
INFORMATION AND CONTROL 68, 223-253 (1986)

Syntax Directed Analysis of
Liveness Properties of While Programs

KRZYSZTOF R. APT AND CAROLE DELPORTE-GALLET

l.l.T.P., Universite Paris 7, 2 Place Jussieu, 75251 Paris, France

A syntax directed proof system which allows to prove liveness properties of wbile
programs is introduced. The proof system is proved to be arithmetically sound and
complete in the sense of Hare! ("Lecture Notes in Comput. Sci. Vol. 68," Springer
Verlag, Berlin/New York, 1979). The results of the paper generalize a
corresponding result Pnueli ("Proc. 18th Sympos. FOCS" IEEE, Providence, R. I.,
1977) proves for unstructured programs. The proof system decomposes into two
parts. The first part allows to prove simple safety properties. These properties are
used as axioms in the second proof system which deals with liveness properties. The
completeness proof is constructive and provides a heuristic for proving specific
liveness properties. !C1 I 986 Academic Press, Inc.

Contents. 1. Introduction. 2. Preliminaries. 3. Semantics. 4. Expressiveness of the
Syntax. 5. A Proof System !I' for Proving Formulas of the Form I t'(J-=> p. 6.
Soundness and Arithmetical Completeness of!/'. 7. A Proof System .!£' for Proving
Liveness Formulas. 8. Arithmetical Soundness and Completeness of .!£'. 9. Con
clusions. References.

1. INTRODUCTION

In Pnueli (1977), temporal logic is as a tool for reasoning about sequen
tial and concurrent programs. This approach subsequently received a lot of
attention and since then several proof systems based on temporal logic
were proposed. These proof systems allow us to prove more complicated
properties of concurrent programs than partial correctness or deadlock
freedom (see, e.g., Manna and Pnueli, 1981, 1982; Owicki and Lamport,
1982).

However, most of these systems allow us to reason about unstructured
programs only. The only exception is the proof system of Owicki and Lam
port (1982). We find that in order to reason about structured programs a
firm theoretical basis should be first established. In our opinion this is not
done in Owicki and Lamport (1982), where various obvious or less
obvious axioms and proof rules are missing.

One of the most fundamental issues when reasoning about structured

223
0019-9958/86 $3.00

... (:~pyri~h_i_ ~- ~9~~._b! .~c_a~_e';'!~~~~--I~~·

224 APT AND DELPORTE-GALLET

programs is the problem of specifying how the control moves throughout
the program. Most of those issues are straightforward and often they do
not depend on the fact of whether or not the program is parallel. On the
other hand, the problem of completeness of these specifications is not
obvious and requires a careful analysis.

We carry our our study in the framework of while-programs. Several
(but not all) of the introduced axioms and proof rules are also sound in the
case of parallel programs. A similar analysis in the case of parallel
programs will necessarily depend on the results of this paper.

Temporal logic allows us to classify various program properties
according to their syntactical form. The most important ones are those of
safety (or invariance), and liveness. Safety properties (like partial
correctness, deadlock freedom) are by now well understood and our paper
concentrates on the issue of liveness properties. These are properties which
assert that some desired event will eventually take place (e.g., termination
or entering a critical section).

In the paper we provide a proof system which allows to prove arbitrary
liveness properties of while-programs and prove its arithmetical soundness
and completeness in the sense of Hare! (1979). The results of the paper
generalize a corresponding result of Pnueli (1977), proved for unstructured
programs. Moreover, the proof system is syntax directed, i.e., the proof
rules and axioms follow the syntax of the programs. The completeness
proof is constructive and provides a heuristic for proving specific liveness
formulas.

It is presented in Section 5 and proved sound and arithmetically com
plete in Section 6. This part of the proof system is partially motivated by
Lamport (1980) and Owicki and Lamport (1982).

The second part of the system called .P, deals with liveness formulas.
This subsystem is a mixture of axioms and proof rules motivated by Hare!
(1979); Hoare (1969); Lamport (1980); Owicki and Lamport (1982); and
Pnueli (1977). It is presented in Section 7. The proof of arithmetical
soundness and completeness of 2 relative to .</' is proved in Section 8.

Combining the proof systems //' and .P we get a hierarchically built
proof system which allows to prove liveness properties directly from first
order assertions.

Finally, in Section 9 we present some conclusions and directions for the
future work. An extended abstract of this paper appears as Apt and
Delporte (1983).

Another approach to these issues has been recently proposed in
Barringer, Kuiper, and Pnueli (1984) and Gerth (1984), where different
formalisms are used. In these papers syntax directed proof systems for
proving temporal properties of parallel programs are proposed.

We adopt here the formalism of Lamport (1980) and Owicki and Lam-

LIVENESS PROPERTIES OF WHILE PROGRAMS 225

port (1982), where the formulas at S and after S for S being a program are
introduced. The formula at S states that the subprogram S is about to be
executed and the formula after S states that the execution of the sub
program S has just terminated. Our interpretation of after S differs from
that of Owicki and Lamport (1982), for the reasons explained in Section 3.

In Section 2 we explain the notation and terminology used in the paper.
The basic constructs in our proof system are formulas of the form

11 0 S0 /\ p~11 1 S 1 /\ q, where 11 0 , 17 1 E {at, after} which are called throughout
the paper liveness formulas. The operator "~" is the "leads to" operator of
temporal logic (see Pnueli, 1977 and Owicki and Lamport, 1982) and is
interpreted as p ~ q = [] (p =:i 0 q). Thus, p ~ q represents a temporal
implication or eventual occurence of q under the assumption of p.

To understand the essence of the problems investigated here let us con
sider the liveness formula cp =at S /\ x = 0 ~after S /\ x = 5, where
S = x := x + 2. This formula is of course false if we interpret it as
{ x = 0} S { x = 5} in the sense of Hoare's logic (Hoare, 1969). However, if
we consider S as a subprogram of the program T=. x := O; T', where
T' =while x < 10 do S; x := x + I od then the formula cp is true. Thus the
truth of the lieveness formulas depends on the context in which they are
considered. We indicate this dependence by attaching the context program
T to the truth relation ''f=" and the provability relation "r-". In the course
of the proofs (here of 1-T cp) we first prove the formulas in the minimal
context in which they are true (here T') and subsequently extend the con
text to the desired one (here T).

While the interest in proving such formulas for while-programs is
debatable, it should be noted that they naturally occur in the context of
parallel programs. The problems we study in this paper should be in our
o,pinion resolved first in the context of sequential problems before they can
be considered in the context of parallel programs.

We introduce in Section 3 semantics of the concerning formulas and in
Section 4 investigate what properties can be expressed using the syntax of
the paper.

The proof system consists of two parts. The first of them called :/ is
designed to prove simple safety properties which are needed in the proofs
of liveness properties.

2. PRELIMINARIES

As indicated in the introduction we are interested here in proving the
formulas of the form 17 0 S 0 /\ p,_..,17 1 S 1 /\ q, where 1'/o, 17 1 E {at, after}, So, S1
are while-programs and p, q are assertions. To this end we define various
classes of formulas which will be used in the sequel.

226 APT AND DELPORTE-GALLET

Let L be a first-order language with equality. We call the formulas of L
assertions and denote them by letters p, q, r. The letters x, y, z denote the
variables of L, the letter t denotes the terms (expressions) of L, the letter b
denotes quantifier-free formulas (Boolean expressions) of L.

By "/(/" we denote the class of while-programs which is defined as usual.
The programs from "/(/" use variables, expressions, and Boolean expressions
of the language L. They are denoted by the letters S, T.

In the sequel, we label each assignment within a given program by a uni
que label. In other words, a while-program is well formed if every
assignment being its subprogram has a unique label attached to it. The use
of labels allows us to distinguish between different occurences of the same
subprogram in a given program.

We allow formulas of the form at S and after S for SE"/(/". They are
called control formulas and are denoted by the latter <6.

From assertions and control formulas we can build up certain formulas
which will be called mixed formulas. They are of the form <6 " p. Mixed
formulas are denoted by the letter µ.

In the proof system, formulas of the following types will be allowed: p,
µ ::::i p, µ ::::i ~. µ1 ::::i µ2 and µ1,.... µ2. The formulas of the form µ ::::i p, µ ::::i <6
and µ 1 ::::i µ 2 are called safety formulas. The formulas of the form µ 1 ...-. µ2
will be of main interest. We call them liveness formulas.

3. SEMANTICS

To interpret the meaning of the formulas allowed in the proof system we
provide an appropriate class of models for them. These models have to
take into account the semantics of programs as the formulas refer directly
to them. Therefore we define first the semantics of programs appropriate
for our purposes. This semantics is a slight variant of the one introduced in
Hennessy and Plotkin (1979).

