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A NEW DEFINITION OF SLDNF-RESOLUTION 

KRZYSZTOF R. APT AND KEES DOETS 

!> We propose a new, "top-down" definition of SLDNF-resolution that retains 
the spirit of the original definition, but avoids the difficulties noted in the 
literature. We compare it with the "bottom-up" definition of Kunen [7]. <l 

1. THE PROBLEM 

The notion of SLD-resolution of Kowalski [6] allows us to resolve only positive 
literals. As a result it is not adequate to compute with general programs. Clark [4] 
proposed to incorporate the negation as finite failure rule. This leads to an 
extension of SLD-resolution called SLDNF-resolution. The intuition behind it is 
quite simple: For a ground atom A, 

-, A succeeds iff A finitely fails, 
-, A finitely fails iff A succeeds. 

(The restriction to ground atoms was originally introduced to ensure soundness of 
SLDNF-resolution.) However, this intuition is difficult to formalize. For example, 
consider the general program P ={A ~A}. The query -, A neither succeeds nor 
finitely fails, because the query A neither succeeds nor finitely fails. So it is not 
clear whether there is a resolvent. 

The problem is that succeess and finite failure are not the only possible 
outcomes of an evaluation: Also an unsuccessful tree that is not finitely failed can 
be generated. 

This problem was not properly taken care of in the definition of SLDNF­
resolution given in Clark [4] and reproduced in Lloyd [8]. In Lloyd [9] a revised 

Address correspondence to Krzysztof R. Apt or Kees Doets, Faculty of Mathematics and Compu­ter Science, University of Amsterdam, P!antage Muidergracht 24, NL-1018 TV Amsterdam, The Netherlands. 
Received November 1992; accepted August 1993. 

THE JOURNAL OF LOGIC PROGRAMMING 

©Elsevier Science Inc., 1994 
655 Avenue of the Americas, New York, NY 10010 0743-1066 /94 /$7.00 



178 K. R. APT AND K. DOETS 

definition of SLDNF-resolution was proposed according to which the SLDNF-trees 

are constructed "bottom-up" by induction on the number of alternations through 

negation. Unfortunately, according to this definition for the above-mentioned 

example, or for P ={A ,,___ -, A} and the query A, no SLDNF-trees or SLDNF­

derivations exist. 
Kunen [7] avoids this problem by just defining the set of answer substitutions 

that are computable by the SLDNF-resolution without defining what SLDNF­

resolution is. This definition is very simple (see Section 5), and was sufficient for 

proving completeness results, but it is not useful if one wants to prove results about 

the SLDNF-derivations themselves, like termination. Note that in both examples 

mentioned above the top-down interpreter diverges. 

These problems were mentioned by Apt and Bezem [1, page 352] and Apt and 

Pedreschi [2, pages 267-268]. They were tackled by Martelli and Tricomi [10], who 

proposed a revision of the original definition in which the subsidiary trees used to 

resolve negative literals are built "inside" the main tree. These authors consider 

trees whose nodes are formulas more complicated than general goals, which 

necessitated the introduction of so-called collapsing cases to simplify these formulas. 

The solution proposed below seems simpler and more intuitive: As in the 

original definition, the subsidiary trees are kept "aside," but their construction is 

no longer viewed as an atomic step in the resolution process. Instead, they are built 

in a stepwise "top-down" manner, by constructing their branches in parallel. If 

during this subsidiary construction divergence arises, the main derivation is consUJ­

ered to be infinite. This formalizes the intuitive solution suggested in Apt and 

Pedreschi [2]. In the second part of this note we compare our definition of 

SLDNF-resolution with those of Lloyd [9], of Martelli and Tricomi [10], and of 

Kunen [7]. 
Various results concerning the "run time behaviour" of SLDNF-derivations, like 

termination, absence of floundering, safety of the omission of the occur-check, or 

the groundness of the input positions of the selected literals under some syntactic 

conditions, can be correctly stated and rigorously proved only once an appropriate 

definition of SLDNF-resolution is available. Some of these properties were studied 

in the literature and, strictly speaking, the corresponding proofs lacked the formal 

basis. We found that using the proposed definition of SLDNF-resolution these 

arguments can be easily justified. 
The approach taken here can also be readily used to define correctly several 

variants of SLDNF-resolution proposed in the literature, for example, SLDNFS­

resolution of Shepherdson [12] and the extension of SLD-resolution with so-called 

constructive negation of Chan [3]. 

