
J. LOGIC PROGRAMMING 1994:18:177··190 177

A NEW DEFINITION OF SLDNF-RESOLUTION

KRZYSZTOF R. APT AND KEES DOETS

!> We propose a new, "top-down" definition of SLDNF-resolution that retains
the spirit of the original definition, but avoids the difficulties noted in the
literature. We compare it with the "bottom-up" definition of Kunen [7]. <l

1. THE PROBLEM

The notion of SLD-resolution of Kowalski [6] allows us to resolve only positive
literals. As a result it is not adequate to compute with general programs. Clark [4]
proposed to incorporate the negation as finite failure rule. This leads to an
extension of SLD-resolution called SLDNF-resolution. The intuition behind it is
quite simple: For a ground atom A,

-, A succeeds iff A finitely fails,
-, A finitely fails iff A succeeds.

(The restriction to ground atoms was originally introduced to ensure soundness of
SLDNF-resolution.) However, this intuition is difficult to formalize. For example,
consider the general program P ={A ~A}. The query -, A neither succeeds nor
finitely fails, because the query A neither succeeds nor finitely fails. So it is not
clear whether there is a resolvent.

The problem is that succeess and finite failure are not the only possible
outcomes of an evaluation: Also an unsuccessful tree that is not finitely failed can
be generated.

This problem was not properly taken care of in the definition of SLDNF
resolution given in Clark [4] and reproduced in Lloyd [8]. In Lloyd [9] a revised

Address correspondence to Krzysztof R. Apt or Kees Doets, Faculty of Mathematics and Computer Science, University of Amsterdam, P!antage Muidergracht 24, NL-1018 TV Amsterdam, The Netherlands.
Received November 1992; accepted August 1993.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066 /94 /$7.00

178 K. R. APT AND K. DOETS

definition of SLDNF-resolution was proposed according to which the SLDNF-trees

are constructed "bottom-up" by induction on the number of alternations through

negation. Unfortunately, according to this definition for the above-mentioned

example, or for P ={A ,,___ -, A} and the query A, no SLDNF-trees or SLDNF

derivations exist.
Kunen [7] avoids this problem by just defining the set of answer substitutions

that are computable by the SLDNF-resolution without defining what SLDNF

resolution is. This definition is very simple (see Section 5), and was sufficient for

proving completeness results, but it is not useful if one wants to prove results about

the SLDNF-derivations themselves, like termination. Note that in both examples

mentioned above the top-down interpreter diverges.

These problems were mentioned by Apt and Bezem [1, page 352] and Apt and

Pedreschi [2, pages 267-268]. They were tackled by Martelli and Tricomi [10], who

proposed a revision of the original definition in which the subsidiary trees used to

resolve negative literals are built "inside" the main tree. These authors consider

trees whose nodes are formulas more complicated than general goals, which

necessitated the introduction of so-called collapsing cases to simplify these formulas.

The solution proposed below seems simpler and more intuitive: As in the

original definition, the subsidiary trees are kept "aside," but their construction is

no longer viewed as an atomic step in the resolution process. Instead, they are built

in a stepwise "top-down" manner, by constructing their branches in parallel. If

during this subsidiary construction divergence arises, the main derivation is consUJ

ered to be infinite. This formalizes the intuitive solution suggested in Apt and

Pedreschi [2]. In the second part of this note we compare our definition of

SLDNF-resolution with those of Lloyd [9], of Martelli and Tricomi [10], and of

Kunen [7].
Various results concerning the "run time behaviour" of SLDNF-derivations, like

termination, absence of floundering, safety of the omission of the occur-check, or

the groundness of the input positions of the selected literals under some syntactic

conditions, can be correctly stated and rigorously proved only once an appropriate

definition of SLDNF-resolution is available. Some of these properties were studied

in the literature and, strictly speaking, the corresponding proofs lacked the formal

basis. We found that using the proposed definition of SLDNF-resolution these

arguments can be easily justified.
The approach taken here can also be readily used to define correctly several

variants of SLDNF-resolution proposed in the literature, for example, SLDNFS

resolution of Shepherdson [12] and the extension of SLD-resolution with so-called

constructive negation of Chan [3].

