
ABSTRACT

TEN YEARS OF HOARE'S LOGIC

A SURVEY - PART II: NONDETERMINISM

K.R. Apt
LITP, Paris, France

JO 1

A survey of various results concerning the use of Hoare's logic in

proving correctness of nondeterministic programs is presented. Various proof

systems together with the example proofs are given and the corresponding

soundness and completeness proofs of the systems are discussed. Programs

allowing bounded and countable nondeterminism are studied. Proof systems

deal with partial and total correctness, freedom of failure and the issue

of fairness. The paper is a continuation of APT [I] where various results

concerning Hoare's approach to proving correctness of sequential programs

are presented.

I . INTRODUCTION

The purpose of this paper is to provide a systematic presentation of

the use of Hoare's logic to prove correctness of nondeterministic programs.

This paper is a continuation of APT [I] where we surveyed various results

concerning the use of Hoare's logic in proving correctness of deterministic

programs.

Hoare's method of proving programs correct was introduced in HOARE [14].

Even though it was originally proposed in a framework of sequential programs

only, it soon turned out that the method can be perfectly well applied to

other classes of programs, as well, in particular to the class of nondeter­

ministic programs.

We discuss the issues in the framework of Dijkstra's nondeterministic

programs introduced in DIJKSTRA [7] and concentrate on the issues of sound­

ness and completeness of various proof systems.

This survey is divided into two parts dealing with bounded and coun­

table nondeterminism in sections 3 and 4, respectively. A program allows

l '.:

102

bounded nondeterminism if at each moment in its execution at most a finite, fixed

in advance number of possibilities can be pursued. If this number of possi­

bilities can be countable then we say that the program allows countable non­

determinism.

In section 2 we introduce the basic definitions. In section 3 we dis­

cuss partial and total correctness of Dijkstra's programs. The methods used

are straightforward generalizations of those which were introduced in the

case of sequential programs and discussed in section 2 of APT [I]. This

should be contrasted with the presentation in section 4 where total correct­

ness of countably nondeterministic programs and total correctness of programs

under the assumption of fairness is discussed. Even though the methods and

techniques used there are appropriate generalizations of those used in sec­

tion 3, various new insights are there needed. Finally, in section 5 biblio­

graphical remarks are provided.

2. PRELIMINARIES

Throughout the paper we fix an arbitrary first order language L with

equality containing two boolean constants true and false with obvious mean­

ing. Its formulae are called assertions and denoted by letters p, q, r.

Simple variables are denoted by letters a, b, x, y, z, expressions by let­

ters s, t and quantifier-free formulae (BooZean e:r:pressions) by the letter

e; p [t/x] stands for a substitution of t for all free occurrences of x in

p.

All classes of programs considered in this paper contain the skip

statement, the assignment statement x:=t and are closed under the composition

of programs " ; ".

By a correctness fo'l'mUZa we mean a construct of the form {p}S{q} where

p, q are assertions and S is a program from a considered class. Correctness

formulae are denoted by the letter ~.

An interpretation of L consists of a nonempty domain and assigns to each

nonlogical symbol of L a relation or function over its domain of appropriate

arity and kind. The letter J stands for an interpretation. Given an interpre­

tation J by a state we mean a function assigning to all variables of L val­

ues from the domain of interpretation. States are denoted by letters a, T.

Tbe notions of a value of an expression t in a state a (written as a(t)) and

truth of a formula p in a state a (written as I= Jp(a)) are defined in the

usual way. A formula p is true under J (written as I= 3p) if /= 3p(cr) holds

for all states a.

103

We allow two special states: l. reporting non termination of a program and

fail reporting a failure in execution of a program. We have by definition

J,t3p(.J.) i"Jp (fail) for all formulae p. We define [p]J to the set all states

0 which satisfy p under J (i.e. such that J=Jp(o) holds). Thus by definition

for any p and J .J. i [p]J and fail i [p]J.

Finally, let Tr3 be the set of all assertions which are true under J.

3. BOUNDED NONDETERMINISM

Denote by S the least class of programs such that for all boolean ex­
n

press ions el , ... em and sl, ... ,sm E S n if e 1 -+ SI o ... 0 e s fi E S m m- n
and do e 1 -+ SI 0 ... 0 e s ad E S m m- n

This class of programs was introduced in DIJKSTRA [7] and further ex-

tensively studied in DIJKSTRA [8] and various other papers. The boolean ex-

pressions ei in the context of the if and do - constructs are called guards.

An intuitive meaning of the program if e 1 + s 1 0 .•. D em+ Sm fi is:

choose nondeterministically a guard ei which evaluates to true and execute

the program Si. In the case when all guards e 1, ... ,em evaluate to false the

program fails, i.e. its execution improperly terminates. An intuitive meaning

of the program do e 1 -+ s 1 0 ... 0 em+ Sm ad is : as long as at least one

guard evaluates to true repeatedly do the following: choose any guard ei which

evaluates to true and execute the program Si. In the case of one guard only

the construct do e 1 + s1 0 ... 0 em+ Sm ad is thus equivalent to the usual

construct while e 1 do s 1 ad.

3.1. Semantics of nondeterministic programs

Before we dwell on the issue of correctness of the programs from S n

we define their semantics. We follow here the approach of HENNESSY & PLOTKIN

[13] the advantage of which is that it can be easily adopted to several other

classes of programs. This semantics is based on the consideration of a tran­

sition relation "+" between pairs <S, a> consisting of a program S and a

state a. The intuitive meaning of the relation

104

is: executing s1 one step in a state a can lead (nondeterministically) to

a state T with 52 being remainder of 5 1 still to be executed. It is conve­

nient to assume the empty program E. Then 52 is E if s1 terminates in 1 •

We assume that for any S E;S = S;E = S.

Given an interpretation we define the above relation by the following

clauses:

(i) <skip, o> + <E,o>

(ii) <x:=t, o> + <E,t>

where t(x) = o(t) and T(y) = o(y) for y t x

(iii) <if el + SI D D e + S fi, a> + <Si'o> m m-
if l=J e. (a)

i m
(iv) <if el + SI D D e m

+ Sutic, o> + <E, fail> if l=J j~I lei (o)
(v) <do el + s1 D D e + S~, m

o> + <S. do e 1 + sl 0 ... De + S od,o>
l. m m

if l=Jei(o)
m

(vi) <do el + SI D •.• D e + S od, a> + <E, CP if 1=J i~I I ei (o) m m-
(vii) if <S 1 ,o> + <S 2, t> then <SI ; s, a> + <S 2 ; s, t>.

Let +* stand for the transitive, reflexive closure of +.

We now introduce the following definitions.

