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Introduction 
It used to be that when applying mathematics in sciences like engineer

ing, chemistry or biology, and most of physics a quite modest mathematical 
training was sufficient. A fair amount of linear algebra, some differential 
equation theory, stability theory and transform theory, perhaps a bit of 
complex functions of one variable and a few special functions and one was 
well equipped to tack.le most problems. Certainly, at best but little use was 
made of the tools of "pure" mathematics developed in fields like number 
theory, algebraic geometry, differential and algebraic topology, algebraic 
K -theory, operator theory and functional analysis, etc .. And these times are 
not all that long ago.2> 

Things have changed in the last quarter century or so. Together with a 
strikingly increasing mathematization of many fields, there has come a shift 
in the kind of mathematics being used and nowadays there is an awareness 
that virtually any tool can an occasion be profitably used. It is interesting 
in this respect to compare the table of contents of, say, the journal of 
chemical physics of l 0 years ago with that of last year. Or, more relevant of 
my present theme, the program of, say, the 10-th annual CDC (Conference 
on Decision and Control) and the program of the last one so far: the 22-nd 
of December 1983 in San Antonio. · 

One area in which all kinds of mathematics are used and which is tum 
generates many fascinating mathematical problems is mathematical ( electri
cal) engineering a.k.a. mathematical systems theory. 1> 

In these few pages I will try to illustrate these remarks by means of a 
few selected examples of problem areas, combined with a few remarks con
cerning the mathematics used. 

1. Systems 

The basic object of study is a system, which is a device which accepts 
inputs or controls, which are functions of time, and which from these pro
duces outputs or observations, also functions of time. 

For example we might have a system governed by a finite dimensional 
system of ordinary differential or difference equations as in (l.l) and (1.2) 
below. 

x = f(x,u), y = h(x), x E Rm, u E Rm, y ERP (1.1) 

Xk+I = f(xbud, Yk = h(xd, x E Rn' u E ur' y ERP. (l.2) 
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l_Iere the u 's are the inputs or controls, the v 's are the or ,,_Pntll-· 

tlons an~ the x 's are the state variables d~ribing the true st!.te oi the 

tem. Think for example of the historically important of u !leirO-

plane. Here the u's represent the controls, the x's the state of the 

terms of mechanics, i.e. all relevant velocities and DO:!llttl•[)ns 

represent the observations, i.e. those quantities 

which a measuring instrument is present. 

Another example would be a (well-stirred) chemical teaeti()n tank 

distillation column, with the x 's representing various conccntratioos 

perhaps additional variables like pressures and the u 

represent inputs, e.g. various reaction chemicals are fed m and 

perhaps a heat source and the y 's represent mn1mu•n 

chemic~ end products which are drained away. 

Equations (l.l) and (l.2) represent, as things go, but a 

difficult class of systems. That is there can be much more corno!icatro 

objects which govern the dynamics. E.g. partial differential 11;'1.!tuicutn!l> 

equations with delays, or integro-differential equations appear in:s:tead 

of the differential or difference equations in ( l.l) and ( Not that 

complications are necessary to make the mathematics mt.1t~re~t1r•1> 

the very simplest case of linear systems, cf. section 3 -"~'-""·'" 

mathematics is useful and used. 

One way to look at, say, equation (l.l) is to regard it as a lm.1•uaau"·''-" 

system in the sense of classical mechanics, where now the u ':. 

external forces and the y 's represent those functions of the state are 

directly observable. In a way this seems a much better and more a-cc1..11:1te 

set up to study nature than the more traditional one in which external 

forces are absent and in which one implicitly assumes that all the state vaan

ables are directly and precisely observable3>. 

Abstractly the control part of ( l.l ), i.e. disregarding the _,,,.v~,,~. 

family of O.D.E's parametrized by u E Rm and one could 

ideas from deformation theory, bifurcation theory, unfoldmg of""'·'"''""''" 

etc. could be very useful. This is quite likely true but this . not 

yet been tried out5l seriously. Part of the reason for this 1s no doubt the 

kind of question one asks of a system ~e (1.l) and ( l.2). These tend to be 

rather different from the classical quesuons of e.g. to 

uniqueness and existence of solutions and properties of a..<; 

we shall see below. 
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2. Some typical questions from mathematical systems theory. 
Consider again a system, like (l.l) for definiteness sake. Often there_ is 

a natural initial state x 0 E Rn which is an equilibrium (not necessarily 
stable). From now on I shall assume that we are dealing with such an ini
tialized system. 

