
Theoretical Computer Science 33 (1984) 65-84
N orth-H oil and

FAIR TERMINATION REVISITED-WITH DELAY*

K.R. APT
LITP, Universite Paris 7, 75251 Paris, France

A. PNUELI
The Weizmann Institute of Science, Rehovot, Israel

J. STAVI
Bar-I/an University, Ramat Gan, Israel

65

Abstract. A proof method for establishing the fair termination and total correctness of both
nondeterministic and concurrent programs is presented. The method calls for the extension of
states by auxiliary delay variables which count down to the instant in which a certain action will
be scheduled. It then uses well-founded ranking to prove fair termination allowing nested fair
selection and loops.

1. Introduction

The problem of termination of nondeterministic and concurrent programs under
the assumption of fairness has recently been receiving considerable attention (see,
e.g., [1, 6, 9]).

The basic method for proving invariant properties, such as partial correctness,
was developed by Floyd [5] and Hoare [8] for sequential programs. It is based on
the idea of finding an inductive property which is preserved by every basic action
of the program. When we consider nondeterministic and concurrent programs, the
method of invariance is still applicable with very minor modifications.

In comparison, the suggested method for proving termination properties (total
correctness for example [10]) is not directly extendable to concurrent and nondeter­
ministic programs when we stipulate fair executions. The method, as developed in
[5, 11] is based on establishing a mapping from the program states to some well­
founded domain (a rank) such that any program action causes a decrease in the
rank. That this method does not apply to fair termination is obvious from the

* The work reported here was partly done while the first author was visiting the Weizmann Institute,
Rehovot, Israel.

It is supported in part by the Israeli Academy of Sciences, Basic Research Foundation.

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

66 K. R. Apt, A. Pnueli, J. Stavi

following trivial example:

while b do if[b~skip D b~ b :=false] fi od.

A fair execution of this program must eventually choose the second branch of the
conditional, causing b to be set to false and terminating the program. However, any
choice of the first branch preserves the program state. Correspondingly, no mapping
which always causes a decrease in the rank can exist.

The study of fair executions is mainly motivated by concurrent programs. For
concurrent computations fairness or its weaker version-justice [9]-is a most
general modelling of the fact that the ratio of speeds between cooperating processors
may be arbitrarily large and varying but is always finite. The study of fairness in
the context of nondeterministic but sequential programs is motivated in part by the
use of nondeterminism to model concurrency and also as a more restricted interpreta­
tion of nondeterminism.

Answering to the challenge of extending the method of well-founded orderings
to fair termination, several suggestions were made.

One approach, represented by [9] and [6] is to relax the requirement that every
action causes a decrease in the rank of the state. By this methodology, for each
state there always exist some helpful actions which decrease the rank of the state,
and some other actions, termed indifferent (steady in [6]), which at least do not
increase this rank. By fairness (and some additional requirements of the method),
a helpful action must eventually be chosen which causes the rank to decrease and
thus excludes infinite computations. This method was applied in [9] to concurrent
programs represented in an abstract framework, and in [6] to nondeterministic
programs in a more syntax directed style. An interesting point is that the method
of [6] can only be applied to programs which terminate due to fairness on the top
level, i.e., fair choice between the branches of an encompassing loop and not between
branches of an enclosed conditional statement.

Thus the following example,

while b do
if [b ~skip

D b ~ if [b ~ skip
Db ~ b :=false] fi

] fi od,

cannot be proven fairly terminating by the method of [6].
Another approach to fair termination developed in [l] suggests modifying the

program by the construction of an explicit fair scheduler for the program. This
reduces the problem of fair termination to that of the termination of a deterministic
program in which random assignments x := ? of unbounded natural numbers are
allowed. Such assignments are used by the scheduler to implement fair scheduling.
By [2] the termination of such programs can always be proved by well-founded
ranking, provided we allow ordinals higher than w-the first countable ordinal.

Fair termination revisited-with delay 67

Once the proof rules are obtained for the program augmented by the scheduler
statements, these statements can be eliminated. Thus, we do not have to actually
construct the scheduler in order to apply the derived proof rules. They are directly
applicable to the program as originally presented. In [l] this method was developed
again only for top level fairness in nondeterministic programs.

In this paper we present another approach to the termination of fair programs,
covering both concurrent and nondeterministic programs. We believe it to be much
simpler and more natural than any of the approaches discussed above, and as we
will illustrate below, directly applicable. While the method can also be justified by
program transformations, as in [1], the presented justification does not call for
program modification but instead extends the states by adding auxiliary variables.
In a certain sense this extension parallels the introduction of auxiliary variables in
[12) providing a natural method for invariance properties of concurrent programs.
As will be shown below our method provides proofs for termination under the
assumption of overall fairness and not only top level fairness. Thus, in comparison
with previous proof methods the approach suggested here is more general, is simpler
to apply and justify and forms a natural generalization of the method of well-founded
ranking successfully used for sequential programs.

Similarly to [1] we will show that the problem of fair total correctness of a
nondeterministic program is reducible to that of the ordinary total correctness of a
program which allows random assignments x := ?. Such programs were studied in
[2]. In our paper we will show the following additional result concerning such
reductions in the other direction.

Given a program II which allows random assignments, it is possible to construct
a nondeterministic program ll1 with no random assignments such that the fair total
correctness of II1 is equivalent to the ordinary total correctness of II. Furthermore,
it is sufficient to require top level fairness in the computations of II1• This result
allows us to resolve the issue raised in [l] by showing that all recursive ordinals
(order types of recursive well ordering of sets of natural numbers) are required to
establish fair termination of programs with top level fairness only. This of course
is a significant increase in complexity over the sequential deterministic case where
w is the highest ordinal ever needed.

