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Abstract. A one component, one dimensional diffusion model 

is presented in which spatial structure is generated by 

means of a density dependent diffusive mechanism such that 

for some density values mass flow is proportional to the 

mass density gradient. Although stability and attractivity 

properties of a set of analytic periodic stationary 

solutions are not strong enough, the analytical and 

numerical work reported here, show that this evolution 

equation in one space variable with zero-flux boundary 

conditions will have stationary attracting periodic limit 

distributions. 
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1. Introduction 

Pattern formation of one kind or another occurs in many 

systems, c.q.: star clustering (astronomy), amoebae 

concentrations (chemotaxis; biology), periodic precipitation 

(chemistry), population concentrations in cities, (spatial 

economy), self-fulfilling prophycies (economic behaviour), 

This tendency to order is even seen in some physical systems 

as the B€nard convection shows clearly. 

Since a macrosystem is described by the average density of 

the constituents, such cases of pattern formation can be 

seen as the evolution of an initial uniform distribution 

function to a non-uniform, well profiled function defined on 

the space of possible outcomes of the process (e.g.: a price 

distribution function in the case of self-fulfilling 

prophycies; spatial distribution of rising water in the case 

of B€nard convection). 

Such an evolution process can be modeled mathematically by 

nonlinear partial differential systems, in which "almost 

anything can happen", reflecting "the beauty and great 

variation of manifestations of the nonlinear in the bio-, 

geo- and other spheres around us" [S]. 

We mention here the so called activator-inhibitor models of 

Meinhardt [4]. These models are based on the possibility to 

distinguish between slow diffusing, growth (self-) enhancing 

components and fast diffusing, growth inhibiting components 

in the system. Since the inhibitor substance is almost 

uniformly present, only areas with a high activator 

concentration can grow further. 

However, not in all cases "growth" is inhibited by some 

substance. For instance, an aggregation centre grows by 

attracting substance, at the same time causing low 

concentration in the neighbourhood of the centre. So the 
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rise of new centres becomes impossible in the surroundings 

of already existing centres. 

25 

A.part from this depletion effect, these evolution processes 

are characterised by self-enhancement, also called 

autokatalysis. Local higher density areas themselfes are the 

source of amplyfiing fluctuations of an initial uniform 

ordening, for instance by gravitational instability, or 

economies of scale. 

In this paper we shall introduce a diffusion equation with 

density dependent diffusion coefficient, such that for some 

values of the density, this coefficient will be negative. 

This means that mass flow will be proportional to the mass 

concentration gradient and as such opposed at the flow 

direction of a Fickian diffusion. In other words: mass flow 

is directed towards higher concentration areas. Instability 

and self-amplyfication of fluctuations are due to this 

reverse diffusion. (Section I). In section II we shall give 

some stationary solutions of such an equation. 

As far as we know it is mathematically still an open 

question to show rigorously that an evolution in one space 

variable with zero-flux boundary conditions can have 

stationary attracting periodic limit distributions. There 

are analytic periodic stationary solutions in a number of 

cases whose stability and attractively properties are not 

strong enough. However, analytical and numerical work 

reported in this note, show existence of stable stationary 

solutions. (Section III). 

I.l. Thom's river basin model 

In [6] the following situation is described by Thom. 

Steadily rain is falling on a sandy hill; at the top 

brooklets are formed and destroyed almost continuously. Down 

the hill, the slope is less and erosion is less strong. The 
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pattern of watersheds and brooklets becomes more stable. 

Remaining brooks compete with each other over the available 

space. The result will be an almost regular pattern at the 

bottom of the hill. Such pattern can be observed in nature, 

e.g. in Death Valley in California. 

Let sn(t) denote the position of the n-the watershed (at 

time t). Suppose the eroding power of a stream is 

proportional to its basin width, then the position sn will 

be governed by the following differential equation: 

(I. 1) 

(where • denotes derivative with respect tot). 

Any equidistant distribution with basin width a for all 

streams is a stationary solution of (1.1). 

The character of equation (I.1) becomes clear by doing some 

linear stability analysis. Consider two streams with 

watersheds at +a and -a, and at u near o on R. Assuming c 

depends also on the basin width, we get: 

u = 2c(a)u + 2ac'(a)u + u 2 ( ••• )+ ••• (I. 2) 

We will have stability if c(a) + ac'(a) < O. 

