solution, due to lack of assignment in
Prolog, various auxiliary variables are needed to store temporary values of goals
and plans. On the other hand, implementation in traditional imperative languages
is pretty cumbersome due to lack of facilities that support backtracking.

In contrast, in our language, we can use both guessing (realized by means of
the DRELSE and SOME statements) and assignment; therefore we can produce a
conceptually simpler and more readable solution.

We use lists of characters to represent sets of goals and actions. To deal with
them, we define the type List the elements of which are characters, with various
functions with their usual intuitive meaning: Member, Head, Tail, Subset, Add,
Delete, and Append. We also assume that the calls to Head and Tail fail if the
argument is the empty list.

TYPE
ActionType =

RECORD
Name: CHAR;
PreList: List;
Add.List: List;
DelList: List

END;
ActionLib = ARRAY [1 .. NumActions] OF ActionType;

PROCEDURE ChooseGoal(VAR goal: CHAR; goals: List; state: List);
BEGIN

EITHER
goal:= Head(goals);
NOT Member(goal,state)

ORELSE ChooseGoal(goal, Tail(goals), state)
END

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1027

END ChooseGoal;

PROCEDURE ApplyRule(action: ActionType; VAR state: List; VAR plan: List);

BEGIN
Delete(state, action.DelList);
Add(state, action.AddList);
Append(plan,action.Name)

END ApplyRule;

PROCEDURE AchieveGoal(goal: CHAR; lib: ActionLib; VAR forbidden: List;

VAR state: List; VAR plan: List);
VAR i: INTEGER;

BEGIN
SOME i := 1 TO NumActions DO

NOT Member(lib[i].Name, forbidden);
Member(goal,lib[i].AddList);
Append(forbidden,lib[i] .Name);
Strips(state,lib[i].PreList,forbidden,plan,lib);
ApplyRule(lib[i],state,plan)

END
END AchieveGoal;

PROCEDURE Strips(VAR state: List; goals: List; forbidden: List;
VAR plan: List; lib: ActionLib);

VAR goal: CHAR;
BEGIN

PrintStatus(state, goals, forbidden, plan);
IF NOT Subset(goals,state)
THEN

ChooseGoal(goal,goals,state);
AchieveGoal(goal,lib,forbidden,state,plan);

Strips(state,goals,forbidden,plan,lib)
END

END Strips;

The planner is invoked by calling the recursive procedure Strips with the initial

state as the state parameter, the final state as the goals parameter, the empty list

for forbidden and for plan, and the given action library (which is not modified)

as lib.
The list of forbidden actions is augmented by the Append procedure which is

invoked within the body of the AchieveGoal procedure, to which the list is passed

by variable. This way the selected action becomes forbidden for the subsequent

calls of the Strips procedure, both in the body of AchieveGoal and in Strips

itself. 3

Notice that the guess of a goal, typically performed in Prolog using the query

member (Goal, Goals) with Goals instantiated and Goal a variable, is implemented

here by means of the ORELSE statement combined with recursion.

3This corrects what we believe is an omission in Shoham [1994] in which the selected action is

added only in the first of the two calls, thus making divergence possible.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1028 Krzysztof R. Apt et al.

Notice also that the prescribed semantics of the ORELSE statement is essential for
the correct functioning of the program. Namely, the ChooseGoal procedure creates
choice points to which the control returns upon a possible failure that can occur
also outside the scope of the ORELSE statement, either within the AchieveGoal
procedure or within the recursive invocation of the Strips procedure.

At this point let us return to the semantics of SBE extension. By the intro
duction of nondeterminism a possibility now arises that choice points are created
by statements used within conditions. In Alma-0 we stipulate that in such circum
stances these choice points are discarded upon termination of the evaluation of the
condition.

As an example, consider the following naive sorting algorithm:

WHILE SOME i:=1 TO M-1 DO a[i] > a[i+1] END
DO Swap(a[i], a[i+1]) END

The choice points created by the SOME statement are discarded here each time the
first offending value of i is found.

4. BACKTRACKING AND CONTROL FLOW

4.1 COMMIT Statement

In the previous section we have seen two constructs that allow the user to introduce
choice points. In large programs it is preferable to restrict the range of action of
the choice constructs to some specific parts of the program. This would allow
us to dispense with keeping track of too many choice points and would prevent
unexpected behavior that could result from existence of active choice points created
far back in the program.

To this aim we introduce the COMMIT extension which is realized by the
COMMIT statement, with the following syntax:

COMMIT <statement-sequence>
END

The computational interpretation is a follows.

Definition 6. The statement COMMIT S END is executed in the same way as S,
except that when the computation of S succeeds, all choice points created during the
execution of S are removed. The choice points previously created are left unchanged.

For example, consider the following program fragment in which a is a positive
number:

COMMIT
EITHER x > O; y := x
ORELSE y := a
END;
y > 0

END;
y >= a

Its computation fails if the value of x is positive but smaller than a. Namely, when
the control leaves the COMMIT statement the value of y is equal to the value of x, and
the choice point created by the ORELSE statement is erased. Therefore backtracking
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1029

to the second branch does not take place once the test y >= a fails. On the other

hand, if the value of x is negative, the test y > O inside the COMMIT statement fails,

the second choice is performed, and the whole computation succeeds with value a

for y.
Considering the StringMatch procedure of the Straight String Search problem

(Problem 3) we can use the COMMIT statement, so write

COMMIT
i := StringMatch(p,s)

END

if we wish to test only whether the pattern is present in the string, thus ignoring

multiple occurrences. The COMMIT statement prevents the program from looking

for different occurrences of p in s in case a later failure is detected.

As another example consider the following way of encoding the lexicographic

ordering that is alternative to the one presented in Section 2.2:

COMMIT
SOME i:= 1 TO N DO

a[i] <> b[i]
END

END;
a[i] < b [i]

Here COMMIT is necessary, and this is a rather subtle point. In fact, with the

COMMIT statement this program fragment returns the value of the test a [i] < b [i]

for the least i such that a [i] <> b [i] , whereas without the COMMIT statement it

returns TRUE if and only if the test a [i] < b [i] succeeds for some i such that

a [i] <> b [i] .

We can now rephrase the stipulation about the semantics of SBE extension given

at the end of Section 3.2 by simply stating that each condition is surrounded by an

implicit COMMIT.

4. 2 FORALL Statement

Consider again the Straight String Search problem (Problem 3), and suppose now

that we want to compute not just one, but all the occurrences of a pattern in a

string. In this case we should explore the whole string, and not only the part of it

up to the first successful occurrence.
In order to deal with this kind of situations, we introduce a new statement, called

FORALL, that allows for exploring all the choice points generated by a given sequence

of statements. More specifically, we use the following syntax:

FORALL <statement-sequence>
DO <statement-sequence>
END

and denote this extension by FORALL.
The computational interpretation of the FORALL statement is as follows.

Definition 7. The statement FORALL S DO T END is processed by executing S

and T in sequence.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1030 Krzysztof R. Apt et al.

-If both Sand T succeed, then
-if there are no choice points created by S, the computation succeeds and con-

tinues in the initial state that is updated with the changes resulting from the
execution of T;

-otherwise the control returns to the last choice point created by S (as if a
failure were encountered), and the state, as before, is updated with the changes
resulting from the execution of T.

-If at certain moment S fails (even if S succeeds 0 times), then
-if there are no choice points created by S, the computation succeeds and con-

tinues in a state in which the variables modified in S are restored to their values
before the FORALL statement was entered;

-otherwise backtracking takes place to the last choice point created by S.
-If S succeeds but T fails, then the computation fails.

The choice points created during each execution of T are discarded as soon as
control returns to the successive choice point left within S or to a choice point
created earlier. So, in effect, there is an implicit COMMIT statement surrounding T.

Thus statements within Sare undone upon backtracking, whereas those in Tare
not, i.e., they have a permanent effect within and after the execution of the FORALL
statement. This allows us to include in T any permanent operations that should be
completed upon finding each solution to S (in logic programming they are generally
implemented by means of input/output operations or assert and retract).

This permanent effect ofT is relative to the environment of the FORALL statement.
For example, if the FORALL statement is inside a branch of an ORELSE statement,
and eventually a failure takes place, the state of the variables before entering a new
branch is restored, thus removing the effects of the DO part of the FORALL statement.

To clarify these explanations consider some examples. The program fragment

y := O;
x := O;
FORALL

DO

x :: x + a;
EITHER x := x + b
ORELSE x := x + c
ORELSE x := x + d
END

WRITELN(x);
y :: y + x

END;

prints the values of a+b, a+c, and a+d and assigns the value of 3*a+b+c+d to
y. As prescribed by the second case of Definition 7, when all branches have been
processed, the computation succeeds, with x equal to its original value 0, and leaves
no choice points.

In turn, the following program fragment counts the number of occurrences of a
pattern in a string:

count :: O;

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1031

FORALL
k := StringMatch(p,s);

DO
count := count + 1

END;

where the StringMatch function is defined in our solution to the Straight String
Search problem (Problem 3).

The above two examples clarify the first two cases of Definition 7, which account
for the natural way of using the FORALL statement (see also Problem 6 below).
The last case, though not useful in practice, is illustrated by the following program
fragment:

x := O;
FORALL

DO

EITHER x := a
ORELSE x := b
END

x = b
END;

Here, after the first branch of the ORELSE statement is chosen, the DO part fails,
and therefore the whole computation fails, restoring the value 0 for x.

Although we do not impose any syntactic restrictions on the form of the FORALL

statement, its correct use imposes some common-sense limitations. Namely, no
variable should be modified both in the body of the FORALL part and in the body
of the DO part. In fact, these parts serve different purposes. In particular, the
assignments in the FORALL part are meant to be nonpermanent, so they can be
undone, while the ones in the DO part are meant to be permanent, so they should
not be undone. This limitation resembles the already discussed common-sense
restriction concerning the FOR and SOME statements that the loop control variable
should not be modified within the loop body.

It is worth noting that the statement FORALL S DO T END is not equivalent to

EITHER S; T; FALSE
ORELSE TRUE
END

that mimics the so-called failure-driven loop, a standard technique in logic pro
gramming (e.g., see Sterling and Shapiro (1994]) used to deal with this kind of
situations. The difference stems from the fact that in FORALL S DO T END the
T statement is not undone upon backtracking. Also FORALL COMMIT S END DO T

END is not equivalent to S; T, as the latter statement fails if S does. Moreover, the
variables modified in S are not restored to their original values.

Let us consider now a more substantial example of the use of the FORALL state
ment.

Problem 6 (Knapsack). Given the real-valued objects a1, ... , an (volumes), b1, ... ,
bn (values), and c (capacity), find the binary-valued objects x1, ... , Xn (solutions)

such that :L::,1 biXi is maximized subject to the constraint I:~=l aiXi ~ c.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1032 Krzysztof R. Apt et al.

We present here a solution that encodes a depth-first branch-and-bound algo
rithm. That is, the solution is constructed step by step by determining at each step
i whether Xi is assigned to 1 or 0. Each partial solution is discarded if either

(1) it violates the capacity constraint or
(2) it cannot be completed to a solution better than the current best one.

The branch-and-bound algorithm is implemented by means of a FORALL statement
over a FOR loop with an ORELSE statement inside.

