
New Generation Computing, 9 (1991) 335-363
OHMSHA, LTD. and Springer-Verlag

Acyclic Programs*

Krzysztof R. APT
Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 sj Amsterdam, The Netherlands.
Marc BEZEM
Department of Philosophy,
State University of Utrecht,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands.

Received 15 October 1990
Revised manuscript received 15 April 1991

© OHMSHA, LTD. 1991

Abstract We study here a natural subclass of the locally stratified
programs which we call acyclic. Acyclic programs enjoy several natural
properties. First, they terminate for a large and natural class of general goals,
so they could be used as terminating PROLOG programs. Next, their
semantics can be defined in several equivalent ways. In particular we show
that the immediate consequence operator of an acyclic program P has a
unique fixpoint Mp, which coincides with the perfect model of P, is the
unique Herbrand model of the completion of P and can be identified with
the unique fix point of the 3-valued immediate consequence operator associat­
ed with P. The completion of an acylic program P is shown to satisfy an
even stronger property: addition of a domain closure axiom results in a
theory which is complete and decidable with respect to a large class of
formulas including the variable-free ones. This implies that Ml' is recursive.

On the procedural side we show that SLS-resolution and SLDNF­
resolution for acyclic programs coincide, are effective, sound and (non­
fioundering) complete with respect to the declarative semantics.

Finally, we show that various forms of temporal reasoning, as
exemplified by the so-called Yale Shooting Problem, can be naturally
described by means of acyclic programs.

Keywords: Logic Programming, Negation, Semantics, Non-Monotonic Reasoning.

* This paper is a revised version of the paper presented at the Seventh International Conference
on Logic Programming, 1990, Jerusalem.

336 K. R. Apt and M. Bezem

§1 Introduction

1 . 1 Motivation
This paper is about a simple, yet remarkable class of general logic

programs. We call them acyclic because, given an acyclic program, for a large
class of general goals, including the variable-free ones, no infinite SLDNF­

derivations exist.
The class of acyclic programs includes the recursion-free general pro­

grams and is included in the class of locally stratified programs defined by
Przymusinski.25l It was originally introduced in Cavedon 7> under a rather
unattractive name of w-locally hierachical programs. Intuitively, a program is
acyclic if a mapping from variable-free literals to natural numbers can be
exhibited showing that no recursion on the variable-free level exists.

In this paper we systematically study various approaches to the semantics
and proof theory of acyclic programs. Among the main new results we mention
the equality between the unique fixpoints of the immediate consequence opera­
tor TP and its 3-valued counterpart <[Jp, decidability of Clark's completion of an
acyclic program augmented by the domain closure axiom with respect to a large
class of formulas, and identification by means of the concept of boundedness of
a large class of goals for which the acyclic programs terminate w. r. t. SLDNF­
and SLS-resolution.

These results combined with those previously established by Przymusin­
ski25> and Cavedon7l show that several ways of defining the semantics of general
logic programs including Clark's completion, perfect model semantics, fixpoint
semantics based on the immediate consequence operator Tp and its 3-valued
counterpart r})p, and two forms of resolution -SLDN F and SLS-coincide in
the case of acyclic programs. Thus the class of acyclic programs can be viewed
as a common denominator of various approaches to the proof theory and
semantics of general logic programs, approaches which in general yield different
results.

This striking uniformity can lead the reader to wonder whether acyclic
programs are sufficiently strong for modeling non-monotonic reasoning and for
computing in general. It has been argued (see e.g. Przymusinski26l) that Clark's
completion, comp(P), is in general too weak to model satisfactorily non­
monotonic reasoning.

To ward off such a criticism we show that a large class of problems in
temporal reasoning, as exemplified by the so-called Yale Shooting Problem of
Hanks and McDermott,14> can be naturally formalized using acyclic programs.

In Bezem4> it was shown that even without the use of negation every total
recursive function can be computed by an acyclic program. Moreover: the
guaranteed termination of SLDNF-derivations for a large class of general goals
shows that acyclic programs could be used as terminating PROLOG programs.

Acyclic Programs 337

Thus, after all, acyclic programs form a powerful class.
However, not all things are so rosy. It can be shown that the property of

being an acyclic program is highly undecidable-it is ng complete in the
arithmetical hierachy. In some cases, including the Yale Shooting Problem, we
can easily prove that a program is acyclic by exhibiting a simple 'termination
function' defined in terms of the arguments of the relations used.

1 . 2 Plan of the Paper
The paper is organized as follows. In the next subsection we define

acyclic programs and introduce the important concept of a bounded general
goal. Bounded general goals include the variable-free ones.

In Section 2 we study the declarative semantics of acyclic programs. We
show that for every acyclic program P its immediate consequence operator TP
has a unique fixpoint. By the results of Przymusinski25> and Apt, Blair and
Walker3> this fixpoint is the unique perfect Herbrand model of P and the unique
Herbrand model of Clark's completion, comp(P). Moreover, we show that this
fixpoint can be identified with the unique fixpoint of the <J)p operator due to
Fitting12>, defined on the 3-valued Herbrand interpretations of P.

In Section 3 we study Clark's completion of acyclic programs. We prove
that for an acyclic program P, comp(P) augmented by a domain closure axiom
DCA, is a complete and decidable theory for bounded general goals. This
implies that the unique perfect Herbrand model of P is recursive.

Then we turn to the procedural semantics of acyclic programs. In Section
4 we show that SLDNF-derivations for a bounded general goal and an acyclic
program always terminate. Moreover we show that for acyclic programs SLS­
resolution and SLDNF-resolution coincide and are effective. The results of
Cavedon7' and Przymusinski2n imply (non-floundering) completeness of these
two resolution methods.

Finally, in Section 5, we show how a well known problem in temporal
reasoning, called the Yale Shooting Problem, can easily be formalized and
solved using acyclic programs. We also show how a much larger class of
problems in temporal reasoning can be solved by analogous means.

1 . 3 Preliminaries
For definitions, terminology and notation concerning logic programming

we refer the reader to Aptll or Lloyd.17' or 17). More specifically, for a general
logic program P we use Up, BP, Tp, comp(P) and ground(P) as abbreviations
of, respectively, the Herbrand Universe of P, the Herbrand Base of P, the
immediate consequence operator of P, Clark's completion of P and the set of all
variable-free instances of clauses from P. From now on we simply say program
and goal instead of general program and general goal. We recall the following
notions which are due to Przymusinski.25>

338 K. R. Apt and M. Bezem

Definition 1.1
A program P is locally stratified if there exists a mapping stratum from BP to
the countable ordinals such that for every A - Li, ... , Ln(n 2: 0) in ground(P)
the following conditions hold for every I S: i S: n:

if L; is positive, say L; is B for some B E BP, then stratum(A) 2:

stratum(B);
if L; is negative, say L; is -.B for some B E Bp, then stratum(A) >
stratum(B).

Definition 1.2
Let P be locally stratified. A Herbrand model M of P is called a perfect model
of P if there exists no Herbrand model of P which is preferable to M. Here
preferable is the following relation between Herbrand interpretations: I is
preferable (or preferred) to J if for every A E I - J there exists B E J - I
such that stratum(B) < stratum(A).

Although the definition of a perfect model seems to depend on stratum
and it is not obvious from this definition that perfect models exist, Przymusinski
has shown in Przymusinski25> that every locally stratified program has a unique
perfect model. It is easily seen that the perfect model of P is a minimal Herbrand
model of P (a smaller Herbrand model would be preferable to it). Consequently,
if P is a positive logic program, then the perfect model of P equals the least
Herbrand model of P.

The following three basic definitions are straightforward generalizations
of definitions given in Bezem4>. The first two definitions can also be found in
Cavedon7>.

Definition 1.3
Let P be a program. A level mapping for P is a function I I: BP~ N of
variable-free atoms to natural numbers. We extend I I to variable-free literals by
putting I •A I= I A I for all A E Bp. For A E BP we call I (•)A) I the level of
(')A.

Definiton 1.4
Let P be a program and I I a level mapping for P. We call P acyclic with respect
to I I iffor every A - Li, ... , Ln(n 2 0) in ground (P), I A I > I L; I for every I s
i S: n. Moreover, P is called acyclic if P is acyclic with respect to some level
mapping for P.

