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In this paper we consider one-dimensional capillary redistribution of two immiscible
and incompressible fluids in a porous medium with a single discontinuity. We study a
special time-dependent solution, a similarity solution, which is found when the initial
saturation is discontinuous at the same point as the permeability and porosity, and is
constant elsewhere. The similarity solution can be used to validate numerical
algorithms describing two-phase flow in porous media with discontinuous hetero-
geneities. We discuss the construction of the similarity solution, in which we pay
special attention to the interface conditions at the discontinuity, both for media with
positive and zero entry pressure. Moreover, we discuss some qualitative properties of
the solution, and outline a numerical procedure to determine its graph. Examples are given
for the Brooks—Corey and Van Genuchten model. We also consider similarity solutions
for unsaturated water flow, which is a limit case of two-phase fiow for negligible
nonwetting phase viscosity. © 1998 Elsevier Science Limited. All rights reserved.

Key words: two-phase flow, capillary pressure, entry pressure, discontinuity, similarity

solution,

1 INTRODUCTION

Numerical models are effective tools to study two-phase
flow in heterogeneous porous media. These models need
to be verified and validated, however. For the purpose of
validation of the underlying mathematical model, laboratory
experiments and field tests are indispensable. The verifica-
tion of the numerical model is often established by compar-
ing for specific test problems the numerical solutions with
solutions that are obtained by different methods. Ideally,
one would like to use explicit solutions for this purpose.
However, for nonlinear problems these are available in
specific cases only. When explicit solutions are not
known, one could try to reduce the problem to a simpler
form to find special solutions (e.g. travelling waves,
similarity solutions) of which analytical properties can be
derived. This approach is chosen in this paper.

A well-known test problem is the Buckley-Leverett
problem.® The solution of this problem describes the dis-
placement of a nonwetting by a wetting phase in a
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homogeneous porous medium in the absence of capillarity.
When capillarity is included, explicit solutions are not avail-
able, except for particular nonlinearities. Examples are
given by Philip," who solved a nonlinear diffusion problem
related to capillary suction, and Fokas and Yortsos,® who
solved a convection—diffusion equation occurring in two-
phase flow. When the nonlinearities are more general, one
can still use analytical techniques to obtain qualitative infor-
mation about the behaviour of the solution. The graph of the
solution, however, has to be determined using a numerical
method. Examples of this approach are found in &11:15:17-20,
All these papers are dealing with homogeneous porous
media.

To our knowledge, not many analytical studies are known
for porous media containing heterogeneities. Yortsos and
Chang® have obtained steady-state solutions for a hetero-
geneous medium, in which regions of constant pamwbihty
are connected by linear transitions. Van Duijn ef al.'® derived
steady-state solutions for discontinuous heterogeneities. No
time-dependent analytical solutions for two-phase flow
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through porous media with heterogeneities were found in
the literature.

In this paper, we present a method to construct a time-
dependent solution of self-similar form describing the one-
dimensional redistribution of two immiscible and incom-
pressible phases in a heterogeneous porous medium. The
redistribution of the phases is caused by capillary forces.
The porous medium consists of two homogeneous media
of infinite extent which are joined at the origin, so that the
permeability and porosity have a jump discontinuity there,
and are constant elsewhere. We will show that this problem
possesses a similarity solution if one medium is initially
saturated by the wetting phase, and the other by the non-
wetting phase.

The interface conditions at the point where the perme-
ability and porosity are discontinuous play a crucial role in
the construction of the solution. The two conditions that
need to be imposed have been derived by Van Duijn et
al.'"® One condition is that the flux must be continuous
across the interface. The other, which is called the extended
pressure condition, is a nonlinear relation between the
wetting phase saturation at the left- and right-hand side of
the discontinuity. It strongly depends on the qualitative
behaviour of the capillary pressure.

One aspect in particular plays an important role: the entry
pressure. The entry pressure, also known as the displace-
ment pressure or threshold pressure, is the minimum
capillary pressure that is needed for a nonwetting fluid to
enter a medium that is initially saturated by wetting fluid. A
positive entry pressure can have a relevant effect on the fluid
flow behaviour. Kueper er al.,’ for instance, have observed
experimentally that variation in the entry pressure due to
heterogeneities significantly affects the path of migration
of a heavy nonwetting fluid in a heterogeneous porous
medium saturated with wetting fluid.

When the entry pressure is positive, it may happen that
the capillary pressure is not continuous across an interface
between two media. Nonetheless, we shall show that the
interface conditions still lead to a unique similarity solution.
The similarity solution presented here can be used to verify
if heterogeneities are correctly treated in numerical models
that include entry pressures.