Since erosion power will diminish at greater values of the 

basin width, a reasonable graph of c would be as depicted in 

figure (1.1): 

u 

aOO 3a00 

.A 

figure 1. 1 
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Then, say for a> a 0 with c(a 0 ) + a 0 c'(a 0 ) 

will be obtained. 

O, stability 

On the contrary, if stream width is in the range where 

c(a) + ac'(a) > O, broader streams will grow at the cost of 

smaller ones. 
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As smaller streams coincide with a higher density of the 

watersheds, at least in the instability range of the model, 

local maxima of the watersheds spatial distribution function 

will grow. Now at least two questions are wide open: (i) how 

does a more or less regular spacing of watersheds at 

characteristic distance a 0 arise from the initially 

homogeneous situation, and (ii) how does the model select 

between different possible a 0 • Indeed, what is observed e.g. 

in the Death Valley pictures alluded to above is a 

characteristic wave length for the spacing of the 

watersheds. The "equilibrium restoring force" for a spacing 

a 0 is 2c(a 0 ) + 2a 0 c'(a 0 ) (<O) and one could agree that there 

would be a natural tendency towards that spacing width a 0 

for which this quantity jc(a )+a c'(a )I is maximal. Other 
0 0 0 

arguments favour the "largest" a 0 for which c(a 0 ) + a 0 c'(a 0 ) 

is still negative. We shall return to this question in 

section III. 

I.2. The small amplitude scaling continuous limit of the 

Thom's river basin equation 

Let a (t) = s (t) - s 1 (t), v (t) n n n- n 
then (I.l) becomes: 

v ( t) 
n 

Assume 4> is such that 

s (t) and 4J(a) 
n 

ac(a), 

(I. 3) 

for 0 < e: « 1, 4>(e:) > 4>(a) for all a > e: 
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11 b f · d d f i d on I x IR+, then there wi e unc tions v an a, e ne 

I= [O,L] c IR such that: [7] 

v(s (t),t) 
n 

v (t) 
n 

s (t)+s 1( t) 
( n n-a 2 , t) = an ( t) 

(l.4.1) 

(I.4.2) 

a Denoting the partial derivative with respect to sn by -a-, 
n we get: 

This gives the following approximations (suppressing the 

arguments of a): 

(I.5.1) 

1 (aa)2 2a + 2a a;;: + ••• (I.5.2) 

Take a 0 such that q,'(a 0 ) > 0 (unstable equidistant 

distribution) and expand t as a MacLaurin series in a = a 0 , 

to find: 

v(sn,t) = -t'(ao)(an+l-an) - ~t"(ao)(an+l-an)(an+l+an-2ao) -

- ~14>"'(ao)(an+l-an)(a!+1+an+lan+a!-3ao(an+l+an)+3a~) -

(I. 6) 

Now using (I.5) to get: 
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v(s ,t) = 
n 

, [ aa 1 (aa)3 + la2(~)(a 2 a) 1 3a 3a 
-cj> (ao). a~4a a; 4 a 2 + 24a --3 + ••• ] -

n an an 

l [ aa 1 (aa)3 ] - - cj>" ( a ) 2 a ( a-a )- + -2 a (a- a 0 ) -::;-n +. , • -
2 0 0 an 0 

1 "'( )[ 3 ( )Zaa 3 2( )(aa)3 ] - 6c!> a 0 a a-a 0 an+ za a-a 0 an + ••• - ••• (I.7) 

Again using (I.4) and (I.5) we find: 

aa aa 
()t + ~·V 

da 
dt 

v(sn+l't)-v(sn-l't) 

2 

So the continuity equation for a becomes: 

aa 
at 

Inserting (I.7) in (I.8) 

(I. 8) 

a 2 a2 a 2 a {-<ti'(a ).(--2 + 
at 0 an 

gives: 

1 a4 a 3 
24 -;:z;- + ••• ] 

a2 ca-a ) 2 
-t cj> I 1 (a ) • ( 0 

0 an2 

+ t L(ca-a )(E) 3 ) + ] an 0 an ••• -

2 3 
1 a (a-ao) 

