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1. INTRODUCTION 

In 1969 Hoare [27] introduced an axiomatic method of proving programs correct. 
This approach was partially based on the so-called intermediate assertion method 
of Floyd [18]. Hoare's approach has received a great deal of attention during the 
last decade, and it has had a significant impact upon the methods of both 
designing and verifying programs. It has also been used as a way of specifying 
semantics of programming languages (see [17, 28, 40]). 

The purpose of this paper is to present the most relevant issues pertaining to 
Hoare's method (namely, those of soundness and completeness) in a systematic 
and self-contained way. The main problem with such an exposition is that various 
proofs given in the literature are awkward, incomplete, or even incorrect. In many 
cases proof rules are introduced without any proofs of soundness or completeness 
at all. The field itself is enormous, since for virtually all programming constructs 
and notions some proof rules have been suggested. Also, for some constructs, such 
as recursive procedures with parameters, several alternative proof rules have 
been proposed. 

Faced by these problems, we decided to restrict the exposition to only those 
constructs and notions which we found most important. In each case we selected 
only one, hopefully the most successful, among many possible proof systems. 
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432 Krzysztof R. Apt 

The choice of a semantics for the programming constructs concerned turns out 
to be the decisive factor for the complexity of the proofs. Therefore, we are at 
great pains to suggest in each case a semantics which would make the s~undness 
and completeness proofs as simple as possible. The papers we are ref ernng to do 
not necessarily provide proofs using the same semantics. However, in practically 
all cases the proofs can be straightforwardly translated (and simplified) into our 
framework. We refrain from pointing out mistakes and errors in the referenced 
papers. Many of them can be repaired easily, and many others cannot occur in 
the suggested semantical framework. 

We found it convenient to divide the subject material in accordance with the 
constructs of programming languages: while statements (Section 2), recursive 
procedures (Section 3), local variables (Section 4), subscripted variables (Section 
5), parameter mechanisms (Section 6), and procedures as parameters (Section 7). 
Of course, procedures are but another parameter mechanism. However, proce­
dures as parameters deserve a separate treatment owing to the extensive results 
concerning them. 

Several other important constructs which are also covered by Hoare's method, 
such as go-to's, coroutines, functions, data structures, and parallelism, are not 
treated in this paper. Those interested in the issues raised by these constructs are 
referred to [14, chap. 10] (written by A. de Bruin) and to [8, 11, 12, 25, 46, 47]. To 
the reader interested in a more detailed development of the subject we suggest 
(14]. The second part of this survey, to be contained in a separate paper, will be 
devoted to a discussion of various Hoare-like proof systems for nondeterministic 
and parallel programs. 

It should be mentioned that there are several other approaches to program 
verification which are related to Hoare's method. These approaches are not 
discussed in this paper. The interested reader is referred to [22], where other 
methods are discussed. 

Throughout the paper we assume that the reader has knowledge of some basic 
notions and facts from mathematical logic. We state them whenever they are 
applied. All of them can be found in, for example, [51]. 

The title of this paper was perhaps appropriate at the moment of its submission 
but is not so appropriate now that it appears in print. We decided to retain this 
title, but to keep the paper up-to-date we took the liberty of incorporating here 
a few results proved since 1979. Most of them concern the use of procedures as 
parameters and form the contents of Section 7. The reader deserves a warning 
that that section deals with the most complex results obtained in this area. For 
a proper understanding of them, a thorough knowledge of all other sections of 
the paper is required. Due to the lack of space, the presentation of Section 7 is 
rather sketchy, and no examples are provided. 

2. while PROGRAMS 

Let L denote a first-order language with equality. We use the letters a, b, x, y, z 
to denote the variables of L, the letters s, t to denote terms (expressions) of L, 
the letter e to denote a quantifier-free formula (a Boolean expression) of L, and, 
finally, the letters p, q, r to denote the formulas (assertions) of L. 

Denote by Y the least class of programs such that 
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1. for every variable x and expression t, x := t E Y; and 
2. if S, 81, S2 E Y, then S1; 82 E Yand, for every Boolean expression e, if e then 

Si else S2 fi E «I' and while e do S od E Y. 

The elements of Yare called while programs. 

2.1 The Proof System 

The basic formulas ofHoare's logic are constructs of the form {p} S {q} (called 
asserted programs) where p, q are assertions and SEY'. The formulas are not 
subject to Boolean operations. The intuitive meaning of the construct { p} S { q} 
is as follows: whenever p holds before the execution of S and S terminates, then 
q holds after the execution of S. 

Hoare's logic is a system of formal reasoning about the asserted programs. Its 
axioms and proof rules are the following. 

AXIOM 1: ASSIGNMENT AXIOM 

{p[t/x]} x := t {p}. 

RULE 2: COMPOSITION RULE 

{p} Si {r}, {r} S2 {q} 

{p} S1; 82 {q} 

RULE 3: if-then-else RULE 

{p /\ e} S1 {q}, {p /\ ie} S2 {q} 

{p} ife then S1 else S2 fi {q} 

RULE 4: while RULE 

{p/\e}S{p} 
{p} while e do Sod {p /\ •e} · 

As usual, p[t/x] stands for the result of substituting t for the free occurrences 
ofxinp. 

2.2 An Example of a Proof 

As a typical example of a proof in the system, take for L the language of Peano 
arithmetic augmented with the minus operation and consider the program So 
computing the integer division of two natural numbers x and y: 

a := O; b := x; while b ::::: y do b := b - y; a := a + 1 od. 

We now prove that 

{ x 2: 0 /\ y 2: O} So {a · y + b = x /\ 0 -:S b < y}, (1) 

that is, that 

if x, y are nonnegative integers and 80 terminates, then a is the integer 
quotient of x divided by y and bis the remainder. (*) 

The proof runs as follows. By the assignment axiom, 

{O . y + x = x /\ x 2: O} a:= 0 {a · y + x = x /\ x 2: O} (2) 
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and 

{a . y + x = x /\ x 2: O} b := x {a . y + b = x /\ b 2: O}; (3) 
so, by the composition rule, 

{O . y + x = x /\ x:::: O} a:= O; b := x {a · y + b = x /\ b 2: 0}. (4) 
Now 

x::::O/\y::::O-o ·y+x=x/\x2:0 
holds; so (5) and (4) imply 

{ x :::: 0 /\ y 2: 0} a := O; b := x {a · y + b = x /\ b 2: 0}. 
On the other hand, by the assignment axiom, 

and 

{(a + 1) . y + b - y = x /\ b - y :::: O} b := b - y 
{(a+l) .y+b=x/\b2:0} 

(5) 

(6) 

(7) 

{(a+ 1) . y + b = x /\ b 2: O} a:= a+ 1 {a· y + b = x /\ b 2: O}; (8) 
so, by the composition rule, 

{(a + 1) · y + b - y = x /\ b - y 2: O} 

b := b - y; a:= a+ 1 {a· y + b = x /\ b 2: O}. 
Now 

a· y + b = x /\ b 2: 0 /\ b 2:y 

- (a + 1) • y + b - y = x /\ b - y 2: 0 
holds; so (10) and (9) imply 

{a ·y+b=x/\b2:0/\b2:y} 

b := b - y; a:= a+ 1 {a · y + b = x /\ b 2: O}. 
(11) implies, by the while rule, 

{a · y + b = x /\ b 2: O} while b 2: y do b := b - y; 
a := a + 1 od {a · y + b = x /\ b 2: 0 /\ b < y}. 

Finally, (6) and (12) imply (1) by the composition rule. 

2.3 The Rule of Consequence 

(9) 

(10) 

(11) 

(12) 

Several remarks are in order. First, to justify the above proof we have to explain how we derived (6) from (5) and (4) and derived (11) from (10) and (9). These steps, although intuitively clear, lack a formal basis. The missing proof rule which we used here is the following: 

RULE 5: CONSEQUENCE RULE 

P- P1, {p1} S {q1}, q, - q 
{p} s {q} 

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981. 



Ten Years of Hoare's Logic: A Survey 435 

In the example, we used this rule for q 1 = q, but in general the above version 
is needed. 

This rule forces us to include assertions among the formulas of Hoare's logic. 
Denote the resulting system by H. 

Now, to get (5) and (10), we have to augment H with a formal proof system 
concerning assertions. In this particular case, any elementary theory T in the 
underlying L, in which (5) and (10) can be proved, will do. The proofs of (5) and 
(10) in T, concatenated with the sequence (2)-(12), (1) of asserted programs or 
assertions, finally form a proof of (1) in H U T. 

This interpretation is by no means satisfactory for our purposes. We do not 
care whether (5) and (10) are theorems of a theory T. All we need to know is that 
(5) and (10) are true in the domain of integers. 

2.4 Soundness of H 

Let A be a set of assertions. Let us write A 1-H { p} S { q} to denote the fact that 
there exists a proof of { p} S { q} in H which uses as assumptions (for the 
consequence rule) assertions from A. We have thus shown that (5), (10) 1-H (1). 
The whole idea of the above proof is that we wish to interpret (1) as(*). To do 
this, we must first introduce the notion of the truth of an asserted program under 
an interpretation l of the language L. In this case we choose for l the standard 
interpretation lo of L with the domain of integers. 

So let l be an interpretation of L with a nonempty domain D. By a state we 
mean a function assigning to each variable x a value from the domain D. We use 
the letters o, T to denote states. 

The relation "under the interpretation l an assertion p is true in a state o," 
written as t=1 p(O), is defined in the usual way. Iffor all states o t=1 p(o) holds, we 
say that p is true under l, written t=1 p. With each program S E 51' we can 
associate a meaning .Ar(S) under l, this being a partial function from states to 
states. It is easy to define .;ft'r(S) so as to capture the intended meaning of the 
program. 

Having done so, we can finally define the truth of an asserted program under 
I. We say that an asserted program { p} S { q} is true under I if 

for all states o, T, if t=r p(8) and.;ft'1(S)(o) = T, thent=1 q(T). 

This definition is clearly a correct formalization of the informal notion of the 
truth of {p} S {q}. We can now safely state that(*) simply says that (1) is true 
under lo. 

The last step in the justification of ( *) is the following. Call an asserted program 
valid if it is true under all interpretations I. Call a proof rule sound if for all 
interpretations lit preserves the truth under I of the asserted programs (and, in 
the case of the consequence rule, assertions). It is easy to prove that the axioms 
of H are valid and the proof rules of H are sound. 

This fact implies (by induction on the length of proofs) the following theorem, 
which states that the proof system H is sound. 

THEOREM 1. For every interpretation I, set of assertions A, and asserted 
program <p the following holds: if all assertions from A are true under I and 
A 1-H cp, then cp is true under l. 
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In other words, if Tr1 f-H cp, then l=r cp, where Tr1 denotes the set of all true 
assertions under I. 

This theorem immediately implies that (1) is true under lo, because obviously 
(5) and (10) are true under 10• (1) is actually true under any interpretation l under 
which (5) and (10) are true. So, for example, (1) is also true under the standard 
interpretation in the real numbers or in a finite set of natural numbers {x Ix ::5 
max}. 

2.5 Loop Invariants 

Like all formal proofs, the proof of (1) is tedious and difficult to follow. We are 
not accustomed to following a line of reasoning expressed in such small steps. 
However, it is easy to observe that the whole argument boils down to one crucial 
step: observing that (11) holds. Once we guess the assertion r = a · y + b = x /\ 
b :::::: 0, to find the proof is a straightforward problem. Since (11) holds, r is called 
an invariant of the loop while b:::::: y do b := b - y; a:= a+ 1 od. Since (6) holds, 
we say that the program a:= O; b := x establishes r. Since (12) holds, we say that 
the program while b ~ y do b := b - y; a := a + 1 od preserves r. 

A concise way of embedding this information into the program S is simply to 
annotate it with the desired assertion(s). To illustrate this point, we now take a 
different example. It is easy to see that 

{x :=:: 0 /\ y :=:: O} a := x; b := y; z := l; 
while b ¥ 0 do b := b - 1; z := z . a od { z = xY} 

is true under the interpretation 10 once we write it as 

(x :=:: 0 /\ y :=:: O} a:= x; b := y; z := l; 
while b ¥ 0 do {z · a 6 = xY} b := b - l; z := z . a od {z = xY}. 

Thinking in terms of establishing an invariant and preserving it has immediate 
implications for reasoning about programs and their design. For example, in the 
case of the above program, an observation that the loop while even(b) do b := 
b/2; a := a · a od preserves the invariant z . ab = xY leads to the following 
improvement: 

{ x :=:: 0 I\ y :=:: 0} a := x; b := y; z := l; 
while b ¥ 0 do {z . a 6 = xY) 

while even(b) do {z . ab = xY} 
b := b/2; a:= a· a 

od· 
b := b - 1; z := z · a od {z = xY).' 

In both cases it is Theorem 1 which allows us to infer that the asserted 
programs are true under 10• 

2.6 Termination Not Implied 

It is important to note that the above proofs are not concerned with the 
termination of programs. Even though (1) is true under 10 , we do not have any 
guarantee that the program So terminates. In fact, in a state in which the value 
of Y is 0, So does not terminate. While defining the meaning of programs, we left 
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room for nontermination by allowing At1(S) to be a partial function from states 
to states. 

Actually, the termination of a program is interpretation-dependent. For ex­
ample, the program while x > O do x := x - 1 od under the interpretation lo 
always terminates (is total), whereas under an interpretation in a nonstandard 
model of Peano arithmetic it is not total. This simple remark has direct conse­
quences concerning the existence of sound proof systems dealing with termina­
tion, as we see in Section 2.11. 

2. 7 The Issue of Completeness of H 
A natural question of not only theoretical interest is that of the completeness of 
the proof system H. The question of soundness concerns the correctness of the 
method, whereas the question of completeness concerns the scope of its applica­
bility (under what circumstances it can be successfully applied). 

The system H alone is obviously incomplete: an asserted program {p[t/x]} 
x := t {true} is true under every interpretation and yet is unprovable in H; there 
is no way to prove in H the formula p ~ true. 

Supplementing H by an axiomatic system T dealing with assertions is of no 
help. For any axiomatic system G the set of asserted programs provable in G is 
recursively enumerable (r.e.) But for the language Lp of Peano arithmetic with 
its standard interpretation IN the set Tr1N is not r.e. (see [51]), and for all 
assertions p F=1N {true} x := x {p} iff F=1N p; so the set of asserted programs true 
under IN is not r.e. either. This shows that in the case of the language Lp any 
axiomatizable deduction system dealing with the asserted programs is incomplete. 

One might think that the incompleteness comes from allowing arbitrary first 
order formulas as assertions. However, this is not true, as the following argument 
shows (see [13]). For any interpretation I and program S, F=1 {true} S {false} iff 
S fails to halt for all initial values of its variables. Therefore, the following holds. 

Fact. Let Yo be a class of programs. If L, I, and Yo are such that the halting 
problem of Yo for I is undecidable, then the set {{true} S {false} I F=1 {true} S 
{false}, SE Yo} is not r.e. 

Now, the halting problem of Y for IN is undecidable, so the restriction of the 
assertion language to {true, false} cannot lead to completeness either. 

The best one might hope for would be to prove relative completeness of the 
system H, which would be a converse of Theorem 1: 

For all interpretations I and all asserted programs <p, if F=1 <p, then 
Tr 1 l--H qi. 

