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ABSTRACT

The connections between inductive definability and models of comprehension
are studied. Let % =(A, R,,-- -, R,) be an infinite structure and let I, be a set
inductively defined by a formula ¢ of the second order language LY. We prove
that if o is a model of A}-Comprehension relativized to ¢, and ¢ is o -absolute,
then for every m smaller than the height of o (h(sf)), I2 isin A If of is a
B-structure which satisfies 2;-Comprehension relativized to ¢ and WF(X), and
¢ is A-absolute, then I, is in & and ||¢|< h(«f). These results imply that
Barwise-Grilliot theorem is false in the case of uncountable acceptable
structures. We also study the notion of invariant definability over models of
A{-Comprehension.

§1. Introduction

This paper is devoted to the study of connections between inductive definabil-
ity and models of comprehension. The basic question to which we want to find an
answer is the following.

Let U be an infinite structure. Suppose that I, is a set inductively defined by a
second order formula ¢. Which properties of a second order structure & over 4
imply that I, or some of its stages I] belong to | |?

We prove in §3 that if &/ satisfies A-Comprehension scheme relativized to ¢
and ¢ is sf-absolute then for every n smaller than the height of o (h(s))
17|

If we assume that & is a B-structure for which ¢ is & -absolute and & satisfies
EI-Comprehen'sion relativized to ¢ and WF(X) then ||¢||< h(#)and I, €| A|.

Using these results we prove that Barwise—Grilliot theorem (see Moschovakis
[2] p. 140) is false in the case of uncountable acceptable structures.

' This paper is registered as Report ZW 69/76 of the Mathematical Centre.
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The basic problem to which we are unable to find the answer is the following:
is it true that hyperelementary relations on an arbitrary infinite structure % form
a model (the smallest one) of Aj-Comprehension?

In §4 we study the notion of invariant definability over models of Aj}-
Comprehension. We prove that if U is a countable acceptable structure and T is
an inductive theory in L¥ which extends A;-Comprehension and has a model
over % then the hyperelementary relations of 4 are exactly the sets invariantly
ddefinable over models of T. This theorem is not true in the case of uncountable
acceptable structures.

Finally we prove that if % is acceptable then for some inductive set I every set
invariantly definable over models of Aj-Comprehension is hyperelementary in I.

Unfortunately we are unable to give the exact characterization of sets which
are invariantly definable over all models of Aj-Comprehension in the case of an
arbitrary infinite structure %.

We thank Mr. E. Alward and Prof. G. Kreisel for helpful remarks about
Ai-Comprehension.

§2. Preliminaries

Throughout the paper the letters 7, £ 7, o always denote ordinals. If A isa set
we use small latin letters to denote the elements of A and capital letters to
denote relations on A of any (finite) number of arguments. By A" (n = 1) we
denote the set of all n-tuples of elements of A. If X is a set (X ) denotes its
power set. ¥ denotes a sequence x,, - -, x, of elements of A and X denotes a
sequence X, -+, X, of relations on A.

For the convenience of the reader we recall here some definitions and
notations which can be found in Moschovakis [2] and Moschovakis [3].

The first order language over a set A, L* has an infinite list of individual
variables x,y,z,---, a constant b for each element b of A, an infinite list
X, Y, Z, - of n-ary relation variables for each n = 1 and a constant P for each
relation P on A. In forming formulas of L* the quantifiers 3 and V are applied
only to individual variables.

The second order language over A, L% is obtained by allowing quantification
of the relation variables in the language L *. For convenience we assume that the
formulas of the type X = Y are not well formed formulas (we may write instead
Vx(X(x)e Y(x))).

Let U =(A,R,,---, R,) be a structure (thatisto say R,,-- -, R, are relations
over A). The first (second) order language L*(L¥) for U consists of those
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formulas of the language L“*(L%) whose relation constants are among
=,Ry, -+, R.. We sometimes write X € X instead of X ().

