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1. INTRODUCTION 

The study of parallelism is closely connected with the notion of fairness. Let us illustrate this with a simple example. Suppose we are given a function f mapping integers to integers and we wish to search for some zero w of f. A program Szero 
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Fairness in Parallel Programs 421 

for this task should satisfy the following specification: 

\3u:f(u) = OjS,ew!f(w) =Of 

that is, provided f possesses a zero, the variable w will contain such zero upon 

termination. 
A natural solution for Szera is to run two programs in parallel, say Sx and Sv. 

Sx searches for the zero off by continuously decrementing a test value x, and Sy 

by continuously incrementing a test value y. This idea is made precise by the 

following program: 

Smo = x ;= O; y ;= O; 

[while ~(~2 ! ~ ~ f(y) t 0 do}sx 
od 

llwhile f(x) 'f 0 /\ f(y) 'f 0 do} 
y := y + 1 Sy 

od 
]; 
if f (x) = 0 then w := x else w := y fi 

But does this program really satisfy the specification ( *)? The answer depends 

critically on the actual meaning of parallel composition. It is easy to see that the 

usual interpretation in which parallel composition allows any execution order of 

its components is not sufficient here. For example, Szero might exclusively activate 

the component Sx, while only Sy could find a zero. What is needed here is a 

stronger interpretation of parallel composition in which both components Sx and 

Sy progress. 
In this paper we are concerned with this strong interpretation of parallelism. 

Following [22] and [25], we model it by adding the assumption of fairness. In 

general, fairness requires that every component of a parallel program S that is 

"sufficiently often enabled" will eventually progress. For example, if we interpret 

"sufficiently often enabled" as "not yet terminated," the resulting fairness as

sumption guarantees that the program Szera will find a zero off and thus satisfy 

its specification ( *). 
But are such fairness assumptions realistic [9]? To discuss this question a low

level view of parallelism using a multiprocessor implementation with full infor

mation about the execution times of atomic statements is required. On such a 

level it is possible to show the proper termination of Szero· Thus the essence of 

fairness is to provide an appropriate abstraction mechanism from the particular 

timing conditions of such a multiprocessor implementation. 

Unfortunately, this abstraction is not without a price. It implicitly introduces 

unbounded nondeterminism in the sense that a program will always terminate 

but with infinitely many possible final states [7, 26]. For example, if one 

component of the program Szero, say Sy, finds a zero of f, there are, upon 

termination, infinitely many values possible for the variable x of the other 

unsuccessful component Sx. It is well known that reasoning about unbounded 

nondeterminism leads to various complications-various semantic functions lose 

their continuity [ 11], and the standard technique of proving loop termination 

with integer-valued bound functions does not work any more (see, e.g., [3, 21]). 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988. 



422 E.-R. Olderog and K. R. Apt 

Despite these difficulties, reasoning about unbounded nondeterminism remains 
a manageable enterprise [l, 3, 7). 

So far, semantics and proof theory for fairness assumptions have been studied 
mainly in the context of nondeterministic do-ad-programs (see [15] for an 
overview). For parallel programs S, the question of fairness has been dealt with 
either by translating S back into a nondeterministic do-ad-program [5, 21) or by 
resorting to methods of temporal logic [25] that often require a translation of S 
into an equivalent formula in temporal logic [22, 29]. But such translations 
destroy the parallel structure of the original program S and hence the explicit 
information about its possible concurrency. 

In this paper we present a new approach to fairness in parallel programs with 
shared variables: We provide fair parallelism semantics through transformations 
that preserve the parallel program structure. These transformations are developed 
in two steps. First, abstract schedulers are introduced that implement the various 
fairness policies. "Abstract" means that these schedulers deal only with the 
fairness of so-called runs, that is, sequences of selections from sets of enabled 
components. The syntactic form of the components is irrelevant here. "Abstract" 
also refers to the use of random assignments to represent the unbounded 
nondeterminism introduced by fairness. A random assignment is of the form 
z := ? and sets the variable z to some arbitrary nonnegative integer. Concrete 
schedulers are derived from the abstract ones by choosing some implementation 
of z := ? . We show that our abstract schedulers are both correct and complete; 
that is, every run checked by the scheduler is fair (correctness), and vice versa, 
every fair run can be modelled by the scheduler (completeness). Moreover, the 
schedulers will never cause any deadlock. 

The transformations are then obtained by embedding the abstract schedulers 
into parallel programs. In other words, the application of a transformation T to 
a program S results in a new program T(S ), which can be viewed as S augmented 
with a built-in scheduler. Only in this second step does our particular choice of 
program syntax become relevant because T should preserve the parallel structure 
of S and enjoy further syntactic properties. The correctness of the embedding is 
proved using a simple transition semantics that models parallelism by interleav
ing. Thus our analysis of fairness applies only to this model. Further work is 
needed to extend these results to a model of parallelism in which a number of 
components can advance simultaneously. 

Our approach to fairness in parallel programs derives from the transformation 
technique for nondeterministic do-ad-programs in [1] and [2]. However, the 
separation of abstract schedulers from a concrete program syntax and the 
development of transformations that preserve the parallel structure of the original 
program are new features. They allow us to use the transformation T as a syntax
directed method for proving correctness of parallel programs S under fairness 
assumptions. Since S is correct under the assumption of fairness if and only if 
the transformed version T(S) is correct in the usual sense, it suffices to prove 
the correctness of T(S) with (almost) standard methods. In fact, we employ an 
extension of the Owicki and Gries proof system [24] that makes use of infinite 
?r~nals to deal with termination in the presence of random assignments. As 
indicated above, such "infinitistic" methods seem necessary in any treatment of 
unbounded nondeterminism. 
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Our paper is organized as follows. Section 2 introduces the class of parallel 
programs studied here, together with the underlying transition semantics. Section 
3 defines fair parallelism semantics for three variants of fairness. In Section 4 
the two-step transformational approach is developed for the simplest variant of 
fairness. In Section 5 this approach is extended to the more demanding variants 
of weak and strong fairness. In Section 6 we present applications of our trans
formational approach to program correctness. Section 7 concludes our paper by 
briefly discussing alternative approaches and further developments. 

2. PARALLEL PROGRAMS 

In this paper we consider parallel programs with shared variables. Their com
ponents are sequential programs, that is, usual while-programs augmented in 
our case by random assignments and await-statements. 

Random assignments have the form z := ? and assign an arbitrary nonnegative 
integer to z [3]. await-statements S =await B then 81 end are used to achieve 
synchronization in the context of parallel composition. S is executed only if B is 
true. In this case S is executed as an indivisible action [24]. await-statements 
cannot be nested. 

Formally, a parallel program has the form 

s = So; [S1 II ... II Sn] 

where S0 is a sequence of assignments and S1 , ••• , Sn are sequential programs. 
S 0 is the initial part of S, and 8 1 , .•• , Sn are the components of S inside the 
parallel composition [Si II · · · II S,,]. We distinguish four classes of parallel pro
grams: L( II), L( II, ?), L( II, await), and L( II, await,?) depending on whether 
random assignments or/and await-statements are used. L( II, await) is essen
tially the language studied in [24]. 

In this paper we shall study certain program transformations, that is, mappings 

T: L( II )[or L ( II, await)] ___,. L( II, await, ?). 

In order to prove the correctness of such transformations we need a rigorous 
semantics of parallel programs. We choose here a particularly simple semantics 
following the style of [17]. 

We assume that all variables are of type integer or Boolean. Thus programs 
are executed over a domain consisting of all integers and !true, false} with the 
usual operations available. A (proper) state is a function assigning to each variable 
a value of the appropriate type from the domain. 

We use the following notation: A typical domain element is denoted by the 
letter d; Var is the set of variables with typical elements x, y, z; Var(S) denotes 
the set of variables occurring in a program S; ~ is the set of proper states with 
typical elements er, T. As usual, er [d/x] is a state variant that agrees with rY, except 
for the variable x where the value is d, er (B) and er (t) are the values of a Boolean 
expression B or a term tin the state er, and er ~ X is the restriction of er to the set 
X of variables. We also need two special states not present in ~: J_ reporting 

divergence and A reporting deadlock. 
By a configuration we mean a pair (S, er) consisting of a program S E 

L( II, await, ?) and a state er. Following [17] and [28] we introduce a transition 
relation~ between these configurations. (S, er) ~ (Si, er1) means: Executing S 
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424 E.-R. Olderog and K. R. Apt 

one step in u can lead to u1, with 81 being the remainder of S still to be executed. 
To express termination we allow (in configurations only) the empty program E 
with E; S = S; E = S. As usual ~* denotes the reflexive, transitive closure 
of~. 

The relation~ is defined by structural induction on L( II, await, ?): 

(skip, u)---+ (E, u}, 
(x := t, u}---+ (E, u[d/x]} if u(t) = d, 
(z := ?, u)---+ (E, u[d/z]} for every d ~ 0, 
(if B then S1 else S2 fi, u)---+ (Si. u) if u(B) =true, 
(if B then S1 else S2 fi u}---+ (S2, u) if u(B) = false, 
(whileB do S1 od, u)---+ (S1; while B do S1 od, u} if u(B) =true 
(while B do S1 od, u)---+ (E, u} if u(B) =false, 
if (Si. u) ---+* (E, r} and u(B) =true then (await B then S1 end, rt)---+ (E, r }, 
if (Si. u)---+ (S2, r} then (S1; S, u}---+ (S2; S, r} 
if (S1, 11}---+ (T1, r} for some i E jl, ... , n) then 
([81 II··· II S; II··· II Sn], u}---+ ([S1 II··· II T; II··· II Sn], r). 

As demonstrated above, skip statements, assignments, evaluations of Boolean 
expressions, and await-statements are executed in one step, that is, as atomic 
or indivisible actions. Therefore statements of the form skip, x := t, z := ? , and 
await B then S1 end are called atomic. Parallel composition is modelled by 
interleaving the transitions of its components. 