Unfortunately, even this cannot be proved. Wand [54] exhibited a particular 
language L with an interpretation I and asserted program qi such that F=1 <p and 
Tr1 lf-H <p. The incompleteness comes from the fact that the necessary intermediate 
assertions cannot be expressed in L with this particular interpretation. 

We now present a simple argument leading to an extension of this incomplete­
ness result. Consider the language L+ of Presburger arithmetic, that is, the 
language Lp of Peano arithmetic without the multiplication operation. Let I+ be 
its standard interpretation. By the result of [ 49 ], Tr1+ is a recursive set. Therefore, 
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for any axiomatic system G the set of asserted programs cp such that Tr l+ f-a cp 
is r.e. 

On the other hand, the halting problem of Y for I+ is undecidable, since the 
halting problem of Y for IN is undecidable and multiplication can be simulated in 
Y using addition. Therefore, by the Fact above, the set of asserted programs true 
under I+ is not r.e. This shows that no axiomatic system G can be relatively 
complete for 517. 

This argument is a special case of a general incompleteness result proved in 
[5]. Various other natural structures leading to incompleteness are also exhibited 
there. The above argument is also implicit in [13]. 

2.8 Completeness of Hin the Sense of Cook 

A way to overcome these difficulties while defining the notion of completeness 
has been indicated by Cook [13]. Define 

post1(p, S) = { r: 3o [1=1 p(o) /\ A1(S)(o) = r]}; 

pre1(S, q) = {o: 'Vr [A1(S)(o) = r-1=1 q(r)J}. 

Note that these sets are characterized by the following equivalences: 

1=1 {p} S {q} iff {o: l=1p(o}} c pre1(S, q) iffpost1(p, S) c {o: 1=1 q(o)}. 

Now let Yo be a set of programs. Call the language L expressive relative to I 
and Yo if for all assertions p and programs S E Yo there exists an assertion q 
which defines post1(p, S) in L (i.e., such that {o: 1=1 q(o)} = post1(p, S)). If I is 
such that Lis expressive relative to I and Yo, we write that I E Exp(L, Yo). 

Definition. A proof system G for Yo is complete in the sense of Cook if, for 
every interpretation I E Exp(L, Yo) and every asserted program cp, if 1=1 cp, then 
Tr1 f-o cp. 

The results of [13] imply that the proof system H for Y is complete in the 
above sense. The proof of completeness proceeds by induction on the structure 
of programs. Let I E Exp(L, Y). 

If 1=1 {p} x := t {q}, then clearly 1=1 p - q[t/x]; so, by the assignment axiom 
and the consequence rule, Tr1 f-H {p} x := t { q}. 

If 1=1 {p} 81; 82 {q}, then clearly 1=1 {p} 8 1 {r} and 1=1 {r} 82 {q}, where r 
defines post1(p, 81); so, by the induction hypothesis and the composition rule, Tr1 
f-H {p} 81; 82 {q}. 

The case of if e then 81 else 82 fi is straightforward. 
If 1=1 {p} while e do Sod {q}, then we must find a loop invariant r such that 

1=1 {r /\ e} S {r), 1=1 p - r, and 1=1 (r /\ e) - •q. Then, by the induction 
hypothesis, Tr1 1-H {p} while e do Sod {q}. 

Consider the set 

C = { o : 3k, oo, ... , ok [o = ok /\ 1=1 p(&) /\'Vi < k [A1(8) (o;) = o;+i /\ 1=1 e(o;) ]]}. 
Thus o E C iff there exists a computation which starts in a state satisfying p and 
which reaches state o after some finite number of passes through the loop. It is 
clear that an assertion r defining C satisfies the above three conditions. 

To find such an assertion, consider the list y1, •.• , Yn of all variables which 
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occur free in p, e, S, or q. Let r1 be the assertion which defines post1(p, while e /\ (y1 ~ Z1 V Y2 ~ z2 V · · · V Yn ~ z,.) do Sod), where z1, ... , Zn are new variables. If /3 E C, then l=13z1, ... , z,.r1 (8), where the values chosen for z; (i = 1, ... , n) are correspondingly 8(y;) (i = 1, ... , n). The implication 1=1 3z1, ... , z,.r1(8) ~ 8 EC is obvious. Hence r = 3z1, ... , znr1 is the desired assertion. 
Clarke [9] observed that if, in the definition of expressiveness, we change the requirement of definability of postr( p, S) to that of definability of pre1(S, q), then the above proof (viz., the last case) can be simplified. Namely, for the invariant r we can simply take an assertion which defines pre1(while e do Sod, q). This proof also shows that, when using the requirement of definability of pre1(S, q) in the definition of expressiveness, it is not necessary to assume that the equality predicate is in the language L. 
We chose here Cook's original definition of expressiveness, since the complete­ness result in the form just proved is used in Section 3. 

2.9 Expressiveness 

As indicated by Clarke [IOa] and rigorously proved by Olderog [ 44], these two definitions of expressiveness are actually equivalent for any class of programs considered in this paper. To give an idea of the proof, assume that, for any p and S, post1(p, S) is definable. Consider a program So. Let x be a sequence of all variables occurring in So and let z be a sequence of some new variables of the same length as x. Now let qo be an assertion which defines post1(x = z, So). It is easy to see that, for any q, pre1(So, q) is definable by the formula (Vx (qo ~ q)) [x/z]. 
A similar construction proves the converse implication. It is worthwhile to note that the formulas {.i = z} So {qo} play an important role in the completeness proofs in Section 3. 
A natural question now arises: how restrictive is the assumption of expressive­ness? Observe that LP is expressive relative to IN and fl'. Thus, any true (under IN) asserted program can be proved in H provided we can "ask" an oracle about the truth of the assertions under IN. Also, as Clarke [9] observed, if the domain of I is finite, then L is expressive relative to I and Y. 
It turns out that these are actually the only two possibilities. The following theorem is a special case of a theorem proved by De Millo, Lipton, and Snyder (see [38]): 

THEOREM 2. If L is expressive relative to I and g, then either 
1. a standard model of Peano arithmetic can be defined in I, or 
2. rJ S E !/ 3n such that S reaches at most n states in any computation over the domain of I with any initial state. 

In the previous section we saw that expressiveness is a sufficient condition for completeness. Is it a necessary condition as well? The answer is no, and the following argument due to Bergstra and Tucker [6] gives evidence for it. There exists a nonstandard model of Peano arithmetic with an interpretation I such that Tr1 = Tr1w It is a direct consequence of the compactness theorem (see [51]). It is now easy to see that, for any asserted program <p, if 1=1 <p, thenl=1N <p. 
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Thus, for any ip, F=1 ip implies F=1N ip, which in turn implies Tr 1N f--H ip by the just­
proved Cook completeness result; so finally Tr1 f--H ip by the choice of I. 

On the other hand, Lp is not expressive relative to I and Y. This follows from 
Theorem 2, but of course a straightforward argument can be given. Namely, 
consider the program S = while x < y do x := x + 1 od. This program terminates 
on I when started in a state a in which x = 0 iff a( y) is a standard natural number. 
Thus, 

post1(x = 0, S) = {a: a(x) = a(y) /\y is a standard natural number}. 
But this set is not definable in I by any formula q of Lp. Otherwise, we could 
prove by the induction axiom that F=1 't;/x, y q, which is not the case. 

2 .1 0 Complete Assertion Classes 

The completeness of Hand the expressibility of Lp relative to IN and Y'imply 
that, if F= 1N {p} S {q}, then there exists a proof of {p} S {q} in H (from TrrN) 
which uses only arithmetical assertions. In typical proofs much simpler assertions 
are used. 

A global correctness property { p} S { q} in practice has recursive assertions 1 

p and q. The precondition p is usually some simple condition on the input 
variables, or even true. Similarly, one may expect that the postcondition q can 
be checked effectively by inspection of the output variables. A natural conjecture 
then is that all (intermediate) assertions needed in the proof of { p} S { q} in H 
may also be chosen to be recursive. 

Let A be a set of assertions. Let us write f--H, A { p} S { q} to denote the fact that 
there exists a proof of {p} S {q} in H (from Tr1N n A) in which only assertions 
from A occur. We call a class of assertions A complete (with respect to Y') if for 
every p, q EA and SE Y'we have F=rN {p} S {q} ifff-H,A {p} S {q}. In [2] it is 
proved that any class of recursive assertions A which contains true and false is 
incomplete; so the above conjecture is false. On the other hand, the class of 
recursively enumerable assertions and various other natural classes are complete. 

We can, however, get completeness of the class of recursive assertions for Y' if 
we extend the proof system H by adding to it the following proof rule concerning 
deletion of assignments to the auxiliary variables. 

Let AV be a set of variables which appear in S' only in assignments x := t, 
where x is in AV. If p and q do not contain free variables from AV and S is 
obtained from S' by deleting all assignments to the variables in AV, then 

{p} S' {q} 
{p} s {q} . 

This rule is from [ 4 7], where it was used in the proof system for verification of 
parallel programs. 

2 .11 Total Correctness 

By distinguishing between partial and total correctness, we stress the fact that 
termination is not dealt with in H. 

1 That is, assertions which define a recursive set. 
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We say that a program S is partially correct under I (with respect top and q) 
if l=r {p} S {q}. In contrast, we say that a program Sis totally correct under I 
(with respect top and q), written ll=r {p} S {q}, if additionally the termination 
of S is guaranteed. Thus, 11=1 { p} S { q} holds iff 

for all states o such that l=r p(o) there exists a state -r such that jfr(S) (8) 
= T and l=r q(-r). 

Thus His a proof system for partial correctness. It is clear that the only proof 
rule of H which introduces a possibility of nontermination is the while rule; so to 
deal with total correctness that rule has to be changed. 

The following refinement of the while rule leading to total correctness has 
been formulated in [23]. 

RULE 6: while RULE II. Let p(n) be an assertion with a free variable n which 
does not appear in S and ranges over natural numbers. Then 

p(n + 1) ~ e, {p(n +I)} S {p(n)},p(O) ~ •e 
{3n p(n)} while e do S od {p(O)} 

Let Ho denote the proof system obtained from H by replacing the while rule 
(Rule 4) by Rule 6. In Ho we can easily prove total correctness of the program So 
from Section 2.2 with respect to x ;:::::: 0 /\ y > 0 and a · y + b = x /\ 0 :S b < y. 
Namely, take p(n) = r /\ n · y :S b < (n + I) · y where r = a · y + b = x /\ 
b ;:::::: 0 is the loop invariant from the proof in Section 2.2. p(n) clearly satisfies the 
premises of the above rule for e == b ;:::::: y and S = b := b - y; a := a + l. 

Also, similarly to (6), 

{x;:::::: 0 /\ y > O} a:= O; b := x {r /\ y > O} 

holds. To conclude the proof it is now sufficient to observe that 

1=10 r /\ y > 0 ~ 3np(n) 

and 

I= 10 p(O) ~ a · y + b = X /\ 0 :S b < y 

and apply the consequence rule and the composition rule. 
Call a proof system G totally sound if, for all interpretations I and asserted 

programs cp, Tr1 1-a qi implies 11=1 cp. We would like to require any proof system for 
total correctness, including Ho, to be totally sound. Note that total soundness of 
Ho would imply that So is totally correct under lo with respect to x ;:::::: 0 /\ y > 0 
and a. y + b = x /\ 0 :Sb <y, thus completing the above reasoning. Unfortunately, 
any totally sound proof system is hopelessly weak, as the following theorem 
shows. 

THEOREM 3. There does not exist a proof system G such that 
1. G is totally sound and 
2. Tr 10 1-a {true} 81 {true} where 81 =while x > 0 do x := x - I od. 

PROOF. The proof is immediate. Namely, suppose that a proof system G 
satisfies I and 2. As we did in Section 2.9, take a nonstandard model of Peano 
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arithmetic with an interpretation I such that Tr1 = Tr1,,. Now, by 2, Tr1l-c {true} 
81 {true}; so, by 1, 11=1 {true} 81 {true}. The latter is, however, a contradiction, 
since it states that 81 is total under an interpretation in a nonstandard 
model of Peano arithmetic. 0 

Therefore, when dealing with proof systems for total correctness we have to 
find another notion of soundness. One possibility is to restrict attention to one 
interpretation only, namely, IN (or a minor extension of it like lo). However, this 
is not a satisfactory choice, as it would force us to allow one assertion language 
only: that of Peano arithmetic. A more satisfactory proposal has been indicated 
by Harel [23]. 

Let L be an assertion language and let L + be the minimal extension of L 
containing the language Lp of Peano arithmetic and a unary relation nat(x). Call 
an interpretation I of L + arithmetical if its domain includes the set of natural 
numbers, I provides the standard interpretation for Lp, and nat(x) is interpreted 
as the relation "to be a natural number." Additionally, we require that there exist 
a formula of L + which, when interpreted under I, provides the ability to encode 
finite sequences of elements from the domain of I into one element. (The last 
requirement is needed only for the completeness proof.) 

One of the examples of an arithmetical interpretation is of course IN. It is 
important to note that any interpretation of an assertion language L with an 
infinite domain can be extended to an arithmetical interpretation of L +. Clearly, 
the proof system Ho is suitable only for assertion languages of the form L +, and 
an expression such as p(n + 1) is actually a shorthand for nat(n + 1) !\ p(n + 1). 

We now say that a proof system G for total correctness is arithmetically sound 
if, for all arithmetical interpretations I and asserted programs r:p, Tr1 f-c r:p im­
plies 11=1 r:p. 

Harel [23] showed that the proof system Ho is arithmetically sound. He also 
proved that Ho is arithmetically complete, that is, that an implication converse 
to the one above holds. 

The completeness proof runs by induction on the structure of programs, and 
only the case of the while construct is different from the corresponding case in 
the completeness proof of H. 

Assume 11=1 {r}while e do 8 od {q} where !is an arithmetical interpretation. 
Let n be a fresh variable. Consider the following set of states: 

C = {8: 1=1 nat(n)(o) 
!\ 380, ... , ok [8 = & /\ 1=1 (q !\ •e)(ok) 

/\Vi< k [.,#1(8)(8;) = 0;+1!\1=1 e(8i)]], 
where k = 8(n)}. 

Thus 8 E C iff o(n) is a natural number, say k, such that the loop in while e do 
8 od is executed exactly k times when started in 8 and the final state satisfies q. 

It can be shown (thanks to the provision for coding of finite sequences) that 
there exists an assertion p(n) which defines C. It is easy to see that 1=1 p(n + I) 
~ e, lil=1 {p(n + 1)} S {p(n)}, and 1=1 p(O) ~ •e. Thus, by the induction 
hypothesis and the new rule, Tr 1 f--H0 {3n p(n)} while e do 8 od {p(O)}. To 
complete the proof it is now sufficient to observe that, by the assumption, 1=1 r 
~ 3n p(n) and 1=1 p(O) ~ q and to apply the consequence rule. 
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It should be stressed that Theorem 3 applies to the notion of arithmetical soundness as well. However, in any language of the form L + one can speak about "standard" natural numbers; so the formula to be proved can now be phrased as {nat(x)} 81 {true}, and this version can be proved. This shows that the essence of Harel's approach lies in the ability to speak in any assertion language of the form L + about natural numbers together with the restriction on the interpreta­tions assuring that these are the "standard" natural numbers. 
2.12 Bibliographical Remarks 
The proof system H (with the exception of Rule 3) and the example in Section 2.2 are from [27]. Rule 3 is from [37], which also contains the first proof of soundness of (an extension of) H. The terminology of "establishing'' and "pre­serving" an invariant, as well as the example in Section 2.5, is from [16]. The idea of annotating a program with the relevant assertions is first expressed in [37]. A different proof of Wand's incompleteness result is given in [24]. The incomplete­ness of the class of recursive assertions and the completeness of the class of recursively enumerable assertions mentioned in Section 2.10 are also proved in (39]. In (52] a completeness result similar to that of Section 2.11 is presented. The first proof rules for total correctness of while programs within the framework of Hoare's logic are presented in [42]. In (22] various proof rules for total correctness of while programs presented in the literature are discussed and compared. 

