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'This note is concerned with a fairly persvasive problem in modeling and identification. Namely the general 

problem: What is a "good" parametrization for a given model class? Where "good" of course has to be 

specified and may depend on other factors than just the model class in question. In some of its aspects it 

is a very old problem and has been with us ever since it was noted that there are several competing carto

graphic projections which can be used to map the earth and that none of them is perfect (or best) for all 

purposes. 

I shall try to address this question in the context of modeling by means of linear dynamical input

output systems of a priori known state-space dimension (MacMillan degree). That is, we shall assume that 

our input-output observations are to be modeled by means of a system 

x =Ax +Bu, y = Cx, xeRn,ueRm,yeRP (I) (I. I) 

where A,B,C are constant (unknown) matrices of the appropriate sizes, and where it is assumed that (1.1) 

is completely reachable (er) and completely observable (co). (For algebraic criteria for these two conditions 

c.f. below). A system like (I.I) induces an input-output map V:i;, which, assuming that the machine (i.e. 

the system, or the model) starts at x = 0 at time t =O, is given by 

I 

V:i;: u(") .... y("}, y(t) = jce<•-•lABu(r}tiT 
0 

(1.2) 

The only data we have available are input-output data. So all .that is knowable (identifiable) about ( 1.1) is 

the information about ~ = (A,B,C) which is encoded in V:i;. However V:i; does not determine (A,B,C) 

uniquely, i.e. the map (A,B,C) .... V:i; is not injective on the space LC:.:~~P of all er and co matrix triples 

(A, B, C) of the indicated dimensions. Indeed let Se G/n(R), i.e. S is an invertible real n X n matrix. Con

sider 

(1.3) 

It is totally elementary to observe that V:i;s = V:i;. The transformation (1.3) corresponds to a base change 

x'=Sx in state space. It is also a fact that this is the only redundancy in the description (A,B,C) = k with 

respect to V:i;. (I.e. if k,I'eLC,:.:~~. and V:i; = V:i;', then 3SeGl.(R) such that I'= I 5 ). The relation 

k-k'<=>3S eGt.(R) such that I' = I 5 (1.4) 
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is of course an equivalence relation. The import of the remark above is thus that all we can identify on the 

basis of input-output data is the equivalence class of a system under this equivalence relation. Or, in other 

words, what can be identified is a point of the quotient space 

( 1.5) 

It now turns out that M'::::~~ is in fact quite nice. It is a differentiable manifold (of dimension mn + np), 

c.f. below. That is, it is locally like Rmn +np and can be described by nm + np coordinates ((coordinate) 

charts) locally, together with correspondence rules, to yield an atlas, very much like an atlas of the world. 

Cf. below for an explicit atlas of this kind. It also turns out that if m > 1 and p > 1 it is not possible to 

make do with one particular chart. (Similarly it is not possible to have one global coordinate system for 

the whole earth (the sphere S 2) giving a unique correspondence (continuous both ways) between a part 

UcR2 and S 2). 

Now imagine that we are engaged in a recursive identification procedure. So at time t we have ("best") 

estimates A,,B,,C,) for A,B,C (and x, for the state x at time t). New information comes in and we want to 

update our estimates. (A,,B,,C1) determines a point in M'::,·~~P and we are looking for an optimal nearby 

point representing our updated estimate. This can be done using a coordinate chart valid at (A,,B,,C,), cal

culating the relevant numerical coordinates, and calculating the updated versions of these coordinates 

according to some criterium function as expressed in these same coordinates. Proceeding in this gives a 

sequence of points m1,m1 +1>m1+2 , ••••• in M';;:;~~P (represented by, say, (A,.B,,C,), (A 1+i.Bt+ 1,C1 +J),. ... ) 

and there may come a time when it becomes necessary to switch to another chart, because, say, m, +k is no 

longer in the domain where the chart we are using is defined, or, in any case, is getting too near the "edge" 

of this chart to make these chart coordinates very reliable. Think again of using an ordinary street atlas, 

say, and changing charts when needed. In this framework one can make the general parametrization prob

lem more precise; for instance as follows. Given a differential equation (or class of them), what are good 

atlases and good switching rules between coordinate charts in order to be able to follow this differential 

equation well numerically. 