2. A NEW DEFINITION

We start by recalling and introducing a number of auxiliary notions. Below we

use == for "is by definition equal to."

Definition 2.1. Var(E) is the set of variables in the expression E.

A substitution is a function from variables to terms. E is the identity substitu

tion. We write xa for the value of the substitution a at the variable x.

The domain Dom(a) of a is the set of x's for which xa =l=x. (Usually, this is

taken to be a finite set.) Its range Ran(a) is the set UxE Dom(a) Var(xa). [Thus,

A NEW DEFINITION OF SLDNF-RESOLUTION 179

Dom(e) =Ran(e) = 0.] The variables from Dom(a) U Ran(a) are said to occur
in a.

If V is a set of variables, then the restriction a IV of a to V is the substitu
tion with domain V n Dom(a), which coincides on this domain with a. For an
expression E, we write a!E == alVar(E).

An mgu of two atoms A and B is called relevant if every variable occurring in
it belongs to Var(A) U Var(B).

A query is a finite sequence of literals. (Instead of queries, one usually considers
general goals, which are expressions ~ C, where C is a query.) The empty query is
denoted by D .

Definition 2.2.

(i) We say that C resolves to D via a with respect to l, or D [more explicitly, the
pair (a, D)] is a resolvent of C with respect to l, notation C ~ D(l), if:

either l = (L, R), L is (an occurrence of) a positive literal in C, R is a
program clause, and for some variant A~ E (the input clause) of R, a
is mgu of L and A and D = Ca{L a/Ea} is obtained from Ca by
replacing La by Ea

or l is (an occurrence of) a negative literal in C, a= e, and D = C - {l} is
obtained from C by removing l.

(ii) A clause R is called applicable to an atom if it has a variant the head of
which unifies with the atom.

Definition 2.3. A (finite or infinite) sequence C0 ~ ••• Cn ~ Cn+I ··· of resolu
tion steps is a pseudoderivation if, for every step involving a program clause:
• ("standardization apart") the input clause employed does not contain a

variable from the initial query C0 or from an input clause used at some earlier
step;

• ("relevance") the mgu employed is relevant.

Intuitively, an SLDNF-derivation is a pseudoderivation in which the deletion of
every (ground) negative literal is justified by means of a subsidiary (finitely failed
SLDNF-) tree. This brings us to consider special types of trees.

Definition 2.4. A tree is called

• successful if it contains a leaf marked as success;
• finitely failed if it is finite and all its leaves are marked as failed.

In the sequel we consider systems of trees called (for lack of a better name)
complex trees.

Definition 2.5. A complex tree is a system Y= (§, T, subs), where

• Y is a set of trees,
• T is an element of Y called the main tree,
• subs is a function assigning to some nodes of trees in Ya ("subsidiary") tree

from Y.

180 K. R. APT AND K. DOETS

By a path in ::T we mean a sequence of nodes N 1, ••• , N;, ... such that for all i,

N; + 1 is either an immediate descendant of N; in some tree in ::Tor the root of the

tree subs(N).

Thus a complex tree is a special directed graph with two types of edges-the

"usual" ones stemming from the tree structures, and the ones connecting a node

with the root of a subsidiary tree. An SLDNF-tree is a special type of complex tree,

built as a limit of certain finite complex trees: pre-SLDNF trees.

For the rest of this paper, we fix a general program P.

Definition 2.6. A pre-SLDNF-tree (relative to P) is a complex tree whose nodes are

(possibly marked) queries of (possibly marked) literals. (For queries, there are

markers, failed, success, and floundered; for literals, we have the marker

selected.) The function subs assigns to nodes containing a marked negative

ground literal --, A a tree in ::T with root A. The class of pre-SLDNF-trees is

defined inductively.

• For every query C, the complex tree consisting of the main tree that has the

single node C is a pre-SLDNF-tree (an initial pre-SLDNF-tree).