First we introduce the notion of a suffix of a program. It is simply a part
of its text which remains to be executed. In general, a suffix need not be a
program-for example, S 1 fi is a suffix of if b then S 1 else S 2 fi. We denote
suffices by the letter L1 and the empty suffix by the letter E.

Let I be an interpretation of the assertion language L with a nonempty
domain D. By an assignation we mean a function assigning to each variable
x of L a value from the domain D. By a state we mean a pair which con
sists of a suffix of a program from "/(/"and an assignation. We denote states
by the letter s. If s is a state then by s we denote the assignation being its
component. For a set C of states we define C to be the corresponding set of
assignations: C = {S: s EC}.

LIVENESS PROPERTIES OF WHILE PROGRAMS 227

The value of a term t in an assignations written as s(t) and a truth of a
formula p of L in an assignation s (written as f= / p(s)) are defined as usual.

We adopt here the point of view according to which very few control
points in the program coincide. One step in execution of a program will
consist either of executing an assignment statement or entering or leaving
bodies of a while or if statement or passing to the next statement. Thus
leaving an if statement will take one step.

We define now a transition relation "-+" between states. Intuitively, for
s0 = < .& 0 , .f0) and s 1 = <A 1, s1) s0 -+ s 1 means that one step in execution of
Li 0 in assignation 50 leads to assignation 51 with L1 1 being the remainder of
L1 0 to be executed. If L1 0 terminates in .f1 then L1 1 is empty, i.e., L1 1 =E.

We define the relation s-+ s 1 by the following clauses:

(i) <r.i::x:=t.d,s)-+<A,s1), where .~ 1 (J')=s(y) for yi=x and
.f1 (x) = s(t),

(ii) <if b then S1 else S2 fi LI, n-+ <Si fi Li, s) if FI b(s),

(iii) <if b then S 1 else S 2 fi A, .s) _,, <S2 fi .d, .s) if If ,b(s),

(iv) <while b do Sod Li, s) _,, <S; while b do Sod .d, s) if f= / b(s),

(v) <while h dos od Li, s)-+ <A, s) if F ,b(§),

(vi) <fi A, s)-+ <A,.s),

(vii) <;A, .s)-+ <J, .s).

Let -+ * denote the transitive closure of -+. Given now a program T by
an execution sequence of T we mean a maximal sequence of states s0 , .1· 1, ... ,
such that s0 = <T,§0) and for i=O, l, ... ,.1·;-+s;+i holds. For simplicity we
identify each finite sequence with its extension to the infinite execution
sequence obtained by repeating the last state. Execution sequences are
denoted by the letters a, r. If er= s0 , s 1 , ... , then by definition rr[i] = s;.

For a program T we denote by J; r the set of all of its execution sequen
ces. Of course .Er depends on the interpretation!.

Having defined semantics of the programs we now define semantics of
the control formulas.

Let S be a subprogram of T, a E .Er, and i:;::, 0. We define

f= r,1 at S(a, i) iff a[i] = <S; Li, O"[i]) for some A;

f= r,1 after S(O", i) iff 3j < i <SA, O"[j]) = O"[j]-+ * O"[i] =<A, O"[i])

for some L1 and if L1 i= E then for no k such that j < k < i
O"[k] =<A, O"[k]).

Intuitively f= r.1 at S(O", i) holds if S is just to be executed in the state
O"[i] and f= 7 ,1 after S(O", i) holds if the execution of S has just terminated in
O"[i]. While the definition of truth of at Sis intuitively clear, that of after S
requires some explanation.

228 APT AND DELPORTE-GALLET

The first line of the definition says the following. Some time in the past
(in state cr[j]) the program S was just to be executed. Moreover, the
remainder (LI) which was still to be executed after S in a[)] is the program
which now remains to be executed in cr[i]. This is a satisfactory definition
if the remainder L1 does not begin with a while loop.

If A does begin with a while loop then we additionally claim that the
execution of A did not start before a[i]. Note that this condition is guaran
teed if LI does not begin with a while loop (provided A i=. £). This explains
the second line of the definition.

Observe that by the definition I= TJ at T(a, i) iff cr[i] = (T, o-[i]) and
I= r,1 after T(cr, i) iff cr[i] = (E, cr[i]).

Note that the definition of truth of at S depends only on the current state
whereas the definition of truth of after S depends also on the previous
states. This fact was not properly taken care of in the definition of seman
tics given in Apt and Delporte (1983).

We also introduce a formula at+ S which attempts to describe the fact
that the control is at the beginning of S for the first time in the current
round. If S does not begin with a while loop then by definition
at+ S =at S. Otherwise at+ S =at+ S', where S begins by the while
loop S'.

The form of at+ S for the while loop S depends on its direct context
within T. It is defined as follows:

If S appears in Tin the context:

S 1 ; S then at+ S= after S 1 ,

T 1 =if b 1 then S(; S1) else S2 fi then at+ S =at T 1 /\ b 1 ,

T 1 =if b 1 then S 1 else S(; S2) fi then at+ S =at T 1 /\ -ib 1 ,

T 1 =while b 1 do S(; S1) od then at+ S =at T 1 /\ b 1 •

If none of the above cases arise then T begins with S and we put
at+ S=at T.

Introduction of the formula at+ S will allow us a more compact presen
tation of various proof rules and axioms.

The following example clarifies the introduced semantics of control for
mulas:

EXAMPLE. Let I be a standard interpretation in natural numbers and let
T = a: x = 1; while x < 2 do

S = if x = 1 then f3: x : = 0 else y: x : = 2 fi

od

UVENESS PROPERTIES OF WHILE PROGRAMS

Consider now some a EI T· Then according to the definition

f= r.1 at x := 1 (u, 0),
f= T.l after x := I (a, l),
f= T.I at while · · · (u, 2),
f= T.I at+ while··· (u, 1),
f= T.lat S (a, 3),
F= T.I at x := 0(u, 4),
f= 7 ,1 after x := O(u, 5),
F= r.1 after S(u, 6),
ft T,I after x := 2(u, 5) (since for no j < 5 f= r,1at x := 2(<i, j)),
f= r,1 at while··· (u, 7),
ft TJ after x := 1 (u, 6)
(since f= 7 .1 at while···(u,2) andj=0<k=2<i=6),
w:. at+ while··· (Ii 6) r- T,l '

Fr,1atS(u,8),
F= r, 1 at x := 2(u, 9),
F= 1 ,1 after x := 2(u, 10),
f= r.1 after S(u, 11)
ft 7 ,1 after x := O(u, 10)
(since f= r,1 at while··· (u, 7) and j = 4 < k = 7 < i = 10),
f= r,1 at while··· (u, 12),
ft r,1 after x := l(u, 11)
(since f= r,1 at while·,, (u, 2) and j = 0 < k = 2 < i = 1),
F= r,1 after while · · · (u, 13),
F= TJ after T(u, 13).

229

Where for brevity we identified assignments with their labels. We hope
that this example convinced the reader that the definitions of truth of at S
and after S are natural. Our definition of truth of after S notably differs
from that given in Owicki and Lamport (1982), which intuitively states
that after S is true if the control within T is just after the program S. We
shall disscuss the reasons for which we did not choose that definition after
completing the definitions of semantics.

The above example also illustrates the fact that according to our
definition of semantics different control points in the course of execution
cannot coincide. We could have chosen another standpoint according to
which various control points coincide. This would lead to more elegant
semantics but to much more lengthly and complicated proofs. The above
semantics is closer to the implementation level so it is more realistic.
Moreover, the above choice does not result in a loss of any interesting
properties.

We now continue with the definition of semantics. The truth of asser-

230 APT AND DELPORTE-GALLET

tions does not depend on the programs and we naturally put for a EE r
and a formula p of L

f= r,1 p(a, i) iff F= 1 p(a[i]).

The truth of mixed formulas and other logical combinations of the con
trol formulas as assertions is defined in a natural way.

Finally we define the truth of liveness formulas by putting for a EE r

F= r,1 µ1---+ µ2(a, i) iff

f= r.1 µ1(a, i)=> 3}~ if= r.1 µ2(a, }).

We now say that a formula <p is true w.r.t. T and I, written as f= r,1 <p if
for all aEEr and i~OF=r,1<fJ(a, i) holds.

Having presented the definition of truth we now prove two useful lem
mas concerning formulas of the form <ef! => p and liveness formulas.

LEMMA 3. 1. Let S be a subprogram of T. Then for all .formulas <fi => p
and interpretations I

F S,/ <fi ::::> p implies F T,I cc ::::> p.

Proof We present only an informal argument leaving the formal details
to the reader. <ef! has to refer to a subprogram of S since otherwise
F= s,1 <ef! ::::> p is not defined.

