
J. LOGIC PROGRAMMING 1994:19, 20: 9-71 9

LOGIC PROGRAMMING AND NEGATION: A SURVEY

KRZYSZTOF R. APT AND ROLAND N. BOL

I> We survey here various approaches which were proposed to incorporate
negation in logic programs. We concentrate on the proof-theoretic and
model-theoretic issues and the relationships between them. <l

1. INTRODUCTION

I.I. Motivation

Nonmonotonic reasoning grew out of attempts to capture the essential aspects of
common-sense reasoning. It resulted in a number of important formalisms, the
most known of them being the circumscription method of McCarthy [101], the
default theory of Reiter [136], and autoepistemic logic of Moore [104]. (For a
systematic comparison of these approaches, see the recently published Marek and
Truszczynski [98].)

One of the striking features of logic programming is that it can naturally support
nonmonotonic reasoning-by means of negative literals. Many concepts intro­
duced in the area of nonmonotonic reasoning have a natural counterpart within
logic programming in spite of its limited syntax. The dual interpretation of logic
programs-as a computational mechanism and as a formalism for knowledge
representation-provided a fertile ground for a study of proof theory and seman­
tics of programs which support nonmonotonic reasoning.

This paper attempts to survey the outcome of this research. This subject, or
some fragments of it, were already discussed in no less than five previous survey
articles: Shepherdson [149, 150], Przymusinska and Przymusinski [113], Bidoit [19],
and Clark [37]. Moreover, while writing this paper we learned of another
survey-that of Dix [46], who focuses on the nonmonotonic reasoning aspects of

Address correspondence to Krzysztof R. Apt, CWl, Kruislaan 413, 1098 SJ, Amsterdam, Netherlands.
The work of the first author was partly supported by ESPRIT Basic Research Action 6810

(Compulog 2). The work of the second author was partly supported by the Netherlands Organization for
Scientific Research (NWO).

Received May 1993; accepted December 1993.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94 /$7.00

10 K. R. APT AND R. BOL

logic programming. However, this field is so fast growing-about half of the
references cited here were published during the last three years-:--that a?other
survey of it might be justified. We provide here an alternative overview of this area
by concentrating Qn the main developments in the proof theory and model theory
and on the relationships between them. . .

No unified picture emerges from this endeavor. A number of mt~res~mg
proposals were made dealing with proof theory and semantics. The mult1fanous
relationship between them, revealed by often intricate mathematical argument~,
brings to light the complex nature of logic programming and of nonmonotomc
reasoning in the logic programming setting.

1.2. Setting the Stage
The SLD resolution of Kowalski [80] allows us to derive only positive consequences
(namely, conjunctions of atoms) from a (positive) program. However, in many
circumstances it is also useful to derive negative consequences. As we shall see in
the next subsection, this naturally leads to nonmonotonic reasoning.

A classic example of the usefulness of negative consequences is the timetable,
which states connections explicitly, but the absence of connections only implicitly.
In the case of positive programs, three approaches to derive negative information
became most known. Each of them is treated more extensively for the case of
general programs (called normal programs in Lloyd [87]).

1. Use the negation as finite failure rule of Clark [38], which states that -, Q is a
consequence of a program P if a finitely failed SLD tree for the query Q
w.r.t. P exists (in short, if Q finitely fails).

2. Use program completion of Clark [38], which strengthens the program by-in­
formally-interpreting implications as equivalences.

3. Use the closed world assumption (in short CWA) of Reiter [135], which states
that for a ground atom A, -, A is a consequence of a program P if A cannot
be proved from P.

The relationships between these concepts for positive programs are by now well
understood (see, e.g., Lloyd [87] or Apt [2] for an overview of these results).

Once negative consequences can be derived from a positive program, it is
natural to extend the syntax of programs and allow negative assumptions. This
leads to the class of general programs in which negative literals are allowed in the
bodies of the clauses. However, when trying to extend the above approaches to the
case of general programs, several complications arise. The approaches become
self-referential and, thereby, potentially paradoxical. Moreover, as we shall see, a
naive amalgamation of the SLD resolution and the negation as finite failure rule
!'ields _an unsound reasoning method, completion of a general program can be
mcons1ste~t, an~ the closed world assumption can yield an inconsistent theory. So
to treat t~1s su~Ject, we have to carefully review the concepts it relies upon. Let us
start by d1scussmg some relevant aspects of nonmonotonic reasoning.

1.3. Nonmonotonic Inference Relations

Properties of nonmonotonic inference relations have been extensively studied, for
example, by Kraus et al. [81]. (For an overview of this topic, see Makinson [94).) Dix

LOGIC PROGRAMMING AND NEGATION 11

[~3] defined how a (proof- or model-theoretic) semantics for logic programs can be
viewed as an inference relation (consequence relation). Given a particular semantics
SEM, he defined the inference relation 1-iEM of a program P as a relation
between sets of ground atoms1 and sets a ground literals:

{A1, ... ' An} 1-iEM {Li·· .. ' Lm} if SEM(P u {Ai·--·· An}) t=L1, ... , Lm.2

One way of classifying semantics for logic programming is by studying which
properties they satisfy (a property is satisfied by SEM if it is satisfied by 1-iEM for
all programs P for which SEM is defined). Eventually, if one agrees on which
properties are desirable and which ones are not, this study can be one of the
reasons for considering one semantics better than another (another one could be
for example computability).

A very strong property of inference relations is monotonicity. Below we use the
symbol I- to denote an arbitrary inference relation, r for a set of atoms, A for an
atom, and L for a literal.

Definition 1.1 (Monotonicity). An inference relation is monotonic if it satisfies

r I- L implies r u f' I- L.

Classical logic is monotonic; thus, so is the inference relation determined by the
SLD resolution, because it is a subset of classical logic. The negation as finite
failure rule, the program completion, and the closed world assumption all intro­
duce nonmonotonicity when deriving negative literals from positive programs, since
0 l-1P .- qJ ..., p, whereas {q} 'rf 1P qJ, p. Consequently, all semantics for logic pro­
grams with negation considered in this paper are nonmonotonic.

The study of nonmonotonic logics is such a large area, that it is impossible to
give a complete overview of it in this paper. Therefore, we limit ourselves here to
observations that are relevant to logic programming. One may wonder what makes
an inference relation logical when it is not monotonic. Kraus et al. [81] considered
the following properties desirable (we omit a number of simple properties that are
satisfied by all logic programming semantics in this paper):

Cut:
Cautious monotonicity:
Rationality:

r f-A and r U {A} I- L imply
f I- A and f I- L imply

r 'rf ..., A and r I- L imply

rf-L,
r u {A} 1-L,
r u {A} 1-L.

Cautious monotonicity is weaker than rationality (in the presence of simple
properties). A logic that satisfies cautious monotonicity and cut is called cumula­
tive. We shall use these properties in Sections 4.3, 7.4, and 10.

Dix calls these properties strong principles [46, 4 7], as opposed to certain weak
principles he identifies [46, 48]; these weak principles are more specific to logic
programs, and should be satisfied by every reasonable semantics. Examples of weak
principles are the principle of partial evaluation (PPE), which roughly means that a
positive body literal can be replaced by its definition, and relevance, which means
that the truth value of an atom is determined solely by the part of the program that
atom depends on (the notion made precise in Definition 2.2).

1 Disjunctions of ground atoms in the case of disjunctive logic programs; see Section 10.
2 SEM can return a single model, a set of models, or a theory. In the case of a set of models, the

skeptical approach is chosen: SEM(P) I= L if L is true in all models in SEM(P).

12 K. R. APT AND R. BOL

There are a number of good reasons for adopting a nonmonotonic semantics for
negation.

• Historically, a classical interpretation of negation was ruled out, because it
would result in full first-order theorem proving, with too high a complexity.
This argument is hardly valid any more, because the semantics for logic
programs with negation studied in this paper are highly undecidable to
various degrees in the first-order case (see, e.g., Apt and Blair [4], and Cadoli
and Schaerf [27] for an overview), but some of them can be computed in
polynomial time in the propositional case (see, e.g., van Gelder et al. [63]).

• In many situations, for example, in databases, it is natural to record only
positive information, leaving all negative information implicit.

• Recently, researchers in artificial intelligence recognized that common-sense
reasoning is nonmonotonic. Therefore, nonmonotonic logics, that is, logics
with a nonmonotonic inference relation, became popular. Logic programs
with nonmonotonic negation constitute a small, yet quite expressive class of
nonmonotonic logics, which is of particular interest because they are imple­
mentable. We observed that most motivating examples in papers on the
semantics of negation in logic programming are taken from common-sense
reasoning.

We distinguish these last two reasons as •'static,'' respectively, "dynamic" non­
monotonicity. Nonmonotonicity is used statically when the available information is
complete and can be theoretically, though not practically, captured as classical
logic consequences of a theory. The standard example for this case is the already
mentioned timetable problem for which it is possible, though not practical, to list
all existing connections and all absent connections. This form of nonmonotonicity
justifies directly the closed world assumption, introduced in Section 1.2.

Nonmonotonicity is used dynamically for ''jumping to conclusions" when the
available information is incomplete. If, later, more information becomes available,
it may tum out that the conclusion is no longer justified, and must be withdrawn.
The standard example for this case is that, if we learn that Tweety is a bird, we
jump to the conclusion that it can fly, but if we subsequently find out that Tweety is
a penguin, we withdraw that conclusion. This use of logic, called belief revision, is
clearly nonmonotonic.

In this example, there is apparently a default assumption, namely, that birds can
fty, unless there is evidence to the contrary. Reiter [136] proposed default logic as a
framework for formalizing such defaults. Also, the example reasons about the
beliefs of an agent, for which Moore [104] proposed autoepistemic logic. In fact,
some semantics for negation in logic programming are closely related to these proposals.

One way of using negation in logic programming for belief revision is by means
of abnormality relations. The example of the penguin Tweety can be described by
the addition of the fact penguin(Tweety) to the program TWEETY:

bird(Tweety) ~
fly(x) ~ bird(x), ..., abnormal11 y, bird(x)

abnormal11 y,bird(x) ~ penguin(x)

% Tweety is a bird.
% Normal birds can fly.
% Penguins are abnormal

birds w.r.t. flying.

LOGIC PROGRAMMING AND NEGATION 13

We return to this program in Section 11.1. All semantics mentioned in this paper
coincide on this program: they derive fly(Tweety) from TWEETY, but not from
TWEETY u {penguin(Tweety) -}.

1.4. Plan of This Paper

This paper is organized as follows. In the next section, we introduce the syntax and
discuss the choice of the underlying first-order language. In Section 3, we introduce
the basic resolution procedure used for general programs-the SLDNF resolution.
Next, in Section 4, we discuss another classical concept, that of program comple­
tion, and discuss soundness and completeness of SLDNF resolution w.r.t. program
completion. Then in Section 5, we return to the SLDNF resolution by discussing
some of its variants and extensions.

In Section 6, we study semantics of general programs by concentrating on
two-valued candidates for a natural model which were proposed in the literature.
Then in Section 7, we consider three-valued options. In Section 8, we relate these
special models to various modifications of program completion. Next, in Section 9,
we return to the study of proof-theoretic issues and analyze another form of
resolution, called SLS resolution. In particular, we discuss there soundness and
completeness of SLS resolution w.r.t. the semantics considered in Section 7 and the
issue of its implementation. In Section 10, we discuss disjunctive logic programs,
i.e., programs built from clauses whose heads are disjunctions of atoms, and relate
various approaches to their semantics to the case of general programs.

Finally, in Section 11, we summarize the results of the paper by indicating for
which classes of programs all the considered approaches coincide. We also indicate
there which topics were not treated in this paper.

2. PRELIMINARIES

2.1. Syntax

We recall the usual definitions. A literal is an atom or its negation. A positive literal
is a synonym for an atom and a negative literal is a negated atom. Literals are
denoted here by letters L, M. A general query is a finite conjunction of literals.
Onstead of general queries, one usually considers general goals, which are expres­
sions (- L, where L is a query.) The empty general query is denoted by D. To
adhere to the syntax of logical programming, we write the general query L 1 /\ ••• /\

Ln as L 1,. •• ,Ln.
A general clause is a construct of the form H (- L, where H is an atom and L is

a query; H is called its head and L its body. When the body is empty, the general
clause is called a unit clause. Finally, a general program is a finite set of general
clauses. We say that a relation p is defined in P if it occurs in a head of a general
clause of P and that P uses a relation q if q occurs in the body of a general clause
of P.

We shall deal here exclusively with general queries, clauses, and programs; we
omit from now on the qualification "general," unless some confusion arises. When

14 K. R. APT AND R. B(

all literals used in the bodies of the program clauses are positive, we call tl
program positive.

As in the case of queries we often use bold letters to denote finite sequence
syntactic objects. Given two sequences of terms s = s 1, ••• , s n and t = t 1, ••• , t n
the same length, we abbreviate s 1 = t 1 /\ • • • /\ s n = t,, to s = t.

We recall now a number of auxiliary notions.

Definition 2.1. By an expression, we mean here a term, atom, literal, que1
negation of a query, or a clause. Var(E) is the set of variables occurring in tl
expression E, VE denotes the universal closure of E, and 3E the existenti
closure of E.

A substitution fJ is a function from variables to terms with a finite domain. 1
domain is denoted by Dom(8), the set of variables occurring in the tern
forming its range by Ran(8), and its restriction to the set of variables V by 8 I
For an expression £, we abbreviate elVar(E) to elE. We write Ee for tl
result of applying the substitution 8 to the expression E. e is called a renami;
substitution for E, if for some substitution TJ, we have A&TJ =A. E denotes tl
identity substitution.

The application of a substitution to a (set of) expression(s) and the relati<
"more general than" between the substitutions is defined in the usual way. Givi
two atoms A and B, a substitution e is called a unifier of A and B if A e = B
and is called a most general unifier (in short, mgu) of A and B if it is a unifi
which is more general than all unifiers of A and B. Finally, an mgu e of tv
atoms A and B is called relevant if Dom(fJ) U Ran(&)~ Var(A) U Var(B).

When studying programs, the relationship between the relations used is
importance.

Definition 2.2 (Dependency). Consider a program P.

• The dependency graph Dp for P is a directed graph with signed edges. I
nodes are the relations occurring in P. For every clause in P which US(
relation p in its head and relation q in a positive (resp. negative) literal in i
body, there is a positive (resp. negative) edge (p, q) in Dp. We say then th;
p uses q positively (resp. negatiuely).

• We say that p depends positiuely (resp. negatively) on q if there is a path i
Dp from p to q with only positive edges (resp. at least one negative edge

• We say that p depends evenly (resp. oddly) on q if there is a path in DP froi
p to q with an even (resp. odd) number of negative edges.

2.2. The Universal Query Problem

A simple completeness result for SLD resolution reads as follows:

Let P be a positive program, A an atom, and ()a substitution. If P 1= VA8, the
P I- sLD A <r, for some substitution a- such that Au is more general than Ai

We shall not use classical logic as the semantics for general logic programs, fc
reasons explained in Section 1.3. In some cases, the semantics of a program will b
given by a logical theory, such as the program completion. In many other cases, th

LOGIC PROGRAMMING AND NEGATION 15

semantics of a program will be given by some canonical Herbrand model, such as
the least Herbrand model Mp for a positive program P. The relative merits of both
approaches are discussed in Wallace [163], among others. When using the canoni­
cal model approach, restricting ones attention to Herbrand models often leads to
considerable technical simplifications. However, the following statement is false:

Let P be a positive program, A an atom, and a a substitution. If Mp I= 'efA8,

then P'r- SLDAu, for some substitution er such that Acr is more general
than Ae.

As a counterexample, take P = {p(a) <--},A= p(x), and (}=c. Since a is the only
term in the Herbrand universe, Mp = {p(a)} F= 'efxp(x). There are essentially two
ways to avoid this problem.

l. Ensure that the language under consideration has sufficiently many terms.
This can be done by

• adding a clause p(f(c)) <-- to the program P, where p, f, and c do not
occur in P (as, e.g., in Ross [138]);

• postulating, as in Kunen [83], an infinite "universal" language in which all
programs and queries are expressed.

2. Consider arbitrary models instead of only Herbrand models. This approach is
taken by Kunen [82] and by Przymusinski [118], who also termed the above
problem the universal query problem.

In this paper we adopt the "universal language" approach, because it gives rise
to simpler formulations of results than the other approaches. It also solves the
problem of how to deal formally with language elements that occur in the query
but not in the program. Each approach has its merits and drawbacks. For example,
in the case of the approach here adopted, taking the program P = {p(a) <--} again,
--, Vxp(x) holds in the least Herbrand model of P w.r.t. the universal language,
whereas it does not hold in all models of P. So now we have the "opposite" of the
universal query problem: given the program {p(a) <--; q <-- --, p(x)}, should q be
"true"? We leave this problem aside, and for a more detailed discussion of this
issue, we refer to Shepherdson [149].

In the sequel, Bp denotes the Herbrand base of P, Mp the least Herbrand
model of a positive program P, and ground(P) the set of all ground instances of
clauses from P, all considered w.r.t. this universal language. Finally, by Lp we
denote the language defined by the program P, that is, the language whose
constants, function, and relation symbols are those occurring in P.

3. PROOF THEORY I: SLDNF RESOLUTION

3.1. A Discussion

In order to compute with general programs, one needs to be able to resolve
negative literals. A natural idea is to use the closed world assumption, that is, to
stipulate for an atom A that

--, A succeeds if A cannot be proved.

16
K. R. APT AND R. BOL

The problem with this rule is that it is, in general, und~cidable w~~ther an atom
can (cannot) be proved, even if we restrict our attention to pos1t1ve _progra~s.
Later, in Section .9 we shall consider an ineffective form of resolut10n which

formalizes the above idea.
To make the above rule effective, Clark [38] proposed to replace the statement

.. A cannot be proved" by its finitary version, the negation as finite failure rule,
which makes this rule decidable. So, according to Clark [38], the statement "A
cannot be proved" should be interpreted as "A finitely fails." .

However, for general programs the considered trees for a query A can contam
negative literals, so the question now arises when these literals fail. A natural idea
is to stipulate that for an atom A,

-, A fails iff A can be proved.

Interpreting the statement "A can be proved" as "there exists a successful
derivation for the query A," we end up with a resolution method, called SLDNF
resolution, which is appropriate for general programs and general queries. It should
be mentioned here that another interpretation of the above statement is possible,
which leads to another form of resolution. We shall consider it in Section 5.1.

Thus according to the SLDNF resolution, when the selected literal is positive,
the usual SLD-like procedure is to obtain a new resolvent, and when the selected
literal, say -, A, is negative, the following rule is used to obtain the new resolvent:

-, A succeeds if A finitely fails,

-, A finitely fails iff A succeeds.

That is, if -, A succeeds, it is deleted from the query, and if it finitely fails, the
query fails.

As in the case of the SLD resolution, this notion of resolution can be used not
only to prove but also to compute. Let us introduce the following notation:

• P f- SLDNFV QB if there exists a successful SLDNF derivation of Pu {Q} with
computed answer B.

• P f- SLDNF V • Q if there exists a finitely failed SLDNF tree for Pu {Q}.

Without any restrictions, the above notion of SLDNF resolution becomes a
problematic concept. Indeed, take the following program NUMBERS= {positiue(x)
~ • zero(x); zero(O) ~ }. Then the query zero(x) succeeds, so -, zero(x) finitely
fails and,_~onsequently, positiue(x) finitely fails as well. Thus, NUMBERS f- SUJNF

V~ • posztwe.(~). However, for any ground term t different from 0, zero(t) finitely
fails, so posztwe(t) succeeds. Thus, NUMBERS f- SLDNFpositiue(t). This excludes
any soundness res~lts. In fact, these conclusions will be drawn by most Prolog
systems. So Prolog 1s not "sound."

The problem is caused by the use of variables in nonground negative literals. To
~nsure soundness, Clark [38] imposed the restriction that only ground negative
literals can be selected.

. Ho~ever, th~ definition of the SLDNF resolution sketched above is difficult to
formalize. Cons1?er, fo~ ex~mple, the program P = {p ~ p}. The query , p neither
~ucceeds .nor fimtely fails, ~mce the query p neither succeeds nor finitely fails. So it
~s not clear w?ether t_here 1s a resolvent. (This also shows that SLDNF resolution is
mcomplete, smce neither P f- SLDNF p nor p 1- SLDNF, p holds here.) The prob-

LOGIC PROGRAMMING AND NEGATION 17

!em is that success and finite failure are not the only possible outcomes of an
evaluation: also an unsuccessful tree which is not finitely failed can be generated.