Calling volume the total volume of the objects for which we have set Xi to 1, we
can test condition 1 by checking if volume in the given partial solution is smaller or
equal than the capacity. Calling waste the total value of the objects for which we
have set Xi to 0, we can test condition 2 by checking if waste in the given partial
solution is larger than the waste in the current (complete) best solution. Therefore,
conditions 1 and 2 are taken care of in a very simple way by means of the tests
volume <= capacity and waste < totaLvalue - current_best, respectively.

Notice that condition 1 should be tested only when an object is chosen (when
solution[i] := 1), whereas condition 2 should be tested only when an object
is not chosen (when solution[i] := 0). These considerations bring us to the
following program:

TYPE RealVector =ARRAY [1 .. N] OF REAL;
BinaryVector =ARRAY [1 .. N] OF [0 .. 1);

PROCEDURE knapsack(volume, value: RealVector; capacity: REAL;
VAR solution: BinaryVector);

VAR i: INTEGER;
current_best, total_value, current_volume, waste: REAL;
current_solution: BinaryVector;

BEGIN
current_best := 0.0;
total_value := 0.0;
FOR i := 1 TO N DO

total_value := total_value + value[i];
END;
current_volume := 0.0;
waste := 0.0;
FORALL

DO

FOR i := 1 TO N DO
EITHER.

current_solution [i] : = 1;
current_volume := current_volume + volume[i];
current_volume <= capacity;

ORELSE
current_solution[i] := O;
waste := waste + value[i];
waste < total_value - current_best;

END
END

current_best := total_value - waste;

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1033

solution := current_solution;
END;

END knapsack;

The assignment to the variable current..best is within the DO part of the FORALL
statement, and therefore it is not undone upon backtracking. This is crucial for
maintaining the current best solution while exploring different branches.

5. MULTIPLE USES OF A PROGRAM

In logic programming it is sometimes possible to use the same procedure for a
number of different purposes. For example, the same program can be used both for
testing a solution and for computing one. This multiple use of a single program is
absent in the imperative programming paradigm. In this section we explain how
this facility can be realized within our framework.

5.1 Generalization of Equality

By way of example reconsider the Remarkable Sequence problem {Problem 4) and
suppose we wish to solve a more general problem.

Problem 7 (Remarkable Sequence Revisited,). Find an array of 27 elements that
forms a remarkable sequence in the sense of Problem 4.

To obtain a single solution to both problems we generalize the use of equality. In
imperative programming languages a variable upon its declaration is usually either
initialized to a default value or to some "garbage" value-an arbitrary value that
happens to be present in the storage area allocated to the variable.

For our purposes it is important to be more precise. In what follows, we assume
that a variable upon its declaration is uninitialized and remains so until a value of
an expression is assigned to it. If this expression uses an uninitialized variable or
this value lies outside the domain of the variable, then we postulate that a run-time
error arises. Otherwise, from that moment on the variable is initialized. So in our
approach an uninitialized variable has no value associated with it. This viewpoint
is usually not adopted in imperative programming languages.

Further, we stipulate that if all the variables in an expression are initialized, then
the expression has a known value, and otherwise it has an unknown value. Now we
introduce the following more general interpretation of equality.

Definition 8. Consider a test s = t.

(1) Suppose both sides are expressions with known values. Then we treat it as in
Definition 1.

(2) Suppose that
-one side, say s, is an uninitialized variable of a simple type,
--the other side, t, is an expression with known value, and
--their types are compatible.
Then we treat it as an assignment, which means that the value oft is assigned
to 8.

(3) The remaining cases yield a run-time error.

ACM Transactions on Programming La.nguages and Systems, Vol. 20, No. 5, September 1998.

1034 Krzysztof R. Apt et al.

In particular, if both sides are expressions with unknown values (for example unini
tialized variables), a run-time error arises. Note that-conforming to the logical
interpretation-we treat here both sides of equality in a symmetric way.

We denote this extension by EQ. As we already mentioned in Section 1, EQ
resembles a limited form of unification. The differences stem from the fact that
in our case unification is allowed only for variables (of simple type), and it is not
extended to compound terms. In addition, our equality operator includes arithme
thic evaluation of the known side of the operator, which is not done while unifying
terms in logic programming languages. This suggests that EQ actually mimics the
is statement of Prolog. The difference is that is is not symmetric.

Before we proceed, we need to clarify a number of points. First, let us take a
closer look at the interplay between the generalized use of equality and the call
by variable (i.e., by reference) parameter mechanism. When a parameter of (for
simplicity) a simple type is declared as a call by variable parameter and its value is
computed by means of generalized equality, this equality can be used in two ways.
If the actual parameter is an uninitialized variable, then it acts as an assignment,
and if the actual parameter is an initialized variable, then it acts as a test. As we
shall see in the examples below, it is exactly this double use of equality that makes
it possible to use the same procedure for a number of purposes.

Next, generalized equality introduces a possibility of creating side-effects during
evaluation of tests and conditions. This leads to certain complications in case of
some ill-designed programs. For example, logically NOT (x = s) is equivalent to
x <> s, but this equivalence does not carry through to Alma-0. Indeed, if x is
uninitialized and the value of s is known, the first statement assigns to x the value
of s and fails, while the latter one yields a run-time error.

Finally, this generalized use of equality can in principle conflict with the pre
scribed meaning of it within Modula-2. But this could only happen if the original
Modula-2 program used equality x = t (or t = x) within a condition with x unini
tialized. So such a program would be certainly not a meaningful one.

An alternative, which at this stage we did not pursue, was to introduce another
symbol, say : =: , for such a use of equality. Our generalized use of equality in a
very limited way treats equalities as constraints. We shall return to this point in
Section 10.2.

We can now return to the Remarkable Sequence Revisited problem (Problem 7).
Thanks to the generalized use of equality the original program is now a solution to
both problems, 4 and 7!

In this program the double role of equality as test and as assignment is now
intertwined in a complex way. From the computational point of view the equalities
in the Remarkable procedure serve now both to assign a value to an (uninitialized)
subscripted variable and to test a value of an (initialized) subscripted variable.
The assignments to the subscripted variables a[j], a[j+i+l], and a[j+2*i+2]
that are generated by the equalities can be retracted at any later stage, if for some
future value of i the tests a [j) = i, a [j +i +1] = i, a [j +2*i +2] = i fail for all
values of j in [1 .. 25-2*i].

Note that the use of equality instead of assignment is crucial here. In the two
most extreme cases, if the actual array parameter is completely uninitialized, the
equalities are used both as assignments and tests, and if the actual array parameter
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1035

is completely initialized, these equalities are used only as tests. An alternative
program that uses only assignment and normal equality is more elaborate.

Consider now the following simple solution to the Eight Queens problem as an
other example.

Problem 8 (Eight Queens.. Place eight queens on the chess board so that they
do not attack each other.

The solution given below simply states that each queen should be placed in a
legal field that does not come under attack by the already placed queens.

CONST N = 8;
TYPE board= ARRAY[i .. N] OF [1 .. N];
PROCEDURE Queens(VAR x: board);

VAR i,column,row: [1 .. N];
BEGIN

FOR column := 1 TO N DO
SOME row := 1 TO N DO

FOR i := 1 TO column-1 DO
x[i] <> row;
x[i] <> row+column-i;
x[i] <> row+i-column

END;
x[column] = row

END
END

END Queens;

In this solution the array x is declared as a VAR parameter, and the assignments
to its elements take place by means of equalities. As a result, as already mentioned
above, this procedure can be used in a number of different ways, other than just
finding a solution.

First, it can also be used to test whether an array a is a solution. Indeed, if
the actual array a is initialized before the call Queens (a), then all the equalities
x [column] = row become interpreted as tests. 4

Second, this procedure can also be used to look for a specific solution. For
example, to find a solution a to the Eight Queens problem such that a[1] = 4 it
suffices to write

a[1] .. 4;
Queens(a)

And to find a solution a such that a [1] > 4 it suffices to write

Queens(a);
a (1] > 4

etc. Finally, to count the number of solutions such that a [1] > 4 we can write

4 It is useful to point out that out of all the uses of the procedure Queens only this one requires
that equality instead of assignment is used. Also, note that each variable x [i] is first used in an
equality x [column] a row, so no run-time error can arise here.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1036 Krzysztof R. Apt et al.

i := 0;
FORALL

Queens(a);
a[1] > 4

DO i := i+1
END

So the procedure Queens can be used to compute, to test, to search for a specific
solution, and to count the number of all solutions (that satisfy some property). In
all these cases the text of the original procedure does not have to be changed. This
is in contrast to the customary solution (e.g., see Wirth [1986, pp. 153-157]) which
in each case has to be modified.

5.2 New Parameter Mechanism

We just noticed that the procedures Remarkable and Queens could be used both for
testing and for computing. To this end it was crucial that their parameter (which
is of an array type) was declared as a call by variable parameter.

In the case of simple types this double use of a single procedure is possible only
to a limited extent because nonvariable expressions are also possible. For example,
in the case of the INTEGER type, expressions such as 7 or x + 7 can be passed as
actuals. In this case only call by value is legal.

We now introduce a parameter-passing mechanism that overcomes this limi
tation and makes possible such a double use of procedures-for testing and for
computing-also in case of simple types. We call this parameter mechanism call by
mixed form, denote its use by the keyword MIX, and call this extension MIX. We
stipulate the following.

Definition 9. Assume that the formal parameter is of a simple type.

-If the actual parameter is a variable, then it is passed by variable.
-If the actual parameter is an expression that is not a variable, its value is com-

puted and assigned to a new variable v (generated by the compiler): it is v that
is then passed by variable. So in this case the call by mixed form boils down to
call by value.

Additionally, for compound types we postulate that call by mixed form coincides
with call by variable. The reason is that for compound types no nonvariable ex
pressions exist.

For example, if the actual parameter of a procedure Proc is an integer variable
x, it is passed to Proc by variable, and if the actual parameter is x + 7, then it
is passed to Proc by value. The latter takes place by replacing internally the call
Proc (x+ 7) by the program fragment

VAR v: INTEGER;
BEGIN

v := x+7;
Proc(v)

END

So in the call by mixed form the decision whether a specific parameter is to be
passed by variable or by value is determined for each procedure (or function) call
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1037

separately and thus not on the basis of the procedure declaration, as is common for
other type of parameters.

To see the advantages of the call by mixed form consider the following problem.

Problem 9 (Linear Search). Check if an integer e is present in an array of inte
gers.

We write the solution as a procedure.

TYPE IntegerVector = ARRAY[1 .. N] OF INTEGER;

PROCEDURE Find(MIX e: INTEGER; a: IntegerVector);
VAR i: INTEGER;

BEGIN
SOME i := 1 TO N DO e = a[i] END

END Find;

Suppose now that x is an uninitialized integer variable and that a and b are

initialized arrays of integers of type IntegerVector. Then

-the call Find(7 ,a) tests if 7 appears in a;

-the call Find(x,a) assigns upon backtracking successively all elements of a to x;

-the program fragment

Find(x,a);
Find(x,b)

tests if the arrays of integers a and b have an element in common; if so it computes
such an element, and otherwise it fails;

-the program fragment

FORA.Lt Find(x,a)
DO Find(x,b)
END

tests if all elements of a are also elements of b; if so it succeeds, and otherwise it

fails;

-the program fragment

FORA.Lt

DO

Find(x,a);
Find(x,b)

WRITELN(x)
END

prints all elements that a and b have in common.

