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Summary. We prove that recursive assertions are enough for proofs of parallel 

programs considered in Owicki and Gries [7]. In other words, we prove 

that for any parallel program S and recursive assertions p and q if {p} S { q} 

is true under the standard interpretation in natural numbers then all inter­

mediate assertions needed in the proof can be chosen recursive. Finally, we 

show that if auxiliary variables are used only as program counters then the 

above result does not hold. 

1. Introduction 

While discussing various proof systems for correctness of programs the natural 

question arises: how complicated are the intermediate assertions needed for a 

correctness proof of a given program? In our previous paper Apt et. al. [l] we 

studied the problem whether recursive (i.e. effectively computable) assertions 

are sufficient for proofs of (partial) correctness of while programs. We showed 

that there exists a while program S and recursive assertions p and q such that 

{p} S{ q} is true under the standard interpretation in natural numbers, but this 

cannot be proved in the usual Hoare's proof system using recursive intermediate 

assertions only. On the other hand we succeeded in showing that recursive 

assertions are sufficient for proofs of correctness of while programs if auxiliary 

variables are allowed to be used. 
In this paper we consider a similar question within the context of parallel 

programs. We restrict our attention to the general parallel language (GPL) and 

the proof system for it studied in Owicki [5]. We whow that recursive assertions 

are enough for proofs of partial correctness of programs from G PL within 

Owicki's system. The same result holds for the class !?J(Q of assertions - those 

which are built up using bounded quantifiers only. 
The paper is organized as follows. You are now reading the introduction. In 

the next section we discuss Owicki's proof system. In section 3 we define an 

operational semantics for programs from GPL and in section 4 we give a proof 
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of the relative completeness of the proof system. Finally in section 5, by a careful 

analysis of the proof in section 4, we show completeness with respect to recursive 

assertions. The last section of the paper is devoted to a comparison of Owicki's 

proof method with that of Lamport [ 4] in which auxiliary variables are used 

only as program counters. These two methods when used for proving partial 

correctness of GPL programs are equivalent - they are both sound and relatively 

complete. We prove that Lamport's method is incomplete with respect to recursive 

assertions thus showing that these two methods are not any longer equivalent 

when restricted to recursive assertions. 

2. Preliminaries 

In the paper in addition to the usual while programs we consider programs of 

the form S1 \I ... II Sn denoting a parallel composition of programs S 1 , .. ., S"" The 

component programs S 1 , ... , Sn are while programs but additionally, within the 

context of parallel composition, programs of the form await b then S, where Sis 

a while program, are allowed. Informally, a program executes an await-statement 

iff with its tum to execute the boolean expression b is evaluated to true. S is then 

executed as an indivisible operation. We disallow the nested use of parallel com­

position and of the await-statement. The above programs are subsequently called 

G PL programs. 
Let L be a first order extension of the language Lp of Peano arithmetic. We 

assume that L is interpreted in the domain of natural numbers in such a way 

that all symbols of Lp get assigned to it the standard meaning and the other 

symbols can be defined by formulae of Lp with bounded quantifiers only. 

By assertion we mean a formula of L. The only non-logical symbols used in 

programs are those of L. By a state we mean a function from variables into natural 

numbers with a finite domain. States are denoted by letters (J, T with possible 

subscripts; dom ( O") denotes the domain of O". 

The above (standard) interpretation of L embodies the usual interpretation 

of assertions and meaning of while programs. We write F p(rr) to denote the fact 

that the assertion p is true when its free variables lying in dom(O") get assigned 

meaning provided by the state O". For example F (x = 0 A z = z )( (x, 0)) holds. If for 

all states O" F= p(O") holds then we say that p is true. 

The meaning of a while program S is a partial function .-4i'(SJ from states to 

states defined in the usual way. If not all variables of Sare in dom(O") then .dt'(S)(O") 

is undefined. 
Owicki [5] introduced a Hoare-like proof system for partial correctness of 

G PL programs. She proved soundness of the proof system for all interpretations 

and (relative) completeness with respect to the standard interpretation in the 

natural numbers. The latter result is not explicitly proved but it is an immediate 

consequence of the related completeness result proved is section 6 of Owicki [5] 

or in Owicki [6]. Since we are interested here only in the issue of completeness, 

we restricted our attention to the standard interpretation in the natural numbers. 

