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COMPREHENSION AND 

INVARIANT DEFINABILITYt 

BY 

K. R. APT 

ABSTRACT 

The connections between inductive definability and models of comprehension 
are studied. Let 011 = (A, R,, · · -, R") be an infinite structure and let I.,, be a set 
inductively defined by a formula cf> of the second order language Li'. We prove 
that if s1 is a model of ii:-Comprehension relativized to cf>, and cf> is s.1-absolute, 
then for every 1) smaller than the height of s1. (h (.91)), I; is in .. 91. If s1 is a 
/3-structure which satisfies 4:-Comprehension relativized to cf> and WF(X), and 
cf> is .'4-absolute, then I.,, is in s1 and II cf> J < h (d). These results imply that 
Barwise-Gril!iot theorem is false in the case of uncountable acceptable 
structures. We also study the notion of invariant definability over models ,of 
ii :-comprehension. 

§ 1. Introduction 

This paper is devoted to the study of connections between inductive definabil­

ity and models of comprehension. The basic question to which we want to find an 
answer is the following. 

Let 611 be an infinite structure. Suppose that l,;, is a set inductively defined by a 

second order formula <f>. Which properties of a second order structure sll over 611 
imply that I,;, or some of its stages n belong to I sll I? 

We prove in §3 that if s1 satisfies i1\-Comprehension scheme relativized to </> 

and <f> is .sd-absolute then for every ri smaller than the height of s1 (h (sll)) 

/~Elsll/. 

If we assume that sll is a ,B-structure for which </> is sll-absolute and sll satisfies 

2,\-Comprehension relativized to </> and WF (X) then II</> II< h (sd) and I,, E I sll I. 
Using these results we prove that Barwise-Grilliot theorem (see Moschovakis 

[2] p. 140) is false in the case of uncountable acceptable structures. 
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The basic problem to which we are unable to find the answer is the following: 
is it true that hyperelementary relations on an arbitrary infinite structure UU form 
a model (the smallest one) of ~:-Comprehension? 

In §4 we study the notion of invariant definability over models of Ll:­
Comprehension. We prove that if UU is a countable acceptable structure and T is 
an inductive theory in Lt which extends ~:-comprehension and has a model 
over UU then the hyperelementary relations of U-IJ are exactly the sets invariantly 
ddefinable over models of T. This theorem is not true in the case of uncountable 

acceptable structures. 
Finally we prove that if UU is acceptable then for some inductive set I every set 

invariantly definable over models of ~:-Comprehension is hyperelementary in I. 
Unfortunately we are unable to give the eJEact characterization of sets which 

are invariantly definable over all models of Ll:-Comprehension in the case of an 

arbitrary infinite structure UU. 
We thank Mr. E. Alward and Prof. G. Kreisel for helpful remarks about 

~ :-Comprehensio,1. 

§2. Preliminaries 

Throughout the paper the letters TJ, ~, T, u always denote ordinals. If A is a set 
we use small latin letters to denote the elements of A and capital letters to 
denote relations on A of any (finite) number of arguments. By A" (n ~ I) we 
denote the set of all n-tuples of elements of A. If X is a set gl>(X) denotes its 
power set. i denotes a sequence X1, • ·-, x" of elements of A and X denotes a 
sequence Xi, · ·-, X" of relations on A. 

For the convenience of the reader we recall here some definitions and 
notations which can be found in Moschovakis [2] and Moschovakis [3]. 

The first order language over a set A, LA has an infinite list of individual 
variables x, y, z, · ·-, a constant b for each element b of A, an infinite list 
X, Y, Z, · · · of n-ary relation variables for each n ~ I and a constant P for each 
relation P on A. In forming formulas of LA the quantifiers 3 and V are applied 
only to individual variables. 

The second order language over A, L ~ is obtained by allowing quantification 
of the relation variables in the language LA. For convenience we assume that the 
formulas of the type X = Y are not well formed formulas (we may write instead 
\lx(X(x)- Y(x))). 

Let UU =(A, Ri, ···,Rn) be a structure (that is to say Ri, · ·-, R" are relations 
over A). The first (second) order language L 'll (LY) for 611 consists of those 
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formulas of the language LA (L 'i) whose relation constants are among 
=, R,, · ·-, R". We sometimes write i EX instead of X(i). 

Formulas of L "Ii are called arithmetical formulas. All structures considered are 
infinite. 

s1 is called a second order structure over 0/1 =(A,R 1,···,Rn) if d= 
(A,/d/,R,,···,R") where fd/cU",,,,91'(A"). While interpreting a formula 
<P of L '~ on si we assume that the second order quantifiers of cf> range 
over I sli /. For simplicity PP(0/1) denotes the second order structure 
(A, Un£";! PJ(A "), Ri, ••",Rn). 