In the last three cases, the first occurrence of x is called by variable and the second

by value. So, thanks to the fact that we declared the first parameter as a MIX

parameter and used equality to assign values to it, we can use the procedure Find

both to check whether an element is present in a given array and to generate all the

elements of an array. Combining both types of calls we can build implicit loops.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1038 Krzysztof R. Apt et al.

The above instances of behavior of the Find procedure cannot be reproduced
using the customary parameter mechanisms of Modula-2. Indeed, suppose that
instead of the call by mixed form we would use call by value. Then if x were
uninitialized, the call Find(x,a) would result in a run-time error, and if x were
initialized, the program fragment Find (x, a) ; Find (x, b) would rather check if x
occurs both in a and in b. If we used call by variable instead, the program fragment
Find(x,a); Find(x,b) would exhibit the same behavior as for call by mixed form,
but the call Find(? ,a) would yield a compile-time error.

5.3 Testing the Status of a Variable

The additions discussed in Sections 5.1 and 5.2 relied in a crucial way on the
distinction between initialized and uninitialized variables. In this section we go one
step further and add to the language a relation that allows us to perform this test.

More specifically, we introduce a unary relation KNOWN with the following inter
pretation.

Definition 10.

-If x is a variable of a simple type, the test KNOWN (x) succeeds if and only if x is
initialized.

-Ifs is an expression which is not a variable of a simple type, the test KNOWN(s)

yields a compile-time error.

We denote this extension by KNOWN. As an example, following Sterling and
Shapiro [1994, p. 176], consider the following procedure that computes the unknown
element of the ternary relation representing the addition operator:

PROCEDURE Plus(MIX x,y,z: INTEGER);
BEGIN

IF KNOWN(x); KNOWN(y) THEN z • x+y
ELSIF KNOWN(y); KNOWN(z) THEN x = z-y
ELSIF KNOWN(x); KNOWN(z) THEN y • z-x
END

END Plus;

For example, if we invoke Plus (x, y, 10) with x uninitialized and y with value 7,
then the procedure assigns value 3 to x. Note that the use of the MIX parameter
mechanism and of equality as an assignment is crucial here.

To illustrate another natural use of the KNOWN relation consider now the following
variant of a problem from Colmerauer [1990].

Problem 10 (Squares in the Rectangle). Cover an integer-sized nxxny rectangle
with squares S1, ... , Sm of integer sizes si, ... , Sm. "Covering" means that no two
squares overlap and that the rectangle is completely filled in.

To solve this problem we use a backtracking algorithm that fills in all the cells
of the rectangle one by one. For each cell, it checks if it is already covered by some
square placed to cover a previous cell; if it is not covered, it looks for a square
not already placed to be located with the top-left corner in the given cell. The
algorithm backtracks when none of the available squares can cover the given cell
without sticking out of the rectangle.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1039

Backtracking is implemented by a SOME statement that checks for each square
whether it can be put to cover a given cell. The solution is returned via two arrays
posX and posY such that for square k (of size sizes [k]) posX [k], posY[k] are the
coordinates of its top-left corner.

The two equalities posX [k] = i and posY [k] = j are used both to construct
the solution and to prevent a placed square to be used again in a different place.

We use the AlreadyCovered procedure to deal with cells that are covered by
squares already used to fill other cells. For checking that a cell is already covered
we look-by means of the KNOWN relation-for an "already placed" square that
covers the cell. The call of AlreadyCovered is used as a test.

The variables posX and posY as VAR parameters allow us to use the program both
to check a given solution or to complete a partial solution.

CONST NX = 33; NY = 32; (* size of the rectangle •)
M = 9; (• number of small squares •)

TYPE SquaresVector =ARRAY [1 .. M] OF INTEGER;

PROCEDURE AlreadyCovered(i, j: INTEGER; sizes: SquaresVector;
VAR posX, posY: SquaresVector);

VAR h : INTEGER;
BEGIN

SOME h := 1 TO M DO
KNOWN(posX[h]) AND KNOWN(posY[h]);
(posX[h] <= i) AND (i < posX[h] + sizes[h]);
(posY[h] <= j) AND (j < posY[h] + sizes[h])

END
END AlreadyCovered;

PROCEDURE Squares(sizes: SquaresVector;
VAR posX, posY: SquaresVector);

VAR i, j, k : INTEGER;
BEGIN

FOR i := 1 TO NX DO
FOR j := 1 TO NY DO

IF NOT AlreadyCovered(i,j,sizes,posX,posY) THEN
SOME k := 1 TO M DO

sizes[k] + i <= NX + 1;
sizes[k] + j <=NY+ 1;
posX[k] = i;
posY[k] = j

END
END

END
END

END Squares;

Note that this program does not use any assignment.

6. SUMMARY OF ALMA-0 FEATURES

In this article we described Alma-0 by discussing the extensions of Modula-2 that
are included in it. We successively introduced the following nine extensions:

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1040 Krzysztof R. Apt et al.

-BES: Add boolean expressions to statements.
-SBE: Add statement sequences to boolean expressions.
-ORELSE: Add the ORELSE statement.
-SOME: Add the SOME statement.
-COMMIT: Add the COMMIT statement.
-FORALL: Add the FORALL statement.
-EQ: Generalize equality.
-MIX: Introduce a new parameter mechanism: call by mixed form.
-KNOWN: Introduce the KNOWN relation, to test whether a variable of simple

type is initialized.

At this stage, the following features of Modula-2 have been omitted in the current
implementation of Alma-0:

-The CARDINAL type, sets, variant parts in records, open array parameters, pro-
cedure types, and pointer types.

-The CASE, WITH, LOOP, and EXIT statements.5

-Nested procedures.
-Modules, and therefore the EXPORT and IMPORT declarations.

It is worth remarking that these features have been omitted only to keep the
implementation simple, and they will be considered for future improvements of
the language. We do not expect that these features will introduce any additional
problems at the implementation level.

7. DECLARATIVE SEMANTICS
In what follows we introduce two semantics for two fragments of Alma-0. The
one presented in this section is declarative and is applicable only to the programs
built out of a limited number of constructs that do not involve assignment. In the
next section we present an alternative, operational, semantics for a larger subset of
Alma-0.

Alma-0 has been designed with the view of promoting declarative programming.
As this term is often used to denote different things, let us clarify that in the context
of this article we consider a program declarative if its meaning can be described
by means of a logical formula that can be obtained by means of a syntax directed
translation. We call then this formula the declarative interpretation of the program.
By assigning to this formula its semantic meaning that agrees with the operational
semantics of the original program we obtain declarative semantics of the program
under consideration.

Consider now Table I, in which we denote by T(S) the translation of the program
Sand where B denotes a primary boolean expression. Several remarks are in order.

First, the logical language should be extended to allow subscripted variables (like
in Marcus [1996]) to render correctly the use of these variables. For brevity, we omit
here a description of the details of this extension.

5Note, however, that Modula-2 statement LOOP S; IF B THEN EXIT END; T END can be be modeled in Alma-0 as WILE S; NOT B DO T END.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1041

Table I Declarative Interpretationi
'

Language construct Logical formula.
B B
NOT S -.T(S)
S1;S2 T(S1) /\ T(S2)
IF T THEN S END T(T)-+T(S)
IF T THEN 81 ELSE 82 END (T(T) /\ T(S1)) V (-.T(T) /\ T(S2))
EITHER 81 ORELSE 82 END T(S1) v T(S2)
FOR i := 1 TO n DO S END Vi E (1..n]T(S)
SOME i := 1 TO n DO S END 3i E (1..n]T(S)
FORALL S DO T END Vx(T(S) -+ T(T))

(where x is the list of all free variables of T(S))

Second, the semantics of formulas of this logical language has to differ from that of
the customary first-order logic. For example, due to the use of generalized equality
the programs x = 0 ; y = x and y = x; x = 0 are not equivalent. Consequently,
the conjunction /\ is not commutative. Further, the scope of both bounded quan
tifiers in the formulas Vi E [1..n]'T(S) and 3i E [1..n]'T(S) should extend beyond
'T (S) to render correctly the meaning of the FOR and SOME statements.

To illustrate the problem consider the task of finding the number of the first
all-zero row of an N * N matrix a of integers, if any.6

In Alma-0 it can be easily encoded as follows, where for the sake of further dis
cussion we introduced an integer variable found and used an unspecified statement
S that should deal with the case when no all-zero row exists:

EITHER
SOME i := 1 TO N DO

FOR j :• 1 TO N DO
a[i,j] .. 0

END
END;
found = i

ORELSE
s

END

This program gets translated to the formula

((3i E [1..N] Vj E [1..N] a[i, j] = 0) A found= i) V 'T(S).

With the customary interpretation of the scope of the quantifiers, the final occur
rence of i is not bound, while the semantics of the SOME statement stipulates that
this occurrence of i is within the scope of the 3i E [1..N] quantifier.

To see the arising complications assume now that in the program the variable
found is initialized to some value in the range [1 .. N] . Then this program checks
whether a[found,j] = 0 holds for all j in [1..N].

6This problem is ta.ken from a contribution to ACM Forum in Communications of the ACM,
March 1987, pp. 195-196 by F. Rubin. It generated a lot of controversy, including a. response by
E.W. Dijkstra. in the August 1987 issue, because of Rubin's claim that the most natural solution
involves a GOTO statement.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1042 Krzysztof R. Apt et al.

Such a logic interpretation can be achieved by reconsidering the resulting for

mula after the translation process has been completed. At this stage the bounded

quantifiers could be moved to other places within the formula (like outside of the

conjunction in the above formula) to ensure the correct scope. Alternatively, a

larger scope could be postulated by assuming that the bounded quantifiers bind all

occurrences of the quantified variable till the end of each disjunct.
These considerations show that our future work on semantics of the introduced

logical language could profit from Groenendijk and Stokhof (1991] where an alterna

tive semantics of first-order logic is provided. In this semantics both the connectives

and the quantifiers obtain a different, dynamic interpretation that better suits their

use for natural language analysis.
Third, the occurrences of the SOME and FOR statements within a condition should

be translated differently because of the implicit COMMIT statement surrounding each

condition. Consider for example the program

IF
SOME i:= 1 TO N DO

FOR j := 1 TO N DO
a[i,j] == 0

END
END

THEN
found • i

END

again with the variable found initialized. Because the choice points created by a

statement used within a condition are discarded upon termination of the evaluation

of the condition (see the end of Section 4.1), this program tests whether found is

the least value i in the range [l..n] for which a[i,j] = 0 holds for all j in [1..N]
(assuming such a value exists).

Consequently, its correct declarative interpretation is obtained by means of the
formula

µi: i E [1..n] /\ 'Vj E [1..N] a[i,j] = 0: found= i

where the binding operator µi : <f; : 'l/; stands for

"if efi holds for some value of i, then 'l/; holds for the least such value of i."

In general, a program of the form

IF
SOME i:=1 TO n DO S END; T

THEN U
END

should be translated to the formula

µi : i E (1..n] /\ T(S) /\ T(T) : T(U).

Similar considerations hold for the FOR statement.

Fourth, this declarative interpretation does not deal correctly with equality used

as assignment within a condition of the conditional statements. This has to do with

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1043

the fact that assignments used in conditions have a permanent effect. For example,
given an uninitialized variable x, the statement IF NOT (x = O) THEN TRUE END;
y = x assigns to y the value 0, but this cannot be deduced from its declarative
interpretation (-i(x = 0)--? TRUE) /\ y = x.