2. Concurrent programs

The method is illustrated first for concurrent programs represented in an unstruc­
tured framework. The framework is taken from [9] and we repeat its basic definitions
here:

A concurrent system is a triple:

P=(S, F, I),

where Sis a set of execution states, I~ Sis the set of initial states, and F =(f.., ... ,fm)
is a set of transition functions associated with m processes.

68 K.R. Apt, A. Pnueli, J. Stavi

Each f;: S 4 25 maps a state s into a set J; (s) c:; S which is the set of possible
outcomes when the process P; executes an atomic instruction on the state s.

If f;(s) ;e 0 we say that f; is enabled on s, otherwise we say that it is disabled on

s. A state s which is disabled for all i = I, ... , m is called terminal. Let T denote

the set of terminal states.
An execution sequence of P is a maximal sequence

such that s0 E I and for each j, sj+l Ef;;+.(sj). A state is accessible if it occurs in an
execution sequence. The set of accessible states is denoted by Ace(I).

An execution sequence is fair if it is either finite or if every transition fk which
is enabled infinitely many times in the sequence is also scheduled infinitely many
times, i.e., ij = k for infinitely many j's.

We say that a program P is fairly convergent if every fair execution sequence of
P is finite.

We propose the following proof method for proving the fair convergence of
concurrent systems. By an extended state we mean an element of S x Nm.

The delay variables method
(l) Choose a state predicate Q c:; S such that
(A) SEf=:!;>(sET)vQ(s).

(B) Q(s)t..s'Ef;(s)=::;,(s'E T)vQ(s') for i=l, ... ,m
(T being the set of terminal states).

This ensures that the predicate Q holds for all accessible nonterminal states.
(2) Choose a well-founded set (W, >), i.e., a set W with an ordering relation >

such that every W-sequence w0 > w1 > · · ·, W; E W, is finite.
(3) Find a ranking function

p:SxNm4 W,

mapping extended states into the well-founded domain W An extended state consists
of a state s E S augmented by m scheduling (or delay) variables z i. ... , Zm (also
referred to as counters). The role of the delay variable z; is to count how many steps
will pass in which f; is enabled but not yet scheduled. By fairness, there can be only
a finite number of them.

The ranking function must satisfy

Q(s) 11 s' Ef;(s) 11 /\ [(fj(s) 7" 0-=::;, zj = zj + 1) 11 (fj(s) = 0-=::;, z; = zj)] =::;,
j'# i

=:!;> p(s, z1, ••• , Z;-i, 0, Z;+i. ... , zm) > p(s', z\, ... , z;,,).

All the free variables in the above, i.e., s, s', z, z' are considered to be universally
quantified. To prove correctness (or soundness) of the method, consider an infinite
fair execution sequence

Fair termination revisited-with delay 69

For each j = 0, 1, ... we define the vector of delay values ui = (ut ... , u{,,);;:,, 0 as
follows: u{ =number of distinct/;;:,, j such thatf,, is enabled on si, but not scheduled
for any j ~ / ,,;;;,j', i.e., number of contiguous steps from j on where fk is enabled but
not yet scheduled.

By fairness the iij's are well defined, nonnegative and finite.
In addition they have the following properties:
Consider a transition si ,tk sj+Jo i.e., ii+l = k Then
(a) uik = 0.
(b) For every I ;of k such that Ji(si) ¥ 0, u{ = u{+ 1 +1.
(c) For every 1¥ k such thatfi(si)=0, u{=u{+'.
Let a now represent an infinite fair sequence. Assume that Q, W and p have

been found satisfying the method's requirements. Consider the sequence of aug­
mented states (s0 , u0), (s" ii 1), ••••

By comparing properties (a), (b) and (c) to the requirements on Q and p, we obtain

p(so, i1°) > p(s" i1 1) > ... '

contradicting the well foundedness of W This shows that a successful choice of Q,
W and p guarantees fair termination.

Conclusion: The delay variable method is sound.

Completeness is even more trivial. Assume that P is fairly convergent.
Take Q = Acc(J), i.e., true for all accessible states.
Take W to be S x Nm, p the identity mapping

p(s, z1, ••• , Zm) = (s, Zi. ••• , Zm).

The relation > over W is defined as the transitive closure of the relation > defined
by

(s, Z1o • •• , Zm) > (s', z;, ... , z;, ... , z:,,) ~

~ 3iQ(s)f\s'Ef;(s)/\ /\ [(fj(s)¥0~zi=zj+l)
j9'i

/\ (fj (S) = 0~ Zj = zj)] /\ Z; = 0,

which holds exactly between two accessible augmented states that can appear
contiguously in a computation. That this relation is well founded follows immediately
from the fact that P is fairly convergent.

We conclude this section by an example of proving fair termination of the following
distributed GCD program:

while y 1 ¥ y 2 do if [y 1 >Yi' y 1 := y 1 - y2 D y 1 < y2 ' skip] fi od

while y 1 ¥ y 2 do if [y1 > Y2 ' skip D Y1 <Yi' Yi:= Yi - y,] fi od.

In our framework,

70 K.R. Apt, A. Pnueli, J. Stavi

The transition functions f 1, f 2 are given by

f 1([Yi, Y2D =if Yi> y2 then [y 1 -y2, Y2] else if Yi< Y2 then [yi, Yi],

J;([yi, y2]) =if Yi> y2 then [yi, Y2] else if Yi< Yi then [Yi, Y2 - Yil

Note that both functions are disabled on states of the form [y, y], which are therefore
terminal.

