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Abstract. We provide proof rules enabling the treatment of two fairness assumptions in the 
context of Dijkstra's do-od-programs. These proof rules are derived by considering a transformed 
version of the original program which uses random assignments z :=? and admits only fair 
computations. Various, increasingly complicated, examples are discussed. In all cases reasonably 
simple proofs can be given. The proof rules use well-founded structures corresponding to infinite 
ordinals and deal with the ori~inal programs and not their translated versions. 

1. Introduction 

One of the troublesome issues concerning nondeterministic and parallel programs 
is fairness. Roughly speaking this assumption states that in the course of a computa­
tion every possible continuation is scheduled for execution sufficiently often. The 
meaning of a continuation depends on the programming language considered. For 
example, in the context of Dijkstra's guarded commands a possible continuation 
is a branch of the computation starting with a guard evaluating to true. Sufficiently 
often can be interpreted in a variety of ways the simplest being eventually. 

The interest in fairness stems from the study of parallel programs where one 
wishes to express the fact that every component program will eventually finish the 
execution of each atomic instruction and start the next one. But since parallel 
programs can be translated into nondeterministic programs, also the notion of 
fairness has an easy translation. In fact, a number of authors found it convenient 
to study the phenomena of fairness (first) in the framework of nondeterministic 
programs-a practice we follow here in this paper. 

* An extended abstract of a preliminary version of this paper appeared in [1]. 
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The problem with the assumption of fairness is that it results in a noncontinuity 
of various semantic functions (see [2] for an overview of the literature on this 
subject). Consequently, various natural methods fail to work when applied here. 

The aim of this paper is to develop a simple proof theoretic approach to the 
issue of fairness. This approach was originally suggested in Apt and Plotkin [2]. 
We restrict our attention here to the simplest framework in which fairness can be 
studied, namely Dijkstra's do-ad-programs where the components are deterministic 
while-programs. Thus nondeterminism is allowed only at the top level. For these 
programs we introduce two fairness assumptions: weak and strong fairness. 

The first step towards proof rules dealing with fairness is that for each fairness 
assumption we provide a transformation T yielding for a given do-ad-program S 
an equivalent version T(S) which uses random assignments of the form z :=? 
(set z to an arbitrary nonnegative integer) to simulate exactly the fair computation 
of S. These transformations are interesting in their own right, but in this paper we 
use them only as a preparation for the second step. In this step the Hoare-style 
proof rules of Apt and Plotkin [2], which can cope with random assignments, are 
applied to T(S) in order to derive in a systematic way new proof rules for S dealing 
with fairness. It should be stressed that these proof rules deal with the original 
program S-the transformation T is absorbed, as it were, into the assertions and 
the proof rules leaving the program S intact. Our proof rules use well-[ ounded 
structures corresponding to infinite ordinals to prove total correctness under the 
assumptions of weak or strong fairness, respectively. 

The use of such infinitistic methods seems to be necessary in view of the results 
by Emerson and Clarke [6] who showed that termination under fairness assumption 
is not first order definable. This result prompted them to formulate a conjecture 
that no useful sound and relatively complete proof system for this property exists. 
We hope that our results show that one still can reason about fairness in a simple 
and natural way by resorting to infinitistic means. Moreover, the results in [2] imply 
soundness and relative completeness of our system for a special type of assertion 
language-one which allows the use of the least fixed point operator and ordinals. 
Thus our system disproves Emerson and Clarke's conjecture. 

This paper is organized as follows. The next section defines the notions of weak 
and strong fairness for programs of the form S =do B 1 -"'? S 1 ••• B" -"'?Sn od. If the 
guards Bi, ... ,Bn are identical, or more generally B 1++B2++· · ·++Bn is a loop 
invariant, weak and strong fairnesss coincide and we simply talk of fairness. In 
Section 3 a proof rule dealing with fairness is developed, first for the case of two 
identical guards Bi= B 2• To illustrate the proposed proof method we study three, 
increasingly more complicated, examples in Section 4. Next, in Section 5, the proof 
rule for fairness is extended to cover the case of n identical guards B 1 = · · · = Bn. 
Three examples for the extended proof rule are discussed in Section 6. The general 
case of n arbitrary guards Bi, ... , Bn is analyzed in Section 7. In this case it is 
necessary to distinguish between weak and strong fairness. The differences are 
reflected both in the transformations and the derived proof rules. Section 7 contains 
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also a detailed correctness proof for the considered program transformations. In 
Section 8 three examples concerning strong fairness, related to those in Section 4, 
are studied. In the following sections two natural examples where program correct­
ness relies on the assumption of fairness are investigated-in Section 9 the problem 
of zero searching is treated and in Section 10 the example of asynchronous fixed 
point computation. Section 11 investigates which ordinals are needed for the proofs. 
We show that at least all ordinals a < w · w w are necessary. (This result was in the 
meantime greatly improved in [3].) Finally, in Section 12 we assess our approach 
and relate it to several other approaches such as [10] and [11]. 

2. Definitions 

We consider nondeterministic do-ad-programs of the form 

S = doB1_,,.S1D .. ·DB"_,,.5"od 

with n subprograms S; guarded by Boolean expressions B;, i = 1, ... , n. Throughout 
this paper we assume that the subprograms S; are simple deterministic while­
programs so that only one level of nondeterminism-and hence only one level of 
fairness-is studied. (The discussion of how our approach generalizes to the case 
of nested nondeterminism is postponed to Section 12.) 

The program S manipulates states, i.e. mappings u: Var ..,,,.9, Var is a fixed set 
of variables which covers the program variables of S, but may also include additional 
variables if necessary. 9 is the domain of the underlying interpretation J. Variables 
v E Var may be restricted to range only over a subset 9v s;; 9. The symbol I= is used 
to denote validity or truth of Boolean expressions (and later on also of assertions 
and correctness formulas) under J. Thus l=B(u) states that the Boolean expression 
B is true in state u. The meaning of a subprogram S; of S is simply a partially 
defined mapping Ai (S;) from states to states. To define notions of fairness and total 
correctness we introduce the concept of computation sequences. For i E {1, ... , n} 

• and states u, u' we write 

.. 

• 

i 
u ---'> u' if I= B; (u) and Ai (S; )(u) = u' 

and 
i 

u ~ J_ if l=B;(u) and fi(S;J(u) is undefined, i.e. S; diverges from u. 

Note that the restriction to one level of nondeterminism in S leads us to view the 
execution of S; as a single step in the computation of S. 

Computation sequences of S are now those sequences ~ of states which belong 
to one of the following categories: 

(1) 

where i; E {1, ... , n} and l=(1B 1 11 • • • 111B .. )(um). Then~ is said to terminate. 
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(2) 

where i; E {l, ... , n}. Then g is said to fail. 

(3) 

where i;E{l, .. .,n} and g is infinite. Then g is said to diverge. A computation 
sequence g of S is called weakly fair if g is either of the form (1) or (2), or of 
the form (3), but then satisfies the following condition: 

'v'iE{l, ... ,n} ((v jeNi=B;(u;))~(3je~i;=i)). 
~ ro 

The quantifier 'v' means "for all, but finitely many" and 3 stands for "there 
exist infinitely many". Thus the above condition states that if B; is almost always 
true then the ith subprograrn S; is infinitely often chosen. (This notion of weak 
fairness is called 'justice' in [11].) 

A computation sequence g of S is called strongly fair if g is either of the form 
(1) or (2) or of the form (3), but then satisfies the following condition: 

In words: if B; is infinitely often true then the ith subprogram S; is infinitely 
often chosen. (This notion of strong fairness corresponds to the notion of 'fairness' 
in [11].) 

Note that if B1 = · · · = Bn holds, or more generally B 1 ~s2~ · • • ~ Bn is a loop 
invariant, then weak and strong fairness coincide. 

In this case we shall simply talk of fairness. (This concept of fairness corresponds 
to a special case of the notion of 'impartiality' in [11].) 

To distinguish between total correctness of programs S under (1) weak fairness 
assumption, (2) strong fairness assumption, (3) fairness assumption, (4) no further 
assumption, we introduce four kinds of correctness formulas: 

(1) weak-+{P}S{Q}, 

(2) strong-+ {P} S { Q}, 

(3) fair-+{P}S{Q}, 

(4) {P}S{Q}, 

where P and Q are assertions, i.e. formulas allowing quantifiers. The validity of 
these correctness formulas is defined as follows: 

(1) i=weak -+{P}S {Q} holds if every weakly fair computation sequence of S 
starting in a state <r satisfying l=P(<r) terminates in a state satisfying Q, i.e. is of the 
form <r _;,···-;mu' where l=Q(u') holds for the final state u'. 

(2) i=strong-+ {P} S {Q}: replace weakly fair by strongly fair in ( 1). 
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(3) f.fair--+ {P} S {Q} holds if both f. weak--+ {P} S {Q} and f.strong -+{P} S {O}. In 
the following this notation will be used only if B 1 = · · · = Bn holds in S. 

(4) f.{P} S {Q}: delete weakly fair in (1), i.e. the requirement of (1) should hold 
for every computation. 

Thus under fairness assumptions we need not bother about unfair computation 
sequences. We shall soon study examples of programs which behave properly only 
under fairness assumptions. But first let us develop Hoare-style proof rules which 
by themselves prevent us from attempting to prove something about unfair computa­
tion sequences. 