The proof system studied in Owicki [5] and Owicki and Gries [7] is an 

extension of the usual Hoare-like proof system H for partial correctness of while 

programs. 
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Let H+ denote the extension of H by the following rule 
await rule 

{p A b} S{q} 

{p} await b then S{q} 
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Before formulating the (meta) rule concerning parallel composition, it is 
useful to note the following lemma. 

By a normal subprogram of a parallel program or its component we mean a 
subprogram which is not a proper subprogram of an await-statement. We write 
1-H+{p}S{q} to denote the fact that {p}S{q} can be proved in H+ using (for 
the consequence rule) any assertions which are true. 

Lemma l. Let S be a component of a parallel program. Let S 1, .•. , Sk be the list 
of all normal subprograms of S. Then I- H + {p} S { q} ifJ there exist assertions 
pre(S;) and post(S;) for i = 1, ... , k such that 
(a) if S; is await b then R then 

I= {pre(S;) /\ b} R{post(S;)}; 
(b) the following assertions are true 

(i) p->pre(S), post(S)->q, 
(ii) pre(Si)->post(S;)[t/x] if Si is x:=t, 
(iii) pre(S;)--•pre(S), post(S)->pre(S1), post(S1)->post(S;) 

if Si is Sj; S1, 

(iv) pre(S;) /\ b->pre(S), pre(Si) /\ ib->pre(S1), post(Sj)->post(Si), 
post(S1)->post(S;) if S; is if b then Sj else S1 fi, 

(v) pre(S;)->post(S), post(S) /\ b->pre(S), post(S) /\I b->post(S;) 
if Si is while b do Sj od. 

Proof See (essentially) Owicki [5]. D 

This lemma shows that when discussing proofs in H+ it will be sufficient to 
restrict attention to assertions pre(S;) and post(Si) satisfying the conditions 
listed in (a) and (b). 

Definition 1. The proofs of {pi} S 1 {qi}, ... , {p"} S" { q"} in H + are interference free 
if for all normal subprograms R of Si and R 1 of Sj (i '1= j) such that R 1 is an await­
statement or an assignment 

I- H+{pre(R) /\ pre(R 1 )} R 1 {pre(R)} 

I- H+{post(R) /\ pre(R 1 )} R 1 {post(R)}. 

The above conditions state, informally speaking, that R 1 "preserves" the 
pre- and post-assertions of R. 

We are finally in position to state the desired proof rule concerning parallel 
composition. 

rule of parallel programs 

the proofs of {pi} Si{q 1}, ... , {Pn} S"{q"} are interference free 

{P1 /\ ... /\Pn} S1!1 ... 11 Sn{q1 /\ ... /\qn} 

The last rule needed in the proof system is that of reduction. 
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reduction rule 
Let di,. be a set of variables which do not appear free in p or q and appear 
in S only in assignments of the form x==t where xEd"f~. Let S' be obtained 
from S by deleting all assignments to the variables of d"r· and subsequently 
by replacing some of the subprograms of the form await true then x: = t by 
x= =t. Then 

{p} S{q} 

{p} f{q}" 

We denote above proof system by 0. 
In the subsequent considerations we shall need to code finite sequences of 

natural numbers by natural numbers; (a 1 , ... ,an) will stand for a code of the 
sequence a1 , •.. ,an. If a=(a1 , ... ,an) then by definition a"c=(a 1 , •.. ,an,c>. 
()denotes the code of the empty sequence. We shall say that a sequence b1 , ... , bn 
majorizes a sequence a 1, ... , am if a 1 , ... , am is pointwise smaller or equal than a 
subsequence of b 1 , ... , b". We shall implicitly assume various properties of the 
functions '"( ... )" and """ like their definability by expressions of L, injectivity 
and monotonicity in the sense thatifb 1 , ... ,bnmajorizes a 1 , ... ,am then (a1 , ... , am> 
;£ (b 1 , ... , bn). The proofs of these properties can be found in Shoenfield [8]. 

3. Semantics for Parallel Programs 

In order to determine the complexity of assertions used in proofs of G PL programs 
we have to dispose with a simple, elementary semantics of parallel programs. 
A suitable candidate is a slight variant of the operational semantics introduced 
in Hennessy and Plotkin [3]. 