2.1. Stabilization by state feedback. A first natural question is then: can 
one find a function k :Rn -7Rm, i.e. from states to inputs, which stabilizes 
the initial state. That is such that x = f (x ,k (x )) has x 0 as a stable and 
asymptotically stable equilibrium point. 

2.2. Stabilization by output feedback. State feedback is a natural concept to 
use when one is involved with the design of control systems. In other set
tings it is much more natural to use output feedback. I.e. the question now 
is whether there exists a map k :RP -7Rm from output space to input space 
such that x = f (x ,k (h (x ))) has x 0 as a stable and asymptotically stable 
equilibrium point. 

2.3. Reachability. Given any x E Rn, does there always exist a control 
u (t) such that the solution of x = f (x ,u (t )), x (0) =x 0 passes through x. 

2.4. Observability. Given x 1 ,x 2 E Rn and a known input u(t). Let y;(t) 
be the observed ouput of x=f(x,u(t)), x(O)=x;, i=I,2. Is it true that 
x1=fox2 impliesy 1(t)::foYz(!) for some t? So that the fact that x 1:;fox2 can 
be observed. 

2.5. Realizability. The system (1.1) or (1.2) with initial state x 0 defines a 
(usually nonlinear) operator from a suitable space of input functions U 
(say compact support C 00 functions [O,oo )-7llr) to a suitable space of out
put functions Y (say C 00 functions [O,oo )-7!RP ). Indeed let u (t) E U be 
given. Let x(t) be the solution of x =f(x,u(t)),x(O)=x0 (supposed to exist 
and to be unique). Let y(t)=h(x(t)). Then the associated operator V 
takes u (t) toy (t ). Now suppose some operator V: U .-,. Y given. When does 
there exist a system (of a certain specified type maybe) which has this 
operator as its associated input output operator13). 

2.6. Decou~ling. Is it possible by, say, state-space feedback, to decompose 
~he system mto two subsystems such that the inputs of each subsystem only 
mfluence the outputs of the same subsystem. 
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2. 7. Disturbance decoupling. Suppose now that in addition to the control's 
u there is a further set of input variables v to be regarded as disturbances 
so that now we are dealing with a system x = f (x ,u ,v ), y = h (x ). Is it pos
sible to find a k (x) such that in x = f (x ,k (x ),v ), y = h (x) the influences of 
the v 's do not anymore show up in the outputs y, or to find k .(x) for all £ 

such that the v 's have only t:-influence on the outputs y. · 

2.8. Optimal control and synthesis. Suppose in addition to the control part 
of ( 1.1) we have a target set, say x 1 E IR" and a cost functional 
J {x(-),u(")}. Then the problem arises of finding the control u('} which 
stears the system from x 0 to x 1 with minimal cost. For this type of prob
lem the Pontryagin maximum principle is useful. This principle is not appli
cable if one asks for the least expensive feedback law k ( ) which does the 
job. And the question arises, whether the optimal controls u<x>o for each 
starting point x, which one finds for the usual optimal control problem, 
can be put together to yield an optimal feedback control law. The answer 
has much to do with whether the space of all x E R" which can be 
reached in time t from x 0 can be stratified (in the technical sense of dif
ferential topology) in a sufficiently nice manner [10], {I l}. 

2.9. Model matching. Suppose given two systems l and 2, symbolically 
represented as in figure I below. 

? 

2 

Can one find a system ? such that the serially connected pair: first ? then 
I, reproduces exactly the input-output behaviour of system 2. This is of 
course but one example of a model matching problem. 

All the questions so far, with the possible exception of 2.7 have d~alt 
with deterministic questions, and systems. One also can and. does consider 
systems (LI) where now u is to be interpreted as a stochas~1c process, say 
white noise. This makes x and y stochastic processes and with one level of 
difficulty added many of the questions posed above can be repeated. 

In addition there are a whole series of typically stochastic questions of 
which I mention only one. 
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2.10. Filtering. Consider the system x = f (x ,u ), where u is white noise, 
with observations corrupted by further noise y = h (x) + ~ .. Given the 
observations Ys, o:s;;;s :i;;;;t, the problem is to calculate the conditional expec
tation of x(t) giveny(s), o,,;;;s,,;;;t. 