Fifth, this view of declarative programming is very restrictive, since it rules out
programs involving the WHILE and REPEAT loops and recursion. By admitting in the
logical language some form of the least fixpoint operator (in the style of µ-calculus
of Scott and de Bakker [1969]) we could also assign a declarative interpretation to
programs involving these constructs, in particular to programs involving procedure
declarations and procedure calls. However, in presence of negation and recursion
a problem arises how to associate then a declarative semantics to the resulting
formulas, like to the formula p <--+ ...,p representing the procedure

PROCEDURE p;
BEGIN

NOT p
END p;

These difficulties are analogous to the ones that motivated the study of negation
in logic programming (e.g., see Apt and Bol [1994] for a survey of these issues).

Using the above translation process we can assign to several programs here dis
cussed a logical formula that represents their declarative interpretation. By way of
example take our solution to the Eight Queens problem (Problem 8). The following
formula constitutes its declarative interpretation:

cp(x) = Vcolumn E [l..N] 3row E [1..N] Vi E [1..column -1]
(x[i] =f. row /\
x[i] =f. row +column - i /\
x[i] =f. row + i - column /\
x[column] =row)

In turn, consider the following program

FORALL
queens(x);
x[1] > 4

DO
EITHER x[2] < 4 ORELSE x[3] < 4 END

END

that tests whether for all solutions x to the Eight Queens problem such that x[l] > 4
and x[2] < 4 or x[3] < 4 holds. Its declarative interpretation consists of the following
formula:

Vx((cp(x) /\ x[l] > 4)--? (x[2] < 4 V x[3] < 4))

The right-hand side of Table I determines a logical language that could be used
to specify programs. By using this table we could translate a specification written
in this language into a program that meets this specification. As an, admittedly
contrived, example consider the formula

Vi E [l..N]3j E [l..N] b(j] = a[i]
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1044 Krzysztof R. Apt et al.

that specifies that an array bis a permutation of an array a. (Note that this spec
ification is correct only if a does not contain repeated elements.) It translates into
the following program that given an array a with no repeated elements generates
in b (upon backtracking) all its permutations:

FOR i := 1 TO N DO
SOME j := 1 TO N DO

b[j] = a[i)
END

END

However such a "reverse translation" cannot be used in an undiscriminate way, ,
as it can yield programs that lead to run-time errors. As an example consider the
following most natural specification of the Eight Queens problem:

Vi E [1..N -1] Vj E [i + 1..N] (x[i] :/= x[j] /\ x[i] :/= x[j] + j - i /\ x[i] # x[j] + i - j)
Its reverse translation yields a program that for an uninstantiated array x causes a
run-time error because the test x[i] # x[j] involves uninstantiated variables.

8. OPERATIONAL SEMANTICS
We now move on to the presentation of operational semantics in the style of Hen
nessy and Plotkin [1979]. This semantics provides a better insight into the opera
tional aspects of the introduced language constructs. An interesting aspect of the
semantics here provided is that it is executable, i.e., one can use it to execute a
program starting in a given initial state. In this way we could test it by executing
it on a number of test programs, including the ones presented here.

The work discussed here is a summary of a larger effort, reported in Brunekreef
[1998], in which an operational semantics in the same style has been provided to
a substantially larger subset of Alma-0. Here we limit ourselves to a subset that
involves the most relevant features of the language.

An operational semantics for a simple imperative language in the style of Hen
nessy and Plotkin [1979] involves pairs that consist of two components: a program
and an environment. Alma-0 extends an imperative language by facilities that
introduce "don't know" nondeterminism. This is handled in the semantics by in
troducing a third component that allows us to manage stacks of choice points. The
resulting triples are called below configurations.

Before we proceed we provide a short explanation of the ASF+SDF system that
was used to define this semantics.

8.1 ASF+SDF Metaenvironment

The ASF+SDF Metaenvironment of Klint [1993] is an interactive development en
vironment for the generation of interactive programming environments. The gener
ation process is controlled by the definition of a programming language, which may
include such features as syntax definition/checking, type checking, prettyprinting,
and semantics of programs.

SDF is a shorthand for Syntax Definition Formalism. In SDF both the lexical
syntax and the context-free syntax of a language are specified in an algebraic style.
ASF is a shorthand for Algebraic Specification Formalism. In ASF any function
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1045

may be specified in terms that are constructed according to the syntax defined
in an SDF specification. The ASF+SDF specifications have a modular structure.
Different parts of a specification can be written down in separate modules. A
module can be imported by another module.

ASF +SDF specifications are executable. This is achieved by transforming the
algebraic equations into a term-rewriting system. In the specifications it is pos
sible to use so-called default equations. A default equation is applied in case no
other equation is applicable to a particular term. A more extensive introduction to
the ASF+SDF Metaenvironment can be found in van Deursen et al. [1996]. The
ASF+SDF Metaenvironment runs on Unix platforms.

In the presentation below we first discuss the syntax of the considered subset
of Alma-0, review several predefined modules, and finally present the axioms and
rules that define the semantics. These rules are given in a Ib-'IEX format that is
automatically generated by an ASF+SDF-to-I¥IEX program.

8.2 Syntax

In what follows we consider statements defined by the syntactic category Stat (for
statements) using the syntactic categories Var (for variables), Exp (for expressions),
and Bool (for boolean expressions) that are further unspecified, and the syntactic
category StSeq (for statement sequences).

Stat ::= Va:r '':=''Exp
Bool I
KNOWN Va:r I
IF StSeq THEN StSeq ELSE StSeq END I
WHILE StSeq DO StSeq END I
EITHER StSeq ORELSE StSeq {ORELSE StSeq} END
FORALL StSeq DO StSeq END I
COMMIT StSeq END

StSeq : := {Stat ''; ''} Stat

This subset abstracts away from a number of crucial aspects of Alma-0. In fact,
in the syntactic definition of Alma-0 there is no distinction between expressions,
boolean expressions, and statements. Consequently, it is syntactically possible to
assign a statement to a variable, something that is semantically correct only if the
variable is of type BOOLEAN. In the operational semantics that follows these issues
are ignored.

Also, we assume that the program evaluated by the semantics is type correct and
that during its evaluation no run-time errors arise.

It is straightforward to specify the syntax defined above in SDF. We omit this
specification.

8.3 Predefined Modules

In what follows we shall assume the following ASF +SDF modules.

--Basic modules defining integer constants, boolean constants, and the customary
operations on these constants.

-The module Environments that defines an "environment" for storing and re
trieving variable values. An environment records the bindings of values to vari-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1046 Krzysztof R. Apt et al.

ables. It is a list of atomic environments, where each atomic environment x 1-+ v
binds a value v to a variable x. In this module the following operations on
environments are defined:

-e(x): lookup the value of variable x in environment e.
-e1 t> &2: destructively update environment £2 with environment £1. The bind-

ings in £2 for variables which have a binding in e1 are discarded by this oper
ation, e.g., ([x 1-+ v] t> e)(x) is v and not the value of x in£.

-def(e,x): determine whether variable x is defined in environment£.

-The module Values that declares integer and boolean constants as admitted
values for an environment. Furthermore, this module defines equality of values
by means of the function eq.

-The module Stack that specifies a simple generic stack with the customary op
erations push, pop, and top. The symbol .l denotes the empty stack, and the
operation 1><1 specifies the constructor function for the stack. This module is
needed to manage the stack of choice points (defined below) created by the non
deterministic statements of Alma-0.

-The module Configuration that manages "configurations." A configuration is
a triple

~ S,e,C»
that contains a statement sequence S, an environment e, and a stack of choice
points C. In turn, a choice point is a pair -< S, e >- that contains a statement
sequence S and an environment e. These data structures are specified in this
module. Furthermore, we have two functions (fst and sntl) that yield respectively
the first and the second element of a choice point.

The full description of these modules can be found in Brunekreef [1998] and is
omitted.

8.4 Semantics

The core of the definition of the Alma-0 semantics consists of the specification of
two functions: the function eval, defining the evaluation of an expression, and the
function sem, defining the semantics of a statement sequence.

The function eval has two arguments: the expression to be evaluated and the
environment. The function produces a pair with a new environment (recall that in
Alma-0 by virtue of the SBE extension an assignment can be a part of an expression,
like in (x: =1) AND TRUE) and the result of the evaluation. The rules defining the
evaluation of expressions are omitted with the exception of the following ones.

8.4.1 The EQ Extension. This feature of Alma-0 is specified by three rules. In
their conditions the boolean function uninit Var is used. This function indicates
whether an expression equals an uninitialized variable. We omit the rules defining
this function.

The first EQ rule deals with the possibility (1) of Definition 8: both sides of the
equality are expressions with known values. We have then the usual equality test:
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1047

uninitVar(ei, e) =false, uninitVar(e2, E) =false,
eval[e1](e) = < e1, 'Ul >, eval[e2](e1) = < e2, 'l'2 >

eval[e1 = e2](e) = < e2, eq(vi, v2) >

The second rule deals with the possibility (2) of Definition 8: the left-hand side of
the equality test is an uninitialized variable, and the right-hand side is an expression
with known value. Then the value of the expression at the right-hand side is
assigned to the variable by applying an assignment statement and the function
sem:

uninitVar(e1, e) =true, e1 = :z: , sem(« :z: := e2 , E, ..l ») = «, £ 1, ..l »
eval[e1 = e2](£) = < e1, true>

The third rule is the symmetric counterpart of the second one and is omitted.

8.4.2 The KNOWN Statement. This statement is a boolean expression. It is
checked, using the environment, if a variable is initialized.

unini tVar(:z: , e) = false

eval[KNOWN(:z:)](e) = < e, true>

eval[KNOWN(:z:)](e) = < e, false>
otherwise

The second rule is a default equation. By definition, it is applied in case no other
rule is applicable to a particular term.

8.4.3 Handling of Success and Failure. We continue with the definition of the
semantics of the program statements using the function sem. The sem function
operates on a sequence of program statements, denoting the still-to-be-executed
part of the program. Together with the environment and a stack of choice points,
this statement sequence forms a configuration triple (see Section 8.3). The sem
function takes as input a configuration and produces a new configuration with
the sequence of remaining program statements, a new environment, and a new
stack of choice points. The recursive application of the sem function to the input
configuration mimics the program computation and yields the semantics of the
initial sequence of statements.

More precisely, if a computation succeeds in the sense of part (4) in Definition 1,
it results in a configuration with the empty statement sequence. This is specified
by the following axiom:

sem(«, e, C») = «, e, C»

In turn, if a computation fails in the sense of part (1) in Definition 3, a nonempty
statement sequence is produced to which none of the rules for the sem function
applies and to which backtracking is not possible (the stack of choice points is
empty).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1048 Krzysztof R. Apt et al.

A failure is indicated by a nonempty statement sequence s+ as the first element
of the configuration triple. Together with the second element of the configuration
triple (the environment), the first statement of s+ reveals the cause of the failure.
This is specified by a default equation for the function sem:

sem(« s+, e, J_ ») = « s+, £, J_ » otherwise

8.4.4 Assignment. The assignment is dealt with in the customary way. The
expression at the right-hand side of the assignment is evaluated; its value is assigned
to the variable at the left-hand side; and the environment is updated.

eval[e:i:](&) = < &1, v >. [:i: ,_. v] !> &1 = £2
sem(« :i::= e:i:; S, £, C») = sem(« 8, &2, C»)

8.4.5 The BES Extension. The use of a boolean expression as statement is dealt
with by evaluating the boolean expression with the function eval. If the outcome
is true, the computation continues in the new environment.