The diffusion problem discussed here resembles, in many
respects, the one-dimensional hysteresis problem studied by
Philip.'* In that paper he considers the redistribution of
water in an unsaturated soil with different capillary pressure
curves on the left- and right-hand side of the origin: a
drying curve on one side, a wetting curve on the other
side. By a so-called flux-concentration method, Philip
obtains approximate solutions for this problem. The solu-
tions in his case always have continuous capillary pressure,
since the drying and wetting curve form a closed loop (the
hysteresis loop) with zero entry pressure. In this work we
give the procedure to obtain solutions without approxima-
tions, outline a numerical method to approximate the exact
solution, and allow the solutions to have discontinuous
capillary pressure.

This paper is organised as follows. In Section 2 we pre-
sent the mathematical model describing the redistribution of
two immiscible phases in a porous medium. Further, we
consider the interface conditions needed at a discontinuity
in the permeability or porosity.

In Section 3 we use a similarity transformation to trans-
form the partial differential equation into an ordinary differ-
ential equation. For this latter equation we shall explain how
the solution can be constructed. We give a criterion to
determine whether the solution has discontinuous capillary
pressure or not. This can be checked before the actual con-
struction of the solution. The technical details of the mathe-
matical justification are presented elsewhere.” Furthermore,
we provide a numerical method and discuss the qualitative
behaviour of the solution.

In Section 4 we give two illustrative examples. We con-
sider similarity solutions for two different models of the
capillary-hydraulic properties of the porous medium: the
Brooks—Corey model* and the Van Genuchten model.?'
Since a Brooks-Corey type of porous medium has a posi-
tive entry pressure, solutions may occur with discontinuous
capillary pressure. We show for which permeability and
porosity contrasts such solutions are found and provide an
example.

In Section 5 we discuss for a limit case, i.e. for unsatu-
rated water flow, what interface condition concerning the
pressure is appropriate at a discontinuity if the capillary
pressure curve has a positive entry pressure. We show that
continuity of the capillary pressure leads to unphysical solu-
tions in this case. A conclusion is given in Section 6.

2 MATHEMATICAL MODEL

In this section we give the mathematical formulation of
the one-dimensional horizontal redistribution of two immis-
cible and incompressible phases in a saturated and hetero-
geneous porous medium. The phases are characterised by
their reduced saturations: S,, (saturation of the wetting fluid)
and S, (saturation of the nonwetting fluid), where

Sy+S,=1with0=<S,, S, <1 ')

We denote the wetting phase saturation by s = s(x.f) in the
sequel, where x is the spatial coordinate and ¢ is time.
Combination of the flow and continuity equations, as in
18 yields for the wetting phase saturation the nonlinear
diffusion equation

as 0
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where ¢, k and p.. denote the porosity, absolute permeabil-
ity and capillary pressure, and where

Kew (8Yken(s) . HBa
— withM = — 3
Moy (5) + kn(® o @
Here, ky, and ky, are the relative permeabilities of the wet-
ting and nonwetting phases, and p, and p, the respective
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viscosities; M is the mobility ratio. Thecapdlarypressurc:s
given bytthcvmnrelauomhxp

Pe=pc(x,8)= o\/ g%’l(s} @)

where ¢ is the interfacial tension and J the Leverett func-
tion. In this work, hysteresis in the capillary pressure and
the relative permeabilities is neglected.

The nonlinear functions k., k, and J have the usual
properties:

1. kn(s) is strictly increasing with k,(0) = 0;
2. kn(s) is strictly decreasing with k(1) = 0;
3. limyeJ(s) =2, dJ/ds<Qand J(1) = 0;

4. ko (3)kn(s)dJ(s)/ds is bounded.

We assumed the latter condition to prevent that the dif-
fusivity —\(s)dJ(s)/ds blows up near s = 0 or s = 1. This
condition is satisfied by most functions k., k, and J found
in the literature, e.g. Brooks—Corey and Van Genuchten
functions.**! The case of hyperdiffusivity is thus excluded.
The entry pressure of a medium at a given point is given by
the value of the capillary pressure at s = 1. Hence J(1) > 0
indicates positive entry pressure.

In order that similarity solutions can be constructed, we
restrict ourselves to a porous medium of which the per-
meability and porosity change abruptly at some point, say
x = 0, and are constant elsewhere. The permeability and
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porosity are thus given by
k, x<g,
k= =
k(x) {k,, £>0, 3
and
’ <0)
p=s=| " ©
¢, x>0,

where subscripts | and r denote left- and right-hand side
values.