3. Linear systems 
A linear dynamical system (of finite dimension) is one of the form 

x = Ax + Bu, y = Cx, xo = 0. (3.1) 

These are so simple that an explicit formula can be written down for the 
associated input-output map. It is 

y(t)= J Ce(l-T)A Bu(r)dr, (3.2) 
0 

and it seems at first sight hard to believe that sophisticated mathematics 
will be needed to deal with such systems. By and large this is true in the 
sense that most of the questions listed in section 2 have satisfactory answers 
and that reasonable algorithms exist to compute these answers. A notable 
exception is the output feedback problem which is still mostly open. 

Even so the answers we have are for single systems. Things change 
drastically as soon as families of linear systems (where now A ,B ,C depend 
on certain parameters) are considered. E.g. the question arises whether a 
stabilizing state-space feedback matrix K can be constructed depending 
continuously on the parameters such that A +BK is stable for all parame
ters values8l. Or whether it is always possible to find one fixed K which 
works for all parameters values in a certain compact range. The answer to 
that last question is: not always, and the analysis involves Stein spaces and 
complex interpolation theory [14]. 

Quite generally very little is known concerning which standard algo
rithms for solving various problems are continuous in the parameters and 
which problems admit continuous alternative algorithms. 

This touches on both the local and global structure of the space of all 
linear systems. So let me take time out to say a few words about this space 
of all linear systems. 

Let Lm,n,p denote the space of all triples of matrices '2:=(A ,B ,C) of 
sizes n X n , n X m , p X n respectively. Let V (~) denote the associated 
input-output operator defined by (3.2). Then obviously if S E GLn, 
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V(:~::s)= V(~)_if ~s =(SAs-1,SB,cs-1). Thus~ and arc 
able from the. m~ut-o~tput point of view and the space of all ml111,st1lU!\?'IUl\\!I· 

would be something like the orbit space L G' 0 . 
thi ·r h . m,n.p ....,,,, fe'Ytn 

s 1 t e mdeterminacy in the (A ,B ,C) description were ~·en 
turns out to be mostly not the case in the following sense. For 
open subspace L;:,~~ of Lm,n.p of completely .11.nd Ctl'l:intilt~teh 
reachable systems V(L)= V(~ 1 ) iff there is an S such 1ha1 

. T~us the study arises of the orbit space 
m vanan t theory. It turns out that this space far 
L er ,co L er co / GL '!' ·? .p--:" m ,'n ,p n turns out to be a principal GL,, 
tn vial _ 1ff ~ = 1 or p = I. And even if m = 1 = p the toooio;~v 
of orbits still poses many questions [15]. And the matter 
t~nc.e e.g. in connection with finding good me:m1nc<1t1Q111 LJ"mooo11:n~" 
fmdmg the best linear system of type (3.1) for ,.Af~-""" 
output map [16], [17]12l. Here the Riemannian geometry 
is also important. Other approaches to identification Pa.de 
mation and Nevalinna-Pick interpolation, cf. [19}, and~ 
these topological and geometrical aspects. Which in itsdf is a hit "'urrn'1l·,'i,lru1 
and calls for an explanation. 

There are other groups acting on i;::;;~ whose invaritiltli are no'''-n11M>. 

of interest in system theory. One is GLn X GL.n :x: where ~eii 1he 
action of GLn already described (base change in state we h;Jtve 
change in input space ((A ,B ,c)_,,(A ,BT,C},T ) Mid ~ 
output space ((A ,B ,C)_,,(A ,B ,UC),U eGL1 ). Describing the orbu 
L;:,.;~ / GLn X GLm X GLP is what is technically known as ii nr'"'""""'m 

(in the theory of representations of quivers and and IJ!I•"'~''"'""'"~ 
nothing is known. The problem contains as a •ml,n!',ool;o,m 

fying r-tuples of square matrices under similarity1 

Still another group is the feedback group acting on the space of 
completely reachable pairs of matrices (A ,B ). This is the action the ue 
group generated by the transformations: base change in state sp~-e, bmse 
change in input space, and feedback: (A ,B)-1>{A +BK .B ). In tins it 

turns out that there are only discrete invariants and the '!"'-"'"''" 
finite and identical with the space of all partitions into at most m 
n. The topology of L!,n induces a partial ~rdering on this set .:."If nu·t1'''°'"'" 
and this turns out to be a partial order which occurs all over m<1themat~~:s 
[39], [40]. E.g. the same order occurs when stud)i.ng orbits of 
matrices, vectorbundles over the Riemann sphere and the 
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symmetric groups. It turns out that this is not an accident, [40]. 

