
Information Processing Letters 26 (1987 /88) 165-171
North-Holland

4 December 1987

TWO NORMAL FORM THEOREMS FOR CSP PROGRAMS *

K.R. APT

Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Luc BOU GE * *
n,epartement de Mathematiques et d'lnformatique, Laboratoire d'Informatique de /'Ecole Normal Superieure (LlENS), 45, rue
d Ulm, F-75230 Paris Cedex 05, France

Ph. CLERMONT

ETCA, Service CTME/OP, 16 bis av. Prieur de la Cote d'Or, F-94114 Arcuei/, France

Communicated by David Gries
Received 20 February 1985
Revised 29 July J 985 and 13 July 1987

We define two normal forms for CSP programs. ln the First Normal Form, each process contains only one I/O repetitive
command and all its I/O commands appear as guards of this command. In the Second Normal Form, all guards of this I/O
repetitive command are I/O guards. We describe an inductive method that transforms any CSP program into an equivalent
program in first or second normal form. The notion of equivalence is discussed. It is shown that no transformation into second
normal form can preserve deadlock freedom.

Keywords: CSP, normal form, partially interpreted computation, syntactic equivalence, deadlock freedom

1. Introduction

One of the best known theorems in Theoretical
Computer Science states that every while program
is equivalent to a program with one loop (see, e.g.,
[8]). We prove a similar result for CSP programs
[9]. We exhibit two normal forms to which every
CSP program can be brought. A CSP program is
in a normal form (a normal program, in short) if
each of its component processes contains only one
I/O repetitive command and all its I/O com­
mands appear as guards in this command. There
are various reasons why the study of our normal
programs can be of interest.

* This work was partially supported by CNRS Project C 3.

* * L. Bouge is also affiliated with the Laboratoire d'Informa­
tique, Universite d'Orleans, B.P. 6759, F-45067 Orleans
Cedex 02, France.

(1) Program construction-In the case of CSP
programs, as opposed to while programs, several
algorithms can be naturally expressed as normal
programs. For example, most solutions to the
disttj.buted termination problem of Francez [5] are
normal programs (see, e.g., [6,3]). For other al­
gorithms written as normal programs, see for ex­
ample [4].

(2) Verification-We found (see [1]) that a very
simple proof system allows us to prove correctness
of normal programs. Moreover, Queille and Sifa­
kis [12] built a system allowing an automatic veri­
fication of finite-state normal programs. Adding
to their system a preprocessor implementing the
transformations described in this paper allows us
to extend the use of their system to arbitrary
finite-state CSP programs.

(3) Event-driven computing-In an event-driven
concurrent system, local actions are triggered by

0020-0190/87/$3.50 ® 1987, Elsevier Science Publishers B.V. (North-Holland) 165

Volume 26, Number 4 INFORMATION PROCESSING LETIERS 4 December 1987

the occurrence of external events. This type of
computing is typical in the case of network proto­
cols. It is often modeled by means of interacting
automata (see, e.g., [7]). Normal programs exhibit
a structure that makes this view of distributed
computing more explicit as each process alternates
between communications and resulting local ac­
tions.

Equivalence of concurrent programs is a de­
licate and difficult issue. In the last section of this
paper we analyze the notion used here and indi­
cate its limitations.

2. Normal forms in CSP

We assume the reader to be familiar with CSP
[9]. We consider a variant of CSP without nested
parallelism and where output guards are allowed.
We do not consider the Distributed Termination
Convention. For simplicity, we omit all declara­
tions.

A CSP program P is a parallel composition of
named processes that operate on disjoint mem­
ories:

[PI:: SI 11 ... II Pk:: Sk].

Each process S is generated by the following
grammar (m ~ 1):

s:: = skip I cmd I <X I s 1 ; s2 I

[oa1-"'s1] *[oa-'>s].
)=1 j=l))

G:: =bib; <X.

Here, cmd denotes an assignment, b a Boolean
expression, and <X an I/O command. If a guard G
is of the form b, then it is called a purely Boolean
guard, otherwise an I/O guard. Bool(G) denotes
the Boolean part of a guard. A guard G is enabled
when control is in front of it and Bool(G) evaluates
to true. In the sequel, b1 ; b2 denotes the conjunc­
tion b1 /\ b2 of Boolean expressions.