2. A NEW DEFINITION 

We start by recalling and introducing a number of auxiliary notions. Below we 

use == for "is by definition equal to." 

Definition 2.1. Var(E) is the set of variables in the expression E. 

A substitution is a function from variables to terms. E is the identity substitu­

tion. We write xa for the value of the substitution a at the variable x. 

The domain Dom( a) of a is the set of x's for which xa =l=x. (Usually, this is 

taken to be a finite set.) Its range Ran( a) is the set UxE Dom(a) Var(xa). [Thus, 
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Dom( e) =Ran( e) = 0.] The variables from Dom( a) U Ran( a) are said to occur 
in a. 

If V is a set of variables, then the restriction a IV of a to V is the substitu­
tion with domain V n Dom( a), which coincides on this domain with a. For an 
expression E, we write a!E == alVar(E). 

An mgu of two atoms A and B is called relevant if every variable occurring in 
it belongs to Var(A) U Var(B). 

A query is a finite sequence of literals. (Instead of queries, one usually considers 
general goals, which are expressions ~ C, where C is a query.) The empty query is 
denoted by D . 

Definition 2.2. 

(i) We say that C resolves to D via a with respect to l, or D [more explicitly, the 
pair (a, D )] is a resolvent of C with respect to l, notation C ~ D(l), if: 

either l = (L, R), L is (an occurrence of) a positive literal in C, R is a 
program clause, and for some variant A~ E (the input clause) of R, a 
is mgu of L and A and D = Ca{L a/Ea} is obtained from Ca by 
replacing La by Ea 

or l is (an occurrence of) a negative literal in C, a= e, and D = C - {l} is 
obtained from C by removing l. 

(ii) A clause R is called applicable to an atom if it has a variant the head of 
which unifies with the atom. 

Definition 2.3. A (finite or infinite) sequence C0 ~ ••• Cn ~ Cn+I ··· of resolu­
tion steps is a pseudoderivation if, for every step involving a program clause: 
• ("standardization apart") the input clause employed does not contain a 

variable from the initial query C0 or from an input clause used at some earlier 
step; 

• ("relevance") the mgu employed is relevant. 

Intuitively, an SLDNF-derivation is a pseudoderivation in which the deletion of 
every (ground) negative literal is justified by means of a subsidiary (finitely failed 
SLDNF-) tree. This brings us to consider special types of trees. 

Definition 2.4. A tree is called 

• successful if it contains a leaf marked as success; 
• finitely failed if it is finite and all its leaves are marked as failed. 

In the sequel we consider systems of trees called (for lack of a better name) 
complex trees. 

Definition 2.5. A complex tree is a system Y= (§, T, subs), where 

• Y is a set of trees, 
• T is an element of Y called the main tree, 
• subs is a function assigning to some nodes of trees in Ya ("subsidiary") tree 

from Y. 
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By a path in ::T we mean a sequence of nodes N 1, ••• , N;, ... such that for all i, 

N; + 1 is either an immediate descendant of N; in some tree in ::Tor the root of the 

tree subs(N). 

Thus a complex tree is a special directed graph with two types of edges-the 

"usual" ones stemming from the tree structures, and the ones connecting a node 

with the root of a subsidiary tree. An SLDNF-tree is a special type of complex tree, 

built as a limit of certain finite complex trees: pre-SLDNF trees. 

For the rest of this paper, we fix a general program P. 

