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A Tutorial Introduction to Differentiable Manifolds 

and Calculus on Manifolds 

Michie! Hazewinkel 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In this tutorial I try by means of several examples to illustrate the basic definitions and concepts of 
differentiable manifolds. There are few proofs (not that there are ever many at this level of the theory). This 
material should be sufficient to understand the use made of these concepts in the other contributions in this 
volume, notably the lectures by Kliemann, and my own lectures on filtering; or at least, it should help in 
explaining the terminology employed. Quite generally in fact, it can be said that the global point of view, 
i.e. analysis on manifolds rather than on open pieces of Rn, can have many advantages, also in areas like 
engineering where this approach is less traditional. This tutorial is a revised and greatly expanded version 
of an earlier one entitled 'A tutorial introduction to differentiable manifolds and vector fields' which 
appeared in M. HAZEWINKEL, J.C. WILLEMS (eds), Stochastic Systems: the mathematics of filtering and 
identification, Reidel, 1981, 77-93. 

1980 Mathematics subject classification: 57-01, 58-01, 58C35. 
Key words and phrases: Differentiable manifold, Vectorbundle, Volume form, Integration on manifolds, 
Stokes type theorems, vectorfields. 

1. INTRODUCTION AND A FEW REMARKS 

Roughly an n-dimensional differentiable manifold is a gadget which locally looks like Rn, the space of 
all real vectors of length n, but globally perhaps not; A precise definition is given below in section 2. 
Examples are the sphere and the torus, which are both locally like R2 but differ globally from JR 2 and 
from each other. 

Such objects often arise naturally when discussing problems in analysis (e.g. differential equations) 
and elsewhere.in mathematics and its applications. A few advantages which may come about by doing 
analysis on manifolds rather than just on Rn are briefly discussed below. 

1.1 Coordinate freeness ("Diffeomorphisms"). 
A differentiable manifold can be viewed as consisting of pieces of Rn which are glued together in a 
smooth ( = differentiable) manner. And it is on the basis of such a picture that the analysis (e.g. the 
study of differential equations) often proceeds. This brings more than a mere extension of analysis on 
!Rn to analysis on spheres, tori, projective spaces and the like; it stresses the "coordinate free 
approach'', i.e. the formulation of problems and concepts in terms which are invariant under (non
linear) smooth coordinate transformations and thus also helped to bring about a better understanding 
even of analysis on !Rn. The more important results, concepts and definitions tend to be "coordinate 
free". 

1.2 Analytic continuation. 
A convergent power series in one complex variable is a rather simple object. It is considerably more 
difficult to obtain an understanding of the collection of all analytic continuations of a given power 
series, especially because analytic continuation along a full circuit (contour) may yield a different 
function value than the initial one. The fact that the various continuations fit together to form a 
Riemann surface (a certain kind of 2-dimensional manifold usually different from IR 2) was a major 
and most enlightening discovery which contributes a great deal to our understanding. 
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1.3 Suhmanifolds. 
Consider an equation x = f (x) in Rn. Then it often happens, especially in problems coming from 
mechanics, that the equation has the property that it evolves in such a way that certain quantities (e.g. 
energy, angular momentum) are conserved. Thus the equation really evolves on a subset 
{x E Rn :E(x) = c} which is often a differentiable submanifold. Thus it easily could happen, for 
instance, that x = f (x ), f smooth, is constrained to move on a ( disorted) 2-sphere which then immedi
ately tells us that there is an equilibrium point, i.e. a point where f (x) = 0. This is the so-called hairy 
ball theorem which says that a vectorfield on a 2-sphere must have a zero; for vectorfields and such, 
cf below. 

Also one might meet 2 seemingly different equations, say, one in R4 and one in R3 (perhaps both 
intended as a description of the same process) of which the first has two conserved quantities and the 
second one. It will then be important to decide whether the surfaces on which the equations evolve 
are diff eomorphic, i.e. the same after a suitable invertible transformation and whether the equations 
on these submanif olds correspond under these transformations. 

1.4 Behaviour at infinity. 
Consider a differential equation in the plane x=P(x,y), j=Q(x,y). To study the behaviour of the 
paths far out in the plane and such things as solutions escaping to infinity and corning back, Poincare 
already completed the plane to real projective 2-space (an example of a differential manifold). Also 
the projective plane is by no means the only smooth manifold compactifying R2 and it will be of 
some importance for the behaviour of the equation near infinity whether the "right" compactification 
to which the equation can be extended will be a projective 2-space, a sphere, or a torus, or ... , or, 
whether no such compactification exists at all. A good example of a set of equations which are practi
cally impossible to analyse completely without bringing in manifolds are the matrix Riccati equations 
which naturally live on Grassmann manifolds. The matrix Riccati equation is of great importance in 
linear Kalman-Bucy filtering. It also causes major numerical difficulties. It will therefore return below 
by way of example. 

1. 5 A voiding confusion between different kinds of objects. 
Consider an ordinary differential equation x = f (x) on Rn, where f (x) is a function Rn ~ Rn. When 
one now tries to generalize this idea of a differential equation on a manifold one discovers that x and 
hence f (x) is a different kind of object; it is not a function, but, as we shall see, it is a vectorfield; in 
other words under a nonlinear change of coordinates the right hand side of such a differential equa
tion x = f (x) transforms not as a function, but in a different way (involving Jacobian matrices, as 
everyone knows). 

2. DIFFERENTIABLE MANIFOLDS 

Let Ube an open subset of Rn, e.g. an open ball. A function/: U ~ R is said to be C 00 or smooth if 
all partial derivatives (any order) exist at all x EU. A mapping Rn:::::> U ~Rm is smooth if all com
ponents are smooth; cp:U ~ V, UcRn, VcRn is called a diffeomorphism if cp is 1-1, onto, and both cp 
and cp - J are smooth. 

As indicated above a smooth n-dimensional manifold is a gadget consisting of open pieces of Rn 
smoothly glued together. This gives the following pictorial definition of a smooth n-dimensional mani
fold M (fig. 1). 
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diffco 

FIGURE 1. Pictorial definition of a differentiable manifold. 

2.1 Example. 
The circle S 1 ={(x1,X2):xr +x1 = l} C IR 2 

FIGURE 2. Example: the circle 
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U1 =S 1 \ {S}, U2 =S 1 \ {N} so U1 U U2 =S 1• The "coordinate charts" 4>1 and <f>2 are given by 

X1 X1 
4>1 (x, ,x2) = 1 + Xz ' ij>i(X1>X2) = 1-X2 

Thus q,1 (U1 n U2)=1R \ {O}, 4>2( U1 n U2)=1R \ {O} and the map 4>2°4>1 1 :IR \ {O}-')> IR \ {O} is given 
by XHX - 1 which is a diffeomorphism. 

2.2 Formal definition of a differentiable manifold. 
The data are 
- M, a Hausdorff topological space 
- A covering { U a} ae;/ by open subsets of M 
- Coordinate maps <f>a:Ua -'J> <J>aCUa)CIRn, <Pa(Ua) open in !Rn. 
These data are subject to the following condition 
- <f>a 0 cf>ji 1 :q,p(Ua n Up)-')> 4>a(Va n V13) is a diffeomorphisrn. 
Often one also adds the requirement that M be paracompact. We shall however disregard these finer 
points; nor shall we need them in this volume. 

