
Acta Informatica 15, 219-232 (1981)

(Springer-Verlag 1981

Recursive Assertions and Parallel Programs

Krzysztof R. Apt

The Faculty of Economics, Erasmus University, P.O. Box 1738, Rotterdam. The Netherlands

Summary. We prove that recursive assertions are enough for proofs of parallel

programs considered in Owicki and Gries [7]. In other words, we prove

that for any parallel program S and recursive assertions p and q if {p} S { q}

is true under the standard interpretation in natural numbers then all inter­

mediate assertions needed in the proof can be chosen recursive. Finally, we

show that if auxiliary variables are used only as program counters then the

above result does not hold.

1. Introduction

While discussing various proof systems for correctness of programs the natural

question arises: how complicated are the intermediate assertions needed for a

correctness proof of a given program? In our previous paper Apt et. al. [l] we

studied the problem whether recursive (i.e. effectively computable) assertions

are sufficient for proofs of (partial) correctness of while programs. We showed

that there exists a while program S and recursive assertions p and q such that

{p} S{ q} is true under the standard interpretation in natural numbers, but this

cannot be proved in the usual Hoare's proof system using recursive intermediate

assertions only. On the other hand we succeeded in showing that recursive

assertions are sufficient for proofs of correctness of while programs if auxiliary

variables are allowed to be used.
In this paper we consider a similar question within the context of parallel

programs. We restrict our attention to the general parallel language (GPL) and

the proof system for it studied in Owicki [5]. We whow that recursive assertions

are enough for proofs of partial correctness of programs from G PL within

Owicki's system. The same result holds for the class !?J(Q of assertions - those

which are built up using bounded quantifiers only.
The paper is organized as follows. You are now reading the introduction. In

the next section we discuss Owicki's proof system. In section 3 we define an

operational semantics for programs from GPL and in section 4 we give a proof

0001-5903/81/0015/0219/$02.80

220 K.R. Apt

of the relative completeness of the proof system. Finally in section 5, by a careful

analysis of the proof in section 4, we show completeness with respect to recursive

assertions. The last section of the paper is devoted to a comparison of Owicki's

proof method with that of Lamport [4] in which auxiliary variables are used

only as program counters. These two methods when used for proving partial

correctness of GPL programs are equivalent - they are both sound and relatively

complete. We prove that Lamport's method is incomplete with respect to recursive

assertions thus showing that these two methods are not any longer equivalent

when restricted to recursive assertions.

2. Preliminaries

In the paper in addition to the usual while programs we consider programs of

the form S1 \I ... II Sn denoting a parallel composition of programs S 1 , .. ., S"" The

component programs S 1 , ... , Sn are while programs but additionally, within the

context of parallel composition, programs of the form await b then S, where Sis

a while program, are allowed. Informally, a program executes an await-statement

iff with its tum to execute the boolean expression b is evaluated to true. S is then

executed as an indivisible operation. We disallow the nested use of parallel com­

position and of the await-statement. The above programs are subsequently called

G PL programs.
Let L be a first order extension of the language Lp of Peano arithmetic. We

assume that L is interpreted in the domain of natural numbers in such a way

that all symbols of Lp get assigned to it the standard meaning and the other

symbols can be defined by formulae of Lp with bounded quantifiers only.

By assertion we mean a formula of L. The only non-logical symbols used in

programs are those of L. By a state we mean a function from variables into natural

numbers with a finite domain. States are denoted by letters (J, T with possible

subscripts; dom (O") denotes the domain of O".

The above (standard) interpretation of L embodies the usual interpretation

of assertions and meaning of while programs. We write F p(rr) to denote the fact

that the assertion p is true when its free variables lying in dom(O") get assigned

meaning provided by the state O". For example F (x = 0 A z = z)((x, 0)) holds. If for

all states O" F= p(O") holds then we say that p is true.

The meaning of a while program S is a partial function .-4i'(SJ from states to

states defined in the usual way. If not all variables of Sare in dom(O") then .dt'(S)(O")

is undefined.
Owicki [5] introduced a Hoare-like proof system for partial correctness of

G PL programs. She proved soundness of the proof system for all interpretations

and (relative) completeness with respect to the standard interpretation in the

natural numbers. The latter result is not explicitly proved but it is an immediate

consequence of the related completeness result proved is section 6 of Owicki [5]

or in Owicki [6]. Since we are interested here only in the issue of completeness,

we restricted our attention to the standard interpretation in the natural numbers.