Based on ~ we introduce some further concepts. A configuration (S, u) is 
maximal if it has no successor with respect to ~. A terminal configuration is a 
maximal configuration (S, u) with S = [E II • · · II E]. All other maximal config
urations are called deadlocked. A computation of S (starting in u) is a finite or 
infinite sequence of the form 

~: (S, rt) ~(Si. u1) ~ · · · ~ (Sk, uk) · · · 

A computation of S is called terminating (deadlocking) if it is of the form 

~: (S, rt)~··· ~ (T, r) 

where ( T, r) is terminal (deadlocked). Infinite computations of S are called 
diverging. We say that Scan diverge from u (can deadlock from rt) if there exists 
a diverging (deadlocking) computation of S starting in u. 

The paraUelism semantics of programs SE L( II, await, ?) is a mapping 

defined by 

L [S]: 2; ~ .9"(~ U jl., L11) 

L[S](u) = {r I (S, u) ~* ([E II · · · II E], r >I 
U {l. I S can diverge from u l 
U { Ll I S can deadlock from u l 

(1) 
(2) 
(3) 

where 9" (X) denotes the powerset of a given set X. Thus .A [S] assigns to every 
initial state u the set of possible final states (including 1- and Ll) resulting from 
computations of S. 

If a terminating program has only finitely many possible finals states, it 
exhibits bounded nondeterminism; otherwise it exhibits unbounded nondetermin-
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ism [7]. For example, the random assignment z := ? exhibits unbounded non
determinism. Under the semantics vii all programs without random assignments 
exhibit only bounded nondeterminism. Formally, we have 

LEMMA 2.1 (Bounded Nondeterminism). Let S be an L( II, await)-program 
and rJ be a state. Then L[S](rJ) is finite or it contains l... 

PROOF The set of computation sequences of S starting in rJ can be represented 
as a finitely branching computation tree. By Konig's lemma, this tree is finite or 
it contains an infinite path. Lemma 2.1 now follows immediately. D 

Of course, changing the semantics L may invalidate the lemma. Such a change 
will be discussed in the next section. Note that L identifies all infinite compu
tations with divergence. This identification is justified since we are interested in 
terminating programs. However, in Section 7 we briefly discuss a process seman
tics II which considers infinite computations. 

Some further notions will be helpful. The ith parallel component has termi

nated in ([Sill··· II Sn], rJ) ifS;=E;itisdisabledin ([Sill··· II Sn], a) if either 
S; = E or S; = await B then Send; T with a(B) = false; it is enabled if it is 
not disabled, that is, if S; is not terminated and whenever S; = await B then 
S end; T holds, then a (B) = true. The i th component is active in the step 

([Sill··· II Sn], a) - ([T1 II··· II Tn], r) if S; =j= T;. A program Sis deadlock-free 
if 6. $. L [S] ( rJ) for every state <J. 

3. FAIRNESS 

The parallelism semantics L interprets parallel composition as the indication 
that any execution order of its components is acceptable. This leaves maximal 
freedom to the implementor of parallel composition, but often this is not what 
we wish to express when writing the symbol II -

Consider, for example, the program 

S* = [while b do x := x + 1 od II b := false] 
'--y---1 

Under the parallelism semantics vii, it can diverge since it may exclusively 
activate its first component S 1 • But under a multiprocessor implementation of 
parallelism the second component S 2 is eventually executed; this causes termi
nation of S*. 

To abstract from the details of multiprocessor implementations, the notion of 
fairness leading to a fair parallelism semantics is used. Since fairness can be 
defined exclusively in terms of enabled and activated components, we abstract 
from all other details in computations and introduce the notions of selection and 
run. This will simplify our subsequent analysis of fairness. 

A selection (of n components) is a pair (E, i) consisting of a nonempty set 
E ~ II, ... , n l of enabled components and an activated component i E E. 

A run (of n components) is a finite or infinite sequence 

(Eo, ioHE1, ii)··· (Eh i1) ··· 
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of selections. A run is called monotonic if 

Eo ;;;? Ei ;;;? · • • ;;;? E1 ;;;? 

holds. 
We can now define fairness. A run is called weakly fair if it satisfies the 

following condition: 

Vi E {l, ... , nl: ((Vj E No: i E E1) ~ (3j E No: i = ii)). 

The quantifier V means "for all, but finitely many" or "from a certain moment 

on" and 3 stands for "there exist infinitely many." No denotes the set {O, 1, 2, 3, 

... j. Thus in a weakly fair run every component i, which is almost always enabled, 

is activated infinitely often. 
A run is called strongly fair if it satisfies the following condition: 

Vi E ll, ... , n!: ((3j E No: i E EJ ~ (3j E N0 : i = ii)). 

Thus in a strongly fair run, every component i that is infinitely often enabled is 

activated infinitely often. Since for monotonic runs both notions of fairness 

coincide, we simply talk of fair runs in this case. Note that, by definition, finite 

runs are always weakly and strongly fair. 

The distinction between fairness and weak and strong fairness is taken from 

[1]: It corresponds to the distinction among impartiality, justice, and fairness in 

[21], though in general fairness and impartiality differ. 

Next we link runs to computations. Consider a parallel program S = S0 ; 

[Sl II · • · · II S,,]. The run of a computation 

(S, (J > = (Su; [S1 II ... II Sn], (J) 

~ ... ~ (E; [S1 II ... II Sn], CJo) (1) 

= ([S1 II ... II Sn], CJo) 
(2) 

of S is defined as the run 

(Eo, io HE1, ii) · · · (Eh i1) • · · 

where for every j ?: 0 

Ei = Ii I the ith component is enabled in (Ti, ai) I 

provided Ei =j= 0 and the iith component is active in the step (Ti> ai) -7 

(~+1, Clj+1). 

In this definition it is understood that the transition steps in line (1) just serve 

to completely execute the initial part So of S. Thus, computations that do not 

reach the end of S 0 yield the empty run. A run of a program Sis the run of one 

of its computations. 
For L( II )-programs we have the following simplification: 

LEMMA 3.1 (Monotonicity). Every run of an L( II )-program is monotonic. 

PROOF. A component of an L( II )-program is enabled iff it is not terminated. 

Thus whenever a component i gets disabled in a run (i $. EJ) it remains disabled 

(T/k?: j: i $.Eh). This implies the monotonicity of the runs. 0 
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We define a computation to be weakly (strongly) fair if its run is weakly 
(strongly) fair. By Lemma 3.1, weak and strong fairness coincide for computations 
of L( II )-programs; hence we talk of fair computations in this case. Each notion 
of fairness leads to a corresponding fair parallelism semantics. For weak fairness 
we obtain 

.Jl wfair [S] ( O") 
= lrJ (S, u)---? ··· ~ ([E II··· II E], r)j (1) 

U IJ- I 3 infinite weakly fair computation of S starting in u l (2) 

U lfl IS can deadlock from ul (3) 

Analogous are the definitions of ./Ksfair[S](O") and, for S E L( II) only, of 
Arair[S](u). Note that L( II )-programs cannot deadlock: hence tl $. Arair[S](u). 

To exercise these definitions, let us look at the above L( II )-program S* again. 
A computation of S* that exclusively activates the first component 8 1 is not fair 
because in its run 

(ll, 21, 1)(11, 21, 1) ... (11, 2l, 1) ... 

the number 2, that is, the second component 82, is never activated. Thus in any 
fair computation of S* the second component S2 of S* is activated at least once, 
setting b to false. This will cause termination of the while-loop of the first 
component S 1 and hence the program S* itself. Summarizing, under the fair 
parallelism semantics, S* always terminates. Formally, 

..l $. Arair [S*] (a) for every state a . 

Observe, however, that there are infinitely many final states possible for S*. 
For example, starting in a with a(x) = 0 we obtain 

Arair[S*](u) = la[O/x], a[l/x], a[2/x], ... }. 

This is because it is not known how often the assignment x := x + 1 of 8 1 is 
executed before S 2 sets b to false. Thus, by assuming fair-parallelism, even 
programs without random assignment can exhibit unbounded nondeterminism, 
in contrast to the Bounded Nondeterminism Lemma 2.1 for ordinary parallelism. 

4. TRANSFORMATIONAL SEMANTICS IN L( II) 
For parallel composition we have introduced two types of interpretation: ordinary 
parallelism and fair parallelism. The latter was obtained by restricting the set of 
computations. This provides a clear definition of fair parallelism but no insight 
into dealing with it in terms of implementation or correctness proofs. We wish 
to provide such an insight by applying the principle of transformational semantics: 

Reduce the new concept to known concepts with the help of program transfor
mations. 

In this section we restrict ourselves to programs in L( II ). Hence our aim is to 
find a transformation T that reduces the fair parallelism semantics Liair of L( II )
programs S to the usual parallelism semantics L in the sense that 

Afair[S] = L [T(S) ]. 

Note that we cannot expect the transformed program T(S) to be in L( II) again 
because Lrair introduces unbounded nondeterminism as opposed to L (cf. 
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Lemma 2.1 and Section 3). But we can localize this unbounded nondeterminism 

by using random assignments z := ? in T(S). Twill be useful as a basis for 

syntax-directed correctness proofs of parallel programs under the assumption of 

fairness (see Section 6). Twill also shed light on the possible implementation 

of fair parallelism because it can be seen as embedding into the original pro

gram S a scheduler allowing only fair computations. 

We begin with a general result about fair schedulers using the abstract notions 

of selection and run. 

4.1 Schedulers 

Following [12], a scheduler is an automaton that enforces a certain fairness 

policy on the computations of a parallel program S. To this end, the scheduler 

keeps in its local state sufficient information about the run of a computation and 

engages in the following interaction with the program. 

At certain moments during a computation the program presents the set E of 

currently enabled components to the scheduler (provided E =j= 0). By consulting 

its local state the scheduler returns to the program a nonempty subset I of E, 

namely, the set of components that, upon activation in the next transition step, 

will still satisfy the fairness policy. Now the program selects one component 

i E I for activation, and the scheduler updates its local state accordingly. 

From a more abstract point of view, we may ignore the actual interaction 

between program and scheduler and just record the result of this interaction, 

namely, the selection (E, i) checked by the scheduler. Summarizing, we arrive at 

the following definition: 

A scheduler SCH (for n components) is given by 

-a set of local scheduler states <T, which are disjoint from the program states; 

-a subset of initial scheduler states; and 

-a scheduling relation 

sch ~ l scheduler states l 
X lselections of n components! x lscheduler states! 

which is deadlock-free, that is, 

'rl<T'rlE =j= 0 3i EE 3<T': sch(<T, (E, i), <T'). 