2.3 Constructing differentiable manifolds 1: embedded manifolds. 
Let M be a subset of IRN. Suppose for every x eM there exists an open neighbourhood V C !Rn and a 
smooth function iti: U-')> RN mapping U homeomorphically onto an open neighbourhood V of x in M. 
Suppose moreover that the Jacobian matrix of 1/i has rank n at all u EU. Then M is a smooth manifold 
of dimension n. (Exercise; the coordinate neighbourhoods are the V's and the coordinate maps are the 
1/i-1 ; use the implicit function theorem). Virtually the same arguments show that if q,: U-')> IRk, 
U cRn +k, is a smooth map and the rank of the Jacobian matrix J(f)(x) is k for all x eq,- 1(0), then 
q,- 1(0) is a smooth n-dimensional manifold. We shall not pursue this approach but concentrate 
instead on: 

2.4 Constructing differentiable manifolds 2: gluing. 
Here the data are as follows 
- an index set I 
- for every aE/ an open subset Va c!Rn 
- for every ordered pair (a,/J) an open subset Uap C Va 
- diffeomorphisms cf>ap: U ap -'!> U pa for all a,{Je/ 
These data are supposed to satisfy the following compatibility conditions 
- U aa = Ua, cf>aa =id 
- </>p .. /<l>a/3 =<Perr (where appropriate) 
(where the last identity is supposed to imply also that 4'aJ3( V aP n U py) CU /3'r so that 
c/>ap(Uap n U a:r)= U /3'r n U pa). 

These are not yet all conditions, cf below, but the present lecturer, e.g., has often found it advanta
geous to stop right here so to speak, and to view a manifold simply as a collection of open ·subsets of 
an together with gluing data (coordinate transformation rules). 

From the data given above one now defines an abstract topological space M by taking the disjoint 
union of the U a and then identifying x E Va and y E V p iff x E U afJ, y E V /Ja, <f>ap(x) = y. This gives a 
natural injection U a ~ M with image U' a say. Let cf>a: V' a -'!> U a be the inverse map. The 
c/>a:U'a ~Va cRn define local coordinates on M. Then this gives us a differentiable manifold Min 
the sense of definition 2.2 provided that M is Hausdorff and paracompact, and these are precisely the 
conditions which must be added to the gluing compatibility conditions above. 
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2. 5 Functions on a "glued manifold". 
Let M be a differentiable manifold obtained by the gluing process described in 2.4 above. Then a 
differentiable function f :M-? ill consist simply of a collection of functions fa: U a -? ill such that 
/t3°<Paf3 =fa on Uafl• as illustrated in fig. 3. 

Thus for example a function on the circle S 1 , cf figure 2, can be described either as a function of 
two variables restricted to S 1 Cill2 or as two functions f 1,f2 of one variable on U 1 and U2 such that 
f 1 (x) = f2 (x - I). Obviously the latter approach can have considerable advantages. 

IR 

FIGURE 3. Functions on a glued manifold 

2.6 Example of a 2 dimensional manifold: the Mobius band. 
The (open) Mobius band is obtained by taking a strip in ill2 as indicated below in fig. 4 without its 
upper and lower edges and identifying the left hand and right hand edges as indicated. 

i------------------------- --------------1 

I __ --------- ------- -- ----- _j 
FIGURE 4. Construction of the Mobius band 

The resulting manifold (as a submanifold of IR 3 ) looks something like the following figure 5. 
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FIGURE 5. The Mobius band 

It is left as an exercise to the reader to cast this description 'ID the form required by the gluing 
description of 2.4 above. The following pictorial description (fig. 6) will suffice. 

iJ>12 

FIGURE 6. Gluing description of the Mobius band 

2. 7 Example: the 2-dimensional sphere. 
The picture in fig. 7 below shows how the 2-sphere S 2 = { x 1,x2,x3 :xt + x~ + xj =I} can be obtained 
by gluing two disks together. If the surface of the earth is viewed as a model for S 2 (or vice versa, 
which is the more customary use of the world 'model'), the first disk covers everything north of Capri
corn and the second everything south of Cancer. 
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FIGURE 7. Gluing description of the 2-sphere S2 

2.8 Example. The Grassmann manifolds Grk(Rn). 
As a set Grk(Rn) consists of all k-dimensional subspaces of Rn. Thus Gr 1 (Rn) is real projective space 
of dimension n -1 and in particular Gr 1 (R2) is the real projective line, i.e. the circle. We shall now 
also present a gluing data description of Grk(Rn). To this end it is useful to introduce the following 
notation. Let A be an k X n matrix, k <n and let a be a subset of { 1, ... , n} of size k. Then A a 

denotes the k X k matrix obtained from A by removing all columns whose index is not in a. 
Now let U a be the set of all k X n matrices A such that A a = h, the k X k identity matrix 

Ua = {A ERkXn:Aa=lk} 

Because the entries aiJ with j E {I, ... , n} \a of these matrices are arbitrary this is clearly just a 
slightly crazy way of writing down all real kX(n -k) matrices or, in other words, all real k(n-k) 
vectors, i.e. U a :::::Rk<n -k>. 
The gluing data for Grk(Rn) are now as follows 
- the index set I consists of all subsets a of size k of { I, . . . , n } 

for each a, Ua =Rk(n-k) realized as indicated above 
- for each ordered pair of indices a,/3 

u a{J = {A E u a : A fJ is invertible} 

- the diff eomorphsims 

tPa{J : U a{J ~ U {Ja 

are given by 

A~(Ap)- 1A 

We shall see below (in 2.12) that Grk(Rn) is indeed the space of all k-dimensional subspaces of Rn. 

2.9 Exercise. 
Check that the compatibility conditions 'i>aa =id and t/>{Jy 0 t/>afJ =q,ay of 2.4 above hold. Pro.ve also that 
the manifold obtained from these gluing data is Hausdorff. 
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2.10 Morphism of differentiable manifolds. . 
Let M and N be differentiable manifolds obtained by the gluing process of secuon 2.4 above. Say M 
is obtained by gluing together open subsets U a of Rn and N by gluing together open subsets V p of 
IRm. Then a smooth map f:M ~ N (a morphism) is given by specifying for all a,/3 an open subset 
U a/3 CU a and a smooth map fafJ: U a/J ~ V fJ such that U U a/J = U a and the f aP are compatible under 

p . 
the identifications «Paa': u aa' ~ u a'a,lf>{J{J': v fJfJ' ~ v fJ'fJ• i.e. fa'fJ' 0 tl>aa' = l/>p{J'~f afJ .whenever .appropnate. 
(Here the <P's are the gluing diffeomorphisms for Mand the l/ls are the glwng diffeomorphisms for N). 

f 

fall 

FIGURE 8. Morphisms 

2.11 Exercise: 
Show that the description of the circle S 1 as in 2.1 above gives an injective morphism S 1 ~ IR 2• 

2.12 Example: Grassmann manifolds continued. 
Let R~n be the open subset of Rk xn =Rkn consisting of all k Xn matrices of maximal rank k. 
(Recall that k <n.) We are going to define a differentiable morphism 

'IT: R~eFn ~ Grk(Rn) 

by the method of section 2.10 above. In this case R~eFn = U cRkn is defined by a single open subset. 
Thus we need for each a an open subset Va of U and a smooth map 71' a: Va ~ U a where U a is as 
above in 2.8. These data are defined as follows 

Va = {MER~eFn : Ma is invertible} 

7Ta: Va~ Ua, M .... (Ma)- 1MEUa 

It is an easy exercise (practically identical with the first part of exercise 2.9) to check that the required 
compatibility conditions are met. 

It is now simple to see that Grk(R") as defined in 2.8 is indeed the space of all k-dimensional sub
spaces of Rn. Indeed let W be such a subspace. Choose a basis for W C Rn. These k n-vectors written 
as row vectors define kXn matrix A (W) in R~eFn. Taking a different basis for W amounts to 



replacingA(W) with SA(W) where Sis an invertible kXk matrix. Now 

(SA(W))a == S(A (W))a 

and it follows that if A (W)E Va then also SA (W)E Va and that moreover 

'IT(SA (W)) == 'ITA(W) 
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Thus every k-dimensional vectorspace in Rn defines a unique point of Grk(Rn) and vice versa. (A EU a 
is of maximal rank and hence defines a k dimensional vectorspace.) 