The proof system studied in Owicki [5] and Owicki and Gries [7] is an

extension of the usual Hoare-like proof system H for partial correctness of while

programs.

Recursive Assertions and Parallel Programs

Let H+ denote the extension of H by the following rule
await rule

{p A b} S{q}

{p} await b then S{q}

221

Before formulating the (meta) rule concerning parallel composition, it is
useful to note the following lemma.

By a normal subprogram of a parallel program or its component we mean a
subprogram which is not a proper subprogram of an await-statement. We write
1-H+{p}S{q} to denote the fact that {p}S{q} can be proved in H+ using (for
the consequence rule) any assertions which are true.

Lemma l. Let S be a component of a parallel program. Let S 1, .•. , Sk be the list
of all normal subprograms of S. Then I- H + {p} S { q} ifJ there exist assertions
pre(S;) and post(S;) for i = 1, ... , k such that
(a) if S; is await b then R then

I= {pre(S;) /\ b} R{post(S;)};
(b) the following assertions are true

(i) p->pre(S), post(S)->q,
(ii) pre(Si)->post(S;)[t/x] if Si is x:=t,
(iii) pre(S;)--•pre(S), post(S)->pre(S1), post(S1)->post(S;)

if Si is Sj; S1,

(iv) pre(S;) /\ b->pre(S), pre(Si) /\ ib->pre(S1), post(Sj)->post(Si),
post(S1)->post(S;) if S; is if b then Sj else S1 fi,

(v) pre(S;)->post(S), post(S) /\ b->pre(S), post(S) /\I b->post(S;)
if Si is while b do Sj od.

Proof See (essentially) Owicki [5]. D

This lemma shows that when discussing proofs in H+ it will be sufficient to
restrict attention to assertions pre(S;) and post(Si) satisfying the conditions
listed in (a) and (b).

Definition 1. The proofs of {pi} S 1 {qi}, ... , {p"} S" { q"} in H + are interference free
if for all normal subprograms R of Si and R 1 of Sj (i '1= j) such that R 1 is an await­
statement or an assignment

I- H+{pre(R) /\ pre(R 1)} R 1 {pre(R)}

I- H+{post(R) /\ pre(R 1)} R 1 {post(R)}.

The above conditions state, informally speaking, that R 1 "preserves" the
pre- and post-assertions of R.

We are finally in position to state the desired proof rule concerning parallel
composition.

rule of parallel programs

the proofs of {pi} Si{q 1}, ... , {Pn} S"{q"} are interference free

{P1 /\ ... /\Pn} S1!1 ... 11 Sn{q1 /\ ... /\qn}

The last rule needed in the proof system is that of reduction.

222 K.R.Apt

reduction rule
Let di,. be a set of variables which do not appear free in p or q and appear
in S only in assignments of the form x==t where xEd"f~. Let S' be obtained
from S by deleting all assignments to the variables of d"r· and subsequently
by replacing some of the subprograms of the form await true then x: = t by
x= =t. Then

{p} S{q}

{p} f{q}"

We denote above proof system by 0.
In the subsequent considerations we shall need to code finite sequences of

natural numbers by natural numbers; (a 1 , ... ,an) will stand for a code of the
sequence a1 , •.. ,an. If a=(a1 , ... ,an) then by definition a"c=(a 1 , •.. ,an,c>.
()denotes the code of the empty sequence. We shall say that a sequence b1 , ... , bn
majorizes a sequence a 1, ... , am if a 1 , ... , am is pointwise smaller or equal than a
subsequence of b 1 , ... , b". We shall implicitly assume various properties of the
functions '"(...)" and """ like their definability by expressions of L, injectivity
and monotonicity in the sense thatifb 1 , ... ,bnmajorizes a 1 , ... ,am then (a1 , ... , am>
;£ (b 1 , ... , bn). The proofs of these properties can be found in Shoenfield [8].

3. Semantics for Parallel Programs

In order to determine the complexity of assertions used in proofs of G PL programs
we have to dispose with a simple, elementary semantics of parallel programs.
A suitable candidate is a slight variant of the operational semantics introduced
in Hennessy and Plotkin [3].

We define first the relation (S 1 ,0")---+(S2 ,1) for S1 ,S2 being components of
a parallel program and states O", 1. It is convenient to allow the empty program E.
The intuitive meaning of (S1 , O")---+(S 2 , 1) is: executing S1 one step in a state a
leads to a state 1 with S2 being remainder of S 1 still to be executed (S 2 is E if S 1

terminates in 1). We assume that for any program S E; S = S; E = S.
We define the above relation by the following clauses.

