
Countable Nondeterminism and Random Assignment

K.R.APT

Laboratorie lnformatique Theorique et Programmation, Universite Paris 7, Paris, France

AND

G. D. PLOTKIN

University of Edinburgh, Edinburgh, Scotland

Abstract. Four semantics for a small programming language involving unbounded (but countable)
nondeterminism are provided. These comprise an operational semantics, two state transformation
semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition
semantics. Their equivalence is proved. A Hoare-like proof system for total correctness is also introduced
and its soundness and completeness in an appropriate sense are shown. Finally, the recursion theoretic
complexity of the notions introduced is studied. Admission of countable nondeterminism results in a
lack of continuity of various semantic functions, and this is shown to be necessary for any semantics
satisfying appropriate conditions. In proofs of total correctness, one resorts to the use of (countable)
ordinals, and it is shown that all recursive ordinals are needed.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification-correctness
proofs; D.3.1 [Programming Languages]: Formal Definitions and Theory-semantics; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs-control primitives

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Continuity, fairness, nondeterminism, powerdomains, predicate
transformers

1. Introduction

One of the natural assumptions concerning the execution of a nondeterministic or
parallel program is that of fairness. In its simplest form it states that no process is
forever denied its turn for execution. The assumption offaimess implies unbounded
nondeterminism. To see this, consider the well-known. program

b := true; x := O;
do b ~ x := x + 1 o b ~ b := false od

(see Dijkstra [16, p. 7 6]), which always terminates, under the assumption of fairness,
and assigns to x an arbitrary natural number depending on the sequence of

This work was supported in part by a grant from the Science Research Council.

Authors' addresses: K. R. Apt, LITP, Universite Paris 7, 2 Place Jussieu, 75221 Paris, France;
G. D. Plotkin, Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ
Scotland.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy othetwise, or to republish, requires a fee and/or specific permission.
© 1986 ACM 0004-5411/86/1000-0724 $00.75

Journal of the Association for Computing Machinery, Vol. 33, No. 4, October 1986, pp. 724-767.

Countable Nondeterminism and Random Assignment 725

execution steps. What is more, every nondeterministic program of this kind can be
translated into an appropriate unbounded nondeterministic program using the
random assignment command x := ? which sets x to an arbitrary integer (5, 29].
This close relation between fairness and unbounded (but countable) nondetermin­
ism motivates us to a thorough study of the latter. As is well known, unbounded
nondeterminism results in a lack of continuity of various semantic functions. For
example, in Dijkstra [16, chap. 9], one can find an argument showing that admitting
unbounded nondeterminism results in a noncontinuity of the weakest precondition
semantics. On the other hand, Boom [11] realized that this weakest precondition
semantics still can be straightforwardly defined by considering least fixed points of
monotone, but noncontinuous functions. Both Broy et al [12] and Back [8] gave
semantics for unbounded nondeterminism, employing variants of the discrete
powerdomains in (30]. The former paper used least fixed points, but the latter only
used the first w iterates (and the subsequent difficulties motivated other, continuous
semantics-see also Back [9]). Similar issues are addressed in Park [28, 29] where
the assumption of fair merging is also analyzed.

In other papers the issue of complexity of these properties is raised. In particular
Chandra (13] has shown that the halting problem for programs admitting un­
bounded nondeterminism, being complete II I, is of higher complexity than truth
in the standard model of natural numbers, being Lil. Similar results concerning
various assumptions of fairness and inevitability about simple nondeterministic
programs were proved in Emerson and Oarke [17].

In the present paper we try to consider all these issues together, concentrating
on a simple programming language with atomic commands allowing countable
nondeterminism (such as random assignment). In Section 2 we discuss discrete
powerdomains and their associated state transformation functions considering both
the Egli-Milner ordering and the Smyth ordering. The section concludes with a
systematic presentation of predicate transformers that adapts Dijkstra's healthiness
conditions to the present framework and shows the isomorphism with state
transformations based on Smyth powerdomains (in analogy with Plotkin (31]). In
Section 3 we present an operational semantics, two state transformation semantics,
and a predicate transformer semantics. The relationships between all four are
shown. The section concludes with an analysis of the reasons why continuity fails
in one way or another in the various published approaches to the semantics of
countable nondeterminism. It is shown that no continuous least fixed-point se­
mantics can exist satisfying a certain full abstraction property. The technique also
applies to the work of De Bakker and Zucker [15]. In Section 4 we consider a
Hoare-style logic for total correctness and present soundness and relative complete­
ness results; this involves the use of countable ordinals in the assertions. In Section
5 we incorporate Chandra's ideas into our framework discussing the halting
problem and the definable state transformation functions and predicate trans­
formers. The section concludes by discussing issues related to the recursion theoretic
complexity of the assertion language and by showing that the countable ordinals
needed in proofs are the recursive ones (see (32]). An extended abstract covering
most of the material in this paper appeared in [6].

What we have shown here is that unbounded nondeterminism admits a simple
and natural characterization that can be studied by generalizing techniques used
for the case of deterministic or bounded nondeterministic programs.

We believe the present work can be extended to cover some other constructs
omitted in our analysis such as or commands, Dijkstra's guarded commands, or
recursive procedures. For example, the proof system we consider is a simple

726 K. R. APT AND G. D. PLOTKIN

refinement of the corresponding system for total correctness of while programs and
an appropriate system covering the case of recursion should be a similar refinement
of a system dealing with the total correctness of recursive procedures (e.g., [2]). In
principle, our paper also provides a framework for studying fairness via translation
into a language for countable nondeterminism. A proof-theoretic approach to the
problem of total correctness of fair nondeterministic programs based on this idea
has been recently worked out in [5].

Finally, note that the present paper considers only countable structures, restrict­
ing further in the last section to the case of arithmetic. There are two possible
directions of generalization. One would be to consider structures of any cardinality,
but to allow only countable nondeterminism; one might have two-sorted structures,
one sort being the natural numbers, and allow x := ? only for natural number
variables. This would be the natural generalization when considering the origin of
the concerns of the paper in the problems associated with fairness. Another
direction would be to allow structures of any cardinality and random assignment
over the domain of the structure. This is a very natural mathematical generalization,
regarding random assignment as the computational analog of the universal quan­
tifier, as do Harel and Kozen [21], for example. One would expect direct applica­
tions of the work on inductive relations by Moschovakis [1, 26].

2. Powerdomains and Predicate Transformers

In this section we begin by collecting some general information on fixed points.
Then we give the basic definitions and properties of discrete Egli-Milner and Smyth
powerdomains, suitably adapted from those in Plotkin [30] and Smyth [33] to
handle countable nondeterminism, and show, following the ideas in Plotkin [31],
how they connect up with the discrete Smyth powerdomain.

Definition 2. l. Let P be a partial order and let A be a subset of P. Then A is
directed if every finite subset of A has an upper bound in A; it is countably directed
if every countable subset of A has an upper bound in A. The partial order P is a
complete partial order (cpo) if every directed subset, A, of P has a least upper bound
(lub), denoted by UA, and if there is a least element in P, denoted by J_, A subset
of P is eventually constant if it contains its own least upper bound.

For example, for any set, X, there is the flat cpo X.i which is the set X U IJ_l
ordered by x c y iff x = J_ or x = y.

Definition 2.2. Let P, Q be partial orders and let f: P - Q be a monotone
function. Then f is continuous if whenever A ~ P is a directed subset with a lub,
then f(A) has a lub, namely,f(UA} (i.e., f preserves lubs of directed subsets); f is
strict whenever it preserves the least element; f is w1-continuous if it preserves lubs
of countably directed sets (recall that w1 is the first uncountable ordinal).

Definition 2.3. Let P, Q be partial orders, X a countable set. Then P x Q is the
Cartesian product of P and Q ordered coordinatewise; X - P is the partial order
of all functions from X to P ordered pointwise; P -m Q is the partial order of all
monotone functions from P to Q ordered pointwise.

FACT 2. l. If P is a cpo, then so is X - P; if P and Q are cpos, so are P x Q and
P -m Q. Least upper bounds are calculated pointwise or coordinatewise, as the
case may be.

Countable Nondeterminism and Random Assignment 727

2.1 FIXED POINTS. For any partial order P, any monotone f: P -+ P and any
ordinal X, define!" by

/'" = 1(LI 1·).
«<>.

Of coursej>' need not exist since Uk<>.f" need not exist. (Note that!°= f(l.) when
the least element J.. of P exists.) If!" does not exist, then for any A' > A, f"' does
not exist either. Note that!" is monotonic in X. We say that (/1''),.. stabilizes by K

if, whenever A > K, then f" = f"; the closure ordinal off is the least ordinal K by
which the sequence stabilizes, and then/" is the least (pre-) fixed point of /(since
f(f") = p+i = f" andf(a) i;;;;:; a implies!" i;;;;:; a for all X). If Pisa cpo, then of course
f" always exists and <!") >. stablizes. If additionally f is continuous, then it has
closure ordinal :Sw, and if fis wi-continuous it has closure ordinal :Sw1•

In Section 3 we need the following two well-known facts.

FACT 2.2. Suppose P, Q are cpos and g: Q >< P -+ Q is monotone. Define
f: P-+ Q byf(a) = µb.g(b, a). Thenf= µh E P-+m Q. [Xa E P.g(h(a), a))].

In stating Fact 2.2 we use the µ-notation where, for any partial order P, variable
a ranging over P and expression e possibly containing a and denoting an element
of P, the expression µa.e is the least element, a, of P such that e i;;;; a (if such an
element exists).

FACT 2.3. TRANSFER LEMMA. Suppose P, Qare partial orders, andf: P-+ P, g:
Q -+ Q are monotone functions, and h: P -+ Q is a strict and continuous fanction
such that the following diagram commutes:

Then if!" exists, so does q" and indeed g" = h(f"). In particular, if µX.j(x) exists
(being anf"), then so does µX.g(x) and µX.g(x) = h(µX.f(x)).

PROOF. To see that g"' exists when f" does, being h(f"), let us calculate (by
ordinal induction) that

h(f") = hV(S',.f")) (by definition off")

= ~h(SJ>. f")) (by the diagram)

= J LI h(f")) (since h is strict and continuous)
8\«>.

= J LI g•) (by induction hypothesis)
8\«>.

= g" (by definition).

728 K. R. APT AND G. D. PLOTKIN

If µX.fx is/1' for some>.., then we have

h(j>..) = h(JA+I) = h(j(j-,..)) = g(h(J>')}.

But h(j>-) = g\ by the above. So (g>-')>.., stabilizes by>.. and we see that µX.gx, the
least fixed point of g, is h(/A) as required. D

2.2 DISCRETE POWERDOMAINS. A meaning of a countably nondeterministic
command is to be a function from the set of states to an appropriate partial order.
A typical element of such a partial order will be the set of outcomes of all
computations of the command starting in the same initial state. Depending on
how we handle a possibly nonterminating computation, we arrive at two possible
partial orders, both of which have already been considered in the case of bounded
nondeterminism.

We explore Egli-Milner and Smyth powerdomains of flat cpos, X.L, with enough
subsets to handle countable nondeterminism. To avoid some ticklish problems, we
restrict X to being countable. Note that, even so, the Smyth powerdomain as
defined here is not a cpo; we do not understand what significance, if any, this has
for a possible more general theory of powerdomains for countable nondeterminism.

Egli-Milner Order. Let g'(X.L) be the set of nonempty subsets of X.L ordered by

Ai;;;; B iff (Va EA. 3b E B.a c. b) A (Vb E B. 3a EA.a!:;; b)

(which is the same as A = B (if J_ ft. A) or as A -{J_} ~ B (if J_ EA)).

FACT 2.4. &f(XJ.) is a cpo with least element jJ_}; every countably directed subset
is eventually constant; it is closed under arbitrary nonempty unions.

PROOF. Evidently {l.l is the least element. If !T ~ &f(X.L) is a directed family,
then US' = [US' - {l.}] U {l. I VA E /T.J_ E A}. In case !T is countably directed,
it is easy to see that US' -a countable set-is in !T. Closure under arbitrary
nonempty unions of subsets of &f(X.L) is obvious. D

Note. This is where things go wrong if X is not countable; one cannot restrict
elements of &f(XJ.) to be countable if one wants &f(X.L) to be a cpo since UY, as
defined above, need not be countable. It is a question of how many subsets one
wants to allow versus how strong the required completeness properties of &f(Xl.)
are to be.

State Transformations. A meaning of a command will thus be a function from
Xto &f(XJ.). Let ETx,Y stand for X .- &f(Y.L). We call the elements of ETx,Y Egli­
Milner state transformers. They are ordered pointwise.

The following functions will be needed when meaning is assigned to the com­
posite commands considered in the next section. For example, extension will be
used for the composition construct on commands.

Singleton. { ·} E ETx,x-
Union. U: &f(XJ.)2 - W(X.L). It is easily checked to be continuous.
Extension. ForfE ETx,ydefine./1: &f(X.L) .-&f(Y.L) by

./1(A) = u f(A - {l.l) u jJ_ I J_ E Al.

A function g: &f(X.1.) .-W(Y.1.) is completely linear if it preserves existing unions of
arbitrary families of elements of &f(X.L); that is, if !T is a nonempty subset of &f(X.L),
then g(UY) = U g(S').

Countable Nondeterminism and Random Assignment 729

FACT 2.5. Every ft is continuous and completely linear. However, f1 is not
continuous as a function off, although it is monotonic.

PROOF. To see ft is monotonic, suppose A !;;:;; B; if J_ $. A, then A = B and so
Ji(A) r;;;.Jt(B); otherwise, J_ Eji(A), and A - 11-l ~ B, and

Ji(A) - 11-l = U f(A - 11-}) - {1-l ~ft(B).

For continuity, we first note that complete linearity is trivial. Now if :Tisa directed
subset of S"(XJ.), then there are two cases. If some A in :7 does not contain 1-, then
jt(U:T) = jt(A) = UseY ji(B) (by monotonicity). Otherwise

Jt(U:7) = jt(U:7) = U jt(A) (by complete linearity)
AE.9"

= U ji(A) (as J_ is in every A in ff).
AEY

Monotonicity of P infis obvious. To see how continuity fails, take

pm>: N - S"(IT}.L),

where:

LEMMA 2.1. Suppose f E ET x. y and g E ET Y.z. Then (g t 0 f) t = g t 0 J1. Also,
for I· I : ETx.x, we have I· }t = idwcxJ.), the identity function on S"(XJ.).

PROOF. Take A in S"(XJ.). First consider the case where ..L $. A. Then

(gt o f)t(A) = U gt o f(a)
aEA

= gtc~f(a)) (gt is completely linear)

= gt(jt(A)).