3. DIFFERENTIABLE VECTORBUNDLES 

Intuitively a vectorbundle over a space S is a family of vectorspaces parametrized by S. Thus for 
example the Mobius band of example 2.6 can be viewed as a family of open intervals in R 
parametrized by the circle, cf fig. 9 below, and if we are willing to identify the open intervals with R 
this gives us a family of one dimensional vectorspaces parametrized by S 1 which locally (i.e. over 
small neighbourhoods in the base space S 1) looks like a product but globally is not equal to a pro
duct. 

FIGURE 9. The Mobius band as vectorbundle over the circle 

3.1 Formal definition of differentiable vectorbund/e. 
A differentiable vectorbundle of dimension m over a differentiable manifold M consists of a surjective 
morphism 'TT:E---+ M of differentiable manifolds and a structure of an m-dimensional real vectorspace 
on 'TT- 1(x) for all xEM such that moreover there is for all xEM an open neighbourhood UCM con
taining x and a diffeomorphism if>u:UXRm ---+'IT- 1( U) such that the following diagram commutes 
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\ 
u 

where the lefthand arrow is the projection on the first factor, and such that <Pu induces for every y EU 
an isomorphism {y} X llr 4 17' - I (v) of real vectorspaces. 

3.2 Constructing vectorbund/es. 
The definition given above is not always particularly easy to assimilate. It simply means that a vector
bundle over M is obtained by taking an open covering { U;} of M and gluing together products 
U; X Rm by means of diff eomorphisms which are linear (i.e. vectorspace structure preserving) in the 
second coordinate. Thus an m-dimensional vectorbundle over M is given by the following data 
- an open covering {Ua}ael of M. 
- for every a,/3 a smooth map <l>ap:UanUp""'GLm(R) where GLm(R) is the space of all invertible 

real m Xm matrices considered as an open subset of Rm. These data are subject to the following 
compatibility conditions 

- <Paa(x)=Im, the identity matrix, for all xEUa 
- </>ffy(X ')</>ap(x) =<[>ay(X) for all x E u an up n Uy 
From these data Eis constructed by taking the disjoint union of the UaXRm, a.El and identifying 
(x,v)EUa XRm with (v,w)EUpXRm if and only if x =y and <l>ap(x)v =w. The morphism 11' is induced 
by the first coordinate projections U a X g;tm ""' U a. 

3.3 Constructing vectorbundles 2. 
If the base manifold M is itself viewed as a smoothly glued together collection of open sets in Rn we 
can describe the gluing for M and for the vectorbundle all at once. The combined data are then as 
follows 
- open sets Ua XRm, Ua cRn for all a El 
- open subsets Uap C Ua for all a,,BEI 
- diffeomorphsims <Pap: U aP""' U {la 
- diffeomorphisms cPap: U ap XRm""' U pa XRm of the form (x, v)f-+(</>a,e(x),A ap(x)v) where A a,e(x) is an 

m Xm invertible real matrix depending smoothly on x. 
These data are then subject to the same compatibility conditions for the cPap's (and hence the <l>a,e) as 
described in 2.4 above. 

Again, as in the case of differentiable manifolds, it is sometimes a good idea to view a vectorbundle 
17':£ ""'M simply as a collection of local pieces '!Ta: U a X Rm""' U a together with gluing data (transfor
mation rules). 

3.4 Example: the tangent vectorbundle of a smooth manifold. 
Let the smooth manifold M be given by the data Ua, Uafl• <Pap as in 2.4. Then the tangent bundle 
TM is given by the data 

UaXRn, UapXRncUaXR" 
cPap:Uap XRn""' Upa XRn, ~ap(x,v)=(<t>ap(x), J(<f>ap)(x)v) 

where J (<Pap )(x) is the Jacobian matrix of <l>afl at x EU aP. 
Exercise: check that these gluing morphisms do indeed define a vectorbundle; i.e. the compatibility. 

(This is the chain rule!) 
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3. 5 Example. The canonical bundle over a Grassmann manifold. 
As said above, intuitively a vectorbundle over M is a family of vectorspaces smoothly parametrized by 
M. I.e. for each x EM there is given a vectorspace V,, the fibre over x and the V, vary smoothly with 
x. In this intuitive fashion the canonical bundle over Grk(R" ), the space of k dimensional subspaces of 
R", is the bundle whose fibre over xEGr.i.(R") "is" the vectorspace x. 

In terms of gluing data, and more precisely. this vectorbundle is described as follows. Recall that 
Grk(R") was obtained from local pieces U a ~Rk1n -k 1 

Now define 

U OI. = {A E Rk ;..: n :A" = h } 

~ap: U(Jl.pXRk - Up(JI. XRk 

(A,v)- (A,8 1A.(A,alv) 

It is again the same observation that (SA )(JI.= SA (JI. which proves the compatibility relation 
~PY 0~01.j3 = 1>ar · 

. This bundle is the universal k-dimensional vectorbundle over Grk(Rn) as usually defined by topolo
gists. The algebraic geometers often prefer to work with the dual object: the bundle over Grk(R") 
whose fibre over x is the quotient space R" Ix. Exercise: give a gluing data description of this last 
bundle. 

3.5 Morphisms of vectorbundles. 
A morphism of vectorbundles from the vectorbundle 'lT:E ~ Af to the vectorbundle 'lT':E' - M' is a 
pair of smooth maps fE - E',f :M - M' such that r.'0/= f 0 '1T and such that the induced map 
.fx:'TT- 1(x) - 'IT- 1(/(x)) is homomorphism of vectorspaces for all xEM. We leave it to the reader to 
translate this into a local pieces and gluing data description. 

As an example consider two manifolds M.N both described in terms of local pieces and gluing 
data. Let f :M -N be given in these terms by the f,,p:Uap ~ V 13 (cf 2.10 above). Then the maps 
J(Jl.13: U Ol./3XRn-:_V13 X Rm defined by f(Jl.p(x, v )=(j(Jl.13(x),J(j,,13)(x)v) combine to define a morphism of 
vectorbundles f= Tf :TM - TN. 

4. VECTORFIELDS 

A vectorfield on a manifold M assigns in a differentiable manner to every x EM a tangent vector at x, 
i.e. an element of the fibre T,M=7T- 1(x) of the tangent bundle TM. Slightly more precisely this 
gives the 

4.1 Definitions. 
Let 7T:£ - M be a vectorbundle. Then a section of E is a smooth map s :M -E such that 'TT0s =id. 
A section of the tangent vectorbundle TM - M is called a vectorfield. 

Suppose that M is given by a local pieces and gluing data description as in 2.4 above. Then a 
vectorfield sis given by "local sections" s'a:Ua - Ua. XW of the form s'a.(x)=(x,sa(x)), i.e. by a col
lection of functions s a: U a - IR" such that J (</>a,B )(x )(s (JI. (x)) = s p( </>(Jl.p(x) for all x E U a/3. 

4. 2 Derivations. 
Let A be an algebra over R. Then a derivation is an R-linear map D :A -A such that 
D(jg)=(Dj)g+ j(Dg) for all/, gEA. 
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4. 3 Derivations and vectorfields. 
Now let M be a differentiable manifold and let S(M) be the IR-algebra of smooth functions M ~IR. 
Then every vectorfield s on M defines a derivation of S (M), (which assigns to a function fits deriva
tive along s), which can be described as follows. Let M be given in terms of local pieces U a and glu
ing data U a/3' ef>aP· Let f :M ~ IR and the sections :M ~TM given by the local functions fa: U a~ IR, 
s a: U a ~ Rn. Now define g a: U a ~ IR by the formula 

~ afa 
ga(x) = ..:;;..sa(x)k-a-(x) 

k Xk 
(4.4) 

where sa(x)k is the k-th component of then-vector sa(x). It is now an easy exercise to check that 
gp(c/>ap(x))=ga(x) for all xEUap (because J(<i>ap)(x)sa(x)=sp(ef>ap(x)) for these x) so that the g;(x) 
combine to define a function g=Ds<J):M ~IR. This defines a map D:S(M)~S(M) which is seen 
to be a derivation. Inversely every derivation of S(M) arises in this way. 