(i) (x: = t, o)---+(E, .,1f(x= = t)(O"))
(ii) (if b then S 1 else S2 fi, O">---+(S 1 , a)

(iii) (if b then S 1 else S2 fi, a>---+(S 2 , a)
(iv) (while b do Sod, a)--+(S; while b do Sod, a)
(v) (while b do Sod, a)---+(E, a)

(vi) (await b then S, a)---+(E, Jtt'(S)(O"))
(vii) if (S1' O")---+(S2, 1) then

(S1 ; S, a)---+(S2 ; S, 1).

if I= b(a)
if i=lb(a)
if 1=b(a)
if1=1b(a)
if1=b(a)

By a history we mean a sequence (i 1,a1), ... ,(ik,O"k) where k'?;O, for each
j=l, ... ,k ijE{l, ... ,n} and aj is a state. The empty history is denoted by e. We
use the letter h with a subscript to denote a history; h 1"h 2 denotes a concatena­
tion of histories h1 and h2 .

Recursive Assertions and Parallel Programs 223

If S 1, S 2 are parallel programs then by induction on the length of h we define
the relation

(S 1 , <r)--11_, (S2 , r).

(i) (S1,<r)-4(S1,<r)

(ii) if (S;, <r)-+(S;, r) then

(S111---11 S",<r)~(S1ll ... ll S;_1l!S;ll S;+ 1 ll ... ll Sn,r)

(iii) if (S1,<r)--"-!.+(S 2 ,<r 0) and (S 2 ,<r 0)~(S3 ,r) then

(S1, <J) ~ (S3, T).

Finally, we define the meaning of a parallel programs by putting

A·1S1 II ... II S")(cr)= {c: for some history h (S 1 11---11 Sn, <r)-14 (Ell ... 11 E. r)}. -----­ntimes

Of course, we could have provided the above definition without using histories.
The reasons for using them will become clear in the proof of the completeness
theorem.

We extend Al'to provide a meaning for all GPL programs in a standard way.
For a GPL program S A1S) is a total function from states into the power set of
all states.

For a GPL program S and assertions p, q we say that {p} S{q} is true
(i={p} S{q}) if

'V <J, T[I= p(cr) /\TE .JV(S)(cr)-+ I= q(r)].

4. Relative Completeness of 0

Owicki [5] proved soundness of 0. In particular if 1- 0 {p} S{q} then l={p} S{q}.
The relative completeness of 0 (with respect to the set of all true assertions about
natural numbers) means the converse implication: if 1= {p} S{q} then 1- 0 {p} S { q }.
Before presenting a completeness proof we introduce the following useful notion.

Let S be a component of a parallel program and let S' be a normal subprogram
of S. By induction on the structure of S we define a program after(S', S). Informally
speaking, after(S', S) is a remainder of S still to be executed just after the execu~
tion of the subprogram S' terminated and before(S', S), defined by

before(S', S) = S'; after(S', S),

is a remainder of S still to be executed just before the execution of the subprogram
S' has started.

If S' = S (which is the case when S is an assignment or an await-statement)
then after(S', S) =E. Otherwise.

(i) if S is if b then S 1 else S 2 fi then
after(S', S) = after(S', SJ where S' is a subprogram of S; (i = 1 or 2),

(ii) if Sis while b do S 1 od then
after(S', S)=after(S', S1); S,

224

(iii) if Sis S 1 ; S2 then if S' is a subprogram of S 1 then
after(S', S)=after(S', S1); S2

and otherwise
after(S', S)=after(S', S2).

K.R. Apt

We now provide a proof of relative completeness of 0 which will be needed

later. In the proof we make use of the fact that the proof system H is relatively

complete for while programs. It is a special case of the completeness results

proved by Cook [2] and Owicki [6].
The proof proceeds by induction on the structure of the programs. The only

interesting case is that of parallel programs.
Assume that

(1) F= {p} s { q}

where Sis of the form S1 11-. -11 Sn. Let x 1 , ... , xk be a list of all variables occurring

in S. Denote <x 1, ... , xk> by x and let z and u be some new variables.
We transform each program S, (i = 1, ... , n) into another program S{ by

replacing successively
(i) each assignment y: = t being a normal subprogram of S, by

await true then z: =zn<i, x>; y: = t,
(ii) each await-statement await b then R in Si by

await b then z: =zn<i, x); R,
(iii) each assignment y: = t within an await-statement by

u: =u+x1 + ... +xk+z; y:=t.
The last step is only needed for the proofs in the next section.