DEFINITION

(i) S can diverge from a if there exists an infinite sequence

<Si,oi> (i =0,1, .••) such that <S,o> = <S0 ,a0> + <S 1,o 1> +

(ii) S can fai"l fr•om o if

<S,a> +* <S ,fail> for some s1•
!--

(iii) A finite sequence <Si,oi> (i=O,J, ••. ,k) such that

<S,a> = <S,a0> + <S 1,o 1> + ••• + <Sk,ok> = <E,ak> is called a compu­
tation starting in <S,cr> ; k is the length of this computation.

The following leIID11a will be needed later.

LEMMA l. If S cannot diverge from a then there exists a natura Z number k such
that all computations starting in <S,o> are of length at most k.

PROOF. Consider the set of all finite sequences

<S,o> = <S0,o0> + .•• + <Sn,on> ordered by the subsequence ordering. This

set forms a finitely branching tree. If the desired k did not exist then this

tree would be infinite. By Konig's LeIIDlla it would then contain an infinite
branch which contradicts the assumption. D

ting

We define now two types of semantics for the programs from S by put­
n

M [SD (cr)

and

{T I <S,cr> +* <E,T>}

M [SD (a) u {.L I S can diverge from a}

u {fail I S can fail from a}

Both semantics depend on the interpretation J but we do not mention this

dependence hoping that no confusion will arise. The difference between

105

these two semantics lies in the way the "negative" informations about the

program are dealt with - either they are dropped or they are explicitly men­

tioned.

3.2. Partial and total correctness

While studying a correctness of programs we are interested in various

properties namely

(a) whether all proper states generated (or produced) by the program satisfy

a given post-condition,

(b) whether the program always terminates, and

(c) whether none of the executions of the program leads to a failure.

We are usually interested in executions starting in a state satisfying

some initial pre-condition. The above properties lead to various possible

interpretations of the correctness formulae {p} S {q}. Let

u M [sD (cr)

and
crdp] J

We define

Informally speaking, l=J{p} S {q} means that any properly terminating execu­

tion of S starting in a state satisfying p leads to a state satisfying q ;

106

F {p} S {q} in addition guarantees that any execution of S starting
J, tot

in a state satisfying p properly terminates. If I= }p} S {q} holds we say that

the program Sis partially eorrect under J (with respect top and q). If

l=J,tot {p} S {q} holds we say that the program S is totaZly correet under

J (with respect to p and q).

3.3. A proof system f~r partial correctness

We now present a formal system allowing us to deduce formally partial

correctness of programs from Sn. Its axioms and proof rules are the follo­

wing

AXIOM l

AXIOM 2

RULE 3

RULE 4

RULE 5

RULE 6

skip axiom

{p} skip {p}

assignment axiom

{p[t/x]} x:=t {p}

composition rule

{p} s1{r},{r} s2{q}

{p} SI ; S2 {q}

if - rule

{p A e.} S. {q}, i = I. ... ,m
l l

do - rule

e -+
m

{p" e.} S. {p}, i
l l

I, .. .,m

m
{p} do e 1 -+ s1 0 ... Oem-+ s~ {p " i~l-,ei}

p is called a loop invariant.

consequence rule

P-+ P1• {pi} S {qi}, qi-+ q

{p} s {q}

We call this proof system N. For A being a set of assertions and a cor­

rectness formula ~ we write A IN ~ to denote the fact that there exists a

proof of 4> in N which uses as assumptions for the consequence rule

assertions from A.

3.4. An example of a proof in N

107

To illustrate the use of the proof system N we now provide the follow­

ing example. Let S stand for the following program

do 2lx v 3 Ix +

od

if 2lx + x:=x/2 a:=b+I

03jx + x:=x/3 b:=b+I

04jx + x:=x/4 a:=a+2 fi

where x, a, b are integer variables. This program computes the greatest

powers of 2 and 3 which divide x. We now present a formal proof of this

fact. More precisely we prove

(I) Tr I- {a= 0 /\ b = 0 "x z} S {z = x.2a.3b /\ ""1(2lx v 3lx)}
JON

where J 0 is the standard interpretation of the language of Peano. arithmetic

augmented with the division operation and divisibility relation.

We present the proof in a "top-down" fashion. We choose p : z = x•2a.3b

to be the loop invariant. We now show

(2) a = 0 /\ b 0 /\ x z + p,

(3) {p /\ (2lx v 3jx)} s1 {p}

where s1 is the loop body,

Note that (3) implies by the do-rule {p} S {p Al (2lx v 3jx)} which

together with (2) and (4) implies by the consequence rule (I). Both (2)

and (4) are obvious.

To show (3) we have to show

108

(5) {p " (2jx v 3jx) A 2jx} x:=x/2 a:=a+l {p}'

(6) {p A (2jx v 3jx) A 3jx} x:=x/3 b:=b+l {p}'

(7) {p A (2jx v 3jx) A 4jx} x:=x/4 a:=a+2 {p}

and apply the if-rule.

We now prove (5). By the assignment axiom

and

{z
+I b a+l b

(x/2)•2a ·3} x:=x/2 {z = x•2 •3}

so by the composition rule {z = (x/2)•2a+I.3b} x:=x/2 ; a:=a+l {p} which

by the consequence rule implies (5). Proofs of (6) and (7) are similar

and left to the reader.

Note. To ensure that the application of the division operation does not

result in producing non-integer values we should actually use here the

following assignm.ent rule in the case of division operation:

[(a/b)/x] + b a
p[(a b) x x :=a bfPT"

We leave it to the reader checking that the above proof remains

correct when this assignm.ent rule is used.

3.5. Soundness of N

To justify the proofs in the system N one has to prove its soundness

in the sense of the following theorem which links provability of the

correctness formulae with their truth.

THEOREM I • For> evecy inteI'pr>etation J, set of assertions A and correctness

formu.7,a <I> the foU(lll)'£ng holds: if an assertions from A are true under J

and A IN cp then cp is true under J.

In other words if Tr J IN cp then I= Jcp.

We call correctness formula valid if it is true under all interpreta­

tions J and a proof rule sound if for all interpretations J it preserves

the truth under J of correctness formulae (and in the case of the

109

consequence rule, assertions).

To prove the soundness of N it is sufficient to show that all axioms

of N are valid and all proof rules of N are sound since the desired conclu­

sion follows then by the induction on the length of proofs. As an example

proof we now show the soundness of the do-rule.

Let S stand for do e 1 + s10 ..• 0em + s~. Fix an interpretation J

and assume that all the premises of the do-rule are true under J, i.e. that

(8) M [S.] ([p A e.J3) c [p]J for i = 1, ••. ,m.
l. l. -

Let TE M [S] ([pJ 3). Then for some a E [p]J TE M [S] (a). By the

definition of M we have

where a= cr0 , T = cr.t and for all j = 0, ... , l-1

a. E [ek.JJ and aj+I EM [Sk](er.) for some k. E {l, ... ,m} and
J J j J J

al E [i~I I ei]J. We have a0 E [p]J and if for some j E {O, ••. ,l-1}

a. E [p]J then by (8) a3.+ 1 EM [Sk_] ([p A ek. J3) .:_ [pJ3 , i.e. cr 3.+I E [p] ..
J J J J

Thus for all j = O, ... ,l crj E [pJ3 . In particular al E LpJ3 which means

that T E [p A i~I I ei]J. This proves the truth under J of the conclusion

of the do-rule and thereby concludes the proof of the soundness of the

rule.