We sometimes write cf>(i,X) instead of PJ(O/J)t=cf>(i,X). 

DEFINITION l. Let s1 be a second order structure over 0/1. A formula 
<f>(xi,···,xk,Xi,··-,Xn) of L~ with free variables indicated is called 
<W' -absolute if 

forallxi,··-,xkEA andX,,··-,X"E/d/. 

WF(X) is the following formula of L ~ where 0/1 =(A, R 1, ··-,Rn): 
WF(X) ~ X is a well-founded transitive relation on A, i.e. 

WF(X)~ Tix, y, z [((x, y) EX" (y, z) E X)~(x, z) EX] 

"T/S(3x(x ES)~ 3y(y ES" \Ix (x ES~ (x, y) ~ X))] 

DEFINITION 2. A second order structure d over ql is called a {3-structure if 
the formula WF(X) is d-absolute. 

If cf> (x i, · · -, xk< X 1, • • -, X") is a formula of L ~ with free variables indicated we 
say that cf> is a (k, r1, ··-,'")-formula to indicate the fact that cf> has exactly k free 
individual variables and for every i ~ n free variable X, ranges over r, -ary 
relations. 

DEFINITION 3. Let cf>(i,X,X) be a (m,l,ri,-- ·,r")-formula of L~ and 
tfl(y,y,, Y) be a (l+p,p,,-·-,p,)-formula of L~. Suppose that cf>(i,X,X) and 
tfl(y, yi, Y) have no variables in common. Then <ji9 (i, i.f;(y, Yi, Y), X) is a 
(m + p, ri, · ·-,'"'pi,· ·-, p, )-formula of L ~ obtained from <.f> (i, X, X) by replac­
ing all the atomic formulas of the form i EX occurring in <f>(i, X, X) by 
tfl(z, y,, Y). 

LEMMA l. Suppose that <f>(i, X, X) and t{l(y, Yi, Y) are formulas of L ~.which 
satisfy the above conditions. Then for all i, yi, X and Y 
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where 
A ={y:9P(O/.l)l=l/l(y,y., Y)}. 

PROOF. By induction on the leng'th of the formula <fJ(i, X, X). D 

DEFINITION 4. Suppose that X CA 2 is a binary relation on A Let 

Fld(X) = {x: 3y((x, y) EX v (y, x) EX)}. 

If z E Fld(X) then 

xr. ={(x,y):(x,y)EX 11(y,z)EX}. 

By transfinite induction we define the classes of well-founded transitive 
relations on A 

WF(u) = {X: X is a well-founded transitive relation on A and 

Vz(z E Fld(X)- X r. E WF(r) for some r < u)}. 

It is easy to see then that 

WF(X) <::::> X E WF(u) for some u. 

Suppose that WF(X). By I/XII we denote the least u such that X E WF(u). If 

x E Fld(X) then llX r. II< /IX 11. If (x, y)E x then x r. = x ry r •. If O'" < 11x11 then 
for some x E Fld(X) u = llX r.11. 

If X and Y are two binary relations on A then by X ~ Y we mean the 
following formula of L ~ : 

3Z(Z is a 1-1 function from Fld(X) into Fld(Y) 

and Vx,y ((x,y)EX-(Z(x),Z(y))E Y)). 

We define then 

x < y ++3z (z E Fld(Y)" x ~Yr.). 

It is easy to see then that if WF(Y) then 

X~ Y ~ llXll~llYll, 

X< Y ~ llXll<llYll-

DEFINITION 5. Let s4 be a second order structure over O/.l. We define 

h(d) = sup(llXll + 1: 9P(O/.l)F= WF(X) and X E Id I). 

We call h(d) the height of d. 



Vol. 29, 1978 INDUCTIVE DEFINITIONS 225 

DEFINITION 6. Let :X be a class of structures over 611 =(A, Ri, ···,Rn>· Then 

n 'X = {X: X E / sd ~for all sd E .<1l}, 

Def(Y{)={X:XE un;,;19l'(A") and for some fo.rmula <f>(i) of LY 
with free variables indicated which is .sd-absolute 
for all sd E ']{ 

fli>(OZl)l=\fi(i EX ~<f>(i))}. 

Thus n YC is the intersection of all the structures belonging to 'X whereas 
Def (.'/{) is the collection of all sets invariantly definable over J"{ 

If T is a set of sentences of L ~ (i.e. a theory in L ~) then 

Mod(T) = {.sd: s1. is a second order structure over 611 and sd I= T}. 