There are still more reasons to study the orbit space L;:,~~ / GLn . Real
ization theory with parameters is one and an other is the study of linear 
systems with delays, which, it turns out, can sometimes be profitably done 
by assigning a family of systems to the:µi essentially by treating the delay 
operators as parameters. This trick, combined with an application of the 
Quillen-Suslin theorem on the triviality of algebraic vectorbundles over 
affine space, yields one of the better, known stabilization results for delay 
systems [24]. 

Many of the topics touched on in this section are discussed more fully 
in the survey papers [25,26]; and the lecture notes [27]; still more is con
tained in the volumes [28], [29]. 

To end this very sketchy, incomplete and global description of some of 
the interactions of linear systems and control theory with various parts of 
(pure) mathematics let me say a few words about Kalman filtering, cf. 2.10 
above. The system under consideration is the one described by the stochas
tic differential equation 

dx =Axdt + Bdw, dy = Cxdt +dv (3.3) 

where w ,v are independent Wiener noise processes. The problem is to cal
culate x(t)=E[x(t)lJi(s), O::s;;;s ::s;;;i], the conditional expectation of x(t) 
given the observations y (s ), O::s;;;s ::s;;;t. This is solved by the Kalman-Bucy 
filter dx =Aidt +PCT(dy-C:Xdt), dP =(AP +PA 1 +BBT -PCT CP)dt. 

The equation for P, which is an ordinary system of equations (no sto
chastic component, a remarkable fact), is the matrix Riccati equation, an 
equation which seems to have a habit of turning up everywhere in 
mathematics; e.g. in transport theory, in the theory of solutions, in factori
zation problems,. . .,so much so that a monograph has appeared on it [4] 
and another is in preparation [42]. I will come back both to filtering and 
the Riccati equation in section 4 below. 

4. Nonlinear systems. 

Given a quite successful linear theory and faced with having to deal 
with nonlinear objects there are two obvious things to try: (i) try to find 
good nonlinear analogues of the concepts which served well in the linear 
case and (ii) try to linearize in one way or another. 

Both roads of investigation are being tried out with considerable energy 
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in the systems and control world and I shall try to say a few things about 
both. 

4.1. Nonlinear realization theory. The appropriate tool for linear realization 
theory were block Hankel matrices, or perhaps more precisely the power 
series development of the transfer function T(s)=C(sl-A)- 1B which 
gives the relation between the Laplace transforms of the input and output 
functions. At least the criterium for realizability is formulated in terms of 
the block Hankel matrix associated to (the power series development in 
s - i) of this proper rational matrix function. This part of realization theory 
seemes to have found a natural nonlinear extension in the framework of 
noncommutative power series and Volterra series expansions [31,32,33,34]. 

As usual when generalizing, more aspects emerge and for other parts of 
realization theory (existence and uniqueness results for realizations on 
smooth manifolds) a substantial amount of differential topology gets 
involved [35]. 

4.2. Controlability observability and feedback stabilizability. In linear system 
theory the socalled A mod B invariant subspaces and controllability sub
spaces play on important role, as well as certain generalizations [22] and 
the right dual notions [43]. Here a subspace V CIRn is A mod B invariant 
(for the control system x =Ax + Bu) if there exists a feedback matrix K 
such that V is A +BK invariant: in other words, if for any x (0) E V, one 
can always find a u (t) so that x (t) stays in V. This notion is important in 
e.g. decoupling and disturbance decoupling, cf. 2.6 and 2.7 above. 

One possible nonlinear substitute for linear vectorspace is vectorbundle 
with subspaces corresponding to subbundles. In this case it turned out that 
instead of looking at subspaces V of state space Rn one should consider 
distributions, i.e. subbundles of the tangent bundle TM to the state-space 
manifold, and of course also the corresponding foliations. And by now the 
outlines of a satisfactory nonlinear theory with respect to these problems is 
emerging, cf. e.g. [36], [46], [47], [48]. Assuming that everything is more or 
less the best in all possible worlds it is now perhaps reasonable to guess 
that the obstructions to stabilization lie in the cohomology of suitable folia
tion quotients. And it appears that indeed they do [56]. 

4.3. Nonlinear filtering. This is the nonlinear analogue of the problem 
briefly described in 2.10. Thus now we have a nonlinear system, given by 
stochastic differential equations 
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dx = f(x)dt +G(x)dw, dy =h(x)dt +dv, 

and the question is whether there exist finite dimensional recursive filters 
for calculating the conditional expectation i(t)=E[x(t)ty(s),O:o;;;;s~t]. 
Here by definition a finite dimensional recursive filter is itself a finite 
dimensional system that is driven by y (t) and has output i (t ): 

dm =cx(m)dt +{3(m)dy, i =y(m). 