Denote Sj II ... II S~ by S*. We now prove

(2) i- 0 {p}z:=<>; u==O; S*{q}.

The proof is quite long and takes the rest of this section.

Assume that
<S*, <:) -1!..., (S', a)

for some states <:, O' defined on x 1 , ... , xk, z, u, history h and parallel program S'.
Each element of h is associated with an evaluation of a boolean expression or

an execution of an assignment or await-statement. Let U 1 , er 1), ... , Um, am) be the
subsequence of h associated with the executions of an assignment or await­
statement. We say that h is coded by the natural number < (j 1, y 1), .. ., 0m, Ym>),
where for each i = 1, ... , m Yi= (cr,(xi), ... , O',(xk)).
Note that one number can code more than one history.

Let now R be a normal subprogram of S{ (i = 1, ... , n). Let pre(R) and post(R)

be the assertions such that for all states er defined on x 1 , ... , xk, z, u
F= pre(R)(O')~:J -r, S~, ... , S~, h [1= (p /\ z = 0 /\ u = 0)(-r) and

(S*, <:) -1!..., <S'1 II ... II S~, er),
where s; is before(R, sn and
his a history coded by cr(z)]

F=post(R)(0')~3 -r, S~, .. ., S~, h[F=(p /\ z=O /\ u=O)(<:) and
(S*, -r) -1!..., <S'1 II -.. II S~, er),
where s; is after(R, S{) and
his a history coded by cr(z)].

Recursive Assertions and Parallel Programs 225

It can be shown that the above assertions exist. It is an immediate consequence

of lemma 3 proved in the next section.
We now prove

(3) f-- 0 {pre(Si) /\ ... /\ pre(S::')} S*{post)S'f) /\ ... /\ post(S;)}.

To this end we show that the pre- and post-assertions above defined satisfy the

conditions (a) and (b) oflemma 1 concerning the proofs of {pre(Sj)} Si{post(S{)}

in H+(i=l, ... ,n) and also those related to interference freedom. The former

is a straightforward but tedious task and we leave it to the reader. The proof of

interference freedom is less straightforward.

Let CJ be a given state defined over x 1, xb z, u and let i 1, ... , i1 be a sub­

sequence of.1, ... , n.

Call a list of programs R;,, ... , R;, (CJ, i 1 , .. ., i1)-reachable of for some programs

RiforjE{l, ... ,n}-{i1 , ... ,i1},

for some state i such that F=(p/\z=O/\u=O)(i) and history h coded by O'(z).

Merging Lemma. If each R;j for j = 1, .. ., I is (er, ii)-reachable then R;, , R;, is

(O', i 1 , ... , i1)-reachable.
The proof is given in the appendix.

Let now R be a normal sub program of S{ and let await b then R 1 be an await­

statement from Sj (i =t= j). We prove

(4) 1= {pre (R) /\pre (await b then R 1) /\ b} R 1 {pre(R)}

(5) 1= {post(R) /\ pre(await b then R1) /\ b} R1 {post(R)}.

Assume

(6) 1=(pre(R) /\ pre(await b then R1) /\ b)(O')

for some state CJ.

By the definition of the pre-assertions and by the merging lemma there

exists a state i and programs S~, ... ,S~ such that i=(p/\z=O /\u=O)(i) and

<S*, i).A. <S~ 11 ... II Sn, CJ), where S; is before (R, S;), Si is before (await b then R1, S)

and h is a history coded by er(z).
Suppose now that A(R 1)(0')=0'0 . By the definition of the"->" relation

<S'1 II ... II S~, a)~ <S'1 II ... II Sj_ 1 llafter(await b then R 1, S)ll S}+ 1 !I ... II S~, CJ0)

because I= b(er).
To show that 1=pre(R)(a0) it is now sufficient to show that a 0 (z) codes the

history hnU, er).
By the definition of Sj Ri is of the form u: = u + X1 + ... + xk +z; z: =z"(j, x);