The term "deadlock-free" for sch is justified because the scheduler will never 

cause any (additional) deadlock in the program: for every scheduler state <T and 

every nonempty set E of enabled components there exists a component i E E 

such that the selection (E, i) together with the updated local state <T' satisfy the 

scheduling relation. 
Consider now a finite or infinite run 

and a s~heduler SC.H. We "'.ish to ensure that sufficiently many, but not 

necessarily all selections (Eh ii) are checked by SCH. To this end, we take a 

so-called check-set 
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representing the positions of selections to be checked, and say that the run ( *) 
can be checked by SCH at the positions in%' if there exists a finite or infinite 
sequence 

of scheduler states, with uo being an initial scheduler state, such that for all 
j~O 

if j E ~ 

and 

otherwise. 

Thus for j E ~, the scheduling relation sch checks the selection (Eh ij) made 
in the run using and updating the current scheduler state; for j $. %' there is no 
interaction with the scheduler and hence the current scheduler state remains 
unchanged (for technical convenience, however, this is treated as an identical 
step u1 = O"J+ i). 

For example, with '#1' = l 2 n + 1 I n E 1\10 l every second selection in ( *) is 
checked. This can be pictured as follows: 

Run: (Eo, io) (E1, ii) (E2, i2) (E:i, i;i) 

!i !i 
Scheduler: uo u1 SCH u2 u:i SCH 

Using the programming notation of Section 2 we present now a specific 
scheduler FAIR. For n components it is defined as follows: 

-the scheduler state is given by n integer variables Zi, ... , Zn, 

-this state is initialized nondeterministically by the random assignments 

INIT = Zi := ?; ... ; z,, := ?, 

-the scheduling relation sch(u, (E, i), u') holds iff u, E, i, and 0" 1 are as follows: 

(i) u is given by the current values of Z1, ... , z,,. 

(ii) E and i satisfy the condition 

SCH; = z; = minlz" I k E El. 

(iii) u' is obtained from O" by executing 

UPDATE,= z, := ?; 
for allj E !1, ... , nl - !il do 

if j EE then z1 := z1 - 1 fi 
od 

where the for-statement 

for alljE !1, ... , nl - !ii do 81 od 

abbreviates 

Si; ... ; S1-1; S1+1, ... , S". 
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How does FAIR work? The scheduling variables Z1, •.. , Zn represent 
priorities assigned to the n components ~~a parallel ~~ogram. A component 
i has a higher priority than a component] if Zi < Zj- Imtially, the components 
get arbitrary priorities. If, during a run, F A!R is presented with a set E of 
enabled components, it selects a component i E E that has maximal priority, 
that is, with 

Z; = minlzk I k E El. 
Note that for any nonempty set E and any values of Z1, ... , Zn there exists 
some i EE with this property. Thus the scheduling relation sch(<J", (E, i), 
a-') of FAIR is deadlock-free as required. 

The update of the scheduling variables guarantees that the priorities of 
all enabled but not selected components j get increased (by decrementing Zj 

by 1). The priority of the selected component i, however, gets reset arbitrar
ily. The idea is that by gradually increasing the priority of enabled compo
nents j they cannot be refused forever. The following theorem makes this 
idea precise. 

THEOREM 4.1 (FAIR for Monotonic Run). Consider a monotonic run. This 
run is fair if! it can be checked by FAIR at the positions in an arbitrary infinite 
check set~ 

In other words, no infinite suffix of the run may be left unchecked by FAIR. 
This formulation leaves a lot of freedom for choosing the actual check set ~ a 
freedom we shall exploit when embedding the scheduler FAIR into parallel 
programs. Theorem 4.1 states correctness and completeness of FAIR. Correctness 
means that every monotonic run checked by FAIR is indeed fair; completeness 
means that every fair monotonic run can be checked by FAIR. 

PROOF OF THEOREM 4.1. Consider a monotonic run 

(Eo, io) · · · (Ej, ij) 

of n components and an infinite check set 'ii!''. 

If: Let ( *) be checked at the positions in 'iii'; that is, let there be a sequence 
<Jo · • • <Tj • • • of states of FAIR satisfying sch (o-n (En i1 ), a-,. 1 ) for j E i' and 
<Tj = <Tj+1 otherwise. We show that(*) is fair. 

Suppose the contrary. Then (*)is infinite, and by its monotonicity there exists 
some component i E !l, ... , nl which from some moment j ;?: () on is always 
enabled but never activated, that is, 

Vk;?: j:i EE,,/\ i =f i1;. 

Since ( *) is checked infinitely often, the variable z, of FAIR, which gets decre· 
~ented by each check, becomes arbitrarily small, in particular smaller than -n 
m some state <Tk with k ;?: j. But this is impossible because the assertion 

n 

INV=/\ card!iJz, ::5 - kl s n - k 
I<=! 

holds in every state <Tj of FAIR. Here card M denotes the cardinality of a set M. 
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We prove this invariant by induction onj 2: 0. In a0 we have z1 , •.• , Zn 2: 0 so 
that INV is trivially satisfied. Assume now that INV holds in aj. We show that 
INV is also true in aj+l • Suppose INV is false in aj+I • Then there is some k E 
ll, ... , n l such that there are at least n - k + 1 indices i for which z; :::: -k holds 
in aj+I • Let I be the set of all these indices. Thus, card I 2: n - k + 1. By the 
definition of FAIR, Z; :S -k + 1 holds for all i E I in <lj. Thus, card I:::: n - k + 1 
by the induction hypothesis. So actually, card I = n - k + 1 and 

I= Ii I Z; :S -k + 1 holds in ajl· 

Since INV holds in aj but not in aj+i, we conclude sch(uh (Eh ij), O)+d, that 
is, the position j of the run ( *) is checked by FAIR. By the definition of FAIR, 
the activated component ij is in I. But this is a contradiction because zi. 2: O holds 

) 

in oj+1 by the UPDATE;1 part of FAIR. Thus INV remains true in <TJ+I· 

Only If: Conversely, let the run(*) be fair. We show that(*) can be checked 
at the positions in '6' by constructing a sequence <To • • · aj • • • of states of FAIR 
satisfying sch(ah (Eh ij), <Tj+1) for j E '6' and <Tj = aj+1 otherwise. The construction 
proceeds by assigning appropriate values to the variables z1 , ••• , Zn of FAIR. For 
i Ell, ... , nl andj E No we put 

oj(z;) = 1 + cardll E '6' lj :S l < m;,j /\ i1 =f ii 
where 

m;,j =minim E '6' Ii S m /\ (i $.Em V im = i)j. 

Note that min m i,j E N0 exists because the run ( *) is monotonic and fair; 
informally, <Tj(Z;) is 1 +the number of times the component i is neglected during 
checked selections (i1 =f i) before its termination (i $.Em) or its own next checked 
selection (im = i). Note that in every state aj the variables Zi, ••• , Zn have values 
2: 1 and exactly one variable z; has the value 1, the one which is activated next. 
It is easy to see that this assignment of values <Tj(z;) is possible with FAIR. This 
completes the desired construction. D 

Discussion. As indicated above, our view of a scheduler is close to the definition 
in [12]. The differences are as follows: 

(1) our schedulers need not check every selection (E, i) in a run, and 

(2) our schedulers may be nondeterministic in their choice of which component 
i E E to activate next. 

The first point allows an efficient embedding of FAIR into parallel programs 
later in Section 4.2; the second point was used when proving the completeness 
part of Theorem 4.1, that is, every fair run can be checked by FAIR. Consequently, 
we can obtain every other fair scheduler for monotonic runs by implementing 
the nondeterministic choices in FAIR. Due to [10] and [26], implementing 
nondeterminism means narrowing the set of nondeterministic choices. Thus a 
random assignment z := ? can be implemented by any ordinary assignment z := 
t where t yields values 2: 0. 

Consider, for example, a simple round robin scheduler RORO which selects 
the enabled components clockwise (see, e.g., [31]). RORO enforces fairness in 
L( II )-programs. Starting from FAIR, it can be implemented by replacing the 
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random assignments inside INIT and UPDATE, as follows: 

INIT = Z1 := 1; Z2 := 2; ... ; Zn := n 

and 
UPDATE,= z; := n; for all · · · do · · · od. 

In monotonic runs RORO always schedules the next enabled component in 
the cyclic ordering 1, 2, ... , n. 

Clearly, this implementation is too expensive in ter~s of storage requirements. 
Since we need to remember only which component i is to be selected next, the 
variables z1, ••• , Zn of RORO can be condensed into one variable z ranging over 
jl, ... , nl and pointing to the index of the chosen component. The resulting 
implementation is given in [27]. It uses only n scheduler states; as shown in [12] 
this number is optimal for (weakly) fair schedulers for n components. 

In an early note Dijkstra [10] investigates deadlock-free strategies to avoid 
starvation among competing processes. For each process i, a fixed a priori bound 
N, is postulated such that process i should never be delayed more than N, times. 
For given delays N 1 2: n - 1 and i = 1, ... , n, Dijkstra's strategy can be viewed 
as a scheduler STRAT obtained from FAIR by implementing the random 
assignments as follows: 

INIT = Z1 :=Ni; .. •; Zn := Nn, 

UPDATE,= z, := N,; for all··· do··· od. 

The scheduling variables z1 , ... , Zn are called allowance counts in [ 10]. It is shown 
that in every run of STRAT these variables form a so-called safe set, that is, 
satisfy the invariant 

SAFE= Vk 2: O:cardli I z; $kl$ k. 

Dijkstra considers only fixed bounded delays N, and no unbounded delays 
needed to model fairness. 