DEFINITION 7. Let <f>o be a formula of L ~. Ar(<f>o) is the smallest class of 
formulas of L ~ such that 

(i) <f>o E Ar(<f>o), 
(ii) every arithmetical formula of L ~ is in Ar(<f>o), 
(iii) if <f>, ijJ E Ar(<f>o) then --i<f>, <f> v ijl, 3x<f> E Ar(<f>o). 

A formula ijJ of L ~ is a i:(<f>o) formula if it is of the form 3X, · · · 3X"<f> for 
some formula <f> E Ar(<f>o). 

We call a relation R(i,X) (RCA" x fli>(A" 1)x ·· · x fli>(A"') for some 
n, n" · · ·, nk) arithmetical (l:) if for some arithmetical (2.:) formula <f> of L'~ 

R = {(i, X): 9Jl(OZL) 1= <f>(i, X)}. 

A relation R is rn if -. R is i: and is a: if both R and -. R are l:. 
Recall that for n ~ 1, W:ffe" ={Y: Y is well-founded on A"}. 
By <l:( <f>0 )-Comp we mean the class of all the sentences of L ~ of the form 

\fY[\fi(3Z1<f>(i,Zi, Y)~\fZ2ijJ(i,Z2, Y)) 

-4 3X'v'z(z Ex~ 3Z,<f>(z, Zi, Y))] 

where X does not occur in <f> and <f>, ijJ E Ar( <f>o). 
By I:( <f>o)-Comp we mean the class of all the sentences of L ~ of the form 

'v'Y3X'v'z(zEX~<t>(z, Y)) 

where <f> E .z.:( <f>o) and X does not occur in <f>. 
It is clear what we mean by a:-Comp, .z.:-comp or .z.:(<f>o, WF(X))-Comp. 
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LEMMA 2. Let r.f>o be a formula of L ~.For every -:S~(c:Po) formula 1.f; of LY there 
exists an Ar(<f>o) formula <f> such that if sd is second order structure over VU which 
satisfies the following two conditions: 

(1) X, YE/di:::} Xx YE/d/, 

(2) If X EI d I and X is a l + m -ary set (l, rn ~ 1) then there exist sets 
Xi, X 2 E / d I l-ary and m -ary respectively such that 

then 

d F 'v'z (z E X1~3y((z, Y) EX)), 

d F 'v'y (y E X2 ~ 3z((z, Y) EX)), 

PROOF. Assume for simplicity that 1.f; is of the form 3X1 3X2t/11(i, X1, X2, X) 
where l/J 1(x, Xi, X2, X) is a (k, !, m, ni, · · ·, n,) Ar(c:Po)-formula of LY for some 
k, l, m, n1, · · ·, n, where I, m ~I. 

Let 1.f;'(i,X,X2,X) be the following (k,l+ m,n1, · · ·,n,)-formula of LY: 

l/!1t (i, 3y ((z, Y) EX), X2, X) 

and let <f>(x,X,X) be the (k,l+m,n1,···,n,)-formula of L~ obtained from 
t/19(i,X,3z((i,Y)E Y),X) by replacing all the occurrences of Y by X (we have 
to make this small detour via Y in order to avoid the clash of variables). Clearly 
<PE Ar(<f>o). 

Now it is easy to see that for all i and X 

d t= 3X13X2i/!1(i, Xi, X2, X)~3Xc:t>(X, X, X). 

Indeed, if for some X1 and X2 d'f=l/!1(i,X1,X2,X) then X1xX2 E/s11 and 
clearly by Lemma I d t= <f>(i, X, X). 

Conversely, if for some X sd t= <f> (i, X, X) then 

X1={z:dt=3y((z,Y)EX)}E/.Y1/, 

X2 = {y: d t= 3 z ((z, Y) E X)} E /.Yi I 
and clearly by Lemma 1 

D 

COROLLARY l. Let <Po be a formula of L !. Let d be a second order structure 
over VU. If d t= 6:(<1>0)-Comp then d also satisfies the following scheme: 
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VY('v'z(<f>(z, Y) ~---, !/l(z, Y))~ 3X\t'z(z Ex~ <f>(z, Y))] 

where X does not occur in <P and <fa, !/! are ~:(<Po) formulas. 