3. Fairness: 2 guards 

We start with the development of a proof rule for total correctness under 
(weak =strong) fairness assumption for programs 

S = do B --+ S 1 0 B --+ S 2 od 

with only two subprograms guarded by identical Boolean expressions. The first 
step in this development is the simulation of fairness using random assignments of 
the form z := ? which assign an arbitrary nonnegative integer value to the variable 
z. (We remark that random assignments lead to unbounded, but countable non­
determinism. Semantics and proof theory for programs allowing this kind of 
nondeterminism have been studied in [2].) 

To achieve this simulation we transform S into the following program: 

TJair (S) = Z 1 := ? ; Z 2 := ? ; 

do B A z 1 ~ z 2 --+ S 1; z 1 := ? ; z 2 := z 2 - 1 

od. 

Here z 1 and z 2 are new variables not occurring in S which range over the integers. 
These variables are added to the program S in order to implement a scheduler in 
TJair (S) which decides which of the subprograms S 1 and S2 is to be executed next. 

This is done as follows: at every moment in a computation of TJair (S) the values 
of the variables z 1 and z 2 represent the priorities assigned to the subprograms S 1 

and S2. Consequently z 1 and z2 will be called priority variables. We say that S 1 has 
a higher priority than S2 if z1<z 2 holds (and vice versa for z 2 <z1). The guards 
"B AZ1~z 2" and "B Az 2 <z 1" guarantee that the subprogram with the higher 
priority is scheduled for execution. If both subprogram have the same priority, S 1 

gets executed. After every execution of a subprogram, say S;, the priority of the 
other, not chosen subprogram, say S;, gets increased (by decrementing z; by 1) 
whereas the priority of S; is reset to some arbitrary nonnegative value. Gradually 
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increasing the priority of Si excludes the possibility of executing S; forever. This 
guarantees fairness. At the very beginning of a computation of T}air (S) both priority 
variables get arbitrary nonnegative values. The value of a priority variable zi plus 
1 describes also the maximum number of computation steps which may pass before 
the subprogram Si is eventually scheduled for execution. Therefore the variables 
z i. z 2 may also be called counter variables or (following [3 ]) delay variables. These, 
however are only informal explanations showing that T}air (S) allows only fair 
computations. The precise relationship between S and T}air (S) is stated in 

Lemma 1. (i) If f. is a fair computation sequence of S then there exists an extension 
f of f. including the new variables z 1 and z2 such that ( is a computation sequence 
of T}air (S). 

(ii) Conversely, if ( is a computation sequence of T}air (S) then its restriction g to 
the variables of Sis a fair computation sequence of S. 

F • (: i i d (:I I i I or computation sequences ~ = er1 -->' · · · <J'i -->' · · · an ~ =er 1 __,. • • • 

erj __,,.ii··· we say that (is an extension of f. to the variables z1, ... , Zn if the states 
erj differ from eri at most in the variables z 1, ... , Zn. And f. is called a restriction of 
f to the variables x i, ... , Xm if every state cri is obtained from er; by resetting every 
variable z E {x i. ... , Xm} to its value in er;, i.e. by defining 

-{erj(z) ifzE{X1,..-,Xm}, 
CTi(z)- , . 

er 1 (z) otherwise. 

Lemma 1 states that T}air is a faithful transformation in the sense that for every 
program S of the form considered here TJair (S) simulates exactly all fair computa­
tions sequences of S. 

Proof of Lemma 1. (i) Consider a fair computation sequence 
i1 i. 

f,=cr1-'>· · ·eri~· · · 

of S with ii E {l, 2}. We explain now how to extend~ to a sequence 

I f il ! ii f. =cr1 __,,.··er;__,,.·· 

by providing new values to the variables z 1 and z 2 • For l E {l, 2} we define 

crj(zi) = min {k-jlk ~ j A (ik = l v l=1B(crk))}. 

Note that this minimum always exists because f. is fair. By construction in every 
state er; (except the final state er~ with l=1B(u~) if f. is finite) exactly one of the 
variables z 1 and z 2 has the value 0, namely Z;r The other variable has a positive 
value. Thus the scheduler built into the program T}air (S) would indeed choose the 
subprogram S;; when started in the state er}. Further on, the values of the variables 
z 1 and z 2 in the states er} have been defined in a way which is consistent with the 
assignments to these variables in Tjair (S). This shows that ( is in fact a valid 
computation sequence of Tjair (S ). 
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(ii) Let ~' be a computation sequence of Tlair (S) and let ~ be its restriction to 
the variables of S. It is obvious that ~ is a valid computation sequence of S. But 
we have to prove that this computation sequence is fair. 

Suppose this is not the case. Then ~ is infinite, i.e. B is always true, but one 
subprogram of S, say Sj, is never scheduled for execution from a certain moment 
on. By the definition of T1air (S), the value of the variable zi becomes arbitrarily 
small and from some moment on smaller than -1. But this is impossible because 
it is easy to check that in every state <Tj of g' the following invariant: 

IN= z1~-lAz2~-l 

A (z 1 = -1 ~ z 2 ~ 0) A (z 2 = -1 ~ z 1 ;::. 0) 
holds. 0 

Though lemma 1 is interesting in its own right, we shall use here only a corollary 
stated in 

Proposition 1. Let P and Q be assertions not having z 1 or z 2 as free variables. Then 

f:fair~{P}S{Q} if! F={P}T1air(S){Q}. 

Thus in order to prove total correctness of S under fairness assumption it suffices 
to prove total correctness of T}air(S) in the usual sense. But we do not recommend 
the actual transformation of S into Tlair (S) as part of a proof method. This approach 
would correspond to Flan and Suzuki's idea to employ certain transformations as 
proof rules in a system for total correctness of parallel programs [8], with the 
disadvantage of destroying the structure of the original program S. 

Instead-in a second step-we use the transformation conceptually in order to 
derive a direct proof rule for S dealing with fairness. This derivation applies the 
proof methods of Apt and Plotkin [2] to T}air(S) and then reads back the ensuing 
rule in terms of the original program S. Thus in order to apply the derived proof 
rule one never has to carry out the transformations of S into Tlair(S) explicitly. 

Let us present now this step. Let ( W, >) be a well-founded structure, i.e.> is a 
partial order relation over the set W such that there is no infinite descending chain 

in W. And let a, (3, y be variables ranging over W. Then the relevant proof rule 
of [2] for do-ad-programs like Tlair (S) is 

(*) P~3aR(a) 

(3a R(a) f\ 1(B1 V • • • V Bn))~Q 

i=l, ... ,n: 

{R (a)(\ Bi}S;{3(3 <a R ({3)} 
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Rule(*) formalizes Floyd's principle [9] stating that in order to prove total correct­

ness of a loop, one has to find an appropriate loop invariant R containing a variable 

a ranging over well-founded structure W which decreases with every loop execu­

tion. The extension contained in (*) is that the subprograms Si may be nondeter­
ministic and even allow random assigments. As a consequence one cannot prove 

total correctness with natural numbers (1'\10 , >) any more, but has to resort to 

infinitistic methods in form of general well-founded structures ( W, > ). This fact is 

proved in Apt and Plotkin (2]. 
We remark that [2] uses ordinals instead of well-founded structures, but both 

approaches are equivalent: every well-founded structure ( W, >w) can be embedded 

into a well-founded structure of the special form ( W"' >) where a is an ordinal, 
> the natural order for ordinals, and W" = {131 a > ,B} the set of all ordinals ,B 
smaller than a (cf. [11]). Nevertheless, it is sometimes easier to work directly with 

well-founded structures instead of with their representations as ordinals (see 
Section 10). 

In addition we need an axiom covering the random assignments z :=? inside 
T}air(S). This is 

(**) {V'zP} z:=?{P} 

Applying now ( *) and ( **) to T}air (S) yields the following: 

(FAIR2) Proof Rule for Fairness: 2 guards: 

(1} P-'>V'Z1,z 2 3aR(a,z 1,z 2 ) 

(3) {RIN(a,Zi,Z2)11B11turn=l} 

S1 

{V' z 1 3 (3 < a R IN (/3, z i, z 2 - 1 )} 

{'v'z2 3,8 <a R 1N (,B, z 1 -1, z 2J} 

(5) fair....,.{P}doB-'>S 10B-'>S2 od{Q} 

~h~re z i. z 2 are new variables not occurring in P, S, Q. The notation R (a, z 1, z 2 ) 

indicates the variables a, z1, z2 may occur freely in the assertion R. This is convenient 
for denoting substitutions implicitly. For example, R (,B, z i. z 2 -1) stands for R with 
,B and z2 -1 substituted for a and z2, respectively. 
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The expression turn = 1 abbreviates z 1 ~z 2 and turn = 2 abbreviates z 2<z 1. The 
assertion RrN (a, z 1, z2) is defined by 

RIN(a,z 1,z2) = R(a,z1,z2)11IN 

where IN is the assertion 

IN = z 1 ~ - 1 11 z 2 ~ -1 

11(z1=-l-->z2~0)11(z 2 =-l-->z 1 ~0) 

which is a standard invariant of Tjair due to Lemma 1. 
The proof rule FAIR2 is sound in the sense that whenever all premises (1)-(4) 

are valid then also the conclusion (5) is valid. It is also relatively complete in the 
sense that whenever the conclusion (5) is valid we can find an appropriate well­
founded structure ( W, >)and an invariant R (a, z 1, z 2 ) such that the premises (1)-(4) 
are valid. It is an advantage of our transformation technique that these results are 
immediate consequences of Proposition 1 together with the soundness and relative 
completeness of rule (*) as proved in [2]. We remark that according to [2] the 
in variant R (a, z 1, z 2 ) can be expressed in an assertion language allowing a least 
fixed-point operator µ, besides variables ranging over W and the usual first order 
quantifiers. 