R 2 where z is not free in R 2 . Thus

er o(z) = .. if!(z: = zn(j, x))(O'),

226 K.R. Apt

so

o-0(z)= 6(z)"(j, yj),

where yj=<6(x1), ... , 6(xk)), i.e. o-0(z) indeed codes h"U, 6).
The proof of (5) is analogous and is left to the reader.
By the relative completeness of H we now can replace in (4) and (5) "F=" by

"I- H ". Applying the await rule we get
I- H + {pre(R) /\ pre(await b then R 1)} await b then R 1 {pre(R)}
I- H + {post(R) A pre(await b then R 1)} await b then R1 {post(R)}.
Since there are no assignments being normal subprograms of Sj, the above

concludes the proof of interference freedom of the proofs of
{pre(St)} Sf{post(S7)} in H+ (i= 1, ... , n).

This proves (3). To prove (2) it is now sufficient to show

(7) F= p A z = O Au= 0-+pre(S!) /\ ... /\ pre(S~)

and

(8) F=post(Si) J\ ... J\ post(S~)-+q.

The proof of (7) is obvious in view of the fact that by the definition of"-+"
we have <S*, 6) -4 (S*, o-).

To prove (8) we note first that (1) implies

(9) F={p} S*{q}.

This is a consequence of the easy to prove fact that the converse of the reduction
rule is sound.

Suppose now that

(10) F=(post(S!) A ..• J\ post(S~))(r)

for some state r.
By the definition of the post-assertions and the merging lemma there exists a

state (]'such that F= p(6) and

(S*, (]') 2..+ (EJI ... II E, r),
n times

where h is a history coded by r(z).
By definition rE JV(S*)(a"), so by (9) F=q(r), which proves (8).
This proves (2). Using now the reduction rule we get from (2) 1- 0 {p} S{q}

which concludes the proof of relative completeness of 0.
It is worthwile to note that the definition of interference freedom can be

slightly simplified. The definition we use here is that of Owicki [5]. In Owicki
and Gries [7] the second clause of interference freedom is replaced by

thus reducing the number of formulae to be proved. Obviously our results are
not affected by such a change of the definition.

Recursive Assertions and Parallel Programs 227

5. Complete Assertion Classes

Let d be a class of assertions. We say that d is complete if for all p, q E.01 and
G PL programs S if I= {p} S { q} then {p} S { q} can be proved in 0 using only the
assertion from d.

The relative completeness of 0 means that the set of all assertions is complete.
We now prove the following theorem showing completeness of two other classes
of assertions.

Theorem. The classes of recursive assertions and r!,B(I)_ are both complete.

The proof takes the rest of this section. At first we show that the pre- and
post-assertions defined in section 4 are recursive if p is. To this end we need a
couple of lemmata.

Definition 2. We say that a program S' is derived from S* if S' is of the form
S'{ 11 ... 11 S~, where for i = 1, ... , n either s;' = before(R, St) or s;' = after(R, S() for
a normal subprogram R of Si.

Note that if for some r, CJ and h <S*, i)-14 <S', CJ) then S' is derived from S*.

Lemma 2. The relation V defined by
V(S', S", (J, r, i, m) = S' is derived fi·om S*,

<S', r) ~ (S", (J) and (i, r) is coded by m
is recursive.

Proof To check whether S' is derived from S* is straightforward. To determine

whether <S', r) ~ <S", CJ)

for given S', S", CJ, rand i is straightforward if(i, r) is associated with an evaluation
of a boolean expression or an execution of an assignment (which can be determined
by an effective procedure). The only troublesome case is when (i, r) is associated
with an execution of an await-statement. This await-statement can be easily
located. Suppose it is await b then R. We now have to check whether 1=b(r) and
.4/(R)(r) =CJ holds. The former can be obviously checked by an effective procedure
but the latter is in general only recursively enumerable.

Here however, R is of a special form thanks to the clause (iii) of the trans­
formation of S into S* and the fact that S' is derived from S*. In Apt et al. [1]
we proved that for such programs R the relation .J!(R)(r) =CJ is recursive.

Given S', S", (J, r, i, m such that S' is derived from S* and (S', r) ~ (S", (J),

the relation "(i, r) is coded by m" is clearly recursive. Namely m codes (i, r) if
m=() and (i, r) is associated with an evaluation of a boolean expression or
m=(r{xi), .. ., r(xk)) and (i, r) is associated with an execution of an assignment
or an await-statement.

This shows that the relation Vis indeed recursive. D

Lemma 3. The relation U defined by
U(S', S", CJ, r, h, m)=S' is derived.from S*,
<S', r) -14 (S", CJ) and h is coded by m
is recursive.