Finally, let us point out an alternative formulation of the updates in FAIR. 
Following [27], we could have chosen simply 

UPDATE; = Z; := Z; + 1 + ? 

where, as before, ? stands for an arbitrary nonnegative integer value and 
Theorem 4.1 would remain valid. This way of updating z; resembles the con
struction used in Lamport's "bakery algorithm" for mutual exclusion [18]. Its 
advantage is that embedding FAIR into a parallel program would then lead 
to a so-called distributed solution in which each variable z; can be modified only 
by one component (but read by any number of components). We did not 
adopt this solution because it yields unbounded values of the variable z, in any 
implementation of?, contrary to our definition of UPDATE,. A similar problem 
arises in [18]. 

4.2 Transformations 

We return to the problem of finding a program transformation T which for every 
L( II )-program S reduces fair parallelism Lrair to asynchronous parallelism.£ in 
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the sense of transformational semantics: 

.4?"rair[S] = A[T(S)]. 

The idea is to obtain T by embedding the scheduler FAIR into S. This task is 

simplified by the fact that FAIR is given in programming notation, but it is not 

obvious which form the embedding should take. We discuss the possibilities. 

First attempt. A simple way of reducing fairness is via nondeterministic 

programs. Given a parallel program S == So; [S111 · • • II Sn] one first follows the 

approach of [13], [14], [8], or [9] and translates S into a nondeterministic 

do-od-program [11], for example, of the form 

Tndet (S) = So; do enabled, ---? execute S, one step 

0 enabled,, ---? execute S,, one step 
od. 

Next, one can apply the transformations Tfair of [1] or [5], which use random 

assignments to realize the assumption of fairness in the context of do-od

programs. Roughly, Tfair of [ 1] can be understood as an embedding of the scheduler 

FAIR into do-od-programs. This embedding is very simple: If 

S' = do B1 ---? S; 0 · · · 0 B,, --'> S ~ od 

then 

Tra;,(S') = INIT; do B1 /\ SCH1--'> UPDATE1; s; 

DB,, /\ SCH,,-" UPDATE,.; s:, 
od 

where INIT, SCH;, and UPDATE; come from FAIR. 
Combining both transformations yields 

T(S) = Ttair(Tndct(S)). 

Studying parallelism through nondeterminism is a valid and often pursued 

approach. The drawback is that the translation Tndet destroys the parallel struc

ture of the original program S and hence the explicit information about its 

possible concurrency. 
We therefore aim at a transformation that preserves the structure of S. For 

example, we could add the scheduler FAIR as an extra component to S, roughly 

yielding 

T(S) == So; [FAIR II S1 II .•. II Sn]· 

However, this transformation does not support syntax-directed correctness proofs 

of S under the assumption of fairness. Instead we want a transformation that 

distributes the scheduler FAIR over the components S 1 , ••• , Sn of Sand therefore 

state the following definition: 

Definition 4.2. A transformation T: L ( 11 ) - L ( II, await, ?) is called II -
preserving if T satisfies 

T(So; [S, II ... II S,,]) = T[!(So); [T1(S1) II .•. II T~(Sn)] 
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where Ti' is a subtransformation working on the ith component of S. The notation 
suggests that the only information Ti' may. use a~out the structure of S is the 
total number n of components in S and the mdex i of the currently transformed 

component. 

Second attempt. As illustrated above, embedding FAIR into nondeterministic 
do-od-programs changes the program structure in a rather modest way. Essen
tially, only random assignments are added and Boolean expressions are refined. 
Correspondingly, we might expect a similar type of transformation T:L( II)~ 
L( II,?). 

Definition 4.3. A transformation T: L ( II ) - L ( II, ? ) is schematic if it is 
II -preserving and if for every SE L( II ) there is a set Z of new auxiliary variables 
z E Z used in T(S) for scheduling purposes in the following two ways: 

(1) in additional assignments of the form z := ? or z := t (possibly conditional) 
inside of S, and 

(2) in Boolean conjuncts c used to strengthen Boolean expressions b of loops or 
conditionals in S. We require that this strengthening is done schematically, 
that is, the conjunct c is independent of the actual form of b. 

Note that, since T(S) manipulates additional variables Z, the best we can hope 
to prove is that Lrair[S] agrees with .#l[T(S)] "modulo Z," that is, that the 
states they produce agree on all variables except those in Z. Surprisingly, 
the following theorem holds. 

THEOREM 4.4. There is no schematic transformation T: L ( II ) - L ( II, ?) such 
that for every program SE L( II ) 

Ltair[S] = L[T(S)]mod Z 

holds where Z is the set of auxiliary variables used in T(S). 

PROOF. Consider the following program 

S = [while b do skip od; b :=true II b :=false]. 

According to the Lrair semantics, S always terminates. Suppose, by contradic
tion, that a transformation T satisfying the claim of the theorem exists. Then 
T(S) is of the form 

T(S) = ... ; [ ... while b A c do · · · od; ... ; b := true; ... II ... ; b := false; ... ]. 

Consider now a computation of T(S) that starts in a state <r where b is true 
and that gives preference to the first component as long as it is not terminated. 
This computation is finite since T(S) always terminates. Thus, the first compo
nent eventually terminates. The only action T(S) can subsequently take is to 
fully execute its second component. Thereafter the program T(S) terminates in 
~ state where b is false. But all fair computations of S starting in a terminate 
m a state where b is true. Contradiction. O 

The theorem points at the fundamental difference between nondeterministic 
and parallel programs: Nondeterministic programs have only one point of con
trol that can easily be influenced by adding the scheduler on the top of the 
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do-od-statement; parallel programs have several points of control, one for each 
component. Thus when the scheduler blocks a component, its point of control 
has to be remembered. For this purpose we need the await-statements, even 
when transforming simple L( II )-programs. 

A solution. Thus our transformation will be of the form T:L( II) ~ L( II, 
await, ?). T should be schematic in the sense that, after performing steps (1) 
and (2) of Definition 4.3, we may encapsulate any sequential subprogram S' into 
an await-statement 

await c then S' end. 

Consider now an L( II )-program 

s = So; [S1 II ... II Sn]. 

Embedding FAIR into S is done as follows. The variables z1 , ••• , Zn of FAIR 
become auxiliary variables added to S. Since in L( II) enabledness means nonter
mination, the set E of enabled components is determined using the additional 
Boolean variables end;, ... , endn satisfying i EE iff..., end;. 

Checking a selection (E, i) in a run of S is done by enclosing in the ith 
component "sufficiently many" atomic statements A in await-statements 

await SCH, then UPDATE;; A end. 

But what are "sufficiently many"? According to Theorem 4.1 we have to ensure 
that each run of S is checked at the positions in some infinite check set. These 
positions will correspond to the execution of the atomic statements A just 
considered. In particular, we have to ensure that in every round a while-loop 
passes through such an atomic statement. This leads us to the following notion: 

Definition 4.5. An immediate atomic statement of a loop while b do S' od 
is an atomic statement that occurs in S' but outside any further while-loop 
within S '. For example, in 

while b do while c do x := 1 od od 

the assignment x := 1 is an immediate atomic statement of the loop while c do 
x := 1 od, but not of while b do ... od which, in fact, has no immediate atomic 
statement. Thanks to the following Padding Lemma such a missing immediate 
statement can be introduced without changing the semantics, for example, by 
replacing while b do S' od by while b do skip; S' od. 

LEMMA 4.6 (Padding Lemma). Consider a program S E L( II). Let S* result 

from S by replacing an occurrence of a substatement 80 in S by "skip; S0" or "80 ; 

skip." Then 

L[S] = L[S*]. 

The same statement is true for all other types of programs and semantics considered 

in this paper. 

Formally, the embedding of FAIR is done by the following transformation Tra;,. 
For 
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let Trair(S) result from S by 

(1) prefixing S with the initialization part 
z1 := ?; ... ; Zn := ?; end1 := false; ... ; end" := false, 

(2) replacing in every while-loop the first immediate atomic statement A by 
TEST,(A) =await SCH, then UPDATE;; A end 

where, following FAIR, we have 
SCH, = z, = minlz• I--. endd, 
UPDATE, = Z; := ?; 

for allj Ell, ... , nl - lil do 
if_, end) then zJ := z1 - 1 fi 

od 

and where i E \1, ... , nl is the index of the parallel component in which A 
occurs, and 

(3) suffixing the ith component of S by the termination part 
end,:= true, for i = 1, ... , n. 

Of course, the z;'s and end;'s are new variables not present in S. 
THEOREM 4.7 (Embedding). For every L( II )-program S the equation 

Ltair[S] = L[Ttair(S)]mod Z 

holds where Z is the set of auxiliary variables Z; and end; in Tfair· 

PROOF. Let S' result from Trair(S) by replacing the initial assignments 
z; := ?, end;:= false, and the final assignments end;:= true by "skip," and the new await-statements by the enclosed atomic statement A. Note that S' differs 
from S by some additional skip statements. Thus using the Padding Lemma 4.6, 
it suffices to show 

Lrair[S'] = L[Tfair(S)]mod Z. (1) 
The advantage of using S' instead of S is that the computations of S' and 

Tfoir(S) are "running step in step." This is needed in the last of the following 
equivalences, stated for an arbitrary interleaved computation ~-

~ is a fair computation of S' 

iff ~is a computation of S' with a fair, monotonic run (definition of fairness, 
Monotonicity Lemma 3.1), 

iff ~ is a computation of S' with a run checked by the scheduler FAIR at the 
position in an arbitrary infinite check set (Theorem 4.1), 

iff there exists a computation ~* of Ttair(S) such that ~ is the restriction of C to the program parts and variables in S (construction of Tfaio definition 
of S ', deadlock freedom of FAIR, and hence C). 

Here restriction means that ~is obtained from~* by simplifying each configuration ( Tj, Tj) in e as follows: 

-in T1 every new await-statement is replaced by the enclosed atomic statement A and each remaining assignment to z; and end, by "skip," 
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-in Tj the variables z; and endi are reset to the values in the first state of C. 
The above equivalences clearly imply (1), the desired result. D 

Discussion. Trair provides an example of transformational semantics: Fair 
parallelism is reduced to usual parallelism. The reduction is remarkable because 
it localizes the unbounded nondeterminism that fairness unavoidably introduces 
in random assignments ( cf. Section 3). These assignments are part of a very 
general scheduling policy FAIR which enables the simulation of every fair run. 
Embedding FAIR into a parallel program S yields the transformed program 
Tra;,(S) which, no matter how its random assignments are then implemented, is 
guaranteed to generate only fair multiprocessor executions of the original program 
S. Thus FAIR and Trair can be viewed as a template for an arbitrary implemen -
tation of fairness. Another advantage, its applicability in correctness proofs, will 
be explained later in Section 6. 