Clearly introducing the abbreviation 'turn' and the additional invariant IN is 
needed neither for soundness nor relative completeness of the proof rule FAIR 2• 

But these additions are convenient when applying the rule to examples. The standard 
invariant IN can simply be assumed while formulating the invariant R (a, z i. z2) 

and 'turn' improves the readability of R(a, z 1, z2 ). 

In general, finding an appropriate invariant R (a, z i, z 2 ) means estimating the 
number a of do-ad-loop executions of the program S. This estimation can be 
expressed in terms of the program variables in S with additional help of the priority 
(or delay) variables z 1 and z2 • Fortunately, in the case of only two guards we can 
often represent this number a of loop executions as a (lexicographically ordered) 
pair 

a = ((3, z) 

where f3 counts the number of rounds the program S will still execute before 
termination and z counts the number of computation steps in the current round. 
By a round we mean here a sequence of computation steps with maximal length 
for which always subprogram S 1 or always subprogram S2 is executed. Partitioning 
a into f3 and z is very helpful in those cases where the number of rounds f3 can 
be estimated independently of their lengths z. To do this we shall use 'turn' as an 
additional variable, and not just as an abbreviation for z 1~z 2 resp. z2 < z 1. 

This informal discussion is made precise in the following: 

(S-FAIR 2 ) Simplified Proof Rule for Fairness: 2 guards: 
(1) P--> 'V turn 3(3 R *({3, turn) 
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(2) 3(3 R *(/3, turn)/\ -iB -? Q 

(3) {R *(/3, 1)" B} 

S1 

{(3y ~/3 R*(y, 1))" 3y </3 R*(y, 2)} 

(4) {R(/3,2)AB} 

{(3y,;;,BR*(y,2))A3y</3R*(y, 1)} 

(5) fair-?{P} do 8-?S1 DB-?S2 od{Q} 

where turn is a new variable not occurring in P, S, Q which ranges over the set {l, 2] 

Note that in the premise (3) and ( 4) the value of a is decreased only if a switcl 

of control to the other subprogram occurs. This formalizes the intuitive idea tha 

a now counts the number of rounds instead of the numbers of loop executions 

Let us now prove the soundness of the simplified rule S-FAIR2 by proving th1 
following: 

Lemma 2. If there is an invariant R *(/3, turn) satisfying the premises of the simplifie, 

proof rule S-FAIR 2 then there exists also an invariant R(a, z1, z2) such thr.. 

R IN (a, z 1 , z 2 ) satisfies the premises of the original rule FAIR2. 

Proof. Let ( W, >) be the well-founded structure belonging to R *(/3, turn). The1 
R(o:, z 1, z 2) can be constructed from R*(/3, turn) as follows: 

R(a,zi,z2) = (B Az1,;;z 2 -?3{3:o: =(/3,z 2)AR*(/3, 1)) 

" (B A z 2 < z 1-? 3/3: a = (/3, z 1) AR *(/3, 2)) 

/\ (-iB-? 3,8, turn, z: a= (/3, z) /\ R *(/3, turn)) 

where pairs (/3, z) are ordered lexicographically: 

(f31,Z1)>(/32,z2) if /31>/32V(/31=f32/\Z1>z2). 

Note that by the standard invariant IN we know that always z 1 ;,,,, -1 /\ z 2 ;,,,, -

holds. Thus the pairs ((3, z) to be considered in R IN (a, z 1, z 2) are all elements o 

W x {z I z;,,,, -1} which is indeed a well-founded structure under lexicographic2 
order. It is now easy to check that RrN (a, zi, z 2) satisfies the premises (1)-(4) o 

rule FAIR2. We remark that IN is crucial for verifying the premises (3) and (4 ). [ 

We remark that we have not been able to prove relative completeness of th 

simplified rule S-FAIR 2 , i.e. the converse of Lemma 2. The stumbling block is tha 

we have no counter variable z at our disposal. Nevertheless, S-FAIR 2 is a ver 
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useful, sound proof rule which is convenient to apply as we shall see in the next 
section. 

4. Examples for fairness: 2 guards 

We now treat a small hierarchy of examples with our proof rules for fairness in 
order to demonstrate that the invariants R (a, z i. z 2 ) and R *(/3, turn) can indeed 
be chosen in such a way that they just formalize the intuitive meaning of a and {3, 
respectively. All examples presented here deal with termination only, i.e. with 
correctness formulas of the form fair-> {true} S {true}. Letters A, B, . .. denote 
Boolean variables and letters x, y, ... integer variables. 

Example 1. 

t=fair-> {true} do A-> skip 0 A-> A:= false od {true}. 

This is essentially the program studied in Dijkstra [5, p. 76]. Note that this 
termination result does not hold without fairness assumption. Let us first apply the 
original rule FAIR2 where we need an invariant R (a, z i, z 2 ). As we know a is 
intended to count the numbers of loop executions. To determine a let us analyze 
the possible cases. First, if A is false at the beginning the program terminates 
immediately so that a = 0. Otherwise we know that a > 0. Suppose we start with 
the second subprogram S2 =A:= false. Then. simply a = 1. The more interesting 
case is when we start with the first subprogram S 1 =skip. Now we cannot predict 
the exact number a of loop executions any more because S 1 may be executed an 
arbitrary number of times. But remember that we assume fairness. This guarantees 
that S 1 will be executed only finitely many times before S 2 must be activated. In 
the formalism developed in the previous section the maximal number of times we 
may neglect S 2 in favour of S 1 is given by z 2 +1 where z 2 is the priority resp. 
counter variable associated with S 2 • The "+ 1" is necessary here because S 1 may 
be executed once even if z 2 = 0 holds (as we know from the standard invariant IN 
introduced in Lemma 1). We can summarize this discussion in the following 
invariant: 

R(a, Zi, z2) - (--iA~a = 0) 

11 (A 11 turn = 1-> a = 2 + z2) 

11 (A 11 turn = 2 -> a = 1) 

where the underlying well-founded structure is (No, > ). 
As it turns out R(a, zi, z 2 ) indeed satisfies the premises (1)-(4) of the proof rule 

FAIR 2 . The soundness of FAIR 2 implies the validity of the above correctness 
formula, i.e. the desired termination result. Note how convenient it is to formalize 
the informal case analysis with the help o[ the 'turn' notation. Also we realize how 
the additional counter variable z2 reflects the assumption of fairness. With z2 we 
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are able to find an entity a which gets decreased with every loop execution, but 
without z2 this is impossible (which accords with the fact that without fairness 
assumption the program is not guaranteed to terminate). 

Let us now look at the simplified rule S-FAIR2 where we need an invariant 
R *({3, turn) with (3 counting the number of rounds only. This time our program 
analysis is even simpler than the one we had before. If A is false /3 = 0 holds. If 
A is true and we select subprogram S 1 there will be two rounds: (3 = 2. Otherwise, 
if we start with S2 only one round is possible: (3 = 1. This leads to 

R*(/3,turn) = (--iA~/3 =0) 

A (A A turn= 1~/3=2) 

A (A A.turn = 2 ~ f3 = 1) 

where the underlying well-founded structure is simply ({0, 1, 2}, >). It is easy to 
check that R *(/3, turn) satisfies the premises of proof rule S-FAIR 2. Again, the 
soundness of S-FAIR2 implies the desired termination result. Note that it is the 
fairness assumption which provides a meaningful interpretation of R *(/3, turn): 
only because we know that in the case of "A A turn = 1" the first round will be 
finite we need not bother about how long this round will actually be. This kind of 
reasoning resembles rather closely a temporal analysis of the program in the sense 
of Temporal Logic [13] where one thinks of events (here the end of the first round) 
which will happen eventually without bothering about when exactly. 

Example 2. 

I= fair-+ {true} do x > 0 ~A :=true 

0 x > 0 ~if A -+ x := x - 1 ; A := false 

0--iA ~skip fi 

od {true}. 

Encouraged by the previous example we choose to apply the rule S-FAIR 2 

immediately. Thus we have to estimate the number (3 of rounds again. Observe 
that now /3 is not uniformly bounded as in the previous example where ((3 ~ 2), 
but we can give a bound for (3 depending on the value of the variable x in the 
initial state: {3,.; 2x. Thus we choose (N0 , >) as a well-founded structure. The 
following invariant analyzes the possible cases precisely: 

R*(/3, turn) = (x ~ 0~{3 = 0) 

A (x > 0 A turn = 1 ~ f3 = 2x) 

A (x > 0 A turn = 2 A A -+ {3 = 2x - 1) 

A (x > 0 A turn= 2 A --,A-+ f3 = 2x + 1). 
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And indeed this invariant suffices to prove the above termination result via proof 
rule S-FAIR2. Recall that every invariant R *((3, turn) for S-FAIR 2 can be turned 
into an invariant R (a, zi. z 2) by the construction of Lemma 2. 

Example 3. 