4.5 The Lie bracket of derivations and vector.fields. 
Let D 1,D2 be derivations of an IR-algebra A. Then, as is easily checked, so is 

[D!>D2] = D1D2 -D2D1 

So if s 1, s2 are vectorfields on M, then there is a vectorfield [s 1,s 2] on M corresponding to the deriva
tion [Ds,, Ds, ]. This vectorfield is called the Lie bracket of s 1 and (s i,s 2) 1-> [s i,s2] defines a Lie alge
bra structure on the vectorspace V(M) of all vectorfields on M. 

If Mis given in terms of local pieces Ua and gluing data Uap, ef>a/3 then the Lie bracket operation 
can be described as follows. Let the vectorfields s and t be given by the local functions 
sa,ta: Ua ~Rn with components s~,t~, i = l,. . .,n. Then [s,t] is given by the local functions 

. ~ . at~ "" . as~ 
[s,t]~ = ""-s-',.--.~A-

i axj j axj 

4. 6 The a: notation. 

Let the vectorfield s :M ~TM be given by the functions s a: U a ~Rn. Then, using the symbols _aa 
Xk 

in first instance simply as labels for the coordinates in !Rn, we can write 

s; = ~s;(xi-3a (4.7) 
xk 

This is a most convenient notation because as can be seen from ( 4.4) this gives precisely the local 
description of the differential operator (derivation) Ds associated to s. 

Further taking the commutator difference of the two (local) differential operators 

D -~ka D-"''a s - ..:;;..s -a-, r - ..:;;..t -a 
k Xk I X[ 

gives 

so that 
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which fits perfectly with the last formula of 4.5 above. 
Finally a substitution y =<P(x) in a differential operator (4.7) transforms it precisely according to 

the same rule as applies to the corresponding vectorfield s, cf the last formula of 4.1 above. 

4.8 Differential equations on a manifold. 
A differential equation on a manifold M is given by an equation 

x = s(x) (4.9) 

where s :M ~TM is a vectorfield, i.e. a section of the tangentbundle. At every moment t, equation 
(4.8) tells us in which direction and how fast x(t) will evolve by specifying a tangent vector s(x(t)) at 
x(t). 

Again it is often useful to take a local pieces and gluing data point of view. Then the differential 
equation (4.8) is given by a collection of differential equations x =sJx) in the usual sense of the word 
on Ui where the functions sa(X) satisfy J(</>ap(x)sa(x)=sp(c/>ap(x)) for all XE.Ua/J· 

In these terms a solution of the differential equation is simply a collection of solutions of the local 
duations, i.e. a collection of maps fa:Va~UaYaCIR(;;.O) such that UVa=IR(;;;;.O), 

d/a(t)=saCfa(t)) which fit together to define a morphism IR(;;;;.O)~M, i.e. such that 

</>ap(/a(t)) = fp(t) if t E Van V fJ· 
In more global terms a solution of (4.8) which passes through x 0 at time 0 is a morphism of 

smooth manifoldsf:R~M such that Tf:TR~TM satisfies Tf(t, l)=s(f(t)) for all tE.IR (or a suit
able subset of R), i.e. Tftakes the vectorfield l:R~TR = IRXIR, ti-+(t, 1) into the vectorfield (sec
tion) s :M ~ TM. 

4.10 Example. The matrix Riccati differential equation. 
The simplest Riccati equation is 

x = l-x2 ( 4.11) 

This one has finite escape time. Indeed an initial value of x(O)< -1 gives a finite escape time. For 
this one it is still easy to figure out what happens near infinity and whether and how the trajectory 
goes through infinity and comes back. The general matrix Riccati equation is 

k = KA + KBK + C + DK (4.12) 

where K is an m Xn matrix and A,B,C,D are known constant matrices of sizes n Xn,n Xm,m Xn and 
m Xm respectively. This one is very hard to understand directly. The first step of a somewhat 
indirect approach is as follows. Consider n X (n + m) matrices partitioned into two blocks of sizes 
m Xn m Xm respectively. Now consider the linear system of equations 

;(x Y) = (XY)P, P= [~ =ZJ (4.13) 

Let K = y- 1 X (assuming for the moment that y- 1 exists). Then 

-1:._K = -y- 1 yy- 1 x + y- 1 X= y- 1cxB+ YD)Y- 1 x+ y-'(XA + YC) 
dt 

= KBK + DK + KA + C 

In other words the matrix Riccati equation lifts to a linear equation on Rn X(n +m). If (X(O) Y(O)) is a 
full rank matrix, then so is (X(t) Y(t))=(X(O) Y(O)e 1P for all t. But even so Y(t) may very well 
become noninvertible and that accounts for finite escape time phenomena of the Riccati equation. As 
already noted if K(O)EIR~gx(n+m) then K remains in this subspace. Now we have already seen the 
projection map 
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w:R~<n +m> __. Grm(Rn +m) 

in section 2.12 above. I claim that the differential equation (4.13) descends (i.e. induces) a differential 
equation on the manifold Gr"'(Rn+m). To prove this one must show that if M=(X,Y) and 
M 1 =(Xi. Y1) in R~X(n+m) both map to the same point xeGrm(Rn~~) then T_w takes the respective 
tangent vectors at Mand M 1 into the same tangent vector at x. This 1s essenttally the same calcula
tion as we already did (several times). Indeed let x E U a. The map w is given locally by M ....,. M; 1 M. 
Now M(t)=Me 11' and M 1(t)=M 1e1P. Now if Mand M1 both map to the same xeGrm(Rn+m) then 
M 1 =SM for some constant matrix S. But then 

M 1(t) = M 1e1P=SMe1P=SM(t) 

for all t. So that M 1(t) and M(t) map to the same point x(t)eGrn(Rn+m) for all t. This proves the 
claim. However Grm(Rn +"') is a smooth compact manifold (a fact I did not prove), so 
x(t)EGrm(Rn+m) of all t. The finite escape time phenomena of the matrix Riccati are now analyzed 
and understood in terms of the embedding 

K ..... m -dint subspace of Rn +m spanned by the rows of (K Im) 

Rm Xn ~ Grm(Rn +m) 

The matrix Riccati equation is at first only defined on Rm xn. It extends to a equation on the smooth 
compactification Gr m(Rn +m) (but not to other compactifications such as the projective space pmn 
(unless m =I) or the sphere s11m). From time to time x(t) may exit from the open dense subset 
Rmxn in Grm(Rn+m) to cross the set at infinity Grm(Rn+m)\Rmxn. 

4.14 Compatibility of vectorfields under differentiable maps. 
Let cf>:M--+ N be a map of differentiable manifolds. Then, as we have seen, 3.5, for each x eM we 
have the induced map Tcf>(x):TxM--+ T <Pl.x)N of the tangent vectorspace of Mat x to the tangent vec
torspace of N at cf>(x). All together these map define the vectorbundle map Tcf>:TM--+ TN which is 
also often denoted dcf>. 

Now let 01.:M--+ TM be a vectorfield on M, 01.(x)ETxM. Then we have the various tangent vectors 
Tcf>(xX01.(x)}eT 4'(x)N. These may or may not define a vectorfield on N. Firstly because not every yeN 
need to be of the form cf>(x) for some xeM and secondly because if x and x' both map to the same 
yeN then it may very well happen that Tcf>(xX01.(x))::fTcf>(x')(01.(x')). (As well shall see below the dual 
notion to that of a vectorfield, i.e. the notion of a differentiable I-form, is much better behaved in this 
respect: for each I-form w on M and differentiable map cp:M --+N there is a canonically associated 
(induced) I-form cf>" w on M.) 

If two vectorfields 01. on Mand /3 on N are such that Tcf>(x)(01.(x)) for all x eM then we say that a. 
and /3 are compatible under tJ>. If cp:M--+N is a diffeomorphism then /3(y) = Tcf>(cp- 1(y))a.(q,- 1(y)) 
defines a unique vectorfield on N compatible with 01. on M under <J>. 