Let us review some of the design decisions that went into Tfair· We insisted on 
transforming the first immediate atomic statement of every while-loop, but 
equally well we could have chosen any other immediate atomic statement. This 
does not affect the Embedding Theorem 4.7. 

Taking a finer grain of interleaving as indicator for greater efficiency, we see 
that the transformed program Tra;,(S) is less efficient than the original version 
S. This is because in Tra;r (S) certain atomic statements A of S have been replaced 
by statements TEST;(A). We can improve the efficiency of Tfair by moving the 
original atomic statement A out of the await-statement. This yields a new 
transformation Trair' with 

TEST;(A) =await SCH, then UPDATE, end; 
A. 

Using the Padding Lemma 4.6, it is easy to see that the Embedding 
Theorem 4. 7 remains valid for Ttair*. 

We can reduce the scope of the await-statement even further by taking out 
all the updates of the variables z1, •.. , Zn. This results in 
TEST;(A) = wait SCH;; 

UPDATE;; 
A 

where wait B, for some Boolean expression B, abbreviates await B then skip 
end. Note that in the context of parallel composition the updates of Z1, ••• , Zn 
can now be delayed. Nevertheless, by a somewhat tedious analysis, it can be 
shown that the resulting transformation T'tafr still satisfies 

L[TfairCS)] = L[Tiai,(S)] 

for every L( II )-program S. Consequently, the Embedding Theorem 4.7 holds for 
Ti.fr as well. 

5. TRANSFORMATIONAL SEMANTICS FOR WEAK AND STRONG 
FAIRNESS 

We now extend the principle of transformational semantics to the full language 
L( II, await) in which weak and strong fairness are distinguished. 
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5 .1 Schedulers 

In the presence of await-statements, disabled components of parallel programs 
may become enabled again. Thus, runs of programs in L( II, await) are not 
monotonic any more. Consequently, a scheduler enforcing weak or strong fairness 
must check the selections in a run more often than just once during every round 
through a while-loop. 

Consider for example the program 

S** =[await c then b1 :=false end 
II await -. c then b2 := false end 
II while b1 V b2 doc:=-. c; c :=-.cod]. 

© ® 
Assuming strong fairness, S** will terminate when starting in a state a with 

a(b1 ) = a(b2 ) = a(c) =true because both its first and second components will 
be activated eventually. But a scheduler checking the condition c only at position 
2 would find c always disabled and thus never activate the first component. 
Symmetrically, a scheduler checking c only at the loop entrance 1 would find 
-. c always disabled and thus never activate the second component. So a sched
uler guaranteeing strongly fair runs of S** should check the condition c both at 1 
and 2. 

In general, the check set '?? needs to be very dense: It must contain almost all 
positions j in which the selected component ij changes the enabledness of the 
other components. Except for this change, we can reuse the scheduler FAIR of 
the previous section. 

THEOREM 5.1 (FAIR Enforcing Strong Fairness). Consider a run 

(Eo, io) · · · (Ej, ij)(Ej+1, ij+1) · · · 
and an infinite check set '?? containing all, but finitely many, j such that 

Ej - lijl =f Ej+1 - [ijl· 
Then the run is strongly fair iff it can be checked by FAIR at the positions in ~ 

PROOF. The argument is similar to the proof of Theorem 4.1 and is hence only 
outlined. 

If: Every run checked by FAIR is strongly fair. This is shown using the 
invariant INV of FAIR established in the proof of Theorem 4.1. 

Only If: Every strongly fair run can be checked by FAIR; the values of the 
scheduling variables z1 , ••• , Zn in the sequence a0 • • • aj • .• of scheduler states 
is given by 

<lj(z;) = 1 + card[l E '?? lj :5 l :5 m;,j /\ i E Ed 

for iE!l, ... ,nl, and 

m;,j =minim E '??lj :5 m /\ (im = i V 'r/n 2:: m:i $. En)l 

The difference with the corresponding assignments in the proof of Theo
rem 4.1 is due to the possible nonmonotonicity of the run. Note that, as in 
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Theorem 4.1, the variables Zi, ..• , Zn take values 2'.: 1. Thus aj(Z;) counts the 

number of times the ith component will be enabled in a selection checked by 

the scheduler before its next (if any) activation. In particular, oj(z;) cares for the 

possible nonmonotonicity of the run. D 

To model weak fairness, we cannot use the scheduler FAIR any more. The 

problem lies in the way FAIR updates its scheduling variables z1 , ••• , Zn. When 

checking a selection (E, i) the scheduler FAIR decrements the variables Zj of 

all other enabled components j =f i, but the variables ZJ of disabled components 

j $. E are left unchanged. This is appropriate for strong but not for weak fairness 

in which a component should be continuously enabled. Here the variables ZJ of 

disabled components should be reset. 
This is achieved by changing the part UPDATE; of FAIR as follows: 

UPDATE-W, = Z; := ?; 
for allj Ell, ... , n) - {i} do 

if j E E then Zj := Zj - 1 
else z1 := ? fi 

od. 

Let us call the resulting scheduler WF AIR. 

THEOREM 5.2 (WFAIR Enforcing Weak Fairness). Consider a run and a check 

set <if as in Theorem 5.1. Then the run is weakly fair iff it can be checked by 

WF AIR at the positions in '/$"'. 

PROOF. Analogous to that of Theorem 5.1. 0 

WFAIR also enforces fairness in monotonic runs; that is, Theorem 4.1 remains 

valid with WF AIR instead of FAIR. However, WF AIR is unnecessarily compli

cated for this purpose because resetting the variables ZJ of disabled components 

is superfluous in monotonic runs. 

Discussion. By Theorems 5.1 and 5.2, any scheduling policy for weak and 

strong fairness can be obtained from WF AIR and FAIR by implementing their 
random assignments (cf. Section 4.1). We discuss here two examples showing 

how realistic schedulers can be derived in this way. 
The simplest method of enforcing weak fairness is by a round robin scheduler 

RORO which selects components clockwise, thereby skipping over momentarily 

disabled ones. We discussed RORO already in Section 4.1 in connection with 

fairness in monotonic runs. The implementation here is more complicated than 

in Section 4.1 because we now have to maintain the strictly clockwise scheduling 

policy of RORO for arbitrary runs. We take 

!NIT = Z1 := l; Z2 := 2; ... ; z,. := n; 
SCH; = z; = minlz, I k EEL 

UPDATE-W; = z, := Z; -1 + n; 
for allj E (1, .. ., n) - {ii do 

if j EE then z; := Zj - 1 
else if z; < z; + 1 - n then z; := Zj - 1 + n 

else z; := z; - 1 fi 
fi 

od. 
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This implementation ensures that at every selection via SCH; the set of values 
stored in the scheduling variables Zi. ... , Zn forms an interval 

\k + 1, k + 2, ... , k + n}, 

for some k 2:: 0. Initially, we simply have k = 0, and 1 is stored in z1 , 2 in z2 , ••• , 

and n in z,,. In general, the component io with z;0 containing the least value 
k + 1 is the current candidate for selection. We say "candidate" because io 
need not be enabled. Selected via SCH; is the component i which is enabled 
and comes closest after i0 in the clockwise ordering. The update of the variables 
z1 , ••• , Zn ensures that the interval property ( *) is preserved (though possibly for 
a larger constant k). 

By the interval property, the variables z1 , ••• , Zn can be transformed into one 
variable ranging over jl, ... , n l; this yields the most efficient implementation of 
RORO explained in Section 4.1 (cf. also [12, 27]). 

Strong fairness cannot be enforced by an inexpensive round robin scheduling 
policy. As shown in [12], any strongly fair scheduler for n components needs at 
least n! states. One way of organizing such a scheduler is by keeping the 
components in a queue [12, 27]. In each check the scheduler activates that 
enabled component which is earliest in the queue. This component is then placed 
at the end of the queue. Strong fairness is guaranteed since every enabled but 
not activated component advances one position in the queue. Let us call this 
scheduler QUEUE. 

We show that the effect of QUEUE can be modelled by implementing the 
random assignments of our general scheduler FAIR in a specific way. We take 

INIT =for i E fl, ... , nl do z, := (i - 1) · nod, 
SCH; = z, = minfz" I k EE}, 

UPDATE,= Z; := n + maxlz" ... , z,, l; 
for j E !l, ... , nl - Iii do 

if j E E then z; := z; - 1 fi 
od. 

The idea is that in the QUEUE component i comes before component j iff 
z; < ZJ holds in the above implementation. Since FAIR leaves the variables z1 of 
disabled components j unchanged and decrements those of enabled but not 
activated ones, some care had to be taken in the implementation of the random 
assignments of FAIR in order to prevent any "overtaking" of components within 
the queue. More precisely, the order "component i before component j," repre
sented by z; < ZJ. should be preserved as long as neither i nor j is activated. That 
is why initially and in every update we keep a difference of n between the new 
value of z; and all previous values. This difference is sufficient because a 
component that is enabled n times is selected at least once. 