PROOF. By Lemma 2. D 
Suppose now that <f>(x,,- ·., Xn, Y) is a (n, n)-formula of L ~. <f> defines an 

operator et> (not necessarily monotone) on the n-ary relations 

Define by induction 

I! = U ll U et> ( U ll), 
TJ<S l'/<S 

I.,= U I!. 
< 

By the closure ordinal of <fa, II <f> fl, we mean the least ~ such that I! = U,, <<I~. 
I., is said to be inductively defined by <f>. Observe that 

I., = Ii;t 11 = U !;. 
")<114>11 

By IX I we denote the cardinality of a set X. By Y/ + we mean the least cardinal 
number greater than T/· 

If <Pu is a (n, n)-formula of L ~where 61.L =(A, R" ··-,Rn) then //<Pol/< I A I+. If 
i EA" then 

_ { least Y/ such that i E Ilc, if x E !'"', 
fx 1.,,1= 

f A I+ otherwise. 

Observe that for every Y/ < I A I+ there exists X CA 2 such that 
t!J>(6/i) I= WF(X) and I/XII= T/-

§3. Nonmonotone inductive definitions and models of comprehension 

The first theorem we prove is the following: 

THEOREM 1. Let <Po be a (1, 1)-formula of C~. Let .sti be a second order 
structure over 61.L such that .sti I= A:(<f>o)-ComR and <Po is .sti-absolute. Then 

T/ < h (.sti) ::} ll,, EI .sti /. 
PROOF. Define a (2, 2, 2)-formula <P(x, y, X, Y) of L ~ as follows: 
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<P(x, y, X, Y)~3z (z E Fld(X rx) 11 (z, y) E Y). 

Let 

tf;(x, y, X, Y) ~ <P(x, y, X, Y) v [ <Poy.(y, <P(x, y ', X, Y)) 11 x E Fld(X)] 

(we avoid the clash of variables by appropriate renaming of the variables 

occurring in <Po). 

Finally define 

8(X, Y) ~ 'v'x 'v'y ((x, y) E Y ~ tf;(x, y, X, Y)). 

Observe that 

tf;(x, y, X, Y) E Ar(<t>o) 

and 

8(X, Y) E Ar(<f:io) 

so both are d-absolute formulas. 

We prove at first the following two facts: 

(I) If gll(OZl)i=WF(X) then for all Y 

gll(0/1)1= 8(X, Y) ~ Y = {(x, y): x E Fld(X), y E I~t,Y1 }. 

(II) If X E !di and gll(OZl)i=WF(X) then 

{(x, y ): x E Fld(X), y E I~~r· 11 } EI sd I. 

Suppose that gl>(OZl) I= WF(X). Let 

Yo= {(x, y ): x E Fld(X), y E I~~r· 11 }. 

PROOF OF (1). We prove that 91'(0/1)1= 8(X, Y0 ). 

Let x and y be arbitrary. If x ~ Fld(X) then 

gl>(OZl) I= (x, y) ~ Yo A-, t/J (x, y, X, Yo). 

So assume that x E F!d (X). Then 

9J>(OZl) I= (x, y) E Yo~ y E I~~r,11 

~ y E U I;0 v <f:io (y, U lJ0 ) 

~<llXr,11 w=llXr,11 

because 
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(z,x)EX =? (Xrxrz =Xf,)<=>3z(z EF!d(Xfx)Ay EJ'~~r,ll) 

V </>o(y, {y': 0"(611)I=3z(z E Fld(X f x) A y' E J~~r,il}) 

by Lemma 1 

<=> sP(611) I= <P(x, y, X, Yo) v </>oy{y, <P(x, y ', X, Y.,)) 

<=> sP(6ll)l=ijJ(x,y,X, Yo). 

Thus sP(O/L)I= 8(X, Yo). 
Suppose now that for some Y g> (611) I= O(X, Y). Observe that then for all x 

and y 

(x, y) E Y ~x E Fld(X). 

We prove by induction with respect to II x r x II that for all x, y 
(x,y)E Y~(x,y)E Yo. 

Let x E Fld(X). Suppose that the claim is true for all pairs (z, y) such that 
llX rzll < llX f x II. Then for all y 

:J'l(O/L)l=(x,y)E Y<=> 9P(O/L)l=ijl(x,y,X, Y) 

by Lemma I 

<=> sP( 0U)1=3z(z EFld(Xfx)A(z,y)E Y) 

v </>o(y,{y': PJ>(O/L)l=3z(z E Fld(Xrx)A(z,y)E Y)}) 

by induction hypotheses 

<=> sP(611)1=3z(z EF!d(Xfx)A(z,y)E Yo) 

v </>o(y, {y ': sP(O/L )I= 3z (z E Fld (X f x) A (z, y) E Y,,)}) 

by Lemma 1 

<=> :J'l(O/L) I= ijl(x, y, X, Yo) 

by the above string of equivalences 

<=> sP( 0U)l=(x,y)E Yo. 
Thus by induction Y = Y,, which concludes the proof of (I). 