This problem was not properly taken care of in the definition of SLDNF
resolution given in Clark [38] and reproduced in Lloyd [86]. In Lloyd [87] a revised
definition of SLDNF resolution was proposed according to which the SLDNF trees
are constructed "bottom-up" by induction on the number of alternations through
negation. Unfortunately, according to this definition for the above-mentioned
example and some other problematic cases, no SLDNF trees or SLDNF derivations
exist. This is clearly undesirable, especially if one reasons about "run time"
properties of the SLDNF resolution, like termination.

These problems were first tackled by Martelli and Tricomi [100], who proposed a
revision of the original definition in which the subsidiary trees used to resolve
negative literals are built "inside" the main tree. The solution presented here is
due to Apt and Doets [10].

3.2. A New Definition

Definition 3.1 (Resolvent).

(i) We say that Q resolves to Q' via a w.r.t. :S, or Q' (more explicitly, the pair
(a,Q')) is a resolvent of Q w.r.t. l, notation Q ~ Q'(l), if:
either "'.£ = (L, R), L is (an occurrence of) a positive literal in Q, R is a
program clause, and for some variant H <-- L (the input clause) of R, a is
mgu of L and H and Q' = Q a [La := La] is obtained from Q a by replac­
ing La by La,
or: 2 is (an occurrence of) a negative literal in Q, a= E, and Q' = Q - {2:}
is obtained from Q by removing 2:.

(ii) A clause R is called applicable to an atom if it has a variant, the head of
which unifies with the atom.

a1 an• 1

Definition 3.2 (Pseudoderiuation). A (finite or infinite) sequence Q0 = ·· · Qn =
Qn + 1 • • • of resolution steps is a pseudoderivation if for every step involving a
program clause:

• ("standardization apart") the input clause employed does not contain a
variable from the initial query Q0 or from an input clause used at some
earlier step;

• ("relevance") the mgu employed is relevant.

Intuitively, an SLDNF derivation is a pseudoderivation in which the deletion of
every (ground) negative literal is justified by means of a subsidiary (finitely failed
SLDNF) tree. This brings us to consider special types of trees.

Definition 3.3. A tree is called:

• successful if it contains a leaf marked as success;

• finitely failed if it is finite and all its leaves are marked as failed.

In the sequel we consider systems of trees called forests.

18 K. R. APT AND R. BOL

Definition 3.4 (Forest). A forest is a system .'T= (.9; T, subs), where:

• .'T is a set of trees;

• T is an element of .'T called the main tree;

• subs is a function assigning to some nodes of trees in sr a ("subsidiary") tree
from !T.

By a path in sr we mean a sequence of nodes N0 , ... , N;,.. . such that for all i,
N;+ 1 is either a child of N; in some tree in .'Tor the root of the tree subs(N).

Thus a forest is a special directed graph with two types of edges-the "usual"
ones stemming from the tree structures, and the ones connecting a node with the
root of a subsidiary tree.

An SLDNF tree is a special type of a forest built as a limit of certain finite
forests: pre-SLDNF trees. The nodes of these trees are labeled by queries. Below
we shall identify a node with its label.

The construction begins with the main tree, which consists of just one node-the
original query. During the construction new, subsidiary trees can be added. In each
"round" the branches of all trees are extended in parallel. The final object is an
SLDNF tree. As in the original definition of Clark [38], the subsidiary trees are
kept "aside" of the "main" tree. The difference is that their construction is no
longer viewed as an atomic step in the resolution process. If a subsidiary tree T
becomes successful or finitely failed, this information is used in the "next round" of
the extension process to determine the status of the query which originated the
construction of T.

For the rest of this section, we fix a program P. The next definition is crucial.

Definition 3.5 (Pre-SLDNF tree). A pre-SLDNF tree (relative to P) is a forest whose
nodes are (possibly marked) queries of (possibly marked) literals. (For queries,
there are markers failed, success, and floundered; for literals, we have the
marker selected.) The function subs assigns to nodes containing a marked
negative ground literal ..., A a tree in .'T with root A. The class of pre-SLDNF
trees is defined inductively.

• For every query C, the forest consisting of the main tree which has the single
node C is a pre-SLDNF tree (an initial pre-SLDNF tree).

• If sr is a pre-SLDNF tree, then any extension of .'T is a pre-SLDNF tree.

Here, an extension of a pre-SLDNF tree .'T is defined by performing the
following actions for every nonempty query C which is an unmarked leaf in
some tree T E.9":

First, if no literal in C is marked yet as selected, mark one as selected. Let L
be the selected literal of C.

• L is positive.
-C has no resolvents w.r.t. L and a clause from P.

Then C is marked as failed.
-C has such resolvents.

For every clause R from P which is applicable to L, choose one resolvent
(a, D) of C w.r.t. L and R and add this as a child of C in T. These

LOGIC PROGRAMMING AND NEGATION 19

resolvents are chosen m such a way that all branches of T remain
pseudoderivations.

• L = ..., A is negative.
-A is nonground. Then C is marked as floundered.
-A is ground.

* subs(C) is undefined.
Then a new tree T' with the single node A is added to !JT and subs(C)
is set to T'.

* subs(C) is defined and successful.
Then C is marked as failed.

* subs(C) is defined and finitely failed.
Then the resolvent (e,C - {L}) of C is added as the only child of C in
T.

Additionally, all empty queries are marked as success.

Note that if no tree in Sf has unmarked leaves, then trivially !JT is an extension
of itself, and the extension process becomes stationary.

Every pre-SLDFN tree is a tree with two types of edges between possibly
marked nodes, so the concepts of inclusion between such trees and of limit of a
growing sequence of such trees have clear meaning.

Definition 3.6 (SLDNF tree).

• An SLDNF tree is a limit of a sequence Yo, ... ,.9j, ... such that .'To is an
initial pre-SLDNF tree, and for all i, .91+ 1 is an extension of .9j.

• An SLDNF tree for C is an SLDNF tree in which C is the root of the main
tree.

• A (pre-)SLDNF tree is called successju,l (resp. finitely failed) if the main tree
is successful (resp. finitely failed).

• An SLDNF tree is called finite if no infinite paths exist in it.

Next, we define the concept of SLDNF derivation.

Definition 3. 7 (SLDNF derivation). A (pre-)SLDNF derivation for C is a branch in
the main tree of a (pre-)SLDNF tree !Tfor C together with the set of all trees in
Sf whose roots can be reached from the nodes of this branch. It is called
successfal if it ends with the empty query. An SLDNF derivation is called finite
if all paths of Sf fully contained within this branch and these trees is finite.

Finally, we define the notion of a computed answer substitution.

Definition 3.8 (Computed answer substitution). Consider a branch in the main tree
of a (pre-)SLDNF tree !Tfor C which ends with the empty query. Let a 1, ••• , an
be the consecutive substitutions along this branch.

Then the restriction (a1 ••• an)IC of the composition a 1 ···an to the vari­
ables of C is called a computed answer substitution (c.a.s. for short) of C in 9T.

Let us illustrate the above definitions by depicting the SLDNF trees for two
"difficult" cases.

20
K. R. APT AND R. BOL

Example 3.9 {Infinite SLDNF trees).
.

. p { } d c = p mentioned m
(i) Consider the "problematic" case of = p ~ p an . -, .

Section 3.1. The only SLDNF tree has then the followmg form .

..,p

'
' p

l
p

l
('') It · · portant to realize that according to this definition, the construction .of

11 IS lill
if h . " f b t 1ts

a subsidiacy tree can go on forever, even t e m1onna 10.n a ou

"status" has already been passed to the main tree. The following program

illustrates this point.

Consider p = {p ~ -, q; q ~; q ~ q}. Then the only SLDNF-tree for p is the

following tree:

p

1
..,q

failed - - __

--

0

success

D

success

Here the subsidiacy tree with the root q grows forever. However, once an

extension of the initial subsidiary tree with the single node q becomes successful,

in the next extension the node -, q is marked as failed. Consequently, the

SLDNF tree for p is finitely failed, even though it is not finite.

Now note the following simple result.

Theorem 3.10 (Limit).

(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF trees.

(ii) If the SLDNF tree g- is the limit of the sequence 9Q, ... , g;, ... , then for all T:

(a) !Jfis successful and yields r as c.a.s. if! some sr; is successful and yields r as

c.a.s.

(b) .9' is finitely failed if! some sr; is finitely failed.

This result allows us to associate with every successful or finitely failed SLDNF

~ree .9' ~ natural .nu~ber, rank(f!, r), which is the least i for which the correspond­

mg equivalence m (u) holds, with T = e when .9' is finitely failed. This measure is

useful for carrying out inductive proofs about SLDNF resolution.

ROGRAMMING AND NEGATION 21

Finally, let us mention that it is straightforward to show that if a successful
SLDNF derivation or finitely failed SLDNF tree exists according to the definition
given in Lloyd [87], then it does so according to the definition presented here.

3.3. Floundering

For further discussion, it is useful to introduce the following notion. An SLDNF
tree !T is via a selection rule R if in the sequence of pre-SLDNF trees whose limit
is !T, all the markings of literals as selected are performed according to R. A
selection rule is a function which, given a pre-SLDNF tree F, selects a literal in
every nonempty unmarked leaf in some tree of F. A selection rule is called safe if
it never selects a nonground negative literal.

One of the complications concerning SLDNF resolution is so-called floundering
-a generation of a node which consists exclusively of nonground negative literals,
because then selection of any literal ends the derivation in an abnormal way. In the
definition here provided, floundering is treated differently-it arises as soon as a
nonground negative literal is selected. Clearly, this small change has no effect on
the theory of SLDNF resolution, since the original notion of floundering can be
easily defined.

Definition 3.11 (Floundering).

• We call a query blocked if it consists exclusively of nonground negative
literals.

• We say that P and Q flounder if some SLDNF tree for P and Q contains a
blocked node.

Note the difference between a blocked node and a node marked as floundered.
Thus an SLDNF tree via a safe selection rule does not flounder. Borger [26] (see
Apt [2] for a more direct proof) proved that it is undecidable whether P and Q
flounder. In the literature, a number of syntactic conditions was proposed which
ensure that a program and a query do not flounder. The following notion owing to
Lloyd and Topor [89] (see also Lloyd [87]) has become best known.

Definition 3.12 (Allowedness).

• A query L is called allowed if every variable of it occurs in a positive literal.

• A clause H +- L is called allowed if --, H, Lis.

• A program is called allowed if all its clauses are.

Thanks to the use of the new definition, the following result of Lloyd and Topor
[89] now refers to a larger class of SLDNF trees.

Theorem 3.13. Suppose that P and Qare allowed. Then:

• P and Q do not flounder.

• If (J is a c.a.s. of Q, then Q8 is ground.

When (J is a c.a.s. of Q such that Q(J is ground, we say that (J is a ground
computed answer substitution. Actually, the definition of allowedness proposed in

22
K R. APT AND R. BOL

Lloyd and Topor [89] is slightly more general ~han the one we considered. Even
this stronger version excludes many natural logic progr~ms, beca~se every allowed
unit clause is ground and every computed answer is groundmg. ~-ecker a.nd
Cavedon [42] and Decker [41] proposed more general syntactic cond1t1ons which
prevent floundering.

3. 4. lumen 's Definition
Kunen [83] provided a much simpler definition of the computed answer substitu­
tions and finitely failed queries of the SLDNF resolution and used it to prove
completeness in the sense discussed in the next section for allowed programs _and
allowed queries. We now present his definition and compare it with the one given
before.

Definition 3.14. The set F of queries and the set R of pairs (C, O') where C is a
query and <T is a substitution for which Dom(O') ~ Var(C), are defined by a
simultaneous inductive definition as follows.

0. ORE.
R +. If C resolves to D via a w.r.t. some positive literal of C and a clause

from P and DRO', then CR(aO')fC.
R - . If A is a ground atom in F and (C, C')RO', then (C,-, A, C')RO'.
F + . If L is a positive literal in C and for every clause R from P which is

applicable to L, there exist a and DE F such that C ~ D(L, R), then
CEF.

F-. If A is a ground atom such that ARE, then (C,-, A,C') E F.

Recall that for a query C, 8IC stands for the restriction of the substitution (} to
the variables of C. The intention here is that R is the set of pairs (C, lf) such that
a is a c.a.s. for C and F is the set of queries C such that there is a finitely failed
tree for C.

Note that the formulation of R + does not ensure that the resulting answer
substitutions are most general. Indeed, consider the program

Q(x,y) ..__ Q(y,y),

Q(x,x) ...- .

Then ORE by clause 0, Q(y,y)R{y/x} by clause R+ and the second program
c~ause, and consequently, Q(x, y)R{y /x} by R + , since Q(x, y) resolves to Q(y, y)
via E and the first program clause. However, {y /x} is not a c.a.s. for Q(x, y),
whereas {y /x'} is.

In order that R + produce most general answer substitutions, we amend it as
follows:

tR +. If C resolves to D via a w.r.t. some positive literal of C and a clause
from P, DRO', and

Var(Ca) n Var(DO') ~ Var(D),
then CR(aO')IC.

The following ~eorem of Apt and Doets [10] shows the equivalence between
the SLDNF resolut10n and Kunen's definition as modified above.

LOGIC PROGRAMMING AND NEGATION 23

Theorem 3.15 (Equiualence). If C is a query, then:

• CRr iff r is a c.a.s. for C.

• C E F iff Chas a finitely failed SLDNF tree.

3.5. Termination

It is natural to ask then what is the use of the definition of SLDNF resolution given
in Section 3.2. To show its usefulness, we now consider the issue of termination,
which cannot be handled using Kunen's approach.

Definition 3.16 (Terminating program). A program is called terminating if all its
SLDNF trees for ground queries are finite.

Of course, in general, one is actually interested in proving termination of a given
program not only for all ground queries, but also for a class of nonground queries
constituting the intended queries. The approach to prove termination discussed
here allows us to identify, for each program, such a class of nonground queries. To
characterize terminating programs, following Cavedon [28] and Apt and Bezem [3],
we introduce the following notions.

Definition 3.17 (Acyclic program).

• A level mapping for a program P is a function I I: B p ~ N of ground atoms
to natural numbers. For A E Bp, IAI is the level of A.

• Given a level mapping I J, we extend it to ground negative literals by putting
J-, Al= IAI.

• A clause of P is called acyclic with respect to a leuel mapping I I if for every
ground instance A - K, L, L,

IAl>ILI.

• A program P is called acyclic with respect to a level mapping I I if all its
clauses are. P is called acyclic if it is acyclic with respect to some level
mapping.

Definition 3.18 (Boundedness).

• A literal L is called bounded with respect to a leuel mapping I I if I I is
bounded on the set [L] of ground instances of L. For L bounded w.r.t. I I, we
define ILi, the leuel of L w.r.t. I I, as the maximum I I takes on [L].

• A query is called bounded with respect to a level mapping I I if all its literals
are. For Q = Lp ... , Ln bounded w.r.t. I I, we define IQI, the leuel of Q w.r.t.
I I, as the multiset bag(JL 1 1, ... ,1Lnl).

The following result explains why bounded queries are relevant.

Lemma 3.19 (Finiteness). Let P be an acyclic program and let Q be a bounded query.
Then euery SLDNF tree for P and Q is finite.

This leads to the following conclusion.

24 K. R. APT AND R. BOL

Corollary 3.20. Every acyclic program is tenninating.

Further work on this subject was done by Ross [140], and work on termination of
programs w.r.t. SLDNF resolution with the leftmost selection rule of Prolog was
done by Apt and Pedreschi [5]. We return to acyclic programs in Section 11.1.

4. PROGRAM COMPLETION

4.1. Definition

In first-order logic, the soundness and completeness results equate the notions of
semantic and proof-theoretic implication: for every set of formulas TU {<I>}, we
have

T t= <P iff T 1- cp.

A similar result cannot be established for the SLDNF resolution and the
programs. Indeed, using SLDNF resolution, we can prove ground negative literals,
but all of them are false in the largest Herbrand model of a program, Bp.

Clark [38] proposed to solve this problem by strengthening a program P to its
completion, comp(P), and comparing the SLDNF resolution with comp(P). Intu­
itively, in the completion the implications are replaced by equivalences. The formal
definition is a bit subtle, since this replacement has to be made at the right
moment, and the equality relation has to be interpreted in an appropriate way. We
recall here the definition.

First, assume that " = " is a new binary relation symbol not appearing in P. We
write s =I= t as an abbreviation for -, (s = t). "=" is interpreted as identity in all
models.

We perform successively the following steps, where x 1, ••• , x,,,... are new
variables.

Step 1: Transform each clause p(t) +-- L of P into p(x) +-- x = t /\ L.
Step 2: Transform each formula p(x) +-- F obtained in the previous step into

p(x) +-- 3yF, where y are the variables of the original clause.
Step 3: Let p(x) +-- 3yF1, ••• , p(x) +-- 3yFk be all formulas obtained in the previ­

ous step with a relation p on the left-hand side. Replace them by one
formula p(x) +-- F1 V ... V Fk. If F 1 V ··· V Fk is empty, replace it by
true.

Step 4: For each relation symbol q not appearing in a head of a clause in P, add
a formula q(x) +-- false.

Step 5: Replace each formula p(x) +-- F by Vx(p(x) +-- F).
Step 6: In each formula replace "+--"by "~ ".

Additionally, we add the following free equality axioms, EQ, which enforce that the
equality theory of comp(P) is the same as that of Herbrand universe:

1. f(x) = f(y) ~ x = y for each function symbol f.
1. f(x) =I= g(y) for all function symbols f and g such that f =F g.
3. x =I= t for each variable x and term t such that x =/= t and x occurs in t.

Call the resulting set of formulas comp(P).

LOGIC PROGRAMMING AND NEGATION 25

Additionally, we interpret " = " in all two-valued and three-valued interpreta­
tions as identity. This allows us to dispose of the usual equality axioms.

4.2. Two-Valued Model Theory

While program completion is a natural concept in the case of positive programs, in
the case of general programs things dramatically change, due to the following
disturbing observation.

NOTE 4.1. For P = {p - -, p}, comp(P) is inconsistent.

Because inconsistent program completion allows us to derive arbitrary first-order
formulas from the program, the above note seems to rule out the use of program
completion to model negative information.

Before we discuss some ways of resolving this difficulty, it is useful to recall the
immediate consequence operator Tp of van Emden and Kowalski (160), which acts on
Herbrand interpretations of a given program. This operator plays an important role
in the theory of positive programs.

Definition 4.2 (Immediate consequence operator). For a program Panda Herbrand
interpretation I for P, we define

Tp(I) = { Hl3L(H - L Eground(P), I I= L)}.
The following simple observation (originally made for positive programs) by van
Emden and Kowalski (160) explains the interest in this operator by characterizing
the Herbrand models of P in terms of the operator Tp.

Lemma 4.3. For every Herbrand interpretation I, I I= P iff Tp(I) r;;;_J.

A bit more complicated argument (originally made for positive programs) by Apt
and van Emden (7) characterizes the Herbrand models of comp(P) in terms of the
operator Tp.

Lemma 4.4 (Fixpoint). For every Herbrand interpretation I, /I= comp(P) if! Tp(I) =I.

For positive programs, Tp exhibits a very regular behavior: w.r.t. the set
inclusion, it is monotonic (I r;;;_J implies Tp(J) r;;;_ Tp(J)) and continuous (for every
infinite sequence 10 r;;;, 11 r;;;_ ••• , Tp(U ~ = 0 In) = U ~ = 0Tp(I)). Thanks to the first
property, the least Herbrand model M P is the r;;;_ -least fixpoint of Tp, and thanks
to the second property, this model can be reached in w iterations of Tp starting
with the empty Herbrand interpretation.

For general programs, both properties of Tp are lost. Indeed, consider again
P = {p - -, p}. Then Tp(0) = {p}, whereas Tp({p}) = {0}, so Tp is not monotonic
and a fortiori not continuous. Consequently, for general programs the well-known
Knaster-Tarski theorem cannot be used to find a fixpoint of Tp. In fact, the
fixpoints need not exist: just take Tp for P = {p - -, p}.

A natural question is under what conditions completion is consistent. The
following result was established by Sato [144].

Definition 4.5 (Call-consistent). A program is called call-consistent if no relation
depends oddly on itself.

26
K. R. APT AND R. BOL

Theorem 4.6. If P is call-consistent, then comp(P) has a Herbrand model.

Further work on the subject of consistency of comp(P) can be found in Kunen
[83], Cavedon [29], Cortesi and File [39], Cortesi and File [40], Baratella [16] and
Fages [58].

An alternative solution is to use three-valued logic.

4.3. Three-Valued Model Theory
Fitting [59] proposed to use a three-valued logic to provide semantics to programs
and their completions. The idea is that a query can yield three outcomes: it may
succeed, it may fail, and it may also diverge. The third value is meant to capture
the last possibility.