Note that the Kalman-Bucy filter of 2.10 above is precisely such a machine. 
A beautiful idea due to Brockett, Clark and Mitter [60,61] states that the 
complexity of the filtering problem and the existence of such a filter are 
related to the structure of the Lie algebra of differential operators which 
occur in the stochastic evolution equation which governs the evolution of 
an unnormalized version of the probability density of x (t ), the socalled 
Duncan-Mortensen-Zakai equation. The resulting Brockett-Clark homomor
phism principle14l then rapidly leads to the study of things like the Lie alge
bra of all partial differential operators (any order) with polynomial coeffi
,cients and such questions as: which '-are its finite dimensional subagebras; 
what is the automorphism group; which are the maximal subalgebras; 
which of these can be embedded in a Lie algebra of vectorfields etc. 
(49,50,51,52,53]. 

Of great importance in this connection are "robustness" results, i.e. 
regularity and continuity results pertaining to solutions of such equations 
as the DMZ -equation. Here the Malliavin stochastic calculus plays an 
important role [58,57]. 

An idea of actual developments in filtering may be gleaned from the 
proceedings of the recent (Febr. 1983) Colloque ENST- CNET: 
"Developpments recents dans le filtrage et le controle des processus 
ale'atoires" (H. Korezlioglu, G. Mazziotto, J. Szirglas (eds.)). 

4.4. Linearization. One of the best known and most studied linearization 
problems, is the one tackled by Poincare' in his thesis. Consider a system of 
ordinary differential equations 

x =f(x), f(O)=O, f(x)=Ax +higher order terms. (*) 

The question is a when there is nonlinear (local) diffeomorphism 
cp:IRn ~IRn ,y =<P(x) which makes(*) equivalent to its linear part 

j=Ay 
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More generally one can ask this for an m -tuple of such differential equa
tions 

X; =f;(x), f;(O)=O, X; E Rn, Yi =A;y;, Yi E Rn. 

Then a first obvious necessary condition is that the Lie algebra generated 
· by the vectorfields f I>····f n and the A 1>···.An are isomorphic (under 
f; ~A;). This problem is already quite close to the problem of when a 
nonlinear control system 

x = f (x ,u ), x E Rn, u E Rm, f (0,0) = 0, 

can be linearized, especially in the case f (x ,u) is of the form 
f (x )+ ~t=1g; (x)u;. 

This question and various related questions such as when linearization 
is possible if one allows nonlinear feedback as well, or when a system is up 
to diffeomorphism or up to feedback embeddable in a linear one has had a 
great deal of attention recently [66-68), [71-72)15>. Moreover these lineariza
tion techniques are important in actual applications (to automatic flight 
control systems [69) and e.g. robotics15>. 

The matrix Riccati equations, cf. 2.10 above, are linearizable in a cover
ing sense as follows. Via P ~ space spanned by the rows of [J P ], where I 
is the n Xn identity matrix, the space of all n Xn matrices is densely 
embedded in the Grassmann manifold Gn(IR2n) of all n-planes in 2n-space. 
The Riccati flow extends to all of Gn (R2n) (and this enables one to get a 
handle on the finite escape time properties of the Riccati flow [77, 78]). Let 
V be the space of all rank n matrices of size n X 2n . Then there exists a 
linear flow on V which descends to Gn (IR2n ). This is the same type of 
linearization which occurs in the context of completely integrable Hamil
tonian systems (e.g. the Toda lattices) and it seems to be responsible for 
(unusually many) symmetries and conservation laws and superposition 
principles. Cf. [79, 80] for the matrix Riccati equation in this respect. 

4.5. Other nice classes of systems. Linear systems are nice and we know a 
lot about them but they do not constitute a sufficiently rich class of models 
in many circumstances. Nonlinear systems in full generality are too general 
for the moment and often we do not even know what are the right ques
tions to ask. Thus the search is on for a class of systems which is suffi
ciently regular to ressemble the linear class somewhat and also sufficiently 
different so that new phenomena may appear. Systems on Lie groups 
homogeneous w.r.t. the group translations in one way or another suggest 
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themselves. As has been the case with several current topics in mathemati
cal system theory the first important paper in this direction was written by 
Roger Brockett [59], cf. e.g. [74, 76] for more results on the topic. It turns 
out that the linear systems and the systems considered by Brockett are the 
extreme cases of a general class of systems. corresponding to respectively 
an abelian Lie group and a semisimple Lie group. 