3.6. Completeness of N in the sense of Cook

A converse property to that of soundness of a proof system is

completeness which links truth of the correctness formulae with their

provability. Unfortunately a converse implication to this theorem I can be

proved only for a special type of interpretations J. This issue is

discussed at length in APT [I] in sections 2.7. and 2.8. where we refer

the reader for the details. We restrict ourselves here to presenting the

appropriately adopted definitions without entering into any discussion of

the results.

110

Define

postJ(p,S) = M [S)([p]J)

preJ (S,q) ={a : M [S](a) .:_ [q]J}

Note that these sets are characterized by the following equivalences (the

second of them is just a rewording of the definition):

f= J{p} s {q} iff

(9)

Let s0 be a class of programs.

Call the language L expressive relative to J a:nd S0 if for all asser­

tions p and programs S € s0 there exists an assertion q which defines

postJ(p,S). If J is such that Lis expressive relative to J and S0 we write

J € Exp(L,S0). It is worthwhile to note that in the definition of expres­

siveness we can alternatively require definability of preJ(S,q) instead of

postJ(p,S) (see APT [1]).

Definition A proof system G for s0 is complete in the sense of Cook if, for

every interpretation J € Exp (L,S0) and every asserted program 4> if F Jcl>,

then Tr J IG q,.

This definition of completeness is, as the name indicates, due to

COOK [6].

Now, the proof system N for S is complete in the sense of Cook. The
n

proof proceeds by induction on the structure of the programs.

The only two nontrivial cases are these of composition and the

do-construct.

If F J{p} SI ;S2 {q} then clearly ~ J{p} sl {r} and F J{r}S2{q} where

r defines preJ(s2,q) ; so, by the induction hypothesis and the composition

rule, TrJIN {p}s1 ; s2{q}. If F J{p}S{q}, where S : do e 1 + s 1o ... Oem + Sm od,

then we must find a loop invariant r such that for i = l, ••• ,m

F J{r" ei} Si {r}, F Jp+r and F J(r /\ i~I I ei) + q. Then by the induc­

tion hypothesis and the consequence rule TrJIN {p} S {q}.

We chooser to be an assertion defining preJ(S,q). Then by (9)

I= J{r} S {q} so also I= J{r} if e. + S. 0 I e. + skip fi • S{q} for all
-1 1 1 -·

111

i = I, .•• ,.m as for any a M [if ei + Si D I ei + skip fi ; s] (cr)c Mi Sil (a)

clearly ho1ds. Now, since r defines preJ(S,q), then as in the case treated

above I= {r} if e. + S. De. +skip fi {r} from which I= {r" e.} s. {r}
J - 1 1 1 --- m J i i

follows. By (9) we have I= Jp -+ r and I= J (r A i~I I ei) -+ q follows from

the definition of r. This concludes the proof.

3. 7 A proof system for total correctness

To prove total correctness of programs from S we must provide proof
n

rules ru]. ing out possibility of failure and nontermination.

A possible failure in an execution of a program from S can be caused
n

only by the if-construct. Clearly the if-rule does not rule out a possibil-

ity of f ai :Lure. However, a small refinement of this rule suffices to prove

the lack of failure. We only need to ensure that at each moment an if­

statemen t is to be executed at least one of its guards evaluates to true.

This is achieved by the fol lowing modification

RULE 7 if-rule II

e., {p A e.} S. {q}._ 1
i i i i- ' .•. ,m

{p} if e 1 + s 1 D ... De + S fi {q}
- m m-

A possible nontermination of an execution of a program from Sn can

be caused only by the do-construct and clearly the present do-rule does

not rule out such a possibility. The following modification of the do-rule

suffices to prove termination of each do-construct. This rule is due to

HAREL [1 1 J -where a different formalism is used.

RULE 8 : do-rule II

m m
p(n) An> 0 + i~I ei 'p(O) + i~I I ei'

{p(n) An> O A ei} Si Um< n p(m)}i=l,. .. ,m

{:Jn p(n)} do e 1 + s 1 D ... Dem + Sm od {p(O)}

Here p (n) is an assertion with a free variable n which does not appear

in the programs and ranges over natural numbers.

Let NT denote the proof system obtained from N by replacing the if

and do-rules by their modified versions. This proof system is appropriate

for proving total correctness of programs from Sn.

112

To illustrate the use of the system we now indicate how to modify the

proof given in section 3.4. to demonstrate the total correctness of the

program there considered, i.e. to prove (I) within NT.

We choose p(n) =PA lal,bl,xl (x=zal.3bl.xl A "1(2Jxl v 3Jxl) A n=al+bl).

The second component of p(n) states that n is the sum of powers of

2 and 3 which divide x.

We now have

(I 0) a = 0 A b = 0 A X z + 3n p(n),

(II) p(n) An> 0 + 2Jx v 3Jx,

(12) p(O)+"l(2!xv3Jx),

(13) {p(n) An> O} s1 Um< n p(m)}

where the last correctness formula can be proved using the if-rule II since

p(n) A n > O + 2Jx v 3lx v 4lx holds. The proof of (13) is a small modifi­

cation of the proof of (3) and is left to the reader. Now by the do-rule

II, (JO) and (12) we obtain (1) as desired.

3.8. Arithmetical soundness and completeness of NT

As explained in section 2.11 of APT [1] when trying to prove soundness

of a proof for total correctness one has to revise appropriately the notion

of soundness. We follow here the approach of HAREL [II] also adopted in

APT [I]. We recall the introduced definitions.

Let L be an assertion language and let L+ be the minimal extension of

L containing the language L of Peano arithmetic and a unary relation
p

nat(x). Call an interpretation J of L+ arithmetical if its domain includes

the set of natural numbers, J provides the standard interpretation for L ,
p

and nat(x), is interpreted as the relation "to be a natural number".

Additionally, we require that there exists a formula of L+ which, when

interpreted under J, provides the ability to encode finite sequences of

elements from the domain of J into on element. (The last requirement is

needed only for the completeness proof.)

One of the examples of an arithmetical interpretation is of course J 0 •

It is important to note that any interpretation of an assertion language L

with an infinite domain can be extended to an arithmetical interpretation
+

of L • Clearly, the proof system NT is suitable only for assertion

113

+ languages of the form L , and an expression such as p(n) is actually a
shorthand for nat(n) A p(n).