2.1. Definition. A process S is in first normal form
if it is of the form S0 or

S0 ; * [D G1 _,,, s1],
1=1

166

where m ~ 1 and none of the S1 contains an I/O
command.

2.2. Definition. A process S is in second normal
form if it is of the form S0 or

s0 ; * [D G.-'> s] ,
j= I J J

where m ~ 1, none of the S1 contains any I/O
command and, moreover, all of the G1 are I/O
guards.

A CSP program is in first (respectively second)
normal form if all its component processes are.

3. The transformations

3.1. First normal form

We now describe a function NF1 that trans­
forms each process S into a process S' = NF1(S)
in first normal form. We proceed by induction on
the structure of S. We assume an infinite set Z of
fresh Boolean variables z1, z2 , •••• We omit in­
dices when no confusion can arise.

Base case. When S is skip or an atomic assign­
ment command, S is already in first normal form,
so NF1(S) = S.

I/ 0 command. Suppose S is an I/O command
<X. Select a fresh variable z from Z and define

N F1 (S) = z := true; * [z ; <X -'> z := false].

Sequential composition. Suppose S is of the
form S1 ; S2 • By induction, we have

NF1 (S;) =I nit;; * [0 G; _,,, s;]
J= 1) J

where we can assume that sets Z 1 and Z 2 of fresh
variables for each S; are disjoint. Let z1 and z2 be
two variables of Z\ Z 1 U Z 2 • Define N F 1 (S) as
follows:

lnit1 ; z1 :=true; z2 :=false;

* [D z · G1 -'> s1 • TEST j= l I ' J J ,

Dz ·G2-'>s2]
J= 1 2' J)

Volume 26, Number 4 INFORMATION PROCESSING LETfERS 4 December 1987

where TEST stands for

m,
D /\-,Boot(G})-> z :=false;

j=l

z, ,~ true; /nit, l
Intuitively, z1 is true when control is still in S1

and z2 is true when control is in S2 .

Repetitive command. Suppose S is of the form

* [D H; -> R 1].
1=1

By induction, we have

where we can assume without loss of generality
that sets Z, of fresh variables for each R; are
pairwise disjoint. Let turn i' i = 1, 2, ... , m be fresh
variables of Z\U;1:.. 1z;. Define NF1(S) as fol­
lows:

turn I := false; ... ; turn m := false;

• [g l, ~tum,; H, ~tum,'~ true;

I nit,; TEST,

;:i.~ .. ,m turn;; G)-> Sj; TEST,]
1-1,2,. . .,m,

where TEST, stands for

[,9, Boo!(G;) - skip

D A -,Boo!(en-> turn;== false].
k=l

Intuitively, turn, holds when control is in subpro-

gram R,. Then, TEST, indicates whether R; is
terminated and turn; is reset to false if this is the
case.

Alternative command. Suppose S is of the form

By induction, we have

in first normal form. Using a new variable z from
Z\U~~ 1 Z;, we first transform S into the following
process S':

z ==true;

[8 Bool(H,) ~skip];

* [0 z; H;--. R;; z ==false].
1= 1

Those two processes are related as follows. First
suppose that S fails. This occurs when all condi­
tions Bool(H,) evaluate to false initially. Then, S'
fails much in the same way. Suppose S does not
fail; then at least one of those conditions evaluates
to true. In S', the alternative command then boils
down to skip. In the repetitive command, the
conditions are evaluated again and yield the same
results as before, because processes operate on
disjoint memories. At least one of them is thus
guaranteed to evaluate to true, S' does not fail
either, and behaves subsequently like S. NF1(S) is
the result of applying transformation N F 1 to
process S'.

This concludes the presentation .of the transfor­
mation NF1•

Property A. For each process S, NF1(S) is a
process in first normal form. The onzy atomic com­
mands in N F1 (S) in which variables from Z appear
are of the form z == true or z := false.