We define first the relation (S 1 ,0")---+(S2 ,1) for S1 ,S2 being components of 
a parallel program and states O", 1. It is convenient to allow the empty program E. 
The intuitive meaning of (S1 , O")---+(S 2 , 1) is: executing S1 one step in a state a 
leads to a state 1 with S2 being remainder of S 1 still to be executed (S 2 is E if S 1 

terminates in 1 ). We assume that for any program S E; S = S; E = S. 
We define the above relation by the following clauses. 

(i) (x: = t, o)---+(E, .,1f(x= = t)(O")) 
(ii) (if b then S 1 else S2 fi, O">---+(S 1 , a) 

(iii) (if b then S 1 else S2 fi, a>---+(S 2 , a) 
(iv) (while b do Sod, a)--+(S; while b do Sod, a) 
(v) (while b do Sod, a)---+(E, a) 

(vi) (await b then S, a)---+(E, Jtt'(S)(O")) 
(vii) if (S1' O")---+(S2, 1) then 

(S1 ; S, a)---+(S2 ; S, 1). 

if I= b( a) 
if i=lb(a) 
if 1=b(a) 
if1=1b(a) 
if1=b(a) 

By a history we mean a sequence (i 1,a1), ... ,(ik,O"k) where k'?;O, for each 
j=l, ... ,k ijE{l, ... ,n} and aj is a state. The empty history is denoted by e. We 
use the letter h with a subscript to denote a history; h 1"h 2 denotes a concatena­
tion of histories h1 and h2 . 



Recursive Assertions and Parallel Programs 223 

If S 1, S 2 are parallel programs then by induction on the length of h we define 
the relation 

(S 1 , <r)--11_, (S2 , r). 

(i) (S1,<r)-4(S1,<r) 

(ii) if (S;, <r)-+(S;, r) then 

(S111---11 S",<r)~(S1ll ... ll S;_1l!S;ll S;+ 1 ll ... ll Sn,r) 

(iii) if (S1,<r)--"-!.+(S 2 ,<r 0 ) and (S 2 ,<r 0)~(S3 ,r) then 

(S1, <J) ~ (S3, T). 

Finally, we define the meaning of a parallel programs by putting 

A·1S1 II ... II S")(cr)= {c: for some history h (S 1 11---11 Sn, <r)-14 (Ell ... 11 E. r)}. -----­ntimes 

Of course, we could have provided the above definition without using histories. 
The reasons for using them will become clear in the proof of the completeness 
theorem. 

We extend Al'to provide a meaning for all GPL programs in a standard way. 
For a GPL program S A1S) is a total function from states into the power set of 
all states. 

For a GPL program S and assertions p, q we say that {p} S{q} is true 
(i={p} S{q}) if 

'V <J, T[I= p(cr) /\TE .JV(S)(cr)-+ I= q(r)]. 

4. Relative Completeness of 0 

Owicki [5] proved soundness of 0. In particular if 1- 0 {p} S{q} then l={p} S{q}. 
The relative completeness of 0 (with respect to the set of all true assertions about 
natural numbers) means the converse implication: if 1= {p} S{q} then 1- 0 {p} S { q }. 
Before presenting a completeness proof we introduce the following useful notion. 

Let S be a component of a parallel program and let S' be a normal subprogram 
of S. By induction on the structure of S we define a program after(S', S). Informally 
speaking, after(S', S) is a remainder of S still to be executed just after the execu~ 
tion of the subprogram S' terminated and before(S', S), defined by 

before(S', S) = S'; after(S', S), 

is a remainder of S still to be executed just before the execution of the subprogram 
S' has started. 

If S' = S (which is the case when S is an assignment or an await-statement) 
then after(S', S) =E. Otherwise. 

(i) if S is if b then S 1 else S 2 fi then 
after(S', S) = after(S', SJ where S' is a subprogram of S; (i = 1 or 2), 

(ii) if Sis while b do S 1 od then 
after(S', S)=after(S', S1); S, 
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(iii) if Sis S 1 ; S2 then if S' is a subprogram of S 1 then 
after(S', S)=after(S', S1); S2 

and otherwise 
after(S', S)=after(S', S2). 