This corresponds to part (1) of Definition 1.

eval[e:i:](£) = < £1, true>
sem(« e:z:; 8, E, C») = sem(« S, &1, C»)

If the outcome is false, two cases need to be distinguished.

Case 1. The stack of choice points is empty. Then the computation fails but
changes in the environment are retained. (This is necessary in case the boolean
expression is used within a condition.) This corresponds to part (1) of Definition
3.

eval[e:i:](E) = < &i, false>
sem(« e:i:; 8, E, J_ ») = « e:r:; 8, £1, J_ »

Case 2. The stack of choice points is not empty. Then backtracking takes place.
This corresponds to part (2) of Definition 3.

eval[e:i:](£) = < £1, false>
sem(« e:z:; 8, £, CPl><l C») = sem(« fst(CP), snd(CP), C»)

8.4.6 The IF Statement: IF T THEN 81 ELSE 82 END. The condition, i.e., the
statement sequence T, is evaluated using the function sem. If the computation
succeeds (that is, the result is a configuration with the empty statement sequence),
the statement sequence in the THEN branch is evaluated. Otherwise, the statement
sequence in the ELSE branch is evaluated.

sem(« T, £, J_ ») = « , £ 1, C1 »
sem(« IF TTHEN 81 ELSE Si END; 83, £, C») = sem(« S1; 83 , £1, C»)

sem(« T, &, J_ ») = « 5+, £1, J.. »
sem(« IF TTHEN 81 ELSE 8'), END; 83, £, C») = sem(« S2 ; 83 , £ 1, C»)

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1049

Note that, conforming to the point discussed at the end of Section 3.2, the re

maining statement sequence is executed in the new environment £1 generated by

T, but with respect to the initial stack of choice points C.

8.4.7 The WHILE Statement: WHILE T DO S END. The condition is evaluated.

Depending on the outcome, the loop is unrolled one step or skipped.

sem(« T, E, l. ») = « , £, i, C1 »
sem(« WHILE TDD 81 END; S2, £, C») =

sem(« S1; WHILE TDO S1 END;~' £1, C»)

sem(« T, E, l. ») = « s+, £1, l. »

sem(« WHILE TDD 81 END; S2, £, C») = sem(« 82, £ 1 , C»)

Here the same remarks concerning the new environment and the initial stack of

choice points apply as in the case of the IF statement.

8.4.8 The DRELSE Statement: EITHER S1 ORELSE S2 {ORELSE U} END. The

semantics formalizes Definition 4.

Case 1. The ORELSE statement consists of two branches. Then the computation

continues with the first branch, and the second branch is pushed on the stack.

sem(« EITHER S1 ORELSE S2 END; S3, £,, C »)

= sem(« S1; S3, E, push(-< S2; S3, £ >-, C) »)

Case 2. The ORELSE statement consists of more than two branches. Then the

computation continues with the first branch, and the ORELSE statement formed by

the remaining branches is pushed on the stack:

s em(« EITHER 81 ORELSE S2 ORELSE U END; S3, E, C »)

= sem(« S1; S3, £,push(-< EITHER Si ORELSE U END; S3, £, >-, C) »)

where U is the remaining part of the ORELSE statement.

8.4.9 The COMMIT Statement: COMMIT S END.

Case 1. The computation of S succeeds. Then the computation continues with

out the modification of the stack. This corresponds to Definition 6.

sem(« S, E, l. ») = «, £1, C1 »

sem(« COMMIT SEND; Si, E, C») = sem(« S1, £1, C»)

Case 2. The computation of S fails. Then backtracking takes place.

sem(« s, E, l. ») = « s+, £1, l. »
sem(«COMMITS END; S1, £, GP t><1 C ») = sem(« fst(GP), snd(GP), C »)

Here and elsewhere the case of the backtracking with the empty stack of choice

points is taken care of by the default equation introduced at the end of Section

8.4.3.

8.4.10 The FORALL Statement: FORALL S DO T END. The semantics of the FOR

ALL statement is defined in a separate function semFA, specified below. A separate

function is needed because evaluation of the FORALL statement requires a local stack

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1050 Krzysztof R. Apt et al.

of choice points, generated by the statement sequence S. Within the context of the
semFA function, the configuration stack is used for this local stack.

The function semFA specifies the semantics of an isolated FORALL statement. In
its description we closely mimic Definition 7, though we found it convenient to
change the order of the cases.

Case 1. The computation of S fails.

Subcase 1.1. The stack of choice points is empty.

Then the FORALL statement is skipped. This means that the semFA function
returns a configuration with the empty statement sequence, the initial environment,
and the empty stack.

sem(« S, £, J_ ») = « s+, £1, 1- »
semFA(« FORALL SDO TEND,£, J_ ») = «, £, J_ »

Subcase 1.2. The stack of choice points is not empty.

Then backtracking takes place by selecting the next choice point from the stack
created by S.

sem(« S, £, J_ ») = « s+, £ 1, 1- »
semFA(« FORALLSDO TEND,£, CPrxi C») =
semFA(« FORALLfst(CP) DO TEND, snd(CP), C»)

Case 2. The computation of S succeeds, but the computation of T fails. Then
the computation of the FORALL statement fails.

sem(« S, £, C») = «, £1, C1 >>. sem(« T, £1, 1- ») = « s+, £2, J_ »
semFA(« FORALL SDO TEND,£, C») = « s+, £2, J_ »

Case 3. The computations of both S and T succeed.

Subcase 3.1. After the computation of S no stack of choice points is left.

Then the computation of the FORALL statement succeeds. The resulting envi
ronment is the initial environment, updated with the changes that resulted from
the computation of T. These changes are computed using the function changes
specified below. The choice points created by Tare discarded.

sem(« S, £, J_ ») = « , £ 1, J_ » ,
sem(« T, ei, 1- ») = «, £2, C2 », changes(£1, £2) = £3

semFA(« FORALL SDO TEND,£, J_ ») = «, £3 ~ £, J_ »

Subcase 3.2. After the computation of S the stack of choice points is not empty.

Then the control returns to the last choice point, so the function semFA is called
recursively with a statement sequence taken from the top of the stack and the
environment taken from the top of the stack, updated with the changes resulting
from the computation of T. The resulting environment is obtained by updating the
initial environment with the changes due to the computation of T and the changes

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1051

due to the recursive call of semFA.

sem(« 8, £, C») = «, £1, CPt><l C1 >>. sem(« T, ei, .l ») = «, £2, C2 »,
changes(e1, £2) = £s,

semFA(« FORALL fst(CP) DO TEND, e3 I> snd(CP), C1 ») = «, e4, .l »
semF A(« FORALL 8 DO TEND, e, C ») =
«, changes(e3 I> snd(CP), £4) C> (Es I>£), .l »

If the recursive call of semFA fails, then the whole computation fails.

sem(« 8, e, C ») = « , £1, CP txl C1 >>. sem(« T, E1, .l ») = «, £2, C2 »,
changes(£1, £2) C> snd(CP) = £3,

semFA(« FORALLfst(CP) DO TEND, Es C> snd(CP), C1 ») = « 3+, £ 4, .l »
semFA(« FORALL SDO TEND, e, C ») = « 3+, £4 , .l »

The function changes{t'i, £2) isolates the changes that have been made to the
environment while executing the T part of the FORALL statement (the "perma
nent" changes). £1 is the environment before the computation of T and £2 is the
environment after the computation of T.

The first rule isolates a variable binding the value of which has been changed in
the computation of T.

changes([.A1 :z: i--. v1 A2], [As :z: i--. v2 A4])
[:z: 1--? v2] 1> changes([.A1 A2], [As A4])

Here each Ai is a sequence of zero or more atomic environments. The second rule
isolates the binding of a new variable, introduced in the computation of T.

def(£, :z:) = false

changes(£, [.A1 :z: i--. v A2]) = [:z: 1--? v] C> changes(£, [A1 A2])

If none of these rules apply, the function results in the empty environment, as
specified by the default rule.

changes(£1, £2) = [] otherwise

This completes the description of semFA. To link the semFA function with the
sem function we distinguish two cases.

Case 1. The computation of the FORALL statement succeeds. Then we continue
with the new environment and the initial stack.

semFA(« FORALL 8DO TEND,£, .l ») = «, £1, .l »
sem(« FORALL 8DO TEND; 81, £, C») = sem(« 81, £1, C»)

Case 2. The computation of the FORALL statement fails. Then backtracking takes
place.

semFA(« FORALL SDO TEND, E, .l ») = « 3+, E1, .l »
sem(« FORALL 8DO TEND; 81, E, CPt><l C») = sem(« fst(CP), snd(CP), C»)

This concludes our presentation of the operational semantics of the fragment of
Alma-0 introduced in Section 8.2.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1052 Krzysztof R. Apt et al.

8.5 Discussion

Let us summarize now the salient aspects of the operational semantics.

(1) In contrast to the customary structured operational semantics of Hennessy and
Plotkin [1979] there is no rule that deals with the statements composition (";").
Instead, the sem function operates on a sequence of program statements that
form the still-to-be-executed part of the program.
This choice turned out to be necessary to implement backtracking from an
arbitrary position in the program text. This feature of Alma-0 was taken care
of while dealing with the ORELSE statement. In this case the whole alternative
82; Sa to the current sequence of statements 81; Sa was pushed on the stack.

(2) To deal with backtracking the stack of choice points was introduced. It was
explicitly manipulated in a number of places, namely
-in the BES and COMMIT extensions, to handle backtracking,
-in the ORELSE extension, to retain the remaining alternative,
-while dealing with the IF and WHILE statements, to ensure that computation

continues with the original stack of the choice points,
-in the FORALL extension, to implement the iteration over all choice points.

(3) The auxiliary function semFA was introduced to deal with the most complicated
case, that of the FORALL statement. This was needed to handle the execution
of each FORALL statement separately with the stack of choice points initially
empty.

9. IMPLEMENTATION

In this section we describe the implementation of Alma-0. The compiler consists of
about 6000 lines of ANSI C, Flex (see Paxson [1995]) and Bison (see Donnoly and
Stallman [1995]) code. Its detailed description can be found in Partington [1997].
(Actually, this report describes a previous version of the compiler, which has been
successively improved since then). At this stage no error recovery is provided, and
no optimization has been yet considered. The compiler runs on all Unix platforms.

9.1 Alma Abstract Architecture

The Alma Abstract Architecture (AAA) is the virtual architecture used during the
intermediate code generation phase of the Alma-0 compiler.

The AAA combines the features of the abstract machines for imperative languages
and for logic programming languages. The compiler compiles the Alma-0 programs
into AAA programs. In a second phase the AAA instructions are translated into C
statements.

As the Alma-0 language itself, the AAA aims to combine the best of both worlds;
elements were taken from virtual machines used to compile imperative languages
(in particular the RISC architecture described in Wirth [1996, pp. 55-59], and from
the WAM machine used to compile a logical language (see AYt-Kaci [1991]).