--cj> I I I (a ) (---,,.--
6 0 an 2 

+ 2 f..-(a(a-a )(~a) 3 )+ ... ] 
2 on o on 

Now introduce a scaling factor t and write x 

that _a_ = i.L. 
()n ax 

- ... } 

(I. 9) 

Given the definition of the function a in (I.4.2), a mass 

(watershed) distribution function p can be defined: 
9. 

p(x,t) = a(x,t)' 

29 
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Let Po 
.L 
a 

and U(x, t) 
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p(x,t) - p0 , then a-a 0 ~ - lzu 
0 Po 

3 3 3 
t 3u 

and a ~ a - -4-
0 

Po 

By neglecting higher than seventh order terms in £., and 

noting that ~·(.L) > O, our final equation will be of the a 
form (after an a8ditional time scaling): 

au 02 
r u2 -

3 a4u (I.10) [- (-U + r 2u ) - y-] 
at ax 2 1 ax 4 

with rl ~ £., r ~ £.2, y ~ £.4 and y > o. 
2 

We take no-flux boundary conditions. 

In the linear approximation (I.10) is a diffusion equati6n 

with negative diffusion coefficient; mass flux is 

proportional to the gradient of u. As such, equation ( I.10) 

can be called a anti-diffusion equation stressing the fact 

that the flux is in the opposite direction compared to the 

usual normal, Fickian diffusion. 

It is interesting to note that based on the Landau-Ginzburg 

free energy model, the same form of diffusion equation as 

(I.10) can be derived. In this case, the linear diffusion 

coefficient depends on the diffusing substance environment 

(e.g. Temperature) and becomes negative near the aggregative 

state, [2] 

II. Stationary solutions and stability 

We seek stationary solutions of (I.10) 

* in H {u € L2 [0,L] I< u,l >2 = o} 



PATTERN FORMATION BASED ON THOM'S RIVER BASIN MODEL 

where u(t) = U(•,t) and <u,1> 2 

II.l. Uniform distributions: 

L 
J U(x)dx. 
0 

In the Hilbert space H*, equation (I.10) has the following 

form: 

du 
dt A(y)u + N(u), (II.2) 
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where A(y) is a linear operator and N is non-linear operator 

defined for u U(.). In the sequel we suppress the variable 

t. 

The linear operator A(y) is specified by: 

[A(y)u] (x) 
4 a U(x)} 

y 4 
ax 

(II.3) 

Stability of the null solution u = 0 depends on the 

eigenvalues w(y) of A(y), which are entirely given by: 

w(y)U 
4 a U(x)} 

y 4 
ax 

(II.4) 

Then the eigenvalues w(y) are: 

w(y) k E IN+ (II.5) 

with eigenvectors proportional 

12 
So the linear system would be stable if y > -'2• and in this 

1T 

case the nonlinear system is conditionally stable ( [2]). 

L2 
For y < -'2• the system is unstable in one of more modes; the 

'IT 
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fastest growing mode would be given by k such 

1 
ry· 

However, solutions (non-constant) of the linear system are 

k11 k 2 11 2 1 
proportional to cos-r-x with k such that ~ Y 

Although every constant function U is a solution of (l.10), 
we restrict ourselves to the null solution. Since 

p(x,t) = p + U(x,t), with p > O, constant, equation 
0 0 

(l.10) is the evolution equation of a deviation U from a 

uniform distribution p(x,.) = p ,Vx E I. So stability of a 
0 

uniform distribution p is given by the stability of the 
0 

null solution of (l.10). 

a 2 u Note that the minus sign of the term ~-was given by 
ax2 

assuming ~'(a 0 ) > 0 which coincide with unstability of the 

original discrete Thom equations. However, with the 

a4u term ~-4 , the unstability range becomes more restricted, 

refleg!ing viscosity-effects. 

11.2.1. Non-constant stationary solutions 

There are stationary solutions of 

(II.6) 

be obtained as 
follows. Consider: 

2 3 d 2u U(x) - r 1u (x) + r 2u (x) + y ~- = Constant (11.7) 
dx 2 
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If U(x) also satifies the boundary conditions, then it will 

be a stationary solution of (II.6). 