K.R. Apt 

We now provide a proof of relative completeness of 0 which will be needed 

later. In the proof we make use of the fact that the proof system H is relatively 

complete for while programs. It is a special case of the completeness results 

proved by Cook [2] and Owicki [6]. 
The proof proceeds by induction on the structure of the programs. The only 

interesting case is that of parallel programs. 
Assume that 

( 1) F= {p} s { q} 

where Sis of the form S1 11-. -11 Sn. Let x 1 , ... , xk be a list of all variables occurring 

in S. Denote <x 1, ... , xk> by x and let z and u be some new variables. 
We transform each program S, (i = 1, ... , n) into another program S{ by 

replacing successively 
(i) each assignment y: = t being a normal subprogram of S, by 

await true then z: =zn<i, x>; y: = t, 
(ii) each await-statement await b then R in Si by 

await b then z: =zn<i, x); R, 
(iii) each assignment y: = t within an await-statement by 

u: =u+x1 + ... +xk+z; y:=t. 
The last step is only needed for the proofs in the next section. 

Denote Sj II ... II S~ by S*. We now prove 

(2) i- 0 {p}z:=<>; u==O; S*{q}. 

The proof is quite long and takes the rest of this section. 

Assume that 
<S*, <:) -1!..., (S', a) 

for some states <:, O' defined on x 1 , ... , xk, z, u, history h and parallel program S'. 
Each element of h is associated with an evaluation of a boolean expression or 

an execution of an assignment or await-statement. Let U 1 , er 1), ... , Um, am) be the 
subsequence of h associated with the executions of an assignment or await­
statement. We say that h is coded by the natural number < (j 1, y 1), .. ., 0m, Ym>), 
where for each i = 1, ... , m Yi= (cr,(xi), ... , O',(xk)). 
Note that one number can code more than one history. 

Let now R be a normal subprogram of S{ (i = 1, ... , n). Let pre(R) and post(R) 

be the assertions such that for all states er defined on x 1 , ... , xk, z, u 
F= pre(R)(O')~:J -r, S~, ... , S~, h [ 1= (p /\ z = 0 /\ u = 0)( -r) and 

(S*, <:) -1!..., <S'1 II ... II S~, er), 
where s; is before(R, sn and 
his a history coded by cr(z)] 

F=post(R)(0')~3 -r, S~, .. ., S~, h[F=(p /\ z=O /\ u=O)(<:) and 
(S*, -r) -1!..., <S'1 II -.. II S~, er), 
where s; is after(R, S{) and 
his a history coded by cr(z)]. 
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It can be shown that the above assertions exist. It is an immediate consequence 

of lemma 3 proved in the next section. 
We now prove 

(3) f-- 0 {pre(Si) /\ ... /\ pre(S::')} S*{post)S'f) /\ ... /\ post(S;)}. 

To this end we show that the pre- and post-assertions above defined satisfy the 

conditions (a) and (b) oflemma 1 concerning the proofs of {pre(Sj)} Si{post(S{)} 

in H+(i=l, ... ,n) and also those related to interference freedom. The former 

is a straightforward but tedious task and we leave it to the reader. The proof of 

interference freedom is less straightforward. 

Let CJ be a given state defined over x 1, .... xb z, u and let i 1, ... , i1 be a sub­

sequence of.1, ... , n. 

Call a list of programs R;,, ... , R;, (CJ, i 1 , .. ., i1)-reachable of for some programs 

RiforjE{l, ... ,n}-{i1 , ... ,i1}, 

for some state i such that F=(p/\z=O/\u=O)(i) and history h coded by O'(z). 

Merging Lemma. If each R;j for j = 1, .. ., I is (er, ii)-reachable then R;, .... , R;, is 

(O', i 1 , ... , i1)-reachable. 
The proof is given in the appendix. 

Let now R be a normal sub program of S{ and let await b then R 1 be an await­

statement from Sj (i =t= j). We prove 

( 4) 1= {pre (R) /\pre (await b then R 1) /\ b} R 1 {pre(R)} 

(5) 1= {post(R) /\ pre(await b then R1) /\ b} R1 {post(R)}. 

Assume 

(6) 1=(pre(R) /\ pre(await b then R1) /\ b)(O') 

for some state CJ. 