F fair-+ {true} do x > 0-+ A :=true; 

if B -+ x := x + 1 

D 1B -+skip fi 

D x >0-+ B :=false; 

if A -+ x := x = 1; A := false 

D 1A-+skip fi 

od {true}. 

Again we wish to estimate the number of rounds in order to apply rule S-FAIR 2• 

But this time we have augmented the program of Example 2 by CJ in such a 
way that even if we know the initial state er we cannot predict the number of rounds 
in case that "x > 0 /\ B" holds in er and the first subprogram is selected. However, 
as soon as the first round has ended we know the number of the remaining rounds: 
it is determined exactly as in the previous example. This observation suggests that 
we now choose as well-founded structure (No u {w }, >) where w > n holds for every 
n E N0 , i.e. w corresponds to the first limit ordinal. Intuitively w represents the 
concept of an unknown number which will become precise as soon as w gets 
decreased to some a < w which must be in N0 • For an initial value of x satisfying 
x > 0 the maximal number (3 of rounds can now be estimated as 

((3 = w) /\ (2x -1,,;; (3,,;;:; 2x + 1). 

With this intuition the following invariant is understandable: 

R*((3, turn) = (x,,;; 0~(3 = 0) 

/\ (x > 0 /\ turn = 1 /\ B -+ (3 = w ) 

/\ (x > 0 A turn = 2 /\A -+ (3 = 2x - 1) 

A (x > 0 A turn = 2 A --,A -+ (3 = 2x + 1). 

The part c::::=i is new as compared with the invariant of the previous example. 
Again R*({3, turn) satisfies the premises of proof rule S-FAIR2 and thus proves 
the desired termination result. 
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This is the first example which we cannot prove without resorting to infinite 
ordinals in the well-founded structures even if we count the number of rounds 
only. (Clearly by counting every single loop execution we would have encountered 
infinite ordinals already in the previous example. This is so because lexicographically 
ordered pairs a =({3, z) needed in the translation of R*({3, turn) into R(a, z1, z2) 
can be written equivalently as 

a=(J)·{3+z 

with> being the usual order between ordinals.) The question arises which ordinals 
are needed in general to prove total correctness under fairness assumptions. We 
shall investigate this problem later in Section 11. 

5. Fairness: n guards 

In this section we extend our approach of dealing with fairness to programs of 
the form 

S =do B ~ S 1 0 · · · 0 B ~Sn od 

with n subprograms S 1, ... , Sm but still guarded by the same Boolean expression 
B. Again we proceed in two steps, first looking for a transformation which simulates 
the fair computations of S and then using this transformation to derive a proof 
rule for total correctness under fairness assumption. The transformation is a system­
atic extension of Tjair (S) from Section 3: 

T/a;,(S) = for all i E {1, ... , n} do Z; :=? od; 

do 

0 B /\ turn = i ~ S; ; z; := ? ; 

for allj E {1, ... , n}\{i} do zi := zi- l od 

od 

where i ranges over {1, ... , n}. The z 1 , ... , Zn are new variables not occurring in 
S which range over the integers. And the expression "turn = i" is an abbreviation 
defined by 

turn= i = i = min{j \zi = min{zdk~1 .... ,n} 

which holds if i is the smallest index such that z; has the minimal value among the 
z i, ... , Zn· As in the case of two guards the variables z i, ... , Zn are priority variables 
used to realize a scheduler in T'Jair (S) which allows only fair computations. At 
every moment in the computation of T'fa;,(S) the subprogram with the smallest 
index and the maximal priority, say S;, is executed. After this execution the priorities 
of all other subprograms Si, j ¥- i, get incremented (i.e. zi decremented) by 1 whereas 
the priority of S; gets resets to an arbitrary nonnegative value. 
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Recall that in the transformed program TJair(S) of Section 3 the variables z 1 

and z 2 were always ~-1. For TJair(S) we can show analogously that zi. ... , Zn;;;.: 

-n + 1 is always true. In fact, this is a special case of the more general invariant 

n-1 

INV= /\ card{klzk~i}=:%n-i 
i=l 

which holds in every state of a computation sequence of TJair(S). (By card M we 
denote the cardinality of a set M.) 

The fact that TJa;,(S) faithfully simulates all the fair computations can be proved 
in a Lemma analogous to Lemma 1 in Section 3. We shall not do this here because 
it will be a special case of the more general Lemma 3 in Section 7. But we state 

Proposition 2. Let P and Q be assertions not having z i. ..• , z .. as free variables. Then 

Ffair-+{P}S{Q} if! F{P}T{a;,(S){Q}. 

which will also follow from Lemma 3. 
As in Section 3 this proposition is the starting point for the second step where 

we apply the proof rule(*) and axiom(**) to T{a;,(S). This leads to the following: 

(FAIR) Proof Rule for Fairness: n guards: 

(1) P-+Vz1, ... ,z .. 3aR(a,zi, ... ,z .. ) 

(2) 3a R 1Nv (a, Zi. ... , z .. ) /\ 1B-+ Q 

(3.i) i = 1, ... , n: 

{RINV (a, Zi, ... ' z .. ) /\B /\turn= i} 

S; 

{Vz; 3(3 <a RINV ((3, Z1 -1, ... , Z;-1- l, Z;, Z;+1 -1, ... , Zn -1)} 

(4) fair-+ {P} do B-+ Si 0 · · ·DB -+S .. od {Q} 

where z 1, ..• , z .. are new variables not occurring in P, S, Q. The notation 
R (a, zi. . .. , z .. ) is used analogously to R (a, Zi. z2) of Section 3. 

RINV (a, zi, ... , Zn) stands for 

R 1Nv (a, zi, ... , z .. ) = R(a, z 1, ••. , z .. ) /\INV. 

Soundness and relative completeness of the rule FAIR follows automatically 
from Proposition 2 and the corresponding results for the proof rule ( *) as explained 
in Section 3. We remark that in the case "n = 1 ", i.e. for S =do B-+ S 1 od, the 
transformed program Tfair (S) is equivalent to S and the proof rule FAIR becomes 
equivalent to the original proof rule for while-programs. 
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In the case of two guards we were able to derive a simplified sound rule S-FAIR.,_ 
from FAIR 2 which relied only on the notion of a round and was rather easier t() 
apply as shown in Section 4. But in the case of n ;;;,; 3 guards this simplificatioti, 
technique does not work successfully any more. Let us explain why. Clearly w~ 
could try to generalize the proof rule S-FAIR 2 • This would lead to a rule S-FAIJt.. 
with a premise 

(3.i) {R*(/3,i)/\B} 

S; 

{(3y ~ {3R *( y, i)) /\ Vj E {l, ... , n }\{i} 3y < /3 R *((3, j)}. 

The trouble is that even in the simplest cases such an invariant R *(/3, turn) 
satisfying (3.i) may not exist. Here is an example: we would like to prove 

F fair~ {true} do A~ skip 0 A~ skip DA ~A:= false od {true}, 

a straightforward extension of Example 1 in Section 4. But we cannot do this with 
the proposed proof rule S-FAIR because there is no bound for the number f3 of 
rounds if we start with turn E {l, 2} unless the priority z 3 of the third subprograill 
S 3 =A:= false is known. Thus we cannot achieve much without priority variables 
as soon as n ;;;,; 3 guards are considered, and therefore must use the original proof 
rule FAIR. 

6. Examples for fairness: n guards 

Let us now examine several applications of the generalized proof rule FAIR. 
We start with the example we could not treat with the proposed simplified rule 
S-FAIR. 

Example 4. 

F fair~ {true} do A~ skip D · · · D A~ skip 0 A~ A:= false od {true}. 

Using the priority variable Zn associated with the nth subprogram Sn = A :=false 
it is quite easy to estimate the maximal number a of loop executions. Due to the 
standard invariant INV we know that for a given value Zn the term Zn + n - 1 
expresses the maximal number of times the subprogram S; may be neglected before 
it will surely be scheduled for execution. Thus if we start with one of the programs 
Si,. .. , Sn-1 the number a is given by a = Zn + n. This is made precise in the 
following invariant: 

R (a, z i, ... , Zn) = A~ a= n + z,. 

which satisfies the premises of rule FAIR. For n = 2 this invariant reduces to a 
simplified version of the invariant R (a, z i. z2) we used in Example 1. 
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Example 5. In the previous example a particular subprogram was responsible for 
terminating the do-ad-program, namely the subprogram Sn. We consider now the 
more general case 

I= fair-+ {true} do A 1 A· · • A An-+ S 1 

0 A1 /\•••A An -+S2 

od {true}. 

with Boolean variables A 1, ••• , An where the subprograms S 1, .•. , Sn are parti­
tioned into two subsets {Sk I k EK} and {S1 I l EL} with L ;C 0, K n L = 0 and Ku L = 

{l, ... , n} such that the following holds: whenever one subprogram Si with l EL 
is executed, the whole do-ad-program terminates. More specifically, we take 

sk = skip for k EK and Si = Ai:= false for l EL. 

The termination result is proved with the invariant 

R(a, Zi, ... , Zn) = (Ai/\···/\ An)-+a = n +min{zi I! EL} 

where the minimum of the priority variables zi is taken because any subprogram 
Si with l EL will terminate the do-ad-program. A more involved form of this 
example will reappear later on in Section 10. 