Proof We have
U(S', S", CJ, r, h, m) = S' is derived from S* and

228

[h=e&S'=S" &a=r&m=<>J
v [h=t=e&<S', r) ~ (S0 , a 0)&(i, r) is coded by m1 &

U(S0 , S", a, a0 , h1, m2), where
1°. h=(i, r)"h 1 ,

2°. a 0 is the state from the first element of h1 ,

3°. S0 is uniquely determined by S' and (i, r),
4°. either m1 =()and m2 =m or m1 =(a1) and

m2 =(a2 , .•. , a1) where m=(a1 , ... , a1)].

K.R.Apt

Given S' and (i, r) S0 can be effectively determined. By lemma 2 the relation U
is recursive. D

We now show that the assertions pre(R) and post(R) defined in section 4 are
recursive.

At first note that the state -r there mentioned can be effectively computed
from <r. If a(z) = () then -r = <r. Otherwise the values of -r on x 1 , ... , xk are deter­
mined by the first element of the sequence coded by a(z); r(u) = 0; -r(z) = <) and
if yedom(-r)- {x 1 , ... , xk, u, z} then -r(y) = a(y). Thus for some recursive function/,
-r=f(u).

Next, there are only finitely many programs derived from S*. Thus
1=pre(R)(u)+-+ V 3h[F=(pAz=O l\u=O)(f(a)),

S' derivedfroms• (S*,f ((j)) --14 (S', (f>, his coded by (j(z) and
the i-th component of S' is before(R, St)]

and similarly for post(R).
To show that pre (R) and post (R) are recursive it is now enough due to lemma 3

to put a "bound" effectively depending on u on all possible histories coded by
u(z). Each such history is of the form

where

and for i = 1, ... , m y1 = ((f1(x i), .. ., uJxk)).
All elements of histories h1-s are associated with evaluations of boolean

expressions. Thus the states mentioned in h1 are all equal to a;.
Clearly u;(z)~u(z) and (j 1 (u)~a(u). Also for yedom{(j1)-{x1 ,. .. ,xk,z,u}

we have a1(y)=(j(y). Let now t 1 for i=l, .. .,m be the state defined as follows:
t 1{z) = a(z), -r;(u) = a(u) and -r1(y) = (j1(y) if y$ z, u. Then -r1 majorizes (f1•

Note that the length of each h1 is bounded - each consecutive evaluation of
a boolean expression has to correspond with a different substatement of S*. Thus
for i = 1, .. ., m [hJ:£s, where sis the number of all substatements of S*.

This shows that each history h coded by a(z) such that (S*, f(a)) .!!+. (S', a)
is majorized by the following "maximal" history coded by a(z):

U1. -r1Y'(n, 'i)•n ... num, -rm)n(n, -rmY.

(n, -r1)8 stands here for concatenation of s copies of (n, r1). Obviously this
maximal history can be effectively computed from (f.

This concludes the proof of recursiveness of the assertions pre{R) and post(R).
The asserted programs from clause (a) of lemma 1 and from interference

freedom conditions can be proved using recursive assertions only. This is a

Recursive Assertions and Parallel Programs 229

consequence of clause (iii) of the transformation of S into S* and the corresponding
completeness result proved in Apt et al. [1].

It follows that if S is a parallel program and p, q are recursive assertions such
that I= {p} S{q} then {p} S{q} can be proved in 0 using recursive assertions only.

If S is a G PL program which is not of the form S 1 11 ... 11 Sn and p, q are recursive
assertions such that I= {p} S{q} then {p} S{q} can also be proved in O using
recursive assertions only. The proof follows the proof of the completeness of
recursive assertions .. for-while programs presented in Apt et al. [1]. Each while
program Sin question is transformed there (using clause (iii) of the transformation
of S into S*) into a program S' which can be proved correct in H with respect to
the original recursive assertions using recursive assertions only. The latter is
demonstrated by showing first that the relation Jt(S')(u) = "C is recursive.

Since we want to apply the same reasoning to GPL programs, we also have
to prove that for every GPL program S the relation "CE .!V{S')(u) is recursive.
S' is defined by induction on the structure of S and the only new case is that of
parallel programs. We put

S'=z:=(>; u:=O; S*.