To apply the delay variables method we choose Q as

Q([y,, Y2]) = (y, ¥-Yi) A (yi, Y2 > 0),

W = N x N-the set of pairs ofnonnegative integers with the lexicographic ordering
on pairs given by

(mi. ni) > (m2, n2) ~ (mi> m2) or (mi= m2 and ni > n1),

p([yi, 12], Zi, Z2) = (y, + 12, if Y1 > Y2 then Z1 else Z2).

We have to show that the value of p decreases on each transition. Take for example
the case of Yi> Y2· We consider separately i = 1 and i = 2. We have to show

[y;, y;] = f 1([yi, Y2]) I\ Z2=z;+1 =:} p([y1> Yi], 0, z2) > p([y;, y;], z;, z;).

But certainly in this case Yi+ Yi> y; +y; so that p > p'. For i = 2 and Yi> y2 we
have to show

[y;, y;] = f2([yi, Y2]) I\ Z1 = z(+I =:} p([y1> Yi), Zi, O) > p([y(, y;), z(, z;).

But in this case [y(, y;] = [y 1, Yi] so that

p([yi, 12], zi, 0) =(Yi +yi, z; + 1) >(Yi+ Yi, z;) = p([y;, yi], z;, z;).

This proves that the distributed GCD program is indeed fairly terminating.

3. Nondeterministic programs

In this section we develop the variant of the method appropriate to nondeterminis­
tic programs. The programs considered here will be presented in a structured
language, and the method will lead to the establishment of overall fair total
correctness.

The syntax of our programs is given by the following grammar:

II ::=skip Ix:= t I II ; JI I if D Bi -7 Jl; fi I while B do JI od.
i=I

Here x is a program variable, t a term, B and B; are boolean expressions. The
booleans B; in the context of the if-fi construct are called guards. Our language
differs from that of Dijkstra [4] in that the loop is always guarded by a single
condition.

Fair termination revisited-with delay 71

3.1. Semantics

Let Var denote the set of program variables and q]J a domain of an interpretation.
By a state we mean a mapping s: Var-'? q]J,

Following [7] we define a simple operational semantics for programs based on a
transition relation '-,>' between configurations, that is pairs (II, s) consisting of a
program and a state. In addition we consider the two special states J_ standing for
divergence and fail standing for abortion.

In general (II, s)-'? (II', s') means that one step of execution of II applied to s
can lead to a state s' with II' being the remainder of II yet to be executed.

It is convenient to assume the empty program E. Then II' is E if II terminates
in s'. We assume that for any program II, E ; II= II ; E =II.

We define the above relation between configurations by the following clauses
where s ~ fail and s ~ J_:

(i) (skip, s)-'? (E, s).
(ii) (x:= t,s)-'?(E,s'), where s'(x)=s(t) and s'(y)=s(y) for y'Fx.

(iii) (ifO;:, B;-'? II; fi, S)-'? (llj, s) if f=Bj(s) (I ~j~ m).
(iv) (if0~=t B;-'?ll; fi, s)-'?(E, fail) if f=/\~=t 1B;(s).
(v) (whileBdollods)...,,(ll;whileBdollod,s) iff=B(s).

(vi) (while B doll od, s)...,, (E, s) if F=1B(s).
(vii) if (ll, s)-'? (ll', s'), then (ll; lli, s)-'? (ll'; lli, s').
Let '-'? *' stand for the reflexive transitive closure of'...,,'. We say that II0 can diverge

from s0 if there exists an infinite sequence

We say that ll can fail from s if for some ll1

(II, s) -'?* (II1, fail).

We may now define various semantics of programs by putting

.klp[II](s) = {s'IUI, s)-'?* (E, s')},

.klwt[II](s)=.AtP[II](s)u{J_III can diverge from s},

.At,[II](s) = Jflw1[II](s) u {fail III can fail from s}.

We now proceed to define yet another semantics of programs-the one taking
under consideration the assumption of fairness. The definition requires some way
of distinguishing between various occurrences of the same subprogram.

A computation sequence

a:(II0 , s0)-'?(II1, s 1)-'? · · ·,

is said to be fair if it is either finite or for every program II: if 07'= 1 B;...,, II; fi; ll'
and each i = 1, ... , m, if there are infinitely many j's for which (II, sj) appears in a

72 K.R Apt, A. Pnueli, J. Stavi

and l=Bi(si), then there are infinitely many j's among them such that the transition

(fl, Sj)-'> (Il; ;fl', Sj)

appears in O".

This again captures the idea that every guard associated with a fixed location in
the program, which is tested and found enabled an infinite number of times will be
selected an infinite number of times.

To avoid confusion resulting from the fact that various occurrences of ll in u
do not need to correspond with the same program, we should actually label each
subprogram of ll0 with a unique label. It is clear how to perform this process and
we leave it to the reader.

We may now define AtraiJIJI](s) analogously as Att[JI](s) by allowing.Lin it only
if JI can diverge from s by a fair computation sequence.

Let P, Q, R stand for formulae (assertions) in an assertion language which contains
all program variables, terms and boolean expressions. We put [P] = {s ll=P(s)}. We
stipulate that for any assertion P, .Le [P] and faile [P].

For any f E {p, wt, t, fair}, assertions P, Q and a program JI we define

At1[JI]([P]) = U At1[JI](s).
se[P]

The statement of program correctness is defined by:

l=1{P} II { Q} iff At1[1I]([P]) s; [Q].

We thus have four types of program correctness:
I= P-partial correctness;
!=wt-weak total correctness;
l=t-total correctness;
l=ra;r-total correctness under the assumption of fairness (fair total correctness).
The weak total correctness and the corresponding .iiwt semantics are less often

considered in the literature. We need these notions in the next section. We call the
constructs {P} JI { Q} the correctness formulae.