3. PARAMETERLESS PROCEDURES 
For clarity, we have separated the issues concerning procedures from those of scope and parameter mechanisms. Parameterless procedures are discussed next; the treatment of parameters is in Section 6. To simplify the discussion, we restrict our attention to the case of one procedure declaration. All results of this section can be straightforwardly generalized to the case of more than one procedure declaration. 

3.1 Nonrecursive Procedures 
We first consider the simpler !:ase of a nonrecursive procedure. Assume a procedure declaration P *== So where So E fl1 is the procedure body of P, and extend the set of programs fl1 by allowing the programs to contain the calls of P. Call this extended class of program .S1. Each procedure call P refers to the declaration P <=So. The requirement that So E fl1 implies that the procedure P is not recursive. 

To deal with the procedure calls in the correctness proofs, we supplement the proof system H by the following proof rule. 
RULE 7: PROCEDURE CALL RULE 

{p} So {q} 
{p} p {q} . 

To consider the problem of soundness and completeness of the resulting system we must first extend the meaning function .fi1 to programs from .S1. For S E .S1 let S[So/P] denote the program resulting from replacing all occurrences of Pin 
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S by So. In other words, S[ So/ P] is the macro expansion of S. For S E Yi\ Y we 
define .A1(S) to be equal to . .tt'AS[So/P]). 

Thus .41r(P) = .4tr(So), which implies that the rule of procedure calls is sound. 
The fact that Rules 2-5 are sound in the case of Y and the definition of .411(8) 
for S E Yi trivially imply the soundness of Rules 2-5 in the case of Yi . 

It should also be clear that the above proof system for Yi is complete in the 
sense of Cook (i.e., that I E Exp(L, .'Ii) and 1=1 cp implies Tr1 f-H+Rule7 cp). The 
additional case of procedure calls is easily handled: if 1=1 {p} P {q}, then 1=1 {p} 
So {q}; thus Tr1 1-H {p} So {q} by the previous completeness result; that is, Tr1 
l-H+Rule7 {p} P {q}. The proof of other cases is the same as in Section 2.8. 

3.2 The Recursion Rule 

When the declared procedure P <==So is recursive, that is, when So E Yi\«?, the 
above system is still sound but obviously incomplete: an attempt at proving {p} 
P { q} results in an infinite regression. A way to overcome this difficulty has been 
suggested in [26]. The rule one should adopt is the following. 

RULE 8: RECURSION RULE 

{p} P {q} I- {p} So {q} 
{p} p {q} 

The reasoning presented by this rule is the following: infer {p} P { q} from the 
fact that { p} So { q} can be proved (using the other rules and axioms) from the 
assumption { p} P { q}. Rule 8 is actually a translation of the so-called Scott's 
induction rule (see [50]) into this framework. 

As an example of a proof using the recursion rule, consider the procedure 
declaration P <== So for 

So = if x = 0 then y := 1 else x := x - 1; P; x := x + 1; y := y . x fi. 

We now prove {x::::: O} P { y = x!} in the system H augmented with the recursion 
rule. 

By the recursion rule it is enough to prove 

{x::::: O} P {y= x!} f--H {x::::: O} So {y = x!}. 

Assume 

{x::::O} P {y=x!}. 

By the assignment axiom, 

{y · x = x!} y := y · x {y = x!} 

and 

{y · (x+ 1) = (x+ 1)!} x:=x+ 1 {y. x=x!}; 

so, by the composition rule, 

(13) 

(14) 

(15) 

{Y· (x+l)=(x+l)!}x:=x+l;y:=y·x{y=x!}. (16) 

Since the implication 

y = x! ~ y · (x + I) = (x + 1) ! (17) 
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is true, by the consequence rule and (13), 

{x;::: O} P {y · (x + 1) = (x + 1)!}. 

(16) and (18) imply, by the composition rule, 

{x;::: O} P; x := x + 1; y := y · x {y = x!}. 

On the other hand, since the implication 

x;:::O/\x?*O~x-l;:::O 

is true, and, by the assignment axiom, 

{x - 1 ;::: O} x := x - 1 {x;::: O}, 

we get by the consequence rule 

(18) 

(19) 

(20) 

(21) 

{x;::: 0 /\ x ?* O} x := x - 1 {x;::: O}. (22) 

By the composition rule we now get from (19) and (22) 

{x;::: 0 /\ x ~ O} x := x - 1; P; x := x + 1; y := y • x {y = x!}. (23) 

Since 

x;::: 0 /\ x = 0 ~ 1 = x! 

is true, and, by the assignment axiom, 

{l'=x!}y:= 1 {y=x!}, 

we get by the consequence rule 

{x;::: 0 /\ x = O} y := 1 {y = x!}. 

(23) and (26) finally imply by the if-then-else rule 

{x =:::: O} So {y = x!}, 

which was to be proved. 
Of course, strictly speaking, we have only proved that 

(17), (20), (24) 1-e+Rules (x 2:::: O} P {y = x!}. 

3.3 Insufficiency of the Recursion Rule 

(24) 

(25) 

(26) 

(27) 

However, the system H augmented with the recursion rule is not complete. As 
evidence we now show that there is no way to prove in it that in the case of the 
above procedure declaration a call of P does not change the value of x; that is, 
there is no way to prove that {x = z} P {x = z}. 

Suppose by contradiction that {x = z} P {x = z} can be proved in the system. 
We can assume that all assertions used in the proof do not have y as a free 
variable (otherwise, y can be everywhere replaced by, say, 0). We can also assume 
that the last rule applied was that of consequence. So for some p and q such that 
the formulas 

x=z~p (28) 

and 

(29) 
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are true (under the standard interpretation in natural numbers) {p} P {q} can 
be proved. Consecutive applications of the consequence rule can be combined 
into one. Thus we can assume that in the proof of { p} P { q} the last rule applied 
was the recursion rule. In other words, the premise {p} P {q} I- {p} So {q} can 
be established. Hence, under the assumption of {p} P {q} both {p /\ x = O} 
y := 1 {q} and {p /\ x ;': O} x := x - l; P; x := x + l; y := y · x {q} can be proved. 

The provability of the first formula implies that 

p/\x=O~q (30) 

is true (by assumption, y is not free in q). 
The other formula had to be proved using the assumption { p} P { q}. For some 

PI and QI we have that PI ~ p and 

(31) 

is true (to obtain {pi} P {qI} by the consequence rule) and both {p /\ x ;': O} 
x := x - 1 {PI} and {qi} x := x + l; y := y · x {q} hold. Provability of the second 
correctness formula implies that 

Q1 ~ q[x + l/x] 

is true. (31) and (32) imply that 

q~ q[x + l/x] 

is true. But (29) implies that q[x + I/x] ~ x + 1 = z is true; so, by (33), 

q~x+I=z 

is true. From (29) and (34) we get that 

(32) 

(33) 

(34) 

q ~false (35) 

is true. On the other hand, from (28) and (30) x = z /\ x = 0 ~ q is true; so, by 
(35), x = z /\ x = 0 ~false is true, which gives the desired contradiction. 

3.4 The Proof System G 

The system H augmented with the recursion rule is thus incomplete. Therefore, 
following Gorelick [19], we supplement this system by the following axiom and 
proof rules, which lead to a complete proof system. 

AXIOM 9: INVARIANCE AxIOM 

{p} p {p} where var(p) n var(So) = 0. 

RULE 10: SUBSTITUTION RULE I 

{p} p {q} 
where z n var(So) = 0 and y n var(So) = 0. 

{p[y/z]} P {q[j/z]} 

RULE 11: SUBSTITUTION RULE II 

{p} p {q} 
where z n var(So, q) = 0. {p[y/z]} p {q} 
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RULE 12: CONJUNCTION RULE 

{p} p {q}, {p'} p {r} 
{p /\p'} p {q /\ r} 

Here j and z denote sequences of variables of the language L. p[ y / i] stands for 
a simultaneous substitution of the variables from y for the variables from z in p. 
var(So) denotes the set of all variables which occur in S 0 , and var(p) denotes the 
set of all free variables of p. It should be clear what we mean by var(So, q), etc. 

Let us denote the resulting proof system by G. 

3.5 An Example of a Proof in G 

To see how the additional rules of G are used in actual proofs, we now prove the 
already mentioned formula {x = z} P {x = z} where P is the factorial procedure 
from Section 3.2. To prove { x = z} P { x = z}, it is enough to establish the premise 
{x = z} P {x = z} f- {x = z} So {x = z} of the recursion rule. 

Assume 

{x = z} P {x = z}. (36) 

By substitution rule I, 

{x = u} P {x = u}, (37) 

and, by the invariance axiom, 

{u = z - l} P {u = z - l}; (38) 

so, by the conjunction rule and the consequence rule, 

{x = z - l} P {x = z - l}. (39) 

Now, applying the assignment axiom and the composition and consequence rules, 
we get from (39) 

{x = z} x := x - l; P; x := x + l; y := y . x {x = z}. (40) 

By the consequence rule we can conjoin the preassertion with the formula x o;f 0. 
Also, 

{x = z /\ x = O} y := 1 {x = z} (41) 

holds. By the if-then-else rule we now get (x = z} So {x = z}; so we have 
established the desired premise. 

This proof did not use substitution rule II. However, that rule is needed, for 
example, to prove { x 2: O} P { y 2: 1}. The proof makes use of the already proved 
formulas {x 2: O} P {y = x!} and {x = z} P {x = z} and an instance {z 2: O} P 
{z 2: O} of the invariance axiom to get, by the conjunction rule, {x 2: 0 /\ x = z 
/\ z 2: O} P {y = x! /\ x = z /\ z 2: O}. Using the consequence rule, we now get 
{x = z /\ x 2: O} P { y 2: 1}. Finally, by substitution rule II, (x = x /\ x 2: O} P 
{ y 2: l}; so {x 2: O} P { y 2: 1} by the consequence rule. 

These proofs shed light on the way the new rules are used. Using substitution 
rule I, one simply renames variables not used in the program (so-called auxiliary 
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variables). In contrast, substitution rule II is used to get rid of the auxiliary 
variables from the preassertion. Auxiliary variables are typically used here to 
"freeze" the values of the program variables before a procedure call. In proofs 
usually two different premises about a procedure call are needed: one derived by 
the recursion rule and the other one obtained by the invariance axiom. The 
conjunction rule replaces these two premises by one. Finally, observe that the 
invariance axiom can be proved straightforwardly using the recursion rule. 
However, since it is often used, it is useful to have it formulated separately. 

3.6 Semantics of Recursive Procedures 

Before we dwell on the question of the soundness and completeness of G, we 
have to define the meaning function At1 on programs from 511\9: We do so in a 
way which simplifies our considerations concerning the soundness of G. The 
semantics we provide is usually called an approximating semantics. 

Let n stand for a program from !I' which never halts. Let us define a program 
S~n> E Y'by induction on n: 

Sb0 ) = n; 
Sbn+i> = So[Sbn>/P]. 

A straightforward proof by induction on the structure of S shows that, for all 
S1, 82 E Y'and SE 511, if At1(Si) c At1(S2), then .H1(S[Si/P]) c At1(S[S2/P]). 
This implies (by induction on n) that, for all n, At1(S~n» C .fi1(S~n+t> ). Thus, for 
all SE Yl, At1(S[Sl;1>/P]) c .H1(S[S~n+i>;P]). 

For SE 9'l we now define A1(S) by putting 

.H1(S) = U At1(S[Sbn>;p]). 
n-0 

In particular, 

By the above, .H1(S) is a (partial) function. 

3.7 Soundness of G 

We wish to prove that the proof system G is sound, that is, that, for every 
interpretation I and correctness formula <p, if Tr1 1-o <p, then 1=1 cp. The fact that 
G is not a usual proof system in the sense of first-order logic forces us to exercise 
some care while doing so. It is, for example, not clear to what extent we can use 
the fact that Rules 2-5 are sound in the case of nonrecursive procedure declara­
tions and in what sense the recursion rule is to be proved sound. 

To deal with these problems, we first transform the system G into a proof 
system K which uses the usual notion of proof. 

The formulas of K are implications cl>~ it (called correctness phrases), where 
cl> and it are finite sets of correctness formulas. If cl> is empty, we write it instead 
of cl> ~ it. For each axiom <po and proof rule 

<p1, • • ., <pn 

<pn+l 
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of G, we adopt in K an axiom <I> - cpo and a proof rule 

We also have the rule 

<I> - <p1, · ·., C/)n 

(I> - <{ln+I 

{p} P {q} - {p} So {q} 
{p} p {q} 

corresponding to the recursion rule, the collection rule 

<I> - '¥1, ··.,<I>~ '¥n 

<I> - '¥1, · ·., '¥n 

and the selection axiom <I> - cp where cp E <I>. This translation of G into K 
corresponds to a translation of a Gentzen natural deduction system into a Gentzen 
sequent calculus. 

In the following discussion we write ( P <= S I <p) instead of cp to indicate that 
each procedure call P in <p refers to the procedure declaration P <= S. 

Definition. Let I be an interpretation of L. 

1. An implication (P <=So I <I>~'¥) is called I-good if, for every n, (P <= s~n) I <I> 
~ '¥) is true under I. 

2. For a nonrecursive procedure declaration P <= 8: 
a. (P <= SI <I> ~ '¥) is true under I if the truth under I of (P <= SI <I>) 

implies the truth under I of (P <=SI i'); and 
b. (P <=SI <I>) is true under I if, for all cp E <I>, (P <=SI rp) is true under I. 

Definition 

1. A correctness phrase is called good if it is /-good for all interpretations I. 
2. A proof rule of K is called good if for all interpretations I it preserves the /­

goodness of correctness phrases. 
3. The proof system K is called good if all its axioms and proof rules are good. 

Observe that, for every set of assertions T, TU {cp} f-a '¥ iff T f-K <p ~'¥.The 
proof runs by induction on the length of proofs. Thus, in particular, for every set 
of assertions T, T f-o cp iff T f-K cp. 

This, together with the observation that (P <=So I cp) is true under I iff it is/­
good, implies the following claim: 

CLAIM 1. If the proof system K is good, then the proof system G is sound. 

Also, the following holds: 

CLAIM 2 

1. If, for each n, (P <= s~n) I cp) is valid, then (P <=So I <I> - cp) is good. 
2. If for each n a proof rule 

(P <= S6") j 'l'i) 

(P <= S6") I '1'2) 
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is sound, then the proof rule 

is good. 

(P <=So I <I>~ '¥1) 

(P <=So I <I>~ '¥2) 

Thus the axioms and proof rules of K which are translations of axioms and 
proof rules of Hare all good, as the system His sound in the case of a nonrecursive 
procedure declaration. 