The Lie bracket of vectorfields [a.,a'] is 'functorial' with respect to transforms of vectorfields in the 
following sense. · 

4.15 Proposition. Let a.,/3 and a',/3' be compatible pairs of vectorfields under tJ>:M --+N. Then [a,a'] and 
[,8,/3'] are also compatible under cJ>. 

The easiest way to see this is first to do the following exercise. Let q,:M--+ N be differentiable and 
let the vectorfield a on M and /3 on N be compatible under cJ>. Let D a be the derivation on §(M) 
correspondirig to a and D p the one on '?J{N) corresponding to /3. (Here §(M) is the ring of smooth 
functions on M.) Then for all/e'?J{N) 

D a<Joq,) = D p(f )otJ> (*) 

Indeed in local coordinates x on M and y on N and tJ> given by Jj = !f>j(x) 

a 
Da(/o<J>)(x) = ~a;a;,-<Jo<J>)(x) = 

I I 
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ta; a~: (cXx)XT<Xx))Ji = ~/31 0~; (cXx)) = (D p/XcXx)) = (Dpfocp)(,x). 

And inversely if (*) holds then a and f3 are compatible under <f>. (This is the chain rule of course.) 
Now let a,/3 and a',/3' be compatible pairs. Then by the exercise we just did 

Da'Da(focp) = Da'(Df1(j)orp) = Dp'D13(j)oq, 

Thus (Da',Da]<f<><?) = [Df1',Df1]{j)O(j> so that the vectorfields belonging to [Da',Da], i.e. [a',a], and 
[Df1',Df1]. i.e. [fi',,8], are also compatible. 

4.16 Distributions. 
A distribution !J. on a manifold specifies for each x a subspace !::.x C TxM of the tangent bundle at x. 
They arise naturally in several contexts. E.g. in control systems of the following kind 

m 
x = ~u;g;(x) (4.17) 

i=l 

where the u; ER are controls (and the g;(x) are vectorfields). The corresponding distribution is (of 
course) defined by !::.x = linear subspace of TxM spanned by the tangent vectors g1 (x), ... ,gm(x). In 
this setting !::.x responds the totality of directions in which the state x can be made to move 
infinitesimally by suitable (constant in time) control vectors (u 1, •.• , um)· 

This does not mean that by taking suitable functions u1(t), ... ,um(t) the vector x can not be made 
to move in still more directions, as we shall see immediately below. To get some feeling for this con
sider the special case 

m 
x = ~u;A;x, XERn 

i=l 
(4.18) 

where the A; are constant n Xn matrices. As is well known the solution of x=Ax is x(t)=eA1x(O), 
where 

eA' = 1+..4!.+ A2t2 + ... 
1! 2! 

Now let us take in (4.18) 

U1 = 1, U2 = · · · =um =O, for tE[O,t:) 

u2 = 1, u1 =u3= · · · =um=O,for tE(t:,2t:) 

U1 = -1, U2 = ···Um =0, for tE(2t:,3t:) 

u2 = -1, u1=u3= · · · =um=O, forte[3e,4t:] 

then at time t =4£, we have 

x(t) = e-A,Ee -A,£eA'EeA'Ex(O) 

which is equal to 

x(t) = x(O)+t:2(A2A 1-A 1A2)x(O)+O(t:3) 

Thus from x(O), x(t) can also be made to move in the direction 

[A2,A 1Jx(O) = (A2A 1-A1A 2)x(O) 

Now, as follows from the formula at the end of (4.5) the vectorfield 

(A2A1 -A1A2)x 

is precisely the Lie bracket of the two vectorfields A 1X, A ix 
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[A1x,A2x] = (A2A1 -A1A2)x. 

(Note the reversal of order with respect to the usual commutator difference of matrices). 
The same holds for arbitrary vectorfields, i.e. for equations like (4.17): in addition to the immedi

ately given directions g;(x), ... ,gm(x) the control system can be made to evolve in the directions 
[g;,g1](i,j=l, ... ,m), and [g;,[g1,gk]](i,j,k=l, ... ,m), and _[[g;,g1 ],[gk>gi]](~,j,k,I=l, ... ,m), ~tc., 
etc.; that is in all directions which can be constructed by taking repeated Lie brackets of the given 
vectorfields g 1, ••• , gm. · 

This leads to the notion of an involutive distribution. A vectorfield s :N ~ TM is said to belong to 
(or be in) the distribution A if s (x) E .ix for all x. A distribution A is said to be involutive if for all 
vectorfields s and t in A the vectorfield [s, t] is also in .i. 

Natural examples of involutive distributions arise as follows. A foliation of codimension r of M is a 
decomposition of M into subsets (called leaves) such that locally the decomposition looks like the 
decomposition Rn= U ,a+ Rn -r where R' is viewed as the subvectorspace of !Rn of vectors whose 

a ER 
last n -r coordinates are zero, and !Rn -r CR' is the subspace of vectors whose first r coordinates are 
zero. Here the phrase 'locally looks like' means that for each x EM, there is an open neigbourhood U 
of x and a diffeomorphism of U to an open subset V of Rn such that cp applied to the decomposition 
of U gives a decomposition of V as given above. 

FIGURE 10 Foliation 

Thus for codimension 1 a foliation locally looks like the picture of fig. 10. Note that each leaf is a 
submanif old. However the topology induced by M on the leaf need not be that of the leaf as a mani
fold in its own right It is very possible that a leaf returns to a neigbourhood infinitely often. A foli
ation of M naturally defines an involutive distribution. Indeed for xEM let F(x) be the leaf through 
x. Ifs and tare two vectorfields on F(x) then so is [s,t]. Hence if Ax is the subspace of TxM of all 
vectors tangent to F(x) then .i is an involutive distribution. 

The converse is also true. If .i is involutive and .ix is of constant rank, i.e. dimllx = k for all x, 
then there exists a foliation §"of M such that .ix is the tangent space to F(x) for all x. This is Fro
benius' theorem and it is a sort of multi-time or multi-control variant of the existence of solutions 
theorem for ordinary differential equations. 

5. RIEMANNIAN MANIFOLDS 

A differentiable manifold as defined above is still a rather floppy (topological) structure. To have real 
fun and do real analysis, including stochastic analysis, some more structure is needed. One of the 
more popular is a Riemannian structure. Intuitively this means that each tangent space TxM is pro
vided with an inner product and these inner products are supposed to vary smoothly with x. As 
usual this is made precise by providing a local pieces and patching data description. Locally the 
manifold and its tangent bundle look like U" X Rn, U a C !Rn. Let P be the space of positive definite 
inner products, i.e. positive definite symmetric matrices. Then a Riemannian structure on Mis given 
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in terms of local data by a collection of smooth maps g(a):Ua -+P with the following transformation 
properties: if X EU a{J then 

g (/3)( c/>ap(x )) = (J ( <Pap(x )l)- 1 g( a)(x )J ( </>ap)(x )- 1 

Because P is convex it is not difficult to see that these always exist Riemannian matrices. On a 
Riemannian manifold one can define the length and energy of a curve and one can relate the tangent 
vectors at one point of M to those at another point thus making all kinds of analysis and estimates 
possible. 

6. CALCULUS 
So far we have mainly dealt with the topology of manifolds, i.e. those gadgets which locally look like 
!Rn and we have done a bit of differential calculus. E.g. if f :M--+ N is a differentiable mapping of M 
into N we know what the 'derivative' of f is, viz. the mapping Tf: TM--+ TN of the tangent bundle 
TM of M into the tangent bundle TN. And indeed if x EM, then Tf(x ): TxM--+ TxN is the linear part 
(approximation) off :x H> f (x) at x. 

Naturally we would also like to do the integral bit, that is to give the right kind of meaning to such 
things as the integral of a function on the sphere, say, over that sphere. This requires some more 
preparations having mainly to do with 'what (variables) to integrate against' or, more generally, 'what 
can be integrated over what'. Also, as we shall see, to integrate functions one needs more structure 
than just a manifold; e.g. a Riemannian metric will do. 