A simple example which will play a prominent role in this article is
provided by a formalization of the so-called Yale Shooting Problem of Hanks
and McDermott14> by the program YSP consisting of the clauses (a)-(e) below.
In this section YSP serves only as an example of an acyclic program. We
postpone the discussion of this program to Section 5, where YSP is considered
as a key example of the special form of non-monotonic reasoning captured by

Acyclic Programs 339

acyclic programs.

holds(alive, []) <-- (a)

holds(loaded, [loadlxsztuation]) <-- (b)

holds(dead, [shoot I Xsztuation]) <-- holds(loaded, Xsztuation) (c)

ab(afive, Shoot, Xsituation) <-- holds(loaded, Xsituation) (d)

holds(Xfact, [Xevent I Xs;tuation]) <--

--, ab(Xfact, Xevent, Xsituation), holds(Xfact, Xsituation) (e)

In this program Xsztuation, Xfact, Xevent are variables, alive, dead, loaded, load,

shoot are constants and we have used a representation of lists such as in LISP

or PROLOG. The empty list is represented by a constant denoted []. If L is a

list and t a term, then the list with t as first element (the head), followed by the

list L (the tail) is represented by the term [t I L], denoting the application of a

binary function to t and L. Furthermore [t1, ••• , t,, I L] abbreviates [11 I [• • • [tn

ILJ···]], and [tr, ... , tn] abbreviates [tr, ... , tnl []](n21). In the alphabet of

YSP every variable-free term is either a constant, or a term [t1 I t2]. Hence we can

define a mapping l: UvsP -+N by l(t) = 0 if t is a constant and l([t1 I tz]) = 1 +
l (tz). We define a level mapping I I: B vsP -+ N by I holds(t, t') I = 21 (t') and

I ab(t, t', t") I = 2l(t") + l, so that we have

lholds(t, [hllJ)I > lab(t', t", 1)1 > lholds(t"', l)I

for all variable-free terms t, ... , t'", h, !. Now it is not difficult to see that YSP

is acyclic with respect to I I.
Definition 1.5
A literal L is called bounded with respect to a level mapping I I if I I is bounded

on the set [L] of variable-free instances of L. If L is bounded, then I [L] I
denotes the maximum that I I takes on [L]. We then say that L is bounded by

l if l 2 J[L]I. A general goal G = <-- L1, ... , Ln(n 2 0) is called bounded if

every L,(l s i S n) is bounded. If G is bounded then I [G] I denotes the (finite)

multiset (see Dershowitz9>) consisting of the natural numbers I [Li] I, ... , I [Ln] I.

The following easy lemmas are instrumental in proving the termination

of a number of inference procedures for acyclic programs and bounded goals.

Lemma 1.6
Let I I be a level mapping and L a bounded literal. Then, for every substitution

{), L{) is bounded and I [L{)] I s I [L] I.

Proof
Follows immediately from [Le] s:; [L]. o

Lemma 1.7
Let P be acyclic with respect to I I. Then for every clause A<-- Li, ... , Ln(n 2

0) from P and every substitution {) we have: if A{) is bounded, then every L;{)

340 K. R. Apt and M. Bezem

is bounded and l[L,BJI < l[ABJl(l S: i S: n).

Proof
For every L' E [L,8](1 S: i S: n) there exists a variable-free instance A'~
L'i, ... , L'n of A8 +--- L18, ... , LnB, and hence of A~ Li. .. ., Ln, such that L'
occurs in the body. Since P is acyclic and AO is bounded, it follows that l[ABJI
:::::: I A' I > I L' I. Now the conclusions of the lemma immediately follow. o

§2 Declarative Semantics of Acyclic Programs
In this section we define the declarative semantics of acyclic programs.

We follow the 2-valued and 3-valued approach in successive subsections. In
general these approaches lead to different semantics, but, among others, we show
that in the case of acyclic programs they lead to the same declarative semantics.

2.1 The 2-Valued Approach
Let I I be a level mapping for a program P. We can view I I as a way of

partitioning the Herbrand Base Bp. Any partition of BP naturally induces a
partition on every Herbrand interpretation I <;:; Bp. Let us denote these partition
classes by /(n), so I(n) ={A EI 11 A I= n} for all n EN.

Definition 2.1
Let P be acyclic with respect to I I. The declarative semantics of P is defined as
a specific Herbrand interpretation M for P; M is the union of an inductively
defined sequence M(O), M(l), ... of subsets of BP such that M(n) contains only
atoms of level n (thus conforming to the notation just introduced). This
sequence is defined as follows:

M(O) = {A 11 A I= 0 and A~ is in ground(P)}
M(n + J) = {A 11 A I = n + 1 and there exists A~ Li, ... , Lk(k :::::: 0)

in ground(P) such that U M(i) f= L1 /\ • · • /\ Lk}.
i"S:...n

Alternatively, for all n

M(n) = Tp(U M(i)) n Bp(n).
i<n

At first sight the declarative semantics M of P seems to depend on the level
mapping. However, it follows from the Lemmas 2.3 and 2.4 below that this is not
the case. Therefore we denote from now on the declarative semantics of an
acyclic program P by Mp.

Lemma 2.2
For all interpretations I and variable-free literals L we have I f= Liff !(I LI) f= L.

Proof
Trivial. o

Acyclic Programs 341

Lemma 23
Let P be acyclic. Then MP is a fixpoint of Tp.

Proof
Let P be a program which is acyclic with respect to a level mapping I I: BP
N. As to MP <:;; TP(MP), suppose that A E Mp. Then A E MP(I A I). If I A I =
0, then A E Tp(MP) by the definition of MP(O). If I A I > 0, then A E TP(Mp)
by the construction of MP(I A I), the acyclicity of P and Lemma 2.2.

Conversely, if A E Tp(Mp), then there exists A~ Li. ... , Lk(k ~ 0) in
ground(P) such that MP f= L1 /\ • • • /\ Lk. Since P is acyclic, we have I A I >
I L1 I for all 1 :S i ::;:; k. Now, again by the construction of MP and by Lemma
2.2, it follows that A E Mp. o

Lemma 2.4
The TP operator of an acyclic program has at most one fixpoint.

Proof
Let I and J be fixpoints of TP for some general program P which is acyclic with
respect to a level mapping I I: BP N. We shall prove by induction on n that
U J(n) = U J(n), which immediately implies I = J. For n = 0 there is
i<n i<n

nothing to prove. Assume U J(n) = U J(n). We have to prove /(n) = J(n).
i<n i<n

Let A E J(n); then A EI = Tp(I), so there exists A ~Li. ... , Lk(k ~ 0) in
ground(P) such that I f= L 1 /\ • • • /\ Lk. Since P is acyclic, we have I L; I <
I A I = n for all 1 ::;:; j ::;:; k. It follows by Lemma 2.2 above that U /(i) F= L1

i<n

/\ • • • /\ Lk, so by the induction hypothesis we have .. Yn J(i) F= L1 /\ · • • /\ Lk.

By Lemma 2.2 J f= L 1 /\ • • • /\ Lk so we have A E Tp(J) = J, hence A E
J(n). We have proved J(n) i:; J(n), and the converse follows by symmetry. This
completes the induction step. o

Theorem 25
Let P be an acyclic program. Then we have:

(i) TP has a unique fixpoint, MP;
(ii) MP is a minimal model of P;
(iii) MP is the perfect model of P;
(iv) Mp is the unique Herbrand model of comp(P).

Proof
(i) By the Lemmas 2.3 and 2.4.
(ii) Assume by contradiction that N C Mp is a model of P. Let n be the

smallest natural number such that N(n)=f::.Mp(n). Now a contradiction
follows by inspection of the construction of Mp, the acyclicity of P and

Lemma 2.2.
(iii) We first observe that a level mapping naturally induces a local

342 K. R. Apt and M. Bezem

stratification (see Przymusinski25l) of the acyclic program. Hence every
acyclic program has a unique perfect model. To show that MP is
perfect, assume by contradiction that a model N of P is preferable to
Mp. Since MP is minimal by (ii), it follows that there exists an atom A
E N such that A $. Mp. Let A be such a variable-free atom having the
lowest level. By the definition of the preference relation between the
models MP and N there exist B E MP such that B $. N and I B I < I
A I. Let B be such a variable-free atom having the lowest level. It
follows that U Mp(i) = U N(i) and N(I BI) C MP(I BI). Now the

i<IBI i<IBI

desired contradiction follows in a similar way as under (ii).
(iv) We recall that fixpoints ·of the TP operator of a general program are

exactly the Herbrand models of the completion of that program (see
Apt 0 , Lemma 7.1 (ii)). o

2 . 2 The 3-Valued Approach
In this subsection we provide yet another characterization of the model

MP of an acyclic program - in terms of 3-val ued models. First we recall the
necessary background results, due to Fitting12>, which use a 3-valued logic due
to Kleene15 l.