There are solutions of the form: 

U (x) = 
0 

1 
k'lf a+Scosr;-x 

2 2 = 2(a -8 ) 

(II.8) 

( kir)2 and y. L = 1 (II.9) 
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These yields bounded solutions only if r 2 > O. Note that one 

can solve for a,B,k in terms of r 1 ,r 2 ,y. (We shall mention 

other solutions at the end of this section). Since we 

conceive of equation (I.10) as the evolution equation of a 

disturbance U of a uniform distribution, (II.8) can not be 

taken as a solution of (I.10). Given the boundary 

conditions, one must have: 

L 
f U (x)dx O. 
0 0 

Let V0 (x) = U0 (x) - d, with U0 (x) as in (II.8) and 

d = 
1 L 
1 f U0 (x)dx. 

0 

Then V0 (x) will be a solution of: 

* 2 * 3 * d 2 v V(x) - r 1v (x) + r 2v (x) - y ~-
dx2 

Constant (II.10) 

* 
r 1-3r 2 d 

with rl 2 l-2r 1d+3r 2 d 

* r2 
r2 

l-2r 1d+3r 2 d 2 
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Since d 

* y 

1 all the coefficients of (II.10) I• are of 

the same order in t, as in equat·ion (I.10) • So V 0 (x) will be 

a proper solution of equation (I.10) with coefficients 

* * * r 1 ,r 2 and y • This solution has a different wave length 

then a solution in the linear case (see section II.l 

And definitely, a4u the term -- models "viscosity"-effects. 
ax 4 

* If y tends to zero, the wave length becomes infinitely 

small and there is no coherence at all between the mass 

particles (watersheds!). In the other limit case, 

* y ~ 00 , V tends to the null solution (Any uniform 
0 

distribution is stable !). 

Before reporting on the stability of the solution V0 (x), we 

mention other stationary solutions of (II.6): 

i) 
1 
4 

(This solution belongs to the above mentioned family of 

solutions.) 

ii) U(x) 1 
(II. 11) 
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iii) U(x) 
1 

These solutions are bounded only if r 2 > O. 

Of related interest are solutions of: 

(II.13) 

3 5 d 2U 
U(x) + r 2u (x) + r 4u (x) + y~- O. 

dx 2 

which are of the form 

U(x) 1 
krrx' 

/a+Scos-i:-

k21T2 
-4a(< O!), y.~-2-

L 

(II.14) 

2 2 
4 and a > S if r 4 > 0. 

II.2.2. Instability of a non-constant solution 

In this section we investigate the stability of a solution 

V0 (x) of equation (II.10) as derived in II.2.1. 

35 

Since V0 (x) = U0 (x) - d, with U0 (x) is a solution of (II.7), 

resp.a stationary solution of (II.6), and the connection 

between the coefficients of (II.10) and (II.6), stability of 

V0 (x) follows from stability of U0 (x) and vice versa. 

Let W(x,t) be a disturbance of U0 (x), then: 

a 2 2 
{ 3x 2 (-1+2r 1U0 (x)-3r 2u0 (x) )w - 1 

a4w 
ax 4 } + 

non-linear terms in W (II.15) 

with no-flux boundary conditions. 

And U0 (x) will be stable if the null solution W(.,.) - 0 is 
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a stable solution of (II.15.1.) 

As in section II.I, we can write down (II.15.1) in the 

Hilbert space H*, and now the linear operator A(y) is 

specified as: 

* with w(.) ~ H ; w(.) = W(x,.). 

However, eigenvalues of A(y) are not found, so linear 

stability cannot be established along this way. 

Denoting 2r 1U0 (x) - 3r 2U~(x) by f(x), then 

where o 

f(x) '" 

.!!. and 
13 

60 6(0 2-1) 
k11x ( k11x)2 o+cos-i:- o+cos-i:-

k11 ./1 y- = y (see (II.9)). 