167

Volume 26, Number 4 !NFORMA TION PROCESSING LETIERS 4 December 1987

3.2. Second normal form

We now describe a procedure NF2 that trans­
forms each process S in first normal form into a
process N F2 (S) in second normal form. A process
S in first normal form all of whose external guards
contain an I/O command (or that contains no
I/O command) is already in second normal form
and we put NF2 (S) = S. Otherwise, it can be
written as

I nit;

*[oc -;s i= 1 I l

D H - r] j= 1 j j

with m > 0 and n > 0, where all guards G; are
purely Boolean and all guards Hi do contain an
I/O command. Let CHOOSE be the following
command:

turn 1 ==false; ... ; turnn ==false;

[
m n

* D /\.. -,turnk; G;-; S;
i=l k=l

n n l D /\.. -,turnk; Boal(H1)--> turn1 :=true .
j=1 k=l

Execution of CHOOSE consists of some iterations
of the repetitive command

which contains no I/O command followed by the
selection of an I/O guard H1 , provided its Boolean
part Boof(H) evaluates to true. We then define
NF2 (S) to be the following process:

!nit; CHOOSE;

* [8 tum1 ; H1 -1j; CHOOSE].

Observe that Boo!(H) is evaluated twice, once
within CHOOSE and then again within HJ' Both

168

evaluations return necessarily the same result be­
cause processes operate on disjoint memories.

Property B. For each process S in first normal
form, NF2 (S) is in second normal form. The only
atomic commands in N F2 (S) in which variables
from Z appear are of the farm z := true and z :=

false.

3.3. Homogeneous processes

For certain processes, it is possible to describe
a direct transformation that yields a process in
second normal form. A process is homogeneous if,
in each repetitive or alternative command, either
all guards are purely Boolean or all guards contain
an I/O command. Observe that a homogeneous
process is in first normal form if and only if it is
in second normal form. If we can modify proce­
dure N F1 so as to preserve homogeneity, then it
will transform homogeneous processes into pro­
cesses in second normal form. The only part of
NF1 that does not preserve homogeneity is the one
dealing with a repetitive command S

whose guards are all purely Boolean. In this case,
let SWITCH; be

[8 H, ~tum,'~ true; Jn;t,

D l, ~ H, ~ skip l
Then, assuming the notation used in N F1 (S), the
transformed process is

turn 1 == false; ... ; turn m == false;

SWITCH;

*[D turn·G'-->S'·TEST·
i = 1, 2, ... , m 1 ' 1 J ' 1 '
)=1,2,. .. ,m,

[tum,~ skipo~'"m,- SWITCH)]-

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

Denote this modified transformation by N Fi'.
Here, variables turn; are used for the same pur­
pose as before. Setting a variable turn; to true can
take place in the SWITCH command only.

Property C. For each homogeneous process S,
NF((S) is in second normal form. The on~y atomic
commands in N F1' in which variables from Z appear
are of the form z == true and z := false.

4. A notion of equivalence

We now wish to make precise in what sense
every process S is equivalent to the process S'
generated in Section 3 by the transformations
NF1, NF2 , and NF1'. To this purpose, we first
associate with each process S a regular language
L(S). Intuitively, L(S) is the set of all uninter­
preted possible computations of process S accord­
ing to Plotkin's semantics [11].

The language L(S) is over the alphabet consist­
ing of atomic actions cmd, IjO commands ix,
Boolean conditions b, plus two special tokens
(skip) and (fail) that denote respectively
termination and failure. L(S) is defined induc­
tively as follows.

L(skip) = {(skip)},

L (cmd) = { (cmd) } ,

L(ix)={(<X)},

{
{(b)(<X)}

L(G)= {(b)(skip)}

L (SI; S2) = L (SI). L (S2),

L ([G1 --- SI D ... D Gm --- Sm])

if G = b; ix,

if G = b,

= [(L(G 1).L(S1)) U · · · u(L(Gm).L(Snz))]

.{(Bool)(fail)},

L(* [G1 --- S1 D · · · D G,,,-> S,,,])

= [(L(G 1).L(S1)) U · · · u(L(Gm).L(Sm))]*

. { (Boo!) (skip)} ,

where Boo! stands for

Observe how the appropriate exit conditions are
reflected.