By Claims 1 and 2, to prove the soundness of G it is now enough to prove 

a. the validity of the invariance axiom in the case of a nonrecursive procedure 
declaration; 

b. the soundness of substitution rules I and II and the conjunction rule in the 
above case; 

c. the goodness of the rule 

{p} P {q} ~ {p} So {q} 
{p} p {q} 

that is, that for any I, if for all n (P <= s6n) I {p} p {q} ~ {p} So {q}) is true 
under I, then for all n ( P <= s6nl I { p} P { q} ) is true under I; and 

d. the goodness of the selection axiom and the collection rule. 

Proofs of a and b are straightforward. To prove c, assume that for a given I and 
all n 

(P <= s6n) I {p} p {q} ~ {p} So {q}) is true under I. (42) 

Clearly (P <= S6°l I {p} P {q}) is true under I. Assume now that for some n 

(P <== s6n) I {p} p {q}) is true under I. (43) 

Then by (42) 

(P <= s6n) I {p} So {q} >is true under I. (44) 

But So[S6n) /P] = s6n+I); so (44) implies that (P <== s6n+I) I {p} p {q} > is true under 
I. So, by induction, (43) holds for all n. 

d is obviously true. Thus the system G is indeed sound. 

3.8 Completeness of G in the Sense of Cook 

We now prove the completeness of G for 5'l in the sense of Cook. Let x be a 
sequence of all variables which occur in So and let z be a sequence of some new 
variables of the same length as x. 

Assume that I E Exp(L, YI). There exists an assertion q0 which defines 
postr(x= z, P). The correctness formula {x= z} P {qo} is called the most general 
formula for P, since any other true (under I) correctness formula about P can be 
derived from {x = z} P {qo} in G. This claim is the contents of the following 
lemma. 

LEMMA l. If l=r {p} S {q}, then Trr U {x = z} P {qo} 1-a {p} S {q}. 
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PROOF. The proof proceeds by induction on the length of S. If S ~ P, the proof is identical to the completeness proof for H. 
Suppose that S = P. Assume 

{.X = .Z} P {qo}. (45) 
By the invariance axiom, 

(46) 
where Pi = p[ u/ z] and u is a sequence of some fresh variables of the same length as z. 

(45) and (46) imply by the conjunction rule that 

{..i = z /\p1[z/x]} P {qo /\p1[z/.i]}. (47) 
We now show that 

F1 Qo /\Pi [z/.i] ~ Q1 where q1 = q[u/z]. (48) 
Assume F1 (qo /\p1[.Z/.i])(r). By the definition of q0 there exists a state a such that u#1(P) (a) = rand u#1(.i = z) (a). Suppose now that F1 'Pi [z/.i](a). Then, by the validity of the invariance axiom, F1 'JJ1[.Z/.i](r), since u#1(P)(a) = r. This contradicts our assumption, so F1 Pi [z/.i](a). Since F1 (.i = z /\p1 [z/ .i]) ~ p1, we now get F1 p1(a). But, by the soundness of substitution rule I, also F1 {pi} P 
{qi}; so finally F1 qi(r). This proves (48). (47) and (48) imply by the consequence rule that 

{.i = .z /\p1[z/x]} P {qi}. 

Now, by substitution rule II, 

{.i = .f /\pi} p {q1}, 
since .i = .i /\p1 = (.f = z /\pi[.Z/.i])[.ijz]. By the consequence rule, 

{pi} p {qi}; 

so, by substitution rule I, 

{p1[z/u]} P {q1[z/u]}. 

Clearly, F1 p - Pi [Z/u] and F1 q - q1 [z/u]; so, by the consequence rule, 
{p} p {q}, 

which was to be proved. 0 

(49) 

(50) 

(51) 

(52) 

(53) 

The next lemma shows that the hypothesis {.i = z} P {qo} used in the above 
lemma can actually be proved in G. 

LEMMA 2. Tr1 1--a {.f = z} P {qo}. 

PROOF. The proof is immediate. By the definition of Qo, F1 {.i = £} P {qo}; so 
F1 {.i = z} So {qo} since A1(P) = ult1(So). By Lemma 1, Tr1 U {.f = z} P {qo} 1-c {i = z} So {qo}; so, by the recursion rule, Tr1 1--a {i = z} P {qo}. D 
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The completeness of G is the immediate consequence of Lemmas 1 and 2. Note 
that in the above proof the auxiliary variables in z were used to "freeze" the 
values of the variables in x before the procedure call. 

3.9 Total Correctness of Recursive Procedures 

Recursive procedures introduce another possibility of nontermination of pro­
grams. Clearly, the recursion rule does not provide any means to establish 
termination of the procedure calls, and so it is appropriate for proofs of partial 
correctness only. 

Sokolowski [53] proposed the following refinement of the recursion rule, which 
leads to proofs of total correctness. This rule can also be found in Clarke [lOa], 
where it is attributed to M. O'Donnell. 

RULE 13: RECURSION RULE II 

<p(O), {p(n)} P {q} f- {p(n + l)} So {q} 
{3np(n)} P {q} 

Here, as in while rule II, p(n) is an assertion with a free variable n which does 
not appear in So and ranges over natural numbers. 

The intuition behind this rule is the following. Call a computation (q, n)-deep 
if it terminates in a state satisfying q and if at any moment at most n calls of P 
are active in it. {p(n)} S {q} is to be interpreted here as a statement that any 
execution of S starting in p(n) is (q, n)-deep. The assumption { p(n)} P { q} thus 
states that executions of P starting in states satisfyingp(n) are all (q, n)-deep and 
is used to show that all executions of P starting in states satisfying p(n + 1) are 
(q, n +I)-deep. The latter is shown by proving {p(n + l)} So {q}. 

Using this rule, we can easily prove the correctness formula { x 2:: 0} P { y = x ! } 
considered in Section 3.2 by taking p(n) = x ;:::: 0 A x = n - 1 and repeating the 
proof from Section 3.2. 

However, a proof analogous to that in Section 3.3 shows that the system Ho 
supplemented with recursion rule II is incomplete. Therefore, essentially following 
[23], we extend it to a proof system which is arithmetically complete. The 
extension is very similar to the corresponding extension of H + Rule 8 to G. We 
adopt substitution rule I and the following two proof rules. 

RULE 14: INVARIANCE RULE 

{p} p {q} 
{p/\r}P{q/\r} 

RULE 15: ELIMINATION RULE 

{p} p {q} 

{3z p} P {q} 

Call the resulting system Ga. 

where var(r) n var(So) = 0. 

where z n var(So, q) = 0. 

It should be clear that, if we substitute Rules 14 and 15 in G for the invariance 
axiom, substitution rule II, and the conjunction rule, then we also get a proof 
system for partial correctness which is complete in the sense of Cook. The 
completeness proof is in fact identical to that of G. The main reason for adopting 
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a different extension here than in Section 3.4 is the fact that the invariance axiom 
is not valid when used for proofs of total correctness. 

The arithmetical soundness of Go can be proved in a way analogous to the way 
the soundness of G was proved. When dealing with recursion rule II, one uses the 
premise ']J(O) to ensure that 11=1 (P ~ S6°> I {p(O)} P {q}}. 

The proof of the arithmetical completeness of Go is "dual" to the completeness 
proof of G. Before presenting the proof, we introduce the following notion. 

pret1(S, q) = pre1(S, q) n { 8 : 3T [ Af1(8)(8) = T]}. 

pret stands in the same relation to total correctness as pre does to partial 
correctness: we have 11=1 {p} S {q} iff {8: 1=1 p(8)} C pret1(S, q). 

Let x and z be defined as in Section 3.8 and let n be a fresh variable. Assume 
now that I is an arithmetical interpretation. It can be shown that there exists an 
assertion po(n) such that for all states 

1=1 po(8) iff 1=1 nat(n)(8) and 8 E pret1(8bk>, x = z), 
where k = 8(n). 

The following lemmas show that po(n) plays a role here analogous to that of Qo 
in the completeness proof of G. 

LEMMA 3. If 11=1 {p} s {q}, then Tr1 u {po(n)} p {.i = z} f--ao {p} s {q}. 

PROOF. The proof proceeds by induction on the length of S, and only the case 
S == P needs explanation. 

Assume 

{po(n)} p {.i = z}. (54) 

By the invariance rule, 

{po(n) /\ q1[z/.i]} P {x = z /\ q1[z/.i]}, (55) 

where Q1 == q[u/z] and ii is a sequence of some fresh variables of the same length 
as z. The implication 

x = z /\ q1[z/x] ~ q1 

clearly holds; so, by the consequence rule, 

{po(n) /\ q1[z/x]} P {q1}. 

By the elimination rule, 

{3n3z (po(n) /\ Q1[.Z/.i])} P {q1}. 

We now show that 

1=1 Pi~ 3n3.Z (po(n) /\ q1[z/.i]), where p1 == p[u/z]. 

(56) 

(57) 

(58) 

(59) 

First, note that, by the arithmetical soundness of substitution rule I, 11=1 {P1} 
P {q1}. Assume 1=1 p1(8). By the definition of 11=1 there exist k and a state T such 
that .A1(S~>)(8) = T and 1=1 q(T). Now let 81 be the state which agrees with 8 on 
all variables not listed inn, z and such that 81(2) = T(.i) and 81(n) = k. It is easy 
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to see that ~1 (po(n) /\ q1[z/.i])(oi). This shows that ~1 3n3z (po(n) /\ 
q1[z/x])(8); so (59) is proved. 

(58) and (59) imply by the consequence rule that 

{pi} p {qi}; (60) 

so, as in Section 3.8, 

{p} p {q}. 0 (61) 

LEMMA 4. Tr1 f--c" {po(n)} p {x = z}. 

PROOF. Observe that, by the definition of po, l~J {po(n + 1)} p {x = z}; so 
1~1 {p0 (n + l)} So {.i = z} as JlfJ(So) = .A1(P). By Lemma 3, Tr1 U {po(n)} P 
{x = z} f-a0 {po(n+ 1)} So {x = z}. Clearly, ~1 '.Po(O); so, by recursion rule II, Tr1 
f-a0 {3n p 0(n)} P {x = z}. But the implication po(n) - 3n po(n) obviously holds; 
so, by the consequence rule, Tr1 f-c0 {po(n)} P {x = z}. D 

The completeness of Go now follows from Lemmas 3 and 4. Note that in the 
above proof the auxiliary variables in z were used to "freeze" the values of the 
variables in x after the procedure call. 

It is easy to see that, following the reasoning presented above, one arrives at a 
dual completeness proof of the already-mentioned system H + Rules 8, 10, 14, 
and 15. 

3.10 Bibliographical Remarks 

Most of the papers dealing with procedures within the framework of Hoare's logic 
do not discuss parameterless procedures. In particular, Rule 8 is a special case of 
a rule given in [26]. The example in Section 3.2 is a modification of an example 
given by Hoare [26]. The semantics of recursive procedures in Section 3.6 is a 
translation into our framework of the corresponding definition from [50]. It is 
often used in the literature. The justification of the soundness of G seems to be 
new. The argument used in justifying c in Section 3. 7 corresponds to the proof of 
the soundness of Scott's induction rule and often appears in the literature. The 
completeness proof given in Section 3.8 is a special case of the completeness proof 
presented in [19]. A similar completeness result was proved independently (but 
somewhat later) in [24]. The presentation of the proof system Go and its com­
pleteness proof in Section 3.9 slightly differs from that of Harel [23]. Harel's 
result was formulated within the context of dynamic logic. A similar completeness 
result was proved in [lOa, 53]. The terminology of "freezing" is due to Harel, 
Pnueli, and Stavi [24]. 

4. VARIABLE DECLARATIONS 

Let us now consider the least class gv of programs which, similarly to class Y, 
contains the assignment statements and is closed under the use of the composition 
(;), while, and if-then-else constructs but additionally satisfies the following 
condition: 

if SE gv, then, for each variable x, begin new x; Send E gv_ 
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new x stands for a declaration of a variable x which is valid within the block 
begin new x; S end; x is a local variable with respect to this block. 

The occurrence of a variable x in a program S is called bound whenever it is 
within a subprogram of S of the form begin new x; 8 1 end. An occurrence of x 
in S is free if it is not bound. Let free(S) denote the set of all variables which 
occur free in S. We define free(S,p) analogously. 

By S[y/x] we mean a substitution of y for the free occurrences of x in a 
program S. It is defined analogously to the substitutionp[y/x] for an assertionp. 
In particular, variable clashes which arise are resolved by appropriate renamings. 

Let w stand for a special constant to which we initialize all local variables. We 
might view w as a symbol standing for "undefined." We now adopt the following 
proof rule: 

RULE 16: VARIABLE DECLARATION RULE 

{p /\ y = w} S[y/x] {q} 
where y Et free(p, S, q). {p} begin new x; Send {q} 

The renaming of x for y is performed here to distinguish between the occur­
rences of local x in S and possible free occurrences of nonlocal x in p and q. The 
expression y = w captures the idea of initialization. 

4.1 Semantics for Variable Declarations 

In order to pose the question of soundness of the variable declaration rule, as 
usual we must first define the meaning of the programs involved. We follow here 
the approach of Clarke [9]. 

To this purpose we redefine the notion of a state. By a state we now mean a 
finite function from the set of variables into the domain D of an interpretation I. 
For a state a, if x E dom(a) and d E D, then a U (x, d) stands for the extension 
of a yielding d when applied to x. DROP(a, x) stands for a state obtained from a 
by deleting x from its domain. 

We define the meaning of a program in the same way as before, with the only 
new case being that of a block. For all statements S we assume that .AI(S)(a) is 
undefined if free(S) g dom(a). 

Let 81 =begin new x; Send, and suppose that free(Si) ~ dom(a). We define 

.4tf(S1 )(a)= DROP(.AI(S[y/x])(a U (y, f!l)), y) 

where y is the first variable not in dom( a) and f!1 is the value assigned to the 
constant w. 

Since we are using a new definition of a state, we have to provide a new notion 
of truth under I. Given an assertion p and a state a, we define t=I p(a) to hold in 
the event that p becomes true when all its free variables lying in dom(a) get 
assigned values provided by a and when the other free variables are universally 
quantified. For example, t=IN (x = 0 /\ z = z)((x, O)) holds. Thus, for t=I p(a) to 
hold we do not need to have free(p) ~ dom(a). Thanks to this definition, we can 
now retain the definition of truth of an asserted program under I given in Section 
2.4, with the only difference being that the new definition of state is now used. As 
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a result, various former definitions and results do not need to be reconsidered 
with respect to the newly introduced semantics. 

4.2 Soundness and Completeness of the System H + Rule 1 6 

Soundness of Rule 16 follows from the fact that 

.;{{1(S[y/x])(a U (y, d)) = .--tr1(S[z/x])(a U (z, d)) 

for any program S and y, z g dom(a). (62) 

To prove this fact, one should actually strengthen the claim and rather prove 
that, for any program Sand Yi. ... , Yn, z1, ... , Zn !l dom(a), 

.J1r(S[yi}xi] • · • [yn/Xn])(a U (y1, di) · · · (yn, dn)) 
= .lt'r(S[z1/xi] · • · [zn/Xn])(a U (z1, di) · · · (zn, dn)). 

The last claim can be proved by induction on the structure of S, where only the 
case of blocks requires some caution due to the possibility of various variable 
clashes. 

Soundness of the rules of H was proved (or rather stated) with respect to a 
different notion of state. But, since virtually the same definition of truth of an 
asserted program under I is now used, the same proofs of soundness apply. Thus 
the system H + Rule 16 is sound. 