By the definition of the pre-assertions and by the merging lemma there 

exists a state i and programs S~, ... ,S~ such that i=(p/\z=O /\u=O)(i) and 

<S*, i).A. <S~ 11 ... II Sn, CJ), where S; is before (R, S;), Si is before (await b then R1, S) 

and h is a history coded by er(z). 
Suppose now that A(R 1)(0')=0'0 . By the definition of the"->" relation 

<S'1 II ... II S~, a)~ <S'1 II ... II Sj_ 1 llafter(await b then R 1, S)ll S}+ 1 !I ... II S~, CJ0 ) 

because I= b(er). 
To show that 1=pre(R)(a0 ) it is now sufficient to show that a 0 (z) codes the 

history hnU, er). 
By the definition of Sj Ri is of the form u: = u + X1 + ... + xk +z; z: =z"(j, x); 

R 2 where z is not free in R 2 . Thus 

er o(z) = .. if!(z: = zn(j, x) )( O'), 
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so 

o-0(z)= 6(z)"(j, yj), 

where yj=<6(x1), ... , 6(xk)), i.e. o-0(z) indeed codes h"U, 6). 
The proof of (5) is analogous and is left to the reader. 
By the relative completeness of H we now can replace in ( 4) and ( 5) "F=" by 

"I- H ". Applying the await rule we get 
I- H + {pre(R) /\ pre(await b then R 1)} await b then R 1 {pre(R)} 
I- H + {post(R) A pre(await b then R 1)} await b then R1 {post(R)}. 
Since there are no assignments being normal subprograms of Sj, the above 

concludes the proof of interference freedom of the proofs of 
{pre(St)} Sf{post(S7)} in H+ (i= 1, ... , n). 

This proves (3). To prove (2) it is now sufficient to show 

(7) F= p A z = O Au= 0-+pre(S!) /\ ... /\ pre(S~) 

and 

(8) F=post(Si) J\ ... J\ post(S~)-+q. 

The proof of (7) is obvious in view of the fact that by the definition of"-+" 
we have <S*, 6) -4 (S*, o-). 

To prove (8) we note first that (1) implies 

(9) F={p} S*{q}. 

This is a consequence of the easy to prove fact that the converse of the reduction 
rule is sound. 

Suppose now that 

(10) F=(post(S!) A ..• J\ post(S~))(r) 

for some state r. 
By the definition of the post-assertions and the merging lemma there exists a 

state (]'such that F= p( 6) and 

(S*, (]') 2..+ (EJI ... II E, r), 
n times 

where h is a history coded by r(z). 
By definition rE JV(S*)(a"), so by (9) F=q(r), which proves (8). 
This proves (2). Using now the reduction rule we get from (2) 1- 0 {p} S{q} 

which concludes the proof of relative completeness of 0. 
It is worthwile to note that the definition of interference freedom can be 

slightly simplified. The definition we use here is that of Owicki [5]. In Owicki 
and Gries [7] the second clause of interference freedom is replaced by 

thus reducing the number of formulae to be proved. Obviously our results are 
not affected by such a change of the definition. 
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5. Complete Assertion Classes 

Let d be a class of assertions. We say that d is complete if for all p, q E.01 and 
G PL programs S if I= {p} S { q} then {p} S { q} can be proved in 0 using only the 
assertion from d. 

The relative completeness of 0 means that the set of all assertions is complete. 
We now prove the following theorem showing completeness of two other classes 
of assertions. 

Theorem. The classes of recursive assertions and r!,B(I)_ are both complete. 

The proof takes the rest of this section. At first we show that the pre- and 
post-assertions defined in section 4 are recursive if p is. To this end we need a 
couple of lemmata. 

Definition 2. We say that a program S' is derived from S* if S' is of the form 
S'{ 11 ... 11 S~, where for i = 1, ... , n either s;' = before(R, St) or s;' = after(R, S() for 
a normal subprogram R of Si. 

Note that if for some r, CJ and h <S*, i)-14 <S', CJ) then S' is derived from S*. 

Lemma 2. The relation V defined by 
V(S', S", (J, r, i, m) = S' is derived fi·om S*, 

<S', r) ~ (S", (J) and (i, r) is coded by m 
is recursive. 

Proof To check whether S' is derived from S* is straightforward. To determine 

whether <S', r) ~ <S", CJ) 

for given S', S", CJ, rand i is straightforward if(i, r) is associated with an evaluation 
of a boolean expression or an execution of an assignment (which can be determined 
by an effective procedure). The only troublesome case is when (i, r) is associated 
with an execution of an await-statement. This await-statement can be easily 
located. Suppose it is await b then R. We now have to check whether 1=b(r) and 
.4/(R)(r) =CJ holds. The former can be obviously checked by an effective procedure 
but the latter is in general only recursively enumerable. 