To obtain the desired equivalence, we partially
interpret the computations by evaluating the com­
mands and conditions associated with auxiliary
variables. In the processes generated by the trans­
formations of Section 3, they can be of the follow­
ing type exclusively:

z ==true,

z ==false,

B(z1 , •• ., z,,,, b1,. .. , bn),

where B is some Boolean combination of its argu­
ments. When evaluating the condition, variables z;
are substituted with their current value, true or
false. The condition is said to be unsatisfiable if
the resulting formula is equivalent to false as a
formula of the predicate calculus with variables b1.
The condition is satisfiable if it is not unsatisfia­
ble. Then we exclude contradictory computations,
i.e., those that violate the rule that the selected
Boolean conditions are all satisfiable. Finally, we
erase all skip's and assignments z ==true and
z == false to auxiliary variables. Also, we merge
adjacent Boolean formulas into their Boolean con­
junction and reduce the resulting formula to some
normal form (say, a conjunction of disjunctions
for definiteness). Tautologies are then erased. Let
L' (S) be the resulting language. It is a language
over the alphabet consisting of atomic actions
cmd, I/O commands ix, Boolean formula
B (b 1, .. ., bn), and token (fail). We say that two
processes S1 and S2 are equivalent with respect to
a set Z of auxiliary variables if

This equivalence can be best understood with
an example. Consider the processes

SI =o.

and

S2 = z == true; * [z; a --- z ==false] .

Then

169

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

On the other hand,

L(S2) = (z == true)((z)(ct)(z ==false))*

(-.z)(skip).

After the interpretation of actions related to the
variable z we obtain the following set of words:

{ (z == true)(true)(ct)(z == false)(-,fa/se)(skip),

(z == true)(true)(et)(z ==false)

((false)(ct)(z == false))* (-,false)(skip)}.

Here, only the computation

(z == true)(true)(ct)(z == false)(-,false)(skip)

is not contradictory. Deleting from it all assign­
ments to the variables of Z and skip 's, reducing
sequences of adjacent Boolean formulas to their
normal form and erasing tautologies, we get (ct)
as desired.

We have the following theorems, whose tedious
but straightforward proofs are omitted.

4.1. Theorem. Both NF1(S) and NF{(S) are
equivalent to S with respect to set Z of auxiliary
variables.

4.2. Theorem. NF2 (S) is equivalent to S with respect
to set Z of auxiliary variables.

These equivalences are on the level of processes
considered in isolation. The following theorem
states some of its semantic consequences. By a
state we mean a function assigning values to each
of the variables. We consider .l as a special state
indicating divergence. Given a CSP program P,
we define its meaning A[l 1] by

.ff[ll](a)

= { 'T, 'T is the final state of a properly terminat­
ing computation starting in state a}
u { .l, there exists a diverging computation

of P starting in state a}.

For two sets L:1 and L: 2 , and a set of variables Z
we define

2: 1 = 2: 2 mod Z

iff {a\Z, crE.2: 1 } = {a\Z, crE2: 2}

170

where a\ Z is the restriction of a to the variables
not in Z. We now say that two programs CSP P1

and P2 are equivalent modulo Z if, for all states a,

.ff[P1](a) =vff[P2](a) mod Z.

Note that this equivalence definition does not take
into account possible deadlocks. We can finally
state the appropriate theorem.

4.3. Theorem. Let S1 and S2 be two equivalent
processes with respect to a set Z of auxiliary varia­
bles. Let

be a context, and let P, = ~[S;], i = 1, 2, be the
CSP programs obtained by plugging process S; into
the context ~- Then, P1 and P2 are equivalent
modulo Z.

Thus, up to deadlock, P1 and P2 exhibit the
same functional behaviors.

5. Discussion

The equivalence relation introduced in Section
4 seems at first sight very strong, since it is basi­
cally a syntactic equivalence. However, it is con­
cerned only with some form of traces (in the sense
of [10]) of computations. Semantically, it assures
only Theorem 4.3. In particular, it does not cap­
ture all relevant semantic properties naturally as­
sociated with concurrent programs, like deadlock
freedom.

Indeed, consider two processes S and S' where

S = [true; Q?x-> skip

Dtrue; Q !x -> skip],

S' =[true-> Q?x;skip

Dtrue-> Q!x; skip].