Formulas of L™ are called arithmetical formulas. All structures considered are
infinite.

& is called a second order structure over «U =(A,R,,---,R,) if &=
(A,|#],R,,- -, R,) where ||CU,., P(A"). While interpreting a formula
¢ of LY on o we assume that the second order quantifiers of ¢ range
over |&f|. For simplicity ?(%) denotes the second order structure
(A, U,z 2(A"), R, -, R,).

We sometimes write ¢ (%, X) instead of 2(U)F ¢ (%, X).

DeriniTiON 1. Let o be a second order structure over . A formula
d(xi,  x, X1, - -, X,) of LY with free wvariables indicated is called
oA -absolute if

A F¢[-xl"'.vxk,X'l""ern] <:> @(%)#d)[xh” "xn, Xh' Y Xn]
for all x;,- -, x« €A and X,,---, X, €| HA].

WF(X) is the following formula of L% where % =(A,R,,---, R,):
WF(X)«> X is a well-founded transitive relation on A, i.e.

WE(X)eVx,y, z[((x,y) EX A(y,2)E X)—(x,2)E X]
AVS[Ax(x ES)—Ty(y ESAVx(x ES—(x,y) € X))]

DeriniTioN 2. A second order structure & over 4 is called a 8-structure if
the formula WF(X) is «-absolute.

If p(xi, -, %0, Xy, - -, X..) is a formula of L % with free variables indicated we
say that ¢ isa (k, ry, - - -, r.)-formula to indicate the fact that ¢ has exactly k free
individual variables and for every i =n free variable X, ranges over r;-ary
relations.

DeriniTioN 3. Let ¢(%, X, X) be a (m,Lr, - r)formula of LY and
V(7. ¥, Y) be a (I+p,p.,- -, p)-formula of LY. Suppose that ¢(%, X, X) and
¥ (9,9, Y) have no variables in common. Then &5 (5 (3,9, Y),X) is a
(m+p,r,- - r,py,- - p)-formula of LY obtained from ¢ (%, X, )—() by replac-
ing all the atomic formulas of the form Z € X occurring in ¢ (%, X, X) by
Y29, Y).

Lemma 1. Suppose that ¢(%, X, X) and & (¥, 3., Y) are formulas of L which
satisfy the above conditions. Then for all %, ¥, Xand Y
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where B
A={7:2(U)F¢Y(7,5, Y

Proor. By induction on the length of the formula ¢ (%, X, X). O
DerNITION 4. Suppose that X CA? is a binary relation on A. Let

Fld(X)={x:3y((x,y)E X v (y,x)E X)}.
If z € FId(X) then
XTI ={(xy):(xy)E X r(y,z)E X}.

By transfinite induction we define the classes of well-founded transitive
relations on A

WF(o)={X: X is a well-founded transitive relation on A and
Vz(z €EFId(X)— X[, € WF(7) for some 1 < o)}.
It is easy to see then that
WF(X) & X € WF(o)forsome o.

Suppose that WF(X). By || X || we denote the least o such that X € WF (o). If
x EFId(X) then | X I, || <[ X ]| If (x,y)E X then X |, = X[, [.. If o <| X | then
for some x EFId(X) o = || X I.].

If X and Y are two binary relations on A then by X =Y we mean the
following formula of L% :

3Z(Z is a 1-1 function from Fld(X) into FId(Y)

and Vx,y ((x,y)EX —(Z(x),Z(y))E Y)).
We define then

X<Ye3Idz (ze€Fd(Y)AX=Y]I,).
It is easy to see then that if WF(Y) then
X=Y > [IX||=]Yl,
X<Y =2 |[X[<]Y].
Dermimion 5. Let of be a second order structure over U. We define
h()=sup(| X[+ 1: P(U)F WF(X) and X € | A)).
We call h(sf) the height of .
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DerFINITION 6. Let & be a class of structures over % = (A, Ry, -+ -, R,). Then
N¥={X:X€|dl|forall « € ¥},

Def(%)={X: X € U, P(A") and for some formula ¢ (%) of L ¥
with free variables indicated which is &/-absolute
forall 4 € ¥
P(U)EVI(X E X © ¢(X))}.

