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We define two normal forms for CSP programs. ln the First Normal Form, each process contains only one I/O repetitive 
command and all its I/O commands appear as guards of this command. In the Second Normal Form, all guards of this I/O 
repetitive command are I/O guards. We describe an inductive method that transforms any CSP program into an equivalent 
program in first or second normal form. The notion of equivalence is discussed. It is shown that no transformation into second 
normal form can preserve deadlock freedom. 
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1. Introduction 

One of the best known theorems in Theoretical 
Computer Science states that every while program 
is equivalent to a program with one loop (see, e.g., 
[8]). We prove a similar result for CSP programs 
[9]. We exhibit two normal forms to which every 
CSP program can be brought. A CSP program is 
in a normal form (a normal program, in short) if 
each of its component processes contains only one 
I/O repetitive command and all its I/O com­
mands appear as guards in this command. There 
are various reasons why the study of our normal 
programs can be of interest. 

* This work was partially supported by CNRS Project C 3. 

* * L. Bouge is also affiliated with the Laboratoire d'Informa­
tique, Universite d'Orleans, B.P. 6759, F-45067 Orleans 
Cedex 02, France. 

(1) Program construction-In the case of CSP 
programs, as opposed to while programs, several 
algorithms can be naturally expressed as normal 
programs. For example, most solutions to the 
disttj.buted termination problem of Francez [5] are 
normal programs (see, e.g., [6,3]). For other al­
gorithms written as normal programs, see for ex­
ample [4]. 

(2) Verification-We found (see [1]) that a very 
simple proof system allows us to prove correctness 
of normal programs. Moreover, Queille and Sifa­
kis [12] built a system allowing an automatic veri­
fication of finite-state normal programs. Adding 
to their system a preprocessor implementing the 
transformations described in this paper allows us 
to extend the use of their system to arbitrary 
finite-state CSP programs. 

(3) Event-driven computing-In an event-driven 
concurrent system, local actions are triggered by 
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the occurrence of external events. This type of 
computing is typical in the case of network proto­
cols. It is often modeled by means of interacting 
automata (see, e.g., [7]). Normal programs exhibit 
a structure that makes this view of distributed 
computing more explicit as each process alternates 
between communications and resulting local ac­
tions. 

Equivalence of concurrent programs is a de­
licate and difficult issue. In the last section of this 
paper we analyze the notion used here and indi­
cate its limitations. 

2. Normal forms in CSP 

We assume the reader to be familiar with CSP 
[9]. We consider a variant of CSP without nested 
parallelism and where output guards are allowed. 
We do not consider the Distributed Termination 
Convention. For simplicity, we omit all declara­
tions. 

A CSP program P is a parallel composition of 
named processes that operate on disjoint mem­
ories: 

[PI:: SI 11 ... II Pk:: Sk]. 

Each process S is generated by the following 
grammar (m ~ 1): 

s:: = skip I cmd I <X I s 1 ; s2 I 

[oa1-"'s1] *[oa-'>s]. 
)=1 j=l ) ) 

G:: =bib; <X. 

Here, cmd denotes an assignment, b a Boolean 
expression, and <X an I/O command. If a guard G 
is of the form b, then it is called a purely Boolean 
guard, otherwise an I/O guard. Bool(G) denotes 
the Boolean part of a guard. A guard G is enabled 
when control is in front of it and Bool(G) evaluates 
to true. In the sequel, b1 ; b2 denotes the conjunc­
tion b1 /\ b2 of Boolean expressions. 

2.1. Definition. A process S is in first normal form 
if it is of the form S0 or 

S0 ; * [ D G1 _,,, s1], 
1=1 
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where m ~ 1 and none of the S1 contains an I/O 
command. 

2.2. Definition. A process S is in second normal 
form if it is of the form S0 or 

s0 ; * [ D G.-'> s] , 
j= I J J 

where m ~ 1, none of the S1 contains any I/O 
command and, moreover, all of the G1 are I/O 
guards. 

A CSP program is in first (respectively second) 
normal form if all its component processes are. 

3. The transformations 

3.1. First normal form 

We now describe a function NF1 that trans­
forms each process S into a process S' = NF1(S) 
in first normal form. We proceed by induction on 
the structure of S. We assume an infinite set Z of 
fresh Boolean variables z1, z2 , •••• We omit in­
dices when no confusion can arise. 

Base case. When S is skip or an atomic assign­
ment command, S is already in first normal form, 
so NF1(S) = S. 

I/ 0 command. Suppose S is an I/O command 
<X. Select a fresh variable z from Z and define 

N F1 ( S) = z := true; * [ z ; <X -'> z := false]. 