Fitting [59] based his approach on a logic due to Kleene [79], in which three
values are assumed: {O, t, 1}, 0 representing false, t representing unknown, and 1
representing true. Assume now a mapping I I from Bp to {O, t, 1}. To define the
meaning of the programs, we put for ground quantifier-free formulas,

h Al= 1-IAI,

IA/\ BI= min(IAI, IBI),

IA~BI= { 1'
0,

if IA! 2!BI,
if IA!< IBI,

and identify the program with the set ground(?). Note that "~" received here a
two-valued interpretation. (Actually in Fitting [59] the valuation of " ~ " is not
used. The above interpretation differs from that of Kleene [79] and was later added
in Przymusinksi [122].)

For the moment the meaning of other connectives is not needed. When a
ground formula evaluates to 1, we say it is true relative to I I, and when it evaluates
to 0, we say it is false relative to I I.

The mapping I I can be conveniently presented in the form of a three-valued
Herbrand interpretation.

Definition 4. 7. A pair I = (J+, r), with J+, r c;;;; BP, is called a three-valued Her­
brand interpretation. r are atoms assumed true, and r are atoms assumed
false.

For example when I= ({A}, {B}), then A and -, B are true in /, B and -, A are
false in /, and C and -, C are undefined in /.

Definition 4.8.

• l is total if r u r = BP.

• l is consistent if r n r = 0.

Note that every (two-valued) Herbrand interpretation l can be identified with
the three-valued, total, consistent Herbrand interpretation (/, BP - l) in the sense
that truth and falsity coincide in both interpretations for all formulas.

LOGIC PROGRAMMING AND NEGATION

The following natural ordering on three-valued Herbrand interpretations,

Ir;;,J iff r+r;;,r and 1-r;;,r,

27

formalizes the intuition: J contains more information than I (determines status of
more literals). This ordering is usually called information ordering. Other natural
orderings can be considered; see, e.g., Section 7.

Note that both truth and falsity behave monotonically w.r.t. the information
ordering in the following sense.

Lemma 4.9. Let I r;;,J. Then for a ground query Q, Q is true (false) in I implies that Q
is true (false) in J.

These two implications do not hold for two-valued Herbrand interpretations and
r;;, interpreted as set-theoretical inclusion. Also, in contrast to two-valued Her­
brand interpretations, consistent three-valued Herbrand interpretations with the
r;;, ordering do not form a lattice. Indeed, if I and J are total and I* J, then I U J
does not exist. However, consistent three-valued Herbrand interpretations do form
a cpo, that is a partial ordering in which the limits of growing chains exist. This is
sufficient for building three-valued models inductively.

Following Fitting [59], we now introduce a three-valued analogue of the Tp
operator (originally denoted by <l>p), which acts on three-valued Herbrand inter­
pretations of a given program.

Definition 4.10 (Immediate consequence operator). For a program Panda three-val­
ued Herbrand interpretation I for P, we define

T3p(I) =(T,F),

where

T = { HJ3L(H ~ L Eground(P), Lis true in I)},

F = { H IVL(H ~ L E ground(P) implies L is false in I)} .

The following lemma summarizes the relevant properties of the T3p operator.

Lemma 4.11.

• If I is consistent, then T3p(I) is consistent.

• T3p is monotonic.

• In general, T3p is not continuous.

Let us return now to the program completion. To define its meaning in
three-valued logic, we need also to assign meaning to disjunction, equivalence, and
quantifiers. We do it as follows:

IA v BI= max(IAI, IBJ),

IA ~BI= { 1'
0,

if IAI= JBI,
if IAI * IBI,

so " ~ " is " ~ " receives a two-valued interpretation. The quantifiers are inter­
preted in the standard way. This definition allows us to determine when a

28 K. R. APT AND R. BOL

first-order formula <P is true in an arbitrary three-valued interpretation /, written

as I F= 3 <f>. In analogy with the two-valued semantics, we also use the F= 3 relation

to state that a formula is true in all three-valued models of a theory (e.g.,
comp(P) f=: 3Q). .

The Fixpoint Lemma (Lemma 4.4) has a counterpart for the three-valued case.

Lemma 4.12 (Fixpoint). For every Herbrand interpretation!, I F= 3 comp(P) if! T3p(l)

=I.

Consequently, by Lemma 4.11 and the generalization of the Knaster-Tarski

theorem to cpo's, we get the following corollary.

Corollary 4.13. The s -least fixpoint of T3p is a consistent three-valued model of

comp(P).

For example, for the program P = {p <- -, p} we now get three-valued model,

namely, (0, 0), in which every ground atom is undefined and, consequently, in

which p - , p is true. Thus the three-valued logic approach offers a solution to

the problem of possible inconsistency of completion w.r.t. two-valued logic.

A natural question is for which programs do the three-valued and two-valued

semantics of comp(P) coincide. An answer was provided by Kunen [83].

Definition 4.14 (Strictness). Consider a program P and a query Q. We say that P is

strict w.r.t. Q if no relation occurring in Q depends both evenly and oddly on a
relation defined in the program.

Theorem 4.15 (Equivalence). Suppose that P is call-consistent and P is strict w.r.t. Q.
Then comp(P) F= 3Q if! comp(P) f=: Q.

It was shown by Dix [43] that the two-valued completion semantics does not

satisfy cautious monotonicity, but that the three-valued completion semantics is

rational. For the first statement, consider the program P = {q <- , p; q <- r;

p ,,__ q; p <- r; r ,,__ r}. Then comp(P) F- {p, q, r}, but comp(P u {p}) = Th({p, q - r})
):,t: {q, r}.

For a further discussion of the program completion, we refer the reader to
Section 8.

4. 4. Soundness and Completeness Results

Let us relate now SLDNF resolution and program completion. Clark [38] proved

soundness of the SLDNF resolution w.r.t. two-valued semantics of program com­

pletion. In fact (see Shepherdson [149] for a sketch and Doets [49] for a complete

proof), soundness holds also w.r.t. three-valued semantics. More precisely, we have
the following result.

Theorem 4.16 (Soundness). Given a program Panda query Q, we have:

• If T is a c.a.s. for Q, then comp(P) F- 3VQT.

• If there is a finitely failed SLDNF tree for Q, then comp(P) F- 3\/, Q.

A lot of effort has been devoted to establish some sort of completeness of

SLDNF resolution. Already Clark [38] noticed that when comparing SLDNF

LOGIC PROGRAMMING AND NEGATION 29

resolution with comp(P), some restrictions are necessary. For example, for P =
{p r- q; p r- -, q; q r-q} we have comp(P) I= p, but no successful SLDNF deriva­
tion exists. In this example, p depends both positively and negatively on q. The
definition of strictness was designed to avoid this type of situation. Cavedon and
Lloyd [30] established a conjecture of Apt et al. [8] and proved completeness of
SLDNF resolution w.r.t. two-valued semantics of comp(P) for allowed P and Q
such that P is strict w.r.t. Q and P is stratified (the concept to be introduced in
Section 6). Independently, Kunen [83] established the following stronger result
which refers to three-valued semantics.

Theorem 4.17 (Completeness/). Suppose that P and Qare allowed. Then:

• If comp(P) I= 3'VQ8, then QR8.

• If comp(P) I= 3'V-, Q, then Q E F.

A crucial lemma for establishing this completeness theorem, and numerous
generalizations of it discussed further in the next, is the following result of Kunen
[82], which allows us to set up induction in a proper way.

Lemma 4.18. For every first-order formula <P not containing r- and +-+, we have

comp(P) I= 3 c/;J iff T3p in I= 3 c/;J for some finite n.

T3 P i n denotes here the n-fold iteration of the operator T3 P starting at the emp~
three-valued interpretation (0, 0). In this lemma, non-Herbrand models o_
comp(P) are used in an essential way. Also, as noted by Shepherdson [149], this
lemma critically depends on the existence of infinitely many function symbols
(counting constants as 0-ary function symbols), a property satisfied by the universal
language adopted in this paper. When the used language has only finitely many
function symbols, the free equality axioms have to be appropriately strengthened.

Recently, Doets [49] provided a simpler presentation of its proof. See also Stark
[152] for another proof.

When comp(P) I= 'VQ8 (resp. comp(P) I= 3'VQ8), we say that 8 is a two-valued
(resp. three-valued) co"ect answer substitution for Q. Additionally, when QO is
ground, we say that 8 is a ground co"ect answer substitution. The Completeness I
Theorem (Theorem 4.17), in conjunction with Theorems 3.13 and the Equivalence
Theorem (Theorem 3.15), implies that three-valued correct answer substitutions
for allowed programs and queries are ground. Shepherdson [148] showed that this
claim also holds for the two-valued case for allowed programs whose completion is
consistent.

A problem with the above completeness result is that, as already mentioned at
the end of Section 3.3, the class of allowed programs is quite restricted and
excludes many natural Prolog programs. So a natural question arises regarding how
to generalize the above completeness result to a larger class of programs. This
problem was studied by several researchers.

By providing more general conditions to prevent floundering, Decker and
Cavedon [42] and Decker [41] generalized the Completeness I Theorem (Theorem
4.17) to a larger class of programs. Cavedon [29] proved completeness of SLDNF
resolution for acyclic programs, which subsumes an early result of Clark [38], who
(essentially) proved completeness w.r.t. two-valued completion for recursion-free

30
K. R. APT AND R. BOL

h. h satisfy a syntactic condition which prevents floundering. Numerous
programs w ic · d b d'fy' th
other extensions of the Completeness I Theorem were obtame. Y mo I mg e
underlying computation mechanism, and so the SLDNF resolution.

5. PROOF THEORY II: SLDNF RESOLUTION REVISITED
We explained in Section 3.1 why in the definition of SLDNF resolution only groun_d
negative literals are allowed to be selected. In this section we discuss how this
restriction can be imposed or modified.

5.1. Modifications of SLDNF Resolution
An interesting theoretical alternative is to modify the SLDNF resolution by
allowing the selection of nonground negative literals under certain circumstances.
Consider the following modification of the definition of SLDNF resolution, already
mentioned in Clark [381. Let L = .., A be the selected literal of a query C. If there
exists an empty c.a.s. for the query A, then C is marked as failed. If the subsidiary
tree subs(C) is defined and finitely failed, then C - {L} is the only child of C. In
terms of Kunen's definition (Definition 3.14), this modification simply amounts to
dropping the qualification "ground" in clauses R - and F - .

Call the resulting notion SLDNFE resolution (for SLDNF extended). Then for
the SLDNFE resolution, the Soundness Theorem (Theorem 4.16) still holds.

Shepherdson [147] further generalized this form of resolution by allowing a
preliminary substitution 8 to be applied to nonground negative literals when trying
to build a finitely failed subsidiary tree. In terms of Definition 3.14, this modifica­
tion amounts to changing the clause R - to

R'-. If A is an atom such that for some 8, A8EF and (C,C')Ru, then
(C,.., A,C')Rul9.

and dropping the qualification "ground" in clause F - . He called this form of
resolution SLDNFS (for SLDNF with substitution) and established its soundness in
the sense of the Soundness Theorem (Theorem 4.16). Also, he proved its complete­
ness w.r.t. a rather involved semantics.

Starks [153] observed that the same soundness and completeness results hold for
simple generalizations of SLDNF and SLDNFS resolution, called, respectively,
ESLDNF and ESLDNFS resolution. In these resolution methods the qualification
"ground" is dropped in clause R - and clause F - is replaced by:

F' - . If A is an atom such that for a renaming 8 for A, AR8, then
(C,.., A,C') E F.

He also studied transformation of proofs in the sequent calculus into proofs using
these resolution methods.

. Moreover, Stark [153] proved completeness of ESLDNF resolution for a syntac­
t1cally defined class of decomposable programs which includes the positive pro­
grams and allowed programs. Because allowed programs and allowed queries by
Theo~em _3.13 do not flounder, the ESLDNF resolution (with the selection of
negative hterals delayed until no more positive literals are available) coincides with

LOGIC PROGRAMMING AND NEGATION 31

the SLDNF resolution. Consequently, this result generalizes the Completeness I
Theorem (Theorem 4.17).

Recently, Stark [156] proved a much stronger and more natural generalization of
the Completeness I Theorem. The point of departure for Stark is the observation
that completeness depends on certain closure properties.

Definition 5.1. Let %'+ and %'- be two sets of queries. A program is called a
(%'+,%'-)-program if the following conditions are satisfied, where inst(P) de­
notes the set of all instances of clauses from P

Al. If Q E %'+,then Qe E %'+.
A2. If K, A, ME%'+ and A+- LE inst(P), then K,L, ME%'+.
A3. If (-, A 1, ... ,-, AK) E %'+,then if i E (1, k], A; is ground and A; E %'-.
Bl. If Q E %'-,then Q8E %'-.
B2. If K, A, ME%'- and A+- LE inst(P), then K, L, ME~,_.
B3. If K,-, A,M E %'--,then A E %'+.

The following result of Stark [156] explains the importance of this notion. Here
yet another modification of the SLDNF resolution is used according to which in
Definition 3.14 clause F - is replaced by F' - .

Theorem 5.2 (Completeness II). Suppose that Pisa (%'+,%'-)-program. Then for a
query Q:

• If comp(P) I= 3 V Qe and Q E %'+, then for some substitution a, QR a and Qa­
is more general than Qe.

• If comp(P) I= 3'</-, Q and Q E %'-, then Q E F.

This result generalizes the Completeness I Theorem (Theorem 4.17) because for
%'+ = {QIQ is allowed} and %'- the set of all queries, we get that an allowed
program is a (%'+,%'-)-program, and by Theorems 3.13 and 4.17, both computed
and three-valued correct answer substitutions for allowed programs and queries
are ground. Stark found a systematic way of reducing previous completeness results
to the Completeness II Theorem (Theorem 5.2) by means of modes, that is,
input/ output specifications.

Another modification was proposed by Di Pierro et al. [112]. Their approach is
based on a rule termed "negation as instantiation" according to which, in the case
of SLD resolution, a query consisting of one (possibly nonground) atom fails if all
the branches in the SLD tree either fail or instantiate the atom. This rule is then
incorporated into a resolution method for general programs. The resulting method,
called SLDNI resolution, was proved sound w.r.t. two-valued semantics of program
completion.

Finally, let us mention here Shepherdson [151], where an extension of the
SLDNF resolution with unification w.r.t. an equality is studied.

5.2. Prolog and its Variants

Let us consider now Prolog. From the pure theoretical point of view, it is an
implementation of SLDNF resolution with the leftmost selection rule with the
exception that the selection of nonground negative literals is allowed, that is,
floundering is ignored. This leads to various difficulties.

32
K. R. APT AND R. BOL

As already noted in Section 3.1, we obtain undesired conclusions for b t~~
NUMBERS - {positive(x) +--- -, zero(x); zero(O) +--- }, because o

program - d.ff t from 0 can be
V x :'., positii-e(x) and positive(t), for _any ground term t t eren '

established. However, for its completion,

comp(NUMBERS)= {Vx(positive(x) B -, zero(x)), V'x(zero(x) -x)} = 0

UEQ,

we do get the intended conclusions, since comp(NUMBERS) I== V x(positiue(x) ~ x

*m . h
In tum, consider the following program SINK, where G is a fimte grap :

p(a,b) +--- for (a,b) E G,

sink(x) +- -,p(x,y).

Then for a constant a, the query sink(a) succeeds iff for nob, (a, b) E G, that is,

iff , 3 yp(a, y). On the other hand, the completion interpretation_ of :he sink
relation is V'x(sink(x) ~ 3y-, p(x, y)). Thus for some programs the nght mterpre­

tation is provided by its completion and for others by its computation mechanism.
In general, it is not clear whether to interpret the negative literal -, A in a clause
as 3y-, A or -, 3yA, where y stands for the sequence oflocal variables of --, A.

A natural solution is to find conditions which prevent selection of nonground
negative literals in Prolog computations. This problem was studied by Apt and
Pellegrini [6] and, independently, Stroetman [157]. Using the notion of modes, they

introduced a syntactically defined class of programs and queries for which they
proved absence of floundering w.r.t. the SLDNF resolution with the leftmost
selection rule.

However, it is useful to note that in some restricted situations the choice of

nonground negative literals does not lead to any complications. Namely, the
following result is a direct consequence of the soundness of SLDNFE resolution,
where by SLDNF+ resolution we mean SLDNF resolution with floundering ig­
nored.

Theorem 5.3. Given a positive program Panda general query Q, we haue:

• If p I- SLDNr V'QT, then comp(P) F3 V'QT.

The Soundness Theorem (Theorem 4.16) states that SLDNF resolution is sound
for al.I saf~ selection rules, i.e., selection rules which never select a nonground
negat~ve literal. In MU-Prolog of Naish [106], a safe selection rule is used by
delaying the nonground negative literals until they become ground. In other words,

MU-Prolog implements SLDNF resolution with the "leftmost admissible literal"
selection rule, wh~re a literal is admissible if it is negative and ground, or positive.

Even more comph~ated selection rules are allowed in NU-Prolog, the successor of
MU-Prolog, of Naish [107] and in Godel, the language proposed by Hill and Lloyd

[73]. In these lan~uages, so-called delay control declarations cause certain literals
to b~ delayed until they become sufficiently instantiated. Liittringhaus-Kappcl [93]
provides a t~o:ough theoretical account of such delay declarations.

The restnct1on of the SLDNF resolution to the leftmost selection rule results in
los~ of completeness, even for very simple programs. Indeed, take p = {p +-- p} and

Q - p, q. Then comp(P) I= • Q, but the only SLDNF derivation of Q w.r.t. the

LOGIC PROGRAMMING AND NEGATION 33

leftmost selection rule diverges. Still, some limited forms of completeness can be
obtained here by restricting attention to terminating programs; see Apt and
Pedreschi [5] and Stroetman [157]. Lately, another approach to this issue was
proposed in Stark [154]; see Section 8.3.

In Prolog, negation can be applied to an arbitrary query, not only to an atom, as
in the SLDNF resolution and its variants. Also, disjunction can be used in queries
and bodies of the clauses. Lloyd and Topor [88] (see also Lloyd [87]) modelled
these syntactic extensions by means of a more general syntax in which the queries
and bodies of clauses can be arbitrary first-order formulas. These generalized
queries and programs can be interpreted by means of a syntactic transformation
which transforms them to a general query and a general program combined with
the SLDNF-resolution. Lloyd and Topor [88] showed that this transformation
preserves program completion (which is defined for the generalized programs in
the expected way).

This syntactic extension of general programs allows us to deal properly with the
program SINK discussed above. To enforce its right interpretation w.r.t. program
completion it suffices to replace its second clause by

sink(x) - --, 3yp(x, y).

This extended syntax is used in the language Godel of Hill and Lloyd [73)
mentioned above.

5.3. Constructive Negation

In SLDNF resolution, only positive literals can generate a computed answe1
substitution. In SLDNFS resolution, negative literals can generate answers, as well.
Unfortunately, these answer substitutions need to be guessed and subsequently
verified. Chan [33] suggested a modification of SLDNF resolution in which non­
ground negative literals can be selected and can generate answers, but, in contrast
to the SLDNFS resolution, these answers can be effectively computed. This way of
using negative literals is called constructiue negation, and the resulting form of
resolution is called SLD-CNF resolution.

First, let us introduce the following helpful notation. For a substitution e =
{x 1/t 1, ... ,Xn/tJ, let 0 denote the formula 3y(xl =t1 /\ ··· /\X 11 =tn), where Y is
the sequence of variables from Ran(e) - Dom(e).

The departure point for Chan's approach is the following property of SLD
resolution (essentially proved by Clark [38]):

Consider a finite SLD tree for a query Q. Let e1, ••• , ek be all c.a.s's for Q
present in this SLD tree. Denote by FQ the formula 01 v ··· V Ok. Then
comp(P) F= V(Q ~ FQ).

Consequently comp(P) F= V(--, Q - --, FQ), which suggests interpreting --, FQ as
the computed answers generated by --, Q.

There are two problems which have to be solved for this interpretation. First,
the formula , FQ cannot be interpreted as a set of substitutions anymore. Thus,
what it means to apply this formula to a query must be defined. Second, FQ is not
always defined. To solve the first problem, Chan [33] extended the language of logic
programs by allowing equalities s = t and inequalities V(s i= t) in the queries and

34 K. R. APT AND R. BOL

bodies of the clauses, and provided a normalization algorithm which transforms
every formula of the form --, FQ to a disjunction of simple equality formulas, that
is, existentially quantified conjunctions of equalities or there negations.

The second problem is that Chan's definition is based on the original definition
of SLDNF resolution due to Clark [38], according to which, as noted in Section 3.2,
for some problematic cases no SLDNF trees exists. It was adequately solved in
Marchiori [97], who provided a formal definition of SLD-CNF resolution in the
style of Apt and Doets [10].