The other case is A l:J {1-l and then

(gt o f)t(A u 11-1) = (gt o f)t(A) u (gt o f)t(..L)
= gt(jt(A)) U {1-}
= gt(ft(A) U {1-l)
= gt(ft(A U {1-})).

It is obvious that I·} t = idgcx_t>· D

We can now define the composition operation ";", which will stand for the
meaning of the composition of commands.

Composition. For fE ETx,Y and g E ETy,z, define!; g E ETx,z by puttingf;
g = gt 0 f

FACT 2.6. The composition f ; g is continuous in f and monotone, but not
continuous, in g. Also it is associative with units the singleton functions (that is, we
get a category).

730 K. R. APT AND G. D. PLOTKIN

PROOF. Monotonicity is an easy calculation as is continuity in f (use the fact
that gt is continuous). To see that continuity in g fails, adapt the example in Fact
2.5 with Y = N, X = Z = IT}, and f: T 1-+ N. For associativity we can calculate,
using Lemma 2.1,

f; (g; h) = (g; h)t 0 f= (ht 0 g)t 0 != ht 0 gt 0 f
= ht 0 (f; g) = (f; g);h.

Finally note that { · l ; f = A.a E X./t({al) = A.a E X. U {f(a)l = f and f; { l =
{ . } t of= id of= f. D

Note. It is the lack of continuity off; gin g that will force us (in the semantics
of while c9mmands) to consider least fixed points of noncontinuous functionals.

In the relational approach to nondeterminism advocated, for example, by Park
(28] and Broy et al. [12], one handles nontermination by a termination set, which
is the collection of all input states guaranteeing termination. It is natural then to
define the collection ERx.Y of Egli-Milner relations as

l(R, T} E .9'(X><Y) >< .9'(X) I 'Vx E T.R(x) # 0},

and tum it into a partial order by defining

(R, T) !;;;:; (R', T') iff R ~ R' and
and

T~ T'
'Vx E T.R'(x) ~ R(x).

But this is isomorphic to our approach, as we may define rel: ET - ER by
putting rel(m) = (Rm, Tm) where

xRmY = y E m(x),
x E Tm = 1- $. m(x).

Then rel is easily seen to be an isomorphism of partial orders with inverse st:
ER-ETwhere

st(R, T)(x) = R(x) U 11- Ix$. TI.

Which approach to adopt is therefore, a matter of convenience or taste.

Smyth Order. Let .9"(Xl.) be

IA ~XIA #0} u IXJ.},

ordered by the superset ordering

A!;;;:;B iff A~ B.

The idea behind the choice of the elements of .9"(Xl.) is first that all nonempty
subsets are feasible as the results of computations, since we have countable
nondeterminism (neglecting computability considerations) and the empty subset is
not possible with the language we consider in the next section, as nontermination
is recorded by 1-. Furthermore, all sets containing 1- are identified, since no
predicate (=postcondition) must hold on all the results if 1- is possible, and so all
are equally bad. The choice of superset as the ordering has a similar motivation,
since any predicate holding on all results must also hold for any subset of the
results. For more discussion, see [3 l], [33], and (35].

FACT 2.7. .9"(XJ.) has least element XJ_ but need not be a cpo (although if a
subset fT has an upper bound, its lub exists and is n!T); every countably directed
subset is eventually constant; it is closed under arbitrary nonempty unions.

Countable Nondeterminism and Random Assignment 731

PROOF. Clearly X.L is the least element. To see that Y(N.L) is not a cpo, consider
N c;;; N - IOI c;;; N - IO, I I c;;; • • • • If !Ti;;;; Y(X.L) has an upper bound A, then n !T
:! A and so is nonempty and therefore the lub. If !T is countably directed,
then n.S?" is nonempty and in !T. Closure under arbitrary nonempty unions is
obvious. 0

Note. The greatest lower bound of a subset always exists being its union.

Had we included the empty set in Y(X.L), we would have obtained a cpo and
thereby avoided the resulting difficulties (like the question of the existence of the
Smyth denotational semantics, gs- considered below). Some alterations in the
definitions of the Smyth relations and predicate transformers given below would
also be needed to retain results like Theorem 2.1-for example, one would have
to drop the law of the excluded miracle. The empty set was included in the work
of Milne and Milner [25], but there it had a natural interpretation as deadlock. As
far as we can see, the decision seems to be a matter of taste.

State Transformations. The "Smyth state transformers" from X to Y are all
functions m: X-+ Y(Y.L). They are ordered pointwise. We call this collection
STx,Y·

The following functions are needed in the next section.

Singleton. I · I E ST x.x.
Union. U: Y(X.L)2 -+ Y(X.L). It is continuous, for, if !T, :9' are directed sets with

lubs, then so is IA U BI A E !T, B E :9'1 and U!T U U:9' = U{A U BI
A E !T, BE :9'}.

Extension. For /E STx,Y definej1": Y(X.L)-+ Y(Y.L) by

jt(A) = {U /(A) (..l ft. A),
Y.L (..LE A).

FACT 2.8. Every P is monotone, but not necessarily continuous, and P is
completely linear (i.e., it preserves existing unions of arbitrary families of elements
of Y(X.L));function extension, (.)t, is monotone but not necessarily continuous.

PROOF. Monotonicity is clear. To see the general failure of continuity take
X = N, Y = ltt,ffl and define

{ lttl
f(a) = {.ff}

(a =F: 0),
(a= 0),

and take A<m> = la ENI a 2:: ml U IOI. Then LJA<m> exists, being {Ol, and.f(LJA<m>)
= .f({Ol) = {.ff}, but Ujt(A(m>) is U {{tt,.ffll = ltt,ffl :F lffl. Complete linearity is
clear. The monotonicity of function extension and the failure of continuity is much
as before. 0

LEMMA 2.2. (gt 0 f)t = gt 0 .rt and I· It= id.

PROOF. The proof is like that of Lemma 2.1. D

Composition. For f E STx,Y and g E ST r,z, define f; g E STx,z by f; g =
gt 0 f

FACT 2.9. The composition/; g is monotone in each argument but need not be
continuous in either. Also it is associative with the singleton as unit.

PROOF. Omitted. 0

732 K. R. APT AND G. D. PLOTKIN

The relational approach is perhaps not quite so natural as in the Egli-Milner
case. Define the set SRx.Y of the Smyth relations as

I (R, T) E .9'(X x Y) x .9'(X) I ('Vx E X.R(x) ¥: 0) A ('Vx $. T.R(x) = Y)l,

and partially order it by

(R, T) i;;; (R', T') iff Rd. R' and T<;; T'.

Then the functions ST -ret SR -st ST are defined as before and rel is an
isomorphism of partial orders with inverse st.

From .W(X..i_) to ..9'(X..L). Define ex: .W(X..L) - .9'(X..L) by

{ A (J_ $.A),
ex(A) = X..L (J_ E A).

(That is, ex(A) = lb E x..L I 3a EA.a i;;; bi.)
Then ex is strict, continuous, onto, and completely linear (as is easily verified).

It is important that ex be continuous, since this is why we can live with the fact
that ..9'(X..L) is not a cpo-enough directed sets, for our purpose, will have limits
since they will be images under ex of directed sets in .W(X..L).

We apply this observation in the next section where we use the strict continuous
surjection

ET ft.m.ex o m ST
X,Y X,Y,

as the function h mentioned in the Transfer Lemma. In terms of the relational
approach, we obtain a strict continuous surjection

sr: ERx,Y - STx,Y,

where sr = relx.Y 0 (ft.rn.ey 0 m) 0 stx,Y; it turns out that

sr(R, T) = (R U (T' x Y), T) where T' = X - T.

FACT 2.10. The following diagram commutes:

x
1·11~

----ex ..9'(X..L)
.W(X..L)

FACT 2.11. For any fE ETx.Yand g E ETy,z, ez 0 (f; g) = (ey 0 f); (e2 ° g).

PROOF. First, we show that (ez 0 g)t 0 ey = ez 0 gt. By strictness and complete
linearity, it is enough to check this for arguments of the form lbl with b E Y and
we calculate

(ez 0 g)t 0 ey(jbl) = ez 0 g(b) = ez(gt(lbl)).

Now we have (ey 0 f); (ez o g) = (ez o g)t o ey of= (ez o gt) of= ez o (f; g). D

2.3 SMYTH POWERDOMAINS AND PREDICATE TRANSFORMERS. A predicate
transformer from X to Yis any map p: .9'(Y) - .9'(X) from the powerset of Y to
the powerset of X such that

(1) Law of Excluded Miracle: p(0) = 0.
(2) Countable Multiplicativity: p(n;ew B;) = new p(B;).

These are the appropriate healthiness conditions. The usual healthiness conditions
imply them for (2) follows from the Stability Lemma 2.4, which is shown in [31]

Countable Nondeterminism and Random Assignment 733

to hold for the usual predicate transformers. But noncontinuous transformers are
allowed and must be essentially as pointed out by Dijkstra in [16, chap. 9]. That
they are exactly the right conditions will appear from the isomorphism with the
Smyth state transformers, which we shall show, and from the role they play in the
various semantics.

We take PTx,Y to be the set of predicate transformers from X to Y (dropping
here and in STx,Y the subscripts when they can be understood from the context)
and ordered pointwise as follows:

p c::: q iff 'VB<;;;; Y.p(B) <;;;; q(B).

Now for any m E STx,ydefine, for B <;;;; Y,

wp(m, B) ={a E Xl m(a) <;;;; B},

so wp is the weakest precondition function.

Note. If ..l is in m(a}, then a is not in wp(m, B).

LEMMA 2.3. The function wp(m, .) is a predicate transformer and wp(m, ·)is
monotone in m.

PROOF. It is a straightforward verification that wp(m, .) is in PT. Suppose
m c::: m' and a E wp(m, B). Then m'(a) <;;;; m(a) <;;;; B (note reversal of order!),
demonstrating the required monotonicity. D

So now we have a monotone w: ST-PTwhere

w(m)(B) = wp(m, B)

and we even show it is an isomorphism.

LEMMA 2.4. (STABILITY). Suppose we have pin PTx,Y and a in X with a E p(Y).
Then there is a nomempty set, min(p, a), such that

'VB <;;;; Y.(a E p(B) - min(p, a)<;;;; B).

PROOF. Let b0 , bi, ... , be an enumeration of those elements b of Y such that
there is a set B <;;;; Y with b $. B and a E p(B). (If there are none, we can take
min(p, a) = Y.) Let B0 , Bi. ... be an enumeration of subsets of Y where b; f£. B;
and a E p(B;). Put M = n B;. We now show that we can take min(p, a) to be M.
Since p is a predicate transformer, it follows from condition (2) and a E p(B;) that
a E p(M) and so by condition (1) that Mis nonempty. So if M <;;;; B, then
a E p(B). Conversely, suppose that a E p(B), but that, for the sake of contradic­
tion, M CJ,. B. Then there is some b in M but not B, and so b must be a b; and then
b f£, B; :2 n B; = M, contradicting b E M. 0

Now we can define w- 1: PTx,Y- STx,Y by

w-i(p)(a) = {min(p, a)
y.L

(a E p(Y)),
(a$. p(Y)).

Note that this uses the fact that min(p, a) is nonempty.

LEMMA 2.5. The function w- 1 is monotonic.

PROOF. Suppose pc;; q and take a in X. If w- 1(p)(a) = ..l, we have w- 1(p)(a) c;;
w-1(q)(a). Otherwise, a E p(Y) <;;;; q(Y), and so w-1(p)(a) = min(p, a) and w- 1(q)(a)
= min(q, a). Since a E p(min((p, a)) <;;;; q(min(p, a)), we have min(p, a) :2
min(q, a) (by the Stability Lemma applied to q), which means that w-1(p)(a) c:::
w-1(q)(a). 0

734 K. R. APT AND G. D. PLOTKIN

THEOREM 2.1 (ISOMORPHISM). The function w : ST;;;;:; PT is an isomorphism of
partial orders with inverse w- 1•

PROOF. We already know from Lemmas 2.3 and 2.5 that w and w- 1 are
monotone; it remains to show they are inverses. First we show w-1 0 w = idsT·
Take m in ST and a in X. We have m(a) = 1- iff a<$. wp(m, Y) = w(m)(Y). So if
m(a) = 1-, we have [w- 1 0 w'(m)](a) = l. = m(a).

Otherwise, [w- 1(w(m))](a) = min(w(m), a). Now a E w(m)(B) ~a E wp(m, B)
~ m(a) ~ B; so by the Stability Lemma, when m(a) # l., min(w(m), a)= m(a),
and so [w- 1 0 w(m)](a) = m(a) in this case too.

Finally we show w 0 w-1 = idPT. For pin PT and Bin Ywe have

w(w- 1(p))(B) = wp(w-1(p), B) = la I w- 1(p)(a) ~BI
= la I a E p(Y) /\ min(p, a)~ BI
= la I a E p(Y) /\ a E p(B)I
= p(B). D

This theorem and its analog in Plotkin [31] should have a common generaliza­
tion involving various degrees of nondeterminism (and corresponding notions of
continuity).

FACT 2.12

(I) wp(U;m;, B) = n; wp(m;, B).
(2) wp(l- }, B) =B.
(3) wp(m ; m ', B) = wp(m, wp(m ', B)).

PROOF

(I) We have wp(U; m;, B) = wp(n m;, B) = w(n m;)(B) = (n; w(m;))B (by the
Isomorphism Theorem) = n wp(m;, B) = n wp(m;, B).

(2) Obvious.
(3) We have

wp(m; m', B) = lal m; m'(a) ~BI
= la I m't(m(a)) ~BI
= la I l. $. m(a) /\ U m'(m(a)) ~BI
= la I l. $. m(a) /\ 'V b E m(a).m'(b) ~ B)
= la I l. <$. m(a) /\ · m(a) ~ lb Im '(b) ~ Bll
= la I l. <$. m(a) /\ m(a) ~ wp(m ', B)I
= wp(m, wp(m ', B)). D

Finally, we can connect up the relational approach and predicate transformers
as we now have an isomorphism pt : SR ~ PT where pt = w 0 st. It turns out that
pt is given by

pt(R, T)(B) = {x E TI R(x) ~BI.

The inverse pC 1 is given by the formula

pC 1(p) = ({(x, y} Ix E p(Y) :::> y E min(p, x)j, p(Y)).

3. Semantic Issues

In this section we consider four semantics of a simple programming language of
commands allowing countable nondeterminism and establish the relationships
between the various semantics. Then we give some general results that no reason­
able continuous models (in a sense to be spelled out) exist. The first semantics is

Countable Nondeterminism and Random Assignment 735

operational being given as a transition relation between configurations and specified
axiomatically. The next two are standard nondeterministic stat~-transformation
semantics based on the two discrete powerdomains we considered in Section 2.