5.2 Transformations 

We obtain transformations Twrair and T 8 rair for weak and strong fairness by 
embedding the schedulers WFAIR and FAIR into the programs in L( II, await). 
These transformations are II-preserving and schematic as Trair for L( II ) but 
produce more complicated programs first, because determining the enabledness 
of components is more elaborate and second, because selections need to be 
checked more often because of Theorems 5.1 and 5.2. 
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Given a program S = S0 ; [S1 II · • • II Sn], both transformations will add the 

following auxiliary variables to S: z;, end;, pc;, i = 1, ... , n. The z;'s and end;'s 

are used as in Tfair· The pc;'s are a restricted form of program counters that 

indicate when the component S; is in front of an await-statement and, if so, in 

front of which one. To this end, we assign to every occurrence of an await

statement in S; a unique number l ::::: 1 as label. Let L; denote the set of all these 

labels for S;, and B1 denote the Boolean expression of the await-statement 

labeled by l. We introduce the abbreviation 

enabled; = -.end; /\ /\ (pc; = l ~ B1), 
lELi 

for i = 1, ... , n. In the transformed program enabled; will evaluate to true iff the 

ith component of S is indeed enabled. 
With these conventions the transformation 

T,ra;,: L( JI, await) -'> L( JI, await, ?) 

for strong fairness is as follows: Given a program 

s = So; [S1 II ... II Sn] 

in L( \I, await), let T.ra;,(S) result from S by performing the following: 

(1) prefixing S with for all i E l 1, ... , n l do Z; := ?; end; := false; pc; := 0 od; 

(2) replacing every substatement await B 1 then S' end with l E L; in the ith 

component of S by 

pc,:= l; await Bi then S';pc; := 0 end, 

for i = 1, ... , n; 

(3) replacing every immediate atomic statement A in a while-loop of the ith 

component of S by 

TEST,(A) =await SCH, then UPDATE,; A end 

where, following FAIR, we have 

SCH; = z, = min!zk J enabledk j, 
UPDATE,= z, := ?; 

for allj E !1, ... , nl - lil do 
if enabled1 then ZJ := ZJ - 1 fi 

od 

for i = 1, ... , n. If A is already an await-statement, we "amalgamate" its 

Boolean expression with SCH, to avoid nested await's which are disallowed 

in our syntax (cf. Section 2). As in Section 4.2, we stipulate here that every 

while-loop has an immediate atomic statement; if not we add one by applying 

the Padding Lemma 4.6. 

(4) suffixing the ith component of S by 

end,:= true, for i = 1, ... , n. 

For weak fairness the transformation 

Twra;,: L( JJ, await) -'> L( JJ, await, ?) 

is defined as Tsrairo but with UPDATE-W; instead of UPDATE;. 
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THEOREM 5.3 (Embedding). For every program S in L( II, await) the 
equations 

and 

L.vtair[S] = .A'[Twfair(S)]mod Z 

hold where Z is the set of auxiliary variables z;, end;, and pc;. 

PROOF. By a straightforward variation of the proof of the Embedding Theo
rem 4.7, now, of course, referring to the new Theorems 5.1 and 5.2 about FAIR 
and WFAIR. In contrast to Theorem 4.7, computations of Smay now deadlock 
owing to the presence of await-statements. These deadlocks occur also in the 
computations e of the transformed programs T.rair(S) and Twrair(S). But since 
FAIR and, hence, WFAIR are deadlock free (cf. Section 4.1), no additional 
deadlock is possible in e. D 

Discussion. The main difference between the new transformations, T wfair and 
T.rai" and Trair is that now every immediate atomic statement A is enclosed in an 
await-statement TEST;(A). This seriously reduces the efficiency of the trans
formed programs. But is this reduction really unavoidable? 

Looking at Theorems 5.1and5.2, about the schedulers FAIR and WFAIR, we 
conclude that activations of components that leave the enabledness of all other 
components unchanged need not be checked. In Twrair and Tsrair we exploit this 
fact only for the evaluation of Boolean expressions. By exploiting it for atomic 
statements as well, we can improve the efficiency of the transformations. 

Formally, we refine Step 3 of Twra;rCS) and Tsra;rCS) by enclosing in each while
loop of the ith component of S at least one immediate atomic statement A in a 
test part TEST; (A) and additionally only those immediate atomic statements A 
that change a variable which is referenced in the Boolean expression B of some 
statement await B then S' end in the original program S. This refinement is 
particularly useful for programs with limited interaction among the parallel 
components; an example will be studied in the next section. 

For the previous transformations Tfair we could improve efficiency by taking 
the atomic statement A out of the await-statement TEST;(A). Is this possible 
also for Twra;, and T.ra;,? For strong fairness the answer is "no." Suppose we 
change Tsrair to a transformation Ti..;, by putting 

TEST;(A) =await SCHi then UPDATE; end; 
A. 

Then the resulting program T:ra;,(S) may fail to recognize that a component of 
Sis infinitely often enabled. 

For example, take the program 
S = c := false; [while b do c :=--.cod 

cb ~ 
II while b do c := --.c od 

®~ 
await c then b := false end]. 
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Tirair(S) would check the truth value of c at the positions 1 and 2 before 

executing the assignments 3 and 4. Thus it admits an infinite computation ~ 

which periodically activates 1, 2, 3, 4. 
Since initially c evaluates to false, the checks at 1 and 2 will never find that c 

is true in between the execution of 3 and 4. So ~ is not strongly fair because the 

third component of S is infinitely often enabled but never activated. Conse

quently, Ti1air(S) is incorrect. 
For weak fairness, the above counterexample S does not apply because acti

vation of a component is enforced by continuous enabledness. Indeed, the 

Embedding Theorem 5.3 remains valid for the transformations T!rair obtained by 

taking 

TEST;(A) =await SCH; then UPDATE-W, end; 
A 

and T!1air obtained by taking 

TEST,(A) =wait SCH,; 
UPDATE-W,; 
A 

as in the case of the transformation Ttair· 

6. APPLICATIONS TO PROGRAM CORRECTNESS 

We presented transformations that reduce fair parallelism semantics to the usual 

parallelism semantics. These transformations shed light on the assumption of 

fairness because they link the fairness policies with the schedulers that implement 

them. But since the transformations are structure preserving, they also provide 

a basis for syntax-directed correctness proofs of parallel programs executed under 

fairness assumptions. 
The idea is to use the equivalence 

(1) 

and the corresponding ones for weak and strong fairness that follow immediately 

from the Embedding Theorems 4.8 and 5.3. (plSlql and lp)Tfair(S)lql are the 

usual Hoare-style correctness formulas with precondition p and postcondition q. 

l=rair expresses total correctness under the assumption of fairness, and I= expresses 

total correctness without any assumption. As usual, total correctness of parallel 

programs encompasses 

-partial correctness, 
-divergence freedom, 
-deadlock freedom. 

Thus to prove total correctness of S under the assumption of fairness, it 

suffices to prove total correctness of Trai,(S) in the usual sense. This can be done 

with standard proof methods for parallel programs, extended by rules for the 

random assignments in Trair(S). 
For partial correctness and divergence freedom we use an extension of the 

Owicki-Gries approach [24]; deadlock freedom will be treated separately. We 

assume familiarity with [24] but recall briefly the main ideas. In [24] a correctness 

proof of a parallel program S proceeds in two steps. First, one has to find 
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appropriate correctness proofs for the sequential components of S. This is done 
using the proof rules of [24] extended by the following ones taken from [3] 
and [16]: 

Random Assignment Axiom. 

jpjz := ?jp /\ z ::::: Oj 

where z is not free in p, and the 

Extended While Rule 

IP/\ bjSjpl, 
IP I\ b I\ t = a IS It< al, 
pf\b~t>O 

l p l while b do S od Ip f\ --,b l 
where p is an assertion (called the loop invariant), t is an expression (called the 
loop variant or bound function), and a is a variable not appearing in t, b, or S. 

The last two premises of the rule guarantee divergence freedom. Here however, 
owing to the presence of random assignments, it is, in general, not sufficient to 
let t be an integer expression and a an integer variable. Instead, we shall need 
expressions involving infinite ordinals and variables ranging over infinite ordinals 
as in [1], [3], [7], and [21] (for details see the sample Siero below). 

The second step combines the correctness proofs for the components using the 

Parallel Composition Rule. 

The proofs of lpdSilqi), ... , lPnlSnjq,,l are interference-free 

lP1 (\ ·' · (\ PnHS1 II '·' II SnJlqi (\ "· /\ q,,j 

of [24]. In its premise this rule checks whether the correctness proofs for the 
components fit together. This is done using the test of interference freedom. 
Correctness proofs for sequential components are interference free if 

(i) the pre- and postconditions, in particular the loop invariants, used in one 
proof cannot be invalidated by the execution of an atomic statement of 
another component, and 

(ii) the loop variants used in one proof cannot be increased by an activation of 
an atomic statement of another component. That is, for each variant t and 
each atomic statement A with the precondition p from another proof the 
correctness formula 

jpf\t=al Ajt:::=al 

holds, where a is a variable ranging over ordinals and not appearing in t 

or A. 

In case of (i) and (ii) we talk of interference-free invariants and variants. 

Uniform L( I\ )-Programs. Let us now explain our approach of combining 
program transformations and the Owicki-Gries method in more detail, first for 
L( II). The advantage of L( II )-programs is that they cannot deadlock, whether 
we assume fairness or not. So, proving total correctness under fairness reduces 
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to proving partial correctness and divergence freedom under fairness. This can 
be done using the transformation Trair and the equivalence (1) above. 

However, we will simplify Trair here by 

(i) replacing the scheduling condition SCH; by zi, ... , Zn ;.:::: 1, and 
(ii) dropping the termination variables end;. 

These changes yield a transformation Trair+t>., which behaves as Trair except that 
it can deadlock. Of course, such a transformation should be rejected as an 
implementation of fairness, but it turns out to be useful for proving correctness 
since it leads to simpler loop invariants and bound functions. 

Because of (ii) the transformation Trair+ll will work only for a subclass of 
L( II )-programs, which we now introduce. 

Definition 6.1. An L( II )-program S = [Si II • · · II Sn] is uniform if each of its 
components S;, i = 1, ... , n, is of the form 

S; = while B do T; od 

for some uniform Boolean condition Band arbitrary loop-free statement T;. 
For example, the program Szera of the introduction is uniform. For uniform 

programs S =So; [Si II · · · II Sn] let Trair+ll(S) result from S by 

(1) prefixing S with Zi :=? ;· · ·; Zn :=?,and 
(2) replacing in every while-loop of S the first immediate atomic statement A 

by 

TEST;(A) =await z1, ... , Zn ~ 1 then 
Z; :=?; 
for all j E I 1, ... , n I - I ii do zi := z1 - 1 od; A 

end 

where i E ll, ... , n} is the index of the component of Sin which A occurs. 
As before, the z;'s are new variables not present in S. 