We have to prove that the relation "CE .!V{z:=(); u:=O; S*)(u) is recursive.
Take for p the assertions true. Note that for all states u, r defined on x 1 , ... , xk, u, z

rE .!V{z:=(); u:=O; S*)(u)
~TE .!V{S*)(u') where u'(z)=(), a'(u)=O and rr'(y)=rr(y) if y$z, u
~a'= f(-r)& i=(post(Sf) A ... A post(S~))(-r)

where j is the function defined after lemma 3.
The last equivalence follows from the merging lemma and the observation

(proved by induction on the length of h) that if (S*, u') -14 (S', i-0) for some
S', h, 'Co and u' as above then his coded by -r0 (z) and rr' = j(i-0).

Hence the above relation is indeed recursive.
The rest of the proof is the same as in Apt et al. [1]. This concludes the proof

of the completeness of recursive assertions.
The completeness of [l,l(JJ_ follows from the observation that the assertions

pre(R) and post(R) are in fact f14@. if p is and that all other intermediate assertions
are also !!J<2.. The proof requires a tedious but straightforward analysis of the
above reasoning and is left to the reader.

6. Auxiliary Variables Used as Program Counters

Owicki suggested (private communication) a simpler proof of the relative com­
pleteness of 0 in which auxiliary variables are used only as program counters
and not as histories of a computation. Such a use of auxiliary variables corres­
ponds to Lamport's method of proving correctness of parallel programs (see
Lamport [4]). This shows that Lam port's and Owicki's methods, when used for
proving partial correctness of GPL programs, are in fact equivalent. It turns
out however, that these methods are not equivalent when restricted to recursive
assertions. In fact, parallel programs are not needed to show the above.

The use of program counters as auxiliary variables implies that each auxiliary
variable used in the proof is bounded by some fixed in advance value. We now

230 K.R. Apt

prove that if only auxiliary variables of bounded size are allowed then recursive
assertions are not complete for proofs of partial correctness of while programs.
This result is a simple generalization of a theorem proved in Apt et al. [1] which
states that recursive assertions are not complete for proofs in H of partial cor­
rectness of while programs.

Since we shall deal with while programs only we shall use the following
special case of the reduction rule used in Owicki and Gries [7].

Rule of Auxiliary Variables
Let sff" be set of variables which do not appear free in p or q and appear
in S only in assignments of the form x:=t where xEd'Y. Let S' be obtained
from S by deleting all assignments to the variables of d'Y . Then

{p} s {q}

{p} S' {q}

If S and S' satisfy the condition of the above rule we say that S' is a reduction
of S.

Denote H supplemented by the above rule by H'. The following lemma will
be needed in the sequel.

Lemma 4. !f I-w {p} S { q} then there exists a proof of {p} S {p} in H' which uses
the same (up to substitutions) assertions and in which the rule of auxiliary variables
is used only once, namely as the last step in the proof

Proof The proof proceeds by induction on the length of proofs.

Consider the case when the last rule applied in the proof is that of composition.
Then Sis of the form S 1 ; S2 and for some assertion r both 1-w {p} S 1 {r} and
f--y,{r} S2 {q}.

The proofs of {p} S 1 {r} and {r} S 2 { q} are both shorter than the proof of
{p} S { q}. By the induction hypothesis there exist programs S'1 and S~ such that
for i=l,2 S; is a reduction of s; and 1--u{P} S'1 {r} and 1--u{r} S~ {q}. We might
now argue that by the composition rule 1--H {p} S'1 ; S~ {q} so applying the rule
of auxiliary variables we get the desired proof of {p} S{q}. The problem is that
the last application of the rule of auxiliary variables is not legal if some auxiliary
variables appearing in S'1 (S~) are also free in q(p).

To remedy this we first modify S'1 and S~. Let S'{(S~) be obtained from S'1 (S~)
by substituting the auxiliary variables occurring both in s; (S~) and and q(p)
by some fresh variables. The proofs of {p}S'1 {r} and {r} S~ {q} in H can be trans­
formed into the proofs of {p} S'{ {r} and {r} S~ {q} in H by performing the sub­
stitutions corresponding to the modification of s; into s;' (i = I, 2). By the com­
position rule we get now 1--H{P} S'{;S~ {q}. We can now apply the rule of auxiliary
variables and we get the desired proof of {p} S { q}.