Here we differ from Back [8], who defines a semantics based on g>(X.L) but where
the semantics of while-loops is defined as the limit of the first w iterates. He points
out that this does not capture the correct notion of termination and then considers
alternative semantics; we follow Broy et al. [12] and carry the iterates to enough
stages (at most all countable ordinals) to reach the least fixed point. Then with this
definition, Theorem 3.2 shows that the operational and denotational semantics are
identical.

Further, Theorem 3.1, shows that the semantics based on the Smyth order is a
projection, under ex, of the semantics based on the Egli-Milner ordering, and
Corollary 3.1 then relates it to the operational semantics. Then we give a predicate
transformer semantics, again iterating through suitable ordinals, following Boom
[11], and we show in Theorem 3.3 and Corollary 3.2 that it is isomorphic to the
semantics based on the Smyth order (following the ideas in Plotkin [31]). Corollary
3.3 relates the predicate transformer semantics to the operational semantics.

Finally, we turn to the negative result that no semantics of a general type can
exist. First we consider semantics based on cpos. Any such semantics should satisfy
certain properties, just to fit into the program of denotational semantics founded
by Scott and Strachey: The semantics should be continuously compositional and
least fixed point (definitions given below). Then Theorem 3.4 shows that no such
semantics can exist, which agrees with the operational semantics by giving the
same equalities between programs (perhaps via a so-called abstraction function).
Next, as mentioned above, we widen the framework to To spaces in order to
include approaches based on metric spaces [15, 27]. We feel this work shows
just why noncontinuous functions have arisen in the treatment of countable
nondeterminism.

Throughout the rest of the paper we consider a simple programming language
whose set of commands is parameterized on the following two sets:

First, ACom is the set of atomic commands, ranged over by the metavariable A.
Second, BExp is the set of Boolean expressions, ranged over by B. Then, Com is
the set of commands of the language, ranged over by S and generated by the
following grammar:

S ::= skip A I S; S I if B then S else S fi I while B do Sod.

We assume a countable unanalyzed set X of states (ranged over by a) and we
further assume we are given two semantic functions:

.s# : ACom - (X - ~(X) - 10}),
fJ9 : BExp - (X - ltt, ff}),

where {tt,.ff} is of course the set of truthvalues.
The assumption that for any u EX .W'[A](u) is a nonempty and (necessarily)

countable subset of X means that atomic commands are assumed to be always
terminating and countably nondeterrninistic statements. A particular choice for A
might be the statement x := ? meaning set x to any value. If there were only one
variable that could appear in the language, we could give the semantics of x := ?
by putting for any a

.s#[x := ?](u) = X.

We now provide three different semantics for commands.

736 K. R. APT AND G. D. PLOTKIN

3.1. OPERATIONAL SEMANTICS. We define a function

Op: Com - (XJ. - W(XJ.))

by considering a transition relation - between configurations, that is, pairs (S, er)
consisting of a command and a state. We define - by the following clauses:

(i) (A, er) - (skip, <7 1) if er' E J.lf[A](er).
(ii) If (Si, <7) - (S(, er') then (S1; S, er) - (Sf, S, er').

(iii) (skip; S, er) - (S, er).
(iv) (I) (if B then S1 else S2 fi, <r) - (S, er) if S:W[B](er) = tt,

(2) (if B then S1 else S2 fi, <r) - (S2, er) if 97[B](a) =ff.
(v) (1) (while B do Sod, er) - (S; while B do Sod, er) if 97[B](er) = tt,

(2) (while B do Sod, er) - (skip, <7) if !9[B](<7) =ff.

Intuitively, (Si, er) - (S2, er') means that one step of execution of S 1 in state
er can lead to state er' with S2 being the remainder of S1 to be executed.

Definition 3.1. S can diverge from er (equivalently, may not terminate from er)
iffthere exists an infinite sequence (S;, <7;) (i = 0, 1, ...) such that

(S, er) =(So, <ro) - (Si, er1) - (S2, erz) - · · ·.

Notes

(1) If S ¥-skip, then for any er there are S1 and <7 1 such that (S, er) - (S', er')
(i.e., Scan be executed for at least one step). This property can be termed
absence of blocking and is evidently dependent on the syntax of our program­
ming language. For example, it does not hold in the case of Dijkstra's control
structures (see [16]).

(2) The set I (S', er') \ (S, er) - (S', er') I is always countable (since X is assumed
to be countable).

Definition 3.2. We define the function Op by

Op[S](er) = 1<7' I (S, er)-* (skip, <r')l U l.1.1 Scan diverge from a).

Of course,-* is the transitive reflexive closure of-·
The following characterization of Op will be used in what follows.

LEMMA 3.1. Op is the least function of type

.'T: Com - (X - W(XJ.)) such that/or all <7, .'T[skip](a) = {er),

and,for S ¥- skip and any er

ST[S](er) = U l.'T[S'](a') I (S, u) - (S', er')).

The ordering we are referring to is pointwise:

.:T !;;;;;; .'T' ifJ for all Sand er, ST [S](er) c .'T' [S](<7).

PROOF. Obviously, Op satisfies the above equations. Consider any .'T that
satisfies them. By induction on the length of the derivation we get that (S, er) -*
(skip, er') implies er' E S'[S](a). This shows that Op[S](er) i;;;;;; .'T[S](er) in the
case Scan diverge from er. In the other case the relation-, restricted to the pairs
(S', er') such that (S, a)~* (S', u'), is well founded. We prove by induction
with respect to this well-founded ordering that Op[S](er) = S'[S](<T).

Countable Nondeterminism and Random Assignment

The case S = skip is clear. Otherwise,

.9'[S](a) = U l.9'[S](u') I (S, a) - (S', u')j

737

= U !Op[S'](a') I (S', a) - (S', u')} (by the inductive assumption)
= Op[S](u). D

We shall also need the following facts about Op.

LEMMA 3.2

(1) Op[A] = "ha EX . .W'[A](a).
(2) Op[S, ; S2] = Op[S,]; Op[S2]

(the second ";" is the composition operation defined in Section 2).
(3) Op[if B then S1 else S2 fi] = Au EX. if 9/[B](u) then Op[S1](a)

else Op[S2](a).
(4) Let m = Op[while B do Sod]. Then for all u

PROOF

(1) Trivial.
(2) We have

m(u) =if 9/[B]{u) then (Op[S]; m)(u) else {a}.

u' E Op[S1; S2](u) iff (S1; S2, u) -*(skip, a')
iff 3 a1[(Si, u) -* (skip, a1)

and (S2, 111)-+* (skip, u')]
iff 3 a1[a1 E Op[S1](u) and u; E Op[S2](u1)]
iff a' E Op[S1]; Op[S2](a).

Also ..LE Op[S,; S2](a) iff S,; S2 can diverge from a and this happens in
one of these two cases:

(a) S1 can diverge from u;
(b) 3a'[(S1, a)--+* {skip, u') and S2 can diverge from a'] which by definition

of the composition operation are just the two cases when ..L E (Op[S1] ;
Op[S2])(a).

(3) Straightforward by definition.
(4) The case in which 9/[B](u) = .ffis obvious. In the other cases we have

m(u) = Op[S; while B do S od](a) (by Lemma 3.1)
= (Op[S] ; m)(a) (by case 2). D

3.2 DENOTATIONAL SEMANTICS. We define now two functions

9g: Com - ETx,x and 9.5": Com--+ STx,x

by the same type of equations. Let 9 be, indifferently, 9g- or 9y. We define

(i) 9'[skip] = I· l (the singletonfunction defined in Section 2).
(ii) 9'[A] ="ha EX . .W'[A](a).

(iii) 9'[S1; S2]. = 9[S,]; 9[S2].
(iv) 9'[if B then S1 else S2 fi](u) =if 9/[B](a) then 9[S1](u)

else 9[S2](u).
(v) 9'[while B do Sod] = µm."Aa EX. if 9/[B](u) then (9[S] ; m)(u) else lu}.

738 K. R. APT AND G. D. PLOTKIN

Note. .9"(X.L) need not be a cpo, so 9y might not be well defined in case (v).
To show this is not the case, we prove

THEOREM 3.1. For all S, the function 9y is well defined and

ex 0 9g[S] = 9y[S]

(ex is the projection ofg'(X.L) onto .9"(X.L) defined in Section 2).

PROOF. By induction on the structure of S, following the definition of 9g-.

(i) By Fact 2.10.
(ii) Trivial.

(iii) We have

ex 0 9'g[S1 ; S2] =ex 0 (9'g[S1]; 9g[S2])
(by Fact 2.11) =(ex 0 9'g[S1]); (ex 0 9g[S1])

= 9'y[S1]; 9y[S2] (by inductive assumption)
=9'y[S1 ;S2].

(iv) Obvious.
(v) Let Sbe while B do S1 od. For J E {g, .9"} let 4.>_,: (X - J(X.L))­

(X -+..Y(X.L)) be defined by cl>_,(m) =Xu EX. if &5'[B](u) then
(9'_,[S1] ; m)(u) else lu}.

Then both cl>g- and cl>y are well defined and monotone. Now ET is a cpo, so
µm.<l>g(m) exists being some cl>}.. In fact we have 9g-[S] = µm.4.>g(m). To show
µm.cl>y(m) exists is sufficient to show that the following diagram commutes:

ET----4.>g'----+ET

~m.ex 0 m l 1 ~m.ex 0 m

ST---4>.Y----+ST

and use the Transfer Lemma.
For any m E ET and u EX we have

(ex 0 cl>g(m))(u) =ex (if 93'[B](u) then (9g[S1] ; m(u) else {ul)
=if 93'[B](u) then ex 0 (9'g-[S1] ; m)(u) else ex({u})
=if 93'[B](u) then ((ex 0 9'g-[S1]); (ex 0 m))(u) else lu}

(by Facts 2.10 and 2.11)
= cl>y(ex 0 m)(u) (by inductive assumption).

Hence by the Transfer Lemma µm.4.>y(m) exists and

ex 0 µm.4.>g-(m) = µm.<1>.:Am),

showing that

D

To tie up 9'g- with the operational semantics, we first prove the following lemma.

LEMMA 3.3. 9'g- satisfies the equations of Lemma 3.1.

Countable Nondeterminism and Random Assignment 739

PROOF. By induction on the structure of S. The case S = skip is clear:

S =A ; 9Jg[A](u) = sf[A](u)
= {u' I (A, u)-+ (skip, u')I
= U {9Jg[S'](u') I (A, u)-+ (S', u')};

S = S,, S2; subcase S1 =;C skip
9Jg[S,; S2](u) = (9Jw[S1]; 9Jw[S2])(u)

= 9Jw[S2]t(9Jg[S1](u)) (by the definition of;)
= 9Jg-[S2]t(U l9Jw[S'](u') I (Si, u)-+ (S', u')})

(by inductive assumption)
= U {9Jg[S2]t(9Jw[S'](u')) I (Si, u)-+ (S', u')I

(by complete linearity)
= U {9Jg[S'; S2](u') I (Si, cr)-+ (S', u')}
= U {9Jir[S"](u) I (S1; S2, cr)-+ (S", u')}

(by the definition of;)

subcase S1 = skip

9Jw[skip; S2](u) = 9Jg-[S2](u)
= U {9Jg[S'](u') I (skip; S2, cr) -+ (S', u')I

S = if B then S1 else S2 fi; straightforward.
S = while B do S od; by cases whether g [B](u) is tt or ff

subcase: tt; 9Jw[while B do S od](cr)
= 9Jg[S] ; 9Jw[while B do S od](u)
= 9Jw[S; while B do S od](cr)
= U {9Jg[S'](u') I (while B do Sod, cr)-+ (S', u')I

subcase:jf; trivial D

THEOREM 3.2. 9Jg = Op.

PROOF. By Lemmas 3.1 and 3.3, we have Op~ 9Jg. We prove the converse by
induction of S using Lemma 3.2.

A, skip; there 9Jw[S] = Op[S] by Lemma 3.2.l.
S, ; S2; straightforward using Lemma 3.2.2.
if B then S, else S2 fi; straightforward using Lemma 3.2.3.
while B do S1 od; let m = Op[S]. We have
'Au EX.if $[B](u) then (9Jg[S,]; m)(u) else {u}
~ A.u EX.if g[B](u) then (Op[S,] ; m)(cr) else{crl (by induction hypothesis)

= m (by Lemma 3.2.4).

So m is a prefixed point of the functional of which 9Jg[S] is the least one. Thus
9Jw[S] ~m. D

COROLLARY 3.1 (OPERATIONAL CHARACTERIZATION OF D-SP)

(1) If S cannot diverge from u then

u' E 9Jy[S](u) ifJ (S, u) -+*(skip, u').

(2) .l E 9Jy[S](u) ifJS can diverge from u.

PROOF. By Theorems 3.1 and 3.2. D

740 K. R. APT AND G. D. PLOTKIN

3.3 WEAKEST PRECONDITION SEMANTICS. Let PT be the set of all predicate
transformers from X to X as defined in Section 2.

We define now a function '71': Com~ PT, which we call the weakest precondition
semantics (wp semantics).

(i) W[skip] =id.
(ii) W[A](R) = wp(st[A], R)

(where wp is the function defined in Section 2).
(iii) W[S1; S2] = W[S1] 0 'Yl'[S2].
(iv) W[if B then S1 else S2 fi](R) = [as'[Br1(tt) n W[S1](R)]

U [as'[Br\ff) n W[S2](R)].
(v) W[while B do S od](R)

= µ,Q k X.([9"[Br1(tt) n W[S](Q)] U [9"[Br\ff) n R]).

It is clear that Wiswell defined, since W[S] is monotone and so the corresponding
function in case (v) is monotone as well and therefore has a least fixed point.
However, we also wish to prove that for each S, W[S] is a predicate transformer.
This follows directly from the next theorem, which also, when taken together with
Corollary 3.2 below, demonstrates the equivalence of the weakest precondition
semantics and the Smyth state transformation semantics.

THEOREM 3.3. For all SE Com and R k X we have

wp(9y[S], R) = W[S](R).

PROOF. By structural induction on S. Case (i) follows from Fact 2.12.2. Case
(ii) is trivial and case (iii) follows from Fact 2.12.3. For case (iv) we calculate

wp(9y[if B then S1 else S2 fi], R)
= !er I if 9"[B](er) then 9y[S1](er) else 9y[S2](u) k Rl
= ler I 9"[B](er) = tt A 9y[S1](a) k R}

U !er J 9"[B](er) =ff A 9y[S2](u) k RI
= [9"[B]-1(tt) n wp(9y[S1], R)]

u [9"[Br1(jf) n wp(9y[S2], R)] (by induction hypothesis)
= W[if B then S1 else S2 fi](R).