To make equation (2) dimensionless and to eliminate the
parameters u, and o, we introduce reference quantities L
(length) and k* (permeability), and define dimensionless
variables according to

X to\k*
X.=Z,f.=~#—wz-i— N
As a result we obtain
§=h,£(o(s)§§) forx <0, r>0 @®)
=h— (D()ia{)for >0,t>0 9
a: Vax) XS
where
o=~ %) 10)

] 02 04 08 08 ] 1

Fig. 1. Capillary pressure (upper figures) and flux functions (lower figures). Solid curves correspond to the left, dashed curves to the right of
n = 0. Left figures are obtained for the Van Genuchten model, right figures for the Brooks-Corey model. Data for the computations are
given in Table 1 in Section 4.
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and where we introduced for convenience

12 12
hy= (kk;l) and h, = (k—kg) an

The conditions imposed on ky, km and J imply D(s) > O on
(0,1) with D(0) = 0 and D(1) = 0.

At x = 0 where & and ¢ have a discontinuity, the equa-
tions do not hold. At this point we need to impose two
interface conditions for all + > 0. The first condition is
continuity of the flux,

a
lim,po ( — &iD(s) gi) =lim 4o ( = ¢:hD(s) Ei) 12)

The second interface condition is an extension of a conti-
nuity condition for the capillary pressure. This extended
pressure condition is derived by Van Duijn et al.'® using
continuity of capillary pressure and saturation in a narrow
transition zone. It is described as follows.

The media to the left and right of x = 0 have different
values of (k/¢)"2. As a result, they have different capillary
pressure curves, which follows directly from the Leverett-
relationship (4). If, for example, h, > h,, i.e. coarse material
to the left and fine material to the right of x = 0, then the
capillary pressure curve corresponding to the fine material
lies above the curve corresponding to the coarse material
(cf. upper two pictures of Fig. 1). We distinguish capillary
pressure curves with zero entry pressure, as in Fig. 1 (left),
and with positive entry pressure, as in Fig. 1 (right).

If the entry pressure is zero, then to every saturation on
one side of the interface, there corresponds a saturation
on the other side so that the capillary pressure is continuous
[cf. Fig. 1 (left)]. In this case, the second interface condition
is simply continuity of capillary pressure, which is
expressed by

J(s) _ J(s1)

W h 13)
where s, and s, denote the right and left limit value of s at
x=0. Condition (13) is used in the analysis by Philip.’*

If, however, the entry pressure is positive, we see from
Fig. 1 (right) that there is a threshold saturation s* on the
side corresponding to the lower curve, above which the con-
tinuity of capillary pressure cannot be established. The
threshold saturation s* is determined by (in case h; > h;)

16 _I)

by h,

If the wetting phase saturation on the side of the interface
corresponding to the lower curve is greater than s*, then the
saturation on the other side must be equal to one; the capil-
lary pressure across the interface is then discontinuous. The
extended pressure condition is thus given by (in case k) > h,)

(14)

J-—-—(Sr) = J—_(S]) if N = S’.l
hy hy 15)
=1 ifs'<s=1

If h; < h, then the second interface condition is given by
equation (15) with the subscripts 1 and r reversed; the
threshold saturation s* follows then from equation (14)
with k) and h, reversed.

In the derivation of the extended pressure condition, the
Leverett function is assumed to be identical on both sides of
the discontinuity. Equally, the condition could have been
formulated for different Leverett functions on each side,
like, e.g. a drainage and imbibition curve.

Two typical models of relative permeability and Leverett
functions are the Brooks—Corey model:*

Jw)y=u""™
k) =2+ (16)
k()= (1 = u)*(1 = *2)
where A > 0, and the Van Genuchten model:?!
J(u)= (u- Um _ 1)1 -m
ke () = (1 = (1 = ™y an
k()= (1 — ) (1 — ™y

where 0 < m < 1. The latter model is only partly attribut-
able to Van Genuchten; the expression for k., has been
derived by Parker ez al.'2. The essential difference between
the two models is that Brooks—Corey has a positive entry
pressure, whereas Van Genuchten has zero entry pressure.
We shall discuss the similarity solutions corresponding to
these models in Section 4.

3 SIMILARITY SOLUTIONS

In this section we consider a special solution of equations
(8) and (9): a similarity solution. This solution is found for a
particular initial condition, which has a discontinuity at x =
0 and is constant elsewhere. The original initial value prob-
lem can then be transformed into a boundary value problem
consisting of ordinary differential equations. We give here
the construction of the solution, show that the interface
conditions indeed lead to a unique solution, and outline
the procedure to determine the similarity solution numeri-
cally. Some qualitative properties of the similarity solution
are discussed at the end of this section.