Example 6. Finally we study a dual example where all subprograms S; need to be 
executed in order to terminate the whole do-ad-program. The claim is: 

I= fair-+ {true} do A 1 v · · · v An~ A 1 :=false (S1) 

0 A 1 v .. ·vAn-+A2:=false (S2) 

0 A1 V • • • V An ~An :=false (Sn) 

od {true}. 

where the Boolean variable A; reports that the ith subprogram S; has already been 
executed. 

The prove this claim we have to estimate the maximal number a of runs through 
the do-ad-loop needed to execute every subprogram at least once. 

So let us assume that we are currently executing the ith subprogram S;, i.e. that 
turn = i holds. Then a depends on how many times we still may neglect the other 
subprograms S;, j :;C i. This can be measured in terms of the priority variables z;. 

j ;C i. Taking the standard invariant INV for these variables into account we arrive 
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at a first estimation of a in case of "turn= i": 

a= n +max{z; I 1 ,,;;;(..:; n Aj-:f-i}. 

This equation clearly holds at the start of a computation of the do-ad-program 
but is not kept invariant in the course of such a computation. The problem is tha 
as soon as the jth subprogram S; has been executed the corresponding priorit: 
variable z; gets reset arbitrarily whereas the maximum number of times the do-od 
loop is left to be executed decreases by at least 1. But this deficiency can be fixe1 
easily by using the Boolean expressions A; which indicate whether S; has alread: 
been executed. For "turn= i" we set 

R; = a = n + max {if A; then z; else -n + 1 fi I 1,,;;; j,,;;; n /\ j -:f- i} 

where -n + 1 is the smallest value z; can assume. Finally, we define 

" R(a,zi, ... ,z") = /\ ((A 1 v···vA,.)/\turn=i~R;). 
i=l 

It turns out that R (a, z i, .•. , Zn) indeed satisfies the premises of the proof rul 
FAIR. 

7. Weak and strong fairness: n guards 

We now develop proof rules dealing with fairness for programs of the general forr 

S = doB1 ~s1D· ··DB" ~s" od 

with n subprograms guarded by artribrary Boolean expressions. Thus we have t 
distinguish between weak and strong fairness. Let us start with the weak fairne. 
assumption. First we look for a transformation of S which realizes exactly all weak 
fair computations of S. As in the transformation T'fair of Section 5 we associate 
(new) priority variable z; with every subprogram S;. But now these variables wi 
be manipulated individually depending on whether the corresponding guard B; 
true or false. Also when determining which of the subprograms Si. ... , Sn is tot 
executed next we have to make sure that only those priority variables z; a1 
considered for which the guard B; is true. These remarks lead to the followir 
transformation 

(+) 

T:eadS) = foralliE{l, ... ,n}doz;:=?od; 

do 

od 

forallj E {l, ... , n}\{i} do 

z; :=if B; then z; -1 else? fi 

od 
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where i runs from 1 ton. Here "turn = i" is an abbreviation defined by 

turn=i = i=min{jlzi=min{zklBdk=L..,n} 

which holds if i is the smallest index for which z; has the minimal value among all 
those zi for which Bi is true. And "if Bi then zi - 1 else? fi" is a conditional expression 
the value of which is either zi -1 or an arbitrary nonnegative integer depending 
on whether Bi is true or false. So we reset the priority variable zi as soon as Bi is 
false. This formalizes exactly the weak fairness assumption which tells us that a 
subprogram Si is guaranteed to be executed only if the guard Bi is from some 
moment on continuously true. Note that for B 1 = · · · = Bn the program r:eak (S) 
reduces to T[a;,(S) of Section 5 (except for the last assignment of random values 
to z 1, ••• , Zn when the loop is about to terminate). 

Note that the scheduler built into S is deterministic in the sense that at each 
moment only one guard in the transformed do-od-program can be chosen. We 
could equally well consider nondeterministic schedulers. One possible choice (con­
sidered in [12]) is to replace turn =i by a predicate turn(i)=Vj(Br~zi3z;). All 
subsequent results then hold, as well. 

The following lemma proves the correctness of T~·eak (and hence also of T[air) 
by showing that the transformation is faithful in the sense of Section 3. 

Lemma 3. (i) If g is a weakly fair computation sequence of S then there exists an 
extension f of g including the new variables z 1, .•• , z" such that f,' is a computation 
sequence of r:eak (S J. 

(ii) Conversely, if f,' is a computation sequence of r:eak (S J then its restriction g 
to the variables of Sis a weakly fair computation sequence of S. 

Proof. (i) Consider a weakly fair computation sequence 

of S with ii E {l, ... , n }. Analogously to Lemma 1 we show how to extend g to a 
sequence 

by assigning new values to the variables z i, ... , Zn. This time we define for l E 

{l, ... , n} 

if 3 k ~ l : jk = !, 
otherwise. 

We claim that O"j (z1) E N0 holds for all j and !. To see this we have to show that 
in both cases the minimum of a non-empty subset of N0 is taken. By the definition 
this is true for the case "3k 3 j: ik = l". So let us assume "V k ~ j: ik :F l'', i.e. from 
(J"i on the lth subprogram S1 is never scheduled for execution again. Since g is 
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00 

weakly fair, this can only be the case if 3k ~ j: f=1B1(0-d holds. This implies ol 
course 3k;;;,: j: f=·1B 1l<Tk) which guarantees already that also in this case the minimurr 

is taken over a nonempty set. 
Note that in every state crj exactly one variable z1 has the value 0-namely zij 

So the scheduler built into the program T:eak (5) will indeed choose the subprograrr 
5;i in the state aj. Also it is easy to check that the values of the variables z 1, •.• , z, 
in the states cr ;. are defined in a way which agrees with the corresponding assignment: 
in T:eak (5). Thus g' is indeed a computation sequence of r:eak (5). 

(ii) Conversely, let f be a computation sequence of r:eak (5) and g be it: 
restriction to the variables of 5. Clearly g is a computation sequence of S, but w1 
have to show that it is weakly fair. 

Suppose this is not the case. Then g is infinite and one subprogram of 5, say S 
is from a certain state a-i on, never scheduled for execution though FB;(o-k) hold 
for all k ;;;,: j. By the definition of r:eak (S) the value of the variable Z; gets smalle 
than -n + 1 in some state a~ with k;;;,: j. But this is impossible because the assertio1 

n n 

INV=/\ card{klzk:;:;;-i}:s:n-iA /\ [z;<O~B;] 

holds in every state crj of f. We prove this by induction on j ~ 1. In <T\ a 
z i, ... , Zn;:;. 0 so that INV is vacuously true. Assume now that INV holds in o-j 
We show that INV is also true in o-j: 

( 1) Suppose there is some i E { 1, ... , n} such that there are at least n - i + 
indices k for which zk::;:;: -i holds in O'j. Let K be the set of all these indices. B 
the construction of r:eak (S ), i;:;. 2 and the inequality zk ::;:;: -i + 1 must have he!, 
for all k EK in the state O' j . 1. By the induction hypothesis card K ::;:;: n - i + 1 hold~ 
so that indeed cardK=n-i+l. Again by the induction hypothesis Bk((J'j_i) i 
true for all k EK. Hence there is also some k EK with ii-l = k, by the definitio 
of r:eadS). But this implies that Zk ~a holds in(]';. This contradicts the definitio 
of K. Consequently /\7= 1 card{k lzk :;:;;-f}:;:;;n -i holds in a-;. 

(2) /\;'= 1 [z;<0 ~ B;] is obviously true in a-j by the construction of r:eak (5). 
This finishes the induction. D 
As an immediate consequence of Lemma 3 we derive 

Proposition 3. Let P and Q be assertions without z 1, ... , Zn as free variables. The 

f=weak~{P}S{Q} if! f={P}T:'.,eadS){Q}. 

Thus an application of the rule ( *) and axiom ( **) of Section 3 yields the followir 
sound and relatively complete: 

(WEAK) Proof Rule for Weak Fairness: n guards 
(1) P~'Vz1, ... ,Zn3aR(a,z1, ... ,zn) 

2) 3 RINV ( a (a,z1, ... ,z,,)v1(B 1 v .. ·AB,,)~Q 
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(3.i) i=l, ... ,n: 

{RINV (a, z 1, ••• , Zn) AB; A turn= i} 

S; 

{Vi1, ... , in Vz; 3{3 <a 

R INV (/3, [if Bi then zi - 1 else ii fi/ zi ]iE{l, ... ,n}\{i})} 

(4) weak~{P}doB1~S 1 D···DBn~Snod{Q} 
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where z 1, ... , Zn are new variables not occurring in P, S, Q. The meaning of 
''turn=i" and RrNv(a,z 1, ... ,z,,) is defined as in Section 5. Note that in the 
postassertion of premise (3.i) the substitutions are given explicitly in order to 
shorten the notation. Substituting the conditional expression '"if Bi then zi -1 
else ? fi" for zi into R means that in case when B; holds the assertion R should 
hold for zi -1 whereas in case when 1B; holds then it should hold for all zi ~ 0. 