For case (v), where S = while B do S1 od, we first define two functions.
Let ~: ST ~ ST be defined by

~(m)(er) =if as'[B](er) then (9s-[S1]; m)(a) else lul

and G: 9'(X) x .9'(X) ~ 9'(X) by

G(Q, R) = [9"[Br1(tt) n W[Sz](Q)] u [as'[B]-1(ff) n R]

(G is clearly monotone).

Then wp(9y[while B do S1 od])(R) = wp(µ,m.~(m), R) and

W[while B do S1 od](R) = µ,Q.G(Q, R)
= (µ,fA.Q.G(j(Q), Q))(R) (by Fact 2.2).

To prove the claim it suffices now to show that wp(µ,m.~(m), R) = (µ,f'I!(j))(R)
where

it: (.9'(X) ~ .9'(X)) ~ (9(X) ~ 9'(X))
m m

is defined by

'lt(f)(Q) = G(j(Q), Q).

Countable Nondeterminism and Random Assignment 741

We prove this using the Transfer Lemma. First we prove that the following
diagram commutes:

ST ST

>.m.>.R.wp(m, R) 1 • 1 >.m.>.R.wp(m, R)

(9"(X) ~ 9"(X)) ~ (9"(X) ~ 9"(X))
m m

We have

wp(<l>(m), R) = [$[Br1(tt) n wp(.9's-[S1]; m, R]
U [$[Br\ff) n wp({ · }, R)]

as required.

= [$[Br1(tt)nwp(.9'y[S1], wp(m, R))] (by Fact2.12)
U ($[Br 1(ff) nR]

= [$[Br1(tt) n W[S1](wp(m, R))] (by induction hypothesis)
u [$[Br 1(ff) n RJ

= G(wp(m,R),R)
= it(>,Q.wp(m, Q))(R),

Clearly <I> and '1t are monotonic and, by the Isomorphism Theorem wp(m, ·) is
strict and continuous in m. Since µm.CJ>(m) = 9y[while B do S1 od], µm.<l>(m)
exists being a <I>x. We can now apply the Transfer Lemma owing to which we get
that µf\J!(f) exists and equals 'AR.wp(µm.<I>(m), R), which establishes the claim. D

COROLLARY 3.2. For all Sin Com, we have

.9'y[S] = w-1(W[S]).

PROOF. Immediate from Theorem 3.3 and Theorem 2.1. D

COROLLARY 3.3 (OPERATIONAL CHARACTERIZATION OF WP SEMANTICS). For all
commands Sand predicates Ra state <I is in W[S](R) iff S cannot diverge from <I

and whenever (S, <I) ~* (skip, <I') then <I' E R.

PROOF. By Corollary 3.1 and Theorem 3.3. D

3.4 CONTINUOUS SEMANTICS. In all the above semantics for unbounded non­
determinism we have seen failures of continuity. Now we show that these failures
are essential: In a sense to be made precise, no reasonable continuous semantics
can exist. The ideas generalize to arbitrary To topological spaces. In particular,
we show that no reasonable semantics can exist using complete metric spaces and
the Banach fixed-point theorem (as one would desire following Nivat [27] and
de Bakker and Zucker [15]).

First we should decide what, in general, a continuous semantics should be, and
even what a semantics should be. At the very least we should have a function

'IF: Com~D,

where Dis a structured set of some kind, and we call any such function a semantics.
But more is required to follow the spirit of denotational semantics as practiced by
Scott and Strachey and many others: The meaning of a command should be a
function of the meaning of its parts. To formalize this idea, consider command
contexts, which are just "commands with holes in them"; they can be defined by a
grammar with the same rules as those for commands plus the rule C ::= []; then

742 K. R. APT AND G. D. PLOTKIN

by C[S] is meant the command obtained from C by replacing every occurrence of
[]bys.

Definition 3.3. A semantics'!&': Com - Dis compositional if for every context
C, there is a function W[C]: D-D such that for every command S

W[C[S]] = W[C]('i&'[S]).

If D is a cpo, then '!&' is continuously compositional if'!&' [C] can always be taken to
be continuous.

To see the connection with the usual semantic equations, suppose there is a
binary function, ;: D 2 - D and for each b in BExp there are functions ifB:
D2 -+ D and whileB: D - D such that the following equations always hold:

'i&'[S ; S'] = 'i&'[S];W[S']
'!&'[if B then S else S' fi] = ifB('i&'[S], W[S])

'!&'[while B do Sod] = whileB('i&'[S]).

Then '!&' is compositional. Furthermore, if these functions can be taken to be
continuous, then W is continuously compositional. (As to the converses, if ~ is
compositional, the required functions exist, but continuous ones need not exist
even if'!&' is continuously compositional. In fact a more appropriate general theory
would consider contexts with several different kinds of holes; our notion is really
only that of unary compositionality. However, since our present purpose is to
establish negative results, it is actually better for us to consider the weaker unary
notion.)

Usually the meaning of iterative commands is given as a least fixed point.

Definition 3.4. Let D be a partial order (cpo). A semantics'!&': Com-+ Dis a
(continuous) least fvced-point semantics if it is (continuously) compositional and
the (continuous) 'i&'[C] can be taken so that ~[while B do Sod] = µd E D.ip(d),
where ip = W[if B then S; []else skip fi].

Now we decide how to formulate the requirement that the semantics be reason­
able-it is clearly not enough just to ask for a continuous least fixed-point semantics
since any constant '!&'with range a cpo would do. It is natural to look for conditions
involving the operational semantics, Op: Com - ETx,x. Consider the condition
that the denotational semantics determines the operational semantics. This
amounts to saying that, if two commands have the same denotational meaning,
then they should have the same operational meaning. So define the operational
equivalence relation between commands by

S=S' if Op[S] = Op[S'].

Then the condition is that ~[S] = ~[S'] always implies S = S'. But we can
reasonably ask for more, that denotational equivalence determines operational
equivalence in all contexts. So let us say that a semantics ~ is correct iff for all
commands S, S', and contexts C

'i&'[S] = 'i&'[S'] :J VC.C[S] = C[S'].

(Note that correctness is no stronger than the first condition when '!&' is composi­
tional, and, in fact, for our language of commands it is shown in Example 3.1
below that correctness is no stronger without any conditions in W.)

Countable Nondeterminism and Random Assignment 743

Let us also say that a semantics '?J is complete if the converse of correctness
holds, which is that for all commands S, S'

VC.C[S] = C[S'] :J '?l[S] = '?J[S'].

If'?J is both correct and complete, we call it fully abstract; the idea is that it makes
exactly the distinctions between commands needed to decide their operational
behavior in all contexts. (See [10] and [22] for other work on full abstraction.)

It might be argued that full abstraction is too demanding and that one can use
"concrete" meanings to define '?J and then provide the "abstract" meanings by an
"abstraction" function. So let us say that ab: D ~Eis a full abstraction function
for a semantics '?J: Com~ D if for all commands S, S' we have

ab('?J[S]) = ab('?J[S']) iff \iC.C[S] = C[S']

(and it will be obvious what implications constitute correctness and completeness
for abstraction functions).

Let us see examples of semantics that fulfill as many conditions as possible.

Example 3. l. The semantics !lfrt:: Com~ ETx.x is a least fixed-point semantics
and since it is equal to Op by Theorem 3.2 it is fully abstract. (Note that this
justifies our earlier comment on correctness as it shows that operational equivalence
is substitutive in the sense that for all commands S, S'

S = S' :J V'C.C[SJ = C[S'].)

But !lfrt: is not continuously compositional. For example consider the case in which
X = N and there are commands x := ?, x := 0, and Sm (for m > 0) defining the
state transformers A.n.N, A.n.10}, andj<m> where

J<ml(n) = {IOI (n < m)
IJ_} (n 2: m)

(much as in the proof of Fact 2.5). Now suppose, for the sake of contradiction,
that there is indeed a continuous <I> = 9 g [x := ?; []] (of course, it will not be the
one used to define .9/!if). But now we can calculate that

A.n.10} = 2'w[x := ?; x := 0] = <l>(!lfg[X := O]) = <l>(A.n.101)
= <l>(LJ J(m)) = LJ <I>(f(m)) = LJ <l>('?J[Sm])

m m m

= Li !lfw[x := ?; Sm] = Li A.n.IO, ..l}
m m

= A.n.{O, J_j,

which is the required contradiction.

Example 3.2. It is possible to find a continuous least fixed-point semantics
with a full abstraction function that is, however, not continuous. Let Nj_ be the
cpo of all countably infinite sequences of elements of NJ.., ordered pointwise; its
elements u = (u n) n are to be thought of as oracles giving integer answer u n if that
is not J_ to query number n. The semantics is

Oracle: Com ~ (X ~ (N'i ~ XJ..)).

We assume available a function f: ACom ~ (X ~ (N ~ X)), which indexes Jli' is
the sense that ..w'[A](x) = f [A](x)(N). The semantic clause for atomic commands
is then

Oracle[A](x)(u) = {f [A](x)(uo) (if Uo -:f. J_),
(if uo = J_).

744 K. R. APT AND G. D. PLOTKIN

The clause for compositions is

Oracle[Si; S2](x)(u) = Oracle[S2](0racle[S1](x)((u2n)nEw))((0"2n+1)nEw),

and the other clauses are omitted, being evident.
Each f: N'f ~ X..L can be regarded as a subset of X..L parameterized on total

oracles, and so we define a function Range: (N'i - X..L) ~ W<x.t.» by

Range(!)= IJ(w) I w E Nw},

and now define ab: (X ~ (Nj_ - X..L)) - (X - W(X..L)) by

ab(m) =Range 0 m.

Then g g = ab 0 Oracle, and so ab is indeed a full abstraction function; but,
unfortunately, neither it nor Range is continuous (the proofs are omitted). Another
continuous least fixed-point semantics has been given by Back [7].

Example 3.3. By a little trick we can construct a fully abstract continuously
compositional semantics'??: Com - D. Take D to be the flat cpo {gg[S] IS E
Coml..L and define'?? by

'??[S] = .@g[S].

However '?? is not a least fixed-point semantics, although in an obvious sense it is
a maximal fixed-point semantics. It is open whether there is such a maximum
fixed-point semantics.

Now we state in what sense no reasonable continuous semantics can exist. First,
fix the language (to some extent) by assuming that the Boolean expressions true
and x > 0 are in BExp and that the atomic commands x := 0, x := x ..:... 1, and
x := ? (where x is a fixed identifier) are in ACom; assume too that Sil and 9J have
the obvious definitions for these expressions and the commands to determine their
operational semantics.

THEOREM 3.4. There is no continuous least fixed-point semantics that has a
continuous full abstraction function. (And in particular there is no fully abstract
continuous least fixed-point semantics.)

Note how close the above examples have come to satisfying all the conditions.
The proof of Theorem 3.4 will proceed via two lemmas; the idea is as in the
calculation of Example 3.1, but, in order to obtain the lub of a suitable increasing
sequence like the pm> there, we express x := 0 as an iterative program and use the
least fixed-point property.

In the proofs we assume (for the sake of contraciiction) that '??: Com ~ D is a
continuous least fixed-point semantics ab: D ~ E is a continuous full abstraction
function. The first lemma uses the notation Q to denote the command while true
do skip od.

LEMMA 3.4. For all contexts C and commands S

ab('??[C[Q]]) !;;;; ab('??[C[S]]).

PROOF. First define Sn inductively by So = Sand Sn+I = if true then skip; Sn
else skip fi. Since S = Sn and operational equivalence is substitutive, by the
completeness of ab we have

ab('??[C[Sn]]) = ab('??[C[S]]).

Countable Nondeterminism and Random Assignment

Next define wn inductively by w0 = J_ and Wn+i = <l>(wn), where

<I> = '6'[if true then skip; [] else skip fi].

Now we show by induction that

Wn !;;;; '6'[Sn].

For n = 0 this is clear. For n + 1 we calculate

Wn+I = <l>(wn)

And now we see that

!;;;; <1>('6'[Sn]) (by induction hypothesis)
= '6'[if true then skip; Sn else skip fi]
= '6'[Sn+1].

ab('6'[C[Q]]) = ab('6'[C](~[Q]))
= ab('6'[C] u Wn)
= U ab('6'[C]wn)

n

i;;;; U ab('6'[C]~[Sn]) (by above)
n

= U ab('6'[C[Sn]])
n

= ab('6'[C[S]]) (by above).

745

D

In the next lemma we use the notation Wn for an iterative command W of the
form while B do Sod, defined inductively by

W0 = n,
Wn+i = if B then S; Wn else skip fi.

LEMMA 3.5 Let W =while B do Sod be an iteration. Then ab('6'[C[Wn]]) is
increasing in n and for any context C

ab('6'[C[W]]) = U ab('6'[C[Wn]]).
n

PROOF. Define contexts Cn inductively by Co= []and Cn+I =if B then S; Cn
else skip fi. Clearly Wn = Cn[Q] and Wn+i = Cn[Wi], and so Lemma 3.4 tells us
that ab('6'[C[Wn]]) is increasing. Equally, since W = Cn[W], we also have that
ab('6'[C[Wn]]) c ab('6'[C[W]]) by completeness, and so

ab('6'[C[W]]) ;;i U ab('6'[C[Wn]]),
n

and it remains to prove the converse relation. For this define Wn inductively by
putting w0 = J_ and Wn+t = '6'[if b then S; [] else skip fi](wn).

Note that since '6' is a continuous least fixed-point semantics '6'[W] = Liw.· An
easy induction like that in the proof of the previous lemma shows that

Wn !;;;; '6'[Wn],

and we calculate that

ab('6'[C[W]]) = ab('6'[C]('6'[W]))
= ab(~[C](U Wn))
= U ab('6'[C](wn)) (by the continuity of '6'[C] and ab)
c U ab('6'[C](~Lwn]))
= U ab('6'[C[Wn]]). D

746 K. R. APT AND G. D. PLOTKIN

PROOF OF THEOREM 3.4. Let w be the iterative program while x > 0 do x :=
x - I od. Clearly (x := ?; W) = x := 0. Let (x := 0 or n) abbreviate x := ?; if
x > O then Q else skip fi (lacking a nondeterministic choice command). We show
by considering the approximations, Wn, of W, that ab('0"[x := 0 or D]) is equal to
ab('6'[x := ?; W]) and hence to ab('6'[x := O]). This will prove the theorem as
clearly (x := 0 or Q) ;/; (x := 0) and so ab cannot be correct, as assumed.