PROOF OF (II). Assume additionally that X EI .s4 /. We prove the claim by 
induction with respect to II XII. So suppose that the claim is true for Z EI s4 I such 
that llZll<llXll. Let for x EF!d(X) 
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Y(x) = {(z, y ): z E Fld (X rx ), y E I~~r,r,' 1}. 

For x E Fld (X) II x r, II< II x II and x r, EI stJ.1 so by induction hypothesis and 

(I) combined with s1-absoluteness of 8 

(3) Vx [x E Fld(X) _.. (Y(x) EI s1 I and .stJ. F 8(X r,, Y(x )))]. 

We prove now that 

.</i. F='efx Vy[3T3Y(x E Fld(X) 11xr,=T11 B(T, Y) 11 !/J(x,y,X, Y)) 

(4) 
~VTVY(x E Fld(X) 11((Xf,=T11 8(T, Y))_.. !/l(x, y, X, Y)))]. 

Take arbitrary x and y. Suppose that the left hand side of the equivalence 

holds. Then x E Fld(X). By s1-absoluteness of e, (I) and (3) 

.r4 F= tf;(x, y, X, Y(x)). 

Take now arbitrary Y such that .stJ. F= B(X fx, Y). Then '!1'('11) F= B(X f,, Y), so 

by (I) Y = Y (x ). By the above .</i. F= !/! (x, y, X, Y). Thus 

siF=VY(8(Xf,, Y)_..lf!(x,y,X, Y)), i.e. the right hand side of the equivalence 

holds. 

Conversely, suppose that the right hand side holds. Then x E Fld(X). By (3) 

Y(x)E/."11 and sif=B(Xf,,Y(x)). Thus s1F=lf!(x,y,X,Y(x)). Hence 

.o:1F=3Y(8(Xf,, Y)11tf;(x,y,X, Y)), i.e. the left hand side holds. 

So (4) is proved. si satisfies il:(1>o)-Comp, so by (4) and Corollary 1 

.rAF=VxVy[(x,y)E Y, ~ 3T3Y(xEFld(X)A 

X f x = T /\ B(T, Y) A tf;(x, y, X, Y))] 

for some Y, EI s1 /. 
Thus for all x and y 

si F= (x, y) E Y, ~ s1F=xEFld(X)113 Y(8(X f,, Y) /\ tf;(x, y, X, Y)) 

by (I) and (3) 

~ .<:d F= x E Fld (X) /\ !/J(x, y, X, Y(x )) 

since ijJ is .<A'-absolute 

~ 9P( 01L)F=x EFld(X)Atf;(x,y,X, Y(x)) 

by the definition of ijJ and Lemma 1 

~ x E Fld(X) & '!1'('11)F=3z (z E Fld(X f x) /\ y E J~~r,r, 11) 

v 1>11(y, {y': :?P(U/J )F= 3z (z E Fld(X f x) /\ y' E I~~r.r,ii)}) 
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by the definition of 11xr.11 

~ x E Fld(X)& gp(O/L )I= y E LJ /l., 
11<llXL~ll 

~ x E Fld(X) & y E H~r,11. 

Thus Y1 = Yo. But Y, EI s4 I so the proof of (II) is concluded. 

Let now T/ <h(s4). Then for some XE/d such that f¥>(0/L)l=WF(X) 

T/ = II x 11. By (II) 

Yo= {(x, y ): x E Fld (X), y E I~~;r.' 1} EI s4 I. 

By comprehension there exists Z EI s4 I such that 

dl=Vy(y EZ~3x((x,y)E Yo)v <f>oy{y',3x((x,y')E Yo))). 

Observe that for all y 

s4 I= y E Z ~ gJl(O/L) I= 3x ((x, y) E Yo) v c;boy{y, 3x ((x, y ') E Yo)) 

by Lemma 1 ~yE U I;11 v[1}(6/L)l=<f>o(y, LJ I~") 
~<iiXll ~<i!Xll 

Thus Z = I~" which concludes the proof. D 
What are the conditions which, imposed on a structure sf/., imply that 

/I <Po 11 < h (sd) and J..._, EI s4 I? Clearly we have to assume that dis a {3-structure -

there are w-models of full comprehension which do not contain n: - 1: sets (see 

e.g. Apt [1]), so in particular do not contain all sets inductively defined by 

arithmetical formulas. 

Is it sufficient to assume that s4 is a {3-model of a:(<J>o)-Comp? The answer is 

no, because there exist acceptable structures on which every model of a:-Comp 

is a {3-model. 

We conjecture that I:(<f>o)-Comprehension is not sufficient either. Clearly one 

has to add the condition that <f>o is s4-absolute. 