3.2. A transformation realizing fairness

In the subsequent considerations we need atomic programs of the form x := ?
called random assignments. x := ? sets x to an arbitrary nonnegative integer. The
semantics of random assignment is defined by adopting the clause

(x:= ?, s)-'>(E, s')

for any states' such that s'(y) = s(y) for y iiE x. We assume that x ranges over natural
numbers which form a subset of the domain gj) of the interpretation.

Programs allowing random assignment have been extensively studied in [2]. In
particular a system for proving total correctness of these programs has been presented

Fair termination revisited-with delay 73

there and we shall make use of it in order to develop proof rules for fair total
correctness.

To this purpose we provide first a transformation of an arbitrary program II into
a program IIrair allowing random assignments which realizes exactly all fair computa­
tions of II. We proceed by the following successive steps:

Step l. Replace each subprogram if D~= 1 B; ~II; fi of II by the following sub­
program:

for j := 1 to m if Bi then zj := zj - 1 ;

m

if D B; /\ Z; = 0 /\ z ~ 0 ~ Z; := ? ; II; fi,
i=l

where z stands for z1' ... , Zm.

Step 2. Rename all variables z1, ••• , Zm appropriately so that each if-fi construct
has its 'own' set of these variables.

The variables z i. ... , Zm play here exactly the same role as in Section 2-they
count down how many times the corresponding guard is enabled but not yet selected.
The corresponding actions on these variables are incorporated in the program text.

The following lemma relates II to IIrair·

Lemma 3.1. For any state s,

.Mra;,[II](s) = .Mw.[IIra;,](s) u {fail: II can fail from s }.

Here and later we disregard the problem that IIra;, can change the initial values
of the (auxiliary) delay variables zi. ... , whereas II cannot. It is easy to remedy
this difficulty by retaining the initial values of these variables before the execution
of IIrair and restore them after the execution of IIra;,. We ignore this issue here since
it is not relevant in the further discussion.

Proof. (a) We prove the ~-inclusion. Let <r=(II0,s0)~(IIi.s1)~··· be a fair
computation of II. We extend it to a computation of IIra;r by assigning in each state
of <r the values to the delay variables z; - s. Given a state si there are two cases.

Case I. For no state sk (k > j) the guard corresponding with zj is selected.
Then by the assumption of fairness this guard is enabled only finitely many times

in this computation. We put sj(z;) to be equal 1 +the number of times this guard
will be enabled beyond si.

Case 2. For some state sk (k > j) the guard corresponding with zj is selected.
Then we put sj(z;) to be equal 1 +the number of times this guard will be enabled

before being next time selected.
(b) We prove the 2-inclusion.
Let <r be a computation of IIrair· Then its restriction to the computation steps

dealing with II is a computation sequence of II. We show that it is a fair computation

74 K.R. Apt, A Pnueli, J. Stavi

sequence. Suppose otherwise. Then the computation must be infinite and beyond

some point in this computation some guard would be infinitely many times enabled

and yet never chosen. By the construction of IIrair the corresponding variable Z;

would become arbitrarily small. This is however impossible because as soon as z;

becomes negative a failure will arise. 0

Corollary 3.2. Suppose that none of the delay variables occurs free in assertions P

and Q. Then

Ffair{P} ll {Q} if! \fs[F=P(s) ~II cannot fail from s]

and f=w,{P} IIrair { Q}.

3.3. A proof system for fair total correctness

Corollary 3.2 indicates that in order to prove fair total correctness of II it is

sufficient to prove weak total correctness of IIrair provided the absence of failure in

II can be established.

To prove weak total correctness of IIrair we can use the proof system introduced

in [2], slightly modified for our purposes. The following axioms and proof rules are

adopted.

(1) Random assignment axiom:

{P} x :=? {P},

provided x is not free in P.

(2) Skip axiom:

{P} skip {P}.

(3) Assignment axiom:

{P[t/ x]} x := t {P},

where P[t Ix] stands for a substitution of t for all free occurrences of x in P.
(4) Composition rule:

{P} II1 {Q}, {Q} ll2 {R}

{P} I11 ;I12 {R}

(5) Selection rule:

{PA B;} II; { Q};= 1, ... ,m

{P} ifO~=l B; ~ ll; fi { Q}"

(6) While rule:

{P(a) A B} II {3/3 < aP(/3)}

{P(a)} while B doll od {3/3 :so; a:P(/3) A 1B}'

where a, /3 are variables ranging over ordinals (or more generally, well-founded sets).

Fair termination revisited-with delay

(7) Consequence rule:

P~ Pi. {P1} ll {01}, 01~0
{P} ll {0}

75

The above system is appropriate for proving weak total correctness of llrair· We
call it WTC.

Consider now a proof of a correctness formula {P1} llrair { 0 1} in the above system.
Due to the form of llrair this proof can be transformed into a proof of the correctness
formula {P1} ll { 0 1} provided we use the following transformed version of the
selection rule:

{P} ifra;, fi { Q}

where ifrair fi stands for the subprogram introduced in Step 1 of the transformation
from Section 3.2.

The hypothesis of this rule can be simplified if we 'absorb' all assignments to
delay variables into the assertion P and apply 'backwards' the original selection
rule. In such a way we obtain a proof rule which deals exclusively with the if-construct
and its components. It has the following form:

{P[(Bj ~ Zj + 1,zj)/zj]j .. i[l/ Z;] A B; A z;=. O} IT; {O}i=l, ... ,m

{P}ifO~=l B;"'ll;fi{Q}

where Bi"' ti, t2 stands for the conditional expression if Bi then t 1 else t2 fi.
According to Corollary 3.2 we still have to deal with the issue of absence of

failure. This problem can be taken care of in the usual way, i.e., by simply adding
to the premises of the above rule the assertion

m

P"' V B;.
i=I

Summarizing, the final version of the rule has the following form:
(8) Fair selection rule:

m

P"' V B;,
i=l

{P[(Bj"' zj + 1, zJ/ zj]j,..;[l/ Z;] A B; A z;=. O} n { Q}i=l, ... ,m

{P}if0~=t B;"'nfi{Q}

We have thus obtained a proof system for proving fair total correctness of
programs. It consists of the axioms (2), (3) and proof rules (4), (6)-(8). Note that
the random assignment axiom is not needed-it was used only to derive the final
form of the1 fair selection rule. Call this proof system FTC (for fair total correctness).