An analogous proof deals with the consequence rule. The other cases are
trivial. D

In Apt et al. [1] we proved that there exist two while programs S 1 and S2

such that F={true} S1 ; S2 {false} but for no recursive assertion r both F={true}
Si{r} and F={r} S2 {false}. We now show that {true} S 1 ; S2 {false} cannot be

Recursive Assertions and Parallel Programs 231

proved in H' using recursive assertions only and auxiliary variables whose values
are all bounded, say by n.

Suppose otherwise. By lemma 4 there exist while programs S'1 and S'2 such
that {true} S1; S~ {false} can be proved in H using recursive assertions only
and S 1 ; S2 is a reduction of S1; S~. Clearly, for some recursive assertion r both
f-H {true} S'1 {r} and f-H {r} S~ {false}. By the soundness of H 1== {true} S'1 {r} and
I== {r} S~ {false}. Let z1 , ... , zk be all auxiliary variables appearing free in rand
let

We have F=r-+r 1 , since all auxiliary variables are bounded by n. So F={true}
S1 {r i} and by the soundness of the rule of auxiliary variables 1== {true} S1 {r1}.

On the other hand it is easy to see that I== {ri} S~{false} implies 1=={r} S2

{false} which in turn implies 1== { r 1 } S 2 {false}, since none of the variables z 1, ... , zk

appears free in S 2 .

But r 1 is recursive so we reached a contradiction with the original choice
of S 1 and S2 . We thus showed that the use of auxiliary variables as program
counters results in an incompleteness of recursive assertions for while programs.

Appendix

Proof of Merging Lemma

The proof proceeds by induction on the length l h of the sequence coded by O"(z).
If lh=O then all l computations assuring for j=l, ... , l (a, i)-reachability of
R;. consist exclusively of evaluations of boolean expressions. A construction of
a ~amputation assuring (O", i 1 , ... , i1)-reachability of R;,, ... R;, is then a straight­
forward task.

Assume now that lh ~ 0. Leth be a history coded by a(z). h is nonempty.
Let a 0 be the last state considered in h. 0" 0 depends only on <land a0 (z) codes a
sequence of length lh-1. For some ca(z)=a0 (z)"c.

Fix now j such that 12,j-;;;;, !. Leth;; be a history related to the (a, ij)-reachability
of R;.· h; is coded by O"(z). We have h;.=h1"h 2 for some h1 coded by 0" 0 (z).

J J J

For some R1, ... ,R~

where r is the state referred to in the (O", i)-reachability of R;r By definition R~j
is (<1 0 , i)-reachable.

Thus for eachj=l, ... , l we found a program R;, which is (a 0 , i)-reachable.
By the induction hypothesis R; 1 , ... ,R;, is (cr 0 , i 1 , ... ,i1)-reachable, say with a state
r and history h.

Exactly one element of each h2 is associated with an execution of an assignment
or await-statement. We can assume that this is always the first one and that
for each j= 1, ... , l all other elements of h2 are of the form (ij, O").

Each h2 is coded by the same number, namely c, and consequently the first
element of each h2 is the same. Call it h'. Delete now this element from all histories

232 K.R.Apt

h2 • Ri 1 , ... , Ri, is now (er, i 1 , ... , i1)-reachable with the state r and history h n h'
concatenated with the resulting sequence of all h2-s. D

Acknowledgement. We thank the referee for suggesting various improvements.

References

l. Apt, K.R., Bergstra, J.A., Meertens, L.G.L.T.: Recursive assertions are not enough - or are they?,
Theor. Comput. Sci. 8, 73-87 (1979)

2. Cook, S.A.: Soundness and completeness of an axiom system for program verification, SIAM J.
Comput. 7, 70-90 (1978)

3. Hennessy, M.C.B., Plotkin, G.D.: Full abstraction for a simple programming language. In: Proc.
Sth Symposium on Mathematical Foundations of Computer Science, pp. 108-120, Lecture Notes
in Computer Science 74, Berlin Heidelberg New York: Springer 1979

4. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Engrg.,
3, 125-143 (1977)

5. Owicki, S.: Axiomatic proof techniques for parallel programs. Computer Science Dept., Cornell
University. PhD thesis 1975

6. Owick~ S.: A consistent and complete deductive system for the verification of parallel programs,
In: Proc. Sth Annual Symposium on Theory of Computing, pp. 73-86 (1976)

7. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs, Acta Informal. 6, 319-340

.(1976)
8. Shoenfield, J.R.: Mathematical logic, Addison-Wesley 1967

Received October 24, 1979/0ctober !, 1980