Chan [33) noticed that SLD-CNF resolution is sound w.r.t. program completion
(for the two-valued semantics). In particular, SLD-CNF resolution allows us to
treat correctly the previously mentioned program NUMBERS-the query posi­
tive(x) succeeds with the desired answer x =I= 0.

Marchiori [97] studied termination of programs w.r.t. constructive negation and
among others proved completeness of the SLD-CNF resolution for acyclic pro­
grams w.r.t. program completion for bounded queries. Further generalizations of
constructive negation were proposed by Stuckey [158) and, more recently, by
Drabent [50]. Both of them proved completeness results which subsume the
Completeness I Theorem (Theorem 4.17).

6. TWO-VALUED ALTERNATIVES FOR THE LEAST HERBRAND MODEL

In the case of positive logic programs, the least Herbrand model of the program
exists. This model enjoys a number of natural properties. For example, it is the
least pre-fixpoint of the operator Tp and also its least fixpoint. Consequently, it is
customary to view it as the standard model of the program. In the case of general
programs, the situation dramatically changes because there is no least Herbrand
model. Just take P = {p ~ --, q}. Then {p} and {q} are the only minimal Herbrand
models, but none is the least. Thus, by Lemma 4.3, Tp may have no least
pre-fixpoint and at the end of Subsection 4.2, we already noted that Tp may have
no fixpoint at all.

So what is then the standard model of a general program? There is no generally
agreed upon answer to this question. With this section, we begin a review of some
of the plausible answers suggested in the literature.

6.1. Stratified Programs and the Standard Model

Let us first agree on the desired properties of the natural model. Clearly, for every
fact in the model, we would like to have some explanation of why it is there. The
following definition suggested by Apt et al. [8] and Bidoit and Froidevaux [20]
attempts to formalize this requirement.

Definition 6.1 (Supported interpretation). A Herbrand interpretation I is called
supported if

AE/ = 3L(A~LEground(P),It=L).

Intuitively, Lis an explanation for A. We clearly have the following lemma.

Lemma 6.2. I is a supported model of P if! Tp(l) = /.

LOGIC PROGRAMMING AND NEGATION 35

Thus, in view of the observation on the behavior of the Tp operator, we see that
for some programs, no supported models exist. One possible approach is to accept
that some programs have no natural, supported model and to identify classes of
programs for which a "natural" supported model exists.

The following notion was first considered in the context of database queries by
Chandra and Hare! [34] and was introduced in the area of logic programming by
Apt et al. [8] and van Gelder [161].

Definition 6.3 (Stratified program). A program is called stratified if no cycle with a
negative edge exists in its dependency graph.

In other words, a program is stratified if no negative recursion, that is, recursion
"through" negation, is used in it. For example, the program P = {p +- -, q, q +- r}
is stratified, whereas P = {p +- -, p} is not. Note that every stratified program is
call-consistent, but not conversely. The following equivalent formulation shows that
in a stratified program the use of negation is restricted to already known (i.e.,
defined) relations.

Definition 6.4 (Stratification). Consider a program P. P = P1 U · · · U Pn is called a
stratification of P if for i E [1, n], P, uses (i) positively only relations defined in
U j = 1 lj or (ii) negatively only relations defined in U j~ \If·

P1 can be empty. For convenience, when some relations used in P are not
defined, we assume that they are defined (by the empty set of clauses) in P1•

Lemma 6.5. A program is stratified if! it admits a stratification.

Note that a program can admit several stratifications. Following the intuition on
the use of negation, the following model was defined for stratified programs.

Definition 6.6 (Standard model). Consider a stratified program P. Assume a strati­
fication P = P1 U ·· · u Pn. Denote by IIR the restriction of the interpretation I
to relations in R. Each P; defines a set of relations ref;. Define a sequence of
Herbrand interpretations as follows:

M1 =the least model of Pp

M2 =the least model of P2 such that M2 lre/1 = M1,

M,, =the least model of Pn such that M,,lrel 1 n- 1 = M,, -1 ·

We call Mp = M,, the standard model of P.

For example, consider P = {p +-, q; q +- r} and its stratification P = {q +- r) U
{p +-, q}. Then M1 = 0 and M2 = Mp = {p}.

The following result of Apt et al. [8] explains why the model M P is of interest.

Theorem 6. 7 (Standard model). Consider a stratified program P. Then:

• M P does not depend on the stratification of P.

• Mp is a minimal model of P.

• Mp is a supported model of P.

36 K. R. APT AND R. BOL

Thus, by the Fixpoint Lemma (Lemma 4.4), completion of a stratified program has
a Herbrand model.

6.2. Locally Stratified Programs and Perfect Models

Still, the above theorem does not uniquely characterize the standard model M p

since for some stratified programs, more than one supported model exists. Just take
p = {p - -, q; q - q}. Then both {p} and {q} are supported.

To provide a unique characterization of the model Mp, Przymusinski [121]
introduced the notion of preferable models. Fix a program P and a well-founded
ordering < on Bp. If A< B, then we say that A has a higher priority than B.

Definition 6.8 (Perfect mode/). Let M, N be Herbrand interpretations of P. We call
N preferable to M, and write N-< M, if for every B EN - M there exists
A EM-N such that A <B. We write N =<{.Af if N=M or N-<M. We call a
Herbrand model of P perfect if there are no Herbrand models of P preferable
to it.

Thus a perfect model of P is a -<-minimal Herbrand model of P. The intuition
behind these definitions is the following. N is preferable to M if it is obtained from
M by possible adding/removing of some atoms, and an addition of an atom (B) to
N is always compensated by the simultaneous removal from M of an atom (A) of
higher priority. This reflects the fact that we are determined to minimize higher
priority atoms even at the cost of adding atoms of lower priority. A model is then
perfect if this form of minimization of higher priority atoms is achieved in it.

The following lemma clarifies the status of perfect models.

Lemma 6.9. Let P be a program and < a well-founded ordering on Bp.

• Every perfect model of P is minimal.

• The relation "N is preferable to M" is a partial order.

The standard model M p of a stratified program P is related to perfect models
by the following theorem of Przymusinski [121].

Theorem 6.10. Let P be a stratified program and let for A, B E BP, A < B if! the
relation symbol of B depends negatively on the relation symbol of A. Then M P is a
unique perfect model of P.

In other words, Mp is the -<-smallest Herbrand model of P. This theorem
provides an alternative proof of the first claim of the Standard Model Theorem
~Theore~ 6.7). Thus the notion of a perfect model turns out to be the key concept
m assessmg the character of Mp.

T?e p:evious_ result immediately suggests a generalization of the concept of
stratification which was, again, proposed by Przymusinski [121]. He observed that
some programs that are not stratified still have an intuitively clear meaning. The
standard example is the program EVEN:

even{O) -

even(s{X)) - -,even(X).

LOGIC PROGRAMMING AND NEGATION 37

The program EVEN is clearly not stratified, because the relation even depends
negatively on itself. However, if we consider all ground instances of the clauses of
EVEN, then we see that no ground atom depends negatively on itself. In other
words, if we consider the ground atoms as proposition symbols, then the instanti­
ated program is stratified (albeit infinite). A program that has this property is
locally stratified.

Definition 6.11 (Local stratification).

• A local stratification for a program P is a function stratum from BP to the
countable ordinals.

• Given a local stratification stratum, we extend it to ground negative literals
by putting stratum(-, A)= stratum(A)+ 1.

• A clause of P is called locally stratified with respect to a local stratification
stratum if for every ground instance A <--- K, L, L,

stratum(A) ;::::: stratum(L).

• A program P is called locally stratified with re:,pect to a local stratification if all
its clauses are. P is called locally stratified if it is locally stratified with respect
to some local stratification.

Lemma 6.12.

• An acyclic program is locally stratified.

• A stratified program is locally stratified.

Instead of comparing ground atoms by their relation symbols, a local stratifica­
tion of a program P immediately induces a well-founded ordering on Bp. The
following theorem, owing to Przymusinski [121], shows that perfect models unam­
biguously define a semantics for locally stratified programs.

Theorem 6.13 (Unique peifect model). Let P be a locally stratified program and let for
A, BE B1,, A < B iff stratum(A)< stratum(B). Then P has a unique perfect mode

It was soon realized that some programs are not locally stratified, but still have
clear meaning. For example, we could rewrite the program EVEN to EVEN':

even(X) <--- zero(X)

even(Y) <--- successor(X, Y),, even(X)

zero (0) <---

successor(X, s(X}) <---.

On this program, we can change the representation of numbers without changing
the clauses defining the relation even.) This program is no longer locally stratified,
because

even(O) <---successor(0, 0),, even{O}

is an instance of the second clause.

38
K. R. APT AND R. BOL

Of course, the premise successor(O, 0) of this instance is false, but that is part
of the semantics of the program, while (local) stratification is a syntactic property.
There are two proposals for adapting local stratification and perfect model seman­
tics to capture this phenomenon: weak stratification by Przymusinska and Przy­
musinski [116, 117] and effective stratification by Bidoit and Froidevaux [21].

For weak stratification, it is observed that for each iteration in the construction
of the model, only the next lowest stratum must be identified. The truth values
obtained for the atoms in this stratum can then be used to discard clauses with
false premises. This in turn may remove some dependencies, thereby allowing
identification of the next lowest stratum. We omit the formal definition. For the
program EVEN', the lowest stratum consists of the zero and successor atoms.
Discarding clauses with false zero and successor premises yields the (already
locally stratified) program

even(O) +- zero(O)

even (s (X)) +- successor(X, s (X)) , -, even (X)

zero(O) +-

successor(X, s(X)) +- .

Theorem 6.14 (Przymusinska and Przymusinski [116, 117]. A locally stratified program
is weakly stratified.

Bidoit and Froidevaux [21] define the notion of effective stratification, which
takes this approach even further. Because it is closely related to the (still to be
introduced) well-founded models, we discuss it in Section 7.

6.3. Well-Supported or Stable Models
In Section 6.2, we noted that, for a program P = {p +- -, q; q +- q}, both {p} and
{q} are supported models. However, the support for q is unfounded, in the sense
that q is the explanation of why q is true. So we would like to rule out the second
supported model. The following approach of Fages [57] makes this idea precise.

Definition 6.15 (Well-supported interpretation). For a query L, denote by pos(L) the
sequence of positive literals of L. A Herbrand interpretation I is called
well-supported if for some well-founded ordering < on Bp,

A EI implies 3L(A+- L Eground(P) ,I I= L, and B <A for Be pos(L)).

Intuitively, I is well-supported if every A EI has an explanation which does not
use A. For example, for P = {p +- -, q; q +- q}, the model {p} is well-supported,
whereas {q} is not. It should be noted that some programs have no well-supported
models. Take, for example, P = {p +- q; p +- -, q; q +- p; q +- -, p}. Its only Her­
brand model, {p, q}, is not well-supported.

By .usin~ the i~tuition of "rational beliefs" from autoepistemic logic, Gelfond
and L1fsch1tz [65] mtroduced an important notion of a stable model. We begin with
the following auxiliary notions.

LOGIC PROGRAMMING AND NEGATION 39

Definition 6.16 (Gelfond-Lifschitz transformation). For a query L, denote by neg(L)
the sequence of negative literals of L. Let P be a program and I an interpreta­
tion. Let

H(P, I) = { H +- pos(L)IH +- L Eground(P), I I= neg(L)}.

Now define

fp(/) = MH(P,l)•

Thus H(P, I) is the positive program obtained from P by removing all clauses
that contain one or more negative literals that are false in I and by deleting all
negative literals that are true in /.In turn, fL(/) is a Herbrand model equal to the
least Herbrand model of the positive program H(P, /).

Definition 6.17 (Stable model). A Herbrand interpretation I of a program P is
called stable if fp{/) = /.

Gelfond and Lifschitz [65] explain the intuition behind the definition of a stable
model as follows. Consider a "rational agent" with a set of beliefs I and a set of
premises P. Then any clause that has a literal -, A with A EI in its body is
useless, so it can be removed. Moreover, any literal -, A with A ~I is trivial, so it
can be deleted. This yields the simplified program H(P, /).If now I happens to be
precisely the set of atoms that follow logically from this simplified set of premises,
then the set of beliefs I is stable. Thus stable models are "possible sets of belief a
rational agent might hold".

The following theorem of Fages [57] shows that the concepts of well-supported
and stable models coincide. It was independently established by Elkan [55] for the
case of propositional programs.

Theorem 6.18. Suppose that I is a model of P. Then I is stable iff it is well-supported.

Thus, a fortiori stable models of a program P are supported models and,
consequently, by the Fixpoint Lemma (Lemma 4.4), they are also models of
comp(P). The converse is, in general, not true (see the beginning of this section),
but for certain programs the Herbrand models of comp(P) and stable models
coincide. Namely, we have the following corollary to the above theorem, owing to
Fages [58] and, independently, Ben-Eliyahu [18].

Corollary 6.19. Suppose that no cycle with only positive edges exists in the dependency
graph of P. Then the Herbrand models of comp(P) coincide with the stable models
of P.

The following results of Gelfond and Lifschitz [65] clarify the relation between
stable models and the notions introduced in Sections 6.1 and 6.2.

Theorem 6.20 (Unique stable model). Consider a program P. Then:

• Any stable model of Pisa minimal model of P.

• If P is locally stratified, then it has a unique stable model which coincides with
its perfect model considered in the Unique Perfect Model Theorem (Theorem
6.13).

40 K. R. APT AND R. SOL

In particular, if P is stratified, then by Theorem 6.10 it has a unique stable
model which coincides with its standard model Mp. Thus, similarly to the notion of
a perfect model, th~ concept of a stable model allows us to characterize the notion
of a standard model for stratified programs in a unique way.

The second result also shows that a sufficient condition for the existence of a
stable model of a program is that it is locally stratified. Dung [52] proves that call
consistency is also sufficient. More results can be found in Dung [52] and Fages
[58].

7. THREE-VALUED ALTERNATIVES FOR THE LEAST
HERBRAND MODEL

Stable model semantics allows more than one stable model, or none at all. This
reflects some uncertainty about the conclusions that should be drawn from a
program. In some cases, a "local" uncertainty can destroy too much information.
For example, if P is a stratified program in which the relation symbol p does not
occur, then Pu {p +-- -, p} has no stable models. Thus the information contained
in P is not reflected in the stable model semantics, although it is not related to the
uncertainty about the truth value of p.

Well1ounded semantics (WFS) avoids this problem, by producing one three-val­
ued model, instead of multiple two-valued models. In contrast to Section 4.3,
three-valued logic (that is, a three-valued interpretation of the connectives) is not
needed to obtain these three-valued models. There are numerous characterizations
of the well-founded semantics; we present here a few of them. Apart from the
information ordering ~ on three-valued interpretations, as defined in Section 4.3,
we sometimes use the truth ordering: I is truth less than J iff J+ ~ r and 1- -;d. r.

7.1. Iterated Least Fixpoint Characterization of WFS

Suppose that one prefers the least Herbrand model/closed world assumption
(rather than the completion or classical negation) to decide whether a negative
literal holds w.r.t. a positive program. Then, given a general program, one can
observe that regardless of the semantics of negative literals in clause bodies, some
atoms must be true in its semantics (e.g., facts in the program) and some must be
false (e.g., atoms that do not unify with the head of any clause). One of the
weaknesses of the proposals in Section 6 is that such information is lost if no model
is produced. When "guessing" an interpretation to see if it is a stable model, we
know what guess to make for those atoms. We can also use those atoms to simplify
the program, as in the example on weak stratification. As a result of this simplifica­
tion, more atoms may become certainly true or certainly false.

If the truth value of all atoms can be decided in this way, then the program is
called effectively stratifiable by Bidoit and Froidevaux [21]. If some atoms remain
undecided, then we might start guessing, in order to find stable models. However,
another interesting option is to stop just there and to return a three-valued model.
This model shows which atoms are true, respectively false, regardless of the
semantics of negation, and which atoms cannot be decided in this way. It is called
the well-founded model.

LOGIC PROGRAMMING AND NEGATION 41

The original definition of the well-founded semantics is usually attributed to van
Gelder et al. [63]. Here, we loosely follow the somewhat more constructive
definition of Bidoit and Froidevaux [21]. Two significantly different characteriza­
tions of the well-founded model are presented in the next sections.

The first step of our definition is to derive from a program P which atoms are
certainly true, respectively false, in its semantics. An atom is certainly true if it can
be derived without using clauses that contain negative literals. An atom is possibly
true, if it can be derived when ignoring all negative premises. An atom is certainly
false if it is not possibly true. We collect the "certain" atoms in a three-valued
interpretation I/P), leaving the "uncertain" atoms unknown.

Definition 7.1. Let P be a program. By p+ we denote the program obtained from
P by deleting all clauses that contain a negative literal. By p- we denote the
program obtained from P by deleting all negative literals. Let I3(P) =

(Mp+,Mp-).

Here M denotes the complement of M w.r.t. the set of ground atoms in the
considered universal language, which is larger than the language L P defined by P.

Bidoit and Froidevaux [21] call Mp+ the set of defined atoms (Def(P)) and Mr
the set of potentially defined atoms (PotDef(P)). van Gelder et al. [63] call the
atoms in Mp+ well founded and Mp- an unfounded set (see below).

In this section, we use a simplification of a program w.r.t. a set of certain literals
that differs from the Gelfond-Lifschitz transformation (Definition 6.16) in a
significant way: not only negative literals, but also positive literals are considered
for simplification. A generalization of Definition 6.16 to three-valued interpreta­
tions is considered in the next section.

Definition 7.2. Let P be a program and let I be a three-valued interpretation. By
P\I, we denote the program that is obtained from ground(?) by deleting all
clauses that contain one or more body literals that are false in I and by deleting
all body literals that are true in /. Furthermore,

<l>p(I) =l3(P\I).

Lemma 7.3 (Przymusinski [122]). The <l>p-operator is monotonic w.r.t. the informa­
tion ordering.

This lemma implies that the least fixpoint of <I> P exists and that it can be
reached by iterating the <I> p-operator from (0, 0), taking the pairwise union at
limit ordinals.

Definition 7.4 (Well-founded model). The information-least fixpoint of <l>p is called
the well-founded model of P, WFM(P).

Because <l>p is, in general, not continuous, more than liJ iterations are usually
needed to reach the least fixpoint. However, if the number of atoms in the
language is finite, say n, then the computation of WFM(P) in this way takes O(n 2)

iterations, as shown by van Gelder et al. [63].
The original definition of the well-founded model by van Gelder et al. [63]

slightly differs from this one. Instead of <l>p, they define and iterate the operato

Vp(I) = (the set of facts in (P\I) + ,M<P\I)-).

42
K. R. APT AND R. BOL

Thus, the derivation of positive facts using Vp goes much '.'slower" than using <Pp.
M th define M in another nonconstruct1ve way, namely, as the oreover, ey (P\1)- ' f d t U eh that largest unfounded set, where an unfounded set is a set o groun a oms s1:1 .
for all atoms A E u, all instances of clauses that conclude A have a pre~1se m U
(thus, if we assume the atoms in U to be fals~, no clause that could denve them
remains applicable, which justifies the assumption). . . .

We can now define the generalization of the notion of weak strat1ficat1on,
already mentioned in Section 6.2, due to Bidoit and Froidevaux [21].

Definition 7.5 (Effective stratification). A program P is effectively stratifiable if
WFM(P) is total.

Theorem 7.6 (Bidoit and Froidevaux [21]). A weakly stratified program is effectively
stratifiable.
The well-founded model is related to program completion, stable models, and,

hence, to the other models in Section 6, in the following way.

Theorem 7. 7 (Extension; van Gelder et al. [63]) .
• The welljounded model of a program is a (three-valued) model of its completion •
• All stable models of a program extend3 its well-founded model.

Corollary 7.8. If the well-founded model of a program is total, then it is its unique
stable model.

The converse of this implication is not true: the program {p <- -, p; p <- -, q;
q <- -, p} has {p} as its unique stable model, but its well-founded model is (0, 0).
However, Theorems 6.14 and 7.6 imply that the well-founded model of a locally
(weakly) stratified program is total.

Corollary 7.9. The well-founded model of a locally stratified program coincides with its
unique perfect model.

7.2. Stationary Models and Stationary Expansions
In this section we present an alternative characterization of the well-founded
model, due to Przymusinski [127], which relies somewhat more on three-valued
ogic, but stays closer to the definition of stable models. Moreover, this characteri­
.ation also suggests other interesting three-valued models of the program, which
xtend the well-founded model.