Given a computation a of T we say that at the moment j the control in a
(or simply the control in (a,j)) resides within S if f=r/t''(a,j) holds for
some CC' refering to a subprogram of S.

Let O"EEr and suppose that for some Jo'r=r,1~(6,J0). Then at the
moment j 0 the control in 6 resides within S. Due to our definition of truth
of control formulas there exists i ~ Jo such that f= r.1 at S(6, i) and for all J
such that i ~ J <Jo ~ r,1 after S(6, J). (Note that this would not be the case
if we admitted go-to programs or other constructs breaking the control
flow). Let i0 be the least such i.

Consider now the computation a' of S which starts in the assignation
a[i0]. The following diagram clarifies the definition of a'.

s io 810
~-

the control
remains within S

LIVENESS PROPER TIES OF WHILE PROGRAMS 231

The computation a' passes in its first Jo - i 0 steps through the same
assignations and control points of S as a starting from a[i0]. More for
mally, for every control formula <6" refering to a subprogram of S a'[)] =
a[i0 + J] and I= s,1 '1€'(a',)) iff I= 7 /6"(a, i0 + J) for all J ~)0 - i 0 •

In particular I= 5 /6'(a', J0 - i 0). By the assumption I= s.1 p(a', Jo - i0),

i.e., l=1p(a'[j0 -io]), so l=1p(a[J0]) and l= 7 ,1p(a,J0). (Note that a
crucial observation used in this proof was that in the computation a the
control resides within S for all moments j such that i0 ~j~j0 .) I

LEMMA 3.2. Let S be a subprogram of T. Then for all liveness formulas q;
and interpretations I

I= s,1 <p implies I= r,1 <p.

Proof Once again we present only an informal proof. <p is of the form
<'&' A p--... '1€' A q for some control formulas ~and '1€' referring to sub
programs of S and some assertions p and q.

Suppose now that for some a EI: 7 and i 0 I= T.I ~A p(O', i0). We are to
prove that for some Jo:;:: i0 I= T,1 '1€' A q(a, }0).

Similarly as in the proof of Lemma 3.1 there exists a computation 0' 1 of S
and i such that I= s,1 '1€(0' 1

, i) and a'[i] = a[i0]. Thus also I= s,1 p(a', i) since
I= 7 ,1 p(a, i0), i.e., I= / p(a[i0]) holds. By the assumption for some
j;::il=s.1'1€' A q(a',J).

The computations a and a' pass through the same assignations and con
trol points of S during the moments l E {i 1, ••• , i 0 + }- i} and lE { i, ... ,)},
respectively. More formally for every control formula ~ 11 referring to a sub
program of S a[l] = a'[l + i - i 0] and I= TJ ~11 (0', l) iff I= s,1 '1€"(a', l + i- io)
for all l E {i 1 , ... , i0 + J - i}. ·

Thus I= 7/tf/' A q(a, i0 + }- i) because
CT[i0 + j- i] = a'[j]. This concludes the proof.

F S,/ <'&'' A q(a', })

I
and

We now return to the discussion of the definition of truth of after S.
Consider the programs S =a: x := 1 and T= S; S 1' where

S 1 =whilex<2 do/3: x := x + 1 od.

Let IN be the standard interpretation in natural numbers. Then I= s,1N after
S :::ix= 1 and I= TJN after S :::ix= 1.

However, according to the definition of truth of Owicki and Lamport
(1982), after S :::ix= l holds in the context of the program S whereas it
does not hold in the context of the program T. This follows from the fact
that after S ==at S 1 in the context of T. Thus Lemma 3.1 does not hold
when the definition of truth of Owicki and Lamport (1982), is adopted.
Also, in contrast to Owicki and Lamport (1982) most of the control points
cannot coincide during the execution of a program.

643/68/1-3-16

232 APT AND DELPORTE-GALLET

Similarly Lemma 3.2 does not hold with the definitions of Owicki and
Lamport (1982). To see this take 1.fJ =after S A x > 0,..... after S /\ x = 1.
Then f= s,1v <p and f= T.t.v <p. Applying the definitions of Owicki and Lam
port (1982) we get that <p holds in the context of S but it does not in the
context of T since ~ r,1 at S 1 A x > 0,..... at S 1 /\ x = 1. The formulas of the
form rt :J p will turn out to be needed in the proofs of liveness formulas.
Lemma 3.1 and a proof theoretic counterpart of Lemma 3.2 will be needed
in the completeness proof given later. The importance of Lemmas 3.1 and
3.2 lies in the fact that they allow to build proofs of desired formulas
incrementally by a gradual extension of the context. This could not be done
if the definitions of Owicki and Lamport (1982) were adopted. Note that
according to our definitions the formula after cc x := I ::::> x = l is true
independently of the context which is natural and desirable.

It should be noted that in our formalism more properties can be
expressed than in that of Owicki and Lamport (1982), as their definition of
"after S" can be easily expressed in our framework. We believe that our
definitions of after S even though more complicated is more natural.

4. EXPRESSIVENESS OF THE SYNTAX

A natural question to ask at this moment is what type of properties can
be expressed using the syntax we introduced.

First of all it is perhaps useful to see why formulas of the form 1-r C(s :J p,
1-T rt /\ p :J '{}' and 1-1.rt /\ p :::J <(,]' A q are needed when studying liveness
properties. Suppose that for some program T and interpretation I
f= T.I <t /\ p :J <t' /\ q which is the special case of F= 1 ,1 et,·· /\ p ,..... <fJ' A q. Then
both f= TJ <t A p :::J Cfi' and f= 7/&· ::i (p :J q) hold. Now, a natural
way to prove f= 7,1 Cfi A p,..... <(;., A q is to establish first f= r,1 <{;' A p ::i <t'
and F= r,1 Cfi :J (p :J q), 1.e., F= 7,1 <t A p ::::> q, cone! ude from this
f= T/t /\ p :J <t' /\ q and finally derive from the last formula

F T,/ <(j /\ p ,.... <(!' /\ q.

Thus the formulas of the form 1-r <{;' :::J p, 1-r <(;' /\ p :J <t" and
1-7 <ff /\ p :J <ff' /\ q naturally arise in the proofs of liveness properties.

The formulas of the form 1-r <t :J q allow to express some restricted but
nevertheless useful invariance properties.

Let I be a standard interpretation in natural numbers. Consider a
program T executed over I.

Suppose that an assignment ex: x := y/z is a subprogram of T and that we

LIVENESS PROPERTIES OF WHILE PROGRAMS 233

wish to express the fact that whenever this assignment is executed y is
divisible by z (z div y). This can be simply expressed by

f= r,1 at ix: x := y/z :::i (z div y).

The statement that a variable x always remains within the bounds 1,
max can be expressed by the conjunction of f= r 1 after S :::i 1 ~ x ~ max,
where S ranges over assignments within T of the f~rm x := t or much more

succintly by F= r,1 1 ~ x ~ max. (Note that f= r,1 p is equivalent to the con
junction of F= r,1 cg :::i p for Y6 ranging over all control formulas referring to
subprograms of T.)

Suppose now that we wish to express the fact that every variable of T
gets initialized. To this purpose it is useful to introduce a special constant,
say w and extend the interpretation I to lw which has one new element ro

being the interpretation of m and such that all terms containing variables
which get value ro in an assignation s evaluate in s to ro. Thus for example
if s(x) = ffi then s(x + 1) = c:o. Suppose also that all execution sequences of T
over /"' start in an assignation in which all variables of T get value c:o.

Then the property that all variables of T get initialized can be expressed

as the conjunction of f= r,1"' at /3: x := t ::::> t =I w for all assignments /J: x := t
being subprograms of T and f= r,1"' at S ::::> x 1 # w /\ · · · /\ x,. # w for all sub
programs S of T being of the form if b then S 1 else S2 fi or while b do S0 od
where x 1, ••• , xk is the list of all variables occurring in b.

Consider now liveness formulas. First, they can be used to express total

correctness of programs-f= r,1 at T /\ p--... after T /\ q states that T is
totally correct w.r.t. the assertions p and q.

Various other reachability statements can also be expressed. Consider for
example a while loop S being a subprogram of T. Then the statement that
S will eventually be exited whenever T is activated in an initial assignation
satisfying p can be simply expressed as F= r,1 at T /\ p--... after S. More
generally, reachability of a statement S under the initial assumption p is
expressed by f= r,1 at T /\ p--... at S. Such reachability statements are
especially useful when studying concurrent programs (see, e.g., Owicki and
Lamport, 1982).

We note that liveness formulas, as already observed by Pnueli (1977),
formalize the basic construct "if sometime p at 10 then sometime (later) q at
11" of the intermittent assertion method of Burstall (1974), (see also Manna

and Waldinger, 1978). Here 10 , / 1 are labels attached to subprogams of the
program in question. These constructs are especially useful when proving

total correctness of a certain type of programs and correctness of con
tinuously operating (or cyclic) programs.