76 K. R. Apt, A. Pnuel~ J. Stavi

3.4. Soundness and completeness of FTC

Before we dwell on the issue of soundness and completeness of FTC we have to
specify for which assertion languages and their interpretation is FTC an appropriate
proof system.

We assume that the assertion language L contains two S\)rts: data and ord. We
have a constant 0 of type ord and a binary predicate symbol< over ord. Additionally,
we assume that L includes second-order variables of arbitrary arity and sort. Thus
we allow as atomic formulas, formulas of the form (ui, ... , un) E a. Such a formula
is well-formed ifthe sorts and number of the variables u1, ••• , un agree with the sort
and arity of the second-order variable a.

Formulae are built up from atomic formulas by the usual boolean connectives
and by quantification over variables of sorts data and ord and while set variables
cannot be quantified over, they can be bound by the least fixed point operatorµ..

We say that a set variable a always occurs positively in P if P is an a-positive
formula. a-positive formulae are defined by induction as follows:

(i) if a does not occur free in P, then Pisa-positive;
(ii) if (ui. ... , un) Ea is a well-formed formula, then it is a-positive;

(iii) if P, R are a-positive, then so are 3uP, VuP, P" R and P v R;
(iv) if P(a, b, u" ... , un) is both a-positive and b-positive and (u,, ... , un) E bis

a well-formed formula, then µb(u" .. . , Un).P is a-positive.
Now, for any formula P(a, u,, ... , un) where (ui. ... , un) Ea is a well-formed

atomic formula and a always occurs positively in P, the abstraction µ.a(u,, ... , un).P
is also a formula of L. The free variables of µa(u 1, ••• , un).P are those of Pother
than a.

An interpretation J for this type of assertion language is an ordinary two-sorted
second-order structure subject to the following four conditions:

(1) The domain ldata of sort data is countable and contains all natural numbers.
(2) The domain J0 rd of sort ord is an initial segment of ordinals (to ensure a

proper interpretation of the while rule).
(3) The constant 0 denotes the least ordinal and the predicate symbol < denotes

the strict ordering of the ordinals, restricted to lord·

(4) The domains of each of the set sorts contain all sets of the appropriate kind
(to ensure the existence of the fixed points considered below).

Let 'P be a function assigning to each variable of L an element from the domain
J of the appropriate type.

The truth under the interpretation J with respect to <p, written I='·"'' is defined in
a standard way. The only nonstandard case is when a formula is of the form
µa(ui, ... , Un).P. We put then I='·"' µa(ui, ... , un).P iff I= J,cp[A/aJP. where q;[A/ a] is
the modification of 'P assigning set A to the variable a and where A is the least
fixed point of the operator tP defined by

tfJ(Z) ={(ii,•.•, in): I= J,cp[Z/a,itfu,, •.. ,i.,/u,J P}.

Since P is a-positive, the operator tP is monotone and has a least fixed point.

Fair termination revisited-with delay 77

Finally, we write F= J P iff for all <p F= J.<p P holds, i.e., if P is true with respect to J.
The truth of the correctness formulas with respect to J is defined as before. We

only need to indicate the dependence of the appropriate program semantics on the
interpretation J.

By TrJ denote the set of all formulae of L which are true with respect to J. Given
a set of assertions AS and a proof system G for proving correctness formulae we
denote by AS I-a cp the fact that the correctness formula cp can be proved in G from
the set of assumptions AS which can be used in the consequence rule.

After having introduced all these notions we can now state a lemma which is a
proof theoretic counterpart of Corollary 3.2.

Lemma 3.3. Suppose that none of the delay variables introduced in IIrair occurs free
in the assertions P and Q. Then for any interpretation J of the above kind,

Trj I- FTC {P} II { Q} if! Trj 1-WTc {P} IIrair { Q}

and V s[F= 1 P(s) ~II cannot fail from s].

Proof. The proof is based on the analysis of the proofs in the corresponding proof
systems and makes use of the Corollary 3.2. We leave the details to the reader. D

Corollary 3.2 and Lemma 3.3 reduce the question of soundness and completeness
of the proof system FTC to that of WTC. But the results of [2] show that the proof
system WTC is sound and complete for all interpretations J of the above kind. This
shows that the proof system FTC is also sound and complete in the sense of the
following theorem.

Theorem 3.4. For all interpretations J of the above kind and all correctness formulae cp,

Tr1 I- FTC <p iff F J,fair <p.

3.5. An example of a proof in FTC

We conclude with an example, which can be dealt with using our system but not
by any previous method. The program was suggested by Shmuel Katz. In this
program we annotated each choice in a conditional statement by the name of the
delay variable which is decremented if the choice is enabled (i.e., guard is true) but
not selected. Let

II: while x > 0 do
if {z1} true~ if {z3} B ~ x := x-1

O {z4 } B ~ B ==false
0 {z5}-iB ~skip fi

O { z2} true~ B := true
fi

od.

78 K.R. Apt, A. Pnueli, J. Stavi

Vie want to prove

Frair {true} II {true}, (I)

i.e., that Il always terminates under the assumption of fairness.

The well-founded set we will consider is N 4 under lexicographic ordering. Vie

have annotated each guard with an appropriate delay variable. There is a ranking

function which underlies our formal proof which is given by

In the expression l - B, true is interpreted as 1, false as 0.