Here however, R is of a special form thanks to the clause (iii) of the trans­
formation of S into S* and the fact that S' is derived from S*. In Apt et al. [1] 
we proved that for such programs R the relation .J!(R)(r) =CJ is recursive. 

Given S', S", (J, r, i, m such that S' is derived from S* and (S', r) ~ (S", (J), 

the relation "(i, r) is coded by m" is clearly recursive. Namely m codes (i, r) if 
m=() and (i, r) is associated with an evaluation of a boolean expression or 
m=(r{xi), .. ., r(xk)) and (i, r) is associated with an execution of an assignment 
or an await-statement. 

This shows that the relation Vis indeed recursive. D 

Lemma 3. The relation U defined by 
U(S', S", CJ, r, h, m)=S' is derived.from S*, 
<S', r) -14 (S", CJ) and h is coded by m 
is recursive. 

Proof We have 
U(S', S", CJ, r, h, m) = S' is derived from S* and 
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[h=e&S'=S" &a=r&m=<>J 
v [h=t=e&<S', r) ~ (S0 , a 0 )&(i, r) is coded by m1 & 

U(S0 , S", a, a0 , h1, m2 ), where 
1°. h=(i, r)"h 1 , 

2°. a 0 is the state from the first element of h1 , 

3°. S0 is uniquely determined by S' and (i, r), 
4°. either m1 =()and m2 =m or m1 =(a1) and 

m2 =(a2 , .•. , a1) where m=(a1 , ... , a1)]. 

K.R.Apt 

Given S' and (i, r) S0 can be effectively determined. By lemma 2 the relation U 
is recursive. D 

We now show that the assertions pre(R) and post(R) defined in section 4 are 
recursive. 

At first note that the state -r there mentioned can be effectively computed 
from <r. If a(z) = () then -r = <r. Otherwise the values of -r on x 1 , ... , xk are deter­
mined by the first element of the sequence coded by a(z); r(u) = 0; -r(z) = <) and 
if yedom(-r)- {x 1 , ... , xk, u, z} then -r(y) = a(y). Thus for some recursive function/, 
-r=f(u). 

Next, there are only finitely many programs derived from S*. Thus 
1=pre(R)(u)+-+ V 3h[F=(pAz=O l\u=O)(f(a)), 

S' derivedfroms• (S*,f ((j)) --14 (S', (f>, his coded by (j(z) and 
the i-th component of S' is before(R, St)] 

and similarly for post(R). 
To show that pre (R) and post (R) are recursive it is now enough due to lemma 3 

to put a "bound" effectively depending on u on all possible histories coded by 
u(z). Each such history is of the form 

where 

and for i = 1, ... , m y1 = ((f1(x i), .. ., uJxk)). 
All elements of histories h1-s are associated with evaluations of boolean 

expressions. Thus the states mentioned in h1 are all equal to a;. 
Clearly u;(z)~u(z) and (j 1 (u)~a(u). Also for yedom{(j1)-{x1 ,. .. ,xk,z,u} 

we have a1(y)=(j(y). Let now t 1 for i=l, .. .,m be the state defined as follows: 
t 1{z) = a(z), -r;(u) = a(u) and -r1(y) = (j1(y) if y$ z, u. Then -r1 majorizes (f1• 

Note that the length of each h1 is bounded - each consecutive evaluation of 
a boolean expression has to correspond with a different substatement of S*. Thus 
for i = 1, .. ., m [hJ:£s, where sis the number of all substatements of S*. 

This shows that each history h coded by a(z) such that (S*, f(a)) .!!+. (S', a) 
is majorized by the following "maximal" history coded by a(z): 

U1. -r1Y'(n, 'i)•n ... num, -rm)n(n, -rmY. 

(n, -r1)8 stands here for concatenation of s copies of (n, r1). Obviously this 
maximal history can be effectively computed from (f. 

This concludes the proof of recursiveness of the assertions pre{R) and post(R). 
The asserted programs from clause (a) of lemma 1 and from interference 

freedom conditions can be proved using recursive assertions only. This is a 
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consequence of clause (iii) of the transformation of S into S* and the corresponding 
completeness result proved in Apt et al. [1]. 

It follows that if S is a parallel program and p, q are recursive assertions such 
that I= {p} S{q} then {p} S{q} can be proved in 0 using recursive assertions only. 