To illustrate the point consider the following situation 

chart 1 

0 ~ (chart change errors 
di sregerc:Je d) 

~ 
chert change t ~ 2 

=::::· (totolly diff

erent distorli on factors) 

chart 2 

follow 
equation 
in chert 2 
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We start in chart I with a point known up to a small uncertainty as indicated. At this point chart 2 is also 

applicable. Changing coordinates at this point changes the uncertainty circle into an ellipse. (Uncertainty 

less in y-direction, more in x-direction). Following the equation in chart 2 introduces some additional 

uncertainty fattening up the ellipse (and even if it did not the difficulties would remain). It now becomes 

necessary to transfer back to chart I again. But now at this point in space the distortion factors may have 

changed totally. (In the picture a transformation 2~ I at the first point compresses in the x-direction and 

magnifies in they-direction; at the second point it magnifies in the x-direction and compresses in they

direction). The result is a very elongated ellipse of uncertainty in chart l coordinates. Suppose we could 

also have worked with the coordinates of a chart 3 which as it happened had the following chart change 

distortion behaviour. 

0 

chert change 3 ---7 1 
(similar distortion) 

----------<......._ ) 
~---~-"' 

l follow DE 
in chart 3 

Obviously in this case having chart 3 available was advantageous even though the whole manifold could 

perhaps have been described in terms of charts 1 and 2 only. (It is by the way very easy to construct 

examples where this happens). 

As described the good-atlases-and-parametrizations-problem seems particularly relevant in the case of 

recursive identification procedures. The problem however does not go away in the non-recursive case. 

There remains selecting a best (or good) chart from the several which may be available (and discarding one 

which turns out to be unsuitable in favour of a new one). And even if one could make do with one chart 

(on the basis of prior (structural) information concerning the class of models (e.g. in case p =I or m =I 

this is always possible) this may not be a particularly good one to use for a given problem. (Think of 

using a map of the earth covering all except the North-pole with in fact the region of interest very near the 

North-pole but not including it). Algorithms for identification based on overlapping coordinate charts, i.e. 

atlases, have in fact been developed, c.f. [2,7]. 

Related to the fact that as a rule it is impossible to use one chart to describe all of M':.:~~P is the fact 

that it is impossible to select a complete distinguishable class of models in LC:,;~~P which is continous with 

respect to the data. (Nonexistence of continuous canonical forms [3,5]). All this means the following for a 

class Cc L';;;:~'.P 

(i) Complete: for every input-output operator V (of the type coming from a 2: as in (1.1)) there is in 

fact a L EC such that V:,: = V. 

(ii) Distinguishable: L 1, 2:2 EC and 2:: 1 =/= 2:2 => V :;;, =/= V :;;, . 

(iii) Continuous: Let V ...., 2: be the map determined by (i). Then this map is continuous. 
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So, roughly speaking it is not possible to select in a nice way one representant of each equivalence class of 

systems so as to remove the (statistical) indeterminacy of identifying A,B,C on the basis of input-output 

data alone. 

This note which contains material presented at a most stimulating conference in the Pfalz academy in 

Lambrecht last March, is meant as an introduction to the problem and as an opportunity to introduce to 

the more applied community the sometimes advantageous possibility (and occasionally the necessity) of 

using several coordinate charts, and whole atlases. I hope and plan to write a much fuller version in the 

future. It is a pleasure to thank the organizer of the conference, Prof. H. Neunzert, for bringing this 

unusual group of scientists together. 

2. Description of the spaces of all linear systems of a given degree. 

As in§ 1 above, let Lm,n,p be the space of all triples (A,B,C) of matrices of sizes n Xn,n Xm and p Xn 

respectively. The triple (A,B,C) (in fact the pair (A,B)) is called completely reachable if the (n + l)m X n 

reachability matrix 

R(A,B) == (BIABIA 2Bi · · · IA"B) == R(A,B,C) == R(::i:) (2.1) 

has rank n. Dually the triple (A,B,C) (in fact the pair (A,C)) is called completely observable if the 

n X (n + I )p observability matrix 

Q(A,C) = 

c 
CA 

CA" 

Q(A,B,C) = Q(1:) (2.2) 

has rank n. The spaces of er, resp. co, resp. er and co triples are denoted L;;,,n,p• L';;;,n,p• v;:;:~~p· All three are 

open dense subspaces of Lm.n,p (in the natural topology). 