Definition 6.16 presents a function H(P, I) that simplifies a program P with
spect to a two-valued interpretation I. In fact, this function replaces each
:gative literal in the program by the truth value it has in the interpretation. The
~suit is a positive program, except that the logical constants true and false occur in
. When considering the semantics of such a program, i.e., its least Herbrand
1odel, the constants true can be ignored. A constant false in a clause body means

~That is, the .well-founded model is lower in the information ordering than any stable model. This.
notion of ext~ns1on s?ould not be confused with another one: a semantics .9' defined for a class of
~r?gr~ms_ 9" is so~elimes said to extend a semantics .9'' defined for a smaller class .'JI'' c.9' if .Y' and

Y coincide on Y' . To avoid confusion, we shall not use the word "extend" in this sense.-

LOGIC PROGRAMMING AND NEGATION 43

that this clause is never applicable, so the whole clause can be ignored. By
syntactically removing the parts of the program that can be ignored, we bypassed
the introduction of the logical constants and defined the result of the function to
be a positive program.

It is straightforward to generalize this function so that it simplifies a program
with respect to a three-valued interpretation. The result is a positive program, in
which the constants true, false, and unknown occur. We can get rid of the
constants true and false again, but the constants unknown remain. This is not a
problem: the truth-least partial Herbrand model of such programs is well defined.

Definition ZJO (u-program). A u-program is a positive program in which the
constants true, false, and unknown may occur. M3(P) denotes the truth-least
three-valued Herbrand model of au-program P.4

Let P be a program and let I be a three-valued interpretation. The u-pro­
gram H/P, /)is obtained from ground(P) by replacing every negative literal in
P by the truth value it has in /:

f 3p(/) =M3(H3(P,J)).

Analogously to the stable models of Section 6.3, the fixpoints of f 3p are
considered as possible "meanings" of the program P. Przymusinski called these
models partial, extended, or three-valued stable models, or stationary models [124,
127, 126, 120, 129]. From now on, we shall refer to them as stationary models; by
"stable models" we shall always mean two-valued models.

Definition 7.11 (Stationary mode/). Let P be a program. A stationary model of P ir
a three-valued Herbrand interpretation I such that f 3p(/) =I.

In contrast to stable models, each program has at least one stationary model.
Moreover, the set of stationary models of a program has an information-least
element, which happens to coincide with the well-founded model.

Theorem 7.12 (Least stationary model; Przymusinski [127]). Let P be a program. The
information-least stationary model of P exists and coincides with WFM(P).

If I is a two-valued interpretation, then f 3p(/) obviously coincides with fp(/).
Thus all stable models of a program are also (information-maximal) stationary
models of it. This clarifies the second clause of the Extension Theorem (Theorem
7.7).

Instead of considering the information-minimal stationary model, we can also
consider information-maximal ones as plausible "belief states" associated with the
program. Among these are stable models of a program, if it has any. However,
while the stable model semantics of a program is easily destroyed by local
"impossibilities," maximal stationary model semantics is much more robust. A local
impossibility simply means that some atoms remain unknown in all models; it does
not affect the (global) existence of the models.

Neither the definition of a stable model nor of a stationary model is constructive
-it involves a "guess" of an interpretation which is then checked whether it is a

4 Note that M3(P) coincides with J3(P) if we get rid of occurrences of true and false as before, and
treat occurrences of unknown as negative literals.

44 K. R. APT AND R. BOL

stable, respectively, stationary, model. Sacca and Zaniolo [141] characterized all
stable models by means of fixpoints of a backtracking operator which generates all
stable models of a program. This work was further extended and generalized by
Teusink [159], who characterized all stationary models by means of fixpoints of
another nondeterministic, nonmonotonic operator.

The following characterization of stationary models, proposed by Przymusinski
[119], stays within two-valued logic. First we identify a program with the program
obtained by replacing every occurrence of a negative literal -, A by the new atom
not_A. This gives a positive program, in which the atoms of the form not_A occur
only in the bodies of clauses. A stationary expansion is obtained by adding to such
a program a suitable set of not _A atoms: these fully determine a stationary model.

Definition 7.13 (Stationary expansion). Let P be a positive program with not_A
atoms in bodies of clauses. Let C be a set of not _A atoms.

• A Herbrand interpretation for P is a set of atoms (containing both ordinary
atoms and not _A atoms, in general).

• By the minimal models of P U C, we mean the Herbrand interpretations that
are minimal w.r.t. set inclusion for the ordinary atoms (but not necessarily
w.r.t. not_A-atoms) among those interpretations I that satisfy (i) IF= Pu C
(in the classical sense) and (ii) if P U C F= A, then not _A $ I.

• For a negative literal -, A, PUC F=min -, A if -, A is true in all minimal
models of Pu C.

• A stationary expansion of P is a consistent theory E(P) which satisfies

E(P) =PU {noLAIE(P) F=m;n -, A}.

• The least stationary expansion of P is called its stationary completion.

Theorem 7.14 (Correspondence; Przymusinski [119}). Let P be a program. There is the
following one-to-one correspondence between stationary models and stationary ex­
pansions of P:

• If Mis a stationary model of P, then PU {not _A IM F= 3 -, A} is a stationary
expansion of P.

• If E(P) is a stationary expansion of P, then {AIE(P) F=A} U {-, AIE(P) F= min
-, A} is a stationary model of P.

In this way, the well-founded model of P corresponds with the stationary completion
of P.

The information-least stationary model (i.e., the well-founded model) of a
program can be computed by iterating f 3p from (0, 0). This corresponds to the
following theorem.

Theorem 7.15 (Przymusinski [119]). Let P be a program.

LetP0 =P.

For a successor ordinal a+ 1, let Pa+ 1 =Pa U {not_AIP" F=min -, A}.

For a limit ordinal f3, let Pf3 = U "< f3 P" .

LOGIC PROGRAMMING AND NEGATION 45

The sequence P 0 , P 1, ••• , Pa, . . . has a fixpoint which coincides with the stationary
completion of P.

We shall discuss a generalization of stationary expansions to the class of general
disjunctive programs in Section 10.3.

7.3. The Alternating Fixpoint Characterization of WPS

Yet another characterization of the well-founded model is the one given by van
Gelder [62]. It is based solely on two-valued interpretations, which only in the end
are combined into a three-valued model.

As observed by van Gelder [62], fp is an antimonotonic operator (on two-valued
interpretations, thus w.r.t. the truth ordering). Thus r;, i.e., fp iterated twice, is
monotonic and, on the lattice we work on, has a least fixpoint, say Ip. Then fp(/p}
is the greatest fixpoint of r;.
Theorem 7.16 (Alternating fixpoint I; van Gelder [62]). Let P be a program. Then the

least fixpoint Ip of fj exists and

WFM(P) = (Ip,fp(lp)).

The second clause of the Extension Theorem (Theorem 7.7) is also a corollary
of this theorem. The following theorem is a more general version of the Alternat­
ing Fixpoint Theorem (Theorem 7.16).

Theorem 7.17 (Alternating fixpoint II; Przymusinska and Przymusinski [114]). Let P be
a program and let 1 be a two-valued interpretation. (/, fp(/))is a stationary model
of P iff fj(l) =I~ fp(/).

Note that for P = {p .,_.. --, p; q +- --, q}, fp oscillates between {p} and {q}, bu
that there is no corresponding stationary model, because the interpretations ({p}
fqf) and ({q}, TJJJ) are inconsistent.

Such pairs of interpretations are generalized to finite sets by Baral and Subrah
manian [15].

Definition 7.18 (Stable class). Let P be a program. A stable class of P is a finite se
of (two-valued) interpretations A such that A= {fp(/)IJ EA}.

If a program P has a stable model M, then {M} is a stable class of P. Al
interpretation I is a fixpoint of rj iff {/, fp(/)} is a stable class of P.

This approach of van Gelder has been generalized in another direction by
Fitting [60], namely, to the case of programs interpreted over four-valued models,
or more generally, bilattices.

7.4. Properties of the Well-Founded Semantics and Its Extensions

Well-founded semantics has as the drawback that it does not infer all atoms tha
one would expect to be true. Consider, for example, the program P = {p +-- • q;
q +- --, p; r .,_.. p; r +- q}. It has two stable models: p is true in one and q is true in
the other. In both, p v q, and therefore r, is true. However, r is unknown in the
well-founded model.

46
K R. APT AND R. BOL

Numerous semantics have been proposed that extend the well-founded seman­
tics: WFS', WFS+, and EWFS by Dix [45], GWFS by Baral et al. [12], WFSc by
Schlipf [145] (equivalent to WFS+), WFSE by Hu and Yuan [74], WFSs by Ch~n
and Kundu [35]; and, finally, the 0-semantics by Pereira et al. [111]. The properties
of these semantics were investigated in Dix [47, 48].

Theorem 7.19 (Properties; Dix [47, 48]).

• The well1ounded semantics WFS' and WFS+ are rational.

• EWFS and 0-semantics are cautious, but not rational.

• EWFS, WFSE, and WFS5 do not satisfy the cut rule.

• GWFS is not cautious and, moreover, does not satisfy the principle of partial
evaluation.

8. PROGRAM COMPLETION REVISITED

In the previous two sections, we have defined semantics for negation by means of
canonical models: stable models and well-founded models. The question arises
whether these semantics can be characterized by some form of completion as well
-the stationary completion (Definition 7.13) is technically a logical theory, but,
because all negative conclusions are stated as facts, it is still very close to a model.
Wallace [164] answered this question affirmatively. In this section we summarize
his results, which are obtained by defining two simple program transformations and
considering the completion of the transformed programs. Then we discuss briefly
recent results of Stark [155, 154].

8.1. Tightened Completion

The standard program completion, as discussed in Section 4 results in a "loose"
interpretation of negation, corresponding to the negation as finite failure rule (the
Soundness Theorem (Theorem 4.16) and the Completeness Theorem (Theorem
4.17)). In order to obtain a "tight" interpretation of negation, Wallace encoded the
iterations of the Tp-operator into the program.

De~nitio~ 8.1 (Tightened program). Let P be a program. The tightened program Vr
1s denved from P as follows, where N is a variable:

• ~e language of Pr consists of Lp augmented with a new relation symbol p of
anty n + 1 for every relation symbol p of arity n in Lp. A new unary function
symbol s is also added.

• I? each clause of P, the head p(t) is replaced by p(t, s(N)) and each positive
hteral p(t) in the body is replaced by p(t, N).

• For each relation symbol pin Lp, the clause p(x) ~ p(x, N) is added.

The tightened completion of a program P is defined as the completion of Pr.
The .foll~wing result clarifies the relation between the stable models of a program
and its tightened completion.

LOGIC PROGRAMMING AND NEGATION 47

Theorem 8.2 (Tightened completion; Wallace [163]). The stable models of a program P
are precisely the restrictions of the Herbrand models of comp(PT) to Lp.

8.2. Rounded Completion

As a special case of the previous theorem, one can observe that the tightened
completion of a program is inconsistent if and only if the program has no stable
models.

One of the motivations for considering three-valued models of the completion in
Section 4.3 and well-founded semantics in Section 7 was avoiding inconsistency.
The following program transformation, suggested independently by Drabent and
Martelli [51] and Wallace [163], results always in a call-consistent program; thus, by
Theorem 4.6 its completion is consistent.

Definition 8.3 (Doubled program). Let P be a program. The doubled program (called
split program in [51]) PD is derived from P as follows:

• The language of PD consists of Lp augmented with a new relation symbol p'
of arity n for every relation symbol p of arity n in Lp.

• Each clause of P is replaced by two new clauses:
-In the first clause, each occurrence of a relation symbol p in a negative

literal is replaced by p'.
-In the second clause, each occurrence of a relation symbol p in a positive

literal or the head of a clause is replaced by p'.

The doubled completion (called strict completion in [51]) of a program P is
defined as the completion of PD. There is a close connection between the doubled
completion of a program and the three-valued interpretation of its standard
completion.

Theorem 8.4 (Doubled completion; Drabent and Martelli [51]). Let P be a program
and let L be an atom or a ground negative literal. Then

comp(PD) t=L iffcomp(P) 'r=- 3 L.

The tightening and doubling program transformations are orthogonal: (Pr)0 =
(P0)T is called the rounded program derived from P; its completion is called tht
rounded completion. The following result clarifies the relation between the well
founded model of a program and its rounded completion.

Theorem 8.5 (Rounded completion; Wallace [163]). The well-founded model of a
program P consists exactly of those ground literals from L p that are true in all
Herbrand models of the rounded completion of P.

Intuitively, one can explain this relation between the rounded completion of a
program and its well-founded model through the alternating fixpoint characteriza­
tion of the latter. We can split a Herbrand model of the rounded completion int<i
two sets, one containing the dashed atoms; the other containing the undashe1
atoms. By removing the dashes in the first one, two interpretations are obtained. L
can be easily seen that fp oscillates between them.

48 K. R. APT AND R. I

Finally, Wallace describes yet another completion-the full completion o
program-which is obtained from the rounded completion by dropping the f
equality axioms and adding, for each relation p, the induction axiom

-, p(x,O) A VN(-, p(x, N)-" -, p(x, s(N))) -"\IN-, p(x, N).

The result is that the effect of the counter in the tightened program
weakened: a loop still leads to failure, but an infinite descending chain does r
For example,the full completion of the program {p(f(x)) <-- p(x)} entails -, p(t)
each ground term t, but it does not entail \fxp(x), because there exists a mo
with infinitely many individuals a1,a2 , ••• such that, for all i, ai=f(a;+ 1). 1
semantics coincides with the one presented by van Gelder [161].

8.3. Other Approaches

We conclude this section by mentioning two other modifications of complet
proposed by Stark. The first one is called partial completion. As in the definition
a doubled program (Definition 8.3), for each relation symbol p, a new relat
symbol p' of the same arity is introduced. The relations p' are used in a modif
Step 6 of building the completion. Now instead of replacing "+-- " by " - ," ·
formulas \fx(- p(x) <-- ~ F) are added. Here - behaves like the classical negat
with the exception that ~ p(t) is p' (t) and - p 1 (t) is p(t).

The resulting theory is called partcomp(P) for partial completion. The us
completion is obtained by adding the axiom Vx(p'(x) tt -, p(x)) for each relat1
p. Stark [155] showed that the Completeness II Theorem (Theorem 5.2) holds wt
comp(P) I= 3 is replaced by partcomp(P) I= . This result generalizes Theorem
because Stark also showed that for all queries Q, we have partcomp(P) I= \f Q
comp(P) I= 3'VQ and partcomp(P) I= V - Q if comp(P) I= 3\f-, Q.

Then, in Sfark [154], a modification of this approach dealing with Prolog
proposed. To this end the SLDNF resolution with the leftmost selection rule
related to a theory called /' comp(P). This theory is a modification of comp(
obtained by introducing for each relation symbol p, three new relation symbols,
pl, and pt, with the intuitive meaning "p succeeds," "p (finitely) fails," and
terminates." /'comp(P) is build in a similar way as partcomp(P), but now 1

construction involves three operators, S, F, and T, which transform the queries
the original language into formulas of the enriched language which includes 1

relation symbols p', pf, and p'. A typical and crucial law is F(L 1 AL 2)=FL 1

(TL 1 /\ FL2), which intuitively expresses when the query L 1, L 2 finitely fails w.
the SLDNF resolution with the leftmost selection rule. The corresponding res
connects this resolution method with ,!' comp(P) in a way analogous to 1
Completeness II Theorem (Theorem 5.2). This generalizes, in an essential way
completeness result of Stroetman [157], where only terminating programs '
considered.

9. PROOF THEORY III: SLS RESOLUTION

SLS resolution is a modified version of SLD resolution that can deal with stratifi
programs rather than just definite (i.e., positive) programs (hence the second '
relacing the "D"). In fact, similar resolution methods for all general programs i

LOGIC PROGRAMMING AND NEGATION 49

also called SLS resolution. First, we present the definition for stratified programs
due to Przymusinski [118] (or more precisely a mild generation to locally stratified
programs adapted from Bol [23]).

The main difference with SLDNF resolution is that the computation-oriented
negation as finite failure rule is replaced by the more idealistic negation as (not
necessarily finite) failure rule. As a consequence, SLS resolution is not effective: an
implementation can only approximate it. In contrast, SLDNF resolution can be
implemented, but not in a straightforward way: the sets of SLDNF successful and
finitely failed queries are recursively enumerable, but not by building SLDNF trees
via all (possibly infinitely many) selection rules.

Example 9.1 (SLDNF uersus SLS resolution). Let P = {p ,,__ --, q; q ,,__ , r,--, s;
r ,,__ r; s <- }. For the query p, we have the following trees (where needed, selected
literals are underlined; = denotes the subs relation between nodes and trees):

p

I
-iq~q

I

r 0

r

SLS tree
unsuccessful SLD~F tree successful SLDNF tree

p

I
·q~q

I I

0

SLS tree

r

We see (in the middle picture) that using the rightmost selection rule yields a
finite and successful SLDNF tree, which is also an SLS tree. However, using the
leftmost selection rule yields an infinite and unsuccessful SLDNF tree (left picture).
Thus the value of the completeness results for SLDNF resolution, stating the
existence of a successful SLDNF tree, is limited. The rightmost picture shows that
the SLS tree via the leftmost selection rule is successful, although infinite.

9.1. SLS Resolution for Locally Stratified Programs
We now provide a formal definition of SLS resolution for locally stratified pro­
grams using the concepts introduced in Section 3.2 when defining SLDNF resolu­
tion.

50
K. R. APT AND R. BOL

Definition 9.2 (Stratum). Let P be a program that is locally stratified w.r.t. stratum.

• For an atom A, not necessarily ground, we define

stratum(A) =sup{ stratum(Ag) I Ag is a ground instance of A}·

• For a negative literal, A, not necessarily ground, we define

stratum(-, A) =stratum(A) + 1.

• We define stratum(O) = 0 and for a query Q = L 1, .•• , Ln(n > 0),

stratum(Q) =max{stratum(L;)liE [1,n]}.

Definition 9.3 (SLS tree). An SLS tree is a forest 5T, whose nodes are (possib_ly
marked) queries of (possibly marked) literals. (The markers are the same as. m
SLDNF trees.) The function subs assigns to nodes containing a marked negative
ground literal .., A a tree in ST with root A.

A tree is successful if it has a leaf marked as success. A tree is floundered if it
has a leaf marked as floundered. Hence a tree may be both successful and
floundered. A tree is failed if it is neither successful nor floundered.

Let P be a locally stratified program and let R be a selection rule. For every
query Q, we define the SLS tree 9' for P and Q via R by induction on stratum(Q).
The root of the main tree T of ,'7 is Q. For any node Nin T we have:

• If N is the empty query, then N is marked as success and has no children.

• If R selects a positive literal L in N, then N has as children the nodes that
are obtained by extending T at N in the sense of Definition 3.5. If no
children can be obtained in this way, then N is marked as failed.

• If R selects a negative literal, A in N, then:
- If A is nonground, then N has no children and is marked as floundered.
-If A is ground, then stratum(A)< stratum(Q); thus, the SLS tree

Co/', T', subs') for P and A via R is already defined. Then set subs(N) to
T', extend subs by subs', and extend ST by ST'.
* If T' is successful, then N has no children and is marked as failed.
* Otherwise, if T' is floundered, then N has no children and is marked

as floundered.
* Otherwise, T' is failed and the resolvent (E, N - {.., A}) is the only

child of N. (Thus, in contrast to SLDNF trees, finiteness of yr is not
required here.)

Definition 9.4 (Compute~ answer substitution). Let P be a locally stratified program
and Q a query. Consider a branch in the main tree T of an SLS tree for P and
q which ends.with the empty query. Let a 1, ••• , a" be the consecutive substitu­
tions along this branch.

Then the. restriction (a1 ••• a)IQ of the composition a ··· a to the vari­
~blres of Q is called an SLS-computed answer substitution (c.~.s. fo~ short) for Q
m .

We ~aw in Section 4.4 that SLDNF resolution is sound w.r.t. the program
complet1on, comp(P). A natural question arises: w.r.t. which semantics is SLS

LOGIC PROGRAMMING AND NEGATION 51

resolution sound? The answer was provided by Przymusinski [118]-it turns out that
SLS resolution is a proof-theoretic counterpart of the perfect model semantics.
More precisely, he established the following results.

Theorem 9.5 (Soundness). Let P be a locally stratified program, Q a query, and Ra
selection rule. Let Mp be the unique peifect Herbrand model of P. Consider the
main tree T of the SLS tree for P and Q via R.

• If T is a c.a.s. for Qin T, then Mp F= VQT.

• If T is failed, then Mp F= V-, Q.

Corollary 9.6. SLS resolution for locally stratified programs is also sound w.r.t. the
unique stable model semantics and well-founded semantics.

Theorem 9. 7 (Completeness). Let P be a locally stratified program, Q a query, and R a
selection rule. Let Mp be the unique peifect model of P. Consider the main tree T of
the SLS tree for P and Q via R. Suppose T does not flounder.

• If Mp F= VQT, then there is a c.a.s. u for Qin T such that Qu is more general
than QT.

• If Mp I= V-, Q, then T is failed.