The crucial fact upon which the proof depends is that in a fair execution the

value of p decreases on each iteration of the loop. Vie first demonstrate this fact

informally providing the formal prooflater. An iteration of the loop can be character­

ized by the guards which are selected or equivalently by the names of the delay

variables associated with these guards.

Consider first the zi, z3 path. Here x is decremented so that p certainly decreases.

Along the Zi. z4 path, the z3 guard was enabled since B must have been true for

z4 to be selected. Consequently, z3 is decremented, being an enabled but unselected

guard. Since x remains the same, p again decreases. Along the z,, z5 path, B must

have been false so that the fourth component of p is z2 which is decremented when

its guard is not selected.

In the z2 path we have to distinguish between the case that B is initially false in

which case l - B drops from 1 to 0, and the case that B was initially true in which

case the last component of p is z1 which is decremented since z2 is selected.

Vie now present a formal proof of (1). Let Il' be the body of the loop. Vie have

to find an assertion P(a) such that

{P(a) 11a>011 x > O} II' {3.B < aP(.B)} (2)

and

3aP(a). (3)

Vie define

P(a)=x,z;;;.O _,, a=p(x,B,i).

It is clear that (3) holds. To prove (2) we have to apply the fair selection rule so

we have first to prove the premises

and

{(P(a) II a> 0/\x>O)[z1+1/ z1][1/ z2] 11 Zi. z2 ;;;;,: O} B :=true {3,B < aP(f3)}

(5)

Fair termination revisited-with delay

as the first premise of the fair selection rule is obviously satisfied. Here

II1 =ifB4 x := x -1
D B 4 B := false
D ---,B 4 skip fi.

79

To prove (4) we once again wish to apply the fair selection rule. The premises
to prove are

and

{P1[B 4Z4+1, z4/ z4][1B' z5 + 1, z5/ z5][1/ z3] /\ B /\ z3, z4, z5 ;;:;,, O}

x := x- l {3,B < aP(,B)},

{P1[B4Z3+1, z3/z3][1B' Z5 +1, z5/ z5][1/z4]/\ B /\ z3, z4, z5 ;;;,,0}

B :=false {3,B < aP(,B)}

where P 1 = (P(a) /\a> 0/\x>O)[z2 +1/ z2][1/ z 1] /\ Zi. z2 ;;:;,, 0.
We have, by the assignment axiom,

{p(x, 1, 0, 1) = a /\ B /\ x > 0 /\ z;:;;. O}

x:=x-1{p(x+l,1,0, l)=a/\B/\x;;;.O/\z;;;.O},

(6)

(7)

(8)

which implies by the consequence rule (6) as the necessary implications clearly hold.
To prove (7), note that the pre-assertion of (7) is equivalent to

p(x, z3 +1, 0, 1) = a /\a> 0 /\ B /\ z;:;;. 0" x > 0,

which in turn implies the assertion

Q= 3,8 <a (x> 0/\ z;;;,,O/\ ,8 = p(x, Z3, 1, Z2)).

Now by the assignment axiom and the consequence rule

{Q} B:= false {3,B < aP(,B)},

so (7) by the consequence rule.
Finally, to prove (8) we note that

P1 [B~ Z; + 1, z;/ Z;];=3,4[1/ z5] /\---,BA z3, z4, z5 ;;;,, 0

implies

p(x, z3 , I, z2 + l) =a/\ ---,B /\ z;:;;. 0 Ax> 0

which in turn implies 3,8 < aP(,B). Hence (8) holds by the skip axiom.
Now, from (6)-(8) we get (4) by the fair selection rule.
To prove (5), note that the pre-assertion of (5) is equivalent to

p(x, Z3, 1-B, (B,z1 +1, 1)) =a" a >0/\x>OA z;;;.o,

80 K.R. Apt, A. Pnueli, J. Stavi

which in turn implies the assertion

R=3f3<a(p(x,z3,0, z1 +1)=/3 Ax>OAz;;;.O).

Now by the assignment axiom and the consequence rule {R} B :=true {3/3 < aP(/3)}

so (5) by the consequence rule.
We now have proved both (4) and (5) and we get (2) by the fair selection rule.

Now (2) and (3) imply by the while rule {true} IT {true} so by virtue of the soundness

of the system FTC we get (1). This concludes the proof.

4. On the size of needed ordinals

In the preceding sections we have presented methods for proving fair termination

of (concurrent or structured nondeterministic) programs, using ranking functions

into well-founded sets or predicates of ordinals. It is well known that any well­

founded set (W, >) has an order preserving mapping into (W,,, >) for some ordinal

a, where W" = {f3 if3 <a} (see [9] for details). Thus, one measure of the 'complexity'

of fair termination of a concurrent program P is the least ordinal a for which there

exist Q, W and p as in the delay variables method with W = W". Let us call this

ordinal a the 'fair ordinal' of P and denote it by ap (ap = 0 in case P is not fairly

convergent). A similar measure of complexity can be associated with structured

nondeterministic programs by studying ordinals needed for applying the while-rule.

Consider bounds on ap for natural classes of programs P. For definiteness we

consider programs operating on natural numbers, i.e., the state space S is N 1 for

some !. In the case of concurrent programs each transition function corresponds to

some recursive subset of N 1• (In fact, it suffices to look at transitions corresponding

to assignments of the form x := 0, x := y + 1, x := y - I and guarded by tests of

the form x == O?, without affecting the following theorem.) Call such programs

'concurrent numerical programs'.

In the case of structured nondeterministic programs assume that all functions

and relations used in the expressions are recursive (i.e., effectively calculable) and

the usual functions and relations of Peano arithmetic are available in the language.