First we see by induction that x := ?; Wn+1 = x := 0 or n. For n = 0 we have

x := ?; W1 = x := ?; if x > 0 then x := x _,_ 1; n else skip fi
= (x := 0 or n) (since (x := x _,_ l; n) = n).

For n + l we have

x:=?; Wn+2 =x:=?;ifx>Othenx:=x-'- l; Wn+1elseskipfi
=x:=?; if x> 0 thenx:= ?; Wn+1 else skipfi
= x :=?;if x> 0 then (x := 0 or n) else skip fi (by induction)
= (x := 0 or Q).

And now we can calculate that

ab('6'[x := ?; W]) = J;)1 ab('6'[x:= ?; Wn]) (by Lemma 3.5 dropping the firstterm)

= ab('6'[x := 0 or D]) (by the above),

thereby concluding the proof. D

Note that only a few simple instances of the completeness of the full abstraction
function were used in the proof; the reader may enjoy enumerating them.

A version of Theorem 3.4 holds in any topological space (all spaces are assumed
to be T0). A certain amount of-mostly standard-topological background is
needed.

Definition 3.5. If D is a cpo, the Scott topology on D is defined by putting V
open iff (i) y is in V whenever x is and x !;;;;;:; y and (ii) if the lub of a directed set is
in V, then so is some element of the set. Let X be a To-space. The specialization
order on X is defined by x !;;;;;:; y iff 'V open V.x E V::) y E V. If Xn is a sequence of
elements in X, then lim Xn = x means that, if x is in a given open set then almost
all the Xn are.

Notes. The Scott topology is always T0 • The specialization order is always a
partial order; in T1-spaces, it is equality. If taken from the Scott topology, it is the
original partial order. If D and E are cpos, then f: D - E is continuous iff it is
continuous with respect to the associated topologies, and so there is no confusion
between two different notions of continuity. Limits are unique in Hausdorff spaces
but not in To-spaces where we do have that if lim Xn = y and almost all the Xn are
equal, say to x, then y !;;;;;; x. ·in a cpo if Xn is an increasing sequence, then limxn =
y iffy c U Xn. If f: X ~ Yis a continuous map of T0-spaces and limxn = x in X,
then limf(xn) = f(x) in Y; also f is monotonic with respect to the specialization
order.

Now we shall see that there is no continuously compositional semantics '0": Com
~ X with a continuous full abstraction function ab: X - Y (in the obvious senses),
where X, Y are To-spaces, and that the following two conditions hold:

(l) For all contexts C and commands S, ab('6'[C[Q]]) c ab('0"[C[S]]).
(2) For all iteration commands W, lim'6'[Wn] = '6'[W].

(Condition (l) is just the generalization of Lemma 3.4 to T0-spaces and condition
(2) replaces the least fixed-point condition.)

Countable Nondeterminism and Random Assignment 747

First we show that the generalization of Lemma 3.5 to T0-spaces holds. So
suppose W = while b do Sod is an iteration and let C be a context. Then using (1)
it follows exactly as in the proof of the lemma that ab('$'[C[Wn]]) is increasing
and has ab('$'[C[W]]) as an upper bound. Let y be any other upper bound and
suppose ab('6'[C[W]]) is in an open set V. Now since both ab and '$'[C] are
continuous we have by (2) that

limab('$'[C]'6'[Wn]) = ab('$'[C]'6'[W]).

So almost every ab('iif[C[Wn]]) is in V and so too, therefore, is y. This proves that
ab('6"[C[W]]) c:: y and so that the conclusion of Lemma 3.5 holds, as required.
Using this we can now follow the proof of Theorem 3.4 word for word.

Ni vat [21] and de Bakker and Zucker [15] proposed the use of complete metric
spaces and the Banach fixed-point theorem. Let us see there is no least fixed-point
semantics '6": Com - X with a continuous full abstraction function ab: X ~ Y,
where X is a complete metric space, such that for any iteration command W =
while B do Sod the function cl> = '6"[if B then S; [] else skip fi] is contracting.
Note that in this context least fixed point means unique fixed point and by the
Banach fixed-point theorem for any x in X

lim cl>n(x) = '$'[W],

and taking x = 'iif[Q] we see that (2) holds. By the general remarks it remains to
establish (1) for such a '$' and ab.

PROOF OF (1). Let C be a context and S be a command. Define Sn as in the
proofofLemma 3.4. Then takingx to be '6'[S] in the above, we see that lim'iif[Sn]
= '6'[Q], since 1>n('6"[S]) = '6"[Snl But since both '6'[C] and ab are continuous,
it follows that

limab('6"[C[Sn]]) = ab('$'[C[Q]]).

Now, just as in the proof of Lemma 3.4, completeness implies that the
ab('6"[C[Sn]]) are all equal to ab('6'[C[S]]), and (1) follows by a remark in the
above notes.

In [15] de Bakker and Zucker provide a semantics and an abstraction function
satisfying all the above conditions, except that the abstraction function is not
continuous.

4. ProofTheory

In this section we consider a Hoare-like proof system for the total correctness of
programs; we demonstrate its soundness, and give a relative completeness theorem
after the fashion of Cook (see [2] for a survey of results of this kind). The programs
are the usual while programs, but an additional random assignment x := ? is
allowed. For considerations of partial correctness of this language, it is enough to
add the axiom of random assignment given below to the usual system for while
programs to obtain a sound and complete Hoare-like proof system. This contrasts
with the proof systems for total correctness that we consider here, for which
additionally the while rule has to be modified so that the loop counter ranges over
countable ordinals instead of natural numbers.

Our assertion language L contains two sorts: data (for program data) and ord
(for ordinals); we assume as given some constants and function and predicate
symbols, including a constant 0, of sort ord, and a binary predicate symbol < over
ord. We use x, y, z as variables of sort data; a, f3, 'Y as variables of sort ord; and u
as a variable of sort data or ord. t ranges over terms, which are built up from

748 K. R. APT AND G. D. PLOTKIN

variables, constants, and function symbols in the usual way. We use p, q, r to range
over L-formulas; L also includes second-order set variables a, b, c, These set
variables are of arbitrary arity and sort. We write p(ai, ... , am, Ui, ... , Un) to
show some free variables of p (and perhaps not all}. We write a(t1, ... , tn) instead
of the atomic formula (t1, ••• , tn) E a; such a formula is well formed if the sorts
and number of the terms t 1, ••• , tn agree with the sort and arity of a. Formulas
are built up from these atomic formulas and from the usual atomic formulas
P(ti. ... , ln) (where Pisa predicate symbol and the arity of P and the sorts of the
ti agree) by the usual Boolean connectives (conjunction, disjunction, and negation)
and by quantification over variables of sorts data and ord. Although set variables
cannot be quantified over, they can be bound by the least fixed-point operator. We
use the following notation first introduced by Gurevich in [19]. For any formula
p(a, u1, ••• , u,,), where a(ui, ... , u,,) and a(ti, ... , tn) are well-formed atomic
formulas and every free occurrence of a in p is positive, the abstraction

(ti. ... , t,,) E µa(ui, ... , u,,)p

is also a formula.
A positive (respectively, negative) occurrence of a set variable in a formula is

defined in the usual way, with the additional stipulation that an occurrence of a
set variable in the new formula is positive (respectively, negative) if it is so in p. (In
other words, an occurrence is positive if it is within the scope of an even number
of negation signs.) The free variables of the new formula are those of ti, ... , t,, and
the variables of p other than a, ui, ... , u,,. Thus, the least fixed-point operator
binds a, u1 , ••• , u,,. This assertion language is based on the µ-calculus of Hitchcock
and Park [23]. The main difference is that we allow ordinals. This specific choice
of the assertion language is needed only for completeness, as the soundness should
hold for any reasonable assertion language.

Now we can finish specifying the syntax of our programming language. For
convenience we only consider a fixed finite set of data variables, Var = {xi, ... ,
xkl· Boolean expressions are taken to be those quantifier-free L-formulas whose
variables are all in Var and whose symbols have sorts only involving data. Atomic
commands are taken to be of the form x := t (ordinary assignment), where all the
symbols oft have sorts only involving data, or x :=?(random assignment).

Before turning to semantic issues, we give our logic and work out an example.
The formulas of the logic are all L-formulas, together with all those of the form

{p}S{q}

(the latter meaning that, for all values of parameters, if <T is a state satisfying p,
then every execution sequence of S from <T terminates and ends in a state satisfying
q). The axioms and rules of the logic are as follows:

(1) assignment

{p[t/x]}x := t{p}

where p[t/x] is the result of substituting t for all free occurrences of x in p.
(2) random assignment

{p}x := ?{p},

provided x is not free in p.

Countable Nondeterminism and Random Assignment

(3) if-then-else rule

(4) composition rule

(5) while rule

IP A BI S1 !qi, IP/\ •BI S2 lql
!PI if B then Si else S2 fi !qi .

IPI S1 !qi. lql, S2 lrl
IPI S, : S2 lrl

p(a) /\ 0 <a - B, lp(a) I\ 0 < alSl3,B <a · p(,B)j, p(O)- •B
l3ap(a)I while B do Sod lp(O)I

We call p(a) the loop invariant.
(6) consequence rule

P - p', lP'I S lq'j, q' - q
IPI S lql

749

Call the above system T; we write F't--r IPl S !qi to mean that IPI S !ql can be
proved in Tfrom the formulas in F. The random assignment axiom was introduced
by Harel [20]. The above while rule is a straightforward generalization of the
following while rule for total correctness of the usual while programs given in [20].

(7) while rule II

p(a + l) - B, lp(a + l)j S lp(a)I, p(O) - -,B
{3ap(a)! while B do Sod lp(O)}

(A slightly different vocabulary is assumed here-a ranges here over natural
numbers.) We show in a moment that while rule II is not sufficient for proofs of
total correctness of the programs considered here.

Another problem that arises here is that of expressibility of total correctness of
(countably) nondeterministic programs in the dynamic logic considered by Harel
[20]. Total correctness of deterministic programs can be expressed in deterministic
dynamic logic (DDL) by the formula p-. (S)q, equivalent to our IPl S jqj.
However, for the case of nondeterministic programs, this formula is not equivalent
to I PI S lq l since the modality "'() " expresses only existence of a terminating
computation. To overcome this problem, Harel [20] introduces a formula loops
stating existence of infinite computations.

In the dynamic logic augmented by this formula, total correctness of nondeter­
ministic programs can be expressed. Harel [20] provides an arithmetically sound
and complete axiomatization of this logic, but for the case of programs admitting
bounded nondeterminism only. Our completeness result suggests how to obtain a
sound and relatively complete axiomatization of this logic in the presence of
random assignment.

As an example proof in T, consider the following program:

S = while B do So od.,

750 K. R. APT AND G. D. PLOTKIN

where

B=x=OVO<y

and

So = if x = 0 then y := ?; x := l else y := y - 1 fi

(see [16, chap. 9]).

We now wish to prove in Tthat ltruel S IY = Ol holds. To this end we assume
L contains equality symbols of all sorts, the language of Peano arithmetic (with a
predecessor function), a one-argument (conversion) function...,... of sort (data, ord),
and a constant w of sort ord. In the proof we use logical consequences of the laws
of equality, the axioms of Peano arithmetic, and the following formulas:

(1) 0=0.
(2) Vx, y.(x = y ~ x = y).
(3) Vx, y.(x < y ~ x < y).
(4) v x.(x < w).

Define p(a) by

p(a) = (x = 0 ~a= w) /\ (x ¥ 0 ~a= y).

Intuitively speaking, for a state ff, p(a)(11) holds if a is the smallest ordinal bigger
than or equal to the number of possible iterations performed by the loop when
started in u.

We now show that p(a) is a loop invariant (to apply the while rule).

(1) Clearly p(a) /\ 0 <a~ x = 0 V 0 < y.
(2) We first show

(p(a) /\ 0 <a /\ X = Oly := ?; X = 1 13/3 < a.p(/3)l (*)

by showing that

[p(a) /\ 0 <a /\ x = O] ~ Vy.3/3 < a.p(/3)[1/x]

is true: p(a) /\ x = 0 implies a = w. So for any y put t3 = y: then t3 < a and
p(/3)[1/x] holds.

Next we show

lp(a) /\ 0 <a/\ x¥ Ol y := y- 1 13.B < a.p(.B)I.

We have

p(a) /\ 0 < a /\ x ¥ 0 ~ a = ji /\ 0 < y /\ x ¥ 0

which justifies (* *).

~ a = ji /\ 0 < y /\ p(y - l)[y - 1/y]
~ 3.B < a.p(t3)[y - 1/y],

From (*) and (**) by the if-then-else rule

lp(a) /\ 0 <al So 13/3 < a.p(/3)1

holds.
(3) Clearly p(O) ~ (x ¥ 0 /\ y = 0) ~-B.

(**)

Countable Nondeterminism and Random Assignment

By the while rule

{3a.p(a)l S jp(O)l

holds. Both 3a.p(a) and p(O)- y = 0 hold: So by the consequence rule

{truel S {y = Ol
also holds.

751

It is easy to sketch why while rule II is not sufficient to prove the formula
{true} S {y = Ol from arithmetical assumptions. Suppose otherwise. For some
formulap(a), we would then have

(i) The following formulas are true:

p(a + 1)- B, p(O)-+ •B, 3ap{a}, p(O),-+ Y = 0.

(ii) {p(a + 1)} So {p(a)l holds.

Soundness of T with rule (5) replaced by rule (7) implies that {p(a + l)l So
{p(a)l is true when interpreted in the domain of natural numbers. Now take a
state u; for some a0 , Po(a0)(u) holds. It is now easy to see that (i) and (ii) imply
that ao is equal to the number of loop iterations performed by the program S when
started in u. However, this is not true as for the state u satisfying x = O; such a
number ao does not exist.

It is also clear that a modification of rule (7) obtained by replacing {p(a + 1)} S
{p(a)l by {p(a) A 0 <al S {3/3 < a.p(/3)1 does not save the situation either. These
remarks are greatly generalized in Theorem 5.4 below.

The use of parameterized loop invariants combines the technique of using
loop invariants and loop counters. The while rule II thus uses integer-valued loop
counters as opposed to the while rule from T, which uses ordinal-valued loop
counters. The insufficiency of integer-valued loop counters to prove the above
formula {truel S IY = 01 was first observed by Back [9].