In Kleene's logic there are three truth values: t for true, f for false and u
for undefined. Every connective takes the value t or f if it takes that value in
2-valued logic for all possible replacements of u's by t or f; otherwise it takes
value u.

A Herbrand interpretation for this logic (called a 3-valued Herbrand
interpretation) is defined as a pair (T, F) of disjoint sets of variable-free atoms.
Given such an interpretation I = (T, F) a variable-free atom A is true in I if
A E T, false in I if A E F and undefined otherwise. Given I = (T, F) we
denote T by J+ and F by 1-. Thus I = (/+, r).

Every (2-valued) Herbrand interpretation I for a program P determines
a 3-valued Herbrand interpretation (J, BP - /).Therefore, in the remainder of
this subsection we identify every 2-valued Herbrand interpretation I with its
3-valued counterpart (/, BP - /).

Given a program P, the 3-valued Herbrand interpretations for P form a
complete partial order with the ordering c:; defined by

1 c:; J iff 1+ c:; r A r c:; 1-

and least element (</J, <P).

Following Fitting12l, given a program P we define an operator (/)p on this
complete partial order of 3-valued Herbrand interpretations for P as follows:

<,Pp(/) = (T, F),

where

Acyclic Programs 343

T = {A\ there exists A +- L,, ... , Lk in ground(P) with L1 /\ • • • /\

Lk true in I},

F = ·(A \for all A +- L,, ... , Lk in ground(P), L 1 /\ • • • /1 Lk is false
in l}.

It is easy to see that T and F are disjoint, so ([Jp(!) is indeed a 3-valued

Her brand interpretation. (/)p is a natural generalization of the operator TP to the

case of 3-val ued logic.

The powers of tJ)p are defined in analogy to those of T1.:

(/)p t 0 = (r/J, </;),

(/)p t (a + 1) = ([Jp(tJ)p t a),

tJ)p i (a) = U (/)p t /3 for any limit ordinal a.
P<a

(/Jp is easily seen to be monotonic, so ([Jp i a c:; ([Jp t f3 whenever as /].

We have the following result.

Lemma 2.6
Let P be an acylic program. Then MP = (/)p t w.

Proof
Let P be acyclic with respect to a level mapping I.\. Consider the sequence

M (0), M (1), ... of subsets of BP constructed in Definition 2.1. We prove by

simultaneous induction on n the following two claims:

(i) A E M(n) iff A E ([Jp i (n + lj+ n Bp(n);

(ii) A E Bp(n) -- M(n) iff A E ([Jp t (n + 1 t n Bp(n).

Note that by our notational conventions ([Jp i (n + l)+ n Bp(n) = ([Jp i
(n + l)+(n) and ([Jp i (n + lr n Bp(n) = ([Jp i (n + lt(n).

and

The base case is clear since

A E M(O)

A.,._ is in ground (P) and I A I = 0

A E (/Jp i 1 + n BP(O)

A E Bp(O) - M(O)

A .,..__ is not in ground(P) and I A I = 0

(since P is acyclic)

there exists no A +- L1, ... , Lk in ground(P) such that L1 /\ · · • /\ Lk

is true in (fJ l' i 0 and I A I = 0
(f)p i 1 - n Bp(O).

Assume now that the claim holds for all m < n. Then

344 K. R. Apt and M. Bezem

A E M(n)
there exists A<- Li, ... , Lk in ground(P) such that U M(i) f= L1

i<n

/\ • · · /\ Lk, and I A I = n

(since P is acyclic)

there exists A<- L 1, ••• , Lk in ground(P) such that U M(i) I= LJ and
i<n

I LJ I < n for all 1 :::; j :::; k, and I A I = n

(by the acyclicity of P, the induction hypothesis and the fact that (j)p i a ~ (/Jp

i /3 whenever a :::; /3)

and

there exists A <- Li, ... , Lk in ground(P) such that L1 /\ • • • /\ Lk is
true in !]Jp i n, and I A I = n
A E !]Jp i (n + It n Bp(n)

A E Bp(n) - M(n)
there exists no A<- L 1 /\ • • • /\ Lk in ground(P) such that U M(i)

z<n

f= L1 /\ · • · /\ Lb and I A I = n

(since P is acyclic)

for all A <- L1 /\ · · • /\ Lk in ground(P) we have I LJ I < n for all
1 sj:;: k, and UMU)ft L1 /\ ••· /\ Lk, and IAI = n

i<rl

(by the acyclicity of P, the induction hypothesis and the fact that (/Jp i a i:;;::

(/Jp i /3 whenever a :::; /3)

for all A <- L1, ... , Lk in ground (P) we have that L 1 /\ • • • /\ Lk is
false in (/Jp i n, and I A I = n
A E (/Jp i (n + It n Bp(n).

This proves the induction step. By induction, for all variable-free atoms A,

A E M1· iff A E (f)p j w+

and

A E BP - Ml' iff A E !]Jp i w ,

i.e. by the identification of 2-valued with 3-valued Hcrbrand interpretations

Ml' = (f)p i w. o

Corollary 2.7
Let P be an acyclic program. Then MP is the unique fixpoint of (f)p.

Acyclic Programs 345

Proof

We have <1>1· t w r::; (/)p i (w + I), so by Lemma 2.6 MPs; (]Jp(Mp). But for no

3-valued Herbrand interpretation/, Mp c /(otherwise r ii 1- =F </>),so Mf' =
(]Jp(MP), i.e. MP is a fix point of (]Jp. Moreover, by the monotonicity of (/Jp, every

fixpoint of the form (/Jp I a is contained in any other fixpoint, so in fact MP is

the unique fixpoi nt of (/)1•• o

The advantage of the characterization of MP by Lemma 2.6 over its

original definition is that the construction of (/)p I w does not refer to any level

mapping.

It is worthwhile to note that even though for an acyclic program P the

least fixpoint of (/)p is reached by iterating <l>P w times, the operator (]Jp does not

need to be continuous.

Lemma 2.8

For some acyclic program P the operator (]Jp is not continuous.

Proof

Let P = {r(s(O)) <--, p <--q(x)). Then P is clearly acyclic. Define now a se­

quence of 3-valued Herbrand interpretations /0, /1, ... as follows:

I;=(</>, {q(si(Q))Jj < i}),

where we identify s 0(0) with 0. Clearly /; C 11+1 for i < w and

U = (</>, [q(x)]).
i< (I)

Now for i < w we have p $ (/Jp(l;) because for the clause p <-- q(s;(O)) in

ground(P), the atom q(s;(O)) is not false in /;. However, p E ([)p(U /;) since
l<W

for every i < w the atom q(s;(O)) is false in U /,.Thus U (J)p(l;) :::/= </Jp(U /,).
z<w z<..W l"'-,W

0

Remarks 2.9

(a) Theorem 2.5 has been found independently by Cavedon7l in the slightly

stronger version for locally hierarchical programs. Most of the results in

Section 2 can be easily generalized to locally hierarchical programs.

However, this is not true for the next sections.

(b) Recall that Tp(l) s; I if and only if If= P (Apt1 l, Proposition 5.12), so

that (i) and (ii) of Theorem 2.5 imply that the unique fixpoint of the TP

operator of an acyclic program is also its minimal pre-fixpoint.