Definition 2.6. A pre-SLDNF-tree (relative to P) is a complex tree whose nodes are 

(possibly marked) queries of (possibly marked) literals. (For queries, there are 

markers, failed, success, and floundered; for literals, we have the marker 

selected.) The function subs assigns to nodes containing a marked negative 

ground literal --, A a tree in ::T with root A. The class of pre-SLDNF-trees is 

defined inductively. 

• For every query C, the complex tree consisting of the main tree that has the 

single node C is a pre-SLDNF-tree (an initial pre-SLDNF-tree). 

• If ::T is a pre-SLDNF-tree, then any extension of ::T is a pre-SLDNF-tree. 

Here, an extension of a pre-SLDNF-tree ::T is defined by performing the 

following actions for every nonempty query C that is an unmarked leaf in some 

tree T E!T:. 
First, if no literal in C is marked yet as selected, mark one as selected. Let L 

be the selected literal of C. 

• L is positive. 
-C has no resolvents with respect to L and a clause from P. 

Then C is marked as failed. 
-C has such resolvents. 

For every clause R from P that is applicable to L, choose one resolvent 

(a, D) of C with respect to L and R and add this as an immediate 

descendant of C in T. These resolvents are chosen in such a way that all 

branches of T remain pseudoderivations. 

• L = --, A is negative. 
-A is nonground. 

Then C is marked as floundered. 
-A is ground. 

* subs(C) is undefined. 
Then a new tree T' with the single node A is added to !T and 

subs(C) is set to T'. 
* subs(C) is defined and successful. 

Then C is marked as failed. 
* subs(C) is defined and finitely failed. 

Then the resolvent (c,C - {L}) of C is added as the only immedi­

ate descendant of C in T. 
Additionally, all empty queries are marked as success. 

Note that if no tree in ::T has unmarked leaves, then trivially ::T is an extension of 

itself and the extension process becomes stationary. 
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Every pre-SLDNF-tree is a tree with two types of edges between possibly marked nodes, so the concepts of inclusion between such trees and of limit of a growing sequence of such trees have clear meaning. 

Definition 2. 7. 

• An SLDNF-tree is a limit of a sequence .9;°i, ... ,g;, ... such that .9;"1 is an 
initial pre-SLDNF-tree and for all i, :7i+ 1 is an extension of g;. 

• An SLDNF-tree for C is an SLDNF-tree in which C is the root of the main 
tree. 

• A (pre-) SLDNF-tree is called successful (resp. finitely failed) if the main tree 
is successful (resp. finitely failed). 

• An SLDNF-tree is called finite if no infinite paths exist in it (cf. Definition 2.5). 

Next, we define the concept of SLDNF-derivation. 

Definition 2.8. A (pre-) SLDNF-derirntion for C is a branch in the main tree of a (pre-) SLDNF-tree fT for C together with the set of all trees in fT whose roots can be reached from the nodes of this branch. An SLDNF-derivation is called finite if all paths of fT fully contained within this branch and these trees are finite. 

Finally, it is clear how to define the notion of a computed answer substitution. 

Definition 2.9. Consider a branch in the main tree of a (pre-) SLDNF-tree for C 
which ends with the empty query. Let a 1, ••• , an be the consecutive substitu­tions along this branch. Then the restriction (a 1 ••• an)IC of the composition 
a 1 ••• an to the variables of C is called a computed answer substitution (c.a.s. for short) of C. 

Let us illustrate the preceding definitions by depicting the SLDNF-trees for the two problematic cases considered in the beginning. The edges connecting a node with the root of a subsidiary tree are drawn by dashed lines. 

Example 2.10. 