The use of ordinal-valued loop counters was in fact proposed already in Aoyd
[18). In the proof-theoretic framework it was first incorporated by Manna and
Pnueli in [24), where so-called convergence functions, with range being a well­
founded set, are used. In the framework of weakest precondition semantics, the
use of ordinal-valued loop counters was advocated in Boom [11].

We now pass to the problem of soundness and completeness of T and consider
interpretations l of L. These are ordinary two-sorted second-order structures, but
subject to the following four conditions:

(I) The domain h11a of sort data is countable.
(2) The domain lord of sort ord is an initial segment of the ordinals.
(3) The constant 0 denotes the least ordinal, and the related symbol< denotes the

strict ordering of the ordinals, restricted to lord·

(4) The domain of each of the set sorts (si, ... , s,,) contains all sets of the
appropriate kind, that is, all subsets of ls, x · · · x Is •• n 2:: 0, S; E \data, ordl.

Let us fix on such an interpretation I and finish specifying the semantics of our
programming language. The set of states is

X = l~ala
(remember there are k variables xj); we use u to range over elements of the set of
states. Let 1r range over maps from all L-variables, other than those in Var, to

752 K. R. APT AND G. D. PLOTKIN

elements of /-domains of the appropriate sort. We write

I l=,..,a p

to mean that p is true in I when the free variables of p denote the values specified
by tr and u; we write 11= p for 'tftr, O'. I l=,..,aP· The notation (tr, u)(Qi/ai, ... ,
Qm/am, i1/ui, ... , in/Un] is used to denote 7r 1 , 0' 1 , where 7r' is obtained from 7r by
altering its value at each ak to Qk and at each u,, not in Var, to i1; 0' 1 is obtained
by similarly altering the values of (f at every coordinate j, to ij if Uj is Xj. We make
use of similar notation for 7r and u alone.

The truth relation I l=,..,a p is defined in the usual way by induction. The only
nonstandard case is when p is of the form (t1, ... , tn) E µa(ui. ... , Un).r. We then
put

I l=,..,aP iff I l=.-[R/a],a a(ti, ... ' tn),

where

R = µQ k (Isor1, x · · · x lsor1Jl(ii. ... , in) I I l::=<.-,a)[Q/a,itfu,, ... ,;,,1u.1 r}.

Here sort; is the sort of variable u;, and we use theµ notation of Section 2.
So I l=.-,a p holds iff the denotation of the tuple (t1, ... , ln) belongs to the least

fixed point of the operator <I>, defined over I by the formula r (and the variables a,
U1, ••• , Un). That is,

4>(Q) = j(ii, ... , in) I I l=<,..,alCQ/a,iifu,,. .. .infu.1 rl.
We omit the (routine) proof that 4> is monotonic since a occurs positively in the
formula r.

The definition of /fi: BExp-(X - ltt,ff}) is now obvious, and for .!JI we have

.!Jl[x := t](o-) = 10'[/[t](O')/x]},

using an obvious notation and

.W[x := ?](O') = 10'' I 3i E ldata·O'' = u[l/x]}

(note that condition 1 on the countability of Ida1a is implicitly used here).
Now all four semantics considered in the previous section are at our disposal;

we concentrate on the weakest precondition semantics '71". For the true of Hoare
assertions we put, for any p, 11",

[p] .. = lu I I l=.-,a p},

and then

1=1 IPI s lql iff 'V7r.(p] .. k Y[S][q],...

By Corollary 3.1 and Theorem 3.2 this is the same as

'V7r, O'[O' E [p] .. -(Scannotdiverge from a: I\ 'Vu'((S, o- >-*(skip, u')
- u' E [q],..)],

which is the usual definition of total correctness. We write Th(/) for the set of all
sentences true in I (as usual); It will also prove helpful to use [p].,..1x as an
abbreviation for [p],,.[>./al·

We now prove the following soundness theorem.

Countable Nondeterminism and Random Assignment

SOUNDNESS THEOREM. For any formulas p, q, of L and command S if
Th(!) r{pj S {qj,

then

1=1 {pi s {qj.

753

PROOF. We only consider the cases of the random assignment axiom and the
while rule, since the others are standard.

(1) We have to show that for any p such that x is not free in p, and for any tr

[p]7r ~ '.W[x := ?]([p] ..).

It is easy to see that for any 7r

(2) Assume

'.W[x := ?]([p],,.) = {er I Vi E !data, cr[i/x] E [p] .. }
= [p].. (since x is not free in p).

(i) It= p(a) /\ 0 < a-. B;
(ii) 'V7rl[p(a) /\ 0 <a]~ '.W[S]([3~ < a.p(~)J,..)l;

(iii) i t= p(O) -. •B.

We are to show that

'V7rl[3a.p(a)] .. ~ '.W[while B do S od]([p(O)J ..)l.
Now fix an arbitrary 1r.

By the definition of '.W we have

'.W[while B do S od]([p(O)] ..) = µQ.<I>(Q),

where

<I>(Q) = ([B]" n '.W[S](Q)) n ([•B] .. n [p(O)],..).

Assume by induction hypothesis that, for K < /.., (K, A E lord), we have

[P]or/K ~ µQ.<I>(Q).

Thus

LJ [p]A;K ~ µQ.<I>(Q),
<<X

where, by convention, the set on the left-hand side is empty if A. = 0. By the
monotonicity of <I>

<I>(u [P]or/<) ~ µQ.<I>(Q).
K<A

On the other hand, we have by (i)-(iii)

[p] .. ;x ~ <PC~x [pJ"1x}

so finally

[p],..1x ~ µQ.<P(Q),

754 K. R. APT AND G. D. PLOTKIN

that is,

[3a.p(a)].- k µQ.cJ?(Q),

as required. D

We now pass to the problem of completeness of our proof system. First we
introduce some notation. If p(a) and q(u1, ... , Un) are formulas such that
a(u1, ••• , un) is a well-formed atomic formula and a does not occur free in q, then
by p[a\q(u1o ... , Un)] we denote a formula obtained from pin the following way.
First rename all variables of p bound by quantifiers or the least fixed-point operator
µ that happen to occur free in Vu1, ... , unq(ui. ... , Un). Then replace each
subformula a(ti, ... , tn) of p(a) by q(ti, ... , tn), meaning the formula obtained
from q by substituting t1, ••• , tn for Ui. ... , Un, renaming bound variables of q if
need be. The following lemma clarifies this definition.

LEMMA 4.1. We have

I I=,.., .. p[a\q(u1, ... , Un)] ifJ f l=.-[A/a],u p,

where

A = { (i1, ... , in) If l=(.-,u)[ii/u;, ... ,in/unl q(Ui, · · •' Un)j.

PROOF. The proof proceeds by induction on the structure of the formulap and
the details are omitted. D

As with the remarks on the truth definition of µ formulas, we see that any
formula p(a, x 1 , ••• , xk), where a is a k-ary set variable of sort (data)k and where
xi, ... , xk are the elements of Var defines for any ran operator {pj,..: 9"(X) -
9'(X) where

jpj,..(Q) = {u EX I I l=.-[Q/a],.- p(a, Xi, ... , Xk)j.

And if a always occurs positively in p, then Ip I.- is a monotonic operator.
Recall that if !Pl.- is monotonic, then {p}!, is defined by induction by the

formula

{p}; = fpJ,.(u IPI~).
K<).

Since X is countable, the sequence ({ p};) >. stabilizes at a countable ordinal.
In the subsequent investigations we need to consider a formula defining this

sequence. The other result needed concerns definability of the weakest precondition
semantics in the assertion language. It turns out that these definitions can be made
in a greatly restricted subset of the language. We say that a formulap is positive iff
in every subformula of the form (t1, ... , tn) E µa(xi. ... , Xn). q occurs positively
in p, every existential ordinal quantifier occurs positively, and every universal
ordinal quantifier occurs negatively; and we say that a data formula is one whose
symbols have sorts involving only data.

LEMMA 4.2. DEFINABILITY LEMMA

(1) For each command S there exists a positive data formula cf?s(a, x 1, ••• , Xk)
with free variables as indicated, where a is a k-ary set variable that always occurs
positively in 'l>s such that for any R k X,

u E '.W'[S](R) if! I l=.-[R/a],.- cf?s(a, Xi, ... , Xk).

Countable Nondeterminism and Random Assignment 755

(2) For each formula p(a, Xi, .•• , Xk) with k-ary set variable a always occurring
positively, there exists a formula q(a, X1, .•. , Xk) with, apart from a and a, the
same free variables asp such that for any 7r and A. in lord

<FE {p}; if! l l= .. p.;,.1,., q(a, Xi, •.• , Xk).

Furthermore, if p is positive, so is q.

PROOF

(l) Note first that, by assumption, all variables occurring in Sare from the set
Var = lx1, ... , xk}. If Sis x; :=?,then if?s is

If Sis X; := t, then if?s is

a(xi, ... , X;-1, t, X;+i, .•• , Xk) A X; = X;.

If Sis S1 ; S2, then if?s is

if?sJa\if?siYi. · • ·, Yk)].

If Sis if B then S1 else S2 fi, then <I>s is

(B - if?sl(a, Xi, •.. , Xk)) A (-iB - if>s2(a, X1, •.. ' xk)).

If Sis while B do S1 od, then <I>s is

(x1, ... , Xk) E µb(xi, ... , xk).[(•B A a(xi, ... , Xk)) V (<I>siCb, X1, .•• , Xk) A B)],

where bis a fresh k-ary set variable.
The claim can be straightforwardly justified on the ground of the definition of

'lr. It is clear that all formulas constructed are positive-data formulas.
(2) For any subset Q' C lord X X, let

Q'(A.) =!al (A., u) E Q'}.

Consider the following equation:

R ={<A., a) I A. E lord, <FE {p} .. c~>. R(,8))}.
Note that the set

Q = l(A., a) I A E lord, a E IPI;}

satisfies this equation by the definition of Ip}~. Moreover, it is the only set that
satisfies this equation; if some Q' satisfies it as well, then we have, by trans­
finite induction, Q'(A.) = Q(A.) for all A. E lord so that Q' = Q. We also have for
any 'A E lord

(*) U Q(/j) = {a I l l=.-[Q/b][>./"J,., 3/j < ab([j, Xi, .•. , Xk)},
{3<>.

where the variables b and a do not occur in p. Now

(A., a) E Q,

iff

l l=,..[u6<,Q(P)/a],a p(a, X1, .•. , Xk),

756 K. R. APT AND G. D. PLOTKIN

iff

iff (by Lemma 4.1 and (*))

l Frr[Q/b][X/£<],u p[a\3,8 < ab(,8, X1' ... ' Xk)](X1' ... ' xk).

We thus see that Q is the only set satisfying the equation

R = I (A, <l) 11 F.-[R/b][X/a],u p[a\3,8 < ab({3, X1, · · • , Xk)](X1, ... , Xk).

Now let

q(a, X 1 , ••• , Xk)
=ctef (a, Xi, ... , Xk) E ~b((3, Xi, ... , Xk)p(a\3(3 < ab((3, X1, ... , Xk)].

(Note this is positive if p is.)
We have by the definition for any 7r and A E lord

l F,,.p,/a],.r q(a, X1, ... , Xk),

iff

l F,,-[Q/h][>-.Ja],u p[a\3(3 < ab(/3, X1, ... , Xk)](X1, ... , xk),

iff

(A, <F) E Q,

iff

O' E IPI;,

which concludes the proof. D

Note that in part (2), the formula q only defines Ip l; insofar as this is possible
with the ordinals in lord· We now impose a condition in the interpretation to the
effect that we have enough such ordinals. Let K(/) be the supremum of the closure
ordinals of the (pj,.., where p(a, Xi, ... , Xn) is a positive data formula with free
variables as indicated, including the k-ary set variable a. Then the assumption is

(3) The domain lord contains all ordinals strictly less than K(/), together with
K(/) if that is not a limit ordinal.

An example interpretation satisfying these conditions can be constructed by
cbosing I data and the interpretation of the constant, function, and predicate symbols
~sort involves only data; this determines the !pj,, and we can then take 10 ,d

to be K(l) + 1; one can then fill in the interpretation of 0, <, and the other symbols.
Of course, we could just have taken lord to be the countable ordinals from the

beginning and avoided all the fuss. But we can now obtain quite a strong complete­
ness theor~m.

COMPLETENESS THEOREM. For any command Sand formulas p, q ifF1 IPl S
lql, then Th(!) f-r IPI S lql. Furthermore, if p, q are positive, then, in the
applications of the proof rules involved in proving IPI S !qi, only positive formulas
need to be chosen to instantiate the formula variables.

Countable Nondeterminism and Random Assignment 757

PROOF. Assume 1=1 {pl S lql holds. By induction on the structure of Swe prove
that Th(/) f-r { p l S I q l holds.

Suppose Sis x := ?. Then, /I= p - V xq and, by the random assignment axiom,
Th(/) f-r {'ix.qi x :=?{'ix.qi, so by the consequence rule, Th(/) f-r {pl x :=? {q}.
(Note that Vxq is positive if q is.)

The case of the assignment statement and the if-then-else construct are clear.
Suppose that Sis S1 ; S2. It is easy to see that both l=1IPI S1 {rl and l=1{rl S2 {qj

hold for any formula r such that for all 7r

[r]" = '.W[S2]([q],..).

The existence of such a formula follows from Lemma 4.2.1: We can take for r
the formula

~s2[a\q(x1, ... , Xk)]

(which is positive if q is). By the induction hypothesis and composition and the
consequence rule

Th(/) f- {pj S1 ; S2 {qj.

The case in which Sis while B do S, od is the most complicated one. In order to
prove {pl S {q}, we have to apply the while rule and for this purpose find an
appropriate loop invariant r(a).

Consider first the positive data formula

p,(a, x,' ... ' Xk) = •B v <l>s,(a, X1' ... ' Xk),

where a does not appear free in q or B. According to Lemma 4.2.2, the sequence
({pd;h can be defined by a positive formula q,(a). More precisely, there exists a
positive formula q,(a, Xi, ... , xk) such that for any .A E lord

iff a E {pi}~.

Now define r by

r(a, Xi, ... , Xk) =def Q1(a, X1, ... , Xk) /\ ~s[a\q(xi, ... , Xk)] /\ (0 <a~ B)

(and note that r is positive if q is). We now prove that r is a loop invariant.
To this end we have to establish three facts:

(i)

(ii)

(iii)

11= r(O) - •B.

II= lr(a) /\ 0 <al S1 {3,8 < ar(.B)}.

I I= r(a) /\ 0 <a - B.

Both (i) and (iii) follow from the definition of r(a). To prove (ii), we have to
show that for any .A > 0, .A E lord, and 1r

[r],..;x ~ '.W[S,]([3/3 < a.r(,8)],,.;x).