Call such programs 'nondeterministic numerical programs'.

In the subsequent discussion we restrict our attention to nondeterministic numeri­

cal programs. Similar results can be proved for concurrent numerical programs. The

complexity of fair termination of nondeterministic numerical programs is closely

related to the complexity of numerical (nondeterministic) programs with random

assignments.

The translation presented in Section 3.2 and the converse one replacing x := ? by

x := 0; while B do if B ~ x := x + l
o s~ B :==false

fi
od

show that both classes of programs are reducible to each other.

Fair termination revisited-with delay 81

Since the proof rules for fair termination were obtained through the first transla­

tion, the ordinals ap for both classes of programs are in fact the same. In [2] it was

proved that exactly all recursive ordinals are needed to prove total correctness of

numerical programs with random assignments. Hence the same result holds for the

ordinals ap associated with nondeterministic numerical programs.
We now prove the following stronger theorem concerning top level fairness only.

Theorem 4.1. For any recursive ordinal a there exists a nondeterministic numerical
program P with nondeterminism on a top level only, with ap satisfying ap ~a.

This theorem should be compared with [l], where the authors prove an analogous

statement for a< ww only.

Proof. We prove that each numerical program with random assignments which is

otherwise deterministic is equivalent to a nondeterministic numerical program with

top level fairness only. More precisely, we show that for each program II of the
first type there exists a nondeterministic numerical program II1 with nondeterminism

on a top level only such that .At,[IITI = .Atrair[II1l The result then follows, since by
[2] exactly all recursive ordinals are needed for proving total correctness of the

programs of the first type.
Let II be a program of the first type. Insert before each random assignment of

the form x := ? the assignment x := 0. By a well-known theorem II is equivalent to

a program II' which contains one while-loop only and makes use of the auxiliary

variable c ranging over labels attached to atomic programs and tests.
Assume that the labels form the set {1, ... , halt - 1} and that x is a vector of all

variables of II. Then we can assume that IT' is of the form

c := 1 ; x := t; while c ~ halt do
halt-I

if 0 c = i ~ execute statement with label i; update c
i=I

fi.

If the statement is a test then its execution is void but updating the counter c is
performed accordingly to the value of the test. Replace now each part of the if-fi
construct of the form oc=i~i:x:=?; update c by oc=i~x:=x+loc=i~

update c. Call the resulting program II1•

By the construction the value of x just before updating the value of c to i is 0.

It is now clear that II1 is the required program. 0

5. Comparison with eventual-descent methods

Another approach to proving termination of concurrent programs is represented
by the methods proposed in [6] and [9]. In this approach we do not require strict

descent according to some well-founded measure at any step of the computation.

82 K.R. Apt, A. Pnueli, J Stavi

Instead we require tqat at any state some processors are guaranteed to cause a strict

descent whenever they are activated. The identification of the 'helpful' processes is

formulated in a way that ensures that by fairness eventually a strict descent will·

occur. Correspondingly we refer to the family of these methods as the methods of

eventual descent.
Here we would like to compare the method of this paper, the delay variables

method, with the method of eventual descent. For a convenient frame of comparison

we will develop first the variant of the delay variables method that deals with justice

(weak fairness).
Going back to the definition of execution sequences of concurrent programs, an

execution sequence

is defined to be just if it is either finite, or if every transition A that is continuously

enabled beyond some point in a- must be scheduled infinitely many times in a-.

Note the difference between justice and fairness. In just computations (execution

sequences), a transition fk is guaranteed to be scheduled infinitely many times only

under the stronger requirement that fk is continuously enabled beyond some point.

Thus the notion of justice is weaker than that of fairness. Every fair computation

is also just.
A program P is said to be justly convergent if every just computation of P is finite.

Following is the delay variables principle for proving that a program is justly

convergent:
Find a state predicate Q s; S, a well-founded set (W, >) and a ranking function

over extended states, p: S x Nm"' W, such that:

(Al)
(A2)

s E I ~(s E T) v Q(s).

Q(s) /\ s' Ef;(s)~(s' ET) v Q(s') for i = 1, ... , m.

These two clauses ensure that the predicate Q holds for all accessible non­

terminal states.

(A3) Q(s)!ls'Ef;(s)/\ /\ [jj(s);t0~zj=zj+I]~
jr' i

~p(s, z1, ... , Z;-i. 0, zi+J, ... , Zm) > p(s', z;, ... , z;,,) for i = 1, ... , m.

Note that the descent condition is even simpler for justice than it is for fairness.

We decrement the jth delay variable whenever jj is enabled but not activated, but

allow it to be arbitrarily reset to a new value otherwise. In comparison, in the case

of fairness, the delay variable zj is required to retain its value in a transition from

a state on which jj is disabled. The result of this is that a transition which is disabled

infinitely many times may never be activated. This of course is allowed in the case

of justice as long as this transition is not continuously enabled beyond some point.

Showing the soundness of the delay principle for justice is very similar to the

case of fairness. The only difference is in the definition of the particular delay values

Fair termination revisited-with delay 83

chosen for each computation. Given a computation u we define: u{ = (1- j), where
l is the minimal index I~ j such that either h. is disabled on s1 or h. is the transition
taken at s 1•

As an example of the application of the delayed justice principle we can take
again the distributed GCD program that was used to illustrate fair termination, and
prove that is also justly convergent. This can be done using the same Q and the
same p. Hence the only additional check required is that p also satisfies clause (A3)
in the justice principle, which is not too difficult to verify.

In order to compare the delay method with the methods proposed in [9] and [6],
we present here the principle for proving just convergence from [9].