• If ::T is a pre-SLDNF-tree, then any extension of ::T is a pre-SLDNF-tree.

Here, an extension of a pre-SLDNF-tree ::T is defined by performing the

following actions for every nonempty query C that is an unmarked leaf in some

tree T E!T:.
First, if no literal in C is marked yet as selected, mark one as selected. Let L

be the selected literal of C.

• L is positive.
-C has no resolvents with respect to L and a clause from P.

Then C is marked as failed.
-C has such resolvents.

For every clause R from P that is applicable to L, choose one resolvent

(a, D) of C with respect to L and R and add this as an immediate

descendant of C in T. These resolvents are chosen in such a way that all

branches of T remain pseudoderivations.

• L = --, A is negative.
-A is nonground.

Then C is marked as floundered.
-A is ground.

* subs(C) is undefined.
Then a new tree T' with the single node A is added to !T and

subs(C) is set to T'.
* subs(C) is defined and successful.

Then C is marked as failed.
* subs(C) is defined and finitely failed.

Then the resolvent (c,C - {L}) of C is added as the only immedi

ate descendant of C in T.
Additionally, all empty queries are marked as success.

Note that if no tree in ::T has unmarked leaves, then trivially ::T is an extension of

itself and the extension process becomes stationary.

A NEW DEFINITION OF SLDNF-RESOLUTION 181

Every pre-SLDNF-tree is a tree with two types of edges between possibly marked nodes, so the concepts of inclusion between such trees and of limit of a growing sequence of such trees have clear meaning.

Definition 2. 7.

• An SLDNF-tree is a limit of a sequence .9;°i, ... ,g;, ... such that .9;"1 is an
initial pre-SLDNF-tree and for all i, :7i+ 1 is an extension of g;.

• An SLDNF-tree for C is an SLDNF-tree in which C is the root of the main
tree.

• A (pre-) SLDNF-tree is called successful (resp. finitely failed) if the main tree
is successful (resp. finitely failed).

• An SLDNF-tree is called finite if no infinite paths exist in it (cf. Definition 2.5).

Next, we define the concept of SLDNF-derivation.

Definition 2.8. A (pre-) SLDNF-derirntion for C is a branch in the main tree of a (pre-) SLDNF-tree fT for C together with the set of all trees in fT whose roots can be reached from the nodes of this branch. An SLDNF-derivation is called finite if all paths of fT fully contained within this branch and these trees are finite.

Finally, it is clear how to define the notion of a computed answer substitution.

Definition 2.9. Consider a branch in the main tree of a (pre-) SLDNF-tree for C
which ends with the empty query. Let a 1, ••• , an be the consecutive substitutions along this branch. Then the restriction (a 1 ••• an)IC of the composition
a 1 ••• an to the variables of C is called a computed answer substitution (c.a.s. for short) of C.

Let us illustrate the preceding definitions by depicting the SLDNF-trees for the two problematic cases considered in the beginning. The edges connecting a node with the root of a subsidiary tree are drawn by dashed lines.

Example 2.10.

(i) Consider P = {A - A} and C = -, A. The only SLDNF-tree has then the
following form:

-,A
\

\
\

\
~

A

l
A

l

182 K. R. APT AND K. DOET'S

{ii) Consider now P ={A.,_ ..., A} and C =A. Again, there is here only one
SLDNF-tree, which is infinite and looks as follows:

A

l
...,A

\
\

\
\

\,

A

l
...,A

\
\

\
\

\,

(iii) It is important to realize that according to our definition the construction
of a subsidiary tree can go on forever even if the information about its
"status" has already been passed to the main tree. The following general
program illustrates this point.

Consider P ={A ,,_ ..., B, B..--, B.,_ B}. Then the only SLDNF-tree for A looks
as follows:

A

1
...,B

failed,
'

' ' ' '
' ' ' ' ' ' '

'

/B~
D B

success / ~
D

success

Here the subsidiary tree with the root B grows forever. However, once an
extension of the initial subsidiary tree with the single node B becomes successful.
in the next extension the node ..., B is marked as failed. Consequently, the
SLDNF-tree for A is finitely failed even though it is not finite.