Sequential composition. Suppose S is of the 
form S1 ; S2 • By induction, we have 

NF1 (S;) =I nit;; * [ 0 G; _,,, s;] 
J= 1 ) J 

where we can assume that sets Z 1 and Z 2 of fresh 
variables for each S; are disjoint. Let z1 and z2 be 
two variables of Z\ Z 1 U Z 2 • Define N F 1 ( S) as 
follows: 

lnit1 ; z1 :=true; z2 :=false; 

* [ D z · G1 -'> s1 • TEST j= l I ' J J , 

Dz ·G2-'>s2] 
J= 1 2' J ) 
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where TEST stands for 

m, 
D /\-,Boot( G})-> z :=false; 

j=l 

z, ,~ true; /nit, l 
Intuitively, z1 is true when control is still in S1 

and z2 is true when control is in S2 . 

Repetitive command. Suppose S is of the form 

* [ D H; -> R 1 ]. 
1=1 

By induction, we have 

where we can assume without loss of generality 
that sets Z, of fresh variables for each R; are 
pairwise disjoint. Let turn i' i = 1, 2, ... , m be fresh 
variables of Z\U;1:.. 1z;. Define NF1(S) as fol­
lows: 

turn I := false; ... ; turn m := false; 

• [ g l, ~tum,; H, ~tum,'~ true; 

I nit,; TEST, 

;:i.~ .. ,m turn;; G)-> Sj; TEST,] 
1-1,2,. . .,m, 

where TEST, stands for 

[ ,9, Boo!( G;) - skip 

D A -,Boo!( en-> turn;== false]. 
k=l 

Intuitively, turn, holds when control is in subpro-

gram R,. Then, TEST, indicates whether R; is 
terminated and turn; is reset to false if this is the 
case. 

Alternative command. Suppose S is of the form 

By induction, we have 

in first normal form. Using a new variable z from 
Z\U~~ 1 Z;, we first transform S into the following 
process S': 

z ==true; 

[ 8 Bool(H,) ~skip]; 

* [ 0 z; H;--. R;; z ==false]. 
1= 1 

Those two processes are related as follows. First 
suppose that S fails. This occurs when all condi­
tions Bool(H,) evaluate to false initially. Then, S' 
fails much in the same way. Suppose S does not 
fail; then at least one of those conditions evaluates 
to true. In S', the alternative command then boils 
down to skip. In the repetitive command, the 
conditions are evaluated again and yield the same 
results as before, because processes operate on 
disjoint memories. At least one of them is thus 
guaranteed to evaluate to true, S' does not fail 
either, and behaves subsequently like S. NF1(S) is 
the result of applying transformation N F 1 to 
process S'. 

This concludes the presentation .of the transfor­
mation NF1• 

Property A. For each process S, NF1(S) is a 
process in first normal form. The onzy atomic com­
mands in N F1 ( S) in which variables from Z appear 
are of the form z == true or z := false. 
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3.2. Second normal form 

We now describe a procedure NF2 that trans­
forms each process S in first normal form into a 
process N F2 ( S) in second normal form. A process 
S in first normal form all of whose external guards 
contain an I/O command (or that contains no 
I/O command) is already in second normal form 
and we put NF2 (S) = S. Otherwise, it can be 
written as 

I nit; 

*[oc -;s i= 1 I l 

D H - r] j= 1 j j 

with m > 0 and n > 0, where all guards G; are 
purely Boolean and all guards Hi do contain an 
I/O command. Let CHOOSE be the following 
command: 

turn 1 ==false; ... ; turnn ==false; 

[ 
m n 

* D /\.. -,turnk; G;-; S; 
i=l k=l 

n n l D /\.. -,turnk; Boal( H1 )--> turn1 :=true . 
j=1 k=l 

Execution of CHOOSE consists of some iterations 
of the repetitive command 

which contains no I/O command followed by the 
selection of an I/O guard H1 , provided its Boolean 
part Boof(H) evaluates to true. We then define 
NF2 (S) to be the following process: 

!nit; CHOOSE; 

* [8 tum1 ; H1 -1j; CHOOSE]. 

Observe that Boo!( H) is evaluated twice, once 
within CHOOSE and then again within HJ' Both 
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evaluations return necessarily the same result be­
cause processes operate on disjoint memories. 

Property B. For each process S in first normal 
form, NF2 (S) is in second normal form. The only 
atomic commands in N F2 ( S) in which variables 
from Z appear are of the farm z := true and z := 

false. 