We now turn to the problem of the completeness of H + Rule 16. The 
definitions of pre, post, and expressiveness given in Section 2.8 should now be 
interpreted with respect to the new notion of state. 

The system H + Rule 16 is easily seen to be complete in the sense of Cook. 
The case of blocks is dealt with using (62), and the other cases are the same as in 
the completeness proof of H. 

4.3 Adding Procedures 

Having settled the case of while programs, we now pass to the programs allowing 
procedure calls. 

Consider an extension Y'I of gv in which the programs are allowed to contain 
calls of a nonrecursive parameterless procedure P. We assume a procedure 
declaration P <=So where So E S"v. To provide a meaning to programs from 9"]', 
we proceed as in Section 3.1. 

A program S E Y'l\S"v assumes the meaning assigned to it by the clause 

.A'tr(S) = .A'11(S[So/P]), 

where S[So/P] stands for the substitution of all occurrences of P by So. Because 
of possible variable clashes, we now have to define S[So/ P] carefully. S[So/ P] is 
defined by induction, with the main clause being 

begin new x; S end [So/ P] 

_{begin new x; S[So/P] end 
= begin new x'; S[x' /x][So/P] end where x' E free(S, So) 
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The aim of this clause is to avoid binding any of the free occurrences of the 
variables in So through the substitution process. The other clauses are defined in 
a natural way. 

To prove the correctness of programs from Y], we now use in addition Rule 7. 
However, to apply Rule 16 to programs from YI we have to require additionally 
that y E free(So). It is easy to see that otherwise this rule becomes unsound. To 
illustrate the use of Rule 16 in conjunction with Rule 7, we give the following 
example. Consider the procedure declaration P <== x := z and the program S = 
z := 1; begin new z; z := O; P end. We now prove {true} S {x = l}. 

By the assignment axiom, 

{z = l} x :~ z {x = l}; 

so, by Rule 7, 

{z = l} P {x = l}. 

By the assignment axiom and the consequence and composition rules, 

{z = 1 /\ y = w} y := O; P {x = l}, 

from which we obtain the desired formula {true} S {x = l}. 
It should be noted that, according to ALGOL 60 semantics, the value of x after 

the execution of S should be 1 and not 0. 
We now prove the soundness and completeness in the sense of Cook of the 

system H + Rules 7, 16. We proceed as in Section 3.1. The definition of semantics 
of blocks given above provides the meaning for programs from Y) in terms of the 
meaning of programs from yv_ Therefore, we can easily reduce the problem to 
that of the soundness and completeness of H + Rule 16 for !J>Y. The only case in 
both proofs which requires some explanation is that of blocks. 

If x, y E free(So), then, for S E Y), 

At1(S[y/x]) = At1(S[y/x][So/P]) = At1(S[So/P][y/x]) 

and 

Af1(begin new x; Send)= At1(begin new x; S[So/P] end). 

If y E free(So) and x E free(So), then 

and 

Af1(S[y/x]) = .fi1(S[y/x][So/P]) = At1(S[x'/x][So/P][y/x']) 

Af1(begin new x; S end) = Af1(begin new x; Send[ So/ P]) 

= At1(begin new x'; S[x'/x][So/P] end) 

where x' ~ free(S, So). 

This shows that in both cases the soundness of Rule 16 applied to programs 
from Y1 indeed follows from the soundness of Rule 16 applied to programs from 
.<:r. Similar reduction takes care of the appropriate case in the completeness 
proof. 
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We now consider the case of recursive procedures. To provide a semantics in 
the case in which P is recursive, we proceed as in Section 3.6. If we assume now 
that So E Y'!\'l'v, we can define a meaning of a program SE Y!\Y'v by putting 

.lff1(S) = U .lft1(S[ S bn) / P]) 
n=O 

Sbn+l) = So[Sbn)/P]. 

Using these definitions, the proof system G + Rule 16 for Y'I is sound and 
complete in the sense of Cook. Indeed, the arguments used in Sections 3. 7 and 3.8 
can be applied here without any changes. The additional case of blocks is reduced 
as above to the already handled case of programs from Y'v. 

4.4 Problems with Uninitialized Variables 

In Rule 16 we incorporated the assumption that each local variable is initialized 
by using the formula y = w. To prove the soundness (and completeness) of this 
rule, we were forced later to reflect this assumption while defining semantics for 
blocks. But is this assumption needed? 

We might equally well drop the formula y = w from the premise of the rule 
and, while providing a semantics, initialize each local variable to, say, the first 
element of the domain of I not in range(a). It should be clear that with such 
changes the claim (62) retains its validity; so both the soundness and the 
completeness proofs remain valid. 

Why then did we not adopt this simpler solution? The answer is subtle. 
Consider the following correctness formula: 

{true} begin new z; x := z end; begin new u; y := u end {x = y}. 

According to the semantics we adopted and also the semantics we have just 
suggested, this formula is true under any interpretation I. It is also easy to prove 
it in the system H + Rule 16, since clearly both 

{true} begin new z; x := z end {x = w} 
and 

{x = w} begin new u; y := u end {x = y} 

can be proved. 
If, however, we adopt the proposal just suggested, we cannot find any inter­

mediate assertion which would play the role of x = w above. What is more, the 
suggested semantics results in an inexpressiveness of any L relative to any I and 
yv ! (The case in which I I I = 1 should be excluded here, since the suggested 
semantics is then ill-defined.) To see this, note that the set post1(true, begin 
new z; x := z end) is not definable by any formula of L. Thus the completeness 
proof is indeed valid but vacuously so. 

All these problems were caused here by the use of uninitialized local variables. 
We could avoid these difficulties by simply disallowing programs in which some 
local variables are uninitialized. Such a class of programs can easily be defined, 
and the newly suggested approach can be taken in dealing with it. This is the 
solution adopted in [14]. 
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4.5 Scope Issues 

Our discussion concerning local variables would not be complete without provid­
ing an answer to the following seemingly innocent question. Why did we not 
adopt the following rule? 

RULE 17: VARIABLE DECLARATION RULE II 
(p[y/x] ;\ x = w} S {q[y/x]} 

where y E free(p, S, q). {p} begin new x; Send {q} 

Here the substitution is performed in assertions and not programs; conse­
quently, the rule should be easier to use and handle. 

The answer touches the issue of the scope of identifiers in programs. It is not 
difficult to see that the proof systems H + Rule 16 and H + Rule 1 7 are 
equivalent. However, if we allow procedures, the corresponding proof systems H 
+ Rules 7, 16 and H + Rules 7, 17 are no longer equivalent. To see this, take the 
correctness formula {true} S {x = l} considered in Section 4.3. It is easy to see 
that it cannot be proved in H + Rules 7, 17. A straightforward proof shows rather 
that {true} S {x = O} holds. 

We say that a static scope is assumed if each procedure call is evaluated in the 
environment in which the procedure has been declared. In our case this means 
that all free variables of the procedure body are understood to be the free 
variables of the program. If, on the other hand, each procedure call is evaluated 
in the environment in which the procedure is called, then we say that dynamic 
scope is assumed. 

Using this terminology, we can say that Rule 16 leads to static scope, whereas 
Rule 17 leads to dynamic scope. All ALGOL-like languages assume static scope. 
Therefore, one might think that dealing with dynamic scope is irrelevant. How­
ever, as we see in Sections 6 and 7, a theoretical analysis of scope issues within 
the framework of Hoare's logic reveals important differences between these two 
scope assumptions and sheds light on the static scope assumption. 

To conclude this discussion, we provide a semantics for blocks which leads to 
a dynamic scope assumption. This semantics is due to Clarke [9]. For this purpose 
we need a slightly refined notion of a state. By a state we mean here a finite 
sequence of pairs (x, d) where x is a variable and d an element of the domain D 
of an interpretation I. A variable can occur in more than one pair belonging to a 
state. By dom(a) we now mean the set of all variables which belong to a pair 
from a. 

For x E dom(a) let (x, d) be the last pair in a to which x belongs. We define 
this d to be the value of x in state a. a U (x, d) now stands for the result of 
extending a with the element (x, d ), whereas DROP(a, x) stands for the sequence 
obtained from a by deleting the last pair to which x belongs. 

Assume now that free(S1) ~ dom( a) where 81 = begin new x; Send.We define 

.fi1(S1)(a) = DROP(AJ(S)(a U (x, !61) ), x). 

It can be shown that Rule 17 is sound for programs from yv when the above 
semantics is used. Also, the corresponding completeness resvlt concerning H + 
Rule 17 holds. 
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To extend these results to the case of programs admitting procedures, we have 
to provide a semantics for such programs. Given a procedure declaration P ~ So 
and a program S, let S(So/ P> stand for the result of a literal replacement of each 
occurrence of P in S by So. If P is nonrecursive, we define the meaning of a 
program S E 9'!\Y"v by 

Atr(S) = Atr(S(So/P)). 

If P is a recursive procedure, then we put 

"' Atr(S) = u Af1(S(Sbn)/P)) 
n-0 

where Sb0 ) = n and 

The corresponding soundness and completeness results concerning the systems 
H + Rules 7, 17 and G + Rule 17 now follow by the same reasoning as was used 
in Section 4.3. 

Note that the difficulties with the use of uninitialized variables arise in the case 
of dynamic scope as well. 

4.6 Bibliographical Remarks 

Rule 16 (without the formula y = w) is from [26]. The addition of the formula y 
= w first appears in [19]. The use of substitution in programs in the definition of 
semantics of blocks independently appeared in [ 4]. The soundness and complete­
ness of H + Rule 16, H + Rules 7, 16, and G + Rule 16 are special cases of a 
completeness result mentioned in [9] and proved in [1]. [14] provides a detailed 
proof of the soundness and completeness of the system H + Rule 16. Rule 17 
(without y = w) is due to [37], where also its soundness is proved. The complete­
ness of H + Rules 7, 17 and the completeness of G + Rule 17 are special cases of 
the completeness results of [13] and [19], respectively. All these results are 
subsumed by the results of [ 45]. 

5. SUBSCRIPTED VARIABLES 

So far we have allowed assignment to simple variables only. Allowing subscripted 
variables in expressions and assignments leads to extension of the previous 
syntax. To keep things simple we restrict our attention to the case of one­
dimensional arrays, omitting any specifications of the bounds. 

Let d"f/ be a set of array variables. We extend the syntax of L by allowing 
expressions of the form a[t] for a E d"f/and t being an expression, and we now 
allow an assignment a[s] := t where a E df"and s, tare expressions. 

5.1 An Assignment Axiom for Subscripted Variables 

In what follows we assume that conditional expressions of the form ifs = t then 
t 1 else t2 fi (so-called equality conditionals) are allowed. To obtain a better 
picture of the problem, we consider first the case of an assignment when the 
subscript is a simple variable. 

By p[t/a[x]] we denote a substitution of an expression t for the subscripted 
variable a[ x]. It is defined by induction, with the main clause being 

a[z][t/a[x]] =if z = x then t else a[z] fi. 
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Essentially the following axiom was proposed in [29]: 

{p[t/a[x]]} a[x] := t {p}. 

Using this axiom, we can prove 

{x = y} a[x] := 1 {a[y] = l} 

since (a[y] = l)[l/a[x]] =if y = x then 1 else a[y] fi = 1, and this formula is 
implied by x = y. Also, {true} a[x] := 1 {a[x] = l} holds. 

If we now allow arbitrary expressions as subscripts, we run into difficulties. 
Namely, the formula {true} a[t] := 1 {a[t] = l} is no longer valid! To see this, 
observe that, if a[l] = a[2] = 2, then {true} a[a[2]] := 1 {a[a[2]] = l} is not 
true. 

This shows that the above definition of substitution has to be appropriately 
refined for the general case of subscripts being arbitrary expressions. Perhaps the 
simplest solution to this problem is to circumvent it. The above substitution still 
leads to correct results when used for arbitrary subscripted variables if applied 
only to assertions allowing simple variables as subscripts. The main clause of this 
substitution is thus 

a[z][t/a[s]] =if z = s then t else a[s] fi, 

and the case in which an arbitrary expression stands for z is simply not handled. 
Given now an arbitrary assertion p, let p' denote an assertion equivalent top 

which is obtained by "quantifying out" all subscripts which are not simple 
variables. For example, if p is a[ a[2]] = 1, then p' is 3z (a[ z] = 1 /\ z = a[2]). We 
now extend the above substitution to arbitrary assertions by putting p[t/a[s]] = 
p'[t/a[s]]. We finally arrive at a general form of the axiom: 

AXIOM 18: ASSIGNMENT AxIOM FOR SUBSCRIPTED VARIABLES 

{p[t/a[s]]) a[s] := t {p}. 

Note the similarity in form between this axiom and Axiom 1. 
By way of example, we now prove 

{a[2] = 2 ~ a[l] = l} a[a[2]] := 1 (a[a[2]] = l}. 

We have 

(a[a[2]] = l)[l/a[a[2]]] = (3z (a[z] = 1 /\ a[2] = z))[l/a[a[2]]] 

= 3z (if z = a[2] then l else a[z] fi = l 

/\if 2 = a[2] then l else a[2] fi = z). 

The last formula is implied by the assertion a[2] = 2 ~ a[l] = 1. Namely, if 
a[2] = 2 holds, then choose z = 1, and otherwise choose z = a[2]. Thus, by the 
consequence rule and Axiom 18 above, we get the desired result. 

Axiom 18 is also complete in the following sense: if 1=1 {p} a[s] := t {q}, then 
1=1 p ~ q[t/a[s]]. So, if 1=1 {p} a[s] := t {q}, then TR1 f-Rule5+Axiom18 {p} 
a[s] := t {q}, where TR1is the set of all assertions of the extension of L which are 
true under I. 
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5.2 Bibliographical Remarks 

The final form of the axiom is motivated by the solutions given in [15] and (for 
the simpler case) in [ 43]. Validity and completeness of the axiom follow from 
[15], from which the example is taken as well (see also [14]). Different solutions 
for the assignment to subscripted variables are given in (28, 30, 48] and [15] (also 
to be found in [14]). [30] also provides a solution for the case of an assignment of 
the form if e then x else y fi := t and an assignment to pointers. [20] and [21] 
provide solutions for the case of a multiple assignment to subscripted variables. 

6. PARAMETER MECHANISMS 

Parameter mechanisms are among the most troublesome issues in the framework 
of Hoare's logic. One of the reasons is that parameter passing is always modeled 
syntactically by some form of variable substitution in a program, and this leads 
to various subtle problems concerning variable clashes. These difficulties are 
especially acute in the presence of recursion and static scoping. 

In contrast to our exposition of the previous sections, the presentation cannot 
be complete here, as not all problems have been solved in this area. In the 
subsequent discussion we attempt to clarify which particular issues lead to 
difficulties and indicate what still remains to be done in this area. 

We begin our presentation with a treatment of the parameter mechanism of 
call-by-name in the presence of the dynamic scope assumption. These results do 
not concern most usual features of programming languages. However, techniques 
introduced to deal with them form an adequate basis to study more common 
parameter mechanisms under the assumption of static scope. Therefore, it is 
useful to treat these features first. 

6. 1 Call-by-Name 

6.1.1 N onrecursiue Procedures. Consider a procedure declaration of the form 

p C;:= (name(x: v) I So}, 

where (x: v) is the formal parameter list and So E gv is the procedure body. x 
and v are disjoint lists of distinct variables, and the variables in v cannot occur to 
the left of any assignment statement in So. So does not contain procedure calls; so 
P is not recursive. 