A NEW DEFINITION OF SLDNF-RESOLUTION 183

Pre-SLDNF-trees may keep growing forever. However, when the resulting
SLDNF-tree is successful or finitely failed, this fact becomes apparent after a finite
number of steps already. More precisely, we have the following result.

Theorem 2. 11.

(i) Every pre-SLDNF-tree is finite.
(ii) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.

(iii) If the SLDNF-tree !T is the limit of the sequence 9Q, ... ,g;, ... , then for all -r:
(a) ff is successful and yields T as c.a.s. if[some g; is successful and yields T

as c.a.s.;
(b) ff is finitely failed if[some g; is finitely failed.

PROOF.

(i) Obvious induction.
(ii) The only way in which extensions of a pre-SLDNF-tree included in a given

SLDNF-tree can become different is by the selection of different literals in
nonempty nodes. However, this selection is prescribed by the SLDNF-tree
given.

(iii) (=) A branch of the main tree of !Tending in D or a finitely failed main
tree of !T consists of finitely many, possibly marked, nodes. Each of these
nodes (markings included) belongs to some g; and the g; with the largest i
is the desired pre-SLDNF-tree.

(<=) Each Y; is contained (markings included) in !T. 0

This result allows us to associate with every successful or finitely failed SLDNF
tree !Ta natural number, rank(!T, T), which is the least i for which the correspond
ing equivalence in (iii) holds, with -r = E when !T is finitely failed.

A notion known to be difficult to define in the case of SLDNF-resolution is that
of a selection rule. Intuitively, a selection rule allows us to select a literal in the
query that is to be resolved. As pointed out in Shepherdson [11, page 62] a correct
definition of selection rule should take into account the dependence on the already
generated nodes, so that, for example, the "leftmost, rightmost" selection rule can
be defined. This can be easily achieved as follows.

In our definition of an SLDNF-tree, the selection rule is "incorporated" into the
construction of an extension -through the selection of literals in the nodes
generated last.

Clearly, this selection process can be separated from the construction of an
extension. Let us drop the selection of literals in the nodes generated last from the
definition of the pre-SLDNF-tree. Then a selection rule is a function defined on
pre-SLDNF-trees selecting a literal in every nonempty nonmarked leaf.

In this revised setup an SLDNF-tree is obtained by alternating the process of
applying the selection function with the process of extending the pre-SLDNF-tree.

3. COMPARISON WITH LLOYD'S AND MARTELLI AND
TRICOMI'S DEFINITIONS

Lloyd [9] defined successful SLDNF-derivations and finitely failed SLDNF-trees (in
short SLDNF-objects) by simultaneous induction with respect to their rank. Infor
mally, a rank corresponds to the number of times one passes "through negation"
while defining the corresponding SLDNF-object.

184 K. R. APT AND K. DOETS

Thus, in successful SLDNF-derivations of rank 0 and finitely failed SLDNF-trees

of rank 0, no negative literals are selected. In tum, a selection of a negative ground

literal --, A in an SLDNF-object of rank n + 1 succeeds if a finitely failed

SLDNF-tree for A of rank n exists, and fails if a successful SLDNF-derivation for

A of rank n exists.
Ignoring small points (like the use of goals instead of queries and refutations

instead of successful derivations) there are three differences between Lloyd's

definition and ours.
First-as already mentioned in Section 1-for some programs and queries, like

P = (A ~A} and --, A, no SLDNF-derivations and SLDNF-trees according to

Lloyd's definition exist.
Second, a selection of a ground negative literal --, A fails if a successful SLDNF

derivation for A exists, whereas in our case it fails if a successful SLDNF-tree for

A exists. By replacing such a successful SLDNF-derivation by a successful SLDNF

tree, it is straightforward to show by induction on the rank that if an SLDNF-object

exists according to Lloyd's definition, then so it does according to our definition.