(c) In Przymusinski25 l (Proposition 1) it is proved that every perfect model is

minimal, so (iii) implies (ii) in Theorem 2.5 above. Note that in our

proof (ii) is used to prove (iii) and that the proof that M is a perfect

model is particularly simple as compared to the argument in Przymusins­

ki.251

346 K. R. Apt and M. Bezem

(d) It is tempting to think that Theorem 2.5 (iv) could be sharpened in the
sense that the completion of an acyclic program might be a complete
theory (proving or disproving every sentence), or even a categorical
theory (all models being isomorphic). This, however, is not the case as
shown by the following example. Let P be the acyclic program consisting
of the two clauses p(O) +--, q +- --., p(x) (with I p(O) I = 0 and I q I = 1).
Then comp(P) consists, apart from the axioms of free equality (which do
not play a role here and are given in the next section), of the following
two completed definitions.

p(z) - z = 0
q 3x --ip(x)

The unique Herbrand model of comp(P) is {p(O)}. However, comp(P) has
non-Herbrand models in which q is valid, for example "' with p interpreted as
zero, where q is true since zero(1) does not hold. Note that addition of a domain
closure axiom V x(x = 0) to comp(P) yields a categorical theory in the special
case of this example. Although this phenomenon does not hold for acyclic
programs in general, we show in the sequel that adding a domain closure axiom
to the completion of an acyclic program yields a complete theory with respect
to formulas in which only bounded atoms occur.

§3 Completion Semantics of Acyclic Programs
In this section we investigate in detail the completion of acyclic pro­

grams. We show that any bounded atom can be effectively reduced to an
equality formula that is equivalent to that atom modulo the completion of the
acyclic program. Apart from suggesting an interpreter for bounded atoms, this
reduction enables us to prove that the declarative semantics of an acyclic
program is decidable.

Notation 3.1
We use the vector notation t(resp. x) to denote a sequence of zero or more terms
(resp. distinct variables). Furthermore, t = s abbreviates the conjunction t1 = s1

I\ ... I\ ln = Sn, where t = li, ... , ln and s = S1, ... , Sn. Similarly, L abbreviates
the conjunction Li I\ · · · I\ Ln of the literals occurring in L. Also V x abbrevi­
ates V X1 ... V x,,. The empty conjunction stands for verum, a true proposition,
dually to the convention that an empty disjunction, such as the empty goal,
stands for fa/sum, a false proposition. lf, for any syntactic expression E, we
write E(x), then no other variables occur in E than those explicitly shown in
x. If we abbreviate sequences of variables in a different way, say x and y, then
all the variables occurring in x and y are supposed to be distinct. We do not use
this convention for abbreviations of sequences of terms and literals. Syntactic
identity is denoted by =.

Acyclic Programs 347

Definition 3.2
The theory of free equality, denoted by EQ, is defined by the following axiom
schemata.

f(x) = f(y)---> x = y for all function symbols f,
'(/(x) = g(y)) whenever f $ g,
--, (x = t) for all terms t =I= x such that x occurs in t.

As usual for first order logic with equality we interpret = as the identity relation
on the domain of interpretation. Consequently, we do not have to axiomatize =
as a congruence relation. o

Lemma 3.38>

(i) If t(x) and s(y) do not unify, then EQ f= V x Vy '(t(x) = s(y)).

(ii) If t(x) and s(y) do unify, then there exists an mgu e = { ·. ·, x;/
u;, · · ·, · · ·, Yi/vj, · · ·} of t(x) and s(y) such that all the variables
occurring in e are among x, y and EQ f= V x Vy [t(x) = s(y) (x =
u /\ y= v)].

Here and below it is understood that U; = X; (resp. Vj = y;) if e does not
contain a binding for X; (resp. Yi). o

For a simple proof of the above lemma, based on the use of the
Martelli-Montanari unification algorithm, see Apti>(Lemma 5.21).

Theorem 3.4 (Equivalence Theorem, or substitutivity for logical equivalents)
Let T be a theory and 1// a formula obtained from a formula ifJ by replacing
some occurrences of formulas </Ji, ... , </Jn by </Ji', ... , </Jn' respectively. If T f= </Ji
<Pi', ... , T f= </Jn </Jn', then T f= </> ._... cp'.

Proof
This is just a mild generalization of the Equivalence Theorem in Shoenfield29>
(3.4). It should be noted that the replacement of formulas may involve renaming
of variables to avoid variable clashes. o

Lemma 3.5
Let P be acyclic with respect to I J: BP ---> N. For every bounded atom A there
exists a formula </JA, all whose free variables occur in A, such that comp(P) f=
A ._... </JA and all atoms A' occurring in c/JA are either equality atoms, or are
bounded with J[A']J < J[A]J.

Proof
The proof is essentially by unfolding completed definitions. The decrease in the
bound on the level of variable-free instances is ensured since the atom is
bounded and the program is acyclic, but the price is the introduction of equality
formulas which express the unification process. Let A = p(s(y)) be a bounded
atom. Consider the completed definition

348 K. R. Apt and M. Bezem

p(z) (F1(z) V • • • V Fn(z)) (n 2 0)

of p in comp(P). Fix 1 ~ i ~ n and assume that F;(Z) originates from the
program clause p(t(x)) <-- L(x) from P. (The denotation p(t(x)) <-- L(x) is
meant to express that x are all the variables occurring in the clause, and not that
these variables occur all both in the head and in the body of the clause.) We
have

F,-(z) = 3 x(z = t(x) /\ L(x))

and distinguish the following two cases.

Case 1
p(t(x)) and p(s(y)) do not unify. Then by Lemma 3.3 (i), we have

EQ F= '\Ix '\/y •(t(x) = s(y))

and so

comp(P) F= '\/ y -, F;(s(y)).

Case 2
p(t(x)) and p(s(y)) do unify. Let 8 be as in Lemma 3.3 (ii). Then by the
Theorem 3.4 we have

comp(P)f= '\/y[F;(s(y))- 3x(x = u /\ y = v /\ L(x))].

Since = is interpreted as identity, we obviously have

I= '\Ix '\/y[(x = u /\ y = v /\ L(x)) (x = u /\ y = v /\ L(u))].

Since L(u) = L(x)B, it follows that

comp(P) f= '\/y[F;(s(y))- 3x(x = u /\ y = v /\ L(x)8)].

This completes the second case of the case distinction.
After these preparations the construction of <PA can be given. We have

comp(P) f= A (F1(s(y)) V • • • V Fn(s(y))).

Let l ~ i ~ n and consider F;(s(y)). In Case I we simply delete F;(s(y))
from (t). In Case 2 we replace F;(s(y)) by ·:J x(x = u /\ y = v /\ L(x)B). Let
</JA be the resulting right hand side. By Theorem 3.4 it follows that comp (P) I=
A rPA· It remains to show that all atoms A' occurring in rPA that are not
equality atoms are bounded and satisfy l[A'JI < l[AJI. This can be seen as
follows. Recall that A = p(s(y)) and A'= L;(x)8 for some L; occurring in the
body of a program clause p(t(x)) +-L(x). We obviously have l[p(s(y))JI 2:
l[p(s(y))8JI. Moreover,p(s(y))B = p(t(x))8. Finally, by Lemma 1.7, l[p(t(x))
8] I > I [L;(x)B] I since p(t(x)) <-- L(x) is a clause of the acyclic program P. It
follows that l[L;(x)B]I < l[p(s(y))]I, i.e. l[A']I < l[AJI. o

The following theorem is to be compared to Lemma 3 in the addendum

Acyclic Programs 349

of Apt and Blair2l. The class of acyclic programs is considerably larger than the

class of recursion-free programs. On the other hand, the reduction to equality

formulas can no longer be obtained for arbitrary atoms, but only for bounded

atoms.

Theorem 3.6
Let P be acyclic. For every bounded atom A there exists a formula ef>A, all whose
free variables occur in A, such that </>A contains only equality atoms and

comp(P) F A </>A-

Proof
By induction on I [A] I, using Theorem 3.4 and Lemma 3.5 above. o

Corollary 3. 7
Let P be acyclic. For every formula F in which only bounded atoms occur there

exists a formula c/>F, all whose free variables occur in F, such that c/>F contains
only equality atoms and comp(P) F F c/>F.

Proof
By induction on the length of the formula using Theorem 3.6 o

The above results are constructive in the sense that they yield an effective
procedure to reduce a bounded atom, or even a bounded formula (i.e. a formula
F such as in Corollary 3.7), to a formula in the language of equality which is
equivalent to the original formula modulo comp(P). It is interesting to view this

reduction as an abstract interpretation. It should be noted that the equality
formula cf>F from Corollary 3.7 can become arbitrarily complex and one can
dispute whether indeed we achieve a reduction of F. In the sequel we argue that,
due to a result of Malcev21 \ recently rediscovered independently by Maher20 1, we
can indeed claim to have achieved a reduction. Let us first give a simple example
of the proposed reduction technique.