Let L-ll be a variant of the asynchronous parallelism semantics .L that ignores 
deadlocks, that is, with 

L-i:.[S](a) = L[S](a) - ILi}. 

Then we can state: 

THEOREM 6.2. For uniform L( II )-programs S the equation 

Ltair[S](a) = L-ll[Ttair+ll(S)]mod Z 

with Z = lzi, ... , znl holds. 

PROOF. Similar to the proofs of Theorems 4.1 and 4.7 but deals only with 
terminating and diverging computations. Uniformity of S guarantees that in a 
diverging fair computation every component of S gets activated infinitely often. 
Hence a corresponding diverging computation of Trair+ll (S) can be constructed 
without the help of the termination variables end;. D 

For nonuniform programs the theorem is wrong. Consider, for example, 

S = [while true do skip od II skip]. 
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Whereas S diverges, even under the assumption of fairness, Trair+!>. (S) can only 
deadlock. To preserve divergence of S, the original transformation Ttair uses the 
termination variable end2 • 

An immediate consequence of Theorem 6.2 is the equivalence 

iff 1=-.c.IP}Tfair+A(S)lqj (1 ') 

where 1=-A expresses total correctness modulo deadlocks, that is, only partial 
correctness and divergence freedom. This is exactly the type of correctness that 
can be proved by the extended Owicki-Gries method explained above. 

Zero Searching. As an example of a uniform L( II )-program we consider now 
the following version s:ero of the introductory zero searching program: 

s:.,,, =[while f(x) t 0 /\ f(y) t 0 do x := x - 1 od 
II while f (x) t 0 /\ f (y) t 0 do y := y + 1 od]. 

Let s:.ro start in a state satisfying the condition 

3u: f (u) = 0 /\ x = y. 

We claim that under the fair parallelism semantics .Lfair the program s:.ro is 
certain to terminate in a state satisfying 

f(x) = 0 V f(y) = 0. 

In terms of Hoare-style correctness formulas the claim is 

l=foirl3u: f(u) = 0 /\ X = yjS;erolf(x) = 0 V f (y) = O}. (2) 

Using the equivalence (1 ') this claim is equivalent to 

l=_"'l3u: f(u) = 0 /\ x = yjTlf(y) = 0 V f (y) = Oj 

where the transformed program T = Tfair+.c.CS:.,0 ) appearing in claim (2') is 
T = z, := ?; Z2 := ?; 

[while/(x) 'f 0 /\ f(y) 'f 0 do 
await z1, z2 :::: 1 then 

Z1 := ?; Z2 := Z2 - l; 
x := x - 1 
end 

od 
while f (x) 'f 0 /\ f (y) f 0 do 
await z1, z2 :::: 1 then 

Z1 := Z1 - l; Z2 := ?; 
y :=y + 1 
end 

od]. 

To prove 

j3u: f(u) = 0 /\ x = yjTlf(x) = 0 V /{y) = O} 

we split the precondition into two subcases: 

(a) f(u)=O/\us.x=y 
(b) f(u) = 0 /\ u?:. x = y. 
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Let us study subcase (a) where a zero u can be found by activating the first 

component T1 of T sufficiently often. For (a) we wish to prove 

!f(u) = 0 /\ u :5 x = y}Tlf (x) = 0 V f(y) = Oj. 

We have to find interference-free loop invariants p 1 and p 2 and loop variants t1 

and t2 for the sequential components T1 and T2 of T. It is clear that T1 terminates 

owing to the fact that x gets decremented and f (u) = 0 /\ u ::5 x holds invariantly. 

Thus t1 = x - u seems to be an obvious choice for the variant T1. 
Summarizing, we choose 

Pi = f(u) = 0 /\ u ::5 x 

and 

t1 = x - u. 

Clearly Pi and t1 satisfy the premise of the Extended While Rule when applied 

to T1 • This yields 

lpdTr\p1 /\ (f(x) = 0 V /(y) = O)l. 

Moreover, Pi and t 1 are interference free with respect to the second component 

T2 because neither u nor x is changed by T 2 • 

The situation is a bit more complicated with the loop invariant p 2 and the loop 

variant t 2 of T2 • If T2 were executed in isolation, Zi would be an appropriate 

choice for t 2 • Unfortunately, this condition of T2 is not interference free with 

respect to T1 : An activation of T1 can increase t 2 by executing z1 :=?.However, 

indivisibly coupled with every reset of z1 by T1 is a decrease of the variable x by 

the assignment x := x - 1. This observation suggests the following loop invariant 

and loop variant for T2 : 

Pz = f(u) = 0 /\ u :5 x /\ Z1 ~ 0 

and 

t2 = (x - u) · w + z1. 

Here the first infinite ordinal w is used, and 

(x - u) · w + Z1 

corresponds to the lexicographical ordering of pairs (x - u, z1 ). Now p 2 and t2 

are indeed interference free with respect to T1 because an increase of z1 is 

compensated by a decrease of x - u in t2 = (x - u) · w + z1. Again, it is easy to 

see that p 2 and t2 satisfy the premise of the Extended While Rule applied to T2 ; 

that is, we prove 

lP2lT2lP2 /\ (f(x) = 0 V f(y) = O)}. 

Using (essentially) the Parallel Composition Rule we arrive at 

lf(u) = 0 /\ u :5 x = y}Tlf(x) = 0 V f(y) = O)j. 

Subcase (b) above is treated analogously. This completes the correctness proof 

of claim (2') and hence of claim (1). 0 
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L( II, Await)-Programs. In the case of general L( II, await) programs S = So; 
[S1 II . ·. II Sn] we can adopt a similar approach as long as we do not intend to 
prove deadlock freedom. We demonstrate this here only for the case of strong 
fairness, but the analogous approach works for weak fairness. 

The appropriate transformation Tsrair+:,. is obtained from Tsfain simplifying the 
condition SCH; in TEST;(A) to z1 , ••• , Zn 2:: 1. Clearly, the resulting program 
T.tair+:,.(S) may deadlock but we still obtain 

THEOREM 6.3. For all L( II, Await)-programs S = So; [S1 II · · · II Sn] the 
equation 

-'Ksfair-:,. [S] = .ff-:,. [1'.,tair+~ (S) ]mod Z 

with Z = lzi. ... , Zn, endi, ... , endn l holds. As expected, Lsfair-~ stands for the 
version of L 4air which ignores deadlocks. 

PROOF. Following Theorems 5.1 and 5.3, every strongly fair computation of 
S can be mode led by Tsfair (S) with the scheduling variables z1 , •.. , Zn taking 
values 2:: 1. Hence, it can be modeled by Tsrair+"' (S ). In contrast to Theorem 5.3, 
computations of Tsfair+:,.(S) can lead to deadlock even if S is deadlock free. 
However, this does not matter here since all deadlocks are ignored. D 

As before, we are interested in the following consequence of Theorem 6.3: 

l=sfair-:,. {p IS !q l (3) 

where l=srair-..> is defined analogously to 1=-~ and thus expresses only the partial 
correctness and finiteness of strongly fair computations. We make use of this 
equivalence in the following example: 

Mutual Exclusion-Eventual Access. Consider the following program from 
L( II, await): 

S = b := true; [81 II 82] 

where for i = 1, 2 

S, = while true do 
R;; 
P(b); 
CS;; 
V(b) 

od. 

Here P(b) and V(b) are the following abbreviations: 
P(b) =await b then b :=false end, 
V(b) = b := true. 

We assume that the not further specified parts R; and CS; are loop- and await
free sequential programs that do not modify the variable b. 

S can be viewed as a solution to the mutual exclusion problem using a binary 
semaphore b. CS1 and CS2 are the critical sections, and R1 and R2 are the 
noncritical sections. P(b) and V(b) model Dijkstra's semaphore operations. 

In fact, the following can be proved using the standard approach of [24]: 

CLAIM 1. (Mutually Exclusive Access). Consider a computation~ of S. In every 
configuration of~ the control in at most one of the components is within its critical 
section CS;. 
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We now prove the following additional property of the program 8: 

CLAIM 2. (Eventual Access). In every strongly fair computation of 8 the control 
in the first component 81 eventually enters its critical section C81. More formally, 
in every strongly fair computation 

(4) 

some Ti is of the form 

(5) 

for some 8 ~. By symmetry the same statement holds for the second component. 

How can Claim 2 be formalized in the proof-theoretic framework used in this 
paper? We express it as a correctness formula under the interpretation l=srair-A· 

Note: Claim 2 holds iff 

(6) 

PROOF. It suffices to show that Claim 2 holds iff every strongly fair compu
tation of the program 8' = b := true; [R1 ; P(b) II 82] is finite, that is, terminating 
or deadlocking. 

Consider a strongly fair computation ri of 8 '. It can be naturally modified to a 
strongly fair computation ~ of 8 of the form (4). By Claim 2 some T; is of the 
form (5). By Claim 1 in the configuration (Ti, <Ji) the control in the second 
component is outside of CS2 and b is false. This means that in T/ the first 
component of S' eventually terminates in a configuration in which the control 
in the second component is outside of CS2 and b is false. By the assumption the 
execution of R2 eventually terminates and, because --.b holds, a deadlock arises. 
Thus T/ is finite. 

Consider a strongly fair computation~ of 8 of the form (4). It can be naturally 
modified to a strongly fair computation 1/ of 8 '. ri is finite, which, by the form of 
82 , implies that T/ terminates in deadlock. By the form of S', deadlock can arise 
only when the first component of 8' terminates. But this means that in ~ some 
Ti is of the form (5). D 

Now, to prove (6) we apply the deadlocking transformation Tstrong+A to the 
program given in (6). By (3) the formula (6) is equivalent to 

1=-Alb}T{truel 

where T is T.rair+A([R1; P(b) II 82]). In full expansion we have 

Te z1 := ?; z2 := ?; end1 := false; end2 := false; pc1 := O; pc2 := O; 
[R1; P1(b); } 
end1 := true Ti 
II while true do 

R2; 
P2(b); 
CS2 ; T2 
Vi(b) 

od; 
end2 := true] 

(7) 
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with 

P,(b) =pc,:= 1; await b then b :=false; pc,:= 0 end, 
P2(b) = PC2 := 1; 

await b /\ z,, z2 :::: 1 then 
z2 := ?; if enabled, then z, := z, - 1 fi; 
b := false; pc2 := 0 

end, 
V2 (b) = await z" z2 :::: 1 then 

and 

z2 := ?; if enab1ed1 then Z1 := z, - 1 fi; 
b :=true 

end 

enabled1 = -.end, /\ (pc, = 1-> b ). 