Then, S and S' are equivalent m the sense of
Section 4. However, the program

[P::SllQ::P?y]

cannot deadlock whereas the program

[P:: S'llQ:: P?y]

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

can. Thus, plugging equivalent processes in the
same context, here

[P::[]llQ::P?y],

can yield two programs that behave differently.
We can prove that Theorem 4.2 cannot be
strengthened so that deadlock freedom is pre­
served in the above sense. This follows from the
following theorem.

5.1. Theorem. Let [P :: S II Q :: T] be a program in
second normal form. Suppose that it admits two
properly terminating computations, cl with some
communication and C2 without any communication.
Then, it admits a deadlocked computation.

Proof. Construct the deadlocked computation as
follows. First take all steps carried out by P in C1

until the I/O command selected for its first com­
munication is reached. Then, append to it all steps
carried out by Q in C2 • In the resulting compu­
tation, Q properly terminates whereas P reaches
an entry to a repetitive command with all guards
containing an I/O guard. Thus, a deadlock arises
(observe that this would not necessarily hold if the
Distributed Termination Convention of CSP were
used). D

This shows that first normal form cannot be
reduced to second normal form when deadlock
freedom is to be preserved. This can be interpre­
ted as a statement that use of nonhomogeneous
guards strictly increases the expressive power of
CSP.

Note

The first version of this paper appeared as a
report [2]. After having written the present ver-

sion, we learned of a related work by Zobel [13].
Zobel proposes transformations similar to ours,
but does not elaborate on the underlying notion of
equivalence.

References

[1] K.R. Apt, Correctness proofs of distributed termination
algorithms, ACM Trans. Programm. Languages & Sys­
tems 8 (3} (1986) 388-405.

[2] K.R. Apt and Ph. Clermont, Two Normal Form Theo­
rems for CSP Programs, Rept. No. RC 10975, IBM T.J.
Watson Research Center, Yorktown Heights, NY, 1985.

[3] K.R. Apt and J.-L. Richier, Real time clocks versus virtual
clocks, in: Proc. Internal. Summer School on Control
Flow and Data Flow: Concepts of Distributed Pro­
gramming, NATO ASI Series Fl4 (Springer, Berlin, 1985).

[4] L. Bouge, Genericity and Symmetry for Distributed Sys­
tems: The Case of CSP, These d'Etat, Univ. Paris 7, 1987;
Rept. No. 87 /2, LIENS, Paris, 1987 (in French).

[5] N. Francez, Distributed termination, ACM Trans. Pro­
gramm. Languages & Systems 2 (1) (1980) 42-55.

[61 N. Francez, M. Rodeh and M. Sintzoff, Distributed
termination with interval assertion, Proc. Internat. Coll.
on Formalization of Programming Concepts, Peniscola,
Spain, Lecture Notes in Computer Science, Vol. 107
(Springer, Berlin, 1981).

[7] M.G. Gouda, Closed covers: To verify progress for com­
municating finite state machines, IEEE Trans. Software
Engrg. SE-10 (6) (1984) 846-855.

[8] D. Hare!, On folk theorems, Comm. ACM 23 (7) (1980)
379-389.

[9] C.A.R. Hoare, Communicating sequential processes,
Comm. ACM 21 (8) (1978) 666-677.

[l OJ C.A.R. Hoare, Some properties of predicate transformers,
J. ACM 25 (3) (1978) 461-480.

[11] G. Plotkin, An operational semantics for CSP, in: D.
Bj0mer, ed., Formal Description of Programming Con­
cepts, IFIP TC-2 Working Conf., Garmish-Partenkirchen,
Fed. Rep. Germany, 1982 (North-Holland, Amsterdam,
1983) 199-223.

[12] J.-P. Queille and J. Sifakis, Specification and verification
of concurrent systems in CESAR, in: Proc. Sth Intemat.
Syrop. on Programming, Paris, 1981.

[13] D. Zobel, Normal Form Transformations for Programs in
CSP, Rept., EWH Rhld.-Pf., Abteilung Koblenz, Seminar
filr lnformatik, 1987.

171