We study equations (8) and (9) subject to the initial condition

.0) 1 ifx<O, 18
5(x,0)=
0 ifx>0 as

The resulting problem admits solutions of self-similar form.
If we set

s(x, 1) =f(n), with 5= —’-‘\ﬁ (19)

we obtain for f the ordinary differential equations
nf' + (D)) =0 forn <0 20)

bnf’' + h(D(F)f"Y =0 for n >0 @n
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Here the primes denote differentiation with respect to 7.
The initial condition for s yields the boundary conditions

f(—=)=1and f(x)=0 (22)
At 5 = 0, the solution has to satisfy the flux continuity
condition

limy( — /D)) = Hm po( — S DY) (23)
and the extended pressure condition (15) with s, and s,
replaced by f, = lim of (n) and fi = lim 40/ (n).

3.1 Construction of the solution

To construct the similarity solution, we first solve equations
(20), (21) and (22), and then match the corresponding solu-
tions at ¢ = 0 so that the interface conditions (15) and (23)
are satisfied. Thus, we start with the subproblems

laf +h(D(Y'Y =0, 0<p<o o
fO=f, ,  f®)=0
and
r+ ? I=0’ —n < <0’
Lnf’ +m(DEY") 7 25
f(—=)=1 fO)=§,

where 0 < f,, f; = 1 have to be determined from the inter-
face conditions.

It is well-known (e.g. '%'%) that problem (24) has a
unique solution f, = f (y) forevery f; € [0,1]. ff; =0
then f.(y) = 0 for all = 0; if f; > O then there is a positive
a, < o such that

>0 for0<np<a
f+(ﬂ){

26)
=0 foryp = a,

and f* ,(3) < 0 for 5 between zero and a,. The behaviour of
the diffusion coefficient near f = 0 determines whether a, =
« or a, < . The precise condition is given in Section 3.2.

Similarly, problem (25) has a unique solution f. = f(3)
forevery fi€ [0,1]. If fy= 1 thenf.(y) = 1 for all < O; if
Ji <1 then there is a negative a; = ~ such that

f] L rn=a @n
- < fora<n<o0

and f’ () < O for 7 between a; and zero. Here, the beha-
viour of the diffusion coecfficient near f = 1 determines
whether a; = — or g; > —. For the precise conditions
were refer to Section 3.2.

To apply the interface conditions we need to know the
fluxes at y = 0. Let

= — ¢ D(f ) ; (0) 28
and
Fi= — oD~ (0) 29)

For every value of f; € [0,1], which determines the solution
f+ of problem (24), a unique F, results. We denote this
dependence by writing F, = F(f;). This function is

continuous and strictly increasing in f, € [0,1] with
F,(O)-O An analytic proof of these statements is given
in ref. ! .aoompmomlmﬂtmshownml’ig 1, where
the flux function F, is given for the Brooks—Corey and Van
Genuchten model.

In a similar fashion, F, can be considered as a function of
- This function, which is continuous and strictly decreasing
in f; € [0,1] with Fy(1) = 0, is also shown in Fig. 1.

Having discussed these preliminary results, we can now
outline the matching procedure.

3.1.1 Existence of a unique pair (f.f,) matching the
interface conditions

We consider in detail the case hy > k.. In Fig. 1 the graphs of
the capillary pressure and fluxes are shown, both as func-
tions of the saturation at each side of the origin. Note that
here the lower capillary pressure curves correspond to the
left-band side of the origin, the upper curves to the right-
hand side. The fluxes were obtained by numerically solving
transformed versions of problems (24) and (25) for different
fi and f,. The details of the transformation and computation
are given in Section 3.1.2. We treat the cases with and with-
out entry pressure separately.

3.1.1.1 Zero entry pressure. If the entry pressure is zero,
then the saturations at the origin have to satisfy condition
(13), reflecting continuity of the capillary pressure. Since
the capillary pressure functions are strictly decreasing, it
follows from continuity of the capillary pressure that the
right saturation depends monotonically on the left saturation
[cf. Fig. 1 (left)]: for instance, when we increase the left
saturation f;, then the right saturation f; increases as well.
Furthermore, for increasing f;, the left flux F) decreases
while the comresponding right flux F, increases.

Now, using continuity and monotonicity of the graphs in
Fig. 1 (left), we find, for f increasing from zero, a unique
pair (fi, f;) such that both pressure and flux are equal. The
continuity of the fluxes combined with Fy(0) > F/(0) and
F\(1) < F(1) yields the existence of such a pair. The moton-
icity of the fluxes implies the uniqueness.

3.1.1.2 Positive entry pressure. If the entry pressure is
positive, as in Fig. 1 (right), then the situation is different in
the sense that now the saturations at the discontinuity are
related to each other through the extended pressure
condition (15). Increasing the left saturation f;, we see
that the right saturation increases only if f; < s, but is
constant (f, = 1) if f; > s". Moreover, for increasing f,
the left flux F, decreases while the correspondiing right
flux F, increases only if f; < s°, but is constant (F, =
F{)if fy > s".