We now say that a proof system G for total correctness is arithmetically
sound if, for all arithmetical interpretations J and asserted programs

cp Tr J le; cp implies I= J, totcp.
It can be shown that the proof system NT is arithmetically sound. The

case of the if-rule II is easily handled. The proof of soundness of the
do-rule II for the case of arithmetical interpretations is in turn an easy
modification of the proof of soundness of the do-rule where one simply
parametrizes the invariant p. The proofs of other cases are the same as
before.

We say that a proof system G is arithmetically complete if for all
arithmetical interpretations J and asserted programs cp I= J <P implies ,tot

To show the arithmetical completeness of the system NT we first

introduce the following notion:

{cr : M t[S](cr) c [qJ3}. to -

pret stands in the same relation to total correctness as pre does to partial

correctness : we have I= J {p} S {q} iff [pJ3 c pret3 (S,q). , tot -
Thanks to the provision for coding of finite sequences it can be

shown that for any arithmetical interpretation J there exists an assertion
which defines pret3 (S,q). This fact is not completely obvious as the
definition of pret3 (S,q) also mentions (the nonexistence of) infinite
sequences. This difficulty can be however circumvented by making use of

Lemma I.

The completeness proof proceeds by induction on the structure of
programs. The only cases different from the corresponding ones in the
completeness proof of N are those of if and do-constructs. Let J be an

arithmetical interpretation.
If I= J {n} if e 1 + s1 D •.• Dern+ S fi {q} then by definition m ,tot· - m -

I= J p + i~l ei and I= J,tot{p A ei} Si {q} for i = l, .•• ,m. By the induction
hypothesis TrJ INT {p A ei} Si {q} for i = l, ... ,m so by the if-rule II

TrJINT {p} if el +SI D Oem + s~ {q}.
Assume now I= {r} S{q} where S::do e 1 + s1 0 ... Oem + S~. Let n J ,tot -

be a fresh variable. Let now C be the following set of states:

114

pret/S,q) n {cr : I= Jnat(n)(a) A the longest computation

starting in <S,a> is of length k+I,

where k = o(n)}.

Thus a e C iff o(n) is a natural number, say k, such that all computations

starting in <S,o> properly terminate in a state satisfying q and the

longest of these computations is of length k+I. It can be shown that there

exists an assertion p(n) which defines C.
m

now have F= Jp(n) A n > 0 ->- i,:;:I By the definition of p(n) we
m

]= p(O) ->- .A1 le .• Also it can be easily shown that
J i.= l.

I= {p(n) An> O A e.} S. Um< n p(m)}. By the induction hypothesis and the
J l. 1

do-rule II we get TrJINT {~n p(n)} do eI->- s1 D ••• Dern->- S~ {p(O)},

We now have by assumption [r]J ~ pretJ(S,q) and so by virture of Lemma

1 I= Jr->- ln p(n). Also I= Jp(O) ->- q holds so by the consequence rule we get

TrJINT {r} do eI +SI D ... Dem + Sm od {q}.

This concludes the proof.

4. COUNTABLE NONDETERMINISM

4.I. Bounded nondeterminism versus finite and countable nondeterminism

Up till now we have considered programs which allowed bounded non­
determinism only. By this we mean that for each pair <S,o> where S e S

n
the set {<SI' o 1> <S, a>+ <S 1, o 1>} is finite and moreover its cardinal-

ity is bound.ed by a constant dependent on S only. Informally it means that

each program S € S gives rise in one computation step to at most k
n

different continuations where k depends on S only.

This property should be contrasted with that of finite nondeterminism
which means that the above set is always finite but its cardinality does

not depend on S only. An example of an instruction which leads to finite

nondeterminism is x:=? S y which sets to x a value smaller or equal to y.

Such an instruction has been considered in FLOYD [9]. (Of course, we assume

here that the programs are interpreted under a standard interpretation in

natural numbers.)

It should be however noted that finite nondeterminism can be reduced

to a bounded nondeterminism in the sense that x:=? s y is equivalent to

a program from Sn. To see this take for exampl~ the program b:=true;

x:=O ; do b A x < y + x:=x+I D b A x < y + b:=false od. Consequently the

115

study of finite nondeterminism (in the above sense) can be reduced to the

study of bounded nondeterminism.

This is not any more the case with countable nondeterminism. By

countable nondeterminism we mean that the above defined set can be countably

infinite. An example of an instruction which leads to countable nondetermin­

ism is the random assigment x:=? which sets to y. an arbitrary nonnegative

integer.

It is obvious how to define the semantics Mtot[x:=?) of x:=?. We

have~ i M [x:=?] (o) for any o. We now claim that there is no program tot
S €Sn such that Mtot[x:=?] = Mtot[S]. This follows illlJllediately from the

following corollary to Lemma I.

corollary I. For any S €Sn and. o if~ i Mtot[S](o) then Mtot[S)(o) is a

finite set. 0

Thus countable nondeterminism cannot be reduced to bounded (or finite)

nondeterminism. This indicates that to study total correctness of programs

allowing countable nondeterminism we have to develop essentially new proof

rules, i.e. proof rules which cannot be derived from those of the proof

system NT.

Note that this is not the case when dealing with the partial correct­

ness of programs allowing countable nondeterminism as clearly

M [x:=?] M [b:=true x:=O do b + x:=x+l 0 b + b:=false od)

(In this and the above considerations we ignored the fact that the value

of b has been changed. It is easy to remedy this problem.)

Before we enter the proof theoretic considerations of countable

nondeterminism we should perhaps explain why it is useful to study countable

nondeterminism in the first place. First, the instruction x:=? can be

viewed as another version of a more familiar read (x) instruction. Secondly,

this instruction is particularly useful when dealing with the assumption of

fair>ness, which will be discussed later. Also it allows to provide various

neat characterizations of objects discussed in mathematical logic (see

e.g. HAREL & KOZEN [12]).

4. 2. A proof system for total correctness of countably nondeterministic programs

Consider now the class S of programs which differs from Sn in that en

116

additionnally the instruction x:=? is allowed. We now present a proof

system which allows us to prove total correctness of programs from S . We
en

add to the proof system NT the following axiom

AXIOM 9: random assignment axiom

{p}x:=? {p}

provided x is not free in p

and replace the do-rule II by the following generalization of it:

RULE 10: do-rule III

m m
p(a) A a > 0 + i~l ei' p(O) + i~I lei,

{p(a) A a> 0 A e.} S. {3S <a p(S)}, i = 1, ..• ,m
l. l.

where p(a) is an assertion with a free variable a which does not appear

in the programs and ranges over ordinals.

Call the resulting proof system CNT.

4.3. An example of a proof in CNT

As an example proof in CNT consider now the following program:

S = do x=O + y:=? ; x:=l

D x + 0 A y > 0 + y:=y-1

do.

We now wish to prove in CNT that S always terminates. More precisely,

we prove in CNT the correctness formula {true} S {y=O}.

To this end we first specify the assertion language L. We assume that

L contains the language of Peano arithmetic and has two sorts: data (for

program data - here integer) and ord for ordinals. We assume a constant 0

of sort ord and a binary predicate symbol < over ord. The variables a, S

are of sort ord, all other variables are of sort data.