Finally, floundering is treated differently. In Lloyd's definition it arises when a

query is generated that consists exclusively of nonground negative literals, because

then no literal can be selected in it. In our definition floundering arises as soon as a

nonground negative literal is selected in a query. Clearly, this small difference is of

no importance, because Lloyd's notion of floundering can be easily defined in our

framework. Our definition of floundering is more appropriate when studying

SLDNF-resolution with a fixed selection rule, like Prolog leftmost selection rule.

Martelli and Tricomi [10] provided a definition of SLDNF-resolution according

to which for every program and query an SLDNF-tree exists. Informally, given a

selection rule, according to their definition only one tree is generated and the

construction of the subsidiary trees takes place "within" this tree. In particular,

selection of a ground negative literal --, A within a query K, --, A, M yields one
resolvent, namely K,--, [L 1; ••• ;Ln], M. Here ; is to be interpreted as a disjunction.

Thus the syntax of the queries needs to be extended, and to properly handle such

extended queries so-called collapsing cases are needed to simplify them. For

example, K, --, ["fail"; ... ;"fail"], M is simplified to K, M. Martelli and Tricomi [10]

proved that if an SLDNF-object exists according to Lloyd's definition, then so it

does according to their definition.
Comparing our definition with that of Martelli and Tricomi we notice the

following. Their definition makes it possible to define a fair selection rule,

according to which in every infinite SLDNF-derivation for every literal appearing in

it eventually some further instantiated version of it is selected.
On the other hand, we find that our definition remains closer to the implemen

tation and also to what probably is the primordial intuitive idea of an SLDNF-tree

as a computation in which secondary, tertiary, ... computations can be started from

selected negative literals. Also according to our definition the branches of all trees

are constructed in parallel, whereas in Martelli and Tricomi's definition they are

constructed sequentially. Consequently, different SLDNF-trees in the sense of

Martelli and Tricomi are identified by our definition.

4. INTERMEZZO ON COMPUTED ANSWER SUBSTITUTIONS

This section proves some technical results about pseudoderivations needed in the

last section.

A NEW DEFINITION OF SLDNF-RESOLUTION 185

Note that as a consequence of Definition 2.3, in a pseudoderivation C11 ~
"' C 1 __; e 2 • • • ; any variable occurring in an , 1 or C n + 1 occurs either in C0 or in an

input clause used at some step s n. Also, every subsequence of a pseudoderivation
is a pseudoderivation.

Definition 4. I. The variables from Var(Ca) - Var(D) are said to be released at the
. a

resolution step e ~D.
This notion was introduced in Doets [5]. Its relevance was illustrated there by

showing that the following lemma is responsible for lifting and maximal generality
of derivations in the SLD case.

Lemma 4.2. In a pseudoderimtion, no cariable released at some step occurs in a query
or an mgu of a later step.

"1

PROOF. Assume that C0 ~ C1 ··· is a pseudoderivation in which x is released at
the first step. Then x $ Var(C1) and x occurs in C0 or in a 1• Thus x occurs in C0

or in the first input clause if the selected literal in C0 is positive. Therefore, no
"'' input clause used in the pseudoderivation C1:; e2 ••· contains x. Because input

clauses are responsible for the introduction of variables in this pseudoderivation,
the result follows. D

al an
Lemma 4.3. If C0 ~ ••• ~ en (n ~ 2) is a pseudoderi1 1ation, then Var(C0 a 1) n

Var(C 1 a 2 ···an) i::;;: Var(C 1).

PROOF. Assume that xE Var(C0 a 1)-Var(C1). That is, x is released at the first
step. Clearly, Var(C 1a 2 ••• an)i::;;Var(C1)URan(a 2)U ··· URan(an). By Lemma
4.2, x does not occur at the right-hand side. Therefore, x '1. Var(C 1a 2 ···an). D

a1 an
Lemma 4.4. If C0 ~ ••• ~en (n ~ 2) is a pseudoderiration, then fo 1((a2 ···

an)IC1))1e0 = (a 1 ••• a)le0 •

PROOF. If not, a variable x E Var(C0) exists such that xa/(a2 ••• an)IC1) =1=xa 1 •••

an. Then a variable y E Var(xa 1) exists such that y((a2 ··• an)IC1) =I= ya2 ···an.
Thus, y $ Var(C 1) and y((a 2 ••• an)IC1) = y. Because y E Var(C0 a 1)- Var(C 1), Y
is released at the first step. However, then, by Lemma 4.2, y $ Dom(a 2) u · · · u
Dom(an), hence ya 2 ••• 0:11 = y. Therefore, y = ya 2 ••• an =I= y((a 2 ••• an)IC1) = y-a
contradiction. D