The completion of the example program YSP from Section 1 consists of
EQ and the following two completed definitions.

ab(x, y, z) :::I u(x = alive /\ y = shoot /\ z = u /\ holds(loaded,

u)),

holds(x, y) ((x =alive/\ y =[]) V

:::I u(x = loaded /\ y = [load I u]) V

:::I u(x = dead /\ y = [shoot I u] /\ holds(loaded,

u)) V

3 u, v, w(x = u /\ y = [vl w] /\ -iab(u, v, w) /\
holds(u, w)).

We shall reduce the bounded atom holds(alive, [x, y J) to an equality formula
equivalent to it modulo comp(YSP). The reduction technique will essentially be
the one described in the proof of Lemma 3.5, but from time to time we shall

350 K. R. Apt and M. Bezem

simplify the formulas to enhance readability. For example, we write F(t) instead
of 3 x(x = t ;\ F(x)) for a formula F and a term t in which x does not occur.
Moreover. we move quantifiers to the innermost position. The first unfolding
operation yields that

holds(alive, [x, y]) (l)

is equivalent (modulo comp(YSP)) to

::Ju, v, w(u =alive;\ v = x ;\ w = [y] A -iab(alive, x, [y]) A
holds(alive, [y])), (2)

since only the last disjunct of the completed definition of holds can apply here
on the account of the equality axioms EQ. Formula (2) simplifies to

-iab(alive, x, [y]) ;\ holds(alive, [y]).

Unfolding again and simplifying these two atoms yields

-i(x = shoot ;\ holds(loaded, [y J)) A ' ah(alive, y,
holds(alive, []).

(3)

[]) ;\
(4)

Obviously holds(alive, []) unfolds to the empty conjunction or verum, so that
it can be deleted from (4). Moreover ab(alive, y, [])is unfolded and simplified
as y = shoot A holds(loaded, []). Now holds(loaded, []) is unfolded to the
empty disjunction or fa/sum, so that ab (alive, y, []) is seen to be equivalent to
fa/sum. Hence its negation is equivalent to verum and consequently can be
deleted from (4). It remains to unhold holds(loaded, [y]), which after
simplification yields

y =load V (-iab(loaded, y, []) ;\ holds(loaded, [])). (5)

Although ab(loaded, y, []) unfolds to fa/sum, the conjunction in (5) is
equivalent to fa/sum, since the right conjunct has already been shown to be
equivalent to fa/sum. So this conjunction can be deleted, which yields y =
load. Summarizing all unfolding and simplification we get the following result:

holds(alive, [x, y])--. •(x =shoot;\ y =load), (6)

which is exactly in accordance with the intended meaning of YSP. Note that the
goal~ holds(alive, [x, y]) flounders, so that neither by SLDNF- nor by
SLS-resolution one can obtain a correct answer substitution, and certainly not
an equivalent equality formula such as the one given by (6).

It is well known that domain closure in first order logic is only possible
for finite domains. Then the domain closure axiom reads V x(x = c0 V · · • V
x = c,,). It is tempting to generalize this formula to the case of infinite domains
by

v x = t,
tEUp

Acyclic Programs 357

but this is an infinitary axiom which goes beyond first order logic. By the
Lowenheim-Skolem Theorem (see Shoenfield2Di(5.3)), every theory having an
infinite model admits models of arbitrary infinite cardinality. This simply
excludes that an infinite domain can be characterized by a first order theory.
However, an interesting first order approximation of a domain closure axiom
can be formulated provided that the alphabet of the language contains only
finitely many function symbols (cf. Maher20 l). Par abus de langage this axiom
is usually called domain closure axiom and abbreviated by DCA.

Definition 3.8
DCA is the axiom

V X V :J Yr '· • :J Yr1 X = J (y1, ... , Yr1).
fEL

In this definition constants are taken as function symbols of arity 0 and rf
denotes the arity off. Thus, DCA depends on the alphabet of the language L
and hence on the program P. Since it will always be clear from the context
which P is meant, we do not express this dependence in the denotation. Note
that DCA is satisfied in all Herbrand interpretations of P.

Theorem 3.9
Let P be acyclic. Then for every bounded atom A we have either comp(P) U
DCA f= VA or comp(P) U DCA f= ' VA. Moreover, it is decidable which of
these two possibilities holds.

Proof
Follows from the Theorem 3.6 and the result of Malcev21 l, recently rediscovered
independently in Maher20 l, that EQ U DCA is a complete and decidable theory.
0

Before we finish this section with a simple corollary of this theorem we
show that both DCA and the condition that the goal is bounded are necessary.
Consider the program P from Remarks 2.9(d). Then comp(P) f= -i q ~ V z(z =
0). Now q is true in the non-Herbrand model given in Remarks 2.9(d), but false
in any model satisfying DCA = V z(z = 0), such as Mp.

Regarding the condition that the goal is bounded, consider P = {p(O) .._,
p(f(x)) .._ p(x)/. Then P is obviously acyclic and the goal ~p(x) is not
bounded. Furthermore, the completed definition of p is p(z) ~ (z = 0 V
:J x(z = f(x) /\ p(x))). We have Mp f= comp(P) U DCA U { V p(x)}, but for
M with domain N U Z, with p(x) interpreted as x E N, 0 as 0 E N and/ as
the successor function on both N and Z, we have M f= comp(P) U DCA U
{ 'V p(x)i.

Corollary 3.10
Let P be acyclic. Then Mp is recursive and satisfies for all A E BP

352 K. R. Apt and M. Bezem

A E Ml' iff comp(P) U DCA f= A.

Proof
By Theorem 2.5, Theorem 3.9 and the fact that variable-free atoms are bounded.

D

§4 Procedural Semantics of Acyclic Programs
Among the various approaches to the procedural semantics of logic

programming with negation, the most prominent are SLDN F-resolution, see

Lloyd m, and SLS-resolution from Przymusinski.26)27) One of the difficulties

concerning SLDNF-resolution is that it cannot be defined in a top down

manner. This problem was overlooked in the first edition of Lloyd17l and was

solved in Ref. 17) by defining SLDNF-trees inductively bottom up. As a result,

for certain programs and goals like P = {p +- p} and G = +- 'p, or P = {p +­

-ip) and G = +-p, no SLDNF-derivation needs to exist. We show that this

problem does not arise for acyclic programs.
SLS-resolution as defined in Przymusinski26) for stratified programs in a

top down manner. This definition can be naturally extended to the case of

locally stratified programs (see Bol6) for a rigorous definition), so a fortiori to

the case of acyclic programs.
The major distinction between SLDNF- and SLS-resolution lies in the

way they treat negation. SLS uses a negation as failure rule, whereas SLDNF

uses negation as finite failure. A minor distinction between SLDN F and S LS is

the way they treat floundering, i.e. the appearance of a goal consisting entirely

of negative literals containing variables. Since floundering is not our main

concern here, we shall simply ignore this distinction. More precisely, by SLDNF

we mean a variant of SLDNF in which floundering is treated in the same

systematic way as done in SLS. The following results can be established about

these forms of resolution for acyclic programs.

Theorem 4.1
Let P be an acyclic program and G a bounded goal. Then every SLS-tree as well

as every SLDNF-tree of G contains only bounded goals and is finite.

Proof

We argue in a way similar to Bezem4 \Lemma 2.5 and Corollary 2.6). For the

multiset ordering we refer to Dershowitz9). Let G be a bounded goal. We

distinguish the following three cases. If a positive literal of G is selected, then

it follows by Lemma 1.6 and Lemma 1.7 that every resolvent G' of G is bounded

and that indeed I [G'] [is smaller than I [G] [in the multiset ordering. If G

consists entirely of negative literals containing variables, then there is no

resolvent at all. If a variable-free negative literal is selected, then both for SLS­

and SLDNF-resolution we trivially have that the resolvent (if any) or G is

bounded and smaller than G in the multiset ordering. Now use the fact that the

Acyclic Programs 353

multiset ordering over N is well-founded. o

Corollary 4.2
Let P be an acyclic program and G a goal. Then, for any selection rule, the
SLS-tree and the SLDNF-tree of C coincide.