Let us now study the strong fairness assumption. The corresponding trans­
formation is: 

T:'rrong (S) - for all i E {l, ... , n} do z; :=? od; 

do 

0 B;Aturn=i~S;;z;:=? 

for all j E {1, ... , n }\{i} do 

if Bi then z; := zi -1 fi 

od 

od 

where i runs from 1 to n and "turn = i" is defined as above. The only difference 
between r:eak (S) and T~crong (S) is that the assignments z i :=if Bi then z; - 1 else ? fi 
in line ( + J of r:eak (S) have been replaced by 

if B; then z; := zi - 1 fi, 

i.e. a priority variable zi of a subprogram S; which is not executed can never be 
reset. This realizes the strong fairness assumption by which Si is guaranteed to be 
executed when the guard B; is infinitely often true. Again we can state 

Proposition 4. Let P and Q be assertions without z 1, •.. , z,, as free variables. Then 

F=strong~{P}S{Q} if! f= {P}T;'1rong(S){Q}. 

This proposition relies on a lemma analogous to Lemma 3. There are two things 
we have to alter in the proof of Lemma 3 so that it works for strong fairness instead 
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of weak fairness. First is the definition of the new values er; (zi) of the variables 
z 1, l = 1, ... , n in the extended computation sequence f,' of g considered in part 
(i). This definition now reads 

where k0 = min{k :2' j /\ ik = /}. Again it is not difficult to see that these values are 
well-defined if~ is strongly fair and consistent with the transformation T;crong· 

Secondly, in part (ii) of the proof of Lemma 3 we have rather to consider the 
following assertion 

" INV=/\ card{klzk~-i}~n-i 
i=l 

n-1 n 

/\ /\ (card{klzk~-l}=n-i-'> V (zk~-iABk)). 
i= 1 k =I 

The proof of ( 1) remains virtually unchanged. The proof of (2) runs now as 
follows. We refer here to the notation and proof of ( 1) given in the proof of 
Lemma 3. 

Consider some i E {1, ... , n - l}such that card K = n - i holds for K = {k I Zk ~ -i} 
in erj. We have to show then that Bk is true in er; for some k EK. As in (1) we 
conclude that zk ~ -i + 1 holds for all k EK in a;_ 1. It is impossible that zk ~ -i 
holds already for all k EK in aj_ 1 . Because then by the induction hypothesis Bk 
would be true for some k EK in aj- 1• Thus by the construction of T;1, 0 ng (S) there 
would also be some k EK with ii 1 = k and zk :2' 0 in er; which contradicts the 
definition of K. So there exists some k EK with zk = -i + 1 in er]+ But then the 
value of Zk decreased so Bk is indeed true for this k in erj by definition of T;1, 0 ,,g (S). 

Proposition 4 gives rise to the following sound and relatively complete: 

(STRONG) Proof Rule for Strong Fairness: n guards: 

(1) P-'>'Vzi, . .. ,z,. 3aR(a,zi, ... ,z,,) 

(2) 3a R 1Nv (a:, z 1, ... , z,.) /\ 1(B1v···vB,,)-'>0 

(3.i) i=l, ... ,n: 

{RINV (a, z 1, •.• , Zn) /\Bi f\ turn= i} 

Si 

{Vzi 3/3 <a R INV (/3, [if Bi then zi -1 else zi fitE\1, ... nl\{il)} 

(4) strong~{P}doB1-'>S1D· · ·DB,.~s,, od{O} 

with the same conventions as for proof rule WEAK. 
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Considering the framework of do-ad-programs S with different two guards 
Bi, B 2 we can try to find simplified proof rules relying on the intuition of a round 
as we did earlier in Section 3 for the case of two identical guards. We show such 
a simplified version for the case of strong fairness. 

(S-STRONG2) Simplified Proof Rule for Strong Fairness: 2 guards: 

( 1) P ~\I turn 3{3 R *({3, turn) 

(2) 3(3 R*({3, turn) A 1(B1 v B2)~ Q 

(3) {R*(f3, l)AB1} 

S 1 ; do B 1 A 18 2 ~ S 1 od 

{3y ~{3 R*(y, 1) A 3y <{3 R*(y, 2)} 

(4) {R*({3,2)AB2} 

{3y~{3R*(y,2)A3y<{3R*(y, lJ} 

strong~ {P} do B 1~S10B2 ~ S2 od { Q} 

where turn is a new variable not occurring in P, Bi, Si, B 2 , S 2 , Q which ranges 
over the set {I, 2}. 

Note that in this rule we have added loops do B; /\ 1B 3 _; ~ S; od behind S; (i = 1, 2 ). 
These loops are intended to absorb all the cases where we know in advance what 
the strongly fair scheduler would recommend us to do, namely to continue the 
execution of S;. We remark that the addition of these loops is not necessary but it 
leads to a proof rule which is easier to apply as we shall see in the next section. 

The soundness of S-STRONG 2 can be proved analogously to that of S-FAIR 2 , 

i.e. by factorizing the original a used in STRONG into a pair a = ({3, z) where {3 
gets decreased only if there is no possibility to decrease z. That the factor f3 can 
indeed be interpreted as counting the number of rounds depends critically on the 
additional loop do B 1 /\1B 2 ~S 1 od. Without this loop we would be forced to 
decrease {3 in the postassertion of premise (3) even when B 1 /\1B 2 holds and 
therefore no new round begins. And analogously for do B 2 /\18 1 ~s2 od. 

8. Examples for strong fairness 

In this section we apply the simplified proof rule S-STRONG2 for strong 
fairness to prove the correctness of programs which terminate under strong but 
not under weak fairness assumptions. These programs are closely related to those 
studied in Section 4. 
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Example 7. 
P strong_,. {true} do A_,. B := -iB 

D B _,. A := false; B := false 

od{true}. 

This is a refined version of Example 1. Again the number /3 of rounds is uniformly 
bounded and independent of the initial state. We choose as well-founded structure 
({0, 1, 2}, >)and as invariant 

R*(/3, turn) = (IA/\ -iB ~f3 = 0) 

/\ (A /\ turn = 1 _,. f3 = 2) 

/\ (B /\turn= 2 _,. /3 = 1). 

It turns out that R *(/3, turn) satisfies the premises of the rule S-STRONG 2 • Note 
that the do-ad-loops to be considered in the premises (3) and (4) are simply 

do A A 1B _,. B := -iB od 

and 

do B /\ -iA _,.A := false; B :=false od 

which terminate after at most one iteration. 
What happens now if we assume only weak fairness? Then an infinite computation 

sequence 

is still possible because there is no state ai such that the guard B is continuously 
true from CTi on and hence weak fairness does not force us to eventually choose 
the second subprogram. Consequently the program may diverge under weak fair­
ness assumption. 

Example 8. 

P strong_,. {true} do x > 0 /\!Cl_,. A:= true; ] D :=ID ] 

D x > 0 /\ ~ _,. if A _,. x := x - 1 ; A := false 

D 1A _,.skip fi. 
' [C7=-;cJ 

od {true}. 

This is a refined version of Example 2, only the [ I parts have been added. 
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Thus our observations about the number of rounds remain valid. This can also be 

seen from the corresponding invariant 

R*(/3, turn) = (x ~ 0 v (1C A 1D) +-'"(3 = 0) 

/\ (x > 0 A C /\ turn = 1 4 f3 = 2x) 

/\ (x > 0 /\ D /\ turn = 2 A A 4 (3 = 2x - 1) 

/\ (x > 0 /\ D /\turn = 2 /\ 1A 4 (3 = 2x + 1) 

where the underlying well-founded structure is (N0 , > ). It differs from the invariant 

of Example 2 only by the C=:J part. Again the termination result does not hold 
under weak fairness assumption. 

Example 9. 

F=strong4{true}dox>O AC ~A:=true; 

if B 4X := x + 1 

0 18 4 skip fi; 

D:=1D 

D x > 0 A D 4 B := false; 

if A 4 x := x - 1 ; A := false 

DIA4skip 

C:=1C 

fi. , 

od {true}. 

Also this termination result does not hold under weak fairness assumption. Here 

the same refinement technique as in the previous example has been applied to 

Example 3. This leads us to the following invariant: 

R*({3,turn) = (x~O v(ICAID)+-'"(3=0 

A (x > 0 A C A turn = 1 /\ B 4 (3 = w) 

A (x > 0 /\ C A turn = 1 A 1B 4 (3 = 2x ) 

/\ (x > 0 /\ D A turn = 2 A A 4 (3 = 2x - 1) 

A (x > 0 /\ D A turn = 2 A 1A 4 (3 = 2x + 1 ) 

where we use the well-founded structure (N0 u {w }, >) known from Example 3. 

Note that in the above examples we may switch turns only after every even 

number of computation steps. One might think that more elaborated "switching' 
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techniques lead to more complicated invariants R *({3, turn). Fortunately this is not 
the case. For example, if we replace in the above program the conjunct "AC" in 
the first guard by"" y = O" and the assignment "C := 1C" by "y := (y + 1 mod 5) ", 
the only thing we have to alter in R*(/3, turn) is to change "C" into "y =0". Our 
proof rule S-STRONG2 is robust against such changes in the switching technique 
thanks to the extra do-od-loops in their premises (3) and ( 4 ). These loops absorb 
the complexity of the new switching technique. 

9. Zero searching 

So far our examples were somewhat artificial and served only as means to identify 1 

certain classes of fair computation sequences. Also all the examples dealt with the 
issue of termination only. We now prove total correctness of a program which is 
interesting for its own sake. The claim is that 

Ffair~{x=y=w/\3uB(u)}S{B(w)} 

holds where 

S = do 18 (x ) " 18 (y) ~ x := x + 1 ; w := x 

D 18 (x ) " --,B ( y) ~ y := y - 1 ; w := y 

od. 