Corollary 9.8. SLS resolution for locally stratified programs is also complete in the
absence of floundering w.r.t. the unique stable model semantics and welljounded
semantics.

9.2. SLS-Resolution for General Programs

Although its name suggests that SLS resolution can only be used for stratified
programs, several proposals for top-down computation of the well-founded seman­
tics are also called SLS resolution. The one we found in the literature, which we
discuss in this section, all have the disadvantage of requiring a positivistic selection
rule. This means that a negative literal is selected only if no more positive literals
are available.

Przymusinski [122) observed that (a suitable variant of) the iterated least fixpoint
definition of the well-founded semantics suggests a dynamic stratification of the
program: if a ground atom A is decided (becomes true or false) in iteration a,
then a is the dynamic stratum of A. An SLS derivation for an atom A in stratum
a is defined by induction on a and consists now of two phases.

In the first phase, positive literals are selected and the derivation proceeds like
an SLD derivation. This derivation fails if it is finitely failed or diverges. If the
derivation does not fail in this phase, then it ends in a query with only negative
literals (possibly none).

In the second phase, ground negative literals -, B, for which the stratum of B is
less than a, are selected one by one. By induction on the stratum, the SLS tree T
for B is already defined. This case is handled as in Definition 9.3:

• If T is contains the empty query, then the derivation fails.

• Otherwise, if T contains a floundering derivation, then the derivation floun­
ders.

52 K. R. APT AND R. BOL

• Otherwise, ..., B is removed; the derivation continues with the remaining
negative literals.

If the derivation completes both phases, then there are three possible outcomes:

• If the derivation ends in the empty query, then it is successful.

• If the derivation ends in a query containing a nonground negative literal,
then it flounders.

• Otherwise, the derivation ends in an undefined leaf.

In addition to the ineffective negation as failure rule, here also the criteria for
the selection rule seem to be very ineffective: how can we compare the strata of
atoms without computing their truth value in the well-founded model? Przymusin­
ski remarks ([122], Remark 9.1) that the requirement translates into "no negative
recursion is allowed in the derivation." Thus, an interpreter implementing this
form of resolution may select a "wrong" negative literal, find that it leads to
negative recursion, and "backtrack" over the selection. A problem with this
approach is that in this way, part of the search of the interpreter is not represented
in the resulting SLS tree.

In later versions [115, 131], a sequence of "SLS-trees of rank a" is created, in
which negative literals are decided on the basis of an SLS tree of a one lower rank,
if possible, and skipped otherwise. Skipping here means that another literal is
selected. The selection rule is not explicitly required to be positivistic, but in the
SLS tree of rank 1, all negative selected literals will be skipped; thus, the effect is
that of a positivistic selection rule. (An SLS tree of rank a + 1 extends the tree of
rank a only at its nodes that contain exclusively skipped negative literals.)

Another hidden property of this selection mechanism is that negative literals are
effectively selected in parallel: for each of them, resolution is tried at each rank
(until one fails or until they have all succeeded). A positivistic selection rule that is
negatively parallel (selects all negative literals at once) is explicitly used by Ross
[138]; it is called preferential.

Ross defines SLP trees (the "P" stands for "positivistic") as the result of the first
phase described above. Then he defines global SLS resolution by means of global
SLS trees as follows.

Definition 9.9 (Global SLS tree). A global tree r for a query Q has three types of
nodes:

• Tree nodes, which are labeled by SLP trees for intermediate goals.

• Negation nodes, which are labeled by a query with only negative literals
(possibly none).

• Nonground nodes, which have no label.

The root of f is the SLP tree for Q.
Each tree node T in f 0 has negation nodes as its children: if Q is a leaf of T

that contains only negative literals, then Q is a child of T in r0 .

Each negation node Q = -, A 1, ... ,..., An(n ~ O) has n children: for i E [l, n],
if A; is ground, then the child is a tree node, namely the SLP tree for A.·
otherwise the child is a nonground node.

' , ,

LOGIC PROGRAMMING AND NEGATION 53

Every node in a global tree has a status: successful, failed, indeterminate, or
floundered.

Definition 9.10 (Status of nodes). Consider a global tree:

• A nonground node is always floundered.

• A negation node is failed
successful
floundered

if one of its children is successful,
if all its children are failed,
if none of its children is successful,
and at least one is floundered.

• A tree node is failed
successful
floundered

if all its children are failed,
if one of its children is successful,
if one of its children is floundered.

• Nodes that are not assigned a status according to these rules are indetenni­
nate.

A tree node can be both successful and floundered, but no other status pair is
possible for a single node.

Definition 9.11. Let Q be a query. Let T be the root node of a global SLS tree r
for Q (thus T is an SLP tree for Q). A successful branch of T is a branch that
ends in a leaf labeled N, such that the corresponding negation node labeled f'
is successful. The computed answer substitution of a successful branch is, agair
the composition of the consecutive substitutions along the branch, restricted t,
the variables of Q.

Ross [138] proved the following results.

Theorem 9.12 (Soundness). Let P be a program and Q a query. Let r be a global SLS
tree for Q.

• If fJ is a computed answer substitution in r, then WFM(P) I= V(QfJ).

• If the root of r is failed, then WFM(P) F= \:/(-, Q).

Theorem 9.13 (Completeness). Let P be a program and Q a query. Let r be a
nonfioundering global SLS tree for Q.

• If WFM(P) F= 3Q, then the root of r is successful.

• If WFM(P) F= V(-, Q), then the root of f is failed.

• If WFM(P) F= V(QfJ), then there is a computed answer substitution <r in r such
that G<r is more general than GfJ.

9.3. SLS Resolution for General Programs via all Selection Rules
In this section, we present a definition of SLS resolution that deals with all general
programs and all selection rules; it is new, to the best of our knowledge. As the first
step, we define oracle SLS trees. In these trees, we resolve selected positive literals

54 K. R. APT AND R. BOL

against program clauses, as usual, but ground negative literals are resolved ~y using
the well-founded model as an oracle. Thus we eliminate all negative recursion. The
oracle produces one of the answers true, false, and unknown. In_ order to rec~rd
the last case properly, substitutions may be annotated by u m the followmg
definitions.

Definition 9.14 (Oracle SLS tree). Let P be a program and Ra selection rule. For a
query Q, we define the oracle SLS tree T for P and Q via R as follows. The
root of T is Q. For any node Nin T we have:

• If N is the empty query, then N is marked as success and has no children.

• If R selects a positive literal L in N, then N has as children those nodes
that can be obtained by extending Tat Nin the sense of Definition 3.5. If no
children can be obtained in this way, then N is marked as failed.

• If R selects a negative literal , A in N, then:
- If A is nonground, then N has no children and is marked as floundered.
-If A is ground, then:

* If A is true in WFM(P), then N has no children and is marked as
failed.

* If A is false in WFM(P), then the resolvent (E, N - {,A}) is the only
child of N.

* If A is unknown in WFM(P), then the resolvent ((u, €), N - {......,A}) is
the only child of N.

Definition 9.15 (Oracle answer substitution). Let P be a program and Q a query.
Consider a branch in an oracle SLS tree T for P and Q which ends with the
empty query. Let a 1, ••• , an be the consecutive substitutions along this branch.

Then the restriction (a1 ••• an)IQ of the composition a 1 ···an to the vari­
ables of Q is called an oracle SLS-computed answer substitution (o.c.a.s. for
~hort) for Q in T, if none of the substitutions a; is annotated by u; otherwise it
1s called an oracle SLS-unknown answer substitution (o.u.a.s. for short) for Q in
T.

An oracle SLS tree T for a query Q is:

• Successful if it gives an o.c.a.s. for Q.

• Floundered if it contains a leaf marked as floundered.

• !ndeQterminate if it is not successful and not floundered, and gives an o.u.a.s.
lOr .

• Failed, otherwise.

The following results relate oracle SLS trees to the well-founded semantics.

Lemma 9.16 (Soundness). Consider an oracle SLS tree T for a program panda query
Q.

• If T is a o.c.a.s. for Qin T, then WFM(P) 1:=3 'VQ7 •

• If T is a o.u.a.s. for Qin T, then WFM(P) 1;!:3 , VQ7 •

• If T is failed, then WFM(P) F=3 \:/, Q.

LOGIC PROGRAMMING AND NEGATION 55

Lemma 9.17 (Completeness). Consider an oracle SLS tree T for a program P and a
query Q. Suppose T does not flounder.

0 lf WFM(P) 1= 3 VQT, then there is an o.c.a.s. a for Qin T such that Qa is
more general than QT.

• lf WFM(P) tt= 3 -, 'r:JQT, then there is an o.c.a.s. or an o.u.a.s. a for Qin T
such that Qa is more general than QT.

• lf WFM(P) 1= 3 V-, Q, then T is failed.

Proving these lemmas is straightforward: negative literals are given their correct
truth value by definition; positive literals are treated as in SLD resolution.

These results allow the second step of the construction of the SLS tree. For all
nodes N where a ground negative literal -, A is selected and the oracle is used, we
can "justify" the outcome of the oracle by a subsidiary oracle SLS tree for A.
Either this tree produces the same answer as the oracle or it flounders. In the
latter case, the descendants of N are removed and N becomes a flounder leaf. By
recursively adding subsidiary trees for all nodes where the oracle was used, no step
involving a selected ground negative literal will remain unjustified.

Definition 9.18 (SLS tree). Let P be a program, Q a query, and Ra selection rule.
An SLS tree for P and Q via R is defined as the limit of a sequence of oracle
SLS trees of depth n (n ;c: 1). These are defined by induction. An oracle SLS tree
of depth 1 for P and Q via R consists of only one tree, which is the oracle SLS
tree for P and Q via R. For n > 1, an oracle SLS tree of depth n for P and Q
via R is a forest (Y, T, subs) obtained as follows.

The main tree T is the oracle SLS tree for P and Q via R, of which some
nodes can be removed. From the root, follow each branch and for every ground
negative literal -, A selected in a node N in T, let (Y', T', subs') be the oracle
SLS tree of depth n - 1 for P and A via R, set subs(N) to T', and extend subs
by subs' and :?" by Y'. If T' is floundered and not successful, then mark N as
floundered and remove the children of N, if any.

The following results relate SLS trees to the well-founded semantics.

Theorem 9.19 (Soundness). Consider the main tree T of an SLS tree for a program P
and a query Q.

• lf r is an o.c.a.s. for Qin T, then WFM(P) 1= 3 'r:JQT.

• lf T is an o.u.a.s. for Qin T, then WFM(P) 1;t 3 -, 'r:JQT.

• If T is failed, then WFM(P) 1= 3 'r:f-, Q.

Theorem 9.20 (Completeness). Consider the main tree T of an oracle SLS tree for a
program Panda quel}' Q. Suppose T does not flounder.

• lf WFM(P} 1= 3 'rJQT, then there is an o.c.a.s. a for Qin T such that Qa is
more general than QT.

• If WFM(P) tt= 3 -, 'rJQT, then there is an o.c.a.s. or an o.u.a.s. a for Qin T
such that Qa is more general than QT.

• If WFM(P) 1= 3 'rJ-, Q, then T is failed.

56 K. R. APT AND R. BOL

Remark 9.21. Instead of the well-founded model of the program, any stationary
model can be used as the oracle in the above definitions. The (oracle) SLS trees,
obtained using the stationary model M as the oracle, will be sound and complete
(in the above sense) w.r.t. M.

Although we have defined SLS trees in such a way that they are sound and
complete w.r.t. the well-founded semantics, it is not at all clear how an interpreter
could construct these trees in a top-down way. This brings us to the issue of
implementation.

9.4. Implementation

As mentioned before, SLS resolution is not effective; thus, it is not fully imple­
mentable. However, it is possible to make a sound implementation that is complete
for a limited class of programs, e.g., programs without function symbols. It is then
essential to capture those infinite derivations that have the form of a loop. This can
be done by simple loop checking techniques or by tabulation (also known as
memoization or lemma resolution).

For locally stratified programs, loop checking was studied by Bo! [23]. Tabulation
for stratified programs was studied by Kemp and Topor [78] and by Seki and ltoh
[146]. By definition, in this setting only positive loops have to be dealt with. So their
approach can remain close to tabulation for positive programs by maintaining a
table for each stratum.

Chen and Warren [36] added a tabulation mechanism to the form of SLS
resolution proposed by Przymusinski and Warren [123, 131] in order to detect
positive loops. Negative loops are detected by maintaining a negative context: the
set of negative literals that may be assumed undefined because they are encoun­
tered in a loop. In this way the tables must be constructed for all relevant negative
contexts. This gives many redundant computations and a rather complex result (the
final construction is a forest of forests ...). Bidoit and Legay [22] proposed a
similar system, computing the defined atoms and the potentially defined atoms
separately.

Recently, Bo! and Degerstedt [24] proposed a simpler method that uses tabula­
tion to detect both positive and negative loops. Only one table needs to be
constructed, but their definition of failure is somewhat complicated.

Finally, it should be mentioned that a top-down computation of the well-founded
semantics for ground programs is described by Pereira et al. [110]; instead of
tabulation, it uses both positive and negative contexts. Such use of positive contexts
does not generalize to the nonground case (as was shown by Apt et al. [9]).

10. DISJUNCTIVE PROGRAMS

In a disjunctive logic program, the heads of clauses can be disjunctions of one or
more atoms. Numerous semantics were proposed for such programs. They are
classified in Dix [44].

Positive disjunctive programs allow the expression of indefinite (incomplete)
knowledge, which is impossible in definite programs. As examples, consider the

LOGIC PROGRAMMING AND NEGATION 57

following natural statements:

mother(X) v father(X) +- parent(X),

red(X) v blue(X) v green(X) +- primary_colour(X).

The addition of negation allows us to express indefinite knowledge as well, so
one may wonder whether there is any use in allowing disjunctions in general logic
programs. Indeed there is: because negation in logic programming is not classical
negation, the effect of a clause p +- -, q is quite different from p v q. The pair
{p +- -, q; q +- -, p} is a better approximation-at least it retains the symmetry
between p and q-but it is still not adequate. It introduces a loop through
negation, which renders some semantics inapplicable and causes obvious problems
in the proof theory. Furthermore, the well-founded model of the program
{p +- -, q; q +- -, p; r +- p; r - q} does not contain r, as one might expect.

10.1. Positive Disjunctive Programs

Lobo et al. [92) recently published a book about the foundations of disjunctive logic
programming, of which the larger part deals with positive programs. We shall
briefly recall some semantics for positive disjunctive programs; for a more elabo­
rate discussion, motivation, and proof theory, we refer to this book.

An important distinction, which can be made already for positive disjunctive
programs, is that between an inclusive and exclusive interpretation of disjunctions.
For example, if we have the program {p +-; p v q +- }, then the exclusive reading
concludes that q is false, whereas the inclusive reading does not conclude anything
about q.

Recall that, for definite programs, the negation as (finite or infinite) failure rule
can be viewed as the application of the closed world assumption (see Section 1.2

P l=cwA ..., A iff P t;eA.

This rule must be rephrased for disjunctive programs, because in this form it gives
rise to inconsistencies. Indeed, we have p v q I= cw A ..., p and p v q l=cwA ..., q, so
PU {-, AIP l=cwA -, A} is inconsistent.

The generalized closed world assumption (GCWA) of Minker [102) is such a
rephrasing. It says

P l=ccwA -, A iff..., A is true in all minimal models of P.

GCW A gives rise to an exclusive interpretation of disjunctions.
The weak generalized closed world assumption (WGCW A) was developed inde­

pendently by Lobo et al. [132) and by Ross and Topor [139). It was originally
defined as a computational simplification of GCWA that infers less negative
literals. Let P* be the program obtained from P by replacing V by /\, i.e., a
clause Ai V ··· V An+- B in P yields the clauses Ai+- B ···An+- B in P*. Then

P l=wccwA ..., A iff P* l=cwA ..., A.

WGCW A gives rise to an inclusive interpretation of disjunctions. Notice that CW A,
GCWA, and WGCWA coincide on definite programs.

Even less negative literals than from WGCW A can be inferred from the
completion of a disjunctive program, which was defined by Lobo et al. [91, 92]. It

58
K. R. APT AND R. BOL

consists of P, augmented with EQ and the only-if (i.e., ~)part of the completion

of P*.

Theorem JO.I (Dix [44]). WGCWA i's rational and GCWA is cumulative, but not

rational.

The program p = {p v q +--; r +-- p; s +-- q, r} is a counterexample against the
rationality of GCWA. The minimal models of P are {p, r} and {q}; thus, P 1t=ccwA

-. r and P l=acwA, s. However, PU {r} has the minimal models {p, r} and
{q, r, s}; thus, PU {r} ~GCWA -. s. Notice that P ~wccwA -. s.

10.2. Locally Stratified Disjunctive Programs

The definition of locally stratified programs can be generalized to disjunctive
programs: if two atoms are disjuncts in the head of a ground instance of a program
clause, then these atoms must be in the same stratum. The definition of perfect
models (Definition 6.8) generalizes immediately to locally stratified disjunctive
programs. Of course, a disjunctive program may have more than one perfect
model.

Definition 10.2 (Perfect model semantics; Przymusinski [126]). The perfect model
semantics of a disjunctive program P is defined by putting, for a ground atom A,

A is true (false), if A is true (false) in all perfect models of P.

Definition 10.3 (Weak perfect model semantics; Dix [44]). The weak peifect model
semantics of a disjunctive program P is defined by putting, for a ground atom A,

A is true (false), if A is true (false) in all perfect models of P and in the
perfect model of P*. 5

\gain, perfect model semantics interprets disjunctions exclusively, whereas weak
feet model semantics interprets inclusively. Perfect model semantics extends
WAS, the generalized closed world assumption for stratified programs, which
, defined by Rajasekar and Minker [133]. A weak version of GCW AS, called

JCWAS, was defined by Dix [44]; weak perfect model semantics extends it.

1eorem 10.4 (Dix [44]).

• ~eifect model semantics and GCWAS coincide with GCWA on positive disjunc­
twe programs.

• Weak perfect model semantics and WGCWAS coincide with WGCWA on
positive disjunctive programs.

• Perfect model semantics, GCWAS, weak peifect model semantics and WGCWAS
are cumulative. '

• Of these semantics, only WGCWAS is rational.

5 Notice that P* is a locally stratified program, because P is a locally stratified disjunctive program.

LOGIC PROGRAMMING AND NEGATION 59

10.3. General Disjunctive Programs

Semantics for all general disjunctive programs that coincide with the well-founded
semantics on general programs, and that also coincide with the perfect (or weak
perfect) model semantics on locally stratified disjunctive programs, have been
proposed by Przymusinski [119] and by Dix [44].

Przymusinski defines stationary expansions of disjunctive programs by generaliz­
ing Definition 7.13 in the following ways.

• Instead of a set of not_A atoms, a set C of disjunctions of not_A atoms is
added to the program P.

• The second condition on interpretations that are considered when determin­
ing minimal models is generalized to the disjunctive inference rnle:

if PUCl=A1 V ... VAn,

then ll=noLA 1 /\ ... /\not_Ak~Ak+I V ... VAn,

where 1 :::; k :::; n and the empty disjunctive is interpreted as false.

• For a negative disjunction F = --, A 1 V ... V -, An, PUC l=min F if F is true
in all minimal models of P u C (according to this particular notion of
minimality).

• The fixpoint equation that defines stationary expansions becomes

E(P) =PU {noLA 1 v ... V not_AnlE(P) l=min ..., A 1 V ... V--, An}·

In another version of the semantics, Przymusinski used

if PUC l=min --, A 1 V "' V -, An,

then] I= Al /\ ... /\A k ~ not_A k +I v ... v not_ n

as the disjunctive inference rule (which implicitly makes the definition of I= min
recursive). Dix [44] reformulates and compares these two versions, together with a
third version (using essentially the first disjunctive inference rule, restricted to
k = n). This third version is weaker than the perfect model semantics on locally
stratified disjunctive programs.

Dix also defines weak stationary semantics: a weak stationary extension satisfies
the fixpoint equation

E(P) =PU {noLA 1 V ... V not_AnlE(P)* l=min --, A 1 V ··· V--, An}·

(This disjunctive inference rule is the third one of those mentioned above.) Wea
stationary semantics interprets disjunctions inclusively.

Theorem 10.5 (Dix [44]).

• Stationary semantics for disjunctive programs is not cumulative.

• Weak stationary semantics is cumulative, but not rational.

• For locally stratified disjunctive programs, weak stationary semantics decides
more atoms than WGCWAS, but less than weak perfect semantics.