Corollary 4.5. Suppose that the main tree of a (pre-) SLDNF-tree for C has a
successful branch with a corresponding c.a.s. T for C. If e ~Dis the first step of
this branch and the rest of it yields the c.a.s. 17 for D, then T = (aa)IC.

PROOF. Apply Lemma 4.4 to this successful branch. D

5. COMPARISON WITH KUNEN'S DEFINITION

The difficulty of defining SLDNF-resolution was elegantly circumvented in Kunen
[7], where a completeness theorem of SLDNF-resolution for allowed general
programs and allowed queries was proved.

186 K. R. APT AND K. DOETS

In his considerations, Kunen [7] dealt only with success and finite failure, which
allowed him to define the concepts needed by a remarkably simple "bottom-up"
inductive definition avoiding the construction of SLDNF-trees and SLDNF
derivations altogether. This approach is sufficient when dealing with completeness
of SLDNF-resolution, but cannot be used to reason about properties that inher
ently refer to SLDNF-trees like the ones mentioned in the introduction.

We now clarify the relation between our definition of computed answer substitu
tions and of finite failure and those of Kunen [7]. Let us start by recalling Kunen's
definition.

Again, an arbitrary general program P is fixed.

Definition 5.1. The set F of queries and the set R of pairs (C, a) [C a query and
u a substitution for which Dom(u) r;;;, Var(C)] are defined by a simultaneous
inductive definition as follows.

(0) ORE.
(R +) If C resolves to D via a with respect to some positive literal of C and a

clause from P and DRa, then CR(aa)IC.
(R-) If A is a ground atom in F and (C,C')Ru, then (C,-, A,C')Ru.
(F +) If L is a positive literal in C and for every clause R from P that is

"' applicable to L there exist a and DE F such that C ~ D(L, R), then
CEF.

(F-) If A is a ground atom such that ARE, then CC,-, A,C') E F.
The intention here is that R is the set of pairs (C, a) such that a is a c.a.s. for

C and F is the set of queries C such that there is a finitely failed tree for C.
Kunen's original formulation of F + could be interpreted as stating that if

L E C is positive and every resolvent of C with respect to L and a clause of P is
in F, then C E F. However, we suspect that this does not change the notions of
R and F; besides, this (unnecessarily) complicates the proof of Theorem 5.3
(case bl).

A Modification

The accompanying notion of soundness associated with Kunen's definition is the
following:

• If CRu, then comp(P) I= Cu, and

• If C E F, then comp(P) I= -, C.

These implications can be proved simultaneously by a straightforward induction
along the clauses of the definition. In fact, soundness still holds if the usual
groundness conditions on the atom A in R - and F - are left out. (The resulting
notion is called SLDNFE, for SLDNF extended.) However, to get the optimal
match between Kunen's notions and ours, we have to change his definition at one
point.

The formulation of R + does not ensure that the resulting answer substitutions
are most general. For instance, if P consists of the clauses

Q(x',y') ~ Q(y',y'),

Q(x,x) ~,

then D Re (by 5.1.0), Q(y, y)R{y /x} (by R + and the second clause), and, con
sequently, Q(x,y)R{y/x} (by R+), because Q(x,y) resolves to Q(y,y) via

A NEW DEFINITION OF SLDNF-RESOLUTION
187

{x' /x, y' /y} and the first clause. However, {y/x} is not a c.a.s. for Q(x, y) whereas
{y/z} is.