Here F means validity in the standard interpretation of integers. B is a Boolean 
expression with a free variable u, but without occurrences of the variables x, y, w. 
A useful choice would be 

B(u) = f(u) = 0 

where f is a function from integers into integers. Then the program S searches for 
a zero of f. It does so by employing two subprograms, one is searching for this 
zero by continuously incrementing its test values (x :=x + 1) and the other one by 
decrementing them (y := y - 1 ). The idea is that S finds the desired zero by activating 
these subprograms in a nondeterministic, but fair order. The formal correctness 
proof of Swill be divided into three steps. 

Step 1. We first show that S works correctly under the assumption that initially 
"B(u) "x,,;;; u" holds for some 'zero' u: 

Ffair~{x = y = w AB(u) AX,,;;; u} S {B(w)}. 

We intend to apply the simplified proof rule S-FAIR 2 of Section 3. Note that the 
maximal number {3 of rounds of S depends on the difference u - x between u and 
x. It is {3 = 2(u -x) if turn = 2 holds and f3 = 2(u = x )-1 if turn = 1 holds. Thus we 
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take (Nu, >) as well-founded structure. The precise formulation of the invariant is 

Rf({3,turn) = B(u)Ax~u 

"(B(x) v B(y J~ B(w )) 

"(tB(x) f\ LB(y) f\turn = 1~{3=2(u -x)-1) 

f\ (---iB(x) f\ LB(y) "turn= 2~ {3 = 2(u -x)). 

We show that Rf ({3, turn) satisfies the premises (1)-(4) of the proof rule S-FAIR 2 • 

It is easy to see that RT(f3, turn) satisfies the premises (1) and (2) with P= 
(x = y = w f\ B (u) f\ x ~ u) and 0 = B ( w ). Slightly more care is needed to verify 
premise (3). Define P1 and 0 1 as follows: 

Pi = (B(u) f\ ---iB(x)f\ 1B(y) 11x <u 11{3 ;a.2(u -x)-1 ;a.}) 

01 = B(u)11x~u11{3>2(u-x) 

11 (B(x) v B(y J ~ B(w )). 

Then l={P1} x := x + 1; w := x {01} holds. An application of the rule of consequence 
yields the premise (3). A similar argument verifies premise (4). 

Step 2. Next we replace the assumption .. B (u) 11 x ~ u" by "B (u) 11 u ..;; y ": 

I= fair~ {x = y = w 11B(u)11 u ~ y} S {B ( w )}. 

Since this claim is symmetric to that of Step 1, we can easily derive the corresponding 
invariant R ! ({3, turn) from RT ({3, turn): 

R ~ ({3, turn) = B (u) 11 u ~ y 

11 (B (x) v B (y) ~ B ( w)) 

11 (1B (x) /\ 1B(y) f\turn = 1~{3=2(y - u )) 

11(1B(x)/\1B(y) f\turn = 2~ f3 = 2(y-u)-1). 

Step 3. We combine the results of Steps 1 and 2 into 

I= fair ~{x = y = w /\ B(u) 11 (x ~u vu~ y)} S {B(w)}. 

Notice that the preassertion can be replaced by the equivalent assertion "x = y = w 11 

B (u )". Finally, we can prefix B (u) in this assertion by the existential quantifier 3u 

because u occurs neither in S nor in the post-assertion B ( w ). This yields the desired 
result: 

l=fair~{x = y = w /\ 3uB(u)}S {B(w)}. 

These last steps correspond to applications of some general rules for reasoning 
about correctness formulas, namely the disjunction rule, the rule of consequence, 
and the 3-rule. These rules are sound regardless of whether fairness is assumed or 
not. 
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10. Asynchronous fixed point computation 

In this section we study a natural example for fairness with n ""'2 guards suggestec 
by P. Cousot. Let (2, <:::;)be a complete lattice which fulfils the finite chain property 
i.e. every strictly increasing chain 

in 2 is finite. Thus (2, c) is a well-founded structure. Then the product (2", <:::;: 
with n ""'2 is also a complete lattice with the finite chain property. We conside1 
now a monotonic w.r.t. <:::; operator 

F:2" ~2". 

By Knaster-Tarski's theorem F has a least fixed point µPE 2". We wish to compute 
µ.F asynchronously by employing n subprograms S; each of which is allowed on!) 
to apply the ith component function 

of F defined by F;(x i, ... , x") = y; whereF(xi, ... , Xn) = (y1, ... , Ynl· These subpro 
grams are activated nondeterministically by the following program: 

where i=(x 1, ... ,x") and B=-i(i=F(i)). In general S of course will no 
compute µ.F but the claim is that it will do so under the assumption of fairness: 

(CJ F fair~ {i = l.} S {i = µ..F} 

where l. is the least element in~'£" and F refers to the validity in 5£. (This correctnesi 
result is a special case of a more general theorem proved in Cousot [ 4].) We woulc 
like to prove (C) with the help of the proof rule FAIR. To this end we proceed ir 
two steps. 

Step 1. We start with an informal analysis of program S. Consider a computatior 
sequence 

ii i, g = 0"1 --> .. · CTj ·~ • • • 

of Sand define ui(i) = (cri(xi), ... , ui(x,,)) for j""' 1 and 

F;[i] = (x i, ... , X;-1, F;(i ), X;+i, ... , Xn) 

for l ,s; i ,s; n. Since 0"1(f) = 1 holds and the component functions F; are monotonic 
the assertion 

(*) l.s;ic:::;F;[i]s;µ.F 

is true for every i E {l, ... , n} in every state O"i of g. Thus i = µ.F will hold as soo 
as S has terminated with i =F(i). But why does S terminate? Note that by(* 
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the program S produces an increasing chain 

of values in the variables i. That there exists some state cri with i = F (i) relies 
on two facts: 

(1) By the finite chain property of 2 resp. :En the values cri(i)E2" cannot be 
increased infinitely often. 

(2) And by the fairness assumption the values cri(i) cannot be constant arbitrarily 
long without increasing. 

( 1) is clear, but (2) needs a proof. Consider some non-terminal state cri in ~ (i.e. 
satisfying B=--i(i=F(i))) for which either cri=(J' 1 (start) or cri_ 1(i)cO'i(i) 
(increase just happened) holds. Then we can find two index sets K and L-both 
depending on 0'1-which partition the subprograms S 1, •.• , Sn of S into subsets 
{Sk [k EK} and {S1[l EL} such that the Sk stabilize the values of i, i.e. i =Fk[i] 
holds for k EK in a;, whereas the S 1 increase the values of i, i.e. v c F1[i] 

1 holds for l EL in <Ji. (Note that L :/- 0 holds because O'; is non-terminal.) 
Thus as long as subprograms Sk with k EK are executed, the do-od-program S 

generates states 0';+ 1 , O'j+ 2 , • •• , satisfying 

But as soon as a subprogram S1 with l EL is executed in some state O'm with 
j ~ m, we get the desired next increase 

after O';. That such an increase will indeed happen depends on the assumption of 
fairness. The formal proof of this fact is rather close to that of Example 5, except 
for the following changes: 
- Instead of proving termination like in Example 5 we are now proving the increase 
of the values of i. 
- This increase will be accomplished by executing one subprogram S1 =x1 :=F1(xi) 
with l EL instead of just setting a Boolean variable A, to false as in Example 5. 
- The index sets K and L vary now with the states O'i> i.e. to verify program S we 
rely on different instances of the argument given in Example 5. 

Step 2. With this informal discussion in mind we are now prepared for the formal 
correctness proof of S with proof rule FAIR. As well-founded structure we choose 
(:En x N0 , >) where > is the lexicographic order defined by 

Since:£" has the finite chain property,> is clearly well-founded. The components 
i and n of pairs (i, n)E2n xN0 correspond to the facts (1) resp. (2) about 
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termination of S explained above. The right invariant is now 

n 

R(a,z1, .. .,zn) = /\ (.ls;;;is;;;FJi]s;;;µ.F) 
i=l 

where the expression in the second component of a is a suitably adjusted version 
of that from Example 5. Note that the Boolean guard B being true guarantees that 1 

there exists some l E {l, ... , n} with i c F1[i]. So we need not bother how to 
define the minimum over empty sets here. 

Clearly R (a, zi. ... , Zn) satisfies the premises (1) and (2) of the proof rule FAIR. 
To check the premise (3.i) consider the execution of S; under the precondition 

R 1Nv (a, Zi, ... , Zn) 11B II turn= i, 

in particular with 

a= (i, n +min{z1 I1.:; /,,;; n 11i cF1[i]}). 

Let us denote by i' the values of i after the execution of Si. To establish the 
postcondition, we have to show that for every zi;;:. 0 

3(3 <a RINV ((3, Z1 -1, ... , Zi-1- l, Zi, Z;+1 -1, ... , Zn -1) 

holds. There are two cases to be considered. 
(i) i c i' = F;[i]: Then a gets decreased to f3 by its first component. 

(ii) i = i' = F;[i]: Since B held before the execution of S;, there exist indices 
l E {1, .. ., n} with i c F1[i]. In fact, l ¥- i holds for all such indices due to 
i =F;[i]. 

Thus the following definition of f3 is independent of z;: 

f3 = (i, n +min{z1- l I 1.:;/ ,,;;n 11i cF1[i]}). 