We prove the following theorem: 

THEOREM 2. Let <l>o be a (l, I)-formula of L ~.Suppose that dis a (3-structure 

over 6/L which is a model of I:(c;bo, WF(X))-Comp and that <f>o is d-absolute. Then 

11<t>o11 < h (d). 
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PROOF. Let 

x(x, y) <:::> 3X 3 Y[WF(X) 11 8(X, Y) 11 3z((z, x) E Y 11 (z, y) ~ Y)] 

where 8(X, Y) is the formula defined in the proof of Theorem 1. x(x, y) is a 

1:( </>o, WF (X))-formula, so there exists Z EI d I such that for all x and y 

d I= (x, y) E Z <:::> x(x, y). 

Observe that for all x and y 

(x, y)E Z <:::> d I= WF(X) 11 8(X, Y) 113z((z, x) E Y 11 (z, y) ~ Y) 

for some X E / d / and Y E / d I 

for some X E / d I and YE/ d I such that l!/'(<i/J. )I= WF(X) 

because d is a ,a-structure and 8 (X, Y) is d -absolute 

by (I) and (II) 

<:::> 9(oU)1=8(X, Y)113z((z,x)E Y 11(z,y)~ Y) 

for some X E Id I such that '?J(<i/J.) I= WF(X) 

<:::> 3z (z E F!d(X) 11 x E 11;;,;r.11 11 y ~ p::,,r,11) 

<:::> Ix 14>o < h (d) & Ix l.i., <I y lq,,, 

because h(d) is limit 

<:::> x En, 11 y g n, for some T/ < h (d). 

It follows that Z is transitive and well-founded, i.e. '?J(<i/J.) I= WF(Z). 

Suppose that h (d) ;a I/ </>o//. Then for every T/ < h (d) there exists x E Fld(Z) 

such that lxl.i..=ri. Clearly //Zf,l/=ri. Thus h(.sd)~llZll. which is a 

contradiction. O 

THEOREM 3. Let<f>o be a (I, I)-formula of Lf, where oU =(A, R1, · ·-, R"). Let 

J((</>o) = {d: dis a ,8-structure over <i/J., 

d I= l:(</>o, WF(X))-Comp and </>o is d-absolute}. 

Then 

(i) I.i.,EnX(c/>o). 

(ii) I.i.,E Def(JC(</>o)). 

Moreover I.i., is invariantly definable over X(c/>o) by a l:(</>o, WF(X))-formula. 
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(iii) There exists a 1:(4>0, WF(X))-formula t/.to(x. y) such that 

(i') l/;o(x, y) is s1 -absolute for d E J{ ( c/Jo), 

(ii') !!Zoll= II <Poll where Zo = {(x, y): 0'l(oU )F l/;o(X, y)}. 

PROOF OF (i). By Theorems 1 and 2. 

PROOF OF (ii). Observe that for all x 

SD(oU) f= x EI"',~ 3X 3 Y[WF(X) A 8(X, Y) A 3z ((z, x) E Y)]. 

Indeed, 

x E lq,,_, <=::> x E I~,; 1 for some Y/ <!A I+ 

233 

<=::> x E r:;,r,ii for some X such that WF(X) and z E Fld(X) 

by (I) <=::> 3X 3 Y(WF(X) A e (X, Y) A 3z ((z, x) E Y)). 

It remains to prove that the formula 

3X 3 Y[WF(X) A 8(X, Y) A 3z ((z, x) E Y)] 

is .czl-abso!ute for d E JC(cp 0 ). 

Let d E JC(<Po). By Theorem 2 there exists Z EI d I such that 9)>(0Zl) f= WF (Z) 

and II z II = II <Po II. 
We have for all x 

by (I) 

by (II) 

9)>(0Zf)f=3X3Y[WF(X)118(X, Y)A3z((z,x)E Y)] 

=? x EI"', 

=? x EI;., for some YJ < llZll 

=? x E 1~1 , 11 for some z E Fld(Z) 

=? 81>(0/1)f=3 Y(8(Z, Y) A 3z ((z, x) E Y)] 

:=} df=3Y(8(Z, Y)A3z((z,x)E Y)j 

:=} df=3X3Y[WF(X)A 8(X, Y)A3z((z,x)E Y)). 

Implication in the other direction follows from the fact that WF(X) and 

8(X, Y) are .czl-absolute formulas. 