3.3. Homogeneous processes 

For certain processes, it is possible to describe 
a direct transformation that yields a process in 
second normal form. A process is homogeneous if, 
in each repetitive or alternative command, either 
all guards are purely Boolean or all guards contain 
an I/O command. Observe that a homogeneous 
process is in first normal form if and only if it is 
in second normal form. If we can modify proce­
dure N F1 so as to preserve homogeneity, then it 
will transform homogeneous processes into pro­
cesses in second normal form. The only part of 
NF1 that does not preserve homogeneity is the one 
dealing with a repetitive command S 

whose guards are all purely Boolean. In this case, 
let SWITCH; be 

[ 8 H, ~tum,'~ true; Jn;t, 

D l, ~ H, ~ skip l 
Then, assuming the notation used in N F1 ( S ), the 
transformed process is 

turn 1 == false; ... ; turn m == false; 

SWITCH; 

*[ D turn·G'-->S'·TEST· 
i = 1, 2, ... , m 1 ' 1 J ' 1 ' 
)=1,2,. .. ,m, 

[tum,~ skipo~'"m,- SWITCH)]-



Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987 

Denote this modified transformation by N Fi'. 
Here, variables turn; are used for the same pur­
pose as before. Setting a variable turn; to true can 
take place in the SWITCH command only. 

Property C. For each homogeneous process S, 
NF((S) is in second normal form. The on~y atomic 
commands in N F1' in which variables from Z appear 
are of the form z == true and z := false. 

4. A notion of equivalence 

We now wish to make precise in what sense 
every process S is equivalent to the process S' 
generated in Section 3 by the transformations 
NF1, NF2 , and NF1'. To this purpose, we first 
associate with each process S a regular language 
L(S). Intuitively, L(S) is the set of all uninter­
preted possible computations of process S accord­
ing to Plotkin's semantics [11]. 

The language L(S) is over the alphabet consist­
ing of atomic actions cmd, IjO commands ix, 
Boolean conditions b, plus two special tokens 
(skip) and (fail) that denote respectively 
termination and failure. L(S) is defined induc­
tively as follows. 

L(skip) = {(skip)}, 

L ( cmd ) = { ( cmd) } , 

L(ix)={(<X)}, 

{
{(b)(<X)} 

L(G)= {(b)(skip)} 

L (SI; S2) = L (SI). L ( S2), 

L ( [ G1 --- SI D ... D Gm --- Sm]) 

if G = b; ix, 

if G = b, 

= [(L(G 1 ).L(S1)) U · · · u(L(Gm).L(Snz))] 

.{(Bool)(fail)}, 

L( * [ G1 --- S1 D · · · D G,,,-> S,,,]) 

= [(L(G 1).L(S1)) U · · · u(L(Gm).L(Sm))]* 

. { (Boo!) (skip)} , 

where Boo! stands for 

Observe how the appropriate exit conditions are 
reflected. 

To obtain the desired equivalence, we partially 
interpret the computations by evaluating the com­
mands and conditions associated with auxiliary 
variables. In the processes generated by the trans­
formations of Section 3, they can be of the follow­
ing type exclusively: 

z ==true, 

z ==false, 

B(z1 , •• ., z,,,, b1,. .. , bn), 

where B is some Boolean combination of its argu­
ments. When evaluating the condition, variables z; 
are substituted with their current value, true or 
false. The condition is said to be unsatisfiable if 
the resulting formula is equivalent to false as a 
formula of the predicate calculus with variables b1. 
The condition is satisfiable if it is not unsatisfia­
ble. Then we exclude contradictory computations, 
i.e., those that violate the rule that the selected 
Boolean conditions are all satisfiable. Finally, we 
erase all skip's and assignments z ==true and 
z == false to auxiliary variables. Also, we merge 
adjacent Boolean formulas into their Boolean con­
junction and reduce the resulting formula to some 
normal form (say, a conjunction of disjunctions 
for definiteness). Tautologies are then erased. Let 
L' ( S) be the resulting language. It is a language 
over the alphabet consisting of atomic actions 
cmd, I/O commands ix, Boolean formula 
B ( b 1, .. ., bn ), and token (fail). We say that two 
processes S1 and S2 are equivalent with respect to 
a set Z of auxiliary variables if 

This equivalence can be best understood with 
an example. Consider the processes 

SI =o. 

and 

S2 = z == true; * [ z; a --- z ==false] . 

Then 

169 



Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987 

On the other hand, 

L(S2 ) = (z == true)((z)(ct)(z ==false))* 

(-.z)(skip). 