In the course of the proof we shall have to convert values of sort

data into values of sort ord. To this purpose we assume a one-argument

conversion function 7 of sort (data, ord) converting integers into .ordinals

117

and a constant w of sort ord. We have V x (~ < w) as by convention x is of
type data.

Define p(a.) by

p (a.) - (x 0 + a. w) A (x # 0 + a. y).

Intuitively speaking, for a state cr, p(a.)(cr) holds if a. is the smallest
ordinal greater than or equal to the number of possible iterations performed
by the loop when started in r:f.

We now show that p(a.) satisfies

that p(a.) is a loop invariant.

the premises of the do-rule III, i.e.

1, We have p (a.) " a. > 0 + x

2. We have p(O) + x # 0 " y

Q V y > Q + X = 0 V (x # Q A y > 0)

0 + l(x = 0 v (x # O A y > 0))
3. We first show {p(a.) A a.> 0 "x = O} y:=? ; x:=I {313 <a. p(l3)}.
By the assignment axiom we have

{113 <a. p(S) [l/xJ} x:=l {jS <a. p(S)}

so by the consequence rule

{Vy 1S < a. p(S)[l/x]} x:=l {313 < a. p(S)}.

By the random assignment axiom and the composition rule we now get

{Vy ~13 <a p(i3) [l/x]} y:=? x:=l {3S < a. p(S)}

To complete the proof it now suffices to show that
p(a.) /\a. > O Ax= O +Vy 3 S <a. p(B) [1/x] is true. p(a.) "x = 0 implies

a. = w. So for any y put s y then B < a. and p(l3)[1/x] holds.

Next we show {p(a.) " a. > 0 A x ~ 0 " y > O} y:=y-1 ns < a. P (13)}.

By the assignment axiom and the consequence :ule it suffices to show

that p(a.) Aa.>O Ax#OA y > 0 + 38 < a. p(S) [y-1/y] is true. We have

p(a.) A C1. > Q A X # Q A y > Q + Cl. y A y > Q A X # 0

y A y > Q A p(y-J)[y-1/y]

+ 3S < a. p(l3)[y-1/yJ

118

By the do-rule III we now get

{ja p(a)} S {p(O)}.

Clearly both 3a p(a) and p(O) + y

{true} S {y=O} holds.

0 hold, so by the consequence rule

To be precise we actually proved TrJ 1 lcNT {~} S {y=O} where J 1
is a standard interpretation of the assertion language L.

4.4. Soundness and completeness of CNT

Before we dwell on the issue of soundness and completeness of CNT we

have to specify for which assertion languages and their interpretations

CNT is an appropriate proof system.

As in the previous section we assume that the assertion language L

contains two sorts : data and ord. As before we have a constant 0 of type

ord and a binary predicate symbol <.over ord. Additionally we assume that

L includes second order variables of arb:j.trary arity and sort. The second

order variables can be bound only by the least fixed point operator µ

provided the bound variable occurs positively in the considered formula.

(Here a variable occurs posit1'vely in a formula if none of its occurrences

in a disjunctive normal form of the formula is in the scope of a negation

sign). Thus if the set variable a occurs positively in p(a) then µa.p is a

well formed formula. The free variables of µa.pare those of pother than a.
An interpretation J for this type of assertion language is an ordi­

nary two-sorted second order structure subject to the following five condi­

tions

I. The domain Jdata of sort data is countable (to ensure countable non­
determinism,--

2. The domain Jord of sort ord is an initial segment of ordinals (to ensure

a proper interpretation of the do-rule III),

3. The domain Jord contains all countable ordinals (needed for the complete­
ness proof) ,--

4. The constant 0 denotes the least ordinal and the predicate symbol <

denotes the strict ordering of the ordinals, restricted to J.ord,

5. The domains of each of the set sorts contain all sets of the appropriate

kind (to ensure the existence of the fixed points considered below).

The truth of the formulae of L under an interpretation J is defined in

119

a standard way. The only nonstandard case is when a formula is of the form

µa.p. We put then F 3 µa.p iff I= Jp[R/a] where R is the least fixed point

of an operator naturally induced by p. Having defined the truth of the for­

mulae of L we define the truth of the correctness formulae in the usual way.

The following theorem due to APT & PLOTKIN [3] explains why this type

of assertion languages and their interpretation is of interest.

Theorem 2. Let the assertion Language L and its inte1'f!retation J satisfy

'the above stated conditions. Then for every correctness formuia qi Tr J- $
J CNT

iff I= Jqi.

This theorem states soundness and completeness of the proof system CNT.

The soundness proof should hold for any reasonable assertion language ; it

is the completeness proof which dictated-the specific choice of the asser­

tion language. The arguments used in the proofs are appropriate generaliza­

tions of those used in the soundness and completeness proofs of the system

NT.

The use of ordinals in assertions requires perhaps a word of comment.

It can be shown that ordinals are indeed necessary, i.e. the do-rule II is

not sufficient here. For example we cannot prove the correctness formula

considered in section 3.11 in a proof system in which the do-rule III is

replaced by the do-rule II. In case when the assertion language L contains

the language of Peano arithmetic and the domain of data values Jdata is N,

the set of natural numbers, we can exactly estimate which ordinals are

needed for proofs in CNT. It turns out that exactly all recursive ordinaLs

are needed. (By a recursive ordinal we mean here an ordinal attached in a

natural way to a tree which can be coded by a recursive set. For equivalent

characterizations see ROGERS [21].)

4.5. The issue of fairness

According to the usual semantics M the program
tot

b:=true ; do b + skip 0 b:=false od does not always terminate because the

computation in which always the first guard is chosen is infinite. We can

however imagine restricted forms of interpretation of programs from Sn

under which the above program will always terminate.

One of such interpretations is the one under the assumption of fai:rness.

In the context of programs from S this assumption states that in every
n

infinite computation each guard which is infinitely often true is eventual]

120

chosen. Here a guard is true if it evaluates to ~ at the moment the

control in the program is just before it.

This type of assumptions is particularly important when studying the

behaviour of parallel programs in the context of which fairness is a most

general modeling of the fact that the ratio of speeds between concurrent

processors may be arbitrarily large and varying but always finite. Study

of the hypothesis of fairness in the context of nondeterministic programs

is partially motivated by the fact that parallel programs can be modelled

by nondeterministic programs.