Note that the corresponding successful two-step derivation t)(x v) I<'/•· r ,, l (r.'d ~ '·
Q(y, y):..:.._ D is not obtained by properly standardizing apart The input clause
Q(x,x) <-- used at the second step contains a variable used earlier. Also, it is
worthwhile to mention that this irregularity has no bearing on the class of allowed
programs and queries considered in Kunen [7], because the computed answer
substitutions are then always grounding.

In order that R + produces most general answer substitutions, we amend it as
follows:

(tR +) If C resolves to D via a with respect to some positive literal of C and
a clause from P, DR o-, and

Var(Ca) n Var(Du) ~ Var(D),

then CR(au)IC.

(1)

Note that this condition coincides with the claim of Lemma 4.3. Formulated
slightly differently, it says that variables released at the step C .'.:'.. D do not occur
in Der.

The condition tR + together with a selection in R + of input clauses disjoint
with the queries can be viewed as a formalization of the standardization apart
condition for Kunen's definition.

The following lemma will be needed later.

Lemma 5.2. lf C E F and C ~ D, then DE F.

PROOF. By a straightforward induction using only clauses F + and F - of
Definition 5.1. D

The next theorem uses Kunen's definition as modified above.

Theorem 6.3. If C is a query, then:

• CRT if! T is a c.a.s. for C.

• C E F if! C has a finiteZv failed SLDNF-tree.

PROOF. The left-to-right halves of these equivalences are proved simultaneously by
induction along the clauses of the modified Definition 5.1. In the following text,
selected literals in queries are underlined. This part of the proof requires the
construction of SLDNF-trees. However, by Theorem 2.11, it suffices to construct
pre-SLDNF-trees only. In fact, we shall sometimes only indicate how to construct a
relevant part of the required pre-SLDNF-tree.

(0) C = D and a= i:. This case is trivial.
(tR +)Suppose that C resolves to D via mgu a with respect to some positive

literal. Furthermore, assume that DR er, where (cf. the modification) condition (l)
holds. We want to show that (aer)IC is a c.a.s. for C.

By induction hypothesis, er is a c.a.s. for D. That is, the main tree T of an
SLDNF-tree .'/for D has a branch ending in success and er is the c.a.s. along this
branch. By condition (1), Der does not contain variables from Var(Ca) - Var(D).
Therefore, we may assume (renaming variables in T if necessary) that T does not
involve a variable from Var(Ca) - Var(D). However, then we can modify the

188 K. R. APT AND K. DOETS

SLDNF-tree by putting C on top of T as a new root, because the resulting
branches will be pseudoderivations. This produces part of an SLDNF-tree for C,
showing C to have the c.a.s. (aa)IC by Corollary 4.5:

/]~
D
!T

(R -) Suppose that A E Fis ground, and (C,C')Ra. We want to show that a
is a c.a.s. of C,-, A,C'.

By induction hypotheses, there exists a finitely failed SLDNF-tree .'T for A and
there is an SLDNF-tree !T for C, C' whose branch yields the c.a.s. a. Then

is a successful SLDNF-tree for C,-, A,C' whose branch yields the c.a.s. a.
(F +) Suppose that L is a positive literal in C and for every clause R from

P that is applicable to L there exist a and DE F such that C ~ D(L, R). We
want to show that C has a finitely failing SLDNF-tree. Let D 1, ..• , Dn E F be
resolvents of C with respect to Land, respectively, all clauses R 1, ••• ,Rn of P
applicable to L.

By induction hypothesis, choose a finitely failing SLDNF-tree g; for every
resolvent D;. Then

/]~
D1 ... Dn

.91 Y,;
is the required finitely failing SLDNF-tree for C. Obviously, we can assume
(compare case tR +) that the Y; are such that the branches of the new main tree
will be pseudoderivations.

(F-) Suppose that the atom A is ground and AR€. We want to show that
there is a finitely failed SLDNF-tree for C, .., A, C'.

By induction hypothesis, there exists a successful SLDNF-tree !T for A. Then
C,.., A,C'

failed
\

\
\

\
\

\
\
~

A
g-

is a finitely failed SLNDF-tree for C, .., A, C'.