Thus N X is the intersection of all the structures belonging to ¥ whereas
Def (%) is the collection of all sets invariantly definable over ¥.
If T is a set of sentences of L% (i.e. a theory in L%) then

Mod(T) = {sf: s/ is a second order structure over % and « = T}.

DerFiNiTION 7. Let ¢, be a formula of LY. Ar(¢,) is the smallest class of
formulas of LY such that

(i) o€ Ar(do),

(i) every arithmetical formula of LY is in Ar(d),

(i) if ¢, € Ar(¢o) then =1, ¢ v ¢, Ixd € Ar(o).

A formula ¢ of LY is a 2i(¢) formula if it is of the form 3X, - - - dX.¢ for
some formula ¢ € Ar(¢,).

We call a relation R(%,X) (RCA"x P(A™)x---x P(A™) for some
n, ny, - -, ) arithmetical (21) if for some arithmetical (2}) formula ¢ of LY

R ={(%, X): P(U)F ¢ (%, X)}.
A relation R is I} if =R is %} and is A} if both R and = R are 3.
Recall that for n 21, W#" ={Y: Y is well-founded on A"}.
By Ai(¢)-Comp we mean the class of all the sentences of LY of the form
VY[VX(3Z.d(%, Z,, V)V Zp (%, Z,, Y))
—-3AXVIZEX-IZ¢(3,2Z, V)))

where X does not occur in ¢ and ¢, ¥ € Ar(¢).
By 2i(¢o)-Comp we mean the class of all the sentences of LY of the form

VYIXVi(ZEX o ¢(z )

where ¢ € Zi(¢o) and X does not occur in .
It is clear what we mean by Aj-Comp, Zi-Comp or 2i(¢., WF (X))-Comp.
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Lemma 2. Let ¢y be a formula of LY. For every (o) formula s of LY there
exists an Ax (o) formula ¢ such that if o is second order structure over U which
satisfies the following two conditions:

(1) X, YE|d|>XxYE|L]

) If X€|sd| and X is a |+ m-ary set (I m = 1) then there exist sets
X1, X, €|o| I-ary and m-ary respectively such that

AEVZI(ZE€ X, o37((Z7)E X)),
AEYY (§EX,3J1((2,7) € X)),
then
A E i IX.

Proor.  Assume for simplicity that ¢ is of the form AX, 3 X4 (X, X, X, )?)
where ¢,(%, X1, X5, X) is a (k, [, m, n,, -, n,) Ar(¢)-formula of LY for some
k,Lm,n,--- n, where I, m = 1.

Let ¢'(%, X, X, X) be the following (k, [+ m, n,, - - -, n,)-formula of L¥:

$1: (%35 ((2,7) € X), X5, X)

and let ¢(%, X, X) be the (k,I+m, n,, - n)-formula of L% obtained from
¥ (%, X,32((2, ) € Y), X) by replacing all the occurrences of Y by X (we have
to make this small detour via Y in order to avoid the clash of variables). Clearly

¢ (=3 Ar ((b()).

Now it is easy to see that for all ¥ and X
AEIAXAXY(E, X, Xo, X) = IXD (%, X, X).

Indeed, if for some X, and X, o Ui(% X, X5, X) then X, x X, € | 4| and
clearly by Lemma 1 o k= ¢ (%, X, X).
Conversely, if for some X o = ¢ (%, X, X) then

Xi={z: A F35((z,7)€ X)} ||,
Xo={y: A +32((Z,5)EX)}E ||
and clearly by Lemma 1
AE (%, X, X, X). O

CoroLLARY 1. Let ¢, be a formula of LY. Let o4 be a second order structure
over U. If o4 k= Ai(¢o)-Comp then o also satisfies the following scheme :
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VY[VZ(o(Z V) my(z V) IXVE(Z € X < ¢ (2, V)]
where X does not occur in ¢ and ¢, ¢ are S1(¢o) formulas.