So, if Fi(s") > F(1), then f; must be greater than s” in
order to have continuity of the flux. In that case, f; = 1 and
F, = F(1). Since F(f)) is a strictly decreasing function of f;
with Fi(1) = 0, it follows that there is a unique f; such that
continuity of the flux is satisfied. Note that the capillary
pressure is discontinuous in this case.
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If Fi(s") =< F(1), then it is necessary that f; < s in order
to have continuity of flux. Consequently, the capillary pres-
sure is continuous, and again as in the case of zero entry
pressure, there is a unique pair (fy, f;), such that the interface
conditions are satisfied.

Remark: The case h; < h, can be treated in a similar
manner. In that case too, the pair (f,,f;) is uniquely deter-
mined. However, now the capillary pressure is always
continuous, since f; must be less than one in order to have
a positive flux F), and therefore f, < s". Note that in this case

fl >fr'

3.1.2 Computation of (fif,), the flux functions and the
solution

To obtain a solution, we first determine the pair (fyf;) that
satisfies the interface conditions, and then use these values
to solve problems (24) and (25). It is not necessary to solve
these problems separately: their solutions follow directly
from the method that will be used to compute the fluxes
F, and F -

We first explain how to obtain the pair (f,,f;). For the time
being, let us assume that the functions F\(f}) and F (f,) are
known: further on we discuss how they can be determined
numerically. We distinguish between the cases hy > h,
(capillary pressure possibly discontinuous) and h;, = h,
(capillary pressure continuous).

If h) > h, we first have to check whether the capillary
pressure is continuous. For that purpose we need the values
of Fi(s") and F(1). If Fi(s") > F(1), then the capillary
pressure is discontinuous, and hence f; = 1. In that case
we have to find the root f; € (s",1) of

Fi)=F(1) (30)

If Fi(s") < F(1), then the capillary pressure is continuous,
and hence f; < s". In that case, determine f, as a function of
fi using continuity of capillary pressure. Then find the root
fi = 5" that solves the equation

Fy(f) =F(f(f) €1))

If by < h,, then the capillary pressure is continuous and we
proceed as above: determine f, as a function of f; using
continuity of capillary pressure, and find the root f, €
(0,1) that solves equation (31). To find the root of equations
(30) or (31) we use the bisection method.

Crucial in the construction are the flux functions F(f})
and F(f,). Of course it is not necessary to determine the
entire graphs of F) and F.. The functions F, and F, only
have to be evaluated at the iteration points resulting from
the algorithm that is used to find the root of equations (30) or
(31). We discuss below how F(f;), with 0 = f, = 1, can be
solved numerically. The function Fi(f;) is found in an
entirely analogous way. Therefore, those details are omitted.

To determine the right flux F(f,) we need to solve prob-
lem (24) and compute the flux at n = 0. The complication
here is the boundary condition {>) = 0 which is not always
easy to verify. Fortunately, there is a more direct way to

obtain the flux-saturation relation at y = 0. The idea is to
transform equation (21) into a differential equation for the
flux with the saturation as independent variable.” Since f is
strictly decreasing on (0,a,) we can invert

fe=fi(mfor0=n=a, 32)
to obtain
n=o,.(f)for0<f=<f 33)

where o is the inverse of f, with ¢, (0) = a, and o (f,) =
0. Next, consider the scaled flux (up to the porosity) as a
function of saturation, i.e.

¥(): = —hDENi (@ (M) for0=f=f (34)

Note that y(f) > 0 for 0 < f < f,, because f, is monotoni-
cally decreasing. Using equation (21), one easily verifies
that

= o, (for0<f < 35)
and

d2

ya-j%: — LhD(f) for 0 <f <f, (36)

Since the flux vanishes whenever the saturation vanishes
we also have y(0) = 0. Thus, for given f; € [0,1], we want
to solve the boundary value problem

2

yfi_%:= - %hrD(f) forO<f <f,

df @37
dy,,. -

J(f,) =0 » - y(0)=0,

such that y > 0 on (0, f;). Having established the solution
y=y(f), we know the flux at n = 0 through the relation

Fr(ﬁ') = ¢ry(f;) (38)

Problem (37) is solved by a shooting technique.® In its
specific application to problem (37), we replace the bound-
ary condition y(0) = 0 by y(f,) = y,, where y, is the
shooting parameter. The objective is to find y, such that
the boundary condition y(0) = 0 is satisfied. We use the
bisection method to obtain convergence to the required
value of y,.