Still, the AAA resembles most the virtual machines used in the compilation of
imperative languages. The additions made to provide for the extensions of the
Alma-0 language are

-the failure handling instructions ONFAIL, FAIL,

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1053

-the log control instructions CREATELOG and REPLAYLOGS, and

-the automatic recording of old values in the assignment instructions.

Although the current implementation of the AAA entails translating the AAA
instructions into C statements, the design of the AAA is such that it should be
possible to translate them into machine code. In fact, the AAA extends in a minimal
way an assembly language.

9.1.1 Backtracking: Choice Points, Failure Handling, and Log Creation. In the
AAA the notion of a choice point is divided into the separate notions of failure
handling and log creation which, when taken together, can be used to implement a
choice point.

A failure handler is installed by the ONFAIL instruction, whose execution saves
the location at which execution should continue in case of a failure. When a fail
ure is subsequently generated by the FAIL instruction, execution continues at this
previously saved location or yields a failure (that generates an error message) if no
failure handler has been installed. This failure-handling notion is inspired by the
exception-handling mechanism in languages such as C++ (see Ellis and Stroustrup
[1990]) and Java (see Gosling et al. [1996]) and is used in the Alma-0 compiler to
implement the BES and SBE extensions.

When a log is created by the CREATELOG instruction, from that point on, every
value that is about to be changed for the first time since the log creation is recorded
in the log. When the log is played back by the REPLAYLOGS instruction, the recorded
values are restored. The log is used in the Alma-0 compiler to implement the
ORELSE, SOME, and FORALL extensions.

Due to the presence of the COMMIT statement, more than one log may have to be
replayed at the same time. (For a more detailed discussion of this point see Section
9.4.) For this reason, the REPLAYLOGS instruction has the operand v that indicates
the log that should become active. It replays all the logs from the current one to
the one indicated by v.

A choice point in the sense of Section 3 is implemented by creating a new log,
setting up a failure handler, and executing the first branch. When a failure occurs,
the failure handler will be called, which will replay the created logs and execute the
second branch.

Referring to the notion of the environment introduced in Section 8, a log can
be seen as the difference between two environments. In fact, for efficiency reasons,
instead of saving the current environment on the stack, in the implementation we
incrementally store in the log the fragments of the old environment that are changed
during the execution of the program.

9.1.2 The Log Administration System. More than one log may have been cre
ated at one time, but only one log is the active log. Each log corresponds with a
created choice point. The active log corresponds with the last generated one. A
log pointer register is used to refer to the active log. Consequently, when a value is
to be saved, it is recorded in the active log, if there is one. The log administration
system behaves as follows:

-At the beginning of the execution of an Alma-0 program there is no (active) log.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1054 Krzysztof R. Apt et al.

-When a log is created by the CREATELOG instruction, then the currently active
log is deactivated, and the new log becomes the active log.

-When an assignment instruction that requires recording is executed, the current
value of the target is saved in the active log, if any, before the assignment is
performed.

-When a log is replayed by the REPLAYLOGS v instruction, the values which have
been recorded in the log are restored, the active log is discarded, and the previous
log is activated (if there was no previous log, there is no longer an active log).
This process is repeated for all logs until the log pointer register equals to the
REPLAYLOGS operand v.

As we can see, the implementation deals in the same way with the logs as the
operational semantics deals with the choice points: both are treated in a stack-like
fashion. However, the COMMIT and the FORALL statement break the analogy and
need to be dealt with differently. In fact, the COMMIT statement requires that the
logs are not modified and that the correct implementation of FORALL S DO T END
is achieved by maintaining two logs that are activated in alternation depending on
whether the control is within S or T.

The log mechanism corresponds to the trail mechanism of the WAM described
in Ai:t-Kaci [1991]. However, comparing the two mechanisms, we see two main
differences. First, in the WAM the only operations to be undone are variable
instantiations, whereas in AAA they also include assignments to already instantiated
variables. Second, in WAM all instantiations are undone, while in AAA not all
assignments must be retracted due to the FORALL extension.

These differences justify the introduction of the log and its administration mecha
nism, which is absent in the trail. In the WAM instead of the CREATELOG instruction
one single assignment instruction is used that saves the current trail pointer (register
TR) on the stack. In turn, instead of the REPLAYLOGS instruction the unwind_trail
operation is used that erases all the instantiations included between the current
value of TR and its previous value stored in the stack.

9.1.3 AAA Registers. The AAA has eight registers, the most peculiar ones being
the following four.

LP is the log pointer register. It contains an opaque value used by the run
time system to handle log administration; one writes to it values that have been
read from it before, or lets the CREATELOG and REPLAYLOGS instructions handle this
register.

BP is the failure frame pointer register that contains a pointer to the last failure
frame allocated on the stack. 7 Failure frames are created by the ORELSE, SOME, and
FORALL statements, as well as when a sequence of statements is used as a boolean
expression. They hold the saved values of a number of registers (depending upon
the statement that created the frame), and the address of the failure handler (see
Section 9.1.1).

7We denote this register by "BP" instead of "FP" for two reasons; the abbreviation "FP" is
usually reserved for the frame pointer, which is more like the AAA's EP register, and "B" is the
name of the register in the WAM, that provides a similar function.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1055

EP is the environment frame pointer register that contains a pointer to the last
procedure call stack frame (comparable to the frame pointer found in actual CPU
architectures). Environment frames are created when a procedure is called, and
they hold the actual parameters, the saved values of a number of registers, the
return address, and the local variables.

SP is the stack pointer register that points to the top of the stack. It is used to
manage the allocation and deallocation of the stack frames.

The register LP is the only one which does not have a correspondence in the WAM
architecture. In fact, as explained above, the log administration is not present in
theWAM.

Furthermore, the usual role of the stack pointer register is played here by two
different registers, namely EP and SP, which point respectively to the active frame
and the last allocated frame.

These two values may be different because in the AAA architecture a stack frame
is not always deallocated after the execution of its corresponding procedure is ter
minated. In fact, if a choice point was created in the procedure, control may, after
the termination of the execution of the procedure, return to the body of the proce
dure. When that happens, its local variables should be accessible and should have
the values they had the first time. Therefore the stack frame is not destroyed if the
failure frame register is equal to or greater than the stack pointer.

This mechanism is typical of languages with choice points and automatic back
tracking and is present, in the WAM, under the name of "enviroment protection."
For a more detailed description of it and an example of its use see Section 4.1 of
A'it-Kaci [1991].

9.2 Intermediate Code Generation

Next, we describe the details of the AAA code generation for the language constructs
that deal with Alma-0 extensions.

We use a syntax-directed translation technique. Therefore each Alma-0 language
construct is translated into AAA instructions, as soon as it has been recognized by
the parser. The parsing strategy is bottom-up, which ensures that code has already
been generated for the language constructs contained by the current construct, i.e.,
those language constructs that are its descendants in the abstract syntax tree. This
means that the result of computational code can be used and that conditional code
and its failure-handling label can be correctly placed to get the correct flow of
control.

The translation of the traditional language constructs is as usual, and we only dis
cuss those translations that deal with Alma-O's extensions. For the sake of brevity,
we confine ourselves to the BES, SBE, ORELSE, COMMIT, and FORALL
extensions and that of the procedure call, which are the most interesting ones.

9.2.1 Pseudocode. Because the actual instruction sequences generated can be
quite long, we will use pseudocode to illustrate the idea. The following language
constructs are used in the pseudocode:

-create..frame_and_save_values (<frame-type>, <registers>) is a function
the call of which creates room on the stack for the specified type of frame, and
stores the values of the specified registers in the frame. The base address of the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1056 Krzysztof R. Apt et al.

new frame is returned.
-destroy_frame(<frame-type>) is a function the call of which destroys the

ified type of frame.
-<registers> := restore_values(<frame-type>, <frame- base-addre~

is a statement the call of which extracts the values of the registers frot:i
specified type of frame.

-<registers> := restore_values_and_destroy_frame(<frame-type>, <l
-base-address>) is a statement the call of which destroys the specified t}'
frame and returns the values of the registers.

-create..log() is a function the call of which invokes the CREATELDG instr1.1.
and returns the pointer to the newly created log.

-replay..logs (<frame-type>, <frame-base-address>) is a function the C:

which invokes the REPLAYLOGS instruction with the argument equal to the ·
of LP stored in the indicated frame. Upon termination this value is returne

-x : = y and IF x op y THEN a ELSE b END are statements that have the ,
ous meaning and are translated into AAA instructions in a straightforward

-S. instr denotes the AAA code generated for the statement S, and S. falsE
denotes its false continuation label.

9.2.2 The BES Extension. When a boolean expression B is used as a staten
the following code is generated:

B.instr;
GOTO true_lab;

B.false_lab:
FAIL;

true_lab:

-If the boolean expression evaluates to TRUE, execution continues normally, :
the label true..lab.

-If the boolean expression evaluates to FALSE, the FAIL instruction is exect:
causing a jump to the last failure point if it exists or otherwise yielding a fa,;
(see Section 9.1.1).

This closely corresponds to the operational semantics of the BES extension
Section 8.4.5).

9.2.3 The SBE Extension. When a statement sequence S is used as a boo
expression, the following code is generated:

BP := create_frame_and_save_values(SBE_FRAME, BP, EP);
temp :== BP;
ONFAIL fail_lab;

S.instr;

BP := restore_values_and_destroy_frame(SBE_FRAME, temp);

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming

GOTO success_lab;

fail_lab:
(BP, EP) := restore_values_and_destroy_frame(SBE_FRAME, BP);
GOTO S.false_lab;

success_lab:

1057

-If S succeeds, the execution continues normally. Because BP may point to a
frame created during the execution of S, temp is used instead as the pointer to
the original frame.

-If S fails, a jump is made to S. false.-1.ab, the newly allocated false continuation
label. Because this is the failure handler installed at the beginning, the register
BP will now point to the correct frame.

In both cases the failure frame pointer BP is restored to its original value. This
corresponds to the way the initial stack of choice points is used after a condition is
evaluated in the operational semantics of the IF and WHILE statements (see Sections
8.4.6 and 8.4.7).

9.2.4 The ORELSE Statement. The statement EITHER 81 ORELSE 82 ORELSE 83
END is translated into

BP := create_frame_and_save_values(ORELSE_FRAME, LP, BP, EP);
LP := create_log();
ONFAIL second_branch_lab;
S1. instr;
GOTO continue_lab;

second_branch_lab:
LP := replay_logs(ORELSE_FRAME, BP);
EP := restore_values(ORELSE_FRAME, BP);
LP := create_log();
ONFAIL last_branch_lab;
S2.instr;
GOTO continue_lab;

last_branch_lab:
LP := replay_logs(ORELSE_FRAME, BP);
(BP, EP) := restore_values_and_destroy_frame(ORELSE_FRAME, BP);
S3.instr;

continue_lab:

-A log is created, and a failure handler is installed for all but the last branch.
This corresponds in the operational semantics to pushing the envirornent on the
stack (see the use of the function push in the semantics of the ORELSE statement
given in Section 8.4.8).

-If the execution of a branch (but not the last one) fails, the logs are replayed,
and the next branch is tried. This corresponds in the operational semantics to
backtracking in which the first envirornent from the stack is restored.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1058 Krzysztof R. Apt et al.

-If the execution of the last branch fails, no special action should be performed
by the ORELSE statement; therefore for the last branch no log is created, and
no failure handler is installed. Correspondingly, in the operational semantics no
choice point is created for the last branch.