Proor. By Lemma 2. O
Suppose now that ¢ (xy,--+,x,, Y) is a (n, n)-formula of LY. ¢ defines an
operator ® (not necessarily monotone) on the n-ary relations

D(S) =A{(x1, , x2): P(U) = d(x1, -+ 5 Xr S)}.

Define by induction

By the closure ordinal of ¢, || ¢ |, we mean the least ¢ such that 1§ = U, . I].
I, is said to be inductively defined by ¢. Observe that

L=1I¥= I
n<llal|l

By | X | we denote the cardinality of a set X. By n* we mean the least cardinal
number greater than 7.

If ¢ois a (n, n)-formula of LY where % = (A, R,,- -, R,) then || ¢o||< | A [*. If
X E A" then

least n such that x €13, if ¥ € I,
lx— ld’n = {

A otherwise.
Observe that for every = <|A|" there exists X CA? such that
P(U)EWF(X) and | X ||= 7.
§3. Nonmonotone inductive definitions and models of comprehension
The first theorem we prove is the following:

THEOREM 1. Let ¢y be a (1,1)-formula of LY. Let o be a second order
structure over U such that A = Al(do)-Comp and ¢ is «-absolute. Then

n<h(A)> I}, €|A|
Proor. Define a (2,2,2)-formula P(x,y,X,Y) of LY as follows:
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O(x, y, X, Y) >3z (z EFA(X ) A (z,y) E Y).
Let
d}(xi Y, Xv Y)(_’q)(x, Y, X’ Y) v [¢“)"(y’ q)(xv )’” X’ Y)) AX € Fld(X)]

(we avoid the clash of variables by appropriate renaming of the variables
occurring in ¢y).
Finally define

(X, Y)oVxVy((x,y)EY < y(x,y, X, Y)).
Observe that
U(x,y, X, Y) € Ar(¢o)
and
0(X,Y)€E Ar(¢o)

so both are «-absolute formulas.
We prove at first the following two facts:
() If P(U)=WF(X) then for all Y

PAUVEOX,Y)S Y ={(x,y): x EFld(X),y € I}
(1) If X € || and P (U)F WF(X) then
{(x,y):x EFId(X),y e I} e | A|.
Suppose that (U )= WF(X). Let
Yo={(x,y): x €EFId(X),y € I'x""}.

Proor of (I). We prove that P(U)E 6(X, Yo).
Let x and y be arbitrary. If x & FId(X) then

PUE(x,y) & Yor 714 (x, y, X, Yo).

So assume that x € FId(X). Then

PAU)E(x,y)E Y, © y € IXN

eye U Ivvan(y U 11,)

<X 1l n<{IX1Ll

because
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(zx)€EX = (XLl =X1.)© 3z(z EFA(X ) ry € ['X))
Voo(y, {y: P(U)EIz(z EFIA(X T, ) ny’ € T'X:N)
by Lemma 1
S P(UYED(x,y, X, Yo) v oy (y, D(x, y', X, Yo))
S PUYEY(x, v, X, Y,).

Thus P (U)E (X, Yo).
Suppose now that for some Y (% )k 6(X, Y). Observe that then for all x
and y

(x,y) € Y —x € Fld(X).
We prove by induction with respect to || X I, || that for all x, y
(LYy)EYo(x,y)EY,.

Let x € Fld(X). Suppose that the claim is true for all pairs (z,y) such that
[XT.[|<[XI]. Then for all y

PAUEMXY)EY © P(U)=Y(x,y, X, Y)

by Lemma 1
S PAU)EIzZ(z EFIA(X ) A(z,y)EY)

Vo 1y P(U)- 32 (2 EFIA(X 1) (2.y) € V)
by induction hypotheses
© P(U)EIz(z EFIA(X ) A (z,¥)E YY)
v ou(y{y" P(U)FIz(z EFIA(X ) A (z,y) € Yo)})
by Lemma 1
S P(UYEY(x,y, X, YY)
by the above string of equivalences

S PUE(x,y)E Y,
Thus by induction Y = Y, which concludes the proof of (I).