If S is a G PL program which is not of the form S 1 11 ... 11 Sn and p, q are recursive 
assertions such that I= {p} S{q} then {p} S{q} can also be proved in O using 
recursive assertions only. The proof follows the proof of the completeness of 
recursive assertions .. for-while programs presented in Apt et al. [1]. Each while 
program Sin question is transformed there (using clause (iii) of the transformation 
of S into S*) into a program S' which can be proved correct in H with respect to 
the original recursive assertions using recursive assertions only. The latter is 
demonstrated by showing first that the relation Jt(S')( u) = "C is recursive. 

Since we want to apply the same reasoning to GPL programs, we also have 
to prove that for every GPL program S the relation "CE .!V{S')(u) is recursive. 
S' is defined by induction on the structure of S and the only new case is that of 
parallel programs. We put 

S'=z:=(>; u:=O; S*. 

We have to prove that the relation "CE .!V{z:=(); u:=O; S*)(u) is recursive. 
Take for p the assertions true. Note that for all states u, r defined on x 1 , ... , xk, u, z 

rE .!V{z:=(); u:=O; S*)(u) 
~TE .!V{S*)(u') where u'(z)=(), a'(u)=O and rr'(y)=rr(y) if y$z, u 
~a'= f(-r)& i=(post(Sf) A ... A post(S~))(-r) 

where j is the function defined after lemma 3. 
The last equivalence follows from the merging lemma and the observation 

(proved by induction on the length of h) that if (S*, u') -14 (S', i-0 ) for some 
S', h, 'Co and u' as above then his coded by -r0 (z) and rr' = j(i-0 ). 

Hence the above relation is indeed recursive. 
The rest of the proof is the same as in Apt et al. [1]. This concludes the proof 

of the completeness of recursive assertions. 
The completeness of [l,l(JJ_ follows from the observation that the assertions 

pre(R) and post(R) are in fact f14@. if p is and that all other intermediate assertions 
are also !!J<2.. The proof requires a tedious but straightforward analysis of the 
above reasoning and is left to the reader. 

6. Auxiliary Variables Used as Program Counters 

Owicki suggested (private communication) a simpler proof of the relative com­
pleteness of 0 in which auxiliary variables are used only as program counters 
and not as histories of a computation. Such a use of auxiliary variables corres­
ponds to Lamport's method of proving correctness of parallel programs (see 
Lamport [ 4]). This shows that Lam port's and Owicki's methods, when used for 
proving partial correctness of GPL programs, are in fact equivalent. It turns 
out however, that these methods are not equivalent when restricted to recursive 
assertions. In fact, parallel programs are not needed to show the above. 

The use of program counters as auxiliary variables implies that each auxiliary 
variable used in the proof is bounded by some fixed in advance value. We now 
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prove that if only auxiliary variables of bounded size are allowed then recursive 
assertions are not complete for proofs of partial correctness of while programs. 
This result is a simple generalization of a theorem proved in Apt et al. [1] which 
states that recursive assertions are not complete for proofs in H of partial cor­
rectness of while programs. 

Since we shall deal with while programs only we shall use the following 
special case of the reduction rule used in Owicki and Gries [7]. 

Rule of Auxiliary Variables 
Let sff" be set of variables which do not appear free in p or q and appear 
in S only in assignments of the form x:=t where xEd'Y. Let S' be obtained 
from S by deleting all assignments to the variables of d'Y . Then 

{p} s {q} 

{p} S' {q} 

If S and S' satisfy the condition of the above rule we say that S' is a reduction 
of S. 

Denote H supplemented by the above rule by H'. The following lemma will 
be needed in the sequel. 

Lemma 4. !f I-w {p} S { q} then there exists a proof of {p} S {p} in H' which uses 
the same (up to substitutions) assertions and in which the rule of auxiliary variables 
is used only once, namely as the last step in the proof 

Proof The proof proceeds by induction on the length of proofs. 

Consider the case when the last rule applied in the proof is that of composition. 
Then Sis of the form S 1 ; S2 and for some assertion r both 1-w {p} S 1 {r} and 
f--y,{r} S2 {q}. 