PROOF OF (iii). Let 

t./lo(x, y) ~ 3X 3 Y(WF(X) f\ 8(X, Y) f\ 3t((t, y) E Y 

A3z((z,x)E Y A(z,y) ~ Y)] 
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and let z 11 = { (x, y ): 27' (011) I= t/Jo(x. y )}. Then for all x and y 

07l("7.l)I= (x, y )E Zo ~ y E !,,,,&Ix 1,00 <: y :,1;, 

Israel J. Math. 

as a string of equivalences analogous to that in the proof of Theorem 2 shows (in 
place of sl we should take '1P ('71 )). 

The proof that t/J11(x, y) is s1 -absolute for sl. E X ( <f;11) is analogous to the 
appropriate proof from part (ii). 0 

Let WF"(X) be the following (0.2n)-formula of Li' where 611= 
(A, R,, · · · , Rn): WF" (X) ~ X is a well-founded transitive relation on A". 

Clearly all the results of this section hold for (n. n )-formulas instead of 
(1, 1)-ones after replacing throughout the section each occurrence of the formula 
WF(X) (including the definition of h (.vl) - we denote this changed ordinal by 
h "(sl)) by WF"(X). 

From the proofs of Theorems 1 and 2 we can easily extract 

THEOREM 4. Suppose that for some n ~ 1 the relation W§" is arithmetical on 
07.L Then 

{Iq,,,: <f;0 is a (n, n )-arithmetical formula of Li'} C n Mod("~::-Comp). 

PROOF. For some arithmetical formula tf; of L .'.' 

?P(Glf )I= WF" (X)~ tf;(X). 

Suppose that <Po is a (n, n)-arithmctical formula of Li' Then il:(cf;o)-Comp = 
~:-Comp. Let s1. be a second order structure over •// which is a model of 
~:-comp. 

Let x(i, Y) be the following (2n)-formula of L ~ 

x(i,Y)~3X3Y[tf;(X)A B(X, Y)113z((z.i)E Y A(i,Y) E Y)] 

where 8(X, Y) is the appropriate (0,2n,211)-formula defined in the proof of 
Theorem 1. 

x(i, Y) is a~: formula, so there exists Z E: .w such that 

.•ll 1= Vi Vy((i, Y) E z ~ x(x. 9)). 

The same string of equivalences like in the proof of Theorem 2 shows that for 
all i and y 

(i, Y) E Z ~ X I;.,< h n ("4) & 1 X !,/,, < I Y i,;,, 

which analogously implies that II <Poll< h (.'lf. ). Due to Theorem 1 /"',EI sf/. . 0 
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COROLLARY 2. Barwise-Grilliot theorem (see Moschovakis (2] p. 140) is false 

if one omits the assumption of countability. 

PROOF. There are acceptable structures 6ll on which all the relations WF" are 
arithmetical (see Moschovakis (2] theorem 6C.3). By Theorem 4 the intersection 

of all models of i:-Comp contains all inductive relations on 6ll, so by corollary 
50.3 from Moschovakis (2] it is different from the family of all hyperarithmetical 

relations on 6ll. D 

NoTE. The other way to prove the above corollary is to use theorem 7 A.1 
from Moschovakis (2] in connection with theorem 7F.1. The advantage of the 

proof presented above is that it is much more elementary - it doesn't even use 
any of two Stage Comparison Theorems. 

§4. Invariant definability over models of A :-Comprehension 

Throughout this section we shall use freely several results from Moschovakis 
[2]. Instead of writing e.g. "by theorem 7 A.2 from Moschovakis [2]" we shall 
simply write "by theorem 7 A.2". 

All the previously unexplained notations can be found in Moschovakis (2]. 

THEOREM 5. Let 6ll be an acceptable structure. Let T be an inductive theory in 

L ~ which has a second order model over 15/i. Then 

Def (Mod (T)) Ca:. 

Here, of course, a: denotes the family of all a: first order relations on 611. 

PROOF. Let X E Def(Mod(T)). For some formula cf> of L 1' which is .sii.­
absolute for .rl1 E Mod(T) 

PP(611 )F= Vi(i EX~ cf>(i)). 

Thus for all i = (x,, · · ·, Xn) 

i EX~ 9J>(61i)F= cf>(.i) 

~for every sli E Mod(T) .rl1 F= c/>(i) 

~ V Z [Mod r (Z )-+ Sati(f c/> 1, Z, c/>, (x" · · ·, Xn))] 

(we are using here the notation of lemma 7E.2 and theorem 8C.2). Modr(Z) is a 

i: relation (see theorem 8C.2) and Sati(a, Z, Y, b) is a A: relation (see lemma 

' 7E.2 and theorem 68.5). Thus X is arr: relation. Also -.x E Def(Mod(T)), so 
-. X is a TI: relation relation, as well. Thus X is AL D 
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THEOREM 6. Let UU be an acceptable structure. Let T be a theory in Li' such 
that Ll:-Comp C T and T has a second order model over Ci/L. Then 

'Je'f, ( UU) C Def (Mod ( T) ). 