The method to compute y(f) can be conveniently
employed to determine the solution f, of problem (24). In
the shooting procedure, the second-order differential equa-
tion in y is rewritten into a system of first-order differential
equations in the dependent variables y and dy/df. From
equation (35) we have

n=a+(f)=23—;(f)for0<f<ﬂ (39)

Hence, using equation (39), the algorithm directly gives for
every value of f the corresponding value of 7.

3.2 Structure of the solution

From what we leamed so far we deduce that the self-similar
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form of the solution, s(x,)=jf(1) with n = x/ /%, has a
discontinuity at the origin x = 0 (y = 0), where the initial
saturation as well as the properties of the porous medium are
discontinuous. Moreover, the self-similar solution ) has
the structure

=1 forn=gq
fms €(0,1) forgg<g<a, n#0 (40)
=0 forn =a,

with f0") = f; and f0*) = f;; it is strictly decreasing for ¢
between a; and zero, and zero and a,. Let us assume for the
moment that q, and a, are finite. They characterise moving
or free boundaries in the x,t-plane given by

%(t) = a1/t and x (1) = a\/1, for 1 =0 (41)

This implies that the saturation as a function of position and
time satisfies for # > 0,

=1 for x =< x (1),
s(x,0)¢ €(0,1) forxy()<x<x(t), x#0, (42)
=0 for x = x,(1)

Moreover, we have for all ¢ > 0,
lim ,495(x, ) = £ and lim ,jo5(x, ) =f; 43)

In the mathematics literature, precise results are known
concerning the finiteness of 4, and a,, and concerning the
behaviour of the similarity solution near these points, e.g.
12 or 17, These results show a relation with the behaviour of
the diffusion coefficient near f = 0 and near f = 1. The
conditions for the occurrence of free boundaries are:

1
a, < « if and only if j‘oD(—s—s)ds<oo 44)
and
1
a; > —if and only if Jo%%ds<w (45)

When free boundaries exist, we can easily find them from
the solution in the flux-saturation plane. From equation (39)
we have

d dy
a,=2&%(0) anda,=2d—}(1) (46)

We remark that volume (or mass) conservation is ensured
by the continuity of the flux. Namely, integrating equation
(20) from a, to zero and equation (21) from zero to a,, and
using equation (23) yields

"o
0 [ ~rren=s. | @7

The volume of nonwetting phase to the left of n = 0 is thus
equal to the volume of wetting phase to the right of it.
Equation (47) is also valid when a, or a, are not finite.

In the case that the capillary pressure curve has a positive
entry pressure we can determine when the capillary pressure

at n = 0 is discontinuous, and how it depends on the medium
parameters.

Recall that the capillary pressure is discontinuous if
Fy(s*) > F(1). The flux function F(f;) is given by equation
(38). Notice that if y is scaled by /% then the scaled y
satisfies problem (37), but with A, = 1. Thus, the flux func-
tion F, can be written as F(f,) = ¢,\/h,F(f,), where Fis
the flux function corresponding to ¢, = h, = 1. Similarly,
we have F(f)) = ¢1\/h.,ﬁ‘l(f,), where F, is the flux function
corresponding to ¢, = h; = 1. Let « denote the ratio of A,
and h,, and B the ratio of ¢, and ¢, i.e.

h; é:

o y and 8 %
The capillary pressure is thus discontinuous at y = 0 if and
only if

(48)

@) _
0 \/&-—Ba(a) 49)

where s°(a) is given by equation (14), and 8., is the critical
value of 8. Note that 3. is a decreasing function of « with a
vertical asymptote at o = 0, and 8,(1) = 0. Thus, the
capillary pressure is discontinuous at n = 0 for given
porosity ratio 8 if « is sufficiently small, i.e. if the perme-
ability ratio k/k; is sufficiently small.

g<

4 EXAMPLES: BROOKS-COREY AND VAN
GENUCHTEN MODEL

In this section we consider capillary diffusion for two dif-
ferent sets of relative permeability and Leverett functions
which are frequently used in hydrology: the Brooks—Corey
model and Van Genuchten model. These models are given
at the end of Section 2. For both models we look at the
pressure condition, determine if free boundaries occur,
and discuss the similarity solutions. For the Brooks—Corey
model we also show when the capillary pressure at x =0 is
discontinuous, depending on the permeability and porosity
ratio.

The extended pressure condition for a Brooks—Corey
curve leads to the following relation between s; and s,
when h) > h,:

Slls‘ if0= = S‘,
= - (50
1 ifs = 8§ =1
with
.o
=(= 1
s (hl) 62))

To obtain the interface condition for h; < h,, one has to
interchange s, and s,, as well as h, and h, in equations (50)
and (51). The graphs of the relations between s, and s, for
the Brooks—Corey and Van Genuchten model are given in
Fig. 2.