6.1. Chains and cubes. 
What we want to do is to define integrals over (broken) curves, surfaces etc. in arbitrary manifolds. 
Curves and surfaces etc. can be thought of as made up from pieces which are images of intervals, 
filled squares, filled cubes, etc. It turns out to be convenient to define integrals initially as 'something 
over a map of an interval, square, ... into M' rather than as something over the image of that map. 

The standard n-cube !::.n is [O, 1 r C Rn e.g. the square or the familiar 3-cube depicted below. The 
boundary of l::.n is made up of various pieces isomorphic (but not identical) with fin - I· More precisely 
for each i = 1, ... , n we define two maps ab: fin - 1 -+fin, a\ :fin - 1 --+ l::.n as follows 

ab(x 1, ••• ,Xn-1) = (xi, ... ,X;-1,0,x;, ... ,xn-d 

a\(xJ.···,Xn-d = (x1, ... ,X;-1,l,x;, ... ,Xn-d 

The images of these maps make up the boundary of fin. 

(0, 1.1) 

(0,0,1) 

' z ' 

(0,0,0) 

J···--·--
,/Y 

x 
FIGURE 11 

(1,1,1) 

(1,1,0) 

(0,1) (1,1) 

' 

~ 4 

' 
(0,0) 

, 
(1,0) 

FIGURE 12 

A singular n-cube in a subspace M of some Rm is a mappings :fin--+ M. (Here it is good to think of 
m as larger of equal to n.) A singular n-chain is a finite formal sum 2:n;S; where the n; are integers 
and the s; are singular n-cubes. The boundary as of a singular n-cube s :fin ~A is by definition the 

n 
(n - I)-chain as = 2: (- lY(soab-soa\). Thus the boundary of the 3-cube id:fi3~fi3 c!Rn is (in 

i=l 
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terms of images of 62 ) equal to + (front square) - (back square) - (left square) + (right square) -
(bottom) + (top), and the boundary of id:62 _,,./).2 CIR2 is the sum of intervals: 
[(0,0),(1,0)]+[(1,0),(l, l)]-[(O, 1),(1, l)]-[(0,0),(0, I)] which fits our intuitive idea of the (oriented) 
boundary of the square. The boundary of a singular n-chain c~ ~nisi is by definition equal to 

ac = ~niasi. 
These are the formal definitions. In practice one tends to think of a singular n-chain in terms of 

the images (with multiplicities) of the singular n-cubes making up the chain as illustrated below. Intui
tively the boundary of the piece of surface (corresponding to the chain s 1 +s 2) depicted in fig. 13 
ought to be the outer circle. And if s 1 and s 2 are chosen such that maps Ll 1 __,,. M induced by s 1 and 
s 2 for the piece of boundary in the middle are the same then this will indeed be the case (thanks to 
the orientations chosen). Moreover s 1 and s2 can always be chosen in such a way. However if s 1 and 
s2 are just any differentiable maps whose images happen to fit together as indicated, then the boun
dary of s 1 +s2 will be more complicated. It turns out that for integration purposes (and the multidi
mensional generalization of the fundamental theorem of calculus: Stokes theorem) this matters little. 

For clarities sake let us remark that D.o = [O, lf is a single point and that, thus, a singular 0-chain 
in M is just a finite set of points in M with multiplicities. 

B 

A 

FIGURE 13 

6.3. Forms 
The next thing to decide is what kinds of animals can be integrated. As everyone knows functions 
cannot be quite the right answer. Simply because under a change of variables the things under an 
integral sign do not transform as functions. Indeed if <t>:IRn _,,.!Rn is a diffeomorphism (change of vari
ables y=<P(x)). Then f:llln_,,.IR, Xf-+f(x) transforms as yf-+f(cp- 1(y)), i.e. jH-jocp- 1. But for an 
integral we have 

ff= J f(<1>-1(y))ldetl(</>)(cp-1(y)l-1 
A <f><.A) 

which is,. of course'. the rea.son one writes fdx or .somethin~ like that under an integral sign. 
The kinds of things which belong under an mtegral sign turn out to be differential forms. These 

things we now proceed to define. 
If Vis a vectorspace, a k-form on Vis a k-multilinear mapping 

w:VX · · · XV _,,.Ill 

such that moreover for each i=f=j, 

w(···,vi> ···,v1, ···) = -w(···,v1, ···,vi, ···) 

i.e. interchanging t~o arguments just causes a sign change. One particular n-form on Rn is very well
known, the deterrmnant, where det(v i, ... , vn), vi E!Rn is the determinant of then X n matrix obtained by 
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writing out the n-vectors v 1, ... , vn as column vectors in the standard basis. It is moreover just about 
unique as most everyone knows: if w is an-form on Rn then w= a det for some constant aEIR. 

More generally the space Qk(V) of k-forms on an-dimensional vectorspace V has dimension (Z). It 
will be useful to have a basis for Qk(V). Let ei, ... ,en be a basis for V, and let cp1,. . .,<f>n be the dual 
basis, i.e. c/>;(e1)=oiJ. Then a basis for ~i(V) is given by the functions</>;,/\··· /\<J>;,, i 1 < · · · <ik 
defined by the formula 

{
o if {i 1,. ... ik}:;t=U i. . · . ,Jd 

(</>;, /\ · · • /\cf>;, )(e1,, · · · ,e1,) = sign r if the~e ~ ~ p~mutation r of i 1,. . .,ik 

such that r(1, )- j,,r - 1, .. .,k 

Thus for example cp1 /\ct>i EQ2(1R3 ) takes the values 

0 0 -1 0 0 

It is useful to declare by definition that for arbitrary i 1,. . .,h E { l,. . .,n} 

r1.. /\ · · · f\r1.. = signcrr1. /\ · · · (\r1. 'l'J1 'l'j, 'l'1, 't'1, 

0 0 

if the j 1,. . .,)k are all different where (i 1,. .. ,ik) is the unique permutation of (j 1,. .• ,)k) such that 
i 1 <i 2< · · · <ik and cr(Jd = ib and to set cp1, /\ · · · /\cp1, =O if two or more of the <PJ, are equal. 

Now let M be a manifold. Then a differentiable k-form won M consists of giving an k-form w(x) 
on TxM for all x such that w(x) varies smoothly with x. As usual this can be given a local and gluing 
data description. Let M be obtained by patching together pieces U a c Rn with the help of gluing func
tions <Pa/3· On U a the k-form w is specified by giving functions 

i, ... i, . . { 1 } 
Wa ,lJ, .. .,lkE ,. .. ,n 

The corresponding form is then defined by 

Wa(v,, .. .,vk) = 2: Wd ···i,V1;, ... Vk;. 
i1, ... ,it. 

where v1 ERn and vA is the irth component of the vector v1. For the w:; · · · ;, to define a k-form i.e. an 
alternating k-multilinear function! it is necessary and sufficient that w · · · ; · · · J · · · = -w · · · J · · ·; · · · . 
Thus it suffices to specify the w:; .. · '• for i 1 < · · · <ik. A collection of 'local' k-forms wa on U a 

defines a k-form on all of M provided the Wa are compatible in the sense that one must have 

w13( cp(x )(J ( c/>afl(X )v 1 ,. .. ,J ( c/>a13(x )vd = w11 (x )(v J ,. •• , vk) 

for all v 1 ,. . ., vk E TxM. This means that if (siJ) = J ( cp )(x) 