Assume that for any X and 1r

U [r],,1, = U {pi}~ n '.W[S]([q],..).
•<X <<X

758 K. R. APT AND G. D. PWTKIN

We have by the definition of r

[r],,1>- = I Pd; n W[S]([q],,) n [B],,
(by Lemmas 4.1 and 4.2.1 and as ;>.. > 0)

= !pd,,(u {pd~) n W[S]([q] ..) n [B],,
•<>-

(by the definition of {Pd;)

= ([•B],, u W[S1](~>. {pi}~)) n W[S]([qJ,,) n [BJ ..

(by the definition of P1, and Lemmas 4.1 and 4.2.1)

= W[S1](~>. I Pd~)) n W[S1](W[S]([q],,.)) n [BJ ..

(by the definition of W[S])

= W[S1](c~>. {pi}~) n W[S]([qJ,,)) n [BJ,,

(as W[S] is a predicate transformer)

~ W[S1](u [r],,1.) (by the above assumption).
K<A

It remains to prove the above assumption.
To this end it is enough to prove by induction on K that

(*) [rJ,,1o u [r]~1• =({pd~ n !Pd~) n W[S]([qJ ..).

In the case K = 0 we see by the definition of P1 that

{pd~= [•B],, U W[S1](0)
= [•B],,. (by the law of the excluded miracle),

and so, by the definition of r that

[rJ .. ;o = [•B],, n W[S]([qJ,,),

establishing(*) for« = 0.
In the case K > 0 we calculate

[r],,1o u [r],,1• =([•BJ .. n W[S]([q],..)) u ({pd~ n W[S]([qJ ..) n [B] ..)
=([•BJ .. U {pi)~) n W[S]([q] ..)
=({pi}~ U {pi}~) n W[S]([qJ,..).

From (i)-(iii), it follows by the while rule and the induction hypothesis that

Th(/) 1-r j3a.r(a)} while B do S1 od {r(O)I.

On the other hand

l=1IPI while B do S1 od {qi

Countable Nondeterminism and Random Assignment

and so

So

Also

'v'7r.[p],. ~ W[while B do S1 od]([q],,)
= W[S](X) n W[S]([qJ ..)
= Y[S](X) n Y[S]([q],..)
= (µR.jpij .. (R)) n W[S]([q] ..)
= U {pi}; n Y[S]([q],..)

>.Elon1

= U [r] .. ;x
>.Elon1

= [3.r(a)J,...

I= p-+ 3a.r(a).

(by definition of 7)
(by assumption 5 on /)

(by the assumption
established above)

[r},,;o = [-iB] .. n W[S]([q]p) (by the definition of W[S]).

Thus by the consequence rule

Th(/) 1-T IPI while B do S1 od jqj as required.

759

D

The use of such a powerful language as our µ-calculus contrasts with the usual
situation [2, 20] in which a first-order language containing the language of Peano
arithmetic suffices to obtain completeness. As we see in the next section, that will
not do here. The µ-calculus gives the needed extra expressive power, as evidenced
by the Definability Lemma; with this, no extra expressiveness assumption on the
interpretation is needed. On the other hand, the calculus has somewhat too much
expressive power, and we have given a sublanguage-the positive formulas-for
which completeness still holds; in the next section, we give some evidence that this
language is of the right recursion-theoretic strength. The only real difference
between our language and that of Hitchcock and Park [23] lies in the use of
ordinals. Now using the Definability Lemma we can see that

iff 11= p-+ <I>s[a\q(x1, ... , Xk)],

and so we have the following sound and complete "proof system":

p -+ <l>s [a\q(x1, •.. , Xk)]

IPI S jq}

for all formulas p and q; further, it does not use the ordinal sort at all, as long asp
and q contain no symbols involving this sort. Thus, in principle, we can work
entirely within Hitchcock and Park's language. However, we wanted to obtain a
natural proof system, with syntax-directed proof rules; we also wanted to investigate
the natural generalization of the standard while rule II to ordinals. It should be
possible to find a system using definable well-founded relations rather than ordinals,
and thereby work entirely within Hitchcock and Park's language. It might also be
of interest to see if a completeness result is possible using a two-sorted first-order
language of data and ordinals.

760 K. R. APT AND G. D. PLOTKIN

5. Recursion-Theoretic Results
In this section we gather results concerning the recursion-theoretic complexity of
the constructs studied in the previous sections. To this purpose we assume that the
domain of data values /data is N, the set of natural numbers.

We fix the programming language as in Section 4 (but without limiting ourselves
to any particular set of variables). Additionally, we adopt the following reasonable
assumption: All functions and relations used in the expressions are recursive (i.e.,
effectively calculable), and the usual functions and relations of Peano arithmetic
are available in the language.

In 5 .1 we show that the halting problem for our language is Il I complete
(Theorem 5.2), also noting what ordinals are associated with the computation trees
of always halting computations (Theorem 5.1). In 5.2 we characterize the state
transformations and predicate transformers definable in our language (Theorem
5.2). These last two results are restatements within our framework of Chandra's
Theorem 2 [13]. Finally in 5.3 we discuss the recursion-theoretic complexity of
our assertion language and also refine the completeness theorem of the last section
showing (Theorem 5.3) what ordinals are needed in proofs.

5.1. THE HALTING PROBLEM. In the subsequent considerations we use various
results from recursion theory. To make the paper self-contained, we briefly recall
the definitions and results we need. All of them can be found, for example, in [32].
We assume the standard coding mechanism that assigns to each finite sequence
mi. ... , mk of natural numbers its code (m1, ... , mk) being a natural number; if
m is the code of mi, ... , mk, then m ® n is the code of mi, ... , mk. n. By Im l we
denote the partial recursive function with index m.

Definition 5.1. A tree is a set of finite sequences of natural numbers, closed
under subsequences, partially ordered under the relation is an extension of A tree
is well-founded if it does not contain an infinite descending sequence, that is, if its
partial ordering is well founded. A tree is recursive if the set of codes of its elements
is recursive.

With each well-founded relation we can associate ordinals in a standard way.
First ordinal 1 is attached to all its minimal elements. Next we proceed by a
transfinite induction and attach to a nonminimal element a, the ordinal Ord(a)
being sup({Ord(b) + 11 b <al), which is the least ordinal greater than any attached
to a lower element. When the partial ordering is a tree, the ordinal attached to the
root of the tree (if nonempty, and zero, otherwise) is the ordinal associated with
the tree, called the height of the tree.

Now an ordinal is recursive if it is a height of a recursive well-founded tree.
There are many equivalent definitions of the recursive ordinals, and the reader is
referred to [32] for more information.

A set A !;;; N is Ill if for some first-order definable (in the language of second­
order Peano arithmetic with relation variables [4]) relation R !;;; ff x N

mEA ~ VaR(a, m),

for all m E N. (Here ff is the set of all subsets of N.) A set A is ~I iff N - A is Ill.
Now let

T = Im I {ml is the characteristic function of a well-founded
recursive tree I.

The following fact will be needed in what follows.

Countable Nondeterminism and Random Assignment 761

FACT 5.1. (Rogers [32]): Tisa complete Ill set (completeness here meaning
that any other III set is recursively one-one reducible to T).

We now relate the material on recursive ordinals and III predicates to our
programming language. For any configuration (S, u} the converse of the relation
-"*restricted to {(S', u') I (S, u) -"* (S', o-')l is well-founded iff S cannot
diverge from u, as described above. The ordinal so associated is clearly recursive as
it is also the ordinal of the execution tree, Exec(S, o-), of (S, o-). This tree is by
definition the set of finite sequences (S, o-) =(So, u0) _.,···_.,(Sn, o-n) ordered
by the supersequence ordering; it can be considered a tree in the sense of Definition
5 .1 via a standard coding of configurations, and as such the explicit description of
the operational semantics given in Section 3 makes it clear that it is a recursive
tree.

Conversely, we can write a command to search a given recursive tree systemati­
cally. Let Tree be the command written informally as

y := O; u := { };
while y= 0 do

if lxl u = 0 then y := I fi;
v :=? u := u e v;

od;
u := ?; u := lxlu

Note that the test of whether {xju = 0 can take arbitrarily many steps and need
not even terminate. Indeed Tree always terminates from u iff u(x) is the code of a
recursive well-founded tree (the last two commands are to check the totality of
{o-(x)I). Moreover, consideration of the resulting execution tree shows that it must
have an associated ordinal {3 with a < {3 :S w.a + 1, where a is the ordinal of the
well-founded tree coded by u(x). Summarizing this discussion, we have proved

THEOREM 5.1. The ordinals associated with well-founded execution trees are
recursive. Conversely, for any recursive ordinal, a, there is an execution tree with
ordinal {3 with a < {3 :S w.a + 1.

A similar, but slightly weaker, result has been proved by J. Stavi. The reason for
the "w-blowup" of a is that we simulate passing from one node of the tree to
another by finitely many steps of computation. Since (S, u) always terminates iff
its execution tree is well founded, we see that, modulo a standard coding, the
halting set

H = { (S, u) I (S, u) always terminates l
is Ill. What is more, we have

THEOREM 5.2. The set His complete Ill.

PROOF. We have already noted that His Ill. Next we know from the above
discussion that an integer m is in T iff the program Tree always terminates from
u[m/x]. The conclusion follows from Fact 5.1. D

An alternative characterization of Ill sets in terms of unbounded nondetermin­
ism is provided by Harel and Kozen [21] where the key concept is the notion of
acceptance instead of termination. They consider infinitely broad AND/OR trees
and concentrate on definability issues only.

5.2 DEFINABILITY. We now characterize those state transformations and
predicate transformers that are definable by commands. We · make use of

762 K. R. APT AND G. D. PLOTKIN

commands with more than k variables and put X1 = N1 (for l::::: k). Define the
functions Xk--0k, 1 --+ X1--"l, k --+ Xk for I 2:: k by Ok,1(xi, ... , Xk) =
(X1' ... 'Xk, 0, ... , 0) and 1rt,k(Xi, ••• 'X1) = (X1' ... ' Xk).

Definition 5.2. A state transformation m in ETxk,xk (respectively, STxk.xk)
is definable iff there is a command S with l ::::: k variables such that m =
?ri,k o ~.w[S] 0 Ok,t (respectively, -,r T.k 0 9J.9'[S] · Ok,1).

Thus, we allow ourselves extra variables; this is done to avoid coding problems
and would clearly not be needed in an extension of our programming language,
which had a block structure (for example).

Definition 5.3. A predicate transformer p is definable iff there is a command S
with l;:::: k variables such that p = 1rt,k 0 :W[S] 0 Ok,t (where the evident extensions
to sets of 'lrJ,k and Ok.1 are intended).

We need to write one more program.

LEMMA 5.1. For any recursively enumerable relation R ~ Nk x Nk, there is a
command SR defining thefunctionf: Nk -+g>(N'l) where

f()-{{(n1, ... , nk) I (R(mi. ... , mk, n1, ... , nk)I
mi, . .. , mk - {J...}

(if this is not 0)
(otherwise).

PROOF. To every re set, there effectively corresponds a partial recursive function
whose range is the given re set and which is total iffthe set is nonempty. Therefore,
there is a recursive function h such that h((m1o ... , mk)) is an index ofa recursive
partial function that corresponds in this way to .

{(ni, ... , nk) I R(m1, ... , mk, ni, ... , nk)}.

So we can take SR to be the command,

r := ?; x := {h((Xi, ... , Xk)}}(r); X1 := (x)1; ... ; Xk := (x)k. D

THEOREM 5.3. 0EFINABILITY

(1) A state-transformation m in ET is definable ifJ Rm is recursively enumerable
and {(mi, ... , mk) I (m1, ... , mk) E Tml is III (here rel(m) = (Rm, Tm) as in
Section 2.2).

(2) A state-transformation, m, in ST is definable iff for some recursively enumer­
able R we have Rm= RU (T;.,, x Y) and also {(m1, ... , mk) I (mi, ... , mk) E Tml
is Ill (here rel(m) =(Rm, Tm) as in Section 2.2).

(3) A predicate transformer p is definable ifffor some recursively enumerable R
and II I set T we have

p(B) = l(mi, ... , mk) I (m1, ... , mk) E T and R(mi, ... , mk) ~BI.

PROOF

(1) Suppose m is definable by a command S. Then, as the binary relation
(S, a) --+* (skip, q') on states is clearly recursively enumerable, so is Rm. Also,
since His Ill from Theorem 5.2, so is Tm.

Conversely, suppose we have that Rm is recursively enumerable and that
l(m1, ... , mk) I (m1, ... , mk) E Tml is Ill. Since T is complete III, there is a
recursive function g such that (m1, ... , mk) E Tm iff g((m1 , ••• , mk)) E T.

Countable Nondeterminism and Random Assignment

Now we can see that m is defined by the command
v ·=?

if v = 0 then x := g((xi, ... , xk)); Tree fi;
SRm

Note that the above assertions depend for their validity on Theorem 3.2.

763

(2) Immediate from Part (l) and the remarks on the relational approach in
Section 2.2 and Theorem 3.1.

(3) Immediate from Part (2) and the remarks on the relational approach in
Section 2.3 and Theorem 3.3. (One small point is that, given R and T satisfying
the formula, it follows from the fact that p(0) = 0 by the law of the excluded
miracle that, if (m1, ... , mk) E T, then R(mi, ... , mk) =Jf 0.) D

Note that there is no conflict with Church's thesis, which only relates to
computable partial functions. In fact it follows from Part (l) of Theorem 5 .3 that
any definable partial function is partial recursive. A more interesting question is
whether to extend the notion of computability to the present kind of non determin­
ism (Chandra's possibility (C) [13]). We incline to this view since the Ill phenomena
arise from an abstraction from reality for which we do not care to specify which
oracle (giving values for random assignments) actually occurs.

To relate Part (3) of the Theorem to a standard concept, recall that an operator
ell: !J!(Nk) ~ P/!(Nk) is Ill iff, for some first-order definable (in the language of
Peano arithmetic) relation R ~ ff x !J!(Nk) x N\

<1 E <l>(X) = VaR(a, X, o}

COROLLARY 5.1. For any command S the predicate transformer :W[S] is a ITI
monotonic operator.