We now formally define the semantics of programs from Sn under the

assumption of fairness. Let~= <S0 , cr0> + <S 1, cr 1> + ••• be an infinite

computation starting in <S0 , cr0>. We say that ~ is fair if it fullfils the

following two conditions:

i) for each program S =if e 1 + s1 D ••• De + S fi ; S' and each
- m m--

i = l, ... ,m if there are infinitely many j's for which

in ~ and F Je. (cr.), then there are infinitely many j 's
l. J

<S, cr.> appears
J

among them such

that the transition <S, cr. > + <S. ; S', cr. 1 > appears in ~.
J l. J+

ii) for each program S = do e 1 + s1 D , •• De + S od ; S' and each
- m m--

i = 1, •.• ,m if there are infinitely many j's for which <S, cr.> appears
J

in ~ and F Je. (cr.), then there are infinitely many j 's among them
l. J

such that the transition <S, crj> +<Si; S; S', crj+I> appears in~.

To avoid confusion resulting from the fact that various occurrences of

S in ~ do not need to correspond with the same program, we should actually

label each statement with a unique label. It is clear how to perform this

process and we leave it to the reader.

We define the fair semantics for the programs from S by putting
n

Mfair [sD (cr) M [SD(cr)

u {i 1 there exists a fair infinite computation

starting in <S, cr>}

u {fail I S can fail from cr}.

Thus the difference between the semantics M and Mf • lies in the
tot a1r

treatment of infinite unfair computations. We assume that all finite

computations are fair.

We now define the notion of total correctness of the programs consid­

ered under the assumption of fairness by putting

121

l=J,fair {p} S {q} iff Mfair [S] ([p]J) c [q]J

where of course

Mf . [S] ([pJ3) = [u M [S] (o) air OE p] fair ·
J

If I= J f . {p} S {q} holds then we say that {p} S {q} holds under the , air
assumption of fairness (w.r.t. J). Thus l=J f . {p} S {q} holds iff each , air
fair computation sequence of S starting in a state satisfying p successfully

terminates and the terminating state satisfies q.

4.6. A transformation realizing fairness

We now wish to present a proof system in which total correctness under

the assumption of fairness can be proved. For didactic resons instead of

presenting the proof rules immediately, we rather explain how to derive

them. To this purpose we first provide a transformation of a program S E Sn

into a program Sf . E S which realizes the assumption of fairness in the air en
sense that Sfair generates exactly all fair computations of S. We proceed

by the following successive steps:

I. replace each subprogram do e 1 + s1 D ••• Oem + Sm od of S by

2. replace each subprogram if e 1 + s1 D ... Oem +Sm fi of S by the follow­

ing subprogram

forj:=l tom if e. thenz.:=z.-1;
J -- J J

if el /\ z I 0 /\ V.z. 2: 0 ·-)- z ·=? ; SI
J J

I . .

0 ... De /\ z = 0 /\ V.z. 2: 0 + z :=? ; Siti, m m J J m

3. Rename all variables z 1, •.. ,zm appropriately so that each if-construct

has its "own" set of these variables.

Strictly speaking the program Sfair does not belong to Sen as the
if-then and the for-constructs are not assumed in the syntax. It is however

clear how to change it here into a sequence of the if-constructs. Note that

in step I we replaced each subprogram of S of the form of a do-loop by

122

another subprogram which is equivalent to the original one in the sense of

the Mf • semantics. air .
Let us call the subprograms introduced in step 2 the ~air-constructs.

The above transformation boils down to building into all if-constructs of

s a fair scheduler in which the auxiliary variables zi count down to a

moment when the corresponding guard is selected.

The following lennna relates S to Sfair·

Lamna 2 •

a) If f; is a fair non failing aorrrputation of S then an extension f;' off; dealing with

the a:uzilia!'y variables of Sf . is a non failing aorrrputation of Sf . • air air
b) If f; is a non faiZing aorrrputation of Sf . then its restriation to the aomputa­air

tion steps dea"lingwith Sis a fair non fai"ling aomputation of s.

Proof

a) We annotate the states in ; by assigning in each of them values to all

variables z .• Given a state a. there are two cases.
i J

Case I. For no state ak(k > j) the guard corresponding with zi has been

chosen.

Then by the assumption of fairness this guard has been only finitely

many times enabled in case the control was there. We put a. (z·.) to be
J i

equal I + the number of times the guard will still be enabled whenever

the control will be there.

Case II. For some state crk(k > j) the guard corresponding with zi has been

chosen. We put cr.(z.) to be equal I +the number of times the guard will
J i

still be enabled and not chosen whenever the control will be there.

b) By the construction of Sfair the restriction of f; to the computation

steps dealing with S is a computation sequence for S. Suppose that this

restriction is not a fair computation sequence. Then behind some point

in this computation a guard would be infinitely many times enabled at

the moment a control is there and yet never chosen. By the construction

of Sf · the variable z. corresponding with this guard would become air i
arbitrarily small. This is however impossible because as soon as it

becomes negative a failure will arise. O

Corollary 2. Suppose that none of the a:uxiliary variables introduced in

Sfair oaaurs fr'ee in the asse!'tions p and q. Then

123

I= J ,fair {p} S {q} iff 'Vo [I= Jp(o) + S cannot fail from cr]

and l=J k{p} sf • lq}. [l ,wea air

Here I= J k{p} Sf . {q} holds if in the definition of the semantics ,wea air
M [Sf . D of S we drop any mentioning of failure. We then say that Sfai·r tot air
is weakly totally correct under J with respect to p and q.

4.7. A proof system dealing with fairness

The above corollary indicates that in order to prove total correctness

of S under the assumption of fairness it is sufficient to prove weak total

correctness of Sfair provided the absence of failure in S can be established.
To prove weak total correctness of Sfair we can use the proof system CNT

defined in section 4.2 in which the if-rule II is replaced by the original

if-rule in order to ignore the possibility of failures. Call this system

CWT.

Assume now for a moment that only deterministic do-loops are allowed,

i.e. do-loops of the form do e->- S od. Then the first step in the transfor­

mition discussed in the previous section is not needed and can be deleted.

Now, due to the form of Sfair any proof of its weak total correctness can
be transformed into a direct proof of S provided we use the following

transformed version of the if-rule:

{p} for j :=I tom if e. then z. :=z.-1 {p' },
J -- J J

{ p' "e. A z. = 0 A z <: O} z.:=?; S.{q} i i l. i i
I, ... ,m

{ p} if e I ->- s D D + s fi {q} I ·· · em m -

Indeed, by applying the above rule we replace systematically each

iff . -subprogram of Sf . by the original if-subprogram of S; thus, in -nr au
effect we obtain a direct proof of S. The above rule can be simplified if

we "absorb" all assignments to auxiliary variables into the assertion p.

In such a way we obtain a proof rule dealing exclusively with the if-con­

struct and its components.

The last issue to be dealt with is that of freedom of failure which

has to be dealt with according to Corollary 2. This problem can be taken

124

care of in the same way as in section 3. 7 of by simply adding to the premises
m

of the fair if-rule the assertion p + i~l ei.