The graphs of the diffusion functions for each model are
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Fig. 2. Second interface condition for the Van Genuchten model (left) and Brooks-Corey model (right), with m = 2/3 and A = 2, for
different ratios of hJh;: (2) 0.5, (b) 1, (c) 2.

given in Fig. 3. Note that in both cases D(0) = D(1) = 0.
Hence, free boundaries may occur. We determine for both
media if the similarity solution has free boundaries by
examining the integrability conditions for the diffusion
function in equations (44) and (45). The diffusion function
(10) for the Brooks-Corey model has the asymptotic
behaviour:

D(s)=0(s** ™) as 510 (52)

D(s)=0((1 —s)*) as s11 (53)

Therefore, the integrability conditions in equations (45) and
(44) are satisfied for all A > 0, independent of the mobility
ratio M. Hence, we have free boundaries as s{ 1 and s | 0
for all A > 0. The diffusion function for the Van Genuchten
model yields:

D(s)=O0(s% "™y as 5| 0 (54)

D(s)=0((1 -sy"*"yas 511 (55)

Again the integrability conditions in equations (45) and (44)
are satisfied, now for all relevant values of m(0 < m < 1),
independent of M. Hence, also for the Van Genuchten
model both free boundaries occur for all m.

0.15

Fig. 3. Diffusion functions for Brooks-Corey (solid) and Van
Genuchten (dashed)model, with A =2, m =23 and M = 1.

In Figs 4 and 5, solutions for the Brooks—Corey and Van

Genuchten model are shown as curves in the flux-saturation
plane and as similarity profiles f = f{y). The data are given in
Table 1. The parameter m is chosen such that the capillary
pressure curve of the Brooks-Corey and Van Genuchten
model have identical asymptotic behaviour as s tends to
zero.
Note that for this data set the capillary pressure for the
solution corresponding to the Brooks—Corey model is dis-
continuous at the origin (f; > s* = 0.25). Furthermore, we
observe that the nonwetting front (y = a,) for the solution
corresponding to the Van Genuchten model is much further
to the left than the nonwetting front for the solution corre-
sponding to the Brooks—Corey model. This is due to the
diffusion near f = 1, which is much larger for the Van
Genuchten model than for the Brooks—Corey model
because of the steeper slope of the J-curve near f = 1 (cf.
Figs 1, and 3). Equal saturation gradients lead then for the
Van Genuchten model to a higher diffusive flux. Therefore,
in a2 Van Genuchten medium the nonwetting phase enters
the region originally occupied by the wetting phase easier
than in a Brooks—-Corey medium.

The time-dependent behaviour of the Brooks-Corey
similarity solution is shown in Fig. 6. Observe that the
values at the origin are fixed and that the behaviour near
the free boundaries remains unchanged, except for the /
scaling. We remark that for negative fixed x the saturation
s(x,t) tends to f; € (0,1) as ¢ — oo, while for positive fixed x it
tends to f; = 1.

Finally, we investigate for the Brooks-Corey model
which porosity and permeability ratios yield a discontinuous
capillary pressure at x = 0. In Section 3 we derived that the
capillary pressure is discontinuous if and only if (¢./¢)) <
B«(hdhy), where the function S, is given by equation (49).
In Fig. 7 we have plotted the curve B, for A\=2and M =1,
and we indicated which region corresponds to a discontin-
uous capillary pressure. We observe that the point (0.5, 1),
which corresponds to the data in Table 1, is indeed located
in the region corresponding to a discontinuous capillary
pressure.
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Fig. 4. Solutions in the flux-saturation plane for the Van Genuchten (left) and Brooks-Corey model (right).

$ DISCUSSION: PRESSURE CONDITION FOR
UNSATURATED WATER FLOW

In this section we consider similarity solutions for horizon-
tal unsaturated water flow in the case that the capillary
pressure curve has a positive entry pressure. The equation
governing unsaturated water flow is a limit case of the two-
phase model presented in Section 2 for vanishing mobility
ratio. For unsaturated water flow, similarity solutions can
also be constructed when continuity of the capillary pressure
is used as interface condition. We show that use of contin-
uity of the capillary pressure as interface condition, as
opposed to the extended pressure condition (15), leads to
unphysical similarity solutions.