(i) Consider P = {A - A} and C = -, A. The only SLDNF-tree has then the 
following form: 

-,A 
\ 

\ 
\ 

\ 
~ 

A 

l 
A 

l 
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{ii) Consider now P ={A.,_ ..., A} and C =A. Again, there is here only one 
SLDNF-tree, which is infinite and looks as follows: 

A 

l 
...,A 

\ 
\ 

\ 
\ 

\, 

A 

l 
...,A 

\ 
\ 

\ 
\ 

\, 

(iii) It is important to realize that according to our definition the construction 
of a subsidiary tree can go on forever even if the information about its 
"status" has already been passed to the main tree. The following general 
program illustrates this point. 

Consider P ={A ,,_ ..., B, B..--, B.,_ B}. Then the only SLDNF-tree for A looks 
as follows: 

A 

1 
...,B 

failed, 
' ..... ..... ..... 

' ' ' ' ..... ..... 
' ' ' ' ' ' ' ..... 

' 

/B~ 
D B 

success / ~ 
D 

success 

Here the subsidiary tree with the root B grows forever. However, once an 
extension of the initial subsidiary tree with the single node B becomes successful. 
in the next extension the node ..., B is marked as failed. Consequently, the 
SLDNF-tree for A is finitely failed even though it is not finite. 
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Pre-SLDNF-trees may keep growing forever. However, when the resulting 
SLDNF-tree is successful or finitely failed, this fact becomes apparent after a finite 
number of steps already. More precisely, we have the following result. 

Theorem 2. 11. 

(i) Every pre-SLDNF-tree is finite. 
(ii) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees. 

(iii) If the SLDNF-tree !T is the limit of the sequence 9Q, ... ,g;, ... , then for all -r: 
(a) ff is successful and yields T as c.a.s. if[ some g; is successful and yields T 

as c.a.s.; 
(b) ff is finitely failed if[ some g; is finitely failed. 

PROOF. 

(i) Obvious induction. 
(ii) The only way in which extensions of a pre-SLDNF-tree included in a given 

SLDNF-tree can become different is by the selection of different literals in 
nonempty nodes. However, this selection is prescribed by the SLDNF-tree 
given. 

(iii) ( =) A branch of the main tree of !Tending in D or a finitely failed main 
tree of !T consists of finitely many, possibly marked, nodes. Each of these 
nodes (markings included) belongs to some g; and the g; with the largest i 
is the desired pre-SLDNF-tree. 

( <=) Each Y; is contained (markings included) in !T. 0 

This result allows us to associate with every successful or finitely failed SLDNF­
tree !Ta natural number, rank(!T, T ), which is the least i for which the correspond­
ing equivalence in (iii) holds, with -r = E when !T is finitely failed. 

A notion known to be difficult to define in the case of SLDNF-resolution is that 
of a selection rule. Intuitively, a selection rule allows us to select a literal in the 
query that is to be resolved. As pointed out in Shepherdson [11, page 62] a correct 
definition of selection rule should take into account the dependence on the already 
generated nodes, so that, for example, the "leftmost, rightmost" selection rule can 
be defined. This can be easily achieved as follows. 

In our definition of an SLDNF-tree, the selection rule is "incorporated" into the 
construction of an extension -through the selection of literals in the nodes 
generated last. 

Clearly, this selection process can be separated from the construction of an 
extension. Let us drop the selection of literals in the nodes generated last from the 
definition of the pre-SLDNF-tree. Then a selection rule is a function defined on 
pre-SLDNF-trees selecting a literal in every nonempty nonmarked leaf. 

In this revised setup an SLDNF-tree is obtained by alternating the process of 
applying the selection function with the process of extending the pre-SLDNF-tree. 