Summerizi.ng, the final version of the rule has the following form

RULE II: fair if-rule

{p [if e. then z.+I else z./z.J . ..1.[l/z.] A e./\ z ~ O}S. {q}._1 - J -- J -- J J Jrl. l. l. l. 1- , ••• ,m

We still have to deal with the problem of do-loops as we assumed above

that only deterministic loops are allowed. For this purpose we have to go

back to the transformation from the previous section. In step I we replaced

each do-loop by a program equivalent to it in the sense of the Mf . seman-
- air

ties. Therefore a proof of total correctness under the assumption of fair-

ness of the latter program constitutes a proof of total correctness under

the assumption of fairness of the former one. Thanks to this observation

we can derive the fair do-rule. It has the following form after some

simplifications:

RULE 12 fair do-rule

{p(a)[ife.thenz.+I 1 /][I/] OA Az>O} J __ J ~ zj zj j#i zi A a > ei -

s.
l.

Bs <a p(S) }._
1-l, •.. ,m

{3a p(a)} do e 1 + s1 0 ••. De + S od {p(O)}
m m-

The assertion p(a) satisfies the same condition as in rule 10.

Summarizing, the proof system FN for total correctness of programs

from Sn under the assumption of fairness is obtained from the proof system

N by replacing the if and do-rule by the proof rules introduced above.

Note that the random assigIL~ent axiom is not needed - we used it only to

derive the final form of the new rules.

125

The only pupose of intoducing the transformation S into Sf . was to
a1r

derive the new rules in a straightforward way. These rules deal with the

o:t'iginaZ programs and not their transformed versions.

4.8. Soundness and completeness of FN

The following lemma provides a proof theoretic counterpart of Corollary

2.

Lemma 3. Suppose that none of the a:uxiZia'X']j variables introduced in sf .
air

ocCUl's free in the assertions p and q. Then

TrJ IFN {p} S {q} iff TrJ ICWT {p} Sfair {q} and

V-cr [I= .p(cr) + S cannot fail from cr]. D
J

This lemma can be easily justified on the basis of remarks provided

in the previous section while introducing the new proof rules.

Lemma 3 together with Corollary 2 reduces the question of soundness

and completeness of FN to that of CWT. But the latter system is clearly

sound and complete in the sense of section 4.4. This shows that the proof

system FN is also sound and complete in the same sense. We have only to

restrict additionally the class of allowed structures to those which in

their data domain contain natural numbers.

4.9. An example of a proof in FN

We conclude the discussion of fairness by presenting an example proof

in FN. Consider the following program S:

do x > 0 + if true + if b + x:=x-1 ---
D b + b:=false

D true+ b:=~ fi

od

We want to prove l=J f . {true} S {true}, i.e. that S always
0, air -- --

terminates under the assumption of fairness.

126

To this purpose we have to find an assertion p(a) such that

(14) p(a) A a > 0 + x > 0

(15) p(O) + x ::; 0

(16) 3 a p(a)

and

(17) {p(a) A a > 0 A x > O} S 1 U S < a p (S)}

where S' is the body of the do-loop. (Note that we use here the original
do-rule (rule 10) as the do-loop in question is deterministic. It is easy
to see that the do-rules 10 and 12 are equivalent in the case of deterministic
do-loops.)
~ 3 2

Let p(a,b,c,d) = w .a + w .b + w.c + d for any integers a,b,c,d where
a > 0. Then p(a,b,c,d) is an ordinal. We define

p(a) _a= if x > 0 then p(x,z3,l-b, b+ z1 ,z2)

else O.

In the expression I - b, true is interpreted as 1, false as 0 ; b + z 1,z2
stands for if b then z1 else z2 ; the auxiliary variables z 1 and z2 are
associated with the outer guards and z3 ,z4 and z5 with the inner guards,
respectively.

It is clear that (14) - (16) hold. To prove (17) we have to insure that
in a fair computation the value of p decreases on each iteration of the
loop. More formally we wish to apply the· fair if-rule so we have first to prove
the premises

(18)

and

(19)

127

as the first premise of the fair if-rule is obviously satisfied. Here

s1 = if b + x:=x-1

0 b + b:=false

To prove (18) we once again wish to apply the fair if-rule. The premises
to prove are

(20)

(21)

and

(22)

where

{ p I [b -+ z 4 +I • z 4' z 4 J [I b + z 5 + 1 ' z 5 I z 5 J [I I z 3 J /\ b /\ z 3 'z 4 ' z 5 ;;:: 0}

x: =x-1 {] S +a p (S) }

{pi [b + Z3 +I. z/ z3 J [I b + zs +I' zs/ z5 J [I I Z4 J /\ b A z3 'Z4' Z5 ;;:: 0}

b:=false 0 S +a p(S)}

Note that the pre-assertion of (20) is equivalent to
p(x,l,0,1) =a A b Ax> 0 A z;;:: o.

We have by the assignment axiom

{p(x,1,0,1) a /\ b A x > 0 A z <:: O}

x:=x-1

{ (p(x+I, 1,0, I) a /\ b "x > 0 A z <:: O) v p(O)}

which implies by the consequence rule (20) as the necessary implication
is cle.arly true.

To prove (21) note that the pre-assertion of (21) is equivalent to

p(x,z3+1,0,I) a A a > 0 A b A z ;;:: 0 /\ x > 0

128

which in turn implies the assertion

Now by the assigmnent axiom and the consequence rule

so (21) by the consequence rule.

Finally, to prove (22) we note that

implies

which in turn implies le< a p(e). Hence (22) holds by the skip axiom.

Now, from (20) - (22) we get (18) by the fair if-rule.

To prove (17) note that the pre-assertion of (19) is equivalent to

which in turn implies the assertion

Now by the assigmnent axiom and the consequence rule {r} b :=~ {i$ <a p($)}

so (19) by the consequence rule.

We now proved both (18) and (19) and we get (17) by the fair if-rule.

(14) - (17) imply by the ~rule {true} S {true} so by virtue of the

soundness of the system FNT we get FJ f . {true} S {true}. This concludes
0 , air --

the proof.

4.10 The issue of justice

Another possible restricted interpretation of nondeterministic programs

is the one under the assumption of justice. In the context of programs from

Sn this assumption states that in every infinite computation each guard

which is true from some moment on is eventually chosen. Here, as before, a

guard is true if it evaluates to true at the moment the control in the

program is just before it.

The assumption of justice can be treated in an analogous way as that

129

of fairness. To obtain a transformation realizing justice we only need to

replace in the transformation from section 4.6. the program from the first

line in step 2 by

for j:=l tom if e. + z.:=z.-1 D le. + z :=? fi.
J J J J j .

All other steps in the development of the proof rules for justice are

the same as before and left to the reader.

As a final remark we would like to indicate that in the transformation

from section 4.6 we can omit the conditions z.=O from all of the guards,
l.

both for the case of fairness and justice. Clearly various other transfor-

mation also satisfy lemma 2. We chose here a transformation which leads

to simplest proof rules dealing with fairness or justice.