In unsaturated air-water flow, the pressure of air is
assumed to be constant; water is the wetting and air is the
nonwetting phase. The governing equation can be obtained
from the two-phase model by letting M — 0 in equation (3).
It is thus given by equations (2) and (4) with A(s) replaced
by k.w(s). The capillary pressure is equal to p. = — p, where
p denotes the water pressure. Using equation (4), the water
saturation can be expressed as a function of the water pres-
sure, i.e. s = S(p). Thus, equation (2) can be written as

8 son =Lk 5o
¢ 580N = S knlSPN ) (56)

which is the pressure formulation of Richards’ equation.'®
This formulation admits a varying water pressure when the

0.8 04 0 04
n

water saturation is equal to one. If s < 1 then equation (56)
is equivalent to equations (2) and (4) with A = k. The
interface condition for the capillary pressure needed at a
discontinuity, however, cannot be derived directly by using
a regularisation procedure as in '2,

When we use the extended s)ressure condition (15), in the
sense that — p(0*) = a(@,/k;) 2J(1) if S(p(0")) > 5", we can
construct a similarity solution of equation (56) in the same
way as for the two-phase model. It can be shown that the
similarity solution of the full two-phase model converges
for vanishing mobility ratio to the solution of equation (56)
with extended pressure condition. This is illustrated in
Fig. 8.

For the pressure formulation (56) it is also possible to
construct a similarity solution using continuity of the capil-
lary pressure as interface condition instead of the extended
pressure condition (15). It can be shown that this leads to a
unique similarity solution as well. An example is given in
Fig. 9, where we have plotted the graphs of the similarity
solutions of equation (56) corresponding to the two different
interface conditions. We observe that the solution obtained
for continuous capillary pressure is equal to one in a region
to the right of 7 = 0. The flux is constant in this region and
the capillary pressure increases linearly. The saturation
becomes less than one at the point where the capillary pres-
sure exceeds the entry pressure. Further, we observe that the
solution obtained for the extended pressure condition has a
discontinuous capillary pressure at y = 0 in this case.

0
08 -0.4 0 04
n

Fig. 5. Similarity profiles f = f{n) for the Van Genuchten (left) and Brooks-Corey model (right).
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Table 1. Data set of parameters

Parameter Value Parameter Value
h, 0.5 M 1

h 1 A 2
oJd) 1 m 23

The solution with continuous capillary pressure cannot be
physically correct, however, because air entering on the left
side has to pass through a region fully saturated by water.
This problem does not occur when the extended pressure
condition is used. Moreover, the similarity solution of equa-
tion (56) corresponding to the extended pressure condition
is identical to the similarity solution of the two-phase model
for vanishing mobility ratio. Thus, if the capillary pressure
curve has a positive entry pressure, then the extended pres-
sure condition is also in unsaturated flow problems an
appropriate interface condition, whereas continuity of the
capillary pressure is not.

6 CONCLUSION

We presented a method to construct a similarity solution of
a capillary redistribution problem for a porous medium with
a single jump discontinuity in permeability and porosity.
Special attention was paid to the extended pressure con-
dition, the interface condition corresponding to capillary
pressure curves with a positive entry pressure. For both
zero and positive entry pressure we showed that the inter-
face conditions lead to a unique similarity solution. We
indicated when the capillary pressure is discontinuous at
the interface and how it depends on permeability and
porosity contrasts.

We considered the similarity solutions for the Brooks—
Corey model (positive entry pressure) and the Van Genuch-
ten model (zero entry pressure). We showed for both models
that free boundaries always occur. For the Brooks—Corey
model we gave an example of a solution with discontinuous
capillary pressure.

We discussed the pressure condition for unsaturated

0
0.8

04 02

06

Fig. 6. Similarity solution for the Brooks-Corey model at (a) t =
0,Mt=1(c)t=2,and (d) ¢t = 3.

C. J. van Duijn, M. J. de Neef
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2 B Pe continuous at z =0 -
1+ -1
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0 1
0 0.5 he/hy 1

Fig. 7. Graph of the critical porosity ratio 8, for the Brooks-Corey
model with A =2 and M = 1.

0 " a. a
2 1.5 -1 0.5 (4] 0.5

Fig. 8. Similarity solution of the two-phase model for vanishing

mobility ratio: (a) M = 0.1, (b) M = 0.001, (c) similarity solution

of (56) with extended pressure condition (Brooks-Corey model,
h,=0.2, other data from Table 1).

water flow when the entry pressure is positive. We demon-
strated that continuity of capillary pressure may lead to
unphysical solutions in this case. The extended pressure

condition turned out to be appropriate for unsaturated
water flow as well.

4
\
;

0 A N . )
2 -5 -1 0.5

0.5
n
Fig. 9. Similarity solution of Richards’ equation using continuity
of capillary pressure (dashed) or the extended pressure condition
(solid) for h/h; = 0.2 (Brooks-Corey model, other data given in
Table 1).
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