3. COMPARISON WITH LLOYD'S AND MARTELLI AND 
TRICOMI'S DEFINITIONS 

Lloyd [9] defined successful SLDNF-derivations and finitely failed SLDNF-trees (in 
short SLDNF-objects) by simultaneous induction with respect to their rank. Infor­
mally, a rank corresponds to the number of times one passes "through negation" 
while defining the corresponding SLDNF-object. 
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Thus, in successful SLDNF-derivations of rank 0 and finitely failed SLDNF-trees 

of rank 0, no negative literals are selected. In tum, a selection of a negative ground 

literal --, A in an SLDNF-object of rank n + 1 succeeds if a finitely failed 

SLDNF-tree for A of rank n exists, and fails if a successful SLDNF-derivation for 

A of rank n exists. 
Ignoring small points (like the use of goals instead of queries and refutations 

instead of successful derivations) there are three differences between Lloyd's 

definition and ours. 
First-as already mentioned in Section 1-for some programs and queries, like 

P = (A ~A} and --, A, no SLDNF-derivations and SLDNF-trees according to 

Lloyd's definition exist. 
Second, a selection of a ground negative literal --, A fails if a successful SLDNF­

derivation for A exists, whereas in our case it fails if a successful SLDNF-tree for 

A exists. By replacing such a successful SLDNF-derivation by a successful SLDNF­

tree, it is straightforward to show by induction on the rank that if an SLDNF-object 

exists according to Lloyd's definition, then so it does according to our definition. 

Finally, floundering is treated differently. In Lloyd's definition it arises when a 

query is generated that consists exclusively of nonground negative literals, because 

then no literal can be selected in it. In our definition floundering arises as soon as a 

nonground negative literal is selected in a query. Clearly, this small difference is of 

no importance, because Lloyd's notion of floundering can be easily defined in our 

framework. Our definition of floundering is more appropriate when studying 

SLDNF-resolution with a fixed selection rule, like Prolog leftmost selection rule. 

Martelli and Tricomi [10] provided a definition of SLDNF-resolution according 

to which for every program and query an SLDNF-tree exists. Informally, given a 

selection rule, according to their definition only one tree is generated and the 

construction of the subsidiary trees takes place "within" this tree. In particular, 

selection of a ground negative literal --, A within a query K, --, A, M yields one 
resolvent, namely K,--, [L 1; ••• ;Ln], M. Here ; is to be interpreted as a disjunction. 

Thus the syntax of the queries needs to be extended, and to properly handle such 

extended queries so-called collapsing cases are needed to simplify them. For 

example, K, --, ["fail"; ... ;"fail"], M is simplified to K, M. Martelli and Tricomi [10] 

proved that if an SLDNF-object exists according to Lloyd's definition, then so it 

does according to their definition. 
Comparing our definition with that of Martelli and Tricomi we notice the 

following. Their definition makes it possible to define a fair selection rule, 

according to which in every infinite SLDNF-derivation for every literal appearing in 

it eventually some further instantiated version of it is selected. 
On the other hand, we find that our definition remains closer to the implemen­

tation and also to what probably is the primordial intuitive idea of an SLDNF-tree 

as a computation in which secondary, tertiary, ... computations can be started from 

selected negative literals. Also according to our definition the branches of all trees 

are constructed in parallel, whereas in Martelli and Tricomi's definition they are 

constructed sequentially. Consequently, different SLDNF-trees in the sense of 

Martelli and Tricomi are identified by our definition. 

4. INTERMEZZO ON COMPUTED ANSWER SUBSTITUTIONS 

This section proves some technical results about pseudoderivations needed in the 

last section. 
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Note that as a consequence of Definition 2.3, in a pseudoderivation C11 ~ 
"' C 1 __; e 2 • • • ; any variable occurring in an , 1 or C n + 1 occurs either in C0 or in an 

input clause used at some step s n. Also, every subsequence of a pseudoderivation 
is a pseudoderivation. 

Definition 4. I. The variables from Var( Ca) - Var( D) are said to be released at the 
. a 

resolution step e ~D. 
This notion was introduced in Doets [5]. Its relevance was illustrated there by 

showing that the following lemma is responsible for lifting and maximal generality 
of derivations in the SLD case. 

Lemma 4.2. In a pseudoderimtion, no cariable released at some step occurs in a query 
or an mgu of a later step. 