( )i, ... i, - " (,!...{ )-J, ... j, 
Wa x - .t:... wfl 'f'l.x J s1,;, ... sJ.i, (6.4) 

j,, ... ,j, 

Note the similarity with the compatibility requirements for the local pieces and gluing data descrip
tion of a Riemannian metric. Indeed both are examples of contravariant tensors, g is a symmetric 2-
tensor and w is an alternating ( = antisymmetric) k-tensor. For a local piece UC !Rn of the manifold 
M let us use again the notation a I 3x 1 ,. .. , a I axn for the canonical basis of Tx U, x E U. Let us use the 
symbols dxl>···,dxn to denote the dual basis; i.e. dx;(3!ax1)=o;.1. Then a differential k-form w with 
components w:;···" 1' can be written as 

wi,, ... ,;, dx· /\ · · · /\dx· a 11 li.. 

i,< ... <i, 
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This is a rather good notation because (exercise!) it fits perfectly with the transf?rmatiofl: rules (6.4). 
Let j :M ~ N be a differentiable map of manifolds. Than there is an mduced map 

(Tj)(x):TxM ~ TxN for all xEM. Now let w be a k-form on N i.e. for every y EN there is an 
antisymmetric k-linear mapping 

w(y):TyN X · · · X TyN ~ IR 

Then there is a natural k-form f w on M defined by 

f(w)(x): TxMX · · · XTxM ~IR 

(v 1, ... , vk) .-+ w(j (x ))((Tj)(x )v J , ••• ,(Tj)(x )vk) 

6.4. Integrals 1. . 
The geometric preparations above are enough to enable us to make a first attempt at defirung 
integrals. It turns out that what one can integrate is k-forms over k-chains. The first step is as follows. 

Let w be a k-form on the standard cube lik. Then w is given by a function f on lik 

w = fdx1 /\ · · · /\dxk 

One now defines 

Jw =ff (6.5) 
6., 6., 

where the right hand side of (6.5) is the usual Lebesgue integral. The next step is to define integrals 
over a singular cube. Thus let s :!in ~MC !Rm be a smooth singular cube and let w be a k-form on 
M. Then one defines 

J w = Js'w (6.6) 
6., 

and for a singular k-chain c = l:nisi one takes of course 

(6.7) 
s, 

Formula (6.6) defines an integral over each singular cube s :/ik ~ M. This is definitely not yet some
thing like an integral over the subset s(/ik) of M. Nor can it be. For one thing if k =I and the curve 
s(/i1) runs from A to B say, we definitely want the integral from A to B along the curve to be equal to 
minus the integral from B to A along the curve. This brings in the point of orientations, cf 6.8 below. 
For another if say s':/i1 ~Mis defined by s'(t) = s(2t) for Q.;;;r.:;;;+ and s'(t) = B for +.;;;1.;;;1, 
then, as is very easy to see, as a rule the integral over s' of w will be different from the integral over s 
of w. However as we shall see below for nice enough singular chains c = l:nisi, the integral of w over 
c will only depend on the image of c understood in the sense of a family si(lin) of twisted· (smooth) 
cubes with multiplicities n; and then one can truly speak of an integral of w over the "subset" c(lin) 
of M. Here nice enough will turn out to mean that each si must be orientation preserving and define a 
smooth imbedding si :fin ~ M. 

6. 8. Orientations. 
Consider all bases (ai, ... ,an) of a vectorspace V of dimension n. We say that two bases (ai, ... ,an) 
(b 1, ••• ,bn are in the same orientation class if the matrix (siJ) defined by b1 = 2:s;1a; has positive deter
minant. Thus there are two orientation classes often denoted + and -. Giving an orientation on V 
means specifying one of these classes which is of ten done by specifying one particular basis in that 
class. The usual ('counterclockwise in case n = 2') orientation on !Rn is given by the standard basis 
(e 1 , ..• ,en). An isomorphism <j>: V ~ W of oriented vectorspaces is orientation preserving if <J> takes the 
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orientation class of V into that of W, i.e. if (a 1, ••• ,an) is a basis from the orientation class of V then 
(j(a 1 ), ••• ,j(an)) must be a basis of the orientation class of W. 

Let M be a manifold, thought of, as usual, as obtained by gluing together local pieces Va C Rn. An 
orientation on M is now specified by choosing an orientation on each x X !Rn, x E Va, all a, such that 
(i) ~f x,yEVa, xXIRn andy X !Rn have the same orientation (i.e. (x,v) ...... (y,v) is orientation preserv

mg. 
(ii) if xEVa,yEU[j, </>afi(x)=y then det(J(</>afi(x))>O 

This can not always be done. A classic example of a non-orientable manifold is the Mobius strip 
defined above. Exercise: prove this. Another example is the projective plane lfD~ = Gr 1 (IR3 ). 

A manifold together with an orientation is an oriented manifold. If f :M ~ N is a differentiable 
immersion of an oriented manifold M into an oriented manifold N of the same dimension then f is 
called orientation preserving if Jf (x):TxM ~ Tf(x)N is orientation preserving for all x EM. A smooth 
singular n-cube s :L\n ~ M, dimM = n, is orientation preserving if there exists an extension of s to some 
open neighbourhood V of An in !Rn such that this extension is orientation preserving. 

6.9. Integrals 2. 
Now consider an oriented submanifold N of dimension k of a manifold M. Let c=2:n;si, c'=2:n;s;' 
(same ni) be two singular k-chains in N such that s;(Ak)=s;'(L\k) for all i and such that both si and s;' 
are orientation preserving for all i. Let w be a k-form on M and (hence) on N. Then 

jw = jw 
c c' 

In particular if all the ni are + 1 and the images of the s; fit together to define a piecewise 
differentiable submanifold with boundary N' of N as indicated in fig. 14 then we can truly speak of 
JN' w, the integral of w over N'. To define this integral of course we first reduce to the case of one 
singular k-cube, cf above. 
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FIGURE 14 

In that case we needed to assume N cRm for some m, cf 6.4. Since every manifold can be embedded 
in an Rm for large enough m (m ~2 dim (manifold) + 1 suffices) this is no real restriction. However, 
this does not fit well with our overriding attitude of viewing a manifold simply as a collection of local 
pieces v a to be fitted together. 

Let M be the manifold obtained by gluing the Va; let Va' CM be the piece corresponding to U a. 
By cutting up L\k into smaller cubes if necessary we can see to it that the image of the chain c is such 
that it is made up of singular cubus which each lie completely into some coordinate neighbourhood 
Va'· Then c is specified by a corresponding map s':D..k ~Va (such that the diagram of fig. 15 com
mutes) and the integral is defined entirely in terms of the local descriptions sa:D..k ~Va. 
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FIGURE 15 

A zero-chain c = ~n;Pi is a collection of points with multiplicities. A zero-form is a function 
F:M ~IR. The integral of a zero-form F over a zero-chain c is defined as ~n;F(P;). 

6.10. The fundamental theorem of calculus. 
The fundamental theorem of calculus (one variable) says that if Fis a function with derivative f =F' 
then 

b 

ffdx = F(b)-F(a) 
a 

In our setting f dx is a one-form, F is a function, i.e. a zero-form. The 'chain' over which we integrate 
is an interval [a,b] with boundary the 0-chain 'b'-'a' meaning the formal sum of 1 times the point b 
minus 1 times the point a. Thus the integral of dF= fdx over [a,b] is the integral of F over the boun
dary 'b'-'d. This generalizes. To that end we need to define dw of an arbitrary k-form w. As usual let 
the manifold M be obtained by gluing together local pieces U a and let the k-form w be given locally 
by the Wa 

Wa = ~ w (x);' · · · ;, dx· /\ · · · /\dx· 
~ 0: 11 14 

i,< ... <i, 

In case k = 0, w is a function f and one defines the I-form 

~afa 
dfa = .""1-dx; 

i axi 

For k>O, this generalizes to 

dwa = ~ 
i i,<···<i, 

awi' . .. ;. 
a dx· /\dx· /\ · · · /\dx· axj I 11 1, 

where the right hand side is brought into the right form by the calculation rules 
dx;/\dx;,/\···/\dx;,=O if iE{i1, ... ,ik} and dxi/\dxi,/\···/\dx;, = (-1)1dx;,/\··· 
/\dx;, /\dx; /\dx;,., /\ · . . /\dx;, if i I< · · · <i1 <i <i1 +I< · · · <ik. 