This implementation resembles the way choice points are dealt with in WAM (see
Section 4.2 of Alt-Kaci [1991]), with the addition of the log administration, which
is specific for the design of the AAA.

Another difference with respect to WAM is that in (pure) logic programming
choice points can be created only by alternative clause selections, which are dealt
with by the execution of the three instructions try..me_else, retry..me_else, and
trust...me. In Alma-0, instead, the choice points can be created in arbitrary positions
in the program, during the execution of the ORELSE, SOME, and FORALL constructs.
Therefore each of these constructs needs to be implemented using the lower-level
primitives described in the pseudocode defined above.

9.2.5 The COMMIT Statement. The statement COMMIT S END is translated into

savesp := SP;
savebp := BP;
S.instr;
BP := savebp;
SP := savesp;

-Before the execution of S its "context" is saved. This involves recording the
values of the failure pointer register BP and the stack pointer register SP.

-After the execution of S the context is restored. The log pointer register LP is
not modified for the reasons explained in Section 9.4.

9.2.6 The FORALL Statement. The implementation of the FORALL S DO T END
statement uses the temporaries savessp, savesbp, and saveslp. They are the SP,

BP, and LP that are used in S. When saveslp = O, S is executing, and otherwise
T is executing; this is used to determine whether the failure occured in S or in T.
Further, savetbp and savetlp are the BP and LP that are used in T.

Since the translation is quite subtle, we annotate it with comments.

(* create frame and set up the context for T •)
BP:= create_frame_and_save_values(FORALL_FRAME, LP, BP, EP);
saveslp : = 0;
savetbp :=BP;
savetlp := LP;
LP := create_log();
ONFAIL forall_done_lab;

(• execute S •)
S.instr;

(• save the context of S •)
savessp := SP;
savesbp : = BP;
saveslp := LP;

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1059

(* restore the context of T *)
LP := savetlp;
BP := savetbp;

(* execute T *)
T.instr;

(* save the context of T *)
savetlp := LP;

(* restore the context of s *)
LP := saveslp;
BP := savesbp;
SP := savessp;

(* continue at the next choice point in S *)
saveslp := O;
FAIL;

(* FORALL completed *)
forall_done_lab:

EP := restore_values(FORALL_FRAME, BP);

IF saveslp <> 0 TIIEN

ELSE

(* abnormal FORALL completion (failure in T) *)

LP := replay_logs(FORALL_FRAME, BP); (*replay logs in T *)

LP := saveslp; (* set up log in S *)

LP := replay_logs(FORALL_FRAME, BP); (*replay logs in S *)

BP := restore_values_and_destroy_frame(FORALL_FRAME, BP);

FAIL;

(* normal FORALL completion (failure in S) *)

LP := replay_logs(FORALL_FRAME, BP); (*replay logs in S *)

BP := restore_values_and_destroy_frame(FORALL_FRAME, BP);

END

-The execution alternates between two "contexts"-that of S and that of T. T is

executed in the initial context. This ensures that the assignments in T are not

undone when backtracking takes place in S. Sis executed in its last saved context

modified by the last execution of T.

-Each time T is executed the values of the SP and BP registers are not retained,

so the created choice points are discarded. Upon its termination the FAIL in

struction causes a jump to the last handler installed in S. When no more failure

handlers are left in S, execution continues at foralLdone.-1.ab. This approach

is similar to that of the failure-driven loop in Prolog (see Sterling and Shapiro

[1994, p. 229]).

9.2. 7 The Procedure Call. A procedure call in the AAA is a handled slightly

differently from a procedure call in a classic virtual machine. The procedure call

translates to

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1060 Krzysztof R. Apt et al.

push_actual_parameters;
EP := create_frame_and_save_values(PROCCALL_FRAME, EP, SP);
JSR proc.label;
(EP, R1) := restore_values(PROCCALL_FRAME, EP);
IF R1 < BP THEN

destroy_frame(PROCCALL_FRAME);
END;

where R1 is a general-purpose register to which the value of the stack pointer register
is assigned, and JSR is the AAA jump-to-subroutine instruction.

-If a choice point was created in the callee, execution may, at a later point, con
tinue in the body of the procedure. When that happens, the stack frame is not
destroyed ifthe failure frame register is equal to or greater than the stack pointer.
This implements the environment protection mechanism explained in Section 9.1.3.

9.3 Implementation of the AAA
Finally, we discuss the translation of the AAA instructions into C statements. For
most AAA statements such translation is straightforward. Therefore, we only ex
plain one specific aspect of translation, namely the log administration.

The log administration system is an important part of the AAA, and its perfor
mance has a large impact on the overall performance of the AAA. The logs are kept
in a linked list. The active log is at the front of the list, and the previously active
log is its successor.

For every memory block the value of which is recorded in the log, a log entry
is created. The log entries are kept in a binary search tree, as well as in a singly
linked list. The binary search tree, which uses the address of the memory block as
its key, is used in the log administration system to determine whether a memory
block starting at the same address has already been recorded in this log. The
linked list keeps the log entries in the order they were recorded; new log entries are
added to the front of the list. Since traversing a binary tree can be computationally
expensive, when the log is replayed, just the linked list is traversed front-to-back.

Because only the address of a memory block, and not its size, is used as the key
for the binary search tree, one memory location is recorded in the log twice, when
it is contained by two overlapping memory blocks being recorded. Fortunately, the
front-to-back traversal of the singly linked list, used when replaying the log, causes
its oldest value to be restored last. Therefore, the singly linked list is actually
essential to the correct functioning of the log administration system.

9.4 Discussion

Of course, each of the numerous language proposals that has dealt with automatic
backtracking within the imperative programming style had to address similar im
plementation issues. To the best of our knowledge our approach based on the
AAA that combines the RISC architecture with the WAM is new though we should
mention here an early proposal to design a Prolog-oriented RISC processor named
Pegasus (see Seo and Yokota [1988]).

The log mechanism of the AAA allows us to refrain from saving the full environ
ment at the time a choice point is created. Even though it is based on a simple
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1061

and intuitive idea, there are some subtleties here due to the interplay of the choice

points and the COMMIT statements. Consider the following program fragment:

x :=a;

EITHER
COMMIT

EITHER
x := b

ORELSE
any_statement;

END
END;
FALSE

ORELSE
y := X + Cj

END

In this example, two choice points are set by the two nested ORELSE statements,

and consequently two logs are created. When the control reaches the assignment x

: = b the old value of x, namely a, is stored in the active log, which is associated

with the innermost ORELSE statement.
After the assignment to x, due to the COMMIT statement, the second choice point

is erased. However, the associated log cannot be discarded at the same time because

it is the only depositary of the old value for x. Therefore, it is kept in memory even

though it pertains to a choice point which has been already erased.
When the failure occurs, upon reaching the statement FALSE, the two logs are

replayed in succession by the LP : = replay..logs (ORELSE..FRAME, BP) pseudocode

instruction, and the correct value of x is restored. In the end, the program succeeds

with x equal to a and y equal to a+c.

This complication does not arise in WAM because in that architecture the value

can be assigned to a variable only once. Therefore the old value of a variable does

not exist, and a fortiori does not need to be remembered.

10. CONCLUSIONS

In this article we presented the programming language Alma-0. In our opinion Alma-

0 makes clear that many useful aspects of the logic programming paradigm, and

more generally of declarative programming, can be amalgamated in a natural way

with the imperative programming paradigm. Also, it shows that some algorithmic

problems can be solved in a simpler way when drawing on both programming

paradigms.

10. l Related Work

A departure point for our considerations was the work of Cohen [1979), who surveys

some simple primitives for nondeterministic programming within the imperative

programming framework.
These primitives involve a nondeterministic choice, here adopted as an ORELSE

statement, a parameterized nondeterministic choice, here adopted as a SOME state

ment, and the failure and success statements with the expected meaning. The

failure and success statements are present in many imperative languages that sup-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1062 Krzysztof R. Apt et al.

port automatic backtracking, the most known of them being Icon (see Griswold
and Griswold [1983]) and SETL (see Schwartz et al. [1986]).

The language Icon allows for nondeterministic constructors similar to our ORELSE
and SOME statements. In order to explore the full set of branches of a nondeter
ministic construction the user can use the every statement, which resembles our
FORALL statement. However, in Icon all the choice points created inside the body of
a procedure are erased as soon as the procedure is left. To maintain choice points
through procedure calls, the user must resort to the explicit suspend expression.
Unfortunately, the suspension mechanism of Icon, differently from our proposal,
does not have a clear counterpart in declarative semantics.

In the language SETL, nondeterminism is implemented by means of the built-in
function ok which returns both true and false in two different branches. There
fore the Alma-0 statement EITHER S ORELSE T END can be implemented in SETL
by if ok then S else T end. However in SETL, differently from Alma-0, only
those variables explicitly marked as "backtracking" ones have their values restored
upon backtracking. SETL also provides the succeed primitive which resembles the
COMMIT statement in Alma-0. In particular, the invocation of succeed erases the
most recent choice point left open by a previous ok invocation.

In Alrna-0 we follow the approach taken in the 2LP language of McAloon and
'Thetkoff [1995] and identify boolean expressions and statements. As a result failure
and success statements come for free-they are simply booleans expressions used as

statements and that evaluate to FALSE, respectively TRUE. This makes the resulting
programs conceptually simpler. Of all existing languages, 2LP (which stands for
"logic programming and linear programming") is closest to the spirit of Alma-0.
The language supports the extensions discussed in Sections 2 and 3. The FORALL
statement is available in 2LP in a limited way by means of the find_all construct
that corresponds to FDRALL S DO TRUE END. This language uses C syntax and has
been designed for constraint programming in the area of optimization. We shall
return to it in in the next subsection.

In the realm of functional programming automatic backtracking is supported
by the language MICRO-PLANNER of Sussman et al. [1970], which is an imple
mented fragment of its theoretical version PLANNER of Hewitt [1971]. In addition
to backtracking, MICRO-PLANNER supports explicit manipulation of program
states and provides some deductive and pattern-matching mechanisms. Program
manipulations are dealt with by the FRAME command that allows the user to store
the program state and with the CONTINUE command that restarts the execution
from a stored state.

However, MICRO-PLANNER (and its successor CONNIVER of Sussman and
McDermott [1972]) is a Lisp-based language, and, differently from our proposal,
it lacks the full capability of imperative programming languages. In particular, it
supports neither strong type checking nor powerful control structures.

On the logic programming side we would like to mention here the work that dealt
with addition of arrays and bounded quantifiers (that correspond to the FOR and
SOME loops) to the logic programming paradigm. Arrays in logic programming were
introduced by Eriksson and Rayner [1984].

Bounded quantifiers and arrays were used in logic programming in Kluzniak and
Milkowska [1997] in which a specification language Spill was introduced that allows

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1063

us to write executable, typed, specifications in the logic programming style. (The
original work on this language dates from 1991.) For related references see Voronkov
[1992], Barklund and Bevemyr [1993], and more recently Apt [1996].

Finally, let us mention that the initial work on the design of Alma-0 was reported
in Apt and Schaerf [1997].

10.2 Toward Imperative Constraint Programming

The language Alma-0 was not a goal in itself but rather an intermediate stage on
the road toward a realization of a strongly typed const.raint programming language
that combines the advantages of logic and imperative programming.