The group of invertible nXn real matrices Gl.(R) acts on Lm,n,p by the formula given in (1.3) above. 

The subspaces of er, co, er and co systems are stable under this action. Indeed 

R((A,B,Cl) = R(SAS' 1,SB,cs- 1) = SR(A,B,C) (2.3) 

so that rk R('2.)=n iff rk RC2.s)=n. And Q((A,B,Ch == s- 1Q(A,B,C). 

The quotient spaces of Lm,n,p• L':::,n.p and L;:::i'.r by this action of Gl.(R) are denoted 

M':..n.p = L;;,,n,p / Gl.(R),M':,n,p = L;::,n,p / Gln(R),Mi:::~~ = L'::;;~~P / Gl.(R). All these quotient spaces are 

non-compact, smooth manifolds of dimension mn + np. 

Below in this section we shall give one detailed description of M;;,,n,p in terms of (coordinate) charts 

and gluing ( = chart correspondence) rules, i.e. in terms of an atlas. To do this we need a few definitions. 

Conoider an array J m," of n X (n + I )m dots as indicated below 

lm,n = {(i,j): iE{O, .. .,n), }E{l,. .. ,m)) (2.4) 
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J 5,7 (2.5) 

The first row of J m,n represents the columns of the matrix B, the second one the columns of AB, etc. Thus 

(i,j)Elm,n represents the vector A'b1 if B=(b 1, • • • ,bml· A subset a of size n of lm,n is called a nice selec

tion ii (i,j)Eo:, i;;;, l => (i -1,j)Eo:. Pictorially, if a is depicted as a set of crosses in the array as visualized 

by (2.5 ), this means that if a cross appears anywhere then in the column above if there are only crosses. 

Thus e.g. the left subset of J 5,7 in (2.6) below is nice, the middle one is not. 

x x x x x x x x x 
x x x x x x 

x x x x 

x x x 

(2.6) 

For a nice selection a and )El,. . .,m let s(a,j) be the element (k,j)Eln,m determined by (k,j)Eo: and 

(i,j)Eo: for i ~k -1. This one is called the j-th successor index. In (2.6) above the successor indices of the 

nice selection on the left are indicated by • in the rightmost diagram. Given an n X (n + l)m matrix R and 

a subset a of J m,n let R. denote the matrix obtained from R by removing all columns whose index is not 

in a. 

LEMMA 2.7 Let (A,B,C)EL';,,n,p• then there is a nice selection a such that the n Xn matrix R(A,B,C)0 is 

invertible. 

This follows from the special structure of R(A,B,C) given that R(A,B,C) has rank n because (A,B,C) is er. 

Let L 0 = {(A,B,C)EL';,,n,p: R(A,B)0 is invertible}. Note that Ls ELa if LEL0 , for all SEG/n(R). 

Then by the lemma above 

(2.8) 

LEMMA 2.9 Let LEL 0 , a a nice selection. Then there is precisely one S EG/n(R) such that R (Ls). = In, the 

n X n identity matrix (and Ls EL a of course). 

This follows immediately from the observation that 

(2.10) 
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LEMMA 2.11 Let a be a nice selection. Let x =(Y 1, ••• ,ym,z) be an element of R""' +•p written as a sequence of 

m n-vectors y 1, .... ,ym and a pXn matrix z. Then there is precisely one ~.(x) = (A 0 (x),B 0 (x),C 0 (x)) 

eL. CL';, .•. p such that 

(2.12) 

The matrices B 0 (x),A 0 (x) are very easy to write down explicitly. They always consist of columnvectors 

which are either equal to one of the standard basis vectors of R" or to one of the vectors y1. Indeed in the 

case of the example of the nice selection a of (2.6) above we have, writing e 1 , •••• ,e7 for the standard basis 

of R7 : 

e1 Y2 ei e3 Ys 

e4 Y3 es 

YI 

I.e. label the crosses e1>···,e7 , write in y1 for the successor spots • and read of B and A directly from the 

resulting pattern remembering that the first row represents the columns of B, the second one the columns 

of AB, etc.. From these three lemmas there follows immediately the following description of M':: .•. p in 

terms of local coordinate charts and correspondence rules between these charts. 