It is interesting to note that partial correctness of programs cannot be

expressed using the syntax of the paper. It turns out the simpler safety

properties are already sufficient for proofs of liveness formulas.

234 APT AND DELPORTE-GALLET

5. A PROOF SYSTEM .'!' FOR PROVING FORMULAS OF THE FORM l-7 <efi ::::i p

As a first step towards obtaining a proof system allowing to prove
arbitrary liveness formulas we provide a proof system which deals with
simple safety formulas of the form 1- 7 "& ::::i p. We call this proof system .'!'.

Four types of formulas are allowed in the proof system: 1-r <g ::::i p,

f---y <(;' /\ p ::::i q, 1-1 <ff ::::i <ff' and p.

The system ,c;i consists of the following axioms and proof rules:

ASSIGNMENT RULE. Let S =cc x := t be a subprogram of T,

1-rat S::::i p[t/x]
R I. .

1-7 after S ::::i p

Here as usual, p [t/x] stands for the result of substituting t for the free
occurences of x in p.

CONCATENATION AXIOMS AND RULE. Let S= S 1 ; S2 be a subprogram

of T,

A I. .-rat S ::::i at S 1>

A 2. f---r at S 1 ::::i at S,

A 3. 1-r after S2 ::::i after S,

A 4. 1-r after S ::::i after S 2 ,

1-r after S 1 ::::i p
R 2. + .

f---rat S2 ::::ip

SELECTION RULES. Let S= if b then S 1 else S2 fi be a subprogram of T,

R 3.

R4.

R 5.

1-rat+ S 1 ::::i p /\ b'

1-rat S::::i p

1-rat+ S2 ::::ip /\ 1b'

1-1 after S 1 ::::i p, 1-r after S 2 ::::i r

1-1 after S::::i p v r

WHILE RULES. Let S =while b do S 0 od be a subprogram of T

R 7.

R 8.

1-rafter S::::i p /\ 1b

(1- 7 at+ S ::::i p, at S ::::i p 1-r after S 0 ::::i p

1-- 1 at S::::i p

LIVENESS PROPERTIES OF WHILE PROGRAMS 235

The second premise of rule R 8 means that there exists a proof of
1--T after S 0 :::i p in the system Y from the assumption 1--T at S :::i p. This
ensures that semantically p is an invariant of the body of the loop and
expresses in the system a property corresponding to { p /\ b} S 0 { p} in the
sense of Hoare's logic. Note however that for any I: 1--r {p /\ b} S0 {p}
implies [l= T,1 at S :::i p = l= TJ after S 0 :::.i p] but not necessarily conversely.

Intuitively, the premises of rule R 8 state the following two facts. First, p
holds when the control is for the first time at the beginning of the loop.
Secondly, p remains invariant by each execution of the body loop.

Finally we have

lNITIALIZA TION AXIOM.

A 5. 1-- 1 at T :::.i true.

We also adopt without mentioning all axioms and proof rules of the
classical logic concerning :::i and /\ applied to formulas allowed in the
system.

Recall that by Th(I) we denote the set of all assertions true in the inter
pretation !. We write 1--r/f/ :::i p to denote the fact that there exists a proof
of 1-- 1 Cf;' :::.i p in the system Y which uses some assertions from Th(I) as
axioms. If such a proof uses in addition the formula r-T <'{i' :::.i q as an axiom
then we write <fo' :::i q 1-- 1 .1 Cf5' :::i p.

6. SOUNDNESS AND ARITHMETICAL COMPLETENESS OF ff'

The proof system Y is sound in the sense of the following theorem:

THEOREM 1. For any interpretation !, program T from 'fr and a formula

CfJ' :::.i p [f 1-- 1 .1 <t6' :::i p then F= T.I <'{i :::.i p.

A precise proof of this theorem requires use of the techniques similar to
those of Section 3.7 of Apt (1981), to deal properly with rule R 8. The
details are straightforward and omitted.

We now prove completeness of the system Y. Ideally, we would like to
have an inverse of the implication stated in Theorem l: l= r.1 "5' :::i p implies
r-1,1 <'{i :::i p for all interpretations /, programs T from 'If/' and formulas
<'{i:::ip.

However, the proof requires definability of some assertions within I.
Consequently the above implication can hold only for sufficiently "rich"
interpretations. The situation is similar to the case of Hoare's logic
explained for example in Section 2.7 of Apt (1981).

First we introduce the following definition.

DEFINITION. Let T be a program from 'If/', I an interpretation and <'{i a

236 APT AND DELPORTE-GALLET

control formula. By the filter of<€ (w.r.t. T and J) we mean the following
set of assignations

fr.AC€)= {s: 3cr EL°r 3i(I= r./t'(cr, i) /\ s = cr[i])}

We also define the filter of a mixed formula et /\ p by

fr,1(<t /\ p)=fr.A<€)n [P]1,

where by definition [p] 1 = { s: I= / p(s) }. Thus,

fr,1(<€ /\ p) = {S: 3cr EL" r 3i I= r,1 <€ /\ p(a, i) /\ s = cr[i]) }.

Now, the completeness proof we present relies on the definability of
filters of all control formulas within I. This brings us to the notion of
arithmetical interpretations defined in Harel (1979). We recall the
definition:

Let L + be the minimal extension of the assertion language L containing
the language LP of Peano arithmetic and a unary relation nat (x). Call an
interpretation I of L + arithmetical if its domain includes the set of natural
numbers, I provides the standard interpretation for LP, and nat (x), is
interpreted as the relation "to be a natural number". Additionally, we
require that there exists a formula of L + which, when interpreted under /,
provides the ability to encode finite sequences of elements from the domain
of I into one element.

One of the examples of an arithmetical interpretation is of course the
standard interpretation of LP with nat (x) interpreted as x = x. Note that
any interpretation of L with an infinite domain can be extended to an
arithmetical interpretation of L +.

We can now formulate the completeness theorem.

THEOREM 2. Let I be an arithmetical interpretation and let T he a
program from 1(1. Then for any formula <€ ::i p, I= r,1 <6' ::i p implies
1--r,1 <{ ::i p.

The proof of the theorem requires several lemmas. We start our analysis
by investigating the notion of filters. It is easy to see that filters can be
defined within arithmetical interpret&tions. Given an arithmetical inter
pretation I and a program T from 1(1 we denote by FIL(<€) a formula
which defines the filter of~ in I, i.e., such that [FIL(<€)] 1 =/r.k6'). Of
course, FIL(~) depends on T and I but we do not indicate this dependence
to keep the notation simple. We also put FIL(~ A p) =FIL(~) A p,

The following lemma summarizes the properties of the formulas FIL(<€).

LEMMA 6.1. Let T be a program from 1(1 and I an arithmetical inter
pretation. Then we have

LIVENESS PROPERTIES OF WHILE PROGRAMS 237

(a) for S = cc x := t being a sub program of T

I= TJ FIL(at S) =FIL(after S)[t/x].

(b) for S = S 1 ; S 2 being a subprogram of T

I= TJ FIL(at S) = FIL(at S 1),

I= TJ FI L(after Si) ::i FIL(at S 2),

l=r.1 FIL(afterS 1)=FIL(at+ S 2)

I= r,1 FIL(after S 2) =FIL(after S).

(c) for S =if b then S 1 else S 2 fi being a subprogram of T

I= T.1 FIL(at S) /\ b ::i FIL(at Si),

I= r,1 FIL(at S) /\ b = FIL(at + Sil

analogous two conditions for S 2 ,

I= r.1 FIL(after S) =FIL(after Si) v FIL(after S 2).

(d) for S =while b do S 0 od being a subprogram of T

I= r.1 FIL(at S) /\ h ::i FIL(at S0),

I= r,1FIL(at S) /\ b =FIL(at+ S 0)

I= TJ FIL(at S) =FIL(at+ S) v FIL(after S 0),

I= TJ FIL(after S) = FIL(at S) /\ -ib.

(e) I= TJ FIL(at T).

Proof The proof is based on a straightforward analysis in terms of the

filters f 7 /'{}) and is left to the reader. I
Next we introduce the following simple notion.

DEFINITION. A control formula Cf;' is simple if it is not of the form at Sor

after S for S being of the form S 1 ; S 2 .

The relevance of the notion of filter is reflected by the following obvious
lemma.

LEMMA 6.2. Suppose that for all simple control formulas '{}

r-T.1 '{} ::i FIL('{}). Then Theorem 2 holds

Proof First note that I= r.1 '{} ::i p implies I= / FIL('{}) ::i p. Thus if
"r--r,1 '{} ::i FIL('{}) then r-r/fJ ::i p by the classical logic.