Finally, Dix [44] defines a semantics, DWFS, which coincides with the well­
founded semantics on general programs, and with the perfect model semantics on

60
K. R. APT AND R. BOL

locally stratified disjunctive programs. It is weaker than the stationary semantics,

and cumulative. A weak version of it, WDWFS, also coincides with the well-founded

semantics on general programs and with the weak perfect model semantics on

locally stratified disjunctive programs. It is stronger than weak stationary semantics,

and cumulative.
A rather different approach is taken by Ross [137]: he defines a semantics for

general disjunctive programs through a top-down procedure generalizing Definition

9.9. He defines three versions: strong well-founded semantics, with an exclusive

interpretation of disjunctions; weak well-founded semantics, with an inclusive

interpretation of disjunctions; and finally optimal well-founded semantics, where

the program(mer) defines the inclusive or exclusive nature separately for each

clause. On general programs, these semantics coincide with the well-founded

semantics. However, when restricted to locally stratified disjunctive programs, the

strong version is weaker than perfect model semantics and the weak version is

weaker than weak perfect model semantics.
Two fixpoint semantics that extend the stationary semantics are GDWFS and

WF 3 by Baral et al. [13, 14] and Lobo et al. [93]. WF 3 extends GDWFS; both

coincide with GWFS on general programs (thus they are not cautious and do not

satisfy PPE, the properties defined in Section 1.3). They are incomparable with

perfect model semantics on locally stratified disjunctive programs.

Sakama and Inoue (143] defined GCWA-, and WGCW A-,, based on an

extension of stable models to disjunctive programs. These semantics coincide with

perfect, respectively weak perfect, model semantics on locally stratified disjunctive

programs.
Clearly, the issue of what is the right semantics for general disjunctive programs

is far from being decided. Its seems that the weaker semantics have some
advantages:

• They are cumulative and satisfy Dix's weak principles.

• The complexity of computing them is sometimes lower (for example WGCW A

has lower complexity than GCW A, but the complexity of perfect and weak

perfect model semantics is the same; see also Muller and Dix (105]),

• Uncertainty is safe, that is, if the semantics draws more conclusions from the

program than the programmer intended, then the results are probably worse
than when some intended conclusions are missed.

NAL REMARKS

We introduced in this paper two lines of research dealing with semantics of general

programs. The first one was.considered in Section 4 and focused on the completion

of ~ program. The second lme was considered in Sections 6 and 7 and focused on

vanous attempts to extend the concept of a "special" Herbrand model to general

pr~grams. In each category we studied a number of proposals which resulted in
qmte an array possibilities.

11 .1. Reconciliation

~~ useful to characterize a class of programs for which these approaches coincide

is problem was considered by Apt and Bezem (3), who showed that for acycli~

LOGIC PROGRAMMING AND NEGATION 61

programs, practically all approaches considered in this paper coincide. More
specifically, they proved the following result:

Theorem 11.l. Let P be an acyclic program. Then:

• The Tp operator has a unique fixpoint, Np.

• Np is a unique fixpoint of the T3p operator.

• Np is a unique perfect model of P.

• Np is a unique Herbrand model of comp(P).

• SLDNF and SLS trees coincide for bounded queries.

Consequently, by the Fixpoint Lemma (Lemma 4.12), Np is also a unique three-val­
ued Herbrand model of comp(P). Additionally, because every acyclic program is
locally stratified, by the Unique Stable Model Theorem (Theorem 6.20), Np is also
a unique stable model of P and, consequently, by Corollary 7.9 it is the well-founded
model of P, as well.

These results were generalized by Apt and Pedreschi [5] to a larger class of
programs corresponding to termination w.r.t. the leftmost selection rule, as op­
posed to termination w.r.t. all selection rules (in the sense of the Terminating
Program Definition (Definition 3.16)). Recently, Fitting [61] provided an alternative
proof of these results by means of metrics and the Banach contraction theorem.

A number of interesting programs tum out to be acyclic. By the above theorem,
all approaches to their semantics coincide. For instance, the program TWEETY of
Section 1.3 and the programs SINK, NUMBERS, and EVEN of Sections 3.1, 5, and
6.2 are acyclic. Another example is a natural formalization of the so-called Yale
shooting problem of Hanks and McDermott [72], which is an example of temporal
reasoning, an instance of nonmonotonic reasoning. This problem was extensively
discussed in the literature and its formalizations in various formalisms for non­
monotonic reasoning were studied. In relation to logic programming, we note three
independent references-that of Apt and Bezem [3], who proved that the transla­
tion of the Yale shooting problem to logic program results in an acyclic program,
Elkan [54], who showed that this translation results in a locally stratified program,
and Evans [56], who observed that SLDNF resolution can be used to compute
desired consequences of the original formulation of the problem in first-order
logic.

In contrast, the program EVEN' of Section 6.2 is not locally stratified, so a
fortiori not acyclic. However, it is possible to apply to it a result of Apt and
Pedreschi [5] and draw the same conclusions as for the above programs.

I 1.2. Topics Not Treated

The range of topics that fall within "logic programming and negation" is so
enormous that inevitably we have to refrain from treating them all. Here follows a
short list of topics we left out.

Deductive databases form an extension of relational databases in which some of
the relations are implicitly defined. Ignoring the built-in relations, their syntax
coincides with that of logic programs. In the area of deductive databases, negation
also formed an important research subject. Parts of this research Oike stratification
and the use of perfect model semantics) overlap with that of logic programming.

62 K. R. APT AND R. BOL

Some other topics are more intrinsic for the field, in particular query processing
(see, e.g., Kemp and Topor [78] and Balbin et al. [11]), integrity constraint checking
(see, e.g., Lloyd et al. [90] and Sadri and Kowalski [142]), handling of updates (see,
e.g., Naqvi and R. Krishnamurthy [108]), and comparison of expressive power
between various query languages (see, e.g., Chandra and Hare! [34]). More recent
research in this area is surveyed in Kanellakis [77] and Bidoit [19].

Classical negation, also called explicit or strong negation, was introduced by
Gelfond and Lifschitz [67, 68]. It involves a second kind of negation that may occur
both in the head and in the body of clauses. Their motivation was to capture, in
logic programming, forms of temporal reasoning more complicated than the one
exemplified in the usual formalization of the Yale shooting problem.

When both kinds of negation are present, -, usually denotes classical negation;
negation by failure is then denoted by ~ . Semantically, classically negated atoms
are usually treated as new atoms. However, in the process of selecting "intended"
models, the "inconsistent" ones (that is, the ones containing an atom A and its
classical negation, A) are discarded. Overviews of this area can be found in
Alferes and Pereira [l], Wagner [162], and Minker and Ruiz [103].

Abductive logic programming views, roughly speaking, the query as an observa­
tion, which must be explained by means of additional hypotheses. Explanations can
be found by following the rules of the program "backwards," as in SLD resolution
and its generalizations. A survey on abductive logic programming, by Kakas et al.
[76] appeared recently.

Truth maintenance systems can be viewed as an extension of (propositional)
general logic programs, where some clauses (called constraints) have the constant
false as the head. Semantics have been proposed for truth maintenance systems by
generalizing stable and well-founded semantics to deal with constraints. We men­
tion here work by Elkan [53], Reinfrank [134], Giordano and Martelli [70], Wit­
teveen [164], and Jonker [75]. The area is related to classical negation and to
abduction.

Relations with other nonmonotonic formalisms are abundant (see, e.g., Nerode
et al. [109] and Przymusinski [123, 125]). Because negation as failure is nonmono­
tonic inference rule, there has been a cross-fertilization between semantics for
nonmonotonic logics and logic programming.

In one direction, stable expansions of autoepistemic logic (Moore [104]) inspired
Gelfond [64, 65] to define the stable semantics. A parallel work on connections
between the default logic of Reiter [136] and stable model semantics was carried
out by Marek and Truszczynski [99] and by Bidoit and Froidevaux (20]. Recently,
Przymusinski [127, 121] explained the stationary semantics by means of autoepis­
temic logic (see also Bonatti [25]).

In the other direction, Przymusinski [130] introduced three-valued versions of
default logic and autoepistemic logic, based on the well-founded semantics for logic
programs. For default logic, this semantics was generalized further by Baral and
Subrahmanian (15], Li and You [84], and Przymusinska and Przymusinski [114]. A
unifying framework for the semantics of autoepistemic logic, based on stationary
semantics for logic programs, was presented by Przymusinski [128].

The relation between logic programming and circumscription (McCarthy [101])
was studied by Lifschitz [85], Gelfond and Lifschitz [66], and Gelfond et al. [69].

Recursion theoretic analysis of the concepts discussed here attracted a lot of
interest. The complexity of the syntactic notions (like (local) stratifiability), of the

LOGIC PROGRAMMING AND NEGATION 63

proof theory (like SLS resolution), and of semantics (like well-founded model) were
studied both in the propositional and first-order case. These results are surveyed in
Cadoli and Schaerf [27].

Intensional negation is an approach to negation that transforms a program P
(without local variables) into a program P, defining a relation p for every relation p
in P, such that p(t) succeeds from P iff p(t) finitely fails from P, and vice versa.
Intensional negation was mainly studied by Mancarella et al. [95, 96, 17].

Linear logic is a modification of the classical Gentzen sequent calculus which
was developed by Girard [71] to capture reasoning about resources. In particular,
linear logic is sensitive to how many times a formula is used as hypothesis in a
proof. Cerrito [31, 32] showed that linear logic can be used to reason about logic
programs and Prolog.

We would like to thank all five referees for useful comments, Rachel Ben-Eliyahu and Jiirgen Dix for
extensive suggestions, and Kees Doets, Marco Schaerf, and Robert Stark for helpful discussions on the
subject of this paper.

REFERENCES
1. Alferes, J. J., and Pereira, L. M., On logic program semantics with two kinds of

negation, in: K. R. Apt (ed.), Proceedings of the Joint International Conference and
Symposium on Logic Programming, Washington, DC, MIT Press, Cambridge, MA, 1992,
pp. 574-589.

2. Apt, K. R., Logic programming, in: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, Elsevier, New York, 1990, Vol. B, pp. 493-574.

3. Apt, K. R., and Bezem, M., Acyclic programs, New Generation Comput. 29(3):335-363
(1991).

4. Apt, K. R., and Blair, H. A, Arithmetic classification of perfect models of stratified
programs, Fundamenta lnformaticae 13:1-18 (1990); addendum 14:339-344 (1991).

5. Apt, K. R., and Pedreschi, D., Reasoning about termination of pure Prolog programs,
lnfonn. Comput. 106(1):109-157 (1993).

6. Apt, K. R., and Pellegrini, A, On the occur-check free Prolog programs, Technical
Report CS-R9238, CWI, Amsterdam, 1992. ACM Trans. Program. Lang. Syst. To
appear.

7. Apt, K. R., and van Emden, M. H., Contributions to the theory of logic programming,
J. ACM 29(3):841-862 (1982).

8. Apt, K. R., Blair, H., and Walker, A., Towards a theory of declarative knowledge, in: J.
Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 193-216.

9. Apt, K. R., Bo!, R. N., and Klop, J. W., On the safe termination of Prolog programs, in:
G. Levi and M. Martelli (eds.), Proceedings of the Sixth International Conference on
Logic Programming, Lisbon, Portugal, ALP, MIT Press, Cambridge, MA, 1989, pp.
353-368.

10. Apt, K. R., and Doets, H. C., A new definition of SLDNF-resolution, J. of Logic
Program. 8:177-190 (1994).

K. R. APT AND R. BOL

h K and Meenakshi, K., Efficient bottom-up
11. Balbin, L: Porft, G~ ~-, ~~~~r~t~fi:~a~=~~ba~~s J. Logic Program. 11:295-344 (1991). computation o quenes ' . .

I C L b J and Minker J Generalized well-founded semantics for logic !2Bara, .. , oo, ., '., 1 · zc .r. · · M Sf kel (ed) Proceedings of the JOth ntematwna on1erence on programs, m: ·1 • ic · ' . · z1· 449 S · New Y k Automated Deduction, Lecture Notes in Artificial Inte zgence , prmger, or ,
July 1989, pp. 102-116. .

1 i Baral C., Lobo, J., and Minker, J., Generalized disjunc(tivde w) epll-foundd~d se~anht1csF~hr
·- • 1 • ' ·Il' z w Ras and M Zemankova e s. , rocee mgs 01 t e z1 t ,ogic programs, I 11· S 0 t b 1990 fntemational Symposium on Methodologies for Inte igent ystems, c o er , pp.

456-473.
14. Baral, c., Lobo, J., and Minker, J., WF3: A se~antics for ~egation in normal

disjunctive logic programs, in: Proceedings of the Sr.xth Intematzonal Sympostum on
Methodologies for Intelligent Systems, Charlotte, NC, 1991.

15. Baral, C., and Subrahrnanian, V. S., Stable and extension class theory for logic
programs and default logics, f. Automated Reasoning 8(3):345-366 (1992).

16. Baratella, S., Models of completion for some classes of logic programs, Fundamenta
lnformaticae 14:323-339 (1991).

17. B~rbuti, R., Mancarella, P., Pedreschi, D., and Turini, F., A transformational approach
to negation in logic programming, f. Logic Program. 8:201-228 (1990).

18. Ben-Eliyahu, R., From program completion to default logic, in: IAICVNN-93: Proceed­
ings of the JOth Israeli Symposium on Artificial Intelligence, Computer Vision, and Neural
Networks, Ramat Gan, Israel, December 1993. Also a poster in the 2nd International
Workshop on Logic Programming and Nonmonotonic Reasoning, Lisbon, Portugal,
June 1993.

i9. Bidoit, N., Negation in rule-based database languages: a survey, 1heoret. Comput. Sci.
78:3-83 (1991).

20. Bidoit, N., and Froidevaux, C., General logical databases and programs: Default logic
semantics and stratification, Inform. Computation 91:15-54 (1991).

21. Bidoit, N., and Froidevaux, C., Negation by default and unstratifiable logic programs,
Theoret. Comput. Sci. 78:85-112 (1991).

22. Bidoit, N., and Legay, P., WELL!: An evaluation procedure for all logic programs, in:
Proceedings of the International Conference on Database Technology, 1990, pp. 335-348.

23. Bol, R. N., Loop checking and negation, J. Logic Program. 15(2): 14 7-175 0 993).
Extended abstract in J. van Eijck (ed.), Logics in Al-JELIA '90, Lecture Notes in
Artificial Intelligence 478, Springer, New York, 1990, pp. 121-138.

24. Bo!, R. N., and Degerstedt, L., Tabulated resolution for well-founded semantics, in: D.
Miller (ed.), Proceedings of the 1993 International Logic Programminr; Symposium, 1993,
pp. 199-219.

25. Bonatti, P .. A' Auto-epistemic logics as a unifying framework for the semantics of logic
~rogran_is, m: K. ~- Apt, (ed.), Proceedings of the Joint International Conference and
Symfoswm on Logic Programming, Washington, DC, ALP, MIT Press, Cambridge, MA,
!99M, pp, 417-430,

26. B<'irger, E., Unsolvable d~cision problems for Prolog programs, in: Computation Theory
and Logic, Lecture Notes m Computer Science 270, Springer, New York, J 987, pp. 3-48.

27. Cadoli; M., and Schaerf, M., A survey on complexity results for non-monotonic logics
1. Logic Program. 17(2, 3 & 4):127-160 (1993). '

18 Cavedon L Continuity · t d - · . • . ., , cons1s ency, an completeness properties for logic programs r: ~- Levi and ~· Martelli (eds.), Proceedings of the Sixth International Conference o;
19 ogic Programming'. The MIT Press, Cambridge, MA, 1989, pp. 571-·584.

M · ~~v;::~t~,s~i: ~6):1~~ !J~1;~~~).and the completeness of SLDNF-resolution, Theuret.

3o. Cavedon, L., and Lloyd, J. W., A completeness theorem for SLDNF resolution, J.
Logic Program. 7:177-191 (1989).

LOGIC PROGRAMMING AND NEGATION 65

31. Cerrito, S., A linear semantics for allowed logic programs, in: Proceedings of the 5th
Symposium on Logic in Computer Science (LJCS '90), Philadelphia, PA, 1991, pp.
219-227.

32. Cerrito, S., A linear axiomatization of negation as failure, J. Logic Program. 12(1&
2): 1-24 (1992).

33. Chan, D., Constructive negation based on the completed database, in: R. A. Kowalski
and K. A. Bowen (eds.), Proceedings of the Fifth International Conference and Symposium
on Logic Programming, Seattle, ALP, MIT Press, Cambridge, MA, 1988, pp. 111-125.

34. Chandra, A. K., and Hare!, D., Horn clause queries and generalizations, J. Logic
Program. 2(1):1-15 (1985).

35. Chen, J., and Kundu, S., The strong semantics for logic programs, in: Z. W. Ras and M.
Zemankova (eds.), Proceedings of the Sixth International Symposium on Methodologies for
Intelligent Systems, Charlotte, NC, Lecture Notes in Artificial Intelligence 542, Springer­
Verlag, New York, 1991, pp. 490-499.

36. Chen, W., and Warren, D. S., A goal-oriented approach to computing well-founded
semantics, in: K. R. Apt (ed.), Proceedings of the Joint International Conference and
Symposium on Logic Programming, Washington, DC, ALP, MIT Press, Cambridge, MA,
1992, pp. 589-603.

37. Clark, K., Logic-programming schemes and their implementation, in: J. L. Lassez and
G. Plotkin (eds.), Computational Logic: Essays in Honor of Alan Robinson, MIT Press,
Cambridge, MA, 1991, pp. 487-541.

38. Clark, K. L., Negation as failure, in: H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, New York, 1978, pp. 293-322.

39. Cortesi, A., and File, G., Classes of programs with consistent completion, Technical
Report, Dip. di Matematica Pura e Applicata, Universita di Padova, 1992.

40. Cortesi, A., and File, G., Graph properties for normal logic programs, Theoret. Comput
Sci. 107(2):227-303 (1993).

41. Decker, H., On generalized cover axioms, in: K. Furukawa (ed.), Proceedings of th
Eighth International Conference on Logic Programming, Paris, France, MIT Press,
Cambridge, MA. 1991, pp. 693-707.

42. Decker, H., and Cavedon, L., Generalizing allowedness while retaining completeness of
SLDNF resolution, in: E. Barger, G. Jager, H. Kleine-Blining, and M. M. Richter
(eds.), CSL '89, 3rd Workshop on Computer Science Logic, Kaiserslautern, FRG, Lecture
Notes in Computer Science 440, Springer, New York, 1989, pp. 98-125.

43. Dix, J., Classifying semantics of logic programs, in: A. Nerode, W. Marek, and Y. S.
Subrahmanian (eds.), Logic Programming and Non-Monotonic Reasoning, Proceedings of
the First International Workshop, Washington, DC, MIT Press, Cambridge, MA, 1991,
pp. 166-180.

44. Dix, J., Classifying semantics of disjunctive logic programs, in: K. R. Apt (ed.),
Proceedings of the Joint Intemational Conference and Symposium on Logic Programming,
Washington, DC, ALP, MIT Press, Cambridge, MA, 1992, pp. 589-603.

45. Dix, J., A framework for representing and characterizing semantics of logic programs,
in: B. Nebel, C. Rich, and W. Swartout (eds.), Principles of Knowledge Representation
and Reasoning: Proceedings of the Third International Conference (KR92), San Mateo,
CA, Morgan Kaufmann, Los Altos, CA, 1992.

46. Dix, J., Semantics of logic programs: Their intuitions and formal properties. An
overview, in: A. Fuhrmann and H. Rott (eds.), Logic, Action and Information. Proceed­
ings of the Konstanx Colloquium in Logic and Information (Login '92), deGruyter,
Berlin, 1993.

47. Dix, J., A classification-theory of semantics of normal logic programs: I. Strong
principles, Fundamenta Informaticae (1994). To appear.

48. Dix, J., A classification-theory of semantics of normal logic programs: II. Weak
principles, Fundamenta Informaticae (1994). To appear.

49. Doets, H. C., Levationis Jaus, J. Logic Computation 3(5):487-516 (1993).

K. R. APT AND R. BOL

50. Drabent, w., What is failure? An app;oach to constructive negation, Report, 1992.

Provisionally accepted by Acta lnformatzca. .

- w d M t 111· M Strict completion of logic programs, New Generation :i l. Drabent, ., an ar e , .,
Comput. 9(1):69-79 (1991). .

52. Dung, P. M., On the relation between stable and well-founded semantics of logic

programs, Theoret. Comput. Sci. 105(1):7-25 (1992).

53. Elk.an, c., Logic characterizations of non-monotonic TMSs, i~: A Kreczmar and, <?·
Mirkowska (eds.), Mathematical Foundations of Computer Science, Lecture Notes m
Computer Science 379, Springer, New York, 1989, pp. 218-224. . .

54. Elkan, c., A perfect logic for reasoning about action, Report, Umvers1ty of Toronto,

1989.