Proof
We recall that the difference between SLS and SLDN F amounts to negation as
failure versus negation as finite failure. Since all goals+- A with A E BP are
bounded, it follows by Theorem 4.1 that +-A fails if and only if+-A fails
finitezv. Now the corollary easily follows. o

Since SLS-dcrivations always exist for locally stratified programs (so a
fortiori for acyclic programs), this corollary implies that for all acyclic programs
and goals SLDNF-derivations exist. Moreover, for acyclic programs SLDNF­
resolution can be defined in a top down manner, as it coincides then with
SLS-resolution. Additionally we have:

Corollary 4.3
Let P be an acyclic program. Then both SLS- and SLDNF-resolution are
decidable rules of inference.

Proof
If a positive literal is selected in a goal, then every inference step is obviously
decidable. If a goal consists entirely of negative literals containing variables,
then there is no resolvent at all. Now assume a negative literal •A with A E
BP is selected. Then +-A is bounded, so for any selection rule both the SLS- and
the SLDNF-tree of +-A are finite. So +-A either succeeds, flounders or (finitely)
fails. Moreover, it is decidable which of these cases hold. It follows that the
inference step (if any) is decidable. o

Theorem 4.1 implies in particular that all variable-free goals terminate
when the program is acyclic. One would expect a converse, stating that a
program is acyclic when all variable-free goals terminate, analogous to Bezem4 l

(Theorem 2.10) for the positive case. However, by the presence of negation the
situation is delicate.

One source of termination is floundering as illustrated by the following
small program P:

p(O) +- •p(x).

The only variable-free literals are p(O) and •p(O); every variable-free
goal consists solely of occurrences of these two atoms. These variable-free goals
all terminate, since they flounder, whereas P is obviously not acyclic.

Another source of termination is safety. SLDNF-resolution is only sound
with safe selection rules, i.e. those not selecting negative literals containing
variables. Consider the following program Q as an example of this phenome-

354

non:

a<-- c, 'd(x).

d(s(x))-<- d(x).

d(O) +--.

K. R. Apt and M. Bezem

We have the following SLDNF-derivation: +-a, +-c, 'd(x). Only the

literal c can be selected safely now, so the SLDNF-derivation ends with failure

since there is no program clause with c as head. It can be easily verified that

every variable-free goal terminates. But Q is not acyclic.

When these sources of (abnormal) termination are excluded by imposing

appropriate conditions on a logic program P, then it becomes possible to prove

that termination of all variable-free goals implies that P is acyclic. However,

these conditions are quite constraining (ruling out e.g. program Q above), so the

result is rather weak. Therefore we refrain from giving the details which are

quite involved.

We close this section by combining results previously obtained in this

paper with results from Cavedon7) and Przymusinski27 l to obtain the following

characterizations of the model Mp.

Theorem 4.4

Let P be an acyclic program. Then we have:

(i) TP has a unique fixpoint, Mp;

(ii) MP is the perfect model of P;

(iii) MP is the unique Herbrand model of comp(P);

(iv) MP is the unique fixpoint of (/)p;

(v) for all variable-free atoms A,

A E MP iff comp(P) U DCA I= A;

(vi) for all variable-free atoms A that do not flounder,

A E MP iff there exists an SLDNF-refutation of P U {+-A};

(vii) for all variable-free atoms A that do not flounder,

A E MP iff there exists an SLS-refutation of P U {+-A};

(viii) MP is recursive.

Proof

(i), (ii) and (iii) follow from Theorem 2.5, (iv) from Corollary 2.7, (v) from

Corollary 3.10, (vi) from Cavedon7 l and (vii) is implied by results from

Przymusinskim. In fact (vi) and (vii) are special cases of more general complete­

ness results. Note that (vi) and (vii) are equivalent by Corollary 4.2. Finally,

(viii) follows from Theorem 3.9 and Corollary 3.10. o

It is worthwhile to note here that some of the results listed in the above

theorem can also be derived using more general results concerning general

programs and their subclasses, proved by Kunen 16), Shepherdson28 l, and

Przymusinski'7l. However, our proofs are more direct and simpler.

355

~5 Application Temporal Reasoning

5. I Yale Shooting Prnblem
In !lank-. and McDerrnott 111 a simple problem in temporal reasoning is

discu,sed It hecame known in the literature as the 'Yale Shooting Problem'.
llank' and McDermott's interest in this problem arose from the fact that
aprarently all theorie'> about non-monotonic reasoning, when used to formalize
this problem. led to too weak conclusions. The problem has been extensively
discu,si:d in the literature and several solutions to it have been proposed, e.g., by
means of circuniscription (sec Lifscht1 1'») or epistemic logic (see Gelfond 1:n). In
Hanks and Mclkrn1011 11 ' "omc of these solutions arc discussed and critically
evaluated.

In thi'> '>et:tion we rresent a particularly simple solution to the above
problem by ineam of acydic programs. First. let us explain the problem. We
clmely follow here Hanks and McDcrmott 11 ' (p. 387). Consider a single individ­
ual \\ hu in any '-.ituation can be either alive or dead, and a gun that can be either
loaded or unloaded. The fnllowing statements arc stipulated.

(I) At \OlllC specific situation .1;, the person is al iv~.
(2) The gun hccofllL''- loaded any time a load event happens.
(.\) Any time tlu: per'>on is shot with a loaded gun. he becomes dead.

Moreover, the iuct of staying alive is abnormal with respect to the event
of being -;hot \\ ith a loaded gun.

(4) I a<.:t' w Ii ich an: not abnormal with respect to an event remain true.

lo formalin· thc..,c \latemcnh Hanks and McDermott 1 ~ 1 use McCarthy
and I layL";;~,, ..,ituatiun l·alcuiu'> in which one distinguishes three entities: facts,
erent.1 and situations.

I ad' can hold true in ituations and situations can be changed by the
occurrence nf C\ellh. TP exprc..,,., statements involving facts, events and situa­
tion\. rela1inr1 '>)lnhuh r and ah and a function symbol result arc used.

(iiH'.n a fol'!/. 1:ven1 e and a -.ituation s

!(/ .. 1 l nwan" that fact/ i-. true in situation s,
result(t', s) dL'!i(llt:'> the ~ituation resulting from occurrence of event e in

'>ituation s.
ah(/. e. s) mcar1' that 'fact f is ahrrnrmal with respect to event e
(;cc1JITing in situations' or 'occurrence of event I! in situations causes .f
tu .,top ht:ing true in result(<'. sf.

l Ising 1hi-, notation 11 ' formulate the above statcmi.:nh (l)-(4) as the
following fnrmul;1":

I(alive. 1;,). (I)

356

Thus

K. R. Apt and M. Bezem

V s t(/oaded, result(load, s)), (2)

Vs(t(loaded, s) -• (ab(alive, shoot, s)

/\ t(dead, result(shoot, s)))), (3)

V/ Ve Vs((t({, s) /\ -iab((, e, s))---> t(j, result(e, s))). (4)

alive, dead and loaded are interpreted as constants 'of type fact',

load and shoot are interpreted as constants 'of type event',

51 1 is interpreted as a constant 'of type situation'.

(While an explicit use of types in the underlying first order language would

result in a more rigorous description, their use is not needed for the purpose at

hand.) The last formula (4) is often called inertia axiom. It is a formalization in

the situation calculus of the frame problem.
To draw the desired conclusions from the above formulas (I)-(4), Hanks

and McDermott 14 l used the circumscription method of McCarthy22) to circum­

scribe over the relation ab.
Circumscription of a set of formulas S over a relation, say p, is equiva­

lent to computing the set of all formulas true in all models of S in which the

circumscribed relation p is minimal (see Lifschitz18l. Hanks and McDermott14l

consider the following sequence of situations:

.\(1,

s1 = result(load, .5\1),

s2 = result(wait, si),

s~i = result(shoot, s2)

= result(shoot, result(wait, result(load, so))),

where wait is a new event whose occurrence is supposed to have no effect on the

truth of the considered facts. This is taken care of by formula (4) used for e =

wait and by the lack of any formula stating that a fact is abnormal with respect

to the event wait in a situation.

In their analysis Hanks and McDermott14) notice that there exist two

(Herbrand) models in which the circumscribed relation ab is minimal. In one of

them, say M1, among others the following variable-free atoms are true:

'in .11.1': t(alive, 511),

'in s1': t(alive, si), !(loaded, s1), ab(alive, shoot, si),

'in s2': t(alive, s2), t(loaded, s2), ab(alive, shoot, s2),

'in s:i': t(dead, S:i).