5. BIBLIOGRAPHICAL REMARKS

The first treatment of nondeterminism in the framework of Hoare's logic

is due to LAUER [15] where a proof rule dealing with the or-construct (the

meaning of the construct s1 or s2 is execute either s1 or s2) is introduced.

Correctness of nondeterministic programs introduced in section 3 is exten­

sively studied in DIJKSTRA [8] using a different approach. Axioms I ,2 and

proof rules 3,6 are from HOARE [14]. Rules 4,5 are obvious modifications of

the appropriate rules dealing with the deterministic versions of the

constructs and introduced in LAUER [15] and HOARE [14], respectively. They

appear for example in DE BAKKER [5] (p. 292).

Soundness and completeness proofs from sections 3.5 and 3.6 are

straightforward generalizations of the corresponding proofs dealing with

deterministic versions of the programs and presented for example in DE BAKKER

[5] (section 3). Rule 7 is inspired by the discussion of clean behaviour of

programs in PNUELI [19]. The completeness proof from section 3.8 is an

appropriate modification of a corresponding proof from HAREL [JI].

The notion of bounded nondeterminism is introduced in DIJKSTRA [8].

Countable nondeterminism is extensively studied in APT & PLOTKIN [3] and

several related references can be found there. Corollary I is implicit in

DIJKSTRA [8]. Axiom 9 is from HAREL [JI] and rule JO from APT & PLOTKIN [3]

where a slightly different syntax is used. Sections 4.3 and 4.4 are based on

APT & PLOTKIN [3], as well. The program from section 4.3 is from DIJKSTRA

[8].

130

The issue of fairness is discussed in several papers (see for example

PNUELI [19]). First proof rules dealing with fairness were proposed in

GR!JMBERG et al. [10], LEHMANN et al. [17] and APT & OLDEROG [2]. LEHMANN

[16] contains a simplified completeness proof of a rule introduced in

GRlJMBERG et al. [10]. Sections4.7- 4.10 are based on APT et al. [4].

Transformations realizing fairness were first introduced in APT & OLDEROG

[2]. Simplified versions of such transformations are given and discussed

in PARK [18].

The program studied in section 4.9 is due to S. Katz. First proof

rules dealing with justice were proposed in APT & OLDEROG [3] and LEHMANN

et al. [17]. LEHMANN [16] conta~ns another proof rule for justice. In

LEHMANN et al. [17] arguments for introducing the hypotheses of justice

and fairness when studying parallel programs are given. QUEILLE & SIFAKIS

[20] contains a thorough discussion of various possible formalizations of

the assumption of fairness.

REFERENCES

[l] APT, K.R., Ten Years of Hoare's Logic, a survey, part I, TOPLAS, vol.

3, N° 4, pp. 431-483 (1981).

[2] APT, K.R. & E.-R. OLDEROG, Proof ruZes dealing with fairness, Bericht

Nr. 8104, Inst. Inf. Prakt. Math., University of Kiel, (1981).

(Extended abstract appeared in: Logic of Programs, Lecture

Notes in Computer Science, 131, pp. 1-8, Springer-Verlag,

New York, (1982).)

[3] APT, K.R. & G.D. PLOTKIN, Countable nondeterminism and random assign­

ment, Technical Report 82-7, LITP, Universite Paris 7 (1982).

(Extended abstract appeared as : A Cook's tour of countable

nondeterminism, in: Proceedings ICALP'81, Lecture Notes in

Computer Science, 115, pp. 479-494, Springer Verlag, Berlin, (1981) .)

[4] APT, K.R., A. PNUELI & J. STAVI, Fair termination Y'evis1:ted-with

delay, in: Proc. 2nd Conference FST and TCS, Bangalore, India,

pp. 146-170 (1982).

[5] DE BAKKER, J.W., MathematicaZ theory of program correctness, Prentice­

Hall, Englewood Cliffs, (1980).

13 l

[6] COOK, S.A., Soundness and completeness of an axiom system for program
verification, SIAM J. Comput., vol. 7, n° I, pp. 70-90 (1978).

[7] DIJKSTRA, E.W., Guarded commands, nondeterrrrinacy and formal derivation
of programs, Communications ACM, vol. 18, N° 8 (1975).

[8] DIJKSTRA, E.W., A discipline of programming, Prentice-Hall Englewood

Cliffs, (1976).

[9] FLOYD, R.W., Nondeterministic algorithms, Journal ACM, vol. 14, N° 4,

pp. 636-644 (1967).

[JO] GRtlMBERG, o., N. FRANCEZ, J.A. MAKOWSKY & W.P. de ROEVER, A proof

rule for fair termination of guarded commands, in : Algorittunic
languages (Eds, J.W. de BAKKER, J.C. van VLIET), pp. 399-416,

IFIP, North Holland, Amsterdam (1981).

[II] HAREL, D., First-order dynamic logic, Lecture Notes in Computer

Science, 68, Springer Verlag, New York (1979).

[12] HAREL, D. & D. KOZEN, A programming language for the inductive sets,
and applications, in : Proceedings ICALP'82, Lecture Notes in

Computer Science, 140, Springer-Verlag, Berlin

[13] HENNESSY, M.C.B. & G.D. PLOTKIN, Full abstraction for a simple pro­
gramming language, in : Proc. 8th Symposium on Mathematical

Foundations of Computer Science, Lecture Notes in Computer

Science, 74, pp. 108-120, Springer Verlag, New-York (1979).

[14] HOARE, C.A.R., An axiomatic basis for computer programming, Communi­

cations ACM, vol. 12, N° 10, pp. 576-580, 583 (1969).

[15] LAUER, P.E., Consistent formal theories of the semantics of progrcarrming
languages, Technical Report TR. 25.121, IBM Lab. Vienna, (1971).

[16] LEHMANN, D., Another proof for the completeness of a rule for the fair
termination of guarded commands and another rule for their just
termination, Technical Report IW 178/81, Mathematisch Centrum,

(1981).

[17] LEHMANN, D., PNUELI, A. & J. STAVI, Impartiality, justice and fairness:
the ethics of concurrent termination, Proceedings ICALP'81,

Lecture Notes in Computer Science, 115, pp. 264-277, Springer­

Verlag, Berlin, (1981).

132

[18] PARK, D., A predicate transformer for weak fair iteration, in :
· 6th . Ma h . 1 F d . Proceedings IBM Symposium on t emat1ca oun at1ons of

Computer Science, Hakone, Japan (1981).

[19] PNUELI, A., The temporal semantics of concurrent programs, Theoretical

Computer Science, vol. 13, N° I, pp. 45-60, (1981).

[20] QUEILLE, J.P. & J. SIFAKIS, Fairness and related properties in tra:nsi­

tion systems - a time logic to deal with fairness, Technical

Report - RR N° 292, University of Grenoble (1982).

[2l] ROGERS, H. Jr, Theory of recursive functions and effective computabil­
ity, McGraw-Hill, New York, (1967).