4.6. Concluding remarks. Practically all of' the above has been written from 
the state-space point of view of mathematical system theory which owes a 
major debt to the ideas of R.E. Kalman and the enormous commercial and 
industrial sucess of the (state space based) Kalman-Bucy filter. Whether 
the minimal state-space point of view will still be the major paradigm when 
dealing (in the near future) with very large scale systems and very large 
number of (similar) component systems is debatable [65]. 

However it is clear that a large number of techniques, ideas and results 
from algebraic geometry, module and representation theory, Lie algebras 
md groups, operator theory, differential geometry and topology, algebraic 
:>pology, one and several complex variables, Hardy spaces, functional 
nalysis, ... , are finding interesting applications in system and control theory 

.md that vice versa mathematical engineering is generating hard problems 
in these fields. This trend seems sure to persist. 

And even though time, space, and knowledge ordained that I should 
neglect all the fascinating interrelations between mathematical system and 
control theory and e.g. functional analysis, H -spaces, and factorisation 
theory16l as well as many other topics17>, I hope that the preceding pages 
may have given the reader some idea of why this might be the case. 

Notes. 

1) A quick glance of the table of contents of [l] gives already a fair indica-
tion to what extent this statement is quite simply true. 

2) For some more remarks along these lines cf. e.g. [3] and [4]. 
3) Hamiltonian mechanical systems with inputs are the subject of thesis [2] 
4) Think e.g. of a metallic rod, with temperature sensors attacked at a fin

ite number of points and say a controllable heat source at one end. 
5) All the same, one authoritative set of lectures [6] was colloquially 

announced as "redoing Whittaker and Watson with controls". 
6) Any of these kinds of systems may be the most natural one in 
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~odel_ling a given set of phenomena or processes. AU are vigorously 
mvestigated as a glance at the contents of [5] and its predecessors will 
show. 

" 
7) This does not m~an that e.g. when dealing ·with a system governed by a 

~DE su~~ questions of conservation laws, shock waves, propagation of 
sm~lant1es etc. should not be important. They probably are. But, 
agam, these matters have not yet received much attention in this con .. 
text. Even such obviously important matters as symmetries on the one 
hand and the study of the natural quantum mechanical analogues of 
( 1.1) have only recently begun to receive serious attention [7], [8}, 
Before these matters came up there were other questions which were 
tackled first. 

8) This touches on adaptive and self organizing control, a field which so 
far consists of an enormous collection of open problems, and a number 
of algorithms that work even if we don't know why precisely. For more 
cf. [ 12], [ 13]. 

9) Indeed there may very well exist an continuous algorithm for obtaining 
a certain matrix e.g. locally everywhere, without it being possible that · 
global such algorithm exists. Think e.g. of sections of a fibre burn 
See also [18] and [16] for results on the topology of the orbit space. 

11) For the classification of pairs of matrices under simultaneous similar_ 
also a wild problem, cf. [21]. 

12) There are also several reasons for studying various possible compactifi
cations of the space of orbits. Identification is one (for obvious rea
sons). Others are high-gain feedback [22] and dynamic output feedback 
[23]. 

13) Incidentally, though finite dimensional linear realization theory is in a 
satisfactory state, there is still a lot to do (and going on) with respect to 
its stochastic cousin. Cf. e.g. [44], [45]. 

14) An approach to a general proof of the Brockett-Clark h?momorp.hism 
principle is sketched in [54]. A verification of the principle for linear 
systems and the particular nonlinear filtering problem posed by the 
identification of linear systems can be found in [55]. 

15) A special session was devoted to this topic at the last CDC (San 
Antonio, Dec. 1983). A number of additional references can be found 

in [70]. 
16) Fortunately there is a nice survey paper [8 l} which deals with at least 
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some of these interrelations. And the related but rather differently oriented material of [82] is at least equally fascinating and promising. 
17) The proceedings of the yearly IEEE CDC's (Conference on Decision and Control), published by the IEEE (Inst. of Electronic and Electrical Engineers) and the proceedings of the biannual MTNS ~nferences (Mathematical Theory of Networks and Systems) will give the mterested mathematician a fair idea of what goes on in the mathematical (electrical) engineering world. The proceedings volumes [1,20,28,29,63,64] 

together will also give some idea. 
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