"1 

PROOF. Assume that C0 ~ C1 ··· is a pseudoderivation in which x is released at 
the first step. Then x $ Var(C1) and x occurs in C0 or in a 1• Thus x occurs in C0 

or in the first input clause if the selected literal in C0 is positive. Therefore, no 
"'' input clause used in the pseudoderivation C1 ....:; e2 ••· contains x. Because input 

clauses are responsible for the introduction of variables in this pseudoderivation, 
the result follows. D 

al an 
Lemma 4.3. If C0 ~ ••• ~ en (n ~ 2) is a pseudoderi1 1ation, then Var(C0 a 1) n 

Var(C 1 a 2 ···an) i::;;: Var(C 1). 

PROOF. Assume that xE Var(C0 a 1)-Var(C1). That is, x is released at the first 
step. Clearly, Var(C 1a 2 ••• an)i::;;Var(C1)URan(a 2)U ··· URan(an). By Lemma 
4.2, x does not occur at the right-hand side. Therefore, x '1. Var(C 1a 2 ···an). D 

a1 an 
Lemma 4.4. If C0 ~ ••• ~en (n ~ 2) is a pseudoderiration, then fo 1((a2 ··· 

an)IC1))1e0 = (a 1 ••• a)le0 • 

PROOF. If not, a variable x E Var(C0 ) exists such that xa/(a2 ••• an)IC1) =1=xa 1 ••• 

an. Then a variable y E Var(xa 1) exists such that y((a2 ··• an)IC1) =I= ya2 ···an. 
Thus, y $ Var(C 1) and y((a 2 ••• an)IC1) = y. Because y E Var(C0 a 1)- Var(C 1), Y 
is released at the first step. However, then, by Lemma 4.2, y $ Dom( a 2) u · · · u 
Dom( an), hence ya 2 ••• 0:11 = y. Therefore, y = ya 2 ••• an =I= y(( a 2 ••• an)IC1) = y-a 
contradiction. D 

Corollary 4.5. Suppose that the main tree of a (pre-) SLDNF-tree for C has a 
successful branch with a corresponding c.a.s. T for C. If e ~Dis the first step of 
this branch and the rest of it yields the c.a.s. 17 for D, then T = (aa )IC. 

PROOF. Apply Lemma 4.4 to this successful branch. D 

5. COMPARISON WITH KUNEN'S DEFINITION 

The difficulty of defining SLDNF-resolution was elegantly circumvented in Kunen 
[7], where a completeness theorem of SLDNF-resolution for allowed general 
programs and allowed queries was proved. 
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In his considerations, Kunen [7] dealt only with success and finite failure, which 
allowed him to define the concepts needed by a remarkably simple "bottom-up" 
inductive definition avoiding the construction of SLDNF-trees and SLDNF­
derivations altogether. This approach is sufficient when dealing with completeness 
of SLDNF-resolution, but cannot be used to reason about properties that inher­
ently refer to SLDNF-trees like the ones mentioned in the introduction. 

We now clarify the relation between our definition of computed answer substitu­
tions and of finite failure and those of Kunen [7]. Let us start by recalling Kunen's 
definition. 

Again, an arbitrary general program P is fixed. 

Definition 5.1. The set F of queries and the set R of pairs (C, a) [C a query and 
u a substitution for which Dom( u) r;;;, Var(C)] are defined by a simultaneous 
inductive definition as follows. 

(0) ORE. 
(R +) If C resolves to D via a with respect to some positive literal of C and a 

clause from P and DRa, then CR(aa)IC. 
(R-) If A is a ground atom in F and (C,C')Ru, then (C,-, A,C')Ru. 
(F +) If L is a positive literal in C and for every clause R from P that is 

"' applicable to L there exist a and DE F such that C ~ D(L, R), then 
CEF. 

(F-) If A is a ground atom such that ARE, then CC,-, A,C') E F. 
The intention here is that R is the set of pairs (C, a) such that a is a c.a.s. for 

C and F is the set of queries C such that there is a finitely failed tree for C. 
Kunen's original formulation of F + could be interpreted as stating that if 

L E C is positive and every resolvent of C with respect to L and a clause of P is 
in F, then C E F. However, we suspect that this does not change the notions of 
R and F; besides, this (unnecessarily) complicates the proof of Theorem 5.3 
(case bl). 