As already mentioned in Section 5.1, our generalized use of equality treats (some
forms of) equality as a constraint. In fact, in our approach we wish to perceive
constraints as boolean expressions that do not appear inside a condition. Depend
ing on the type and syntax of their operators and operands we have then equality
constraints, boolean constraints, linear integer equality constraints, linear real in
equality constraints, etc.

The use of types should allow us to extend the advantages of strong typing to
constraint programming: their use should lead to a simple "compartmentalization"
of the constraint store and should allow us to catch simple errors at compile time
and report other obvious errors at run-time. These benefits are difficult to realize
within the logic programming framework.

To clarify why we feel that we remained upward compatible with the future ex
tensions to constraint programming in the imperative programming style, let us
return to the 2LP language of McAloon and Tretko:ff [1995]. In 2LP there are two
types of variables: the "customary," programming, variables and the continuous
variables (the name derives from their use in mathematics). The continuous vari
ables vary over the real interval [O, +oo) and can be either simple ones or arrays.
The only way these variables can be modified is by imposing linear constraints on
them. In the most extreme case these variables can be assigned a specific value
by means of an equality constraint. Whenever a constraint is added, its feasibility
with respect to the old constraints is tested by means of an internal simplex-based
algorithm.

Even though at first sight the programming examples discussed in this article
seem to have nothing to do with constraints, it turns out that many of the presented
programs can be directly executed by the 2LP system (after appropriate syntactic
modifications that have to do with the C-based syntax of 2LP).

The reason is that our generalized use of equality and the use of VAR and MIX
parameter mechanism can be modeled in 2LP by means equality constraints and
continuous variables passed as actual parameters. Consequently, our solutions to
the Remarkable Sequence Revisited problem (Problem 7), the Eight Queens problem
(Problem 8), and most of the multiple uses of them discussed in Section 5 can be
reproduced in 2LP once the relevant arrays are declared as continuous.

It is useful to mention here that in 2LP the assignments are not "undone" upon
backtracking, in contrast to the constraints imposed on continuous variables. Con
sequently, our solution to the Knapsack problem (Problem 6) cannot be reproduced
within 2LP because it relies upon backtracking over assignment.

The above analysis shows that Alma-0 indeed realizes some simple uses of con-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1064 Krzysztof R. Apt et al.

straints without introducing them explicitly and seems to support our view about
the upward compatibility of Alma-0 with imperative constraint programming. In
fact, in Alma-0 there is no concept of a constraint store, and consequently all con
straints have to be immediately processed. Currently we are working on means of
incorporating a constraint store into the language. In our future work we plan to fo
cus on the use of constraint propagation in presence of the features here introduced,
a mechanism that is absent in 2LP.

We conclude by mentioning two recent alternative approaches to constraint pro
gramming that lie outside the realm of logic programming. The first is the ILOG
system of Puget [1994) in which constraint programming (on finite domains) is re
alized in the form of a C++ class. So in !LOG constraint programming is not
integrated into the underlying imperative language, c++, but rather "imported"
in the form of a library.

The other is CLAIRE, a high-level functional and object-oriented language of
Caseau and Laburthe [1996]. CLAIRE was designed to use constraint program
ming techniques to deal with operations research problems. In CLAIRE constraints
are represented as objects and rule processing capabilities can be used to imple
ment constraint propagation. CLAIRE is a complete programming system with
several advanced tools available. It has been successfully used to deal with jobshop
scheduling and various instances of the travelling salesman problem.

ACKNOWLEDGMENTS

We would like to thank Nissim Francez and Feliks Klufoiak for detailed comments
on this article, and Ken McAloon and Carol Tretkoff for useful discussions con
cerning 2LP and its implementation. All five referees of Apt and Schaerf [1997],
Marc Bezem, Mirka Milkowska, and the two referees of this article provided us with
useful suggestions.

This work has been partly carried out while the fourth author was visiting CWI
in Amsterdam, as part of the ERCIM Fellowship Programme financed by the Com
mission of the European Communities.

REFERENCES

Ai'.T-KACI, H. 1991. Warren's Abstract Machine: A Tutorial Reconstruction. The MIT Press,
Cambridge, Mass.

APT, K. R. 1996. Arrays, bounded quantification and iteration in logic and constraint logic
programming. Sci. Comput. Program. 26, 1-3, 133-148.

APT, K. R. 1997. Prom Logic Programming to Prolog. Prentice-Hall, London, U.K.

APT, K. R. AND BoL, R. 1994. Logic programming and negation: A survey. J. Logic Program. 19-
20, 9-71.

APT, K. R. AND SCHAERF, A. 1997. Search and imperative programming. In Proceedings of
the 24.th Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages
{POPL '97). ACM Press, New York, 67-79.

BARKLUND, J. AND BEVEMYR, J. 1993. Prolog with arrays and bounded quantifications. In Logic
Programming and Automated Reasoning-Proceedings of the 4th International Conference,
A. Voronkov, Ed. Lecture Notes in Computer Science, vol. 698. Springer-Verlag, Berlin, 28-39.

BARR, A., FEIGENBAUM, E. A., AND COHEN, P. R. 1981. The Handbook of Artificial Intelligence
Vol. 1. HeurisTech, Stanford.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

Alma-0: An Imperative Language that Supports Declarative Programming 1065

BRUNEKREEF, J. 1998. Annotated algebraic specification of the syntax and semantics of the

programming language Alma-0. Tech. Rep. P9803, Programming Research Group, University

of Amsterdam, The Netherlands. Available via http:/ /www.cwi.nl/alma.

BYLANDER, T. 1991. Complexity results for planning. In Procee,dings of the International Joint
Conference on Artificial Intelligence {IJCAI-91). 274-279.

CASEAU, Y. AND LABURTHE, F. 1996. Introduction to the CLAIRE programming language. Tech.

rep., Departement Mathematiques et Informatique, Ecole Normale Superieure, Paris, France.

COELHO, H. AND COTTA, J. c. 1988. Prolog by Example. Springer-Verlag, Berlin.

COHEN, J. 1979. Non-Deterministic algorithms. ACM Comput. Surv. 11, 2, 79-94.

CoLMERAUER, A. 1990. An introduction to Prolog III. Commun. ACM 33, 7, 69-90.

DONNOLY, c. AND STALLMAN, R. 1995. Bison, the YACC-compatible parser generator. Free Soft

ware Foundation, Cambridge, Mass. Available via http:/ /www.math.utah.edu/docs/info/bi
son_toc.html.

ELLIS, M. E. AND STROUSTRUP, B. 1990. The Annotate,d C++ Reference Manual. Addison Wesley,

Reading, Mass.

ERJKSSON, L.-H. AND RAYNER, M. 1984. Incorporating mutable arrays into logic programming. In

Procee.dings of the 2nd International Conference on Logic Programming, S. A. Tarnlund, Ed.

Uppsala University, 101-114.

FIKES, R. E. AND NILSSON, N. J. 1971. STRIPS: A new approach to the application of theorem

proving to problem solving. Artif. Intell. J. 2, 189-208.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification, Version 1.0. Sun

Microsystems. Available via http:/ /java.sun.com/docs/language_specification/index.html.

GRlSWOLD, R. E. AND GRISWOLD, M. T. 1983. The Icon Programming Language. Prentice-Hall,

Englewood Cliffs, N.J.

GROENENDIJK, J. AND STOKHOF, M. 1991. Dynamic predicate logic. Ling. Phil. 14, 2, 39-101.

HENNESSY, M. c. B. AND PLOTKIN, G. D. 1979. Full abstraction for a simple programming

language. In Procee.dings of Mathematical Foundations of Computer Science. Lecture Notes in

Computer Science, vol. 74, Springer-Verlag, New York, 108-120.

HEWITT, C. 1971. Procedural embedding of knowledge in PLANNER. In Procee.dings of the 2nd

International Joint Conference on Artificial Intelligence (IJCAI-71). 167-182.

KLINT, P. 1993. A meta-environment for generating programming environments. ACM Trans.
Softw. Eng. Methodol. 2, 2, 176-201.

KLUZNIAK, F. AND MILKOWSKA, M. 1997. Spill: A logic language for writing testable requirements

specifications. Sci. Comput. Program. 28, 2 & 3, 193-223.

MARCUS, L. 1996. Syntactic and semantic dependence of array-arithmetic sentences, with an

application to program verification. F'undamenta Informaticae 27, 1, 77-100.

MCALOON, K. AND TRETKOFF, c. 1995. 2LP: Linear programming and logic programming. In

Principles and Practice of Constraint Programming, P. Van Hentenryck and V. Saraswat, Eds.

MIT Press, Cambridge, Mass., 101-116.

PARTINGTON, V. 1997. Implementation of an imperative programming language with

backtracking. Tech. Rep. P9712, Department of Mathematics, Computer Science,

Physics & Astronomy, University of Amsterdam, The Netherlands. Available via

http://www.wins.uva.nl/research/prog/reports/reports.html.

PAXSON, V. 1995. Flex, version 2.5, A fast scanner generator. The Regents of the University of

California. Available http: I /www .math. utah. edu/docs/info/flex_toc .html.

PUGET, J.-F. 1994. AC++ implementation of CLP. In Procee.dings of the 2nd Singapore Inter

national Conference on Intelligent Systems.

SCHWARTZ, J. T., DEWAR, R. B. K., DUBINSKY, E., AND SCHONBERG, E. 1986. Programming with

Sets-An Introduction to SETL. Springer-Verlag, New York.

SCOTT, D. s. AND DE BAKKER, J. w. 1969. A theory of programs. Unpublished seminar notes,

IBM, Vienna.
SEO, K. AND YOKOTA, T. 1988. Pegasus: A RISC processor for high-performance execution of

Prolog programs. In VLSI '87, C. H. Sequin, Ed. IFIP, North-Holland, Amsterdam, 261-274.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

1066 Krzysztof R. Apt et al.

SHOHAM, Y. 1994. Artificial Intelligence Techniques in Prolog. Morgan Kaufmann, San Francisco,
Cali f.

STERLING, L. AND SHAPIRO, E. 1994. The Art of Prolog, 2nd ed. The MIT Press, Cambridge,
Mass.

SUSSMAN, G. J. AND MCDERMOTT, D. V. 1972. CONNIVER reference manual. AI Memo no. 259,
MIT Project MAC.

SUSSMAN, G. J., WINOGRAD, T., AND CHARNIAK, E. 1970. MICRO-PLANNER reference manual.
AI Memo no. 203, MIT Project MAC.

VAN DEURBEN, A., HEERING, J., AND KLINT, P., Eds. 1996. Language Prototyping-An Algebraic
Specification Approach. AMAST Series in Computing, vol. 5. World Scientific Publishing Co,
Singapore.

VORONKOV, A. 1992. Logic programming with bounded quantifiers. In Logic Programming and
Automated Reasoning-Proceedings of the 2nd Russian Conference on Logic Programming,
A. Voronkov, Ed. Lecture Notes in Computer Science, vol. 592. Springer-Verlag, Berlin, 486-
514.

WIRTH, N. 1985. Programming in Modula-2, 3rd ed. Springer-Verlag, New York.

WIRTH, N. 1986. Algorithms and Data Structures. Prentice-Hall, Englewood Cliffs, N.J.

WIRTH, N. 1996. Compiler Construction. Addison Wesley, Reading, Mass.

Received September 1997; revised March 1998; accepted May 1998

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 5, September 1998.