In the extension of gv, called 9"2, we allow procedure calls of the form P(ii: t) 
where ii is a list of distinct variables, t is a list of expressions containing no 
variable in ii, and no variable in (ii: t) different from formal parameters occurs 
free in the procedure body 80 • 

All procedure calls mentioned below are assumed to satisfy the above restric­
tions. 

So[ii, t/x, v] indicates the result of simultaneous substitution of the actual 
parameters ii, t for the corresponding free occurrences of the formal parameters x and vin So. 

Following [13], we now supplement the proof system H + Rule 16 by the 
following three proof rules. 
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RULE 19: PROCEDURE CALL RULE II 

{p} So {q} 
{p} P(i: v) {q}. 

RULE 20: PARAMETER SUBSTITUTION RULE 

{p} P(x':u') {q} 
where u n free(p, q) k x'. {p[u, t/x', v']} P(ii: t) {q[u, t/x', v']} 

RULE 21: VARIABLE SUBSTITUTION RULE 

{p} P(u:t) {q} 
{p[s/z]} P(u: t) {q[s/z]} 

where no variable ins or z occurs free in So[u, t/x, v]. 
Call the resulting system C. 
The last two rules are rather difficult to understand because of the restrictions 

imposed on the substituted expressions and variables. To get a better idea of how 
these proof rules are used, consider an example proof in C. 

Assume the declaration P *== (name(x: v) I x := v; a:= v}. According to the 
imposed restrictions, the calls P( y: y + l} or P( y: a + 1) are disallowed, but calls 
P(z: y + 1), P(v: y + 1), or P(v: x + 1) are allowed. We now prove 

{x = z) P(v: y + 1) {v = y + 1/\a=y+1 /\ x = z}. 

To this purpose we have to rename the formal parameter x of the procedure 
occurring free in the assertions. Therefore, we first prove 

{ u = z} P( v: y + 1) { v = y + I /\ a = y + I /\ u = z}. 
We have 

{u = z} x := v; a:= v {x = v /\a= v /\ u = z}; 
so, by procedure call rule II, 

{u = z} P(x: v) {x = v /\a= v /\ u = z}. 

Now, by the parameter substitution rule, 

{u = z} P(x: v') {x = v' /\a= v' /\ u = z}; 

so once again, by the same rule, 

{u = z} P(u: y + 1) {v = y + 1/\a=y+1 /\ u = z}. 
Finally, by the variable substitution rule, 

{ x = z} P( u : y + 1) { v = y + 1 /\ a = y + 1 /\ x = z} . 
The reader can check that in all steps the corresponding restrictions were 

obeyed. Note that the direct step from the call P(x: v) to P(v: y + 1) is not 
allowed. Namely, the parameter substitution rule requires here that the actual 
parameter v in the call P(v: y + 1) be identical toxin P(x: v), as v occurs free in 
the assertion x = v /\ a = v /\ u = z. 
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It is worthwhile to note that the restrictions mentioned in the substitution rules 
are necessary. To see this, consider the procedure declaration P ~ (name(x: ) Ix := O). We now have {u = l} P(x :) {u = l}, but of course {u = l} P(u :) 
{ u = 1} is not true. This shows that the restriction in the parameter substitution 
rule is needed. 

Also, { x = l} P(x:) { x = 1} is not true; so the corresponding restriction in the 
variable substitution rule is necessary as well. 

This artificial example provides a better insight into the nature and use of the 
substitution rules. Note that the variable substitution rule was used here to 
rename free occurrences of the formal parameters in the assertions of the 
correctness formula to be proved. The step from P(x: v) to P(v: y + 1) had to be 
split in two; so the parameter substitution rule had to be used twice here. 

We now continue with the discussion of the system C. 
Let S be a program from .'1'2\Y". We define the meaning of S by putting 

where S(So/ P) E yv is the result of the literal replacement of each procedure call 
P(ii: t) occurring in S by So[ ii, t/ x, v]. 

The results of [13] imply that the proof system C is sound and complete in the 
sense of Cook, where the definition of the meaning of blocks from Section 4.5 is 
used. The proofs are delicate, mainly due to the possibility of various variable 
clashes in the substitution rules. 

The only new case in the completeness proof is that of the procedure calls. We 
present here an argument which only works if the formal and actual parameters 
have no variables in common and if the assertions p and q do not have free 
occurrences of formal parameters. Note that in the above example the first issue 
forced us to use the parameter substitution rule twice, and the second problem 
was resolved by the use of the variable substitution rule. These difficulties are 
resolved in a similar way in the completeness proof of the general case, which is 
a careful refinement of the argument presented below. 

Suppose 

1==1 {p} P(u: t) {q}. 

Then, by definition of .1!1, 

1==1 {p} So[ii, t/x, v] {q}. 

From this it follows due to the above restrictions that 

1==1 {v = t !\p[x/u]} So {q[x/ii]}, 
as no variable clashes arise here. 

So does not contain procedure calls; so, by the completeness of H + Rule 17, 
Tr1 f-c {v= t !\p[.i/u]} So {q[x/ii]}. 

By the rule of procedure calls, 

Tr1 f-c {v = t !\p[i/ii]} P(i: v) {q[x/ii]}. 
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By the parameter substitution rule, 

Tr1 1-c {i = t /\p} P(ii: t) {q}; 
so, finally, by the consequence rule, 

Tr1 1-c {p} P(u: t) {q}. 

Note that the parameter substitution rule can be applied here, since, by the assumption, ii n free(t) = 0 and, by the imposed restriction, ii n (.X u v) = 0; so no variable from ii occurs free in the assertions from the premise of the rule. Note that Rules 19-21 could be replaced here by the simpler rule 

{p} So[ii, t/x, ii] {q} 
{p} P(u:t) {q} 

and soundness and completeness would be preserved. 
If this rule were adopted, the restrictions concerning the procedure calls would be unneeded. However, if this rule were used, its hypothesis would have to be verified each time a procedure call with different actual parameters appeared. As a result, the actual proofs would be longer in general than the corresponding proofs in the proof system C, where it is sufficient to prove a general property { p} So { q} of the procedure body just once. 

6.1.2 Recursive Procedures. [19] contains an extension of the above result to the case of a recursive procedure. The relevant proof system is the following modification of the system G: 

a. in the recursion rule P is replaced by P(.X: ii); 
b. the invariance axiom takes the form 

{p} P(ii:t) {p} 

where p has no free variable occurring free in So[ii, t/x, ii]; 
c. substitution rule I is replaced by the variable substitution rule; 
d. substitution rule II takes the form 

{p} P(ii: t) {q} 
where z n free(Sn[ii, t/x, v], q) = 0; {p[s/z]} P(ii: t) {q} 

e. in the conjunction rule P is replaced by P(ii: t); and 
f. the parameter substitution rule is added. 

Our definition of the meaning of programs containing procedure calls is similar to the definition in Section 4.5 (so using the dynamic scope requirement). Since the procedures now have parameters, we have to be careful so as to perform the appropriate substitutions of the actual parameters for formals in the proper order. Therefore, we proceed in a slightly different manner. 
By induction on n we define a sequence of procedure declarations Dn 

and s&n+i> = So[Pn/P]. 
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S[P11 / P] stands for the result of substituting the procedure identifier P by Pn in 
a program S. We define the meaning of a program S by putting 

.!/!1(S) = U .i'!1(S[Pn/P]), 
n~O 

where the context of the procedure declarations Dn is assumed. In particular, 

.r!1(P(ii: t)) = U .1#!1(Pn(ii.: t)). 
n=O 

Due to these definitions, 

jf1(S[P,,/ P]) = .$f1(Sl"1) 

Observe that S'" 1 is the result of repeated literal replacement of each procedure 
call P(ii: t} by So[ii, t/x, v] performed from the "top" being S to the depth n, 
followed by the literal replacement of each procedure call by g, 

Strictly speaking, the above definitions require an extension of the considered 
syntax by allowing a system of nonrecursive procedure declarations D1, ... , Dn. 
The results of [13] cover such a case. 

The soundness proof of the above system can now be established following the 
reasoning used in Section 3. 7 to prove the soundness of G. Due to the soundness 
of an extension of C dealing with a system of nonrecursive procedures, it is 
sufficient to prove the validity of the invariance axiom, the soundness of substi­
tution rule II and the conjunction rule in the case of a system of nonrecursive 
procedure declarations, and the goodness of the recursion rule. Of course, in all 
cases we mean the modified versions of the axioms and proof rules. All proofs are 
straightforward. 

The completeness proof is analogous to the completeness proof of G given in 
Section 3.8. For the most general formula for P we now choose the correctness 
formula {i' = i} P(x: ij) {q0 } where i' is a sequence of all variables which occur 
free in So, z is a sequence of some new variables of the same length as z', and qo 
is an assertion which defines post1(z' = z, P(x: iJ)). In the proof of a lemma 
corresponding to Lemma 1 from Section 3.8, we now have to tackle the case of 
procedure calls with actual parameters different from the formal ones. The other 
cases are the same as before. The argument used by Cook [13] in the completeness 
proof of C shows the following implicitly. 

There exist two assertions Pi and q1 which depend on p, q, So, and ii, t such 
that 

1. the proof rule 

{p} P(ii:t) {q} 
{pi} P(x: v) {qi} 

is sound in the case of a nonrecursive procedure declaration, and 

2. {pi} P(x: v) {qi} 1-c-Rule 19 {p} P(ii: t) {q}. 

In the special case of the completeness proof of C which we considered here, 
we can take Pi = iJ = t /\ p[x/u] and q1 = q[x/u]. That conditions 1 and 2 are 
satisfied immediately follows from the argument presented here. 
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Thanks to the arguments used in Section 3.7, the above proof rule is also sound 
in the case of a recursive procedure declaration. Assume now that 

1=1 {p} P(ii: t) {q}. 

By the abov~, 

1=1 {pi} P(x: v) {q1}. 

Repeating the reasoning of Lemma 1, we get 

{.Z' = z} P(i: v) {qo} I- {p1} P(i: v) {qi}; 

hence, due to 2, 

{z' = z} P(x: v) {qo} r- {p} P(ii: t) {q}, 

which was to be proved. 
The rest of the proof is the same as in Section 3.7. 
The systems presented in this subsection assume dynamic scope. However, the 

relevant results should also hold when static scope is assumed. The main problem 
with such proofs is that the soundness of Rule 16, the first variable declaration 
rule, in the presence of parameter mechanisms becomes much more difficult to 
prove. 

6.2 Call-by-Value and Call-by-Variable 

6.2.l Nonrecursive Procedures. In this section we consider the parameter 
mechanisms of call-by-value and call-by-variable, which can be found in the 
programming language PASCAL and other languages. We allow local variables 
as well as subscripted variables. Consider a declaration 

where B = {val x; vary I So} 

of a nonrecursive procedure P. x and y are the formal value and variable 
parameters, respectively, and S0 , as usual, is the procedure body. 

To provide a meaning for procedure calls and to deal with procedure calls in a 
proof system, we introduce the following notation: 

B[t, z] =begin new u; u := t; So[u/x][z/y] end, 

B[t, a[s]] =begin new u1, u2; u1 := t; u2 := s; So[uif x][a[u2]/y] end, 

where u is the first simple variable = x, y and not free in So, t, or z (and 
analogously for u1, u2). 

The above notation assumes a straightforward extension of the former defini­
tions in that it uses substitution of a subscripted variable for a simple one in a 
program and uses a declaration of two local variables u1, u2 in one block. 

Let v stand for a variable which is either simple or subscripted. We define the 
meaning of procedure calls by putting 

.fi1(P(t, u)) = ..4t'1(B[t, v]), 

and, consequently, for a program S containing calls of P, 

..4t'1(S) = .-#1(8[ So/ P]) 
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where S[S0/P] is the result of substituting each procedure call P(t, v) occurring 
in S by B[t, v]. S[So/P] is defined analogously to the way it is defined in Section 
4.3. We assume that .#11 is defined in an appropriate way for programs using 
subscripted variables and not containing procedure calls. 

We now adopt the following proof rule: 

{p} B[t, v] {q} 
{p} P(t, v) {q}. 

This proof rule allows us to deal with arbitrary procedure calls. The construct 
B[t, v] captures in a syntactic way the transmission of actual parameters to the 
procedure body. The following artificial example shows how various subtleties 
concerning the treated parameter mechanisms are handled here. 

Consider the declaration P <= <val x; vary I i := i + l; y := x + l; x := 0). We 
now show that 

{x = 1 /\ i = O} P(x, a[i]) {i = 1/\a[O]=2 /\ x = l}. 

We have 

B[x, a[i]] 

=begin new u1, u2; u1 := x; u2 := i; i := i + l; a[ud := ui + l; u1 := 0 end. 

Using the assignment axioms, we now get 

{x = 1 /\ i = O} ui := x; u2 := i; i := i + 1; a[u2] := u; + 1; u; := 0 

{i = 1 /\ a[O] = 2 /\ x = l}. 

Applying the introduced proof rule, we get the desired formula. 
We now supplement the proof system H +Rule 16 +Axiom 18 by the last rule. 

The soundness of the resulting system can be established in the same way as the 
soundness of H + Rules 7, 16 discussed in Section 4.3. Note that the new rule is 
obviously sound. However, we have to prove anew the soundness of the former 
rules, since they are now used for a bigger class of programs, namely, those 
containing subscripted variables. It should be clear that the above system is also 
complete in the sense of Cook. (We assume here that the notions of expressibility 
and completeness are extended in a proper way to cover the case of programs and 
assertions using subscripted variables.) 

6.2.2 Recursive Procedures. Assume now that the procedure P is recursive. 
Our definition of the meaning of programs containing procedure calls is analogous 
to the definition in Section 6.1 but now using the static scope requirement. 

The corresponding recursion rule now takes the form 

{pi} P(t;, v;) {qi};-1, .. ,n I- {p;} B[t;, V;] {q;}i=l,. ... n 

{p1} P(t1, U1) {q1} 

The hypothesis of this rule states that the formulas {p;} B[t;, v;] {q;} for i = 1, 
... , n can be proved from the assumptions {p;} P(t;, u;) {q;},=i,. . .,n using other 
proof rules. These assumptions are needed to deal with the (inner) calls from the 
procedure body, or, more precisely, from B[ t1, v1]. The conclusion of the rule 
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states that {pi} P(ti, Vi) {q1} can be proved (without any assumptions), but of 
course all formulas {p;} P(t;, V;) {q;};=i ... .,n can be taken here as conclusions. 

To get a complete proof system., we now proceed similarly to the way we did in 
Section 6.1. We take an extension of the proof system H +Axiom 18 + Rule 16 
which, apart from the above recursion rule, contains the corresponding versions 
of the invariance axiom, the variable substitution rule, substitution rule II, the 
conjunction rule, and the parameter substitution rule. The only new rule is the 
following rewrite rule: 

{p} S' {q} 
{p} s {q} . 

S' denotes here a program such that S' ::::: Sand no bound variable of S' occurs 
free in So. In turn, S1 ::::: S means that Si is obtained from S by replacing some 
blocks begin new z; 82 end occurring as subprograms in Si by begin new u; 
S2[u/z] end where u E free(S, So). 