A NEW DEFINITION OF SLDNF-RESOLUTION 189

The right-to-left halves of the two equivalences are proved simultaneously by
induction on rank(§, T), where (a) ,T is a successful SLDNF-tree for C with
a branch yielding the c.a.s. T, or (h) Y is a finitely failed SLDNF-tree for C and
'T =f.

rank(;)"", T) = 0. Then «7 is successful (because C is not marked), so C = o and
T= E. Thus CRE by clause 0.

rank(§, T) > 0.

(a 1) The selected literal of C is positive. Let D be the direct descendant of C
in ,':T lying on the branch that yields the c.a.s. T. D is obtained from
C using an mgu Cl'. Let a be the c.a.s. for D along this branch. By induc
tion hypothesis, DR a. Moreover, by Lemma 4.3 we have Val{ C Cl') n
Var(Da) <;;; Var(D).Therefore, by clause tR + we get CR(ll'a)IC. However,
by Corollary 4.5 T = (cw)IC.

(a2) The selected literal of C is negative. Then C = D,-, A, D', where A is
ground and subs(C) fails finitely. However, rank(subs(C), E < rank(.'7, T)

and A is the root of the main tree of subs(C), so by induction hypothesis
A E F. Moreover, the only direct descendant of C in J is D, D'. Again by
induction hypothesis (D, D')Rr. Therefore, by clause R - we get CRr.

(bl) The selected literal of C is positive. By induction hypothesis, all direct
descendants of C in J are in F. Therefore, by clause F + we get C E F.

(b2) The selected literal of C is negative. Then C = D,-, A, D', where A is
ground.

Subcase 1. C is marked as failed. Then subs(C) is successful. However, rank
(subs(C), E < rankt'T. r) and A is the root of the main tree of subs(C), so by
induction hypothesis ARE. Therefore, by clause F - we get C E F.

Subcase 2. C is not marked as failed. Y is finitely failed, so C has a direct
descendant. Therefore, subs(C) is finitely failed and D, D' is the only
direct descendant of C in§. By induction hypothesis (D, D') E F. Therefore, by
Lemma 5.2 we get C E F. O

We thank the referees for helpful remarks on the subject of this paper.

REFERENCES
1. Apt, K. R. and Bezem, M., Acyclic Programs, New Generation Comput. 29(3):335-363

(1991).
2. Apt, K. R. and Pedresehi, D., Proving Termination of General Prolog Programs, in:

T. Ito and A. Meyer (eds.), Proceeding of the Intemational Conference on Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science 526:265-289, Springer
Verlag, Berlin, 1991.

3. Chan, D., Constructive Negation Based on the Completed Database, in: R. A. Kowalski
and K. A. Bowen (eds.), Proceedings of the Fifth International Conference on Logic
Programming, MIT Press, Cambridge, MA. 1988, pp. 111-125.

4. Clark, K. L., Predicate Logic as a Computational Formalism, Research Report DOC
79 /59, Imperial College, Dept. of Computing, London, 1979.

190 K. R. APT AND K. DOETS

5. Doets, H. C., Levationis Laus, J. Logic Comput. (1993). To appear.
6. Kowalski, R. A, Predicate Logic as a Programming Language, in Proceedings IFIP'74,

North-Holland, Amsterdam, 1974, pp. 569-574.
7. Kunen, K., Signed Data Dependencies in Logic Programs, 1 Logic Programming

7:231-246 (1989).
8. Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, Berlin, 1984.
9. Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer-Verlag, Berlin,

1987.
10. Martelli, M. and Tricomi, C., A New SLDNF-Tree, Inform. Process. Lett. 43(2):57-62

(1992).
11. Shepherdson, J.C., Negation as Failure: A Comparison of Clark's Completed Data Base

Reiter's Closed World Assumption, J. Logic Programming 1(1):51-79 (1984).
12. Shepherdson, J. C., A Sound and Complete Semantics for a Version of Negation as

Failure, Theor. Comput. Sci. 65(3):343-371 (1989).