238 APT AND DELPORTE-GALLET

Suppose now that f= r.r CfJ :::i p for some <ii which is not simple. Then for
some simple 'fi' F= r.1 'fi = <f!' and F= r,1 rt/' ::::i p. By the above and the
assumption f-r,1 rt/' :::i p, so f-r,1 <f! :::i p by either Axiom A 1 or Axiom A 4.
This concludes the proof. I

The above lemma leads us to the consideration of the formulas of the
form <f! :::i FIL(<t') for simple <f/.

We now introduce the following definition.

DEFINITION. We define a partial ordering < on simple control formulas
at S or after S where S is a subprogram of T as the least ordering such
that:

(i) for S being an assignment statement

at S <after S,

(ii) for S being of the form S 1 ; S 2 ,

(iii) for S being of the form if b then S 1 else S 2 fi

at S <at S 1 ,

atS<atS2 ,

after S 1 < after S,

after S2 <after S,

(iv) for S being of the form while b do S 0 od

at S <at S0 ,

at S <after S.

Note. The ordering < corresponds to a natural ordering induced by
the directed graph representing the flowchart of T with nodes being the
control formulas and in which all edges causing cycles, i.e., edges leading
from after S 0 to at S for any subprogram S =while b do S 0 od of T are
removed. The above clauses identify all pairs <(!, 'fi' such that 'fi is a direct
< predecessor of 'fi' which is the case when <t'' can be reached from <(j by
executing T one step.

LEMMA 6.3. < is a well-ordering with the least element being at S where
T= S; S', S' is possibly empty and Sis not of the form S 1 ; S 2 .

Proof Obvious. I

LIVENESS PROPERTIES OF WHILE PROGRAMS 239

We now intend to prove the hypothesis of Lemma 6.2 by induction with
respect to the well-ordering < on simple control formulas. First we prove
the following lemma.

LEMMA 6.4. Suppose that CfJ is a simple control formula which is not of
the form at S for S being a while loop. Let {<t?;}i= 1, ...• m be the set of all direct
< predecessors of Cfl. Then

{ Cfl; ::J FIL(Cfl;)} i= I, .. .,m f-7.1 <(/ ::J FIL(Cfl).

Proof The proof is routine and we consider only a few selected cases. If
CfJ is of the form after S for S being of the form if b then S 1 else S 2 fi then CfJ
has exactly two direct predecessors: Cfl1 =after S 1 and Cfl2 =after S 2 •

Otherwise, it has exactly one predecessor CfJ 1 or zero if CfJ is the < least
simple control formula.

Case I. 'ff has no predecessors.
Then f= / FIL(Cfl) =true.
We have by Axiom A 2 f- 7./i5'=iat T so the claim follows by the

initialization axiom and the above observation.
We now consider a case when <ff has exactly one predecessor.

Case II. For S being of the form while b do S 0 od, 'fl1 =at S and
CfJ =at S 0 . Since by assumption S0 does not begin with a while loop, the
claim follows by rule R 6 and the fact that f= / FIL(at S0) =FIL(at S) A b.

Finally we consider the case when CfJ has two predecessors.

Case III. For S being of the form if bthen S 1 else S 2 fi, <i&'1 =afterS 1,

Cfl2 = after S 2 , and <~ = after S.
The claim follows by rule R 5 and the fact that

f= / FIL(after S) =FIL(after S 1) v FIL(after S 2).

The proofs of other cases are equally straightforward. I
The above lemma "almost" suffices to prove the hypothesis of

Lemma 6.2. The only problem that remains is the case of simple control
formulas of the form at S for S being a while loop.

To handle this case we need two more lemmas.

LEMMA 6.5. Let S =while b do S 0 od be a subprogram of T. Assume

at+ S 0 ::JFIL(at+ S0)r-7,1afterS0 ::JflL(afterS0).

Then

at+ S =i FIL(at+ S) r- 7 ,1 at S =i FIL(at S).

240 APT AND DELPORTE-GALLET

Proof We have at+ S0 =at S 11 b so

at S ::J FIL(at S) f-r,1 at+ S0 :::i FIL(at+ S0).

Hence by the assumption

at S ::J FIL(at S) r- after S0 ::J FIL(after S0).

But f= / FIL(after S0) ::i FIL(at S) so

at S::i FIL(at S) r-r,1 after S0 :::i FIL(at S).

Now by rule R 8 and the fact that f= / FIL(at+ S) :::i FIL(at S) the claim
follows. I

The next lemma proves the assumption of Lemma 6.5.

LEMMA 6.6. For all subprograms S of T

at+ S:::i FIL(at+ S) r-r,1 after S:::i FIL(after S).

Proof The proof proceeds by induction on the structure of S. It is com
pletely routine and left to the reader. I

Finally we prove

LEMMA 6.7. Let S= while b do S0 od be a subprogram of T and let (e be
a direct < predecessor of at S. Then

Cefi' ::J FIL(rt) 1--r.1 at S :::i FIL(at S).

Proof By Lemmas 6.5 and 6.6 we get

at+ S :::i FIL(at+ S) r- 1 .1 at S :::i FIL(at S).

It is now enough to show that

(5)

This can be shown by distinguishing two cases.

Case I. at+ S = <(J. This case arises when S is preceded within T by
another subprogram.

Case II. For some b at+ S = <(j 11 b. This case arises when S occurs
within T within the context while b do S(; S 1) od, if b then S(; S 1) else S 2 fi
or if b then S 1 else S(; S 2) fi.

In both cases the claim is obvious. I
This brings us to the end of proof of Theorem 2. Namely due to Lem

mas 6.4 and 6.7 we get the assumption of Lemma 6.2 by applying the

LIVENESS PROPERTIES OF WHILE PROGRAMS 241

induction w.r.t. the ordering < on simple control formulas. (The case when
~=at S for a while loop S such that ~ has no predecessors is handled as
Case I of Lemma 6.4). Now thanks to Lemma 6.2 theorem holds.

7. A PROOF SYSTEM .P FOR PROVING LIVENESS FORMULAS

Finally, we present a proof system which is designed to prove the
liveness formulas, i.e., formulas of the form t--r µ 1 µ2. We call this system
.P. In the system .P we allow formulas of the form t--r µ 1 ::::i µ2 and
t--Tµl ""Tµz.

The system .P contains all axioms and proof rules of !/ and additionally
the following new axioms and rules which can be naturally divided into
two parts. The first part consists of

ASSIGNMENT AXIOM. A 6. f--T at s /\ p[t/x J ---+ after s /\ p, where
S =ex: x := t is a sub program of T.

CONCATENATION AXIOM. Let S 1, S2 be a subprogram of T

A 7. t--r after S 1 /\ p---+ at S2 /\ p.

SELECTION AXIOMS AND RULES. Let s =if b then s I else s 2 fi be a sub
program of T:

A8. f--ratSAp/\b---+atS 1 Ap

A9. t--ratSAp/\1b atS2 /\P

A 10. t--rafterS1 /\ p---+afterS /\ p

A 11. f--r after S2 /\ p after S /\ p

t--r after S 1 ::::i p
R 9. f f--r after S2 " 1 p---+ a ter S /\ --, p

t--r after S2 ::::i p
R 10. .

t--r after S 1 /\ 1 p --.. after S /\ --, p

WHILE AXIOMS AND RuLE. Let S =while b do S0 od be a subprogram
of T.

A 12. f--r after S0 /\ p---+ at S /\ p

A 13. t--r at S /\ p /\ b at S0 /\ p

A 14.

R 11.

t--r at S /\ p /\ 1b---+ after S /\ p

t--rat S " p(n + 1) ::::i b, t--rat S0 /\ p(n + 1) ---+ after S0 /\ p(n)
f--rat S /\ 3np(n) ..--. at S /\ p(O)

242 APT AND DELPORTE-GALLET

The above axioms specify how the control moves through the program.
Rule 11 shows how to prove the liveness properties of the while loops. It is
an obvious adaption of the rule given in Hare! (1979), appropriate for
proving termination of while loops.

The second part axiomatizes the "~" operator and shows how to
manipulate the liveness formulas. It consists of the following rules:

R 12. Reflexivity rule,

R 13. Transivity rule,

1-r µ1~µ2,1-r µ2 ~ µ3

1-Tµl~µ3

R 14. Confluence rule,

1-r µ1 /\ b ~ µ2, 1-r µ1 /\ 1b ~ µ2

1-TµI ~ µ2

As usual, we also adopt all axioms and classical logic concerning ::i and
/\ and applied to all formulas allowed in the system 5£1.