ProoF oF (II). Assume additionally that X € |«f/|. We prove the claim by
induction with respect to || X ||. So suppose that the claim is true for Z €| | such
that | Z||<| X . Let for x € FId(X)
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Y(x)={(z,y):z EFId(XI.),y € I'5""}.

For x €FId(X) | XI.[|<|X| and X . €| | so by induction hypothesis and
(I) combined with /-absoluteness of 6

(3) Vx [x EFId(X)—> (Y (x)E|L| and & = 6(X [, Y(x)))].
We prove now that

AEVxYy[3TIYx EFAX)A X =Tr(T.Y)rd(x,y, X, Y))

@ SYTVY(x EFIAX) A (X =T A 8(T, Y) = ¢(x, y, X, Y)))].

Take arbitrary x and y. Suppose that the left hand side of the equivalence
holds. Then x € FId(X). By #f-absoluteness of 6, (I) and (3)

oA EP(xy, X, Y(x)).

Take now arbitrary Y such that & = 6(X I, Y). Then P(U)kE 0(X 1, Y), so
by @ Y =Y(x). By the above AEYxy, X, Y) Thus
AEVY(O(X], YY) ¥(x,y X, Y)), ie. the right hand side of the equivalence
holds.

Conversely, suppose that the right hand side holds. Then x € Fld (X). By (3)
Y(x)€ || and AFO(XI, Y(x)). Thus F(x,y X Y(x)). Hence
AEIY(O(X ], Y)A(x,y, X, Y)), ie. the left hand side holds.

So (4) is proved. o satisfies Ai(¢y)-Comp, so by (4) and Corollary 1

AEVXVYy[(x,y)EY, & ITIY(x EFld(X)A
XL=Tnro(T,Y)ry(x,y, X, Y))
for some Y, E|HA|.
Thus for all x and y

AEXY)EY, © AEx EFIA(X)AIY(O(X I, Y)ri(xy, X, Y))

by (I) and (3)
& dEx €FIAX)Ad(x,y, X, Y(x))

since ¢ is s -absolute
S P(AU)ex EFIAX)AY(x,y, X, Y(x))
by the definition of ¢ and Lemma 1
& x €EFlA(X)& P(U)=3z(z EFIA(X T )y € TN
Vao(y, {y": P(U)=3z(z € FIA(X T ) Ay € I
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by the definition of || X [, ||

& x EFAX)&P(U)yE U 1L,

<X el

ooy U %)

n <Xl
& x EFld(X) &y e IlXN,

Thus Y, =Y, But Y, €|d| so the proof of (I} is concluded.
Let now n <h(«). Then for some X €|« such that P(U)E= WF(X)
n =[|X|. By (11)

Yo={(x,y):x €Fld(X),yeILte|«].
By comprehension there exists Z € || such that
AEVy(yEZ < 3Ax((x,y)E Yi) v do,(y’', Ix((x, y') € Y))).
Observe that for all y

AEYyEZ & P(U)EAx((x,y)E Yo) vV oy (v, Ix((x, y) E Yy))

by Lemma 1 oye U IL,v2AU)Edy, U I3)
E<liX] E<IIX]
oyel
Thus Z = I3, which concludes the proof. O

What are the conditions which, imposed on a structure &, imply that
[ oll < h(A)and I, €| |? Clearly we have to assume that &/ is a 8-structure —
there are w-models of full comprehension which do not contain IT; - 3| sets (see
e.g. Apt [1]), so in particular do not contain all sets inductively defined by
arithmetical formulas.

Is it sufficient to assume that & is a B-model of Ai(¢,)-Comp? The answer is
no, because there exist acceptable structures on which every model of A;-Comp
is a B-model.