LPS-justice principle: Find a state predicate Q s;; S, a well-founded set (W, >), a
ranking function p: S ~ Wand a helpfulness function h: S ~[I , ... , m], such that:

(Ll) sEJ=:>(sET)vQ(s).
(L2) Q(s)As'Ef;(s)=:>(s'ET)vQ(s') for i=l, ... ,m.
(L3) Q(s) As' Ef;(s)=:>[fj(s) ~ p(s')] for i = 1, ... , m.

(L4) Q(s) As' Efi.<s>(s)=:>[p(s) > p(s')].
(L5) Q(s) As' Ef;(s) A (fj(s) = fj(s'))=:>(h(s) = h(s')).
(L6) Q(s)=:>fh(s)(s) ¥-0.
Clauses (Ll), (L2) are identical to clauses (Al), (A2) in the delay method. Clauses

(L3), (L6) control the descent properties of the ranking function p. Clause (L3)
ensures that the rank of a state never increases. Thus a strict descent is not guaranteed
on each transition. However, as shown by (L4), the helpfulness function identifies
for each states a transition.Ji,<•» such that if Ji,<•> is activated on s, p decreases strictly.
Clause (L6) ensures that the helpful transition is always enabled. Clause (LS) states
that any transition which is not a strictly decreasing transition preserves the identity
of the helpful transition.

Let us refer to this principle as the LPS principle and to the delay variables
principle for justice as the APS principle. Since both principles are complete, the
only reasonable comparison between them is to ask whether a proof by one of them
is easily (syntactically) reducible to a proof by the other. In that direction we have
the following result.

Proposition 5.1. The APS method is at least as easy to apply as the LPS method.

Technically this implies that every proof by LPS is easily reducible to a proof by
APS. Indeed, let Q, (W, >), p and h be the constructs found for the LPS method,
shown to satisfy clauses (Ll)-(L6) of the LPS method.

As the appropriate constructs for the APS method we choose Q to be the same,
W = W x N with lexicographical ordering, and p defined by

p(s, i) = (p(s), Zh(s)).

Let us show that these choices satisfy clauses (Al)-(A3) of the APS method.

84 K.R. Apt, A. Pnue/~ 1 Stavi

Clauses (Al), (A2) are identical to (LI), (L2) and since the Q's are the same,
must be satisfied. Consider clause (A3).

Lets satisfy Q and s' Ef;(s). Let Zi. •.. , Zm E Nm and z;, ... , z:,, E Nm such that
z; = O and for every j ;!:. i such thatjj(s) ;6 0, zj = zj - 1. There are two cases to consider.
First, if p(s)>p(s') then certainly

(p(s), zh(s)) > (p(s'), z~cd·

Due to (L3) the only other case is that p(s) = p(s'). Then, however, due to (L5)
h(s) = h(s'). Let us denote h(s) = h(s') = k. In view of (L6), fds) ;/:. 0. Hence zk =
zk -1 leading to zk > zk. We thus have

(p(s), zk) > (p(s'), zk)

also for this case.
We do not have at present any general result about a reduction in the other

direction, i.e. given a p: S© Nk ~ W, find appropriate p: S ~ Wand h. For all the
cases we have considered, a choice of p(s) = p(s, 0, ... , 0) seems to work, but we
do not believe that this can be proven in general. Judging by the evidence that we
do have we conclude by saying that the APS method suggested here is at least as
good as the LPS method and possibly better.

References

[I] K.R. Apt and E.-R. Olderog, Proof rules dealing with fairness, in: Workshop on Logic of Programs,
Lecture Notes in Computer Science 131 (Springer, Berlin, 1982) pp. 1-8; full-length version appeared
in: Sci. Comput. Programm. 3 (I) (1983) 65-100.

[2] K.R. Apt and G.D. Plotkin, A cook's tour of countable nondeterminism, in: Proc. Bth Colloquium
on Automata Languages and Programming, Acre 1981, Lecture Notes in Computer Science US
(Springer, Berlin, 1981) pp. 477-493. Full version appeared as: Tech. Rept., Dept. of Computer
Science, Edinburgh University, 1982.

[3] A. Chandra, Computable non-deterministic functions, in: Proc. 19th Annual Symposium on
Foundations of Computer Science (1978) 127-131.

[4] E.W. Dijkstra, A Discipline of Programming (Prentice-H 011 , C.1glewood Cliffs, NJ, 1976).
[5] R.W. Floyd, Assigning meanings to programs, in: Proc. AMS Symposium in Applied Mathematics

19 (1967) 19-31.
[6] 0. Griimberg, N. Francez, J.A. Makowsky and W.P. Roever, A proof rule for fair termination of

guarded commands, in: J.W. de Bakker and J.C. van Vliet, eds., Algorithmic Languages, (North­
Holland, Amsterdam, 1981) pp. 399-416.

[7] M.C.B. Hennessy and G.D. Plotkin, Full abstraction of a simple programming language, in: Proc.
Bth Symposium on Mathematica/ Foundations of Computer Science, Lecture Notes in Computer
Science 74 (Springer, Berlin, 1979) pp. I 08-120.

[8] C.A.R. Hoare, An axiomatic basis of computer programming, Comm. ACM 12 (10) (1969) 576-580,
583.

[9] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice and fairness: The ethics of concurrent
termination, in: Proc. Bth Colloquium on Automata Languages and Programming, Lecture Notes in
Computer Science 115 (Springer, Berlin, 1981) pp. 264--277.

(10] Z. Manna, Mathematical Theory of Computation (McGraw-Hill, New York, 1974).
[II] z. Manna and A. Pnueli, Axiomatic approach to total correctness, Acta Inform. 3 (1974) 243-263.
[12] S. Owicki and D. Gries, An axi.omatic proof technique for parallel programs, Acta Inform. 6 (1976)

319-339.