The proofs of {p} S 1 {r} and {r} S 2 { q} are both shorter than the proof of 
{p} S { q}. By the induction hypothesis there exist programs S'1 and S~ such that 
for i=l,2 S; is a reduction of s; and 1--u{P} S'1 {r} and 1--u{r} S~ {q}. We might 
now argue that by the composition rule 1--H {p} S'1 ; S~ {q} so applying the rule 
of auxiliary variables we get the desired proof of {p} S{q}. The problem is that 
the last application of the rule of auxiliary variables is not legal if some auxiliary 
variables appearing in S'1 (S~) are also free in q(p). 

To remedy this we first modify S'1 and S~. Let S'{(S~) be obtained from S'1 (S~) 
by substituting the auxiliary variables occurring both in s; (S~) and and q(p) 
by some fresh variables. The proofs of {p}S'1 {r} and {r} S~ {q} in H can be trans­
formed into the proofs of {p} S'{ {r} and {r} S~ {q} in H by performing the sub­
stitutions corresponding to the modification of s; into s;' (i = I, 2). By the com­
position rule we get now 1--H{P} S'{;S~ {q}. We can now apply the rule of auxiliary 
variables and we get the desired proof of {p} S { q}. 

An analogous proof deals with the consequence rule. The other cases are 
trivial. D 

In Apt et al. [1] we proved that there exist two while programs S 1 and S2 

such that F={true} S1 ; S2 {false} but for no recursive assertion r both F={true} 
Si{r} and F={r} S2 {false}. We now show that {true} S 1 ; S2 {false} cannot be 
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proved in H' using recursive assertions only and auxiliary variables whose values 
are all bounded, say by n. 

Suppose otherwise. By lemma 4 there exist while programs S'1 and S'2 such 
that {true} S1; S~ {false} can be proved in H using recursive assertions only 
and S 1 ; S2 is a reduction of S1; S~. Clearly, for some recursive assertion r both 
f-H {true} S'1 {r} and f-H {r} S~ {false}. By the soundness of H 1== {true} S'1 {r} and 
I== {r} S~ {false}. Let z1 , ... , zk be all auxiliary variables appearing free in rand 
let 

We have F=r-+r 1 , since all auxiliary variables are bounded by n. So F={true} 
S1 {r i} and by the soundness of the rule of auxiliary variables 1== {true} S1 {r1}. 

On the other hand it is easy to see that I== {ri} S~{false} implies 1=={r} S2 

{false} which in turn implies 1== { r 1 } S 2 {false}, since none of the variables z 1, ... , zk 

appears free in S 2 . 

But r 1 is recursive so we reached a contradiction with the original choice 
of S 1 and S2 . We thus showed that the use of auxiliary variables as program 
counters results in an incompleteness of recursive assertions for while programs. 

Appendix 

Proof of Merging Lemma 

The proof proceeds by induction on the length l h of the sequence coded by O"(z). 
If lh=O then all l computations assuring for j=l, ... , l (a, i)-reachability of 
R;. consist exclusively of evaluations of boolean expressions. A construction of 
a ~amputation assuring ( O", i 1 , ... , i1)-reachability of R;,, ... R;, is then a straight­
forward task. 

Assume now that lh ~ 0. Leth be a history coded by a(z). h is nonempty. 
Let a 0 be the last state considered in h. 0" 0 depends only on <land a0 (z) codes a 
sequence of length lh-1. For some ca(z)=a0 (z)"c. 

Fix now j such that 12,j-;;;;, !. Leth;; be a history related to the (a, ij)-reachability 
of R;.· h; is coded by O"(z). We have h;.=h1"h 2 for some h1 coded by 0" 0 (z). 

J J J 

For some R1, ... ,R~ 

where r is the state referred to in the (O", i)-reachability of R;r By definition R~j 
is (<1 0 , i)-reachable. 

Thus for eachj=l, ... , l we found a program R;, which is (a 0 , i)-reachable. 
By the induction hypothesis R; 1 , ... ,R;, is (cr 0 , i 1 , ... ,i1)-reachable, say with a state 
r and history h. 

Exactly one element of each h2 is associated with an execution of an assignment 
or await-statement. We can assume that this is always the first one and that 
for each j= 1, ... , l all other elements of h2 are of the form (ij, O"). 

Each h2 is coded by the same number, namely c, and consequently the first 
element of each h2 is the same. Call it h'. Delete now this element from all histories 
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h2 • Ri 1 , ... , Ri, is now (er, i 1 , ... , i1)-reachable with the state r and history h n h' 
concatenated with the resulting sequence of all h2-s. D 
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