We conjecture that 2i($,)-Comprehension is not sufficient either. Clearly one
has to add the condition that ¢, is &-absolute.

We prove the following theorem:

THEOREM 2. Let ¢y be a (1, 1)-formula of LY. Suppose that A is a f3-structure
over AU which is a model of 2\(¢o, WF (X))-Comp and that ¢, is & -absolute. Then
ol < h ().
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Proor. Let
x(x,y) e AXIY[WFX)A0(X, Y)r3z((z,x)E Y r(z,y) € Y)]

where (X, Y) is the formula defined in the proof of Theorem 1. x(x,y) is a
3 (¢po, WF(X))-formula, so there exists Z €| | such that for all x and y

AEXY)EZ & x(x,y).
Observe that for all x and y
(x,y)EZ S AEWF(X)A0(X, Y)rAz((z2,x)EY A (z,y)E Y)
for some X € || and Y €| |
forsome X € |/ |and Y €|« | such that P (U )= WF(X)
because & is a B-structure and 6(X, Y) is &-absolute
& PAUEOX, Y)ATz(z,x)EY A(z,y) 2 Y)
for some X € || such that (U )= WF(X)
by (I) and (II)
& 3z (z EFIA(X) A x €T Ay & [0
& [x|a<h(H) & [X [0, <] oy
because h (&) is limit
S x eI rny &I}, for some n < h(A).

It follows that Z is transitive and well-founded, i.e. ?(U)E WF(Z).
Suppose that h(s) = |[¢o[. Then for every n < h(#) there exists x € Fld(Z)

such that |x|s=mn. Clearly |Z].=mn. Thus h(A)=|Z|, which is a

contradiction. O

TueoreM 3. Let ¢y be a (1,1)-formula of L%, where U ={A,R,,- -+, R,). Let
H(bo)={A: A is a B-structure over U,
A E 2o, WF(X))-Comp and ¢, is A-absolute}.

Then
(i) 1€ NH(o).
(i) Iy € Def (% (do)).
Moreover 14, is invariantly definable over ¥ (b,) by a 2\(do, WF(X))-formula.
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(iii) There exists a 3!(¢o, WE(X))-formula Y(x,y) such that
(") Yolx,y) is A -absolute for s{ € H (bv),
(i) | Zo]| = | doll where Zy={(x, y): P(U)E Yo(x, )}

Proor oF (i). By Theorems 1 and 2.
Proor of (ii). Observe that for all x
PU)Ex € Ly«>IXIAY[WF(X)r 0(X, Y)r3z((z,x) E Y)].
Indeed,
x €I, & x €13 for some n <|A|"
& x € I'¥! for some X such that WF(X) and z € Fld(X)
by (I) & IX IY[WF(X) A (X, Y)ATz((z,x)E Y)]
It remains to prove that the formula
AX IY[WF(X) A 0(X, Y)A3z((z,x)E Y)]

is «f-absolute for o € H (o).

Let o/ € % (o). By Theorem 2 there exists Z € | & | such that (%) WF(Z)
and | Z | = [l

We have for all x

PAU)EIX IY[WE(X) A 6(X, Y)r3z((z,x)E Y))
> x €1,
= x €1}, for some n <[ Z|
= x € I'Z" for some z € FId(Z2)
by (I) > PA)EIY[0(Z, Y) ATz ((z,x)E V)]
by (II) > JEIY[O(Z Y)r3z((z,x)E Y)]
> JEAXAY[WEX) A 0(X, Y) a3z ((z,x)E Y)].

Implication in the other direction follows from the fact that WF(X) and
0(X, Y) are o -absolute formulas.

Proor oF (iii). Let
Yo(x, y) > IX AY[WE(X) A 8(X, Y)ATt((Ly)EY
Az((z,x)EY A(z,y) B Y)]
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and let Z,={(x,y): P(U)E Yo(x, y)}. Then for all x and y
PAUYE (X, y)EZy & y E L& Ix !y, <|yls

as a string of equivalences analogous to that in the proof of Theorem 2 shows (in
place of & we should take 2(U)).