After the interpretation of actions related to the 
variable z we obtain the following set of words: 

{ (z == true)(true )( ct)(z == false)(-,fa/se)(skip), 

( z == true)(true )(et)( z ==false) 

( (false)( ct)( z == false))* (-,false)( skip)}. 

Here, only the computation 

(z == true)(true)(ct)(z == false)(-,false)(skip) 

is not contradictory. Deleting from it all assign­
ments to the variables of Z and skip 's, reducing 
sequences of adjacent Boolean formulas to their 
normal form and erasing tautologies, we get ( ct) 
as desired. 

We have the following theorems, whose tedious 
but straightforward proofs are omitted. 

4.1. Theorem. Both NF1(S) and NF{(S) are 
equivalent to S with respect to set Z of auxiliary 
variables. 

4.2. Theorem. NF2 (S) is equivalent to S with respect 
to set Z of auxiliary variables. 

These equivalences are on the level of processes 
considered in isolation. The following theorem 
states some of its semantic consequences. By a 
state we mean a function assigning values to each 
of the variables. We consider .l as a special state 
indicating divergence. Given a CSP program P, 
we define its meaning A[l 1] by 

.ff[ll]( a) 

= { 'T, 'T is the final state of a properly terminat­
ing computation starting in state a} 
u { .l, there exists a diverging computation 

of P starting in state a}. 

For two sets L:1 and L: 2 , and a set of variables Z 
we define 

2: 1 = 2: 2 mod Z 

iff {a\Z, crE.2: 1 } = {a\Z, crE2: 2} 
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where a\ Z is the restriction of a to the variables 
not in Z. We now say that two programs CSP P1 

and P2 are equivalent modulo Z if, for all states a, 

.ff[P1]( a) =vff[P2 ]( a) mod Z. 

Note that this equivalence definition does not take 
into account possible deadlocks. We can finally 
state the appropriate theorem. 

4.3. Theorem. Let S1 and S2 be two equivalent 
processes with respect to a set Z of auxiliary varia­
bles. Let 

be a context, and let P, = ~[S;], i = 1, 2, be the 
CSP programs obtained by plugging process S; into 
the context ~- Then, P1 and P2 are equivalent 
modulo Z. 

Thus, up to deadlock, P1 and P2 exhibit the 
same functional behaviors. 

5. Discussion 

The equivalence relation introduced in Section 
4 seems at first sight very strong, since it is basi­
cally a syntactic equivalence. However, it is con­
cerned only with some form of traces (in the sense 
of [10]) of computations. Semantically, it assures 
only Theorem 4.3. In particular, it does not cap­
ture all relevant semantic properties naturally as­
sociated with concurrent programs, like deadlock 
freedom. 

Indeed, consider two processes S and S' where 

S = [true; Q?x-> skip 

Dtrue; Q !x -> skip], 

S' =[true-> Q?x;skip 

Dtrue-> Q!x; skip]. 

Then, S and S' are equivalent m the sense of 
Section 4. However, the program 

[P::SllQ::P?y] 

cannot deadlock whereas the program 

[P:: S'llQ:: P?y] 
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can. Thus, plugging equivalent processes in the 
same context, here 

[P::[ ]llQ::P?y], 

can yield two programs that behave differently. 
We can prove that Theorem 4.2 cannot be 
strengthened so that deadlock freedom is pre­
served in the above sense. This follows from the 
following theorem. 

5.1. Theorem. Let [P :: S II Q :: T] be a program in 
second normal form. Suppose that it admits two 
properly terminating computations, cl with some 
communication and C2 without any communication. 
Then, it admits a deadlocked computation. 

Proof. Construct the deadlocked computation as 
follows. First take all steps carried out by P in C1 

until the I/O command selected for its first com­
munication is reached. Then, append to it all steps 
carried out by Q in C2 • In the resulting compu­
tation, Q properly terminates whereas P reaches 
an entry to a repetitive command with all guards 
containing an I/O guard. Thus, a deadlock arises 
(observe that this would not necessarily hold if the 
Distributed Termination Convention of CSP were 
used). D 

This shows that first normal form cannot be 
reduced to second normal form when deadlock 
freedom is to be preserved. This can be interpre­
ted as a statement that use of nonhomogeneous 
guards strictly increases the expressive power of 
CSP. 

Note 

The first version of this paper appeared as a 
report [2]. After having written the present ver-

sion, we learned of a related work by Zobel [13]. 
Zobel proposes transformations similar to ours, 
but does not elaborate on the underlying notion of 
equivalence. 
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