8. ARITHMETICAL SOUNDNESS AND COMPLETENESS OF !/1

In order to prove soundness of the proof system !.£ we should interpret
its formulas in a model. However, not all models arc appropriate here. The
reason is that the while rule R 12 refers to natural numbers. To ensure a
correct interpretation of this rule we should restrict ourselves to models
which contain natural numbers. An appropriate class of such models is the
one corresponding to arithmetical interpretations. Note that the system :£1
is appropriate only for the assertion languages of the form L +, and an
expression such as p(n + 1) is actually a shorthand for

p(n + l) /\ nat (n + I).
The appropriate formulation of the soundness of.:£ is thus given by the

following theorem.

THEOREM 3. Let I be an arithmetical interpretation and let T he a
program from ifl. Then for any liveness formula <p 1-r.1 implies f= r.1 <p.

Here 't--r,1 <p stands of course, for the fact that there exists a proof of <p
within !£' which uses some assertions from Th(I) as axioms.

To prove this theorem it suffices in view of Theorem 3 to prove validity

LIVENESS PROPERTIES OF WHILE PROGRAMS 243

of the newly introduced axioms and soundness of the new while rule R 12.
The proofs are straightforward and left to the reader.

We now turn to the issue of completeness of ff'. Let .!/'1 denote a sub
system of ff' which contains all axioms and proof rules which do not deal
with formulas of the form 1-r <c ::i p. More precisely .!/'1 consists of the
axioms A 1-A 4 and A 6-A 13 proof rules R 9-R 11 and the classical logic
part of ff'. Thus .!!'1 and ff' have in common only the concatenation axioms
(apart of the classical logic part). We stress the hierarchical structure of ff?
by proving a relative completeness of !.fi w.r.t. ff'. Let

ff'(T, I)= { 1-r <t ::i p: f= r,1 CC ::i p} u Th(I).

Now by !l'(T, I) 1-2 • 1 <p we denote the fact that there exists a proof of
1-r <p in .!!'1 which uses some of the elements of!!'(T, I) as axioms.

We now prove the following theorem.

THEOREM 4. Let I be an arithmetical interpretation and let T be a
program from "fr. Then for an liveness formula cp f= r,1 <p implies
!l'(T, I) 1--21 <p.

This theorem together with Theorem 2 implies the following corollary.

COROLLARY (arithmetical completeness of ff?). Let I be an arithmetical
interpretation and let T be an program from "ff'. Then for any liveness for

mula <p f= r,1 <p implies 1--r,1 <p.

The proof of the theorem relies on the following important lemma which
is a proof theoretic counterpart of Lemma 3.2.

LEMMA 8.1. Let S be a subprogram of T and I an interpretation. Then
for any liveness formula <p !l'(S, I) 1-y1 <p implies !l'(T, I) l-_p 1 <p.

Proof Consider a proof of 1-5 <p in 2 1 from the set of assumptions
!l'(S, !). By Lemma 3.2 all these assumptions are also elements of Y'(T, !).
Now replacing everywhere in the above proof "1-8" by "1-r" we obtain a
proof of 1-r <p in .!!'1 from the set of assumptions !/'(T, I). I

We shall also need the following lemmas and notions.

LEMMA 8.2. For any program T and arithmetical interpretation I
F= r,1 'I&' /\ p ::i <fi'' /\ q implies !/'(T, I) 1-2 ., CC /\ p ~ <tl' /\ q.

Proof It is easy to see that Y'(T, I) 1-21 <(] ::i CC'. Also

!!'(T, I) 1--21 'I&' A P ::i q.

Thus by the classical logic Y'(T, I) 1-_,., 1 <If /\ p ::i <{}' /\ q so
Y'(T, I) 1-!!', <tl /\ p ~CC' /\ q by the reflexivity rule R 12 I

For a subprogram S of T let <ti'(S) stand for the set of all control for
mulas refering to a subprogram of S.

244 APT AND DELPORTE-GALLET

LEMMA 8.3. Let S be a suhprogram of T and let I he an arithmetical
interpretation. Suppose that for all liveness formulas <p F= s,1 <p implies
Y'(S, I) 1-..1!' 1 <p. Then for any <fi', 'Ii' E'li(S) and assertions p and q if

\f (J E..[T \f i[F T,I 'Ii /\ p((J, i) =>

3j;;?; i[f= r,1 <t 1\ p(a, j) /\ V k(i,;;; k < j => f1i: r.1 after S(a, k) J] (I)

then Y'(T, I) 1-y1 <t A p--+ <fl' A q.

Proof Note that the condition (1) simply states that '{; A p "leads to"
<(}' A q without leaving S.

Consider the following set of states:

A= {s:3aE.Er3i,j[i<j A p 7 /6' A p(a, i)

A l;t=r/6'' /\ q(a, i) /\ FT,1<fi'' A q(a,j) /\ s=a[i]J}.

Since I is arithmetical, there exists an assertion r which defines A in I. It
is easy to see that

By Lemma 8.2

Y'(T, I) 1-2·1 <t APA,,,.... <t' A q. (2)

We now show that

F sJ <g /\ p /\ r-. <t' /\ q (3)

It is instructive to note that f= sJ <~/ /\ p -. <t' /\ q does not need to hold.
To see this consider the program T= a: x := 1; S where S = {J: x := x + 1.
Then for the standard interpretation IN

F= r.1N at S /\ true....-. after S A x = 2 but obviously

i;t=s,1N at SAtrue-.after SAx=2. Note that (3) holds for <():atS,
<t' =after S, p =true and q =x = 2. We have here r = x = 1 and

f= s,1N at S A x = 1 -. after S /\ x = 2.

However there are more subtle cases which require to exercise some
caution. Let T=a:x := 1; Swhere S=whilex<2 do {J: x :=x+ 1 od. Then
f= TJN at S /\ x,;;; 2,...... after {3: x := x + 1 whereas obviously

If s,1N at S /\ x,;;; 2,...... after /J: x := x + 1

(take the initial state with x = 2). We have here r = x ~ 1 and f= s,1N at
S /\ x,;;; 1 ""after {3: x := x + 1.

To prove (3) take some a' E .Es and suppose that for some
k Fs,1<6' /\ p /\ r(a', k). Since f== 1 r(a'[k]), by the definition of r there

LIVENESS PROPERTIES OF WHILE PROGRAMS 245

exists a EI: r and i such that a[i] = a'[k], f= ri <if(a, i) and
FT.I 'ti" " q(a, i). Since F= 1 p /\ r(a' [k]), we actually have ·

F= r,1 <ff /\ p /\ r(a, i).

By (1) there exists j satisfying the appropriate conditions. The com
putations a and a' "pass through" the same assignations and control points
of S during the moments i + 1, .. ., j and k + 1, .. ., j + k- i, respectively.

Th us F= s,1 <(?' /\ q(a', j + k - i) since f= T.t <if' /\ q(a, j).
This proves (3). Now by the assumption of the lemma

/l'(S, I) 1-..'f', <(}" p" r,.... <ff'" q.

By Lemma 8.1

Now (3) and (4) imply the claim by the confluence rule R 15. I

Finally we introduce the following notions.

(4)

DEFINITION. Let S be a subprogram of T, I an arithmetical inter
pretation andµ a mixed formula. We define the following two sets of states.

pre 5 (µ)={s:VaEL'rlfi[(s=a[i] /\ l=r.1atS(a,i))

= :J j[i~j /\ f= r.1 µ(a, j) /\ V k(i < k ~j= ft= r.1 at S(a, k))]]},

post 5 (p)= {s: :lO"ELr:li,j

[i ~ j /\ I= r,1 µ(a, i) /\ I= r.1 after S(a, j) /\ V k

i < k ~J= ft= T.I after S(a, k) /\ s = a[j] J}

Of course both sets depend on T and I. Since I is arithmetical, there
exists assertions PRE8 (µ) and POST 5 (µ) which define in I pre 5 (µ) and
post 8 (µ), respectively.

The following diagrams clarify the definitions of PREs(µ) and
POSTs(µ):

... at S ... at S /\ PRE5{µ) µ
a:

j

µ after S /\ POST s(µ) ... after S . ..
O":

j

The following lemma summarizes the properties of PREs(µ) and
POST s(µ).

246 APT AND DELPORTE-GALLET

LEMMA 8.4. Let S, T, I and µ be as above. Then

(a) I= r,1 at S /\ PREs(µ) ..-.. µ,

(b) If I= T,I µ ~ after S then I= r,1 µ ~ after S /\ POST s(µ).

Proof. Left to the reader. I
We now proceed with the proof of Theorem 6. Suppose that

I= r,1 CC " p ~ <i&'' /\ q. By Lemma 8.2 we can assume that

f;l= T,I ~ /\ p :J C(i' /\ q. (*)

We now prove the claim by induction on the structure of T. For each
type of T we first list all the cases which have to be considered.