[14] contains a proof of soundness of the above proof system. The proof can be 
simplified if we proceed exactly as before, making use of the soundness of an 
extension of the system H + Rule 18 + Rule 16 dealing with a system of 
nonrecursive procedures. 

In [14) it is also proved that the above proof system is complete in the sense of 
Cook. We present here a sketch of the proof for the case when the procedure 
body So contains only one procedure call. 

Let 

p(t, v) = z' = z /\Vu (a'[u] = a[u]) 

where z' and a' are correspondingly the sequences of all simple and array 
variables which occur free in So, t, or v and z and a are corresponding sequences 
of fresh simple and array variables. Let q(t, u) be an assertion defining 
post1(p(t, u), P(t, v)). 

The only interesting case in the above completeness proof is that of procedure 
calls. In a manner similar to the way the completeness of G was proved, one can 
prove that, if F=1 { p} P(t, u) { q}, then 

TR1 U {p(t, v)} P(t, v) {q(t, v)} I- {p} P(t, v) {q}; 

so it is enough to prove 

TR1 I- {p(t, v)} P(t, v) {q(t, v)}. 

The proof runs as follows. 

LEMMA 5. Let S be a program and let P(t;, V;);=1, .... n be all procedure calls 
occurring in S'. If F=1 {p} S' {q}, then 

TR1 u {p(t;, V;)} P(t;, u;) {q(t;, V;)}i=l, ... ,n I- {p} S' {q}. 

PROOF. The proof proceeds by induction on the structure of programs. The 
above remark indicates how to proceed in the case in which Sis a procedure call. 
The only other nontrivial case in the proof is that of blocks. Assume S' is begin 
new x; S1 end. 
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If 1=1 begin new x; 81 end, then 1=1S1[y/x] for some fresh variabley. Procedure 
calls in S 1[y/x] are of the form P(ti, vi) for i = 1, ... , n where ti = t;[y/x] and 
vi = u;[ y / x]. By the induction hypothesis, 

TR1 U {p(ti, vi)} P(ti, vi) {q(t;, vi)};=1, ... ,n f- {p} S1[y/x] {q}. 

Hence, by the variable declaration rule, 

TR1 U {p(ti, vi)} P(ti, vi) {q(ti, v:)};=1,. ... n f- {p} S' {q}. 

By the definition of S', x is not free in So. Therefore, {p(t;, u;)[y/x]} P(ti, vi) 
{q(t;, v;)[y/x]} can be derived from {p(t;, v;)} P(t;, v;) {q(t;, v;)} using the 
corresponding parameter substitution rule. Also, since x E free(So) and y is a 
fresh variable, 

1=1 p(t;, v;)[y/x] ~ p(ti, vi) 

and 

1=1 q(t;, u;)[y/x] ~ q(ti, vi). 

The last three facts imply the claim. D 

It is this case in the proof of Lemma 5 which forces us to work with S' instead 
of directly with S. Note that, if x were free in So, then we could not apply the 
corresponding parameter substitution rule. Also, observe that, if dynamic scope 
were assumed here, then we could use Rule 17 instead of Rule 16. Consequently, 
we could work directly with S, and the rewrite rule would be unneeded in the 
proof system. 

COROLLARY. For any procedure call P(t1, v1), 

TR1 U {p(t;, u;)} P(t;, u;) {q(t;, v;)}i=l.2,3,4 f- {p(t;, V;)} B[t;, v;]' {q(t;, v;)};=1.2.:i 

where, for i = 2, 3, 4, P(t;, v;) is the procedure call occurring in B[t,-1, V;-1]'. 

LEMMA 6. {p(t4, V4)} P(f4, V4) {q(t4, V4)} can be derived from {p(t3, V3)} 
P(t3, V3) {q(t3, V3)} using the corresponding parameter substitution rule. 

The proof distinguishes eight different cases depending on the form of v, and 
Vo, where P(to, Vo) is the inner call of So. 

Now, by the above corollary, Lemma 6, and the rewrite rule, we get 

TR1 U {p(t,, v;)} P(t;, v;) {q(t;, v;)};-1,2.:i f- {p(t;, u;)} B[t;, u;] {q(t;, v;)};=1.~.:i; 

so, by the recursion rule, 

TR1f- {p(t1, U1)} P(t1, Vi) {q(t1, V1)}. 

It should be noted that the proof of Lemma 6 leads to a veritable combinatorial 
explosion of cases to be dealt with when So contains more than one procedure call 
and/ or there are more than two formal parameters. 

Some other parameter mechanisms can be described in a way similar to the 
above discussion. By way of illustration, consider a declaration of a recursive 
procedure P: 

P<=Bo where Bo= (val x; res y I So) 
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and where y is a formal result parameter as used in ALGOL W (see [55]). 
We define 

Bo[t, z] =begin new u; u := t; So[u/x]; z := y end, 

Bo[ t, a[ s]] = begin new u1, u2; u1 := t; u2 := s; So[ ui/ x ]; a[ u2] := y end. 

The corresponding proof system is sound and complete in the sense of Cook. 
The proofs are virtually the same as in the case of call-by-variable. The only 
difference is that the case of procedure calls in the completeness proof is now 
easier to handle and does not lead to a combinatorial explosion of the cases in the 
proof of Lemma 6. The reason is that a call-by-result parameter, in contrast to a 
call-by-variable parameter, does not lead to a substitution in the procedure body. 
As a result, {p(t~i 1 , vg>)} P(tg>, vg1) {q(t~i>, vg>)} can be derived from {p(t~i>, v~i))} 
P(tki 1, v~>) { q(t~>, v~i 1 )} using the corresponding substitution rule. 

Here P(t~il, v1il) is the ith procedure call occurring in B[t1 , v1]', and P(t~il, vg>) 
is the ith procedure call occurring in B[tY1, vYT for somej. 

6.2.3 A Discussion. One of the basic disadvantages of the proof systems dealt 
with in this section is the fact that each procedure call requires a separate proof 
of the premise concerning the body of the procedure in question. It should be 
possible to remove this deficiency by following the approach presented in the 
previous section and imposing appropriate restrictions on the actual parameters. 

A useful observation in this respect is that procedure declarations 

P '*'= (val x; vary I So> 

and 

P '*'= (name(y:x) I So> where So= begin new u; u := x; So[u/x] end 

where u is a fresh variable lead to equivalent procedure calls when no subscripted 
variables are allowed. Therefore, the proof systems from the previous section 
dealing with the second declaration can be readily adopted to deal with programs 
in the context of the first declaration. Thus, in effect the study of call-by-value 
and call-by-variable can be reduced to the study of call-by-name. What remains 
to be done here is to incorporate subscripted variables and the static scope 
assumption into this framework. 

Another point concerns the use of the renaming mechanism denoted here by 
the ""' sign. First, note that we could use a slightly different version of the 
recursion rule, obtained by replacing B[t;, vi] in the recursion rule by B[t;, v;]'. 
After this change, the rewrite rule needs to be applied only once: as the last step 
of the proof. Thus, for any program S the whole proof deals in fact with programs 
of the form SI.. But for such programs it does not matter which of the two 
variable declaration rules is applied. We conclude that, when using the refined 
version of the recursion rule, we can adopt variable declaration rule II provided 
that the rewrite rule is applied exactly once, namely, as the last step of the proof. 

If we now drop from the recursion and rewrite rule the"'" sign, we get a sound 
and complete proof system dealing with the dynamic scope assumption. Thus we 
can treat static and dynamic scope in a uniform way here. At the level of 
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semantics, a similar uniformity can be found by distinguishing between two forms 
of substitution: [ .. ./ P] and ( .. ,/P), defined in Sections 6.2 and 6.1, respectively. 

6.3 Bibliographical Remarks 

The division x: v of formal name parameters and the restriction on the procedure 
calls in Section 6.1 are from [26]. Rules 20 and 21 are from [13]; they are 
refinements of the corresponding proof rules from [26] where global variables in 
procedure bodies (i.e., free variables different from formal parameters) are disal­
lowed. Both Cook [13] and Gorelick [19] proved slightly stronger completeness 
results. The definition in Section 6.1.2 of the meaning of calls of recursive 
procedures is from [29]. The restrictions on procedure calls used in [19] are lifted 
in [7], where the static scope is also assumed. A recent paper of Gries and Levin 
[21) deals with related issues but only for the case of nonrecursive procedures. 
The notation "B[ t, v ]" and the corresponding recursion rule in Section 6.2.2 are 
from [3]. The definition of semantics of programs containing procedure calls 
suggested in Section 6.2 is partially motivated by [ 45). Clarke [10] relates various 
completeness results concerning recursive procedures with parameters called by 
name to the existence of fixed points of some operators. 

7. PROCEDURES AS PARAMETERS 

7.1 Clarke's Incompleteness Result 

A satisfactory treatment of procedures having procedures as parameters is 
impossible in full generality within the framework of Hoare's logic. This rather 
astonishing result was proved by Clarke [9] and is the contents of the following 
theorem. 

THEOREM 4. There exists no Hoare's proof system which is sound and 
complete in the sense of Cook for a programming language which allows 

1. procedures as parameters in procedure calls, 
2. recursion, 
3. static scope, 
4. global variables in procedure bodies, and 
5. local procedure declarations. 

The proof follows the line of incompleteness results proved in Section 2.7. First, 
the following crucial lemma is proved. 

LEMMA 7. The halting problem is undecidable for programs in a programming 
language with features (1) to (5) above for all finite interpretations I with 
1112: 2. 

Now take a finite interpretation I with I II 2: 2. It is easy to see that Tr1 is a 
recursive set. Thus the set of asserted programs cp such that Tr1 f--w cp in a Hoare's 
system W is recursively enumerable. Also, as observed in Section 2.9, the 
assertion language is expressive relative to I and the class of programs considered. 
On the other hand, Lemma 7 and the Fact from Section 2.7 imply that the set of 
all asserted programs from the above programming language which are true 
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under I is not recursively enumerable. Therefore, no Hoare's system W for this 
programming language can be complete in the sense of Cook. 

7.2 Copy Rules 

Under what restrictions, then, is it possible to get sound and complete Hoare's 
systems dealing with procedures as parameters? Clarke [9] stated that, if any of 
the above features 1 to 5 is disallowed, then there exists a natural Hoare's system 
for the corresponding programming language which is sound and complete in the 
sense of Cook. Unfortunately, the corresponding proofs for the cases in which 1, 
2, 4, or 5 is disallowed are not worked out there. Also, some additional restrictions 
to be discussed in Section 7.7 (concerning sharing and self-application) are 
imposed on the language. 

A detailed analysis of these and related issues is provided in [ 45], where most 
of the missing proofs are supplied in a uniform way. In the subsequent discussion 
we allow procedure declarations of the form 

P <== {proc R; var .YI So) 

where P is the name of the declared procedure, R is the list of distinct formal 
procedure parameters, and y is the list of distinct formal parameters called by 
variable. 

Subscripted variables are not allowed here; consequently, only simple variables 
can be used as actual parameters called by variable. With such restrictions 
imposed on the language, call-by-variable is of course equivalent to call-by-name. 
In blocks, systems of declarations of local procedures are allowed in addition to 
declarations of local variables. Call this class of programs !fP. 

A uniformity similar to the one exemplified in Section 6.2.3 forms an important 
aspect of Olderog's considerations. However, the situation is more complicated 
here because procedures are allowed as parameters. 

Uniformity is reached by employing the notion of copy rule. A copy rule is a 
relation between two programs differing only by an injective bound renaming of 
some local identifiers. By an identifier we mean here a simple variable or a 
procedure name. By idf(S) we denote the set of all identifiers occurring in S. 
Injective bound renaming (written as 8:::::: S') is defined as follows: S::::: S' iff 8 

inj inj 
:::::: S' (bound renaming as defined in the previous section but now referring to all 
identifiers) holds and additionally the renaming is injective. 

1· 

Now let Id be a set of identifiers. Olderog [ 45] considers three copy rules: 

1. The ALGOL 60 copy rule <.f60 : (8, Id) <;f60 81 iff 81 :::::: S and no identifier 
inj 

bound in 8 1 occurs in Id. 
2. The "most recent" copy rule <t'mr: (8, Id) <t'mr 8 1 iff 81:::::: S, no simple variable 

inj 
bound in 81 occurs in Id, and procedure names have not been renamed. 

3. The naive copy rule <t'n: (S, Id) <t'0 8 1 iff 8 1 = S. 

Note that, according to this terminology, (8, free(80)) <.f60 S' and (S, free(8o)) <t'mr 
8' hold for programs discussed in Section 6.2.2. 
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7 .3 The Proof System (0, 't&') 

These copy rules are incorporated into the proof system as a parameter; this is 
similar to the case of static and dynamic scope assumptions discussed in Section 
6.2.3. 

The proof system ( 0, '€) has a structure similar to that of the systems discussed 
in Section 6. But since we are now dealing with declarations of local procedures, 
we cannot take a fixed procedure declaration P ~ ( ... I So) such that every 
procedure name P occurring within an asserted program { p} S { q} refers to this 
declaration. Instead, we augment each program S with a context E, being a 
sequence of procedure declarations with different procedure names. Thus, we 
now consider formulas {p} <EIS) {q} instead of simply {p} S {q}. Throughout 
this section it is always assumed that for every procedure name occurring freely 
in S there exists a corresponding declaration P *= <·.·I So) in E. We say that a 
procedure call S = P(R1 , yi) is incorrect with respect to E if the declaration of P 
in E requires different actual parameters. To cover the case of incorrect procedure 
calls, the following new axiom is introduced. 

RULE 22: AXIOM OF INCORRECT PROCEDURE CALLS 

{p} (EIP(R1,.Yil) {q} 

where the procedure call P(R1, .Y1) is incorrect with respect to E. 

This axiom is valid because an incorrect procedure call gets a nowhere defined 
function as its meaning. The need for such an axiom arises from the fact that the 
execution of a syntactically correct program can lead to an incorrect procedure 
call in the case in which procedures are allowed as parameters. 

A copy rule <t' is used in two proof rules. The first of them is the recursion rule, 
which now has the following form. 

RULE 23: RECURSION RULE III 

{p;} (Ed P;(R;' y;)) { q;};=l, .. .,n I- {p;} (Ed B;,,) { q;};=l, ... ,n 

{p1} (E1 I P1(R1, .:Y1)) {q1} 

where, for some S; (i =I, ... , n), 

1. P; ~ (proc Ri; var .Yi IS;) EE; with IR;I =I Ri I, l.Y; I= I.Yi I; and 
2. (S;[R;/Ri][yJyi], ld;)lfi Bi'£ where Id;= idf(E;, P;(R;, .Yi)). 

This rule deals with n different procedures, and of course all formulas { p;} 
(E; I P;(R;, y;)) {q;} can be taken here as conclusions. 

The second rule which refers to the copy rule is the following rewrite rule. 

RULE 24: REWRITE RULE 

{p} (018') {q} 
{p} s {q} 

where S' = S in the case of the naive copy rule <fin and S' ::::: S where S' is 
distinguished (different defining occurrences of identifiers are denoted differ­
ently) in the case of the lfi60 and lfimr copy rules. 
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Among all axioms and proof rules of the system, only the rewrite rule allows us 
to pass to a program 8 without any context of procedure declarations. Therefore, 
to prove a property of a program 8 we are forced to use the rewrite rule exactly 
once, and this as the last step in the proof. 

The next step in the development of the system ( 0, 't&') is the introduction of 
the following rule. 