The proof that Yu(x,y) is o/-absolute for & € J(¢,) is analogous to the
appropriate proof from part (ii). 0

Let WF"(X) be the following (0,2n)-formula of LY where 9 =
(A,R,,--+,R,): WF"(X) < X is a well-founded transitive relation on A"

Clearly all the results of this section hold for (n, n)-formulas instead of
(1, 1)-ones after replacing throughout the section each occurrence of the formula
WF (X) (including the definition of /1 (.«/) — we denote this changed ordinal by
h"(«)) by WF"(X).

From the proofs of Theorems 1 and 2 we can easily extract

THEOREM 4. Suppose that for some n Z 1 the relation WF" is arithmetical on
Y. Then

{Ls,: dvisa (n, n)-arithmetical formula of L ¥} C N Mod(X}-Comp).
Proor. For some arithmetical formula ¢ of LY
P(UYEWF (X)) (X).
Suppose that ¢, is a (n, n)-arithmetical formula of L Y. Then Ai(¢o)-Comp =
Ai-Comp. Let & be a second order structure over % which is a model of

2 -Comp.
Let x (%, y) be the following (2n)-formula of L

X(%F)>IXTY[W(X) A (X, Y)ATZ(Z.5)E Y A (2.5) € V)]

where 0(X, Y) is the appropriate (0,2n,2n)-formula defined in the proof of
Theorem 1.
x (%, y)is a 2| formula, so there exists Z € .4 such that

AEYIVF((£F)E Z <y (L 7))

The same string of equivalences like in the proof of Theorem 2 shows that for
all x and y

(f7y)ez < x_!4«|<h"(',}q)&ri;‘h)<ly’d’n

which analogously implies that ||¢,[ < h(#4). Due to Theorem 1 I.€l4 . O
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CoroLLARY 2. Barwise-Grilliot theorem (see Moschovakis [2] p. 140) is false
if one omits the assumption of countability.

Proor. There are acceptable structures % on which all the relations WF” are
arithmetical (see Moschovakis [2] theorem 6C.3). By Theorem 4 the intersection
of all models of %i-Comp contains all inductive relations on 9, so by corollary
5D.3 from Moschovakis [2] it is different from the family of all hyperarithmetical
relations on 4. O

Note. The other way to prove the above corollary is to use theorem 7A.1
from Moschovakis [2] in connection with theorem 7F.1. The advantage of the
proof presented above is that it is much more elementary — it doesn’t even use
any of two Stage Comparison Theorems.

§4. Invariant definability over models of A;-Comprehension

Throughout this section we shall use freely several results from Moschovakis
[2]. Instead of writing e.g. “‘by theorem 7A.2 from Moschovakis [2]’ we shall
simply write ‘‘by theorem 7A.2".

All the previously unexplained notations can be found in Moschovakis [2].

THEOREM 5. Let U be an acceptable structure. Let T be an inductive theory in

¥ which has a second order model over U. Then

Def(Mod(T))CA|.
Here, of course, A} denotes the family of all A} first order relations on 9.

Proor. Let X € Def(Mod(T)). For some formula ¢ of L% which is &f-
absolute for & € Mod(T)

PU)E V(T E X o b(F)).
Thus for all £ = (x,, - -, X.)
FEX S P H(F)
& for every of € Mod(T) o F ¢ (%)
& YZ[Mod™(Z)— Saty('¢!, Z, &, (x1, - - -, x.))]

(we are using here the notation of lemma 7E.2 and theorem 8C.2). Mod" (Z)is a
% relation (see theorem 8C.2) and Sat,(a, Z, Y, b) is a A} relation (see lemma
7E.2 and theorem 6B.5). Thus X is a [1; relation. Also =X € Def(Mod(T)), so
— X is a I1] relation relation, as well. Thus X is A}. O
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THEOREM 6. Let U be an acceptable structure. Let T be a theory in LY such
that A}-CompCT and T has a second order model over U. Then

HE(U)CDef(Mod(T)).