In another model, say M2, among others the following variable-free atoms
are true:

'in .11,': t(alive, So),

'in s1': t(alive, s1), t(loaded, s1), ab(alive, shoot, s1), ab(loaded, wait, si),

Aeydic Prngra1m J.?7

'in .\;!: t(alfre. s~),

'in s/: /(alfre . . \'d.

It i ... easy t<l .,cc that in every model of the formulas (I)-(4) the formulas
ah(alfre. shoot. _,,)and ah(loaded. wait. s,) V ah(alive, shoot, s2) are true. Thus
M 1 and Ml arc models of' (I)-(4) in which the relation ah is indeed minimal.

Now. circums<:rihing the formulas (l)-(4) over ah we obtain a theory
from whi<:h t(dead . . >d cannot he dedu<:ed since •t(dead, .s:i) holds in M2•

On the other hand. an intuitive analysis of the problem seems to support
the formulas true in the: model M1. Indeed, we assumed that the event wait has
no effect on the truth of the rnnsidercd fact. This suggests that V f V s • ahU',

wait, s) hold-.. Thi-; formula wm. -.uppmed to he 'enforced' hy the circumscrip­
tion over the relation ah. l lnfortunately, this turned out not to he the case and
led to une.\pe<:tc.:d 1:0111..:lu-.iun•,,

5. 2 A Solution Using Acyclic Programs
Our ~olution to the Yak Shooting Prohlem is emharrassingly trivial: first

split formula (3) into

l./s(t(/muled, s) •ah(alive .. <;hoot, s)),

'/ s(t(/oaded. s) • /(dead. re.rn/t(shoot, s})).

(3a)

(3h)

Thi~ ohviou-.ly doc-. not a!Tl.:1..·t the des<:ription of the discussed problem. Then
intcrprct the.: rc..,ulting '>Ct of formulas <1s a logic program. That is all.

Since for logi\.' program.., we adopted a different vocahulary (s and
denote expre..,-.ion-. t•t1..'.), we rewrite the formula~ (I), (2). (3a), (3h), (4) hy

u-.ing the n:lation holds instead of/,

ll'>ing variahk., .\,,,,,. x,,,,,, and x ... 111111"'" instead of. respectively, the
variable-. I. <' and \.

Also. we write tilt' empt) li-.1 i for .1<, and ! t I i. I for result(!,/.), and use the
clausal form "" L'll'>tomary in logiL· prngramming. Thus, hy using the ahhrevia­
tion-; concerning li"t" a-. giH•n in Suh-.t·1..·tion 1.l for ex:imple [shoot, wait, load J

stand-. for the -;ituation s,. To he formally cnrrcct we add a \.'ono;tant wail to the
alphahet of }',\'/'

A.., a rL·..,11 It t hL· fonnula.., (I J, (~), Da), (Jh). (4) translate into the program
}'.C,,'P given in S1..·1..·tion I. We prnn-d there that l'SP i., an a<:yclic program hy

cxhihiting a -;irnplc 11.·vt:I mapping. ('on\C4Uently, to analpe it we <:an ll'>e any
of the tht•orem-. n1111.:erni11g aL:)diL· program-. whid1 arc proved in Sections 2,
3 and 4.

By\ irtue o! Theorem 4.4 and the oh\Cnation that goal-. of the form• A,
where A i-. a \ariahlc-frc1.· atom, do not flounder with rc .. pcct to YSP. we have:

358

Corollary 5.1

(i) TYSP has a unique fixpoint, Mysp;

(ii) MYsP is the perfect model of YSP;

K. R. Apt and M. Bezem

(iii) M)·sp is the unique Herbrand model of comp(YSP);
(iv) MvsP is the unique fixpoint of fPysp;

(v) for all variable-free atoms A,
A E MvsP iff comp(YSP) U DCA F A;

(vi) for all variable-free atoms A,
A E MvsP iff there exists an SLDNF-refutation of YSP U {<-A};

(vii) for all variable-free atoms A,
A E Mvsp iff there exists an SLS-refutation of YSP U {<-A};

(viii) MvsP is recursive. o

This corollary provides overwhelming evidence that among all Herbrand
models of YSP, MvsP is the preferred one. This model is characterized in several,
vastly different ways and naturally arises when studying both declarative and
procedural semantics of the program YSP.

lt is useful to see that MvsP coincides with the model M1 considered in the
previous subsection. Thanks to Corollary 5.1 there are several ways of checking
it. Perhaps the simplest is the one using the SLDNF-resolution. We only
concentrate on the crucial statement t(dead, s3) or, using the notation adopted
in this section, holds(dead, [shoot, wait, load]).

We have the following SLDNF-refutation:

<-holds(dead, [shoot, wait, load])
i(c)

<-holds(loaded, [wait, load])
i(e)

<--, ab(loaded, wait, [load]), holds(loaded, [load])

I
<-holds(loaded, [load])

l(b)
0

The subsidiary derivation of -, ab(loaded, wait, [load]) by means of
negation as failure is trivial as ab(loaded, wait, [load]) does not unify with any
head of the clauses (a)-(e).

It is also easy to check that the statement t(alive, s3), or in other words
holds(alive, [shoot, wait, load]), cannot be derived using SLDN F-resolution
since 'ab(alive, shoot, [wait, load]) cannot be established by means of
negation as failure. In fact, it is easy to prove the converse by exhibiting an
S LDNF-refutation of YSP U {<--,holds(alive, [shoot, wait, load])}.

It should be pointed out here that the idea of using logic progrmming to
solve the Yale Shooting Problem has been proposed independently by others. In

Acyclic Programs 359

particular, Elkan io) showed that the translation of the Yale Shooting Problem
to a logic program results in a locally stratified program and Evans11l observed
that SLDN F-resolution can be used to compute desired consequences of the
formulas (I)-(4). Moreover, as pointed out by one of the referees of this paper,
the logic programming solution to the Yale Shooting Problem coincides with a
natural translation of the solution proposed in Morris24 l, which is based on the
use of non-normal default theory. His solution can be translated to a locally
stratified program using the appropriate equivalence result established in Bidoit
and Froidevaux5l(Theorem 4.1.4).

However, our characterization of the logic programming solution as an
acyclic program leads to several additional characterizations of and insights in
the model M vsP which are collected in Corollary 5 .1.

5. 3 Temporal Reasoning Using Acyclic Programs
How general are the considerations concerning the Yale Shooting Prob­

lem? It is an instance of a problem in temporal reasoning and it is by no means
clear that our proposed solution also applies to other problems of a similar
kind. In this subsection we exhibit a large class of problems in temporal
reasoning which can be solved by analogous means.

Let us adopt the notation used in the previous subsection. In case of a
temporal reasoning we can naturally identify the following four types of state­
ments.

(I) In some set of situations a certain fact holds unconditionally. Each such
statement can be represented by an unconditional clause

holds(j, t) ~

for some fixed fact represented by a constant f and a term t (possibly
containing variables) representing a set of situations.

(2) In a certain situation a certrain fact holds provided some other fact holds
in a previous situation. Each such statement can be represented by a
clause

holds(j, [elsJ)- holds(j', s)

for some facts f, f', event e and situations.
(3) In a given situation a certain event affects certain facts unconditionally.

Each such statement can be represented by an unconditional clause

ab(f, e, s) ~

for some fact f, event e and situation s.
(4) In a given situation a certain event affects a certain fact provided some

other fact holds in this situation. Each such statement can be represented
by a clause

360 K. R. Apt and M. Bezein

ab(j, e, s) ~holds(/', s)

for some facts f, f', event e and a situations.

Denote claue (e) of the program YSP by IA (for inertia axiom). The

following observation is crucial.

Lemma 5.2
Let P be a program consisting of clauses of the form (1)-(4). Then PU {/A} is

acyclic.

Proof
We can use here the same level mapping as the one used for the general program
YSP, i.e.,

I holds(t, t') I = 21 (t'),
I ab(t, t, n I = 21(t") + 1

where /(t) = 0 if t is a constant, and l([t1 I t2]) = 1 + l(t2) otherwise. It is easy
to check that P U {IA} is acyclic w. r. t. I I. o

This lemma allows us to apply our theory of acyclic programs to any
temporal reaso11ing problem which can be described by means of statements
(I)-(4). Thus any such problem naturally yields a model which can be viewed as
a solution to the problem. This model -the perfect Herbrand model of the
corresponding acyclic program P U {/A}-can be characterized in a number of
equivalent ways, both semantically and proof theoretically.