RULE 25: RULE OF BLOCKS 

{p[y/x] Ax= w} (add(E, E1) I 81} {q[y/x]} 
{p} (EI begin new x; E1; 81 end) {q} 

where add(E, E1) is the system of procedure declarations obtained from Eby 
first deleting from it all declarations referring to a procedure name also 
declared in E1 and then adding E1 to it. 

The discussion of the proof system from Section 6.2.2 given in Section 6.2.3 
aimed to provide a better understanding of the decisions standing behind the 
choice of the above three rules. 

To deal with the constructs present in the while programs, we adopt an 
appropriately modified system H in which each program S is replaced by 
(EI 8}. From Section 3.3 we know that proofs concerning procedure calls require 
some additional axioms and proof rules. An additional set of axioms and proof 
rules similar to the one used in Sections 6.1.2 and 6.2.2 is adopted here. This is a 
bit surprising in view of the fact that procedure parameters are now allowed. In 
particular, the invariance axiom, the conjunction rule, and substitution rules I 
and II are used (all referring to constructs of the form (EIS)). 

The final rule is a substitution rule corresponding to the parameter substitution 
considered in Section 6.1. 

RULE 26: SUBSTITUTION RULE III 

{p} (EIS> {q} 
{p[y/.i]} (add(E1, E)[.Y/ry]IS[y/x]) {q[y/.i]} 

where the substitution y/x is injective when restricted to the subset free(p, q) U 
idf(E, S) of x. Here x can contain procedure names; x; is a simple variable if[ y; 
is a simple variable. 

This rule is stronger than the parameter substitution rule from Section 6.1 in 
the case in which both are restricted to procedure calls with actual parameters 
being simple variables. The reason for this strengthening is that no restrictions 
on actual parameters in procedure calls are imposed here, in contrast to Sec­
tion 6.1. 

It is instructive to check that the arguments from Section 6.1.1 showing the 
necessity of restrictions in Rules 20 and 21 do not indicate that the above rule is 
unsound. Both substitutions considered there, namely, [u, u/x, u] and [x, x/x, u], 
are not injective; so the argument does not apply here. 

Note also that the above rule admits extending the procedure environment in 
the conclusion. Intuitively, this is allowed because the newly added procedures 
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will never be called. The subsequent proofs are not affected if the program S is 
restricted in Rule 26 to be a procedure call. 

7.4 Semantic Issues 

We now pass to semantic issues. Each copy rule 9t generates a corresponding 
semantics .//fr. 'f; for the programs from .5f'P. The case of procedure calls is now 
more complicated because declarations oflocal systems of procedures are allowed. 
In particular, it is difficult to retain the approach of Section 6.1. Therefore, we 
proceed in a somewhat different way. We first define by induction on i a sequence 
A'/J, ,, of approximating semantics. The crucial clause concerns procedure calls. 
We put 

.JI},~ (EI P(R, y)) 

= f vtt}~i (EI B,&) 

1 undefined 

if i?: 1, P 4== {proc R'; var .Y' IS) EE 

with IRI = IR'I, I.YI= l.Y'I; 
otherwise. 

Here, analogously to Rule 23, (S[R/R'][y/j'], Id) 9t B,. where Id 
P(R, y)). 

The semantics of blocks is defined by the clause 

idf(E, 

A't}.dE I begin new x; E1; S1 end)(a) = DROP(A'/},,,(add(E, Ei) I Si)(a'), x) 
where a'= a U (x, ~). 

Here the definition and use of states of Section 4.5 are adopted. The other 
clauses are defined as usual. We now put 

"' Ar,'t(EJS) = U vtt},,.(EIS) 
i=O 

and 

A1,,.,(S) = A1,'6(0 IS') 

where S' is defined as in Rule 24. 
As opposed to the approach taken in Section 4.1, here all renamings of local 

identifiers (necessary to satisfy scope requirements) are done first when we 
replace S by (01 S') and subsequently at every step where the copy rule 9t is 
applied, that is, where P(R, y) is replaced by B '"· 

We now define 

F1,'~ {p} <EIS) {q} iff for all states a, T, F1 p(a) 

and .lt1.'ii'(E IS) (a) = T implies F1 q(r). 

The soundness proof of (0, 9t) with respect to the .lt1,,6 semantics proceeds 
through the same steps as the ones originally defined in Section 3. 7 and later 
repeated in Sections 4.3, 6.1.2, and 6.2.2. Note that the last clause in the definition 
of .lt1. '(j assures the soundness of Rule 24. The only complicated case in the proof 
is that of the soundness of Rule 26. 
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We now relate copy rules to scope assumptions. In the presence of declarations 
of local procedures, the ALGOL 60 copy rule leads to a semantics with the static 
scope assumption. For programs satisfying the "most recent" property (see [ 41)) 
the same result is already achieved by using the "most recent" copy rule. Finally, 
the naive copy rule leads to a semantics with the dynamic scope assumption. Due 
to the lack of space, we do not elaborate more precisely on these issues. 

7.5 The Characterization Theorem 

From the theorem which opened this section we know that we cannot expect 
( 0, ~) to be complete in the sense of Cook when ~ is the ALGOL 60 copy rule. 
Olderog [ 45] found a rather simple criterion which, when imposed on a true 
asserted program, guarantees its provability in (0, ~). To define this condition, 
we first introduce two notions. 

Given a program S, we write P -s Q iff P and Qare non-formal procedure 
names from S such that Q occurs freely in the procedure body of P. By a reference 
chain of S we mean a sequence of the form 

Given two programs 8 1 and 82, we write 81 .-'$ 8 2 if 8 2 can be obtained by a 
single application of the copy rule ~. that is, if 8 2 results from a literal replacement 
of some call P(R, j) in 81 by a modified procedure body B,6 defined as in the 
formulation of Rule 23. Let--~ stand for the transitive closure of .--c. We now 
say that a program 8 is ~-bounded if, for some constant k, whenever S --~ 81, 
then the lengths of reference chains of 8 1 are bounded by k. Intuitively speaking, 
a program is ~-bounded if it cannot be expanded using the copy rule ~ to 
programs with arbitrarily long reference chains. 

Equipped with this notion, we can formulate the following characterization 
theorem due to Olderog [ 45]. 

THEOREM 5. Let I be an interpretation such that the assertion language is 
expressive relative to I and f!7P. Then the following statements are equivalent: 
1. Tr1 f--w,•c) {p} S (q}. 
2. F=1.'" {p} 8 {q} and Sis ~-bounded. 

Note that the implication I .- 2 is a strengthening of the soundness theorem 
concerning (0, ~).The implication 2 .- I is a completeness theorem. The proof 
deals with constructs of the form ( E I S > and proceeds by induction on their 
structure. The step to programs S is obtained by using the last clause in the 
definition of semantics, .4{[, '", and the rewrite rule. 

All cases in the proof are dealt with in a way analogous to the handling of the 
cases in the previous proofs. As usual, the nontrivial case is that of procedure 
calls. The proof is a generalization of the techniques used so far. First, we choose 
the most general formula for a procedure call P(R, j). 

Let z be a sequence of all simple variables occurring free in (EI P(R, j) > where 
P(f, j) is a correct procedure call with respect to E. Let z' be a sequence of fresh 
variables of the same length as z. Put p(R, .fl = z = z'. Choose q(R, j) to be an 
assertion which defines post1(p(R, j), (EI P(R, j) ). 
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In a manner similar to the way we proved the completeness of G we can prove 
that, ifl=1.c;; {p} (EIP(R,j)) {q}, then 

Tr1U {p(R,j) (EjP(R,j)) {q(R,j)} 1-(o,'t> {p} (EjP(R,j)) {q}. 

Thus, as in Section 6.2.2, the problem reduces to proving the most general 
formula, that is, to proving that 

Tr11-(0,'tff) {p(R,y)} (EjP(R,y)) {q(R,y)}. (63) 

Due to the lack of space, we can only present a rough sketch of the proof. 
Given a procedure call P(R, y) correct with respect to E, let 9?,c( (EI 

P(R, y))) denote the set of all constructs of the form (E' I P'(R, j')) such that 

1. P'(R', j') is a correct procedure call with respect to E' and 
2. it can be obtained by a formal expansion of (EI P(R, j)) using symbolic 

execution and the copy rule ~. 

For example, if Eis P <== (01 begin new x; Ei; P end), then ~,c( (EI P)) is 
{(EI P), (add(E, Ei) IP)} because add((add(E, Ei)), Ei) = add(E, Ei). Symbolic 
execution is incorporated here by symbolically elaborating the block. 

Applying this terminology to the procedure declaration E considered in the 
completeness proof in Section 6.2.2, we have {(EI P(t;, u;)) : i = 1, ... , 4} k; 
~'1$60( (EI P(ti, vi)) ). Intuitively speaking, the set 9?'tff is the set of all correct' 
procedure calls which could possibly occur during the execution of the program 
begin E; P(R, y) end. Each such call has an appropriate procedure environment 
E' in which it is called. This set is usually infinite. 

It turns out, however, that, if the program begin E; P(R, j) end is ~-bounded, 
then this set possesses a finite subset from which all other elements can be 
derived by a substitution conforming to the restrictions of Rule 26. Lemma 6 
shows that {(EI P(t;, v;) );=i, ... ,a} is such a subset of .?lc;;s.,( (EI P(ti, Vi))). 

Once such a subset has been found, reasoning analogous to that in Section 
6.2.2 can be applied. Namely, take the set Ai of most general formulas for the 
elements of this subset. Let B be the set of corresponding correctness formulas 
concerning the bodies B;,,, related to procedure calls from Ai. In turn, let Az be 
the set of most general formulas for the procedure calls taken from the bodies 
Bi'fl· A lemma corresponding to the Corollary in Section 6.2.2 states that Trr U Ai 
U Az l-(o,cc>B. Now, by the choice of Ai, all formulas from Az can be derived from 
Ai by Rule 26. Thus Tr1 U Ai 1-w,'clB. By Rule 23, Tr1 f-(o,,.,> Ai. In particular, 
(63) holds as desired. 

7 .6 Applications of the Characterization Theorem 

The characterization theorem can now be applied to various classes of programs 
from f/P for which the assumption of ~-boundedness can be established. We list 
several such classes without going into further details. 

1. ~ = ~so (the ALGOL 60 copy rule, i.e., static scope): 
a. All programs disallowing one of the features 1, 2, or 5 from Theorem 4. 
b. All programs disallowing feature 4 from Theorem 4 referring to procedure 

names. 
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2. <f!? = <fimr (the "most recent" copy rule): All programs satisfying the "most 
recent" property. 

3. <fi= <fin (the naive copy rule, i.e., dynamic scope): All programs from «J?P. 

It should be noted that not all programs from «J?P are <fi?60-bounded. Olderog 
[ 45] exhibits such a program. Of course, the existence of such programs follows 
from Theorems 4 and 5. 

7. 7 Decidability Issues 

When studying such subclasses, it is sensible to ask whether they are properly 
defined, that is, whether they form decidable subsets of «J?P. The classes listed in 
1 and 3 above obviously satisfy this requirement. Also, by a theorem of Kandzia 
[31], the class listed in 2 is a decidable subset of «J?P. 

These decidability results should be contrasted with the restrictions imposed 
on parameters in Section 6.1. Recall that, according to these restrictions, all 
actual simple variables are to be distinct and different from global variables of 
the considered procedure bodies (here, those from E). 

We say that a program is sharing-free if all procedure calls arising during its 
execution satisfy the above restriction. In [9] all programs are assumed to be 
sharing-free. In general, the restriction "sharing-free" is dangerous in light of 
decidability requirements: if we interpret "sharing-free" as allowing only sharing­
free programs in our subclass Y' of «J?P, then Y' is in general undecidable. This 
follows from a result of Langmaack (35] stating that for «J?P the formal reacha­
bility of procedures is undecidable when the ALGOL 60 copy rule is applied. 
Fortunately, these problems do not arise in Section 6.1 because, by the result of 
(33], sharing is a decidable property for programs without procedures as parain­
eters. 

Another possible interpretation of "sharing-free" is to allow arbitrary programs 
but restrict the application of Rule 26 to sharing-free procedure calls. But this in 
turn makes the substitution rule itself undecidable; so the set of provable asserted 
programs is not r.e. Hence, the only proper way to solve these difficulties is to 
formulate a proof rule which can deal with sharing. 

Also, in [9] no self-application is allowed (e.g., procedure calls of the form 
P( ... P .. . ) are disallowed). 

7.8 Lipton's Theorem and Its Implications 

The proof of Theorem 4 related decidability of the halting problem for all finite 
interpretations to the existence of a complete Hoare's system for the language in 
question. Lipton [38) showed that these two properties are in fact equivalent for 
a wide class of programming languages, thereby proVing a conjecture of Clarke. 
Unfortunately, details of the proof are not fully worked out. 

Recently Langmaack [32] provided a rigorous proof of the theorem for the case 
of ALGOL-like programming languages. This proof is based on the usual static 
scope semantics of ALGOL-like programs (defined by the ALGOL 60 copy rule), 
whereas Lipton uses a more general notion of programming language merely 
requiring the semantics to be defined by a certain type of interpreter. The version 
proved by Langmaack can be stated as follows. 
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THEOREM 6. For any "acceptable" ALGOL-like programming language PL 
the following are equivalent: 

1. PL has uniformly decidable halting problems for finite interpretations. 
2. PL has a sound and complete Hoare's logic provided the assertion lan­

guage allows quantifier-free formulas only. 

PL is called acceptable if PL is closed under certain program transformations 
such as replacing basic statements in a program S E PL by an arbitrary program 
S' E PL. Roughly speaking, the existence of Hoare's logic means here that the set 
{<p : 1=1 <p} is uniformly recursively enumerable in Tr1 for interpretations I 
satisfying the expressiveness condition. 

Note that the existence of a Hoare's system which is sound and complete in 
the sense of Cook implies the existence of sound and complete Hoare's logic. 

Theorem 6 implies that for all toy programming languages considered in 
Sections 2-6 of this paper there exists a sound and complete Hoare's logic. 
However, it must be noted that the above theorem does not provide any useful 
axiomatization of the corresponding Hoare's logics. Also, quantifiers are disal­
lowed in the assertions. In contrast, all proof systems considered in this paper are 
natural and can be used straightforwardly to prove the correctness of programs. 

An interesting question is whether there exists an application of Theorem 6 
which shows the existence of a sound and complete Hoare's logic for a program­
ming language with no known sound and complete Hoare's proof system. The 
answer is positive. Consider the class of all programs from YP which disallow self­
application and global simple variables in procedure bodies. Langmaack [34] 
proved that this class of programs satisfies condition l of Theorem 6 in the case 
of the ALGOL 60 copy rule. By Theorem 6 there exists a sound and complete 
Hoare's logic for this class of programs. 

The problem of finding a natural Hoare's proof system for this class of programs 
is offered in [36] as a challenge to researchers in this area. It should be noted that 
the characterization theorem does not apply here, since not all programs in this 
class are ~so-bounded. An example of such a program that is not ~so-bounded is 
given in [36, 45]. There is as yet no proof system available in which the partial 
correctness of this program can be studied. 
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cedures with parameters and with features 2-5 from Theorem 4 is proved. The 
discussion of sharing in Section 7.7 is due to a private communication from 
Langmaack and Olderog. In (36] they give an overview of the results discussed in 
this section. 
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