Proor. Suppose that X, € #&€(U). By theorem 7D.1 there exists a formula
¢ (%, X) of L™ such that for all X

FEX, o XS (F,X) © IX(X € #E(U) & ¢ (%, X)).

Let &/ € Mod(T). Then %% (%)C|« | by theorem 7E.1.
We have for all x

P(U)EIXP (%, X) > P(U)E ¢ (%, X) for some X € HE(U)
> P(U)E ¢ (% X) for some X € | A |
> A EIAXP(X, X).

Thus 3X¢ (X, X) is o/ -absolute which shows that X, € Def(Mod(T))= O
Combining these two theorems we get

CoroLLARY 3. Let U be a countable acceptable structure. Let T be an
inductive theory in LY such that Ai-Comp CT and T has a second order model
over AU. Then

HE(U )= Def(Mod(T)).
ProOF. By theorem 8A.1 #%(U) = A}, so the claim follows from Theorems 5

and 6.
The above statement is not true for uncountable acceptable structures. It

follows from the following theorem.

THeOREM 7. Let U be an acceptable structure. Suppose that for some n =1
WF" is arithmetical on U. Then

{I4,: d0 isa (n,n) X-positive formula of L™} C Def (Mod (A}-Comp)).

Proor. Let ¢, be a (n, n) X-positive formula of L™ and let o be a model of
Ai-Comp.
By theorem 7A.1 there exists a formula ¢(%, Y) of L™ such that for all %

FE€EL,© AY[WF (V)& H(F Y))
& AY[Y E HEU)& WF"(Y)& &(, Y)).

For some formula ¢ of L™
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WF(X) e PU) = §(X)
for all X CA*". Then
PAUYEVEE E LyoIY[Y(Y) A d(X Y))).
We have for all £
POANEIY[P(Y)ro(x, Y)] = P2(U)EY(Y)Ad(XY)
for some Y € #€(U)
by theorem 7F.1 > PU)E Y(Y)r (%, Y)
for some Y € ||
> dFIY[W(Y) A (% V)]

which shows that 3IY[Y(Y)a8(Y,x)] is f-absolute. Thus I,€E
Def(Mod (A}-Comp)). O

We are unable to characterize the sets which belong to Def(Mod (Ai-Comp))
in the case of arbitrary acceptable structures. Observe, however, that the
following theorem holds.

THEOREM 8. Let U =(A,R,, -, R,) be an acceptable structure. There exists
an inductive set I such that

Def (Mod (A!-Comp)) C #E (U, I).

Proor. Let I be an inductive binary relation which parametizes the unary
inductive relations (see theorem 5D.2). Let X € Def (Mod(A}-Comp)). Then for
all x,,-- -, x,

PAUE (x1,  x)EX (A, HEU), R, -, R)EG(x), -, x).

Let k be the highest arity of second order variables occurring in ¢. Then clearly
for all x,,---, x,

PUYE (X1, x)EX & (A, L_(J HE™(U), R\, ROIED(x1, -, x).

By theorem 5D.4 for every [ there exists a (I + 1)-ary inductive set I' which
parametrizes #E'(U).

Let J ={{m,a):a € I",m =k} (here m is the m-th integer in the copy of w in
a coding scheme fixed throughout the proof). Clearly J is inductive.

By lemma 7E.2 for all x,, -, x,
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PAExL - x)EX S Saty('¢p', J, b, (x1, -+ -, X))

where Sat, is a second order hyperelementary relation.

This easily implies that X is hyperelementary on (%, J). For some a
J={x:(a,x)E I} thus X € ¥€ (U, I).

It seems likely that the inclusion in the above theorem could be replaced by
equality. We are, however, unable to prove it.
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