Case I. T is of the from ex: x := t.

Cfi =at T, Cfi' = after T.

Case II. T is of the form S 1 ; S2

(a) Cfi =at T, <{}' =at T,

(b) CC= at T, <{}' E <if(S i),

(c) <if= at T, <{}' E <if(S2),

(d) <if= at T, <{}' =after T,

(e) <if, Cfi' E <if(S 1),

(f) <if, <i&'' E<if(S2),

(g) <if E <if(S1), <if'= after T,

(h) <if E <if(S,), <if' E <if(S2).

(i) <{} E <if(S2), <if'= after T.

Case III. Tis of the form if b then S 1 else S2 fi. Let iE {1, 2}.

(a) <i&'=:atT,<{}'E<if(S;),

(b) <if= at T, <{}' =after T,

(c) <if,<if'E<{}(S;),

(d) <ifE<if(S;), <if'=after T.

Case IV. T is of the form while b do S od

(a) <i&' = at T, <{}' =at T,

(b) CC = at T, <{}' = after T,

(c) cc, CC' E <if(S),

(d) <if= at T, <{}' E <i&'(S),

(e) <if E <if(S), <{}'=at T,

(f) CC E CC(S), <{}'=after T.

LIVENESS PROPERTIES OF WHILE PROGRAMS 247

The other cases cannot arise since we assumed (*). For example if in
Case III <fJE<fJ(S;) and <6''E<t(S3 _;) then necessarily FT,1<e /\ p:::ifalse so
I= T,1 <(;' /\ p :::l <(}' /\ q.

We now proceed with the proofs of selected cases. To simplify the
notation we write 1-r <p instead of::?(T, I) 1-2 1 1 <p.

Case II. First note that we can reduce the cases refering to at T or after
T to the other ones. Indeed, we have F= r,1 at T= at S 1 ,

I= TJ after T = after S 2

and also by the concatenation Axioms A 1-A 4 1-T at T= at S1 and
1-Tafter T= after S2 •

We are thus left with cases (e), (f), and (h):

ad (e) We then have I= s 1,1 <fJ /\ p ~ <(}' /\ q so by the induction
hypothesis l-s1 <(} /\ p ~ <(!' /\ q and by Lemma 8.1 1-T <(} /\ p ~ <fJ' /\ q.

ad (f) Clearly (1) holds for S = S 2 . Also thanks to the induction
hypothesis the other assumption of Lemma 8.3 holds. The claim is now the
conclusion of Lemma 8.3.

ad (h) Any execution sequence <J EI: T has to "pass through" after S 1

and at S 2 in order to "realize" <(5' /\ q after having "realized" <(! /\ p. We
thus have I= r/C /\ p ~after S1 and by Lemma 11.4

Fr,1<(! /\ p~afterS 1 /\ POSTsJ<fJ /\ p).

We get now by Case II(e)

1-T <fJ /\ p ~after S 1 /\ POST sJ<t' /\ p). (5)

Also it is easy to see that I= TJ at S 2 /\ POSTs2('1&' /\ p) ~ <(!' /\ q. We get
now by Case II(f)

(6)

Finally by Axiom A 7, classical logic, the reflexivity rule R 12 and the
transitivity rule R 13

1-rafterS1 /\ POSTs1('67 /\ p)~atS2 /\ POSTs2('67 /\ p). (7)

Combining (5)-(7) by the transitivity rule R 13 we get the desired result.

Case III. ad (a) Suppose i = 1. We clearly have

f= s1,1 at S 1 /\ p /\ b ~ '67' /\ q.

Thus by the induction hypothesis and Lemma 8.1

643/68'1-3-!7

248 APT AND DELPORTE-GALLET

Also by the selection Axiom A 8 used with p " b in place of p
f-r at TA p A b ~ at S 1 A p /\ b. Thus by the transitivity rule R 13

f-rat TA p /\ b~CC' /\ q. (8)

Also note that I= r,1 at T A p ~ CC' A q implies I= r.1 at T A p ~ at S 1 so
I= r,1 at TA p ::i b. Thus r--r at T A p ::i b so by the classical logic and the
reflexivity rule R 12

f--r at T /\ p ~ at T A p /\ b. (9)

Combining (8) and (9) by the transitivity rule R 13 we get now the
desired result.

For i = 2 the reasoning is analogous.

Case IV ad (a) Let n be a fresh variable. Consider the following set of
states: C={s:l= 1 nat(n)(s)A3crEL'r[s = cr[O] /\ l=r,1atT(O",O)A
3/[l=r,1atT A q(cr,/) /\VJ< ll=Fr,1atT /\ q(O",j) A #{J:j<l /\
l=r.1 at T(a,j)} =k]], where k=s(n)}.

By #K we denote the cardinality of the set K. Thus sE C iff s(n) is a
natural number, say k, such that the loop in T is executed exactly k times
when started in the assignation s before reaching for the first time the
assignation s1 which satisfies q.

Since the interpretation I is arithmetical there exists an assertion r(n)
which defines C in I.

a:

The following diagram illustrates the definition of r(n):

after S after S
at TA 1q at S

0 an executiOiiOf S

r(n) r(n- 1) r(1)

One can easily check that

I= r,1 at T A r(n + 1) ::i b,

l=s,1 at S /\ r(n + 1) ~after SA r(n),

I= r,1 at T /\ r(O) ::i q,

and

I= r,1 at T /\ p ::i 3 nr(n).

at TA q

I

r(O)

We thus have r--rat TA r(n + 1) ::i b; by the induction hypothesis and
Lemma 11.l f-r at S /\ r(n + 1) ~after S A r(n) and f-r at T /\ r(O) ::i q
and f-r at TA p ::i 3 nr(n). The first two formulas imply by the while-rule
R 12 r--rat T /\ 3nr(n)~at T /\ r(O). The other two formulas imply by

LIVENESS PROPERTIES OF WHILE PROGRAMS 249

rule R 13 and the classical logic 1-r at T A r(O) ~ at T A q and
r-r at TA p ~at TA 3 nr(n). Combining the last three formulas by the
transitivity rule R 13 we get the desired result.

ad (c). This is the case with the most complicated proof. Consider the
following set of states

A= {s:3ae .Er3i, j, k[i~j <k A I= r.1 <€A p(IJ", i) A I= r,1 after S(a, j)

A I= r,1 <€' /\ q(a, k) /\ V l(i ~I< k = l;6= r.1 "6' /\ q(IJ", /))As= a[i]] }.

Thus s e A iff there exists an execution sequence a which reaches s at a
moment i and

(a) at this moment "6 /\ p holds,

(b) at some later moment ~, /\ q holds, but only after the control
has temporarily left S.

Because I is arithmetical, there exists an assertion r which defines A in J.
It is easy to see by the definition of r that any execution sequence a e .Er
which "reaches" "6 /\ p A r will also "reach" "6' A q after the control has
temporarily left S, i.e., after some number passes "through" at T.

Thus each execution sequence a from .Er which reaches "6 /\ p A r is of
the form

after Sat T· ··at Tat S <{!' /\ q . ..

j
~

the control
remains within S

k -----the control
remains within S

This implies by the definition of POST s(µ) and PREs(µ) that

l==r,1"6 /\ p A r~afterS /\ POSTs(<{f /\ p Ar), (10)

I= r,1 after S /\ POSTs(CC /\ p /\ r) ~at T /\ POST s(~ A p /\ r), (11)

I= r,1at T /\POST 5(~ /\ p Ar)~ at TA PRE5("6' A q), (12)

I= r,1at TA PREs(~' A q),..... at SA PREs(<{f' A q), (13)

I= r,1at S /\ PRE5 (<{f' /\ q) r-+"6' I\ q. (14)

We now show that everywhere in (10)-(14) we can replace l=r,1 by r-r.
Consider (10) first. It is easy to see that (1) is satisfied for the

appropri~e control formulas and assertions. We can now replace I= r,1 by
r-r thanks to the induction hypothesis and Lemma 8.3.

In (11) we can replace I= r,1 by t-r due to the while Axiom A 12.

250 APT AND DELPORTE-GALLET

In (12) we can replace l=r.r by 1-7 by the Case IV(a).
To deal with (13) first note that (13) implies

I= T.t at T /\ PREs('ffi'' 11 q) ::i b.

Thus by the classical logic and the reflexivity rule R 12

1-Tat T 11 PREs(r.f' /\ q),.... at T /\ PRE 5 (r.f' I\ q) /\b.

On the other hand by the while Axiom A 13,

1-7 at TA PRE 8 ('1J" 11 q) 11 b,.... at SA PRE 5 (cti'' /\ q).

Thus by the transitivity rule R 13

1-1 at T /\ PRE 8 (r6'' 11 q),.... at S I\ PREs(r6' /\ q) as desired.