PROOF. Immediate from Part (3) of Theorem 5.3. D

5.3 PROOF THEORY. The assertion language we used in the proof of the
completeness theorem in Section 4 is quite powerful. It is instructive to see that
some simpler assertion languages are not sufficient to obtain completeness. Take,
for example, the language of Peano arithmetic and its standard interpr.etation Jf/.
Note that for any finitistic proof system G the set

l{pj s lql I Th(ff) 1-G lPl s lqll

is recursively enumerable in a Lil set and so is itself Lil.
On the other hand, the set

l{pj s lql I l=_,v IPI s lqll
is Ill complete since the III complete set H from Section 5.1 can be reduced to it
by

(S, <1) EH iff l=A" lx1 = <r1 /\ • • • /\ Xk = o-d S ltruel,
and moreover the set itself is Ill since

I= IPl s lql iff 'V7r, u[(ff l=,,.,u p ~ (S, u) E H)
/\ ((S, u) ~* (skip, u') ~ff l=,,.,u q)].

This should be contrasted with the situation in the case of programs S admitting
only bounded nondeterminism where there is completeness relative to Th(Jf/) (see

764 K. R. APT AND G. D. PLOTKIN

[3]). Indeed then, the set

l{pl s lq) 11=.,y IPl s {qi}

is Li], since the corresponding halting set His then recursively enumerable.
The power of our assertion language is also reflected in the complexity of the

truth relation of the standard model f 51 in the case of an assertion language being
an extension of Peano arithmetic.

The model f 51 contains all natural numbers, recursive ordinals, and all sets of the
appropriate kind. As we shall see, Th(ls1) is at least II l and, we conjecture, lies
within Lii. We can characterize the complexity of the subcollection of positive
formulas. Recall that a formula of second-order Peano arithmetic is II! iff it has
the form V a.p where only first-order quantifiers appear in p.

LEMMA 5.2. From every positive formula with no free ordinal variables, there
is effectively obtainable a III formula of second-order arithmetic defining the same
relation over the natural numbers and relations (using the standard model for both
cases).

PROOF. First we sketch how to translate the positive formulas into positive data
formulas. To this end we interpret the ordinals as the set Tof codes of characteristic
functions of well-founded trees by means of a positive data formula O(x), translat­
ing ordinal quantifiers Va and 3a by the restricted natural number quantifiers
('l:f x.O(x) ~ ...) and (3x.O(x) /\ . · ·). It is here that the restrictions on the
occurrences of ordinal quantifiers in positive formulas are used to ensure the
positivity of their translations. Then the ordinal constant 0 is interpreted by the
code of the empty tree, and the relation a < f3 is interpreted by a formula L(x, y)
defining the relation x <* y over the integers (where x <* y iff x and y are in T
and the height of the tree coded by x is strictly smaller than the height of the tree
coded by y).

To define O(x) within our assertion language, one notes that T is the least set of
natural numbers such that

xE T iff (lxl<) = 0) V Vy.(x I y) E T,

where (. I .) is a recursive function such that for any n1, ... , nk we have

lxlyl(n1, ... , nk) c: {xl(y, ni, ... , nk).

So O(x) can be taken to be

x E µa(x).(/xl<) = 0 V Vy.a(x I y),

making use of the usual abbreviating devices afforded by Peano arithmetic. For
the formula L(x, y), we let x :s* Y mean that x and y are in Tandy<* x does not
hold, and we note that <* and :s* are the least pair of relations such that

x <* y
x :::;* y

iff
iff

x E T /\ y E T /\ ({yl () = I /\ 3z.x :s* y I z),
x E T /\ y E T /\ (Ix}() = 0 V Vz.x I z <* y);

then we can use the least fixed-point operator to obtain a suitable formula
M(x, y, z), where M(x, y, 0) defines<* and M(x, y, 1) defines :s*, and that gives
L(x, y).

Countable Nondeterminism and Random Assignment 765

Finally we note that least fixed-point formulas (t1, ... , tn) E µ,a(xi, ... , Xn) can
be translated as

'Va.Vx1 ... 'Vxn(P' ~ a(xi, ... 'Xn)) ~ a(t1, ... ' tn)

(where p' is the translation of p), and one sees that applying this to a positive data
formula results in a formula of second-order arithmetic that can be brought into
Ill form. 0

We see from the lemma, that since the true Ill sentences of second-order
arithmetic form a II l set, so do the positive sentences of our language. Furthermore,
since the complete Ill set T is definable by a positive formula, we conclude that
the sentences form a complete Ill set. If we are happy with the "proof system"
outlined at the end of the previous section for formulas of the form !PI S !ql with
p and q positive formulas, then we see that, at least in the case of arithmetic, our
assertion language, restricted to the positive formulas, has exactly the right
recursion-theoretic strength. However, the completeness theorem for the
Hoare logic merely gives a reduction to the truth of sentences of the form
'Vx1, ... , 'Vx11(P ~ q) where p and q are positive. The set of true sentences is more
complicated than Ill, since it includes the complete }.;l set of the formulas where q

is (0 = 1) (but at least it is .6.D. We conjecture that this is the price paid for not
having a structured proof system. Returning to the lemma, it can be shown that
the converse also holds, and indeed what we have is a mild elaboration of the well­
known fact that the inductive relations and the Ill relations coincide.

We now study which ordinals are needed to prove the total correctness of the
programs considered. Let Q denote the least nonrecursive ordinal. We need the
following fact concerning monotonic Ill operators.

FACT 5.2 (Spector [34]). If iJ> is a Ill monotonic operator, then I cl> I :::: Q where
I <I> I is the closure ordinal of iJ> (see Section 2.1).

We now prove the following theorem.

THEOREM 5.4. Exactly all recursive ordinals are needed in the proofs of total
correctness.

PROOF. We show first that it is sufficient to restrict the range of ordinals in the
while rule to all recursive ordinals.

By Lemma 5.2 every monotonic operator definable by a positive data formula
is a Ill operator and hence, by Fact 5.2, has closure ordinal ::;Q, which is a limit
ordinal. So if lord is Q, assumption (5) on I is fulfilled, and the Completeness
Theorem applies to I.

Suppose now for contradiction that for some recursive ordinal £Xo it is sufficient
to restrict the range of ordinals needed in the while rule to ordinals :5ao. In Section
5.1, we prove that for any recursive ordinal there exists a value m such that
Exec(Tree, a-) has associated ordinal >a when O"(X) = m.

Choose now m0 such that Exec(Tree, a-) is of height >w.ao + 2 when O"(X) = m0 •

We have (omitting to write/)

where

t=lx = mo /\ y = 0 /\ u = (>l while y = 0 do S' od {true},

S' =if {x)(u) = 0 then y := 1 fi;
v := ?; u := u ® v.

766 K. R. APT AND G. D. PLOTKIN

By the above claim there exists an assertion r(a) such that

(i) x = m0 /\ y = 0 /\ u = () ~ 3a ::5 aor(a).
(ii) r(a) /\ a > 0 ~ B, r(O) ~•B.

(iii) Fjr(a) /\a> Ol S' 13/1 < cxr(!3)j.

Let u be any state such that

Fa (x = mo /\ y = 0 /\ u = ()) (omitting to write the unnecessary 7r).

Then Exec(while y = 0 do S' od, u) has associated ordinal >w.a0 • We now assign
an ordinal to each node of this tree. By (i) for some a, t=a r(a). We assign w . a to
the root of the tree; clearly a > 0. For any u' such that

(s I' IJ') ---? * (Skip, IJ' I) ;

by (iii) Fa' r({j) holds for some {1 < a. To the corresponding node

(while y = 0 do S' od,) ~* (while y = 0 do S' od, u'),

we assign the value w . {1. Continuing this procedure from u 1 , we assign an ordinal
to every node of this form. Now take a node T to which no ordinal has been
assigned. By the form of S' there exist two nodes To and r1 in the execution tree of
the above form such that ordinals have been assigned to ro and T1 and T lies on a
path connecting them. Let /1 be the ordinal assigned to To and let n be its distance
from T. We assign to T the ordinal {1 + n.

In this way we find an order-preserving function from the execution tree
into the ordinal a · a0• However, this is a contradiction because the least
ordinal into which such a function exists is the height of this execution tree which
is >w · ao, D

ACKNOWLEDGMENTS. We are grateful to A. de Bruin, F. Nielson, and the referees
for detailed comments on the first version of this paper. We thank J. Stavi for
interesting discussions concerning the results contained in Section 5.

REFERENCES

1. ACZEL, P. An introduction to inductive definitions. In Handbook of Mathematical Logic,
J. Barwise, Ed. North Holland Studies in Logic and the Foundations of Mathematics, vol. 90,
Elsevier-North Holland, Amsterdam, 1977, pp. 739-792.

2. APT, K. R. Ten years ofHoare's logic: A survey-Part I. ACM Trans. Program. Lang. Syst. 3, 4
(Oct. 1981), 431-483.

3. APT, K. R. Ten years ofHoare's logic: A survey, Part II, nondeterminism. Theoret. Comput. Sci.
28(1984), 83-109.

4. APT, K. R., AND MAREK, W. Second order arithmetic and related topics. Ann. Math. Logic 6
(I 974), 177-209.

5. APT, K. R., AND OLDEROG, E.-R. Proof rules and transformations dealing with fairness. Sci.
Comput. Prog. 3 (1983), 65-100.

6. APT, K. R., AND PLOTKIN, G. D. A Cook's tour of countable nondeterminism. In Proceedings
ICALP '81, S. Even and 0. K.ariv, Eds. Lecture Notes in Computer Science, vol. 115. Springer­
Verlag, New York, 1981, pp. 479-494.

7. BACK, R. J. A continuous semantics for unbounded nondeterminisrn. Theoret. Comput. Sci. 23,
2 (1983), 187-210.

8. BACK, R. J. Semantics of unbounded non-determinism. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 85. Springer­
Verlag, New York, 1980, pp. 51-63.

9. BACK, R. J. Proving total correctness of non-deterministic programs in infinitary logic. Acta Inf'
15 (1981), 233-250.

10. BERRY, G., CURIEN, P. L., AND LEVY, J. J. Full abstraction for sequential languages: The state of
the art. In Proceedings of the French Seminar on the Applications of Algebra to Language Definition

Countable Nondeterminism and Random Assignment 767

and Compilation (Fountainbleau, 1982), M. Nivat and J. Reynolds, Eds. Cambridge University
Press, Cambridge, Mass., 1985.

11. BOOM, H.J. A weaker precondition for loops. ACM Trans. Program. Lang. Syst. 4, 4 (Oct. 1982),
668-677.

12. BROY, M., GNATZ, R., AND WIRSING, M. Semantics of non-deterministic and non-continuous
constructs. In Program Construction, International Summer School Marktoberdorf (July 1978),
F. L. Bauer and M. Broy, Eds. Lecture Notes in Computer Science, vol. 69. Springer-Verlag, New
York, 1979, pp. 553-591.

13. CHANDRA, A. Computable non-deterministic functions. In Proceedings of the 19th Annual Sym­
posium on Foundations of Computer Science. IEEE, New York, 1978, 127-131.

14. DE BAKKER, J. W. Mathematical Theory of Program Correctness. Prentice-Hall, Englewood Cliffs,
N. J., 1980.

15. DE BAKKER, J. W., AND ZUCKER, J. I. Denotational semantics of concurrency. In Proceedings of
the 14th Annual ACM Symposium on Theory of Computing. ACM, New York, 1982, pp. 153-158.

16. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N. J., 1976.
17. EMERSON, E. A., AND CLARKE, E. M. Characterizing correctness properties of parallel programs

using fixpoints. In Proceedings of the 7th Colloquium on Automata. Languages, and Programming.
Lecture Notes in Computer Science, vol. 85, Springer-Verlag, New York, 1980, pp. 169-181.

18. FLOYD, R. W. Assigning meanings to programs. In Proceedings of AMS Symposium in Applied
Mathematics 19(1967), 19-31.

19. GUREVICH, Y. Toward a logic tailored for computational complexity. In Proceedings of 1983
Logic Colloquium in Aachen, Lecture Notes in Mathematics, vol 104. Springer-Verlag, New York,
1984.

20. HAREL, D. First-order dynamic logic. In Lecture Notes in Computer Science, vol. 68. Springer­
Verlag, Berlin, 1979.

21. HAREL, D., AND KOZEN, D. A programming language for the inductive sets and applications. Inf.
Cont. 63 (1984), 118-139.

22. HENNESSY, M. c. H., AND PLOTKIN, G. D. Full abstraction for a simple parallel programming
language. In Mathematical Foundations of Computer Science, J. Becvar, Ed. Lecture Notes in
Computer Science, vol. 74. Springer-Verlag, New York, 1979, pp. 108-120.

23. HITCHCOCK, P., AND PARK, D. Induction rules and termination proofs. In Automata, Languages,
and Programming, M. Nivat, Ed. North Holland, Amsterdam, 1973.

24. MANNA; Z., AND PNUELI, A. Axiomatic approach to total correctness of programs. Acta In/. 3
(1974), 253-262.

25. MILNE, G., AND MILNER, R. Concurrent processes and their syntax. J. ACM 26, 2 (July 1979),
302-321.

26. MOSCHOVAKIS, Y. N. Elementary induction on abstract structures. North-Holland, Amsterdam,
1974.

27. NIVAT, M. Infinite words, infinite trees, infinite computations. In Foundations of Computer
Science, J. W. de Bakker and J. van Leeuwen, Eds., vol. III, no. 2. Mathematical Centre Tracts,
vol. 109, 1979, pp. 3-52.

28. PARK, D. On the semantics of fair parallelism. In Proceedings of the Winter School on Formal
Software Specification. Lecture Notes in Computer Science, vol. 86. Springer-Verlag, New York,
1980,pp. 504-526.

29. PARK, D. A predicate transformer for weak fair iteration. In Proceedings of the 6th IBM Sympo­
sium on Mathematical Foundations of Computer Science (Hakone). IBM, New York, 1981.

30. PLOTKIN, G. D. A powerdomain construction. SIAM J. Comput. 5, 3 (1976), 452-487.
31. PLOTKIN, G. D. Dijkstra's predicate transformers and Smyth's powerdomains. In Proceedings of

the Winter School on Formal Software Specification. Lecture Notes in Computer Science, vol. 86.
Springer-Verlag, New York, 1980, pp. 527-553.

32. ROGERS, H., JR. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

33. SMYTH, M. Powerdomains. J. Comput. Syst. Sci. 16, I (1978), 23-36.
34. SPECTOR. C. Inductively defined sets of natural numbers. In: Infinitistic Methods. Pergamon Press,

Elmsford, N.Y., 1961, pp. 97-105.
35. STOY, J. Semantic Models. In Theoretical Foundations of Programming Methodology, M. Broy

and G. Schmidt, Eds. Reidel, Hingham, Mass., 1982, pp. 293-324.

RECEIVED JANUARY 1982; REVISED MARCH 1985; ACCEPTED JANUARY 1986

Journal of the Association for Computing Machinery, Vol. 33, No. 4, October 1986.