A Modification 

The accompanying notion of soundness associated with Kunen's definition is the 
following: 

• If CRu, then comp(P) I= Cu, and 

• If C E F, then comp(P) I= -, C. 

These implications can be proved simultaneously by a straightforward induction 
along the clauses of the definition. In fact, soundness still holds if the usual 
groundness conditions on the atom A in R - and F - are left out. (The resulting 
notion is called SLDNFE, for SLDNF extended.) However, to get the optimal 
match between Kunen's notions and ours, we have to change his definition at one 
point. 

The formulation of R + does not ensure that the resulting answer substitutions 
are most general. For instance, if P consists of the clauses 

Q(x',y') ~ Q(y',y'), 

Q(x,x) ~, 

then D Re (by 5.1.0), Q(y, y )R{y /x} (by R + and the second clause), and, con­
sequently, Q(x,y)R{y/x} (by R+), because Q(x,y) resolves to Q(y,y) via 
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{x' /x, y' /y} and the first clause. However, {y/x} is not a c.a.s. for Q(x, y) whereas 
{y/z} is. 

Note that the corresponding successful two-step derivation t)(x v) I<'/•· r ,, l (r.'d ~ '· 
Q(y, y) ....:..:.._ D is not obtained by properly standardizing apart The input clause 
Q(x,x) <-- used at the second step contains a variable used earlier. Also, it is 
worthwhile to mention that this irregularity has no bearing on the class of allowed 
programs and queries considered in Kunen [7], because the computed answer 
substitutions are then always grounding. 

In order that R + produces most general answer substitutions, we amend it as 
follows: 

(tR + ) If C resolves to D via a with respect to some positive literal of C and 
a clause from P, DR o-, and 

Var( Ca) n Var( Du) ~ Var( D), 

then CR( au )IC. 

( 1 ) 

Note that this condition coincides with the claim of Lemma 4.3. Formulated 
slightly differently, it says that variables released at the step C .'.:'.. D do not occur 
in Der. 

The condition tR + together with a selection in R + of input clauses disjoint 
with the queries can be viewed as a formalization of the standardization apart 
condition for Kunen's definition. 

The following lemma will be needed later. 

Lemma 5.2. lf C E F and C ~ D, then DE F. 

PROOF. By a straightforward induction using only clauses F + and F - of 
Definition 5.1. D 

The next theorem uses Kunen's definition as modified above. 

Theorem 6.3. If C is a query, then: 

• CRT if! T is a c.a.s. for C. 

• C E F if! C has a finiteZv failed SLDNF-tree. 

PROOF. The left-to-right halves of these equivalences are proved simultaneously by 
induction along the clauses of the modified Definition 5.1. In the following text, 
selected literals in queries are underlined. This part of the proof requires the 
construction of SLDNF-trees. However, by Theorem 2.11, it suffices to construct 
pre-SLDNF-trees only. In fact, we shall sometimes only indicate how to construct a 
relevant part of the required pre-SLDNF-tree. 

(0) C = D and a= i:. This case is trivial. 
(tR +)Suppose that C resolves to D via mgu a with respect to some positive 

literal. Furthermore, assume that DR er, where (cf. the modification) condition (l) 
holds. We want to show that ( aer )IC is a c.a.s. for C. 

By induction hypothesis, er is a c.a.s. for D. That is, the main tree T of an 
SLDNF-tree .'/for D has a branch ending in success and er is the c.a.s. along this 
branch. By condition (1 ), Der does not contain variables from Var( Ca) - Var( D ). 
Therefore, we may assume (renaming variables in T if necessary) that T does not 
involve a variable from Var(Ca) - Var(D). However, then we can modify the 
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SLDNF-tree by putting C on top of T as a new root, because the resulting 
branches will be pseudoderivations. This produces part of an SLDNF-tree for C, 
showing C to have the c.a.s. (aa)IC by Corollary 4.5: 

/]~ 
D 
!T 

(R - ) Suppose that A E Fis ground, and (C,C')Ra. We want to show that a 
is a c.a.s. of C,-, A,C'. 