Finally, to deal with (14) it is sufficient to observe that (I) holds for the
appropriate assertions and by the induction hypothesis the conclusion of
Lemma 8.3 holds.

Combining now (10)--(14) with I= r,1 replaced by 1-1 we get

1-r 16' /\ p /\ r,.... rt::' /\ q. (15)

On the other hand, by the definition of r the condition (1) is satisfied
with p replaced by p /\ 1 r. We thus have by the induction hypothesis and
Lemma 8.3,

1-r !(;' /\ p /\ 1 r,.... 'C' /\ q. (16)

The claim now follows from (15) and (16) by the confluence rule R 14.
The proofs of other cases are similar and omitted. This concludes the

proof of Theorem 4. I

9. CONCLUSIONS

The axioms and proof rules we provided allow to formalize in a natural
way informal proofs of (here considered) safety properties and liveness
properties. Moreover the completeness proofs provide heuristics which can
be helpful when trying to prove specific properties.

For certain type of properties some other axioms and proof rules are
useful or needed and their use can lead to simpler and shorter proofs.

First, consider safety properties discussed in Section 4.
To prove statements of the form 1-7 p, like for example r- 7 1 ~ x ~ max,

we need the following obviously sound rule

r-r r& ::i p for all <(J E '??(T)

1-Tp

LIVENESS PROPERTIES OF WHILE PROGRAMS 251

(Recall that IC(T) stands for the set of all control formulas referring to a
subprogram of T).

To deal adequately with the statement that all variables x 1, ••• , xk of T get
initialized only interpretations of the form !"' and execution sequences
starting in assignations -~such that -~(X 1) = · · · = -~(xd = w should be con
sidered.

Consider now liveness properties. A closer look at the correctness proofs
provided in Burstall (1974) and Manna and Waldinger (1978) shows that
transfinite induction and an instantiation rule applied to liveness formulas
is used there. These rules are absent in our repertoire. They have the
following form:

INDUCTION RULE.

(V {k !Y. f-r <p({J)) ::i 1-r cp(!Y.}

1-r<p(!Y.)

where !Y., P range over ordinals (or a well-ordering) and do not occur in T.

INSTANTIATION RULE.

where x does not occur in T.

In both cases cp stands for a liveness formula.
A successful use of the intermittent assertion method seems to hinge on

the use of the above two proof rules.
Once the induction rule is allowed a simpler completeness proof of the

system !!' can be given following the lines of the proof given in Pnueli
(1977). Such proofs however, are not syntax directed and consequently are
only of a limited interest.

If we are interested in proving more complicated safety properties then
first the syntax should be extended by allowing the "always" operator
"D cp" defined by

I= r.1 D cp(a, i) iff V j ~ i I= r.1 cp(<J, }).

Using this operator partial correctness of T w.r.t. p and q can be
expressed by I= r.1 at T /\ p ::i D (after T :::::i q).

A proof system adequate to prove partial correctness can be obtained by
a simple modification of the system Y. It suffices to replace every axiom
1-T <p by 1-r at T /\ p ::i D cp and all rules of the form

1-r <fJ 1, ... , 1-T (/J k

1-r q>

252

by

APT AND DELPORTE-GALLET

1--r at T" p :::> 0<p 1, •. ., 1--r at T /\ p :::> 0 <p k

1--r at T /\ p :::> 0 <p

Similar changes should be applied to rule R 8 whose second premise
should now read: at T" r :::> 0 (at S :::> p) 1--r at T /\ r :::> D (after S0 :::> p).

We stated in the introduction that we provide in this paper a basis for
studying temporal properties of structured programs. But a closer look
both at the proof systems and completeness proofs, reveals that only one
temporal operator has been used throughout the paper viz. the "~"
operator. Consequently, knowledge of temporal logic is not needed to
follow the arguments. The paper can be viewed as an effort to axiomatize
the "~" operator. When studying this operator applied to sequential
programs temporal logic can be ignored.

The situation changes when we pass to concurrent pograms. Consider
for example parallel while-programs with shared variables. Liveness proper
ties of such programs were studied in Owicki and Lamport (1982).

In the case of these programs various axioms and rules are not any more
sound. As an illustration consider Axiom A 13:

1--r at S /\ p /\ b ~at S0 /\ p,

where S =while b do S0 od is a subprogram of a parallel program T.
Now this axiom is not any more valid since the condition p " b does not

need to hold at the moment when S is actually activated. As a result we
cannot even be sure that at S0 will eventually hold. An appropriate remedy
would be to replace this axiom by the following rule:

1--r at S" p" b :::>(at S" p" b) 0lt(1 at S)
1--r at S /\ p /\ b ~at S0 /\ p

whose premise states that once at S " p /\ b holds the condition p " b
remains true until the component of T containing Sis once again activated.
"O/l" is the "until" operator of temporal logic defined as follows (see, e.g.,
Manna and Pnueli, 1981):

p r,1 <poUt/J(a, i) iff 3k;;:: i[p r,1 l/t(a, k) /\ V j(i ~j < k => p r. 1 <p(a,j))].

Analogous modifications deal adequately with other axioms of the proof
system ff'. We find that corresponding axioms and rules of Owicki and
Lamport (1982), do not seem to capture adequately the problem of inter
ference of other components. For example the corresponding modification
of Axiom A 13 proposed there is (essentially)

1--r ((at S /\ p /\ b) /\ 0 (at S:::> p /\ b)) ~at S 0 /\ p,

but the assumption D (at S :::> p " b) seems to be too strong a requirement.

LIVENESS PROPERTIES OF WHILE PROGRAMS 253

In our future work we intend to extend the results of this paper to the
case of parallel while-programs with shared variables and CSP programs of
Hoare (1978).

ACKNOWLEDGMENTS

We thank A. Pnueli for proposing the title and providing encouragement during the initial
stage of this work, D. Lehmann for suggesting a simplified completeness proof of the system
!f', and the referees for their comments which helped to improve the presentation.

RECEIVED October 18, 1983; ACCEPTED June 20, 1984

REFERENCES

APT, K. R. (1981), Ten Years of Hoare's Logic, a survey, part I TOP LAS, 3, No. 4 431-483.
APT, K. R., AND DELPORTE C. (1983), An axiomatization of the intermittent assertion method

using temporal logic (extended abstract) in "Proc. lOth Colloq. ICALP," Lectures Notes in
Comput. Sci. Vol. 154, pp. 15-27, Springer-Verlag, Berlin/New York.

BuRSTALL, R. M. (1974), Program proving as hand simulation with a little induction, in
"Proc. IFIP" Vol. 74, pp. 308-312, North-Holland, Amsterdam.

BARRINGER, H., KUIPER, R., AND PNUELI, A. (1984), Now you may ompose Temporal Logic
Specification, in "Proc. 16th Annu. ACM Symp. on Theory of Comput.".

GERTH, R. (1984), Transitive Logic or how to reason about temporal properties of programs
in a compositional way, in "Proc. 16th Annu. ACM Symp. on theory of comput.".

HAREL, D. (1979), "First-Order Dynamic Logic," Lecture Notes in Comput. Sci. Vol. 68,
Springer-Verlag, Berlin/New York.

HENNESSY, M. C. B., AND PLOTKIN G. D. (1979), Full abstraction for a simple programming
language, in "Proc. 8th Sympos. MFCS," Lecture Notes in Comput. Sci. Vol. 74,
pp. 108-120, Springer-Verlag, Berlin/New York.

HOARE, C. A. R. (1969), An axiomatic basis of computer programming, Comm. ACM, 12,
No. 10, 576-580.

HOARE, C. A. R. (1978), Communicating sequential processes, Comm. ACM 218, 666-fi77.
LAMPORT, L. (1980), The "Hoare Logic" of concurrent programs, Acta Inform. 14, No. 1,

21-37.
MANNA Z., AND PNUELI A. (1981), Verification of concurrent programs; The temporal

framework, in "The Correctness Problem in Computer Science," Internal. Leet. Ser. in
Comput Sci., Academic Press, New York/London.

MANNA Z. AND PNUELI A. (1982), Verification of concurrent programs; Temporal proof prin
ciples, in "Logic of Programs," Lecture Notes in Comput. Sci. Vol. 131, pp. 220-252,
Springer-Verlag, Berlin/New York.

MANNA Z. AND WALDINGER R. (1978), ls "Sometime" sometimes better than "Always"?,
Comm. ACM, 21, No. 2, 159-172.

OwICKI S. AND LAMPORT L. (1982), Proving liveness properties of concurrent programs
TOP LAS, 4, No. 3, 455-495.

PNUELI, A. (1977), The temporal logic of programs, in "Proc. 18th Sympos. FOCS," pp.46-57,
IEEE, Providence, R.I.