2.13 Description of the manifold M'i:.,n,p 

The manifold M;:t;~~P is the union of open neighborhoods V0 ,aCJm,n running through all nice selections. 

Each v. is diffeomorphic to Rmn+np via a coordinate chart cp0 :V0 ...:.Rnm+np. Let xeRmn+•p = 1/i.(V0 ), 

x'eRmn+np = 1/ip(Vp). Then x and x' correspond to the same element of M';;;;~~P (i.e. 1/ip(l/i;; 1(x))=x') iff 

(2.14) 

where as above x =(Y 1,. •• ,ym,z),x'=(y 1', •••• ,ym',z'). Note that if xel/i0 (V0 )=Rm•+•p are the a-coordinates 

of P e V. CM'::,n.p• then the ,8-coordinates of P are defined iff R (~.(x))p is invertible, a condition which is 

purely in terms of the a-coordinates of P. Note also that because y/ = R (~p(x')s(flJ> the ,8-coordinates of 

P are then given in terms of explicit rational expressions in the a-coordinates. 

Thus (abstractly) 

M" = - 1-1 -v '1-m.n,p a nice a 

where V0
1 =Rmn +np for each a and x-x', xe Va', x'e Vp' iff (2.14) holds. 

The manifold M;::;~~P is an open submanifold of M~.•,p obtained by gluing together in exactly the same 

way the open subsets v:;• c V • defined by 

(2.15) 

Note that this is an explicit (polynomial) condition in terms of the coordinates of x. For more details and 

proofs of the above cf. [3,5]. 
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3. M~;~~P as an imbedded manifold. 

It is perhaps more customary to view a manifold like S 2, the sphere, as imbedded in some euclidean space 

like R3 and to view the distortions involved in taking local coordinates as measuring the differences 

between the geometry of the charts and the (true) geometry of the imbedded manifold (with its notions of 

distance etc. coming from the ambient euclidean space). As it happens the space MC,:::~~P does come with a 

natural imbedding into a euclidean space. This and the relation of this imbedding with various atlases for 

MC,:::~~P is the topic of this section. 

Let :JC be the space of all sequences of p Xm matrices H 0,H i, ... ,Hin with the normal Euclidean topol

ogy. Define a map 

v: Lm.n.p-> x (A,B,C) .... (CB,CAB, .... ,CA2nB) (3.1) 

It is elementary to observe that v(k)=v(ks) for all SeG/n(R) so that v induces a quotient map also 

denoted v which can be restricted to MC,:::~~ 

(3.2) 

THEOREM 3.3 {Kalman). The map (3.2) is an injection. The image of ( 3.2) consists precisely of all sequences 

of matrices H 0 ,H \.·····H 2n such that 

Ho Hi H.-i Ho H1 Hn 

Hi Hi H. Hi Hi Hn+i 

rk =n rk (3.4) 

Hn-1 Hn Hin-2 Hn Hn+i Hin 

In fact the map (3.2) is an imbedding of the differentiable manifold MC,:::~~P into :JC=R'"P(2n +i>. It is worth 

noting that the matrices occuring in v (I) are directly related to the input-output operator V :i; associated to 

I. Indeed if y(t)= VIu(t) and Y(s), U(s) denote the Laplace transforms of y(t),u(t), then 

Y(s)=T:i;(s)U(s) (3.5) 

with 

T:i;(s)=C(sl-A)-i B=CBs- 1 +CABs- 2 +CA 2Bs- 3 + · · · (3.6) 

the socalled transferfunction of I. 

It follows that if H 0 ,H i. ... ,H2n is a sequence of p Xm matrices such that condition (3.4) is fulfilled 

then there must be a I=(A,B,C)eL':.;~~P such that H;=CA;B. An algorithm for finding such an A,B,C is 

called a realization algorithm. And (clearly) such algorithms are not unrelated to the matter of finding 

coordinate charts for MC,:::~'.p· Here is one ([6]). First observe that if H; =CA' B then for the Hankel 

matrices of (H 0 , •.• ,H in) and (A,B,C) we have 

CB CAB 

CAB CA 2B 

Hn Hn+I ... Hin CA"B CA 2"B 
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= Q(A,B, C)R(A,B,C)= :H(A,B,C) 