55. Elkan, C., A rational reconstruction of nonmonotonic truth maintenance systems,

Artificial Intelligence 43:219-234 (1990).

56. Evans, C., Negation-as-failure as an approach to the Hanks .an? McDe:mott problem,

in: Proceedings of the Second International Symposium on Artificial Intelligence, Monter­

rey. Mexico, 1989.

57. Fages, F., A new fixpoint semantics for. general logic programs compared _with the
well-founded and the stable model semantics, New Generation Comput. 9(3&4).425-443
(l 991).

58. Fages, F., Consistency of Clark's completion and existence of stable models, Methods
Logic Comput. Sci. 2 (1993).

59. Fitting, M., A K.ripke-Kleene semantics for general logic programs, J. Logic Program.
2:295-312 (1985).

60. Fitting, M., The family of stable models, J. Logic Program. 17(2, 3&4):197-226 (1993).

61. Fitting, M., Metric methods; three examples and a theorem, J. Logic Program. (1994).
To appear.

62. van Gelder, A., The alternating fixpoint of logic programs with negation, in: Proceed­

ings of the Symposium on Principles of Database Systems, ACM SIGACT-SIGMOD,
ACM, New York, 1989, pp. 1-10.

63. van Gelder, A., Ross, K., and Schlipf, J., The well-founded semantics for general logic
programs, J. ACM 38(3):620-650 (1991).

64. Gelfond, M., On stratified auto-epistemic theories, in: Proceedings of AAAl-87, Ameri­

can Association for Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1987, pp.
207-211.

65. Gelfond, M., and Lifschitz, V., The stable model semantics for logic programming, in:

R. A. Kowalski and K. A. Bowen (eds.), Proceedings of the Fifth International Conference

and Symposium on Logic Programming, Seattle, ALP, MIT Press, Cambridge, MA,
1988, pp. 1070-1080.

66. ~elfond, '."f .. and Lifschitz, V., Compiling circumscriptive theories into logic programs,

m: M. Remfrank, De Kleer, Ginsberg, and Sandewall (eds.), Non-Monotonic Reasoning,
Lecture Notes in Artificial Intelligence 346, Springer, New York, 1989, pp. 74-90.

67. Gelfond, M., and Lifschitz, V., Logic programs with classical negation, in: D. H. D.
Warren and P. ~zeredi (eds.), Proceedings of the Seventh International Conference on

Logic Programmmg, Jerusalem, MIT Press, Cambridge, MA, 1990, pp. 579-597.

68. Gelfond, M., and Lifschitz, V., Classical negation in logic programs and disjunctive
databases, New Generation Comput. 9(3&4):365-385 (1991).

69. ~e~fond, '."f ·: Przymusinsk~, H., an? Przymu.sin~ki, T. C., On the relationship between

mcumscnpt10n and negation as failure, Artificial Intelligence 38:75-94 (1989).

70. Gior?ano, L., .and. Martelli, A., Generalized stable models, truth maintenance and

conthct .resolut10n, m: D. H. D. Warren and P. Szeredi (eds.), Proceedings of the Seventh

lntematwnal Conference on Logic Programming, Jerusalem MIT Press Cambridge
MA, 1990, pp. 427-441. ' ' '

71. Girard, Y., Linear logic, Theoret. Comput. Sci. 50:1-102 (1987).

LOGIC PROGRAMMING AND NEGATlON 67

72. Hanks, S., and McDermott, D., Nonmonotonic logic and temporal projection, Artificial
Intelligence 33:379-412 (1987).

73. Hill, P. M., and Lloyd, J. W., The Godel programming language, Technical Report
CSTR-92-27, Department of Computer Science, University of Bristol, 1992; revised
May 1993. MIT Press, to appear.

74. Hu, Y., and Yuan, L. Y., Extended well-founded model semantics for general logic
programs, in: K. Furukawa (ed.), Proceedings of the Eighth International Conference on
Logic Programming, Paris, France, MIT Press, Cambridge, MA, 1991, pp. 412-425.

75. Jonker, C. M., Cautious backtracking and well-founded semantics in truth maintenance
systems, Technical Report RUU-CS-91-26, Utrecht University, 1991.

76. Kakas, A. C., Kowalski, R. A., and Toni, F., Abductive logic programming, J. Logic
Computation 2(6):719-770 (1993).

77. Kanellakis, P., Elements of relational database theory, in: J. van Leeuwen (ed.),
Handbook of Theoretical Computer Science, Elsevier, New York, 1990, Vol. B, pp.
1073-1156.

78. Kemp, D. B., and Topor, R. W., Completeness of a top-down query evaluation
procedure for stratified databases, in: R. A Kowalski and K. A Bowen (eds.),
Proceedings of the Fifth International Conference and Symposium on Logic Programming,
MIT Press, Cambridge, MA, 1988, pp. 178-194.

79. Kleene, S. C., Introduction to Metamathematics, Van Nostrand, New York, 1952.
80. Kowalski, R. A., Predicate logic as a programming language, in: Proceedings IFIP'74,

North-Holland, Amsterdam, 1974, pp. 569-574.
81. Kraus, S., Lehmann, D., and Magidor, M., Nonmonotonic reasoning, preferential

models and cumulative logics, Artificial Intelligence 44(1):167-207 (1990).
82. Kunen, K., Negation in logic programming, J. Logic Program. 4:289-308 (1987).
83. Kunen, K., Signed data dependencies in logic programs, J. Logic Program. 7:231-246

(1989).
84. Li, L., and You, J. H., Making default inferences from logic programs, J. Computational

Intelligence, 7:142-153, 1991.
85. Lifschitz, V., On the declarative semantics of logic programs with negation, in: J.

Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 177-192.

86. Lloyd, J. W., Foundations of Logic Programming, Springer, Berlin, 1984.
87. Lloyd, J. W., Foundations of Logic Programming, 2nd ed., Springer, Berlin, 1987.
88. Lloyd, J. W., and Topor, R. W., Making PROLOG more expressive, J. Logic Program.

1:225-240 (1984).
89. Lloyd, J. W., and Topor, R. W., A basis for deductive database systems II, J. Logic

Program. 3(1):55-67 (1986).
90. Lloyd, J. W., Sonenberg, E. A., and Topor, R. W., Integrity constraint checking in

stratified databases, J. Logic Program. 4(4):331-345 (1987).
91. Lobo, J., Minker, J., and Rajasekar, A., Weak completion theory for non-Horn

programs, in: R. A. Kowalski and K. A. Bowen (eds.), Proceedings of the Fifth
International Conference and Symposium on Logic Programming, Seattle, ALP, MIT
Press, Cambridge, MA, 1988, pp. 828-842.

92. Lobo, J., Minker, J., and Rajasekar, A., Foundations of Disjunctive Logic Programming,
MIT Press, Cambridge, MA, 1992.

93. Liittringhaus-Kappel, S., Laziness in Logic Programming, Ph.D. Thesis, Universitat
Bonn, 1992.

94. Makinson, D., General patterns in nonmonotonic reasoning, in: D. M. Gabbay, C. J.
Hogger, and J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic
Programming, Vol. 2, Nonmonotonic and Uncertain Reasoning, Oxford University Press,
1993, Chap. 2.2.

95. Mancarella, P., Intensional Negation of Logic Programs, Ph.D. thesis, Universita di
Pisa, 1988 (in Italian).

%.

47.

98.

99.

wo.

IOI.

102.

!03.

104.

K. R. APT AND R. BOL

Mancarella, P .. and Pedreschi, D., An algebra of logic programs, in: R A Kowalski and
K A Bowen (eds) Proceedings oif the Fifth International Conference and Symposzum on

. . . , . 1988 1006-1023 Logic Programming, Seattle, ALP, MIT Press, Cambndge, MA, , PP· .·
Marchiori, E., Proving run-time properties of general logic programs w.r.t. constructive
negation, Research Report CS-R9245, CWI, Amsterdam, 1992.
Marek, v. w., and Truszczyfiski, M., Nonmonotonic Logics; Context-Dependent Reason­
ing, Springer, Berlin, 1993.
Marek, w., and Truszczynski, M., Stable semantics for logic programs and def~ult
theories, in: E Lusk and R. Overbeek (eds.), Proceedings of the North American
Conference on Logic Programming, MIT Press, Cambridge, MA, 1989, pp. 243-256.

Martelli, M., and Tricomi, C., A new SLDNF-tree, Inform. Process. Lett. 43(2):57-62
0992).
McCarthy, J., Circumscription-a form of non-monotonic reasoning, Artificial Intelli­
gence 13:27-39 (1980).
Minker, J., On indefinite data bases and the closed world assumption, in: Proceedings of
the Sixth Conference on Automated Deduction, Lecture Notes in Computer Science, 138,
Springer, New York, 1982, pp. 292-308.
Minker, J., and Ruiz, C., Semantics for disjunctive logic programs with explicit and
default negation, Fundamenta Inforrnaticae (1994). To appear.

Moore, R., Semantical considerations on non-monotonic logic, Artificial Intelligence
25(1):75-94 (1985).

10:5. Miiller, M., and Dix, J., Implementing semantics for disjunctive logic programs using
fringes and abstract properties, in: L. M. Pereira and A Nerode (eds.), Logic Program­
ming and Non-Monotonic Reasoning, Proceedings of the Second international Workshop,
Lisbon, MIT Press, Cambridge, MA, 1993, pp. 43-59.

lOo. Naish, L.. An Introduction to MU-PROLOG, Technical Report TR 82/2, Dept. of
Computer Science, Univ. of Melbourne, 1982.

Hl7. Naish, L., Negation and quantifiers in NU-Prolog, in: Third International Conference on
Logic Programming, London, July 1986, pp. 624-634.

l08. Naqvi, S., and Krishnamurthy, R., Database updates in logic programming, in: Proceed­
ings of the Seventh ACM Symposium on Principles of Database Systems, 1988.

JOQ. Nerode, A, Marek, W., and Subrahmanian, V. S. (eds.), Proceedings o/ the First
International Workshop on Logic Programming and Non-monotonic Reasoning, Washing­
ton, DC, MIT Press, Cambridge, MA, 1991.

l 10. Pereira, L. M., Aparicio, J. N., and Alferes, J. J., Derivation procedures for extended
stable models, in: Proceedings of 12th International Conference on Artificial Intelligence,
Morgan Kaufmann, Los Altos, CA, 1991, pp. 863-868.

11 L P,ereira, L. M., Apar!cio,_ J. N., and _Alferes, J. J., Adding closed world assumptions to
"".ell founded semantics, m: Proceedings of the international Conference on Fifih Genera­
tion Computer Systems 92, June 1992.

112. Di Pierro, _A., ~artelli, _M., and P_alamidessi, C., Negation as instantiation, Technical
Report, D1part1mento d1 Informat1ca e Scienze dell'Informazione, Universita di Gen­
ova, 1993.

!13.

114.

115.

Przymusinska, H., and Przymusinski, T. C., Semantic issues in deductive databases and
!Ho. gic programs, in: R. Banerji (ed.), Fonnal Techniques in Artificial Intelligence . North-

olland, Amsterdam, 1990, pp. 321-367. · '

~rzym~~inska, H., and Przymusinski, T. C., Stationary extensions of default theories ill"
rocee mgs of the Fourth Workshop on Non-Monotonic Reasoning Plymouth VT i 992·

Fundamenta inforrnaticae. To appear. ' ' ' ·

Przymusinska H Przymusinski T C d S k" H
partial deduction~ for w II f d d. ., an. ~ I, ., Soundness and completeness of
Intemation l C ,F, e - oun e semantics, m: A Voronkov (ed.), Proceedings of the

a on1erence on Automated Reasoning St p t b R · ·
in. Artificial Intelligence 624 S · N ' · e ers urg, ussia, Lecture Notes , prmger, ew York, 1992.

iIC PROGRAMMING AND NEGATION 69

116. Przymusinska, H., and Przymusinski, T. C., Weakly perfect model semantics for logic
programs, in: R. A. Kowalski and K. A. Bowen (eds.), Proceedings of the Fifth
International Conference and Symposium on Logic Programming, Seattle, ALP, MIT
Press, Cambridge, MA, 1988, pp. 1106-1120.

117. Przymusinska, H., and Przymusinski, T. C., Weakly stratified logic programs, Funda­
menta Informaticae 13:51-65 (1990).

118. Przymusinski, T. C., On the declarative and procedural semantics of logic programs, J.
Automated Reasoning 5:167-205 (1989).

119. Przymusinski, T. C., Stationary semantics for normal and disjunctive logic programs, in:
C. Delobel, M. Kifer, and Y. Masunaga (eds.), DOOD'9I, Proceedings of the Second
International Conference, Miinchen, Lecture Notes in Computer Science 566, Springer,
New York, 1991.

120. Przymusinski, T. C., Well-founded completions of logic programs, in: K. Furukawa
(ed.), Proceedings of the Eighth International Conference on Logic Programming, Paris,
France, MIT Press, Cambridge, MA, 1991, pp. 726-741.

121. Przymusinski, T. C., On the declarative semantics of logic programs with negation, in:
J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 193-216.

122. Przymusinski, T. C., Every logic program has a natural stratification and an iterated
fixed point model, in: Proceedings of the 8th Symposium on Principles of Database
Systems, ACM SIGACT-SIGMOD, ACM, New York, 1989, pp. 11-21.

123. Przymusinski, T. C., Non-monotonic formalisms and logic programming. In G. Levi and
M. Martelli (eds.), Proceedings of the Sixth International Conference on Logic Program­
ming, Lisbon, Portugal, ALP, MIT Press, Cambridge, MA, 1989, pp. 655-674.

124. Przymusinski, T. C., Extended stable semantics for normal and disjunctive programs,
in: D. H. D. Warren and P. Szeredi (eds.), Proceedings of the Seventh lntemationn
Conference on Logic Programming, Jerusalem, MIT Press, Cambridge, MA, 1990, p
459-477.

125. Przymusinski, T. C., Non-monotonic reasoning vs. logic programming: A new perspe1.­
tive, in: D. Partridge and Y. Wilks (eds.), The Foundations of Artificial Intelligence. A
Sourcebook, Cambridge University Press, London, 1990, pp. 49-71.

126. Przymusinski, T. C., Stationary semantics for disjunctive logic programs and deductive
databases, in: S. Debray and M. Hermenegildo (eds.), Proceedings of the 1990 North
American Conference on Logic Programming, Austin, TX, ALP, MIT Press, Cambridge,
MA, 1990, pp. 40-59.

127. Przymusinski, T. C., The well-founded semantics coincides with the three-valued stable
semantics, Fundamenta lnformaticae 13(4):445-463 (1990).

128. Przymusinski, T. C., Auto-epistemic logics of closed beliefs and logic programming, in:
A. Nerode et al. (eds.), Proceedings of the First International Workshop on Logic
Programming and Non-monotonic Reasoning, Washington, DC, MIT Press, Cambridge,
MA, 1991, pp. 3-20.

129. Przymusinski, T. C., Stable semantics for disjunctive programs, New Generation Com­
put. 9:401-424 (1991). Extended abstract appeared as [124).

130. Przymusinski, T. C., Three-valued non-monotonic formalisms and semantics of logic
programs, Artificial Intelligence 49:401-424 (1991).

131. Przymusinski, T. C., and Warren, D. S., Well-Founded Semantics: Theory and Imple­
mentation, Report, 1992.

132. Rajasekar, A., Lobo, J., and Minker, J., Weak generalized closed world assumption, J.
Automated Reasoning 5:293-307 (1989).

133. Rajasekar, A., and Minker, J., A stratification semantics for general disjunctive pro­
grams, in: E. L. Lusk and R. A. Overbeek (eds.), Proceedings of the North American
Conference on Logic Programming, Cleveland, Ohio, 1989, pp. 573-586.

134. Reinfrank, M., Fundamentals and Logical Foundations of Truth Maintenance, Ph.D.
Thesis, ISBN 91-7870-546-0, Linkoping University, 1989.

I ~.-. R ., , R on closed world data bases, in: H. Gallaire and J. Minker (eds.), Logic and
.'). eM:f, ., 978 55

Databases, plenum, New York, 1 , pp. -76.

136_ Reiter, R., A,logic for default theory, Artificial Intelligence 13:81-132 (1980).
rr R . K The well-founded semantics for disjunctive logic programs, in: Proceedings of
· '· th~s~irs;·!ntemational Conference on Deductive and Object Oriented Databases, Kyoto,

Japan, December 1989, pp. 352-369.
!JS. Ross, K, A procedural semantics for well-founded negation in logic programs, J. Logic

Program. 130):1-22 (1992).

139_ Ross, K., and Topor, .R. A, Inferring negative information from disjunctive databases,
J. Automated Reasoning 4:397-424 (1988).

140 Ross K. A, Modular acyclicity and tail recursion in logic programs, in: Proceedings of
·the Tenth ACM Symposium on Principles of Database Systems, 1991.

141 Sacca D., and Zaniolo, C., Stable models and non-determinism in logic programs with
· negation, in: Proceedings of the ACM Symposium on Principles of Database Systems,

1990, p. 16.
142. Sadri, F., and Kowalski, R., A theorem-proving approach to database integrity, in: J.

Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 313-362.

!43. Sakama, C., and Inoue, K., Negation in disjunctive logic programs, in: D. Warren and
P. Szeredi (eds.), Proceedings of the IOth International Conference on Logic Programming,
Budapest, MIT, Cambridge, MA, 1993, pp. 703-719.

144. Sato, T., Completed logic programs and their consistency, J. Logic Program. 9(1):33-44
(1990).

145. Schlipf, J. S., The expressive powers of the logic programming semantics, in: Proceed­
ings of the Ninth ACM Symposium on Principles of Databases, 1990, pp. 196-204.

146. Seki, H., and Itoh, H., A query evaluation method for stratified programs under the
extended CWA, in: R. A. Kowalski and K. A Bowen (eds.), Proceedings of the Fifth
Jntemational Conference and Symposium on Logic Programming, Seattle, ALP, MIT
Press, Cambridge, MA, 1988, pp. 195-211.

147. Shepherdson, J. C., A sound and complete semantics for a version of negation as
failure, Theoret. Comput. Sci. 65(3):343-371 (1989).

148. Shepherdson, J. C., Correct answers to allowed queries are ground, J. Logic Program.
11(3&4):359-362 (1991).

1.49. Shepherdson, J. C., Negation in logic programming for general logic programs, in: J.
Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 19-88 .

.50. Shepherdson, J. C., Negation as failure, completion and stratification, in: Handbook of
Artificial Intelligence and Logic Programming, in: D. M. Gabbay, C. J. Hogger, and J. A
Robinson (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming
Clarendon Press, Oxford. To Appear.

151. Shepherdson, J. C., SLDNF resolution with equality, J. Automated Reasoning
8(2):297-306 (1992).

152. Stark, R., A complete axiomatization of the three-valued completion of logic programs,
J. Logic Computation 1(6):811-834 (1991).

153. Stark, R., The Proof Theory of Logic Programs with Negation, Ph.D. Thesis, University
of Berne, 1992.

154. sta:k, ~.,__The declarative semantic of the Prolog selection rule, Technical Report, CIS,
Umvers1tat Miinchen, 1993.

155. S_t~rk, ~.,From logic programs to inductive definitions, Technical Report, CIS, Univer­
s1tat Muchen, 1993.

156. Stark, R., Input/output dependencies of normal logic programs, J. Logic Computation
(1993). To appear.

LOGIC PROGRAMMING AND NEGATION 71

157. Stroetman, K., A completeness result for SLDNF resolution, J. Logic Program.
15:337-357 (1993).

158. Stuckey, P. J., Constructive negation for constraint logic programming, in: Proceedings
of the 6th Annual Symposium on Logic in Computer Science (LICS), Amsterdam, The
Netherlands, 1991, pp. 328-339.

159. Teusink, F., A characterization of stable models using a non-monotonic operator, in:
L. M. Pereira and A Nerode (eds.), Proceedings of the 1993 workshop on Logic
Programming and Non-Monotonic Reasoning, 1993, pp. 206-222.

160. van Emden, M. H., and Kowalski, R. A, The semantics of predicate logic as a
programming language, J. ACM 23(4):733-742 (1976).

161. van Gelder, A, Negation as failure using tight derivations for general logic programs,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, Los Altos, CA, 1988, pp. 149-176.

162. Wagner, G., Vivid Logic-Knowledge-Based Reasoning with Two Kinds of Negation,
Ph.D. Thesis, Freie Universitat Berlin, 1993.

163. Wallace, M., Tight, consistent, and computable completions for unrestricted logic
programs, J. Logic Program. 15:243-273 (1993).

164. Witteveen, C., Partial semantics for truth maintenance, in: J. van Eijck (ed.), Logics in
Al-JELIA '90, Lecture Notes in Artificial Intelligence 478, Springer, New York, 1990,
pp. 544-561.