Moreover, by virtue of Theorem 4.1, for a large number of questions,
namely those which can be expressed as bounded and non-floundering goals, we
can use SLDNF-resolution to compute the desired answers. More precisely, we
have the following result.

Lemma 5.3
Let P be a program consisting of clauses of the form (1)-(4) and G a goal such
that the last argument in each of its literals is a list. Then all SLDNF-derivations
of P U {IA} U { G} are finite.

Proof
Consider the level mapping I I exhibited in the proof of Lemma 5.2. By assump­
tion each of the literals of G is bounded w. r. t. I I. since for any list t and
substitution e we have l(t) = l(t8). Thus G is bounded w. r. t. I I and the
conclusion follows by Theorem 4.1 o

By our choice of using the list notation instead of the repeated applica­
tion of the result function, a list appearing in the last argument of a literal of
G stands for a sequence of situations (of a fixed length). Thus the condition put
on G in the above lemma amounts to saying that all of its literals refer to
situations that are bounded in time. When additionally such a goal does not

Acyclic Programs 361

flounder we can thus use SLDNF-resolution (or PROLOG) to effectively
compute all answers to it.

We can extend the use of acyclic programs to temporal reasoning even
further by assuming the existence of a well-founded ordering on facts, say <,
and allowing additionally to clauses of the form (1)-(4), clauses of the form

holds(j, s) +-- holds(j', s)

where f and f' are facts such that f' < f and s is a situation,

ab(f, e, s) +--holds(/', s), ab(f', e, s)

(5)

(6)

where f and f' are facts such that f' < f, e is an event and s is a situation.
Such clauses express naturally arising statements. For example, Gelfond13 l

considers an extension of the original formulation of the Yale Shooting Prob­
lem by assuming two new statements expressed by the following clauses:

holds(breath, s) +-- holds(alive, s),

ab(breath, e, s) +-- holds(alive, s), ab(alive, e, s).

Adding these clauses to the problem YSP yields an acyclic program. Indeed, we
have the following lemma.

Lemma 5.4
Let P be a program consisting of clauses of the form (1)-(6). Then PU {IA} is
acyclic.

Proof
Let < be the well-founded ordering on the facts used in the clauses of the form
(5) and (6). Let norm be a function from facts to natural numbers such that
norm(/') < norm(j) whenever f' <f. Since there are only finitely many facts
used in P, the function norm has a maximum, say k - !. Define now the
following bound function

I holds(t, t') I= norm(t) + 2k·l(t'),
I ab(t, t', t") I = norm(t) + 2k ·l(t") + k.

It is easy to see that P U {IA} is acyclic w. r. t. I I. o

Acknowledgements
We thank V. Lifschitz, P. Mancarella, D. Pedreschi and one of the

referees for helpful comments on the subject of this paper. This research has been
partially supported by ESPRIT BRA 3020 'Integration'.

References
I) Apt, K. R., "Logic Programming," in Handbook of Theoretical Computer Science,

362 K. R. Apt and M. Bezem

Vol. B (J. van Leeuwen, ed.), Elsevier, Amsterdam, pp. 493-574, 1990.
~) Ape K. R. and Blair, H. A .. "Arithmetic Classification of Perfect Models of Stratified

Programs," Fundamenla lnformaticae, 13, pp. 1-18, 1990 (with an addendum in vol.

14. pp. 339-343. 1991).
3) Apt, K. R .. Blair H. A. and Walker, A., "Towards a Theory of Declarative Knowledge,"

in Foundations of Deductive Databases and Logic Programming (J. Minker, ed.),
Morgan Kaufmann, Los Altos, pp. 89-148, 1988.

4) Bezem, M., "Characterizing Termination of Logic Programs with Level Mappings," in
Proc. North American Conference on Logic Programming, Cleveland, Ohio, pp. 69-80,

1989.
5) Bidoit, N. and Froidevaux, C., "General Logical Databases and Programs: Default

Logic Semantics and Stratification," Information and Computation, 91, pp. 15-54,

1991.
o) BoL R .. "Loop Checking and Negation," Report CS-R 9075, Centre for Mathematics

and Computer Science, Amsterdam, 1990.
7) Cavedon. L., "Continuity, Consistency, and Completeness Properties for Logic Pro­

grams," in Proc. of the 6th International Conference on Logic Programming, The MIT
Press, pp. 571-584. 1989.

8) Clark. K. L., "Negation as Failure," in Logic and Data Bases, (H. Gallaire and J.
Minker, eds.), Plenum Press, New York, pp. 293-322, 1978.

9) Dershowitz. N .. "Termination of Rewriting," Journal of Symbolic Computation, 3, pp.
69-1 I 6, 198 7.

10) Elkan, C., "A Perfect Logic for Reasoning about Action," manuscript, University of
Toronto, 1989.

11) Evans, C., "Negation-as-Failure as an Approach to the Hanks and McDermott Prob­
lem," in Proc. of 1he 2nd International Symposium on Artificial Intelligence, Monter­
rey, Mexico, 1989.

I 2) Fitting, M., "A Kripke-Kleene Semantics for General Logic Programs," Journal of
Logic Programming, 2. pp. 295-312, 1985.

13) Gelfond, M., "Autoepistemic Logic and Formalization of Commonsense Reasoning,"
in Proc. 2nd Workshop on Nonmonotonic Reasoning, Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin, 1988.

14) Hanks, S. and McDermott, D., "Nonmonotonic Logic and Temporal Projection,"
Artificial Intelligence, 33, pp. 379-412, 1987.

15) Kleene, S. C., Introduction to Metamathematics, van Nostrand, New York, 1952.
16) Kunen, K., "Signed Data Dependencies in Logic Programs," Journal of Logic

Programming, 7, pp. 231-246, 1989.

17) Lloyd, J. W., Foundations of Logic Programming, 2nd Edition, Springer-Verlag,
Berlin, 1987.

18) Lifschitz, V., "Computing Circumscription," in Proc. IJCAI-85, pp. 121-127, 1985.
19) Lifschitz, V., "Formal Theories of Action," in The Frame Problem in Artificial

Intelligence (F. Brown, ed.), Morgan Kaufmann, Los Altos, California, 1987.
20) Maher, M. J., "Complete Axiomatizations of the Algebras of Finite, Rational and

Infinite Trees," in Proc. of the 3rd Annual Symposium on Logic in Computer Science,
Edinburgh, pp. 348-357, 1988.

21) Malce1, A., "Axiomatizable Classes of Locally Free Algebras of Various Types," in
The Afetamathematics of Algebraic Systems: Collected Papers, Chapter 23, North­
Holland, Amsterdam, pp. 262-281, 1971.

22) McCarthy, J., "Circumscription -A Form of Non-Monotonic Reasoning," Artificial
Intelligence, 13, pp. 27-39, 1980.

23) McCarthy, J. and Hayes, P. J., "Some Philosophical Problems from the Standpoint of

Acyclic Programs 363

Artificial Intelligence," in Machine Intelligence 4 (B. Meltzer and D. Mitchie, eds.),
Edinburgh University Press, Edinburgh, pp. 463-502, 1969.

24) Morris, P., "Curing Anomalous Extensions," in Proc. of AAA/, pp. 437-442, 1987.
25) Przymusinski. T. C., "On the Declarative Semantics of Deductive Databases and Logic

Programs," in Foundations of Deductive Databases and Logic Programming (J.
Minker, ed.), Morgan Kaufmann Publishers, Los Altos, pp. 193-216, 1988.

26) Przymusinski, T. C., "On the Declarative and Procedural Semantics of Logic Pro­
grams," Journal of Automated Reasoning, 5, pp. 167-205, 1989.

27) Przymusinski, T. C., "Every Logic Program Has a Natural Stratification and an Iterated
Least Fixed Point Model," in Proc. Principles of Database Systems (PODS'89),
Philadelphia, 1989.

28) Shepherdson, J. C., "Negation in Logic Programming," in Foundations of Deductive
Databases and Logic Programming (J. Minker, ed.), Morgan Kaufmann Publishers,
Los Altos, pp. 19-88, 1988.

29) Shoenfield, J. R., Mathematica/ Logic, Addison-Wesley, Reading MA, 1967.