Note that we make use of the discussion in Section 5.2 and transform only 
those atomic statements of the original while-loop which change the Boolean 
variable b, namely, P(b) and V(b), now yielding P 2 (b) and V2 (b) in Tz. 

We prove the correctness formula (7) again with the extended Owicki-Gries 
method. Clearly, the initialization in T yields as a postcondition 

r = b /\ /\ Zi 2:: 0 /\ --.end; /\ pci = 0. 
i=l,2 

It remains to show 

(8) 

This is fairly simple. For the first component T1 we choose the proof with all 
assertions true, but we put the assertion --.b before and after its last assignment 
end1 := true. 

For the second component, T2 , we take as loop invariant, 

P2 = Z1 2: 0 /\ (b .- enabled1 ) 

and as loop variant, 

Clearly, P2 is kept invariant by the loop in T 2 • Also, we have for each statement 
A inside R2 , CS2 , and V2 (b), 

I P2 /\ t = a )A I t :S a I 
as the only action possibly affecting z1 is the assignment z1 := z1 - 1 within 
V2(b). Moreover, for P 2 (b), we have 

IP2 /\ t = alP2(b)lt <al, 

since P2 guarantees that the assignment z1 := z1 - 1 within P 2 (b) is indeed 
executed. Thus t gets decreased in each complete round through the loop. Finally, 
we have 

P2 -- tz > 0. 
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With the Extended While Rule, we get 

!pdT2ltrue}. 

We now check the interference freedom of these proofs. For the first component 

T1 we have to show that the assertion --.b before and after the assignment 

end1 :=true is not affected by the atomic statements in T2 • This can be done by 

strengthening the above proofs through appropriate auxiliary variables in the 

sense of [24]. Supplying full details would in fact amount to the axiomatic proof 

of Claim l; we omit this standard application of the Owicki-Gries approach here. 

For the second component, T2 , first consider the loop invariant p 2 • Its first 

conjunct, z1 2: 0, is always preserved. Now, the only action affecting the second 

conjunct b ~ enabled1 is the assignment end1 := true in T1. However, its 

precondition is ----,b, so after its execution ----,b still holds, and consequently the 

conjunct b ~ enabled1 as well. Consider now the loop variant t 2 • Obviously, no 

action within T1 affects t2 • 

Using the Parallel Composition Rule and the implication r ~ p 2 , we get (8). 

This finishes the proof of Claim 2. 0 

Discussion. We conclude with some comments on the above proofs. First, note 

that the auxiliary variable z1 in the transformed programs plays the role of a 

"helpful variable" when formulating the loop variant t2 of (cf. [15], Chap. 2). 

Without z1 we cannot find an appropriate loop variant that is decremented with 

every execution of the loop body of T2. 

Second, to prove fair total correctness of an L( II )-program S it suffices to 

prove total correctness modulo deadlock of the transformed program T. Therefore 

it suffices also to use simple deadlocking transformations like TfairH. For describ

ing schedulers we are, of course, advised to use deadlock free transformations 

only. We interpret this observation as follows: In proofs of program correctness 

we need not worry about the exact course of a computation but rather more 

abstractly about its results. This inherent abstraction in program proving allows 

us to employ transformations that model the program behavior in an imprecise 

manner. 
Third, note that in the above correctness proof we did not reason about the 

original program S but its transformed version T. This should be contrasted with 

the approach taken in [1] and [5] to reason about fairness in nondeterministic 

do-od-programs. There we also started with transformations realizing the fair

ness assumptions, but in a second step when we developed proof rules dealing 

with fairness we were able to "absorb" the transformations into the assertions of 

existing rules. Thus the resulting proof rules for fairness could be applied directly 

to the original do-od-programs. 
For parallel programs the idea of absorption does not work properly because 

of the test of interference freedom: When applied to the transformed program it 

has to deal also with all assignments affecting the auxiliary variables z inside the 

added await-statements. So even if these await-statements were absorbed into 

the assertions of the standard proof rul~s for the sequential components of 

parallel programs, they would reappear in the final test of interference freedom. 

We, therefore, propose to apply the transformations explicitly as a part of the 

correctness proofs. 
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7. CONCLUDING REMARKS 
We briefly discuss alternative approaches to semantics and correctness of parallel 
programs under fairness assumptions and report on further developments. 

Process Semantics. For simplicity, we introduced in Section 2 a semantics 
.L[S] that stresses termination of parallel programs S. Therefore all infinite 
computations of S are identified with the divergence symbol .L Equally well we 
might consider a more discriminating process semantics II [S] which preserves 
the "essence" of infinite computations. 

The basic idea is that Il [S] records for each computation of S the finite or 
infinite sequence of states. In case of deadlock, Li is added as a final symbol. 
More precisely, we vary this idea in two respects. 

First, we shall be interested only in the values of a given set X of variables, 
that is, we consider only the restrictions a f X of states a to these variables. The 
set X appears as a parameter of the process semantics: II [S, X]. This is 
convenient when we wish to ignore changes of auxiliary variables used in 
transformations. 

Second, we adopt a proposal of [6] and require that our process semantics be 
insensitive to finite stuttering but be able to recognize infinite stuttering. Follow
ing Lamport, stuttering is the repetition of identical states [20]. Insensitivity to 
finite stuttering allows, for example, the insertion of skip statements into parallel 
programs without changing the semantics. Thus the Padding Lemma 4.6, used 
in the correctness proof of our transformations, remains valid. On the other 
hand, recognition of infinite stuttering is needed to distinguish between termi
nation and divergence. 

Formally, for any finite or infinite computation 

~: (S1, ai) ~ · ·. ~\Si, aj) 

and any set X of variables, let filter(~, X) denote the subsequence of 

( a1 f X) · · · ( aj ~ X) · · . 

obtained by removing all finite repetitions but keeping all infinite ones. Further 
on, let ~ * (respectively, l:w) denote the set of all finite (respectively, infinite) 
sequences of states in~- Then we define for SE L( II, await, ?) and X ~ Var 
the process semantics 

by 

II[S, X] =!filter(~, X) I~ is a terminating or 
infinite computation of S starting in al 

U !filter(~, X) · Li I~ is deadlocking computation 

For example, a state a with a(x) = O yields 

II[while true do skip; x := x + 1 od, Var](a) 
= !aa[l/x]a[2/x] · · · l. 

of S starting in al. 
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For fairness assumptions f E !fair, wfair, and sfairl, we define 111[8, X] 
analogously to Lr[S]. For example, the fair process semantics Ilfair[S, X] 
considers only fair computations ~- Our transformations Tfairo Twfair. and Tsfair 
remain correct under the process semantics. 

THEOREM 7.1 (Embedding: Process Semantics). For every program SE L( II) 
respectively S EL( II, await, ?) and every fairness assumption f E lfair, wfair, 
sfair} the equation 

I1r[S, Var(S)] = 11 [Tr(S), Var(S)] 

holds where Var(S) is the set of variables in S. 

PROOF. By inspection of the proofs of the previous Embedding Theorem 4.8 
and 5.3. D 

Recall that for Trair and Twrair we also discussed versions Tt..iro Tt..f,, and T!rairo 
T!tair· These transformations remain correct under the process semantics. For 
example, we have 

Ilrair[S, Var(S)] = Il[Trair(S), Var(S)] 

for every L( II )-program S. 

Correctness Under Fairness Assumptions. Classical proof methods for parallel 
programs with shared variables like [24] or [19] deal with parallelism by arbitrary 
interleaving. At present, the main proof methods for fair parallelism are that of 
[25] and [22]. In both cases, fairness is studied in the context of temporal logic 
[29] which is able to express a richer class of program properties than the input
output properties considered in Section 6. 

A connection between fairness and temporal logic may seem natural because 
fairness can be expressed in temporal logic. For example, with D denoting 
"always" and<>, "eventually," D<> expresses "infinitely often," and hence 

D<>(i is enabled)~ D<>(i is activated) 

expresses strong fairness for component i [29]. Indeed, the approach of [25] is to 
express fairness in terms of such formulas and use them directly in the correctness 
proofs of parallel programs. 

On the other hand, the approach of [23] shows that dealing with fairness is 
quite independent of temporal logic. Though in [23] temporal logic is used to 
express the desired program properties, proofs of these properties use well
founded arguments that are especially tailored to the different fairness assump
tions. 

The emphasis in our paper was on program transformations that reduce fair 
parallelism to ordinary parallelism. Since these transformations are correct both 
under the "termination" semantics L and the process semantics Il, they may be 
combined with any existing proof method for parallelism. We demonstrated this 
in Section 6 for the classical Owicki-Gries method [24]. However, since our 
transformations preserve the parallel structure of the original program (Defini
tion 4.2) they may also be useful in combination with the compositional proof 
systems for parallel programs that are currently under development (e.g., [6, 30]). 
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Compositional means truly syntax-directed, so that, unlike in [19], [23], [24], and 
[25], no global test of interference freedom as in [24] is needed. 

Implementation. At the University of Kiel, an interactive system has been 
implemented which generates the computations of parallel programs with shared 
variables [32]. The user can choose whether the current configuration should be 
displayed after each transition step in the computation or only at certain 
breakpoints set in the program text. For the interpretation of parallelism the 
user may select among the schedulers discussed in this paper: FAIR, RORO, and 
QUEUE. The system runs on an Apollo/Domain workstation, it is written in 
Standard Pascal augmented with machine-dependent calls of the Apollo window 
system, and it is used for teaching purposes. 

Communicating Processes. We studied fairness only in the context of parallel 
programs with shared variables. However, our results on fair schedulers are 
independent of this particular syntax. In [4] these results are used in investiga
tions of fairness for distributed, communicating processes. More on fairness in 
communicating processes can be found in [15]. 
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