Now because (A,B,C) is er there is a nice selection ac of the columns of R(A,B,C) such that R(A,B,C).., is 

invertible. Similary there is a nice selection aR of the rows of Q(A,B,C) such that Q(A,B,C)., is inverti

ble. Now observe that 

(3.7) 

where of course Ha, .a. means the matrix obtained from H by retaining only those columns whose index is 

in aR and only those rows whose index is in ac- The first step of the realization algorithm is hence to find 

a nice aR and a, such that S=H ... a. is invertible. These given (3.4) exist. We now also know that among 

all the (A,B,C) with this given Hankel matrix there is precisely one with R., =I •. This is the one we are 

going to construct. Then of course Q ., = S which is now known. Also n•· = Q ., R so that we know 

R(A,B)=Q;,1H., from which A and B can be recovered (Lemma 2.11). In fact A and B consist of 

column vectors which are either standard basis vectors or the vectors labelled by the succes indices s(ac,)) 

of Q ., H.,. Finally if p denotes the lables of the first p rows of H we have C = Hp,a,. 

This particular realization algorithm is clearly much related to the coordinate charts described in § 2 

above. 

The reader may wonder what the role is of the two rank conditions (3.4) in this algorithm. The first 

condition in fact ensures that there are nice aR and lllc such that H ••. •, is invertible. The second one sees 

to it that the construction in fact yields an A,B, C such that H; =CA; B for all i. 

4. Can the distortions involved in the coordinate changes be kept under control? 

As a start and for the purpose of this note. I shall interpret this question as follows. Consider M':::~'.P as 

•• 
imbedded in X. Consider a set of coordinate charts M=M':::~'.P-:J u.~Rmn+np. Give M':::~'.P the 

(Riemanian) metric induced by the irnbedding. (This is not the only natural metric on M,cf. [4] for another 

important one). Is it true that one can find an atlas ( U0 ,<1>0 )a such that for all P e M there is a good chart 

in that for a certain predetermined e the Jacobian of <l>a at P and its inverse are both at least t away from 

the subset of singular matrices in the space of all square matrices of size dimM X dimM! This would for 

example be the case of we could find a finite atlas (U •• 4>.). (i.e. one with finitely many charts) such that 

for each a there is a compact set D0 C<fi0 (U.) such that for each PeM there is an a such that cj>0 (P)eD0 • 

This, however, would imply that Mis compact (as image of JLD.) which is never the case. 
a 

The question is open but is obviously of great relevance for accurate numerical (recursive) identification 

problems. 

The following observation of Bosgra and VAN dER WEIDEN [l] is probably going to be of importance 

here. Consider again the realization algorithm described in § 3 above. Because of the Hankel structure of 

H there are indentical ones among the entries of H which are actually used in constructing (A,B,C). It 

turns out that in fact precisely nm+ np entries of the matrices H 0, ••. , H 2n are used. This means that to 

each pair of nice selections (aR,a,) there is associated a subset of size nm+ np of the "¥J(2n + !) coordi

nates of X such that projection onto these nm + np coordinates is in fact a local coordinate chart. And of 

course the coordinate neighborhoods thus obtained cover all of M. This certainly does not yet give a posi

tive answer to the question asked above but it is a positive indicator in that it is so particularly simple to 
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indiCllle for a particular P EM which subsets of the coordinales of '](of the type determined by a pair of 

ruce selections (aR·'"·) may be used as local coordinate chart5 around PEM. Of C<1mse in itself, abstracl!y. 
the fact that for an imbedded manifold dimension r. say MC R·' the r-ekment set projections R' -.R' rei,
im:ted to M may be used as coordinate charts means nO!rung. Indeed lei PE Mc R:'. Locally around P 
the manifold Mis then the image of a differentiable map 1:R' -.RN.0...P. of rank r near 0. That means 1ha1 

the Jacobian matrix J(1 )(0) of i at 0 has nmk rand so there is a subset "of size r of N such that )(1 )(Ol. is 
invertible. Let w0 :lt'.__,.R' be the projection corresponding to a. Then R' ->R'-.R' is a dilfe<)morphi'm 
near O so that "'• is a good coordinate chart for Af near P. 
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