By induction hypotheses, there exists a finitely failed SLDNF-tree .'T for A and 
there is an SLDNF-tree !T for C, C' whose branch yields the c.a.s. a. Then 

is a successful SLDNF-tree for C,-, A,C' whose branch yields the c.a.s. a. 
(F + ) Suppose that L is a positive literal in C and for every clause R from 

P that is applicable to L there exist a and DE F such that C ~ D(L, R). We 
want to show that C has a finitely failing SLDNF-tree. Let D 1, ..• , Dn E F be 
resolvents of C with respect to Land, respectively, all clauses R 1, ••• ,Rn of P 
applicable to L. 

By induction hypothesis, choose a finitely failing SLDNF-tree g; for every 
resolvent D;. Then 

/]~ 
D1 ... Dn 

.91 Y,; 
is the required finitely failing SLDNF-tree for C. Obviously, we can assume 
(compare case tR +) that the Y; are such that the branches of the new main tree 
will be pseudoderivations. 

(F-) Suppose that the atom A is ground and AR€. We want to show that 
there is a finitely failed SLDNF-tree for C, .., A, C'. 

By induction hypothesis, there exists a successful SLDNF-tree !T for A. Then 
C,.., A,C' 

failed 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
~ 

A 
g-

is a finitely failed SLNDF-tree for C, .., A, C'. 
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The right-to-left halves of the two equivalences are proved simultaneously by 
induction on rank(§, T ), where (a) ,T is a successful SLDNF-tree for C with 
a branch yielding the c.a.s. T, or (h) Y is a finitely failed SLDNF-tree for C and 
'T =f. 

rank(;)"", T) = 0. Then «7 is successful (because C is not marked), so C = o and 
T= E. Thus CRE by clause 0. 

rank(§, T) > 0. 

(a 1) The selected literal of C is positive. Let D be the direct descendant of C 
in ,':T lying on the branch that yields the c.a.s. T. D is obtained from 
C using an mgu Cl'. Let a be the c.a.s. for D along this branch. By induc­
tion hypothesis, DR a. Moreover, by Lemma 4.3 we have Val{ C Cl') n 
Var( Da) <;;; Var( D).Therefore, by clause tR + we get CR( ll'a )IC. However, 
by Corollary 4.5 T = (cw )IC. 

(a2) The selected literal of C is negative. Then C = D,-, A, D', where A is 
ground and subs(C) fails finitely. However, rank(subs(C ), E < rank(.'7, T) 

and A is the root of the main tree of subs(C), so by induction hypothesis 
A E F. Moreover, the only direct descendant of C in J is D, D'. Again by 
induction hypothesis (D, D')Rr. Therefore, by clause R - we get CRr. 

(bl) The selected literal of C is positive. By induction hypothesis, all direct 
descendants of C in J are in F. Therefore, by clause F + we get C E F. 

(b2) The selected literal of C is negative. Then C = D,-, A, D', where A is 
ground. 

Subcase 1. C is marked as failed. Then subs( C) is successful. However, rank 
(subs(C), E < rankt'T. r) and A is the root of the main tree of subs(C), so by 
induction hypothesis ARE. Therefore, by clause F - we get C E F. 

Subcase 2. C is not marked as failed. Y is finitely failed, so C has a direct 
descendant. Therefore, subs(C) is finitely failed and D, D' is the only 
direct descendant of C in§. By induction hypothesis (D, D') E F. Therefore, by 
Lemma 5.2 we get C E F. O 

We thank the referees for helpful remarks on the subject of this paper. 
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