It is a not too difficult exercise to check that the local (k +I)-forms dwa fit together to define a 
(k +I)-form on all of M. Two other exercises are: d(dw) = 0 and d(f w) = f (dw) if f:N ~Mis a 
differentiable map. 

The fundamental theorem of calculus now generalizes in the case of integrals over k-chains to the 
Stokes theorem 

fdw = Jw 
c ac 



23 

where c is a singular k-chain and w is a (k -1)-form on M. 

6.11. Manifolds with boundary 
We defined a smooth manifold (without boundary) as a collection of subsets Va. cRn together with 
gluing data. This yields such things as the sphere surface. But not such things as the solid unit ball 
and the solid torus. These are manifolds with boundary which we now proceed to define. Let 
n = {xERn:xn;;;:=O}. 

Now a manifold with boundary M is defined as a collection of open subsets U a. open in Rn or open 
in n with gluing data c/>a/3: V a/3 ~ U /3a as before which the additional requirement that 

c/>ap( V a/3 nan) = ( U pa non) 
where aH = { x E Rn :xn = 0}, the boundary of n. (If U a/3 nan=/= 0 then differentiability of 'f>a.p 
means (as always) that 4'ap extends to a differentiable mapping on some subset open in Rn which con
tains V a{J ). 

The U a nan and U a/3 non are open subsets in an - I and the </>ap restricted to these subsets then 
define an (n - I)-manifold (without boundary) aM, the boundary of M. The tangent spaces (bundle) 
to M are again defined by means of the local pieces Va X an (also for the points in U an 3H), and a 
Riemannian metric on M means again an inner product on all of the TxM. 

Let M be a Riemannian manifold with boundary 3M. For xe3M, Tx3M is an (n -I)-dimensional 
subspace. Thus there are two vectors of unit length in TxM perpendicular to Tx3M. Precisely one of 
these points outwards (seen, as always, locally by going back to a Va CH). This defines the outward 
normal to aM at x eaM. 

An outward normal can also be defined in a slightly different setting. Let N be a oriented (n - !)
dimensional submanifold of an oriented Riemannian n-manifold M. For each xeM let (v 1, ... ,Vn-i) 

be an orthonormal basis of TxN with the given orientation on N. Then there is precisely one unit 
length vector Vn E TxM such that (v i, ... , Vn - I• vn) is an orthonormal basis of TxM with the given orien
tation on M. In this setting vn is also called the outward normal to Nat x EN. 

6.12. The volume form. 
We now know how to integrate k-forms over k-chains and in particular n-forms over n-manifolds. 
This still does not give meaning to, say, the integral over a sphere of a function on that sphere. For 
that we must find a good way of assigning n-forms to functions much like in ordinary one dimen
sional calculus one assigns the I-form fdx to the function f 

The multidimensional analogue of this for manifolds is the volume form. Let V be a n-dimensional 
vectorspace with inner product and an orientation. An n-form on Vis of the form w=adet. For 
each orthonormal basis (vi, ... ,v 1) we have w(vJ, ... ,vn)=+a. Thus there is precisely one n-form on V 
with the additional property that it takes the value l on each orthonormal basis with the g!ven orien
tation. This one is called the volume element of V (determined by the inner product and the orienta
tion). 

Now let M be an oriented Riemannian manifold (with or without boundary). Then the volume 
form wM on Mis defined by setting w(x):TxM X · · · X TxM ~ R equal to the unique volume element 
of TxM for each x EM (determined by the given inner product on TxM defined by the Riemannian 
metric and the given orientation). 

More explicitly in terms of local coordinate patches Va, the volume form can be described as fol
lows. Let t:a = 1 or -1 depending on whether the given orientations on { x} X Rn agree with the stan
dard orientation or not. For each x apply Gram-Schmidt orthonormalization with respect to the given 
inner product on {x}XIRn to the standard basis (e 1, ... ,en), to obtain a differentiable family of ortho
normal bases {v 1(x), ... ,vn(x)}. Now set 

Wa = t:adet(v1(x), ... ,vn(x))- 1dx1 /\ · · · /\dxn 
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These wa are then the local pieces and gluing data description of the volume form WM often written as 
dV (even enough there may not be an (n -1)-form V such that wM = dV). 

Now of course if (v 1, ••• ,vn) is the Gram-Schmidt orthonormalization of (ei. ... ,en), vi = Sei, then 
I 

ST gS = In and hence det(S) = det(gf~- so that the volume form is equal to 
I 

dV = t:det(g) 1 dx 1 /\ • • • /\dxn 

A function f on M is now integrated as 

ff= f fwM = f fdV 
M M M 

6.13. Classical Stokes' type theorems. 
A number of classical theorems now follow more or less directly from the general Stokes theorem 
6.10. 

Let M CIR2 be a compact 2-dimensional manifold with boundary. E.g. a disk or an annulus. Let 
f,g:M ~ IR be differentiable. Then (Green's theorem) 

ffdx+gdy = f J<-¥--.21.aa )dxdy 
aM M vX ~ 

This results from the general Stokes' theorem of 6.10 (and the various remarks on defining integrals 
over manifolds instead of chains, cf 6.9), because 

d(jdx +gdy) = -¥x-dx/\dx+i;dy/\dx+*dx/\dy+i,;dy/\dy = 

kdx /\dy - 11.dx /\dy. ax ay 

For a vectorfield-./; on Rn, if; = '2.l{J a: one defines the divergence by div(lf;) = '2: ~'.ff. . The diver-
' I 

gence theorem now says that for an oriented manifold with boundary M CIR 3 one has 

J div(i{;)dV = J <i{;,n>dA 
M aM 

where dV is the volume form of the three dimensional manifold M, dA the volume form (area form) 
of the two-dimensional manifold aM. Here n is the outward normal to aM, and the inner products 
(i.e. the Riemannian structure) are induced from the standard ones on IR3 . 

· a 3 The curl of a vectorfield i{; = '2.i[,I ax on IR is defined by 
I 

curl( if;) = ( ~ _ l.f._ )-a-+ ( l:Jl _~)-a-+ ( l:Jl _ lf_ )-a-
ax2 ax3 ax1 ax3 ax1 Ox2 ax2 ax, OX3 

Let M CIR3 be a compact, oriented, 2-dimensional manifold with boundary. Give 3M an orientation 
such that together with the outward normal n its oriented bases give back the orientation of M. Let s 
parametrize aM and let <t> be a vectorfield in aM such that ds(<j>)= 1 (everywhere). Then the classical 
Stokes' formula says that 

J <curl(i{;),n >dA = J <o/,<J>>ds 
M aM 

All these theorems hold in greater generality. E.g. M could be a cube in the divergence theorem. To 
obtain those one uses either approximation arguments (smooth the comer and edges of the cube) or 
one can do the whole theory again with manifolds with comers and worse (which is possible). 
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All these theorems also generalize both to more general situations and to higher dimensions. To 
describe and discuss those, however, would bring in still more machinery such as the •-operator and 
contractions, though of course locally on the U a it can all be done in terms of explicit formulas. For 
example the divergence of a vectorfield if; = 'Lif!-aa. (locally) on a Riemannian manifold is defined x, 
as the function 

div(lf;) = 'Ldet(g)-+ _aa. (det(g)+ l//) 
i x, 

which of course fits the standard definition in the case of the Riemannian manifold ~n with g = In. 
One has d( *if;) = (dV)div(if;) and there results a higher dimensional divergence theorem. 

7. CONCLUSION 
The above is sort of a 'bare-bones-with-decorations' outline of manifolds and calculus on manifolds 
with a number of important omissions, notably contractions, the Poincare lemma, the •-duality 
operator, connections and covariant differentiation, and curvature. It is at this point that things start 
getting interesting and it is at this point that this tutorial stops. Several lecture series in this volume 
will testify to the usefulness and power of all this machinery. 