PROOF. Suppose that Xo E 'Je'f, (UU ). By theorem 7D .1 there exists a formula 

1> (i, X) of L"' such that for all i 

i E X 0 ~ 3Xcp(i, X) ~ 3X(X E 'Je'f,(Ci/L) & <:f>(i, X)). 

Let s!I. E Mod (T). Then 'Je'if;' (UU) C ! d I by theorem 7E.1. 

We have for all i 

gi (Ci/L) F= 3Xcp (i, X) =? ;2ll (O/L) F= <f> (i, X) for some X E 'Je'f, (O/L) 

=? ;Jl(O/L) F= <f> (i, X) for some X E I s!I. I 

=? s!I. F= 3Xcp(i, X). 

Thus 3X<f>(i,X) is .Id-absolute which shows that XoE Def(Mod(T)).• O 

Combining these two theorems we get 

COROLLARY 3. Let 611 be a countable acceptable structure. Let T be an 
inductive theory in L ~ such that Ll \-Comp C T and T has a second order model 
over 611. Then 

'Je'if;'(Ci/L) = Def(Mod(T)). 

PROOF. By theorem 8A.1 'Je'f,(Ci/L) = Ll:, so the claim follows from Theorems 5 

and 6. 

The above statement is not true for uncountable acceptable structures. It 
follows from the following theorem. 

THEOREM 7. Let 611 be an acceptable structure. Suppose that for some n ~ 1 

W.<Ji" is arithmetical on O/L. Then 

{l .,0 : <Po is a (n, n) X -positive formula of L '11 } C Def (Mod (Ll :-Comp)). 

PROOF. Let <f>o be a ( n, n) X -positive formula of L'11 and let .r//. be a model of 

Ll:-comp. 

By theorem 7A.l there exists a formula <:f>(i, Y) of L"' such that for all x 

i E l<1><., ~ 3 Y[W.'ffe" ( Y) & <f>(i, Y)J 

~ 3 Y[ YE 'Je'if;' (O/L) & 'W:ffe" ( Y) & <:/>(i, Y)]. 

For some formula i/J of L"' 
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W:ffe"(X) <:> q/'(611 )I= lj!(X) 

for all X CA 2". Then 

q/'(611)J='v'x(x E r<J>t.~3Y[lj!(Y) /\ <f>(i, Y)]). 

We have for all i 

qp ( 611 ) 1= 3 Y [ tfi ( Y) " <P ( .x, Y) 1 =? PJ (au ) 1= tfi ( Y) " 1> ( .x, Y) 

for some Y E ';/{~ ( 611) 

by theorem 7F.l 

for some Y E I ,<ii. I 

=? s1!=3Y[t/f(Y)11<f:>(x, Y)] 

which shows that 3Y[tfi(Y)118(Y,x)] is ,?1'-absolute. Thus I'"',E 

Def(Mod(~:-comp)). D 
We are unable to characterize the sets which belong to Def(Mod(~t-Comp)) 

in the case of arbitrary acceptable structures. Observe, however, that the 

following theorem holds. 

THEOREM 8. Let 611 =(A, R,, · · "R") be an acceptable structure. There exists 

an inductive set I such that 

Def(Mod(~t-Comp)) C ';!e'?t;(O/l, I). 

PROOF. Let I be an inductive binary relation which parametizes the unary 

inductive relations (see theorem 5D.2). Let X E Def(Mod(~t-Comp)). Then for 

all x" · · ·, x, 

Let k be the highest arity of second order variables occurring in <f>. Then clearly 

for all x,,···,x, 

2P(611)J=(xi, ... ,x,)EX<:>(A, LJ :Jf't;m(O/L),R"···,Rn)l=<f>(xi,···,x,). 
m~k 

By theorem 50.4 for every l there exists a (/ + 1)-ary inductive set I' which 

parametrizes :7{'~ 1 (0/L). 

Let J = {(I!!, a): a E Jm, m ~ k} (here I!! is the m -th integer in the copy of w in 

a coding scheme fixed throughout the proof). Clearly J is inductive. 

By lemma 7E.2 for all x,, · · ·, x, 
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where Sat" is a second order hyperelementary relation. 

This easily implies that X is hyperelementary on (rJ/J., I). For some a 

J = {x: (a, x)E I} thus X E ~(rJ/J., I). 

It seems likely that the inclusion in the above theorem could be replaced by' 

equality. We are, however, unable to prove it. 
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