Clearly {3<a, and due to i=i', the invariant R 1Nv({3,z 1-l, ... ,z;-1-l, 
z;, Z;+ 1 -1, ... , Zn -1) holds after the execution of S; for every Z;;;:. 0. 

Thus in both cases a gets decreased. 
Finally, we observe that for this example it was very convenient to have arbitrary 

well-founded structures at our disposal. If we were restricted to their standard 
representation as ordinals we would have to run into difficulties when dealing with ! 
the not further analyzed structure of !e". 

11. All ordinals a< w ·w"' are necessary 

I 
In this section we investigate the question raised in Section 4, namely which 

ordinals a are necessary for proving total correctness of programs 

s = do BI-'> s 1 D ... D Bn -'>Sn od 
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under fairness assumptions. More precisely we ask what is the smallest ordinal a 
such that the well-founded structure ( W, >w) needed in the correctness proof of S 
can be embedded into ( W,,, > ). (Cf. Section 3 for the notation.) We show that at 
least all ordinals 

a<w.w"' 

are needed. To this end we explicitly construct for every n EN a program Sw" of 
the form 

Sw" = do B ~s1D· ··DB ~s,, od 

such that the ordinal {3 = w" is needed to count the number of rounds which may 
occur in fair computations of Sw"· Thus at least all ordinals {3 < w"' are needed to 
count the number of rounds in programs S. This implies the claim about a by 
Lemma 2. (We remark that our result has been improved considerably in [3] with 
help of general recursion theoretic methods. In [3] it is shown that exactly all 
recursive ordinals a are necessary to deal with programs S under fairness assump­
tions. Nevertheless it seems worthwhile to explain the simple structure of the 
programs Sw"·) 

The idea behind the construction of these Sw" is simple. It can be illustrated 
by certain programs Tw" which use random assignments-which are of course 
disallowed within the components S; of S-and n nested loops. These programs 
Tw" are constructed in such a way that the ordinal associated with the total number 
of executions of all nested loops is w ". We define 

Tw 2 - X1 := ?; 

od 

Once x 1 is fixed, the outer loop is executed x 1 times. Within each such execution 
we arbitrarily choose x2 and execute the inner loop x 2 times. Thus the ordinal 
representing the total number of executions of both loops is w 2 • It is obvious how 
to obtain Tw\ ... , Tw" for n EN. 

Now we translate this idea into the framework of fair, nondeterministic programs 
S such that w" becomes the ordinal representing the number of rounds instead of 
the number of loop executions. We do this by inductively defining programs Sw", 
n EN: 
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For n = 1 we have 

S w = do X 1 > 0 ii 1 ~ q ~ 3 -> jf q = l -> X I := X I + 1 

0 q = 2->skip 

\ o q = 3 -> q := 2 I 
fi 

0 x 1 > 0 /\ 1 ~ q ~ 3 -> if q = 1 -> q := 3 

od 

0 q = 2-> x 1 := x 1 - 1; q := 3 

I o q = 3 -- skip I 

fi 

where x 1 and q are integer variables. 

The effect of the random assignments x 1 :=? is achieved here by repeate 

execution of the first component in case when q = 1. Switching to the secon 

component results in a change of q to 3. From that moment on x 1 is gradual! 

decreased by one-once for two rounds. 

Obviously, Sw is closely related to the program of Example 3. Thus it is easy t 

understand that f3 = w is needed to count the number of rounds. 

Let n > 1 and Sw" 1 be known. In Sw" 1 the integer variables Xi, ... , Xn and 

occur. The guards of both subcomponents in Sw" 1 are "x 1 > 0 /\ · · · /\ Xn-l ~ 0 /\ 1 

q ~ 2(n -1) + 1 ".Accordingly, both subcomponents are if-ft-clauses of the form 

if q = 1-> · · · 0 · · · 0 q == 2(n - 1) + 1-> · · · fi. 

With this structure of Sw" 1 in mind, the following definition of Sw" makes sens 

Sw" is obtained from Sw" · i by replacing 

( 1) both guards 

by 

(2) the part [ Oq = 2(n -1) + 1->q := 2(1' -1) [by 

0 q = 2(n -1) + 1-> q := 2n + 1 

0 q = 2n /\ Xn > 0-> Xn := Xn - 1; q := 2n + 1 

0 q = 2n ii Xn = 0-> q := 2(n -1) 

0 q == 2n + 1 ->skip 
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(3) thepart Dq=2(n-1)+1...,skipby 

0 q = 2(n -1) + 1 _, Xn := X,. + 1 

0 q = 2n 'Skip 

0 q = 2n + 1 _, q := 2n 

where Xn is a new integer variable. 
As an example let us consider Sw2· 

Sw 2 = dox 1 >0Ax 2 ~0;d=:sq=:s5_, 

if q = 1 -.,> X I := X 1 + 1 

od 

0 q = 2_,skip 

D q = 3 _,q := 5 

D q = 4 A X2 > 0 _, x 2 := x 2 -1; q := 5 

D q = 4 " x 2 = o _, q := 2 

r--------, 
: D q = 5 _,skip : 
I I L ________ J 

fi 

if q = 1 _, q := 3 

D q = 2_,x1 := x 1 - 1; q := 3 

D q = 3 _, x 2 := x 2 + 1 

0 q = 4_, skip 

r---------, 
I I 
I 0 q = 5 -.,> q := 4 I 
I I 
L----------1 

fi 
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To see that ordinal /3 = w 2 is indeed to represent the number of rounds, let us 

choose component 1 of Sw2 in a state where q = 1 holds. Thus in the first round 

the value of x 1 is determined. Subsequently x 1 is gradually decreased by 1 in 

component 2 at q = 2. Each time x 1 is decreased, the variable x 2 is set to some 

arbitrary value at q = 3. This value x 2 is then gradually decreased by 1 in component 

1 at q = 4 and after each decrease control is eventually switched to component 2 

(and then back again). Summarizing, arbitrarily often (x 1 times) we have a switching 
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phase with arbitrarily many switches (h times each phase). This yields indeed 

(3 = w 2 as resulting ordinal. 

12. Conclusions 

We presented here a simple proof theoretic approach to fairness. This approach 

is operational in nature because an explicit program transformation is at the source 

of each rule. However, this transformation is reflected in the assertions and not in 
the program considered. Thus the original program is studied and not its translated 

version. 
Transformations realizing fairness first appeared in [1]. These transformations 

were unnecessarily complex. Nevertheless the idea inspired other work like [12], 

[6] and [3]. Present simplifications reflect our better understanding of the role of 

the transformations. 
We hope that this approach sheds some new light on the use of program 

transformations in the context of proof systems for program correctness. Such 

transformations are usually (and rightly!) criticized because of the resulting syntactic 
explosion of the programs considered (see for example the discussion following 

[7]). But in our case however, no syntactic explosion arises as a different type of 

transformation is used: whereas in [7] and [8] the structure of the program is 
destroyed by dividing the components of parallel programs into single individual 

actions, our transformations add only parts for scheduling purposes. 
In principle our approach can be extended to deal with programs allowing nested 

nondeterminism where fairness is required at all levels-not only the top one. Then 
our transformations would simply be applied in a nested fashion, but provided all 

initializations z :=? would be moved to the beginning of the transformed program. 

The reason that we cannot do here without these initializations is because in our 
approach the priority variables z can become negative, and we need the invariant 

INV to ensure that they cannot become too negative. But INV would not hold 
any longer if we could start with arbitrary integer values of z initially. This is exactly 
the point where our approach differs from that in [3]. 

There the priority variables are always non-negative. Thus there is no need for 

initialization and no need for the invariant INV either. However, the transforma­
tions used to derive and justify the proof rules in [3] are not faithful in the sense 

of Section 3 any more because they allow additional failures caused by if-fi constructs 

where all guards are false. It is interesting to note that these failures can be absorbed 
nicely in the proof rules of [3]. On the other hand, it turns out that the invariants 

used in the formal proof are quite robust against such changes of the underlying 

transformations. This was also our experience when we simplified the transforma­

tions used in the earlier version [1]: the proofs remained valid almost unchanged. 
This observation is ra.ther reassuring. It shows that when applying our proof rules 

we are really analyzing the structure of the problem considered and we are not 
fighting with some obscure proof rules. 
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Another approach to the problem of proving total correctness under the assump­
tion of fairness was (independently) developed in [11] and [10]. The idea of this 
approach is to relax the usual requirement for providing total correctness [9], 
namely that every action (i.e. execution of a component S; of the do-ad-loop) causes 
a decrease of a well-founded quantity a. Instead actions are divided into helpful 
ones which always decrease a and the other ones-called indifferent or steady­
which do not increase a. By fairness and some additional requirements of the 
method a helpful action must eventually be chosen which causes to decrease and 
thus excludes infinite computations. This method was applied in [11] to concurrent 
programs represented in an abstract framework, and in [10] to the class of program 
considered in our paper. 

Even though this method and ours are based on a different intuition they should 
prove equivalent. This follows of course from the fact that both methods are sound 
and complete. But there should also exist a direct translation of invariant for one 
method into an invariant for the other method. We did not check the details but 
such a translation should take into account the intuition that priority variables 
count the number of times an action will be enabled but not yet chosen. 

A unification of these methods is already attempted in [3] where the underlying 
ideas are formalized in both frameworks-that of delay variables and that of helpful 
and steady actions. 

In our future work we intend to extend the approach presented here to various 
concurrent languages. 
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