Define in H* the functional F(t) by: 

L 
[F(t)Jw = J w2 (x,t)dx '" lwn 2 

0 

(II.16) 

(II.17) 

dF 1 aw Then [F(t)Jw = 0 * w • 0 and dt(w) • J 2W(x,t)atdx. 
0 

Now using only the linear part of (II.15.1), then by partial 

integration, 

L L 2 L 
dF( ) • 2[J (lE) 2dx - y J (l....!!) 2dx + J 
dt w 0 ax 0 ax2 0 

a2 w f(x)W(x, t)--2dx] 
ax 

(II.18) 

k11x ( k11 1 If we take W(x,.) proportional to cos-r- with r- • ./y) then 

(II.18) reduces to: 

dF 1 a2w 
dt(w) • 2 J f(x)W(x,t)~dx 

0 ax 
(II.19) 

k11x dF And in this case (W proportional to cos-1-), -- > O if 
dt 
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L 
f f(x)cos 2 (k~x)dx < O 
0 

(II.20) is equivalent with: 

(II.20) 

(II.21) 

2 2 2 
which holds for any 6, with 6 ~ 1 (6 = ~ > 1 if r 2 > O). 
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Since F gives the norm of w, and w with w(.) = W(x,.) 
k'Jl'X proportional to cos~L- can be taken· as close in norm to 

dF w = 0 as one wishes, dt > 0 means linear unstability of the 

solution U0 (x) (in L2-norm). 

So the solution V0 (x) is unstable. 
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III Existence of stable non-constant solutions and numerical 

simulations 

We have made numerical simulations of 

au 2 a 4u 
TI ~HU) - y -4 (III.l) 

ax ax 

where HU) -u + 2 3 (III.2) = r 1u - r 2u 

defined on the interval [O,L] c R with no-flux boundary 

conditions. 

For r 2 < O, we shall show the existence of non-constant 

stable solutions. 

III.l Case r 2 > 0 

The stationary solutions of section II.2 are never found 

numerically. Even if the initial value is a discretization 

of such a non-constant solution, in time the solution 
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becomes unbounded. Since these solution are unstable, 

another outcome could not be expected 

III. 2 

III.2.1. Existence of stable non-constant solutions. 

Stationary solutions of (III.l) must satisfy: 

with 13 

L 
J ij>(U)dx 
0 

L 
S and f U(x)dx 

0 
0 (III.3) 

We seek solutions of (III.3) in the Hilbert space 

Hl,* = {uEH 1 1<u,l)l 0} with Hl Sobolev: 

L 
<f,g> 1 = J (fg+f g )dx 

0 x x 
(f = .ll) x ax 

Then the variational formulation of (III.3) is: 

Let V(u) 

L azu f (if> ( U) - y-2 ) hdx 
0 ax 

u 
f ij>(s)ds 
0 

0 

Define on H1 •* a functional F: 

1J au 2 F(u) = V(u) + !y(--a ) dx 
0 x 

(u(t) = U(.,t)) 

Vh E H l, * (III.4) 

(III.5) 

Then solutions of (III.4) are aequivalent with the critical 

points of F. 

dF 
Since dt(u) 

L a 
f - (-- (ij>(U) 
0 ax 

2 
yl....£)) 2 dx < O, Fis a Lyapunov 

ax 2 -
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functional for the system (III.l). 

2 3 Returning to the specification of ~(U) = -U + r 1u - r 2u , 
gives that F is bounded from below if r 2 < O. Since F is c1 , 
following the argumentation in [l], F attains its minimum. 

Now, if U :: 0 is unstable, then U :: 0 is not a minimum of F. 

So, there exists a non-zero solution U of (III.3) where F 

attainE its minimum and U is at least stable. 

Since J Udx = 0, , U is non-constant. 
0 

Ill.2.2. Numerical simulations 

IlI.2.2.1 y = 0 

Using notations of (III.2.1), stationary solutions of 

(IlI.l) are given by: 

<R(U) 
L 

S; f U(x)dx 
0 

0 (III.6) 

$(U) = S is aequivalent with V(U) = SU + a. So, in this 

case the functional F (Ill.S) is minimal if a is minimal. 

For r 2 < O, this is the case, if SU + a is tangent at V(U) 

in U = U0 and U = u1 (U 0 * u1 ) 
Using ~ is cubic in U, the values U0 and u1 , must satisfy: 

$(Uo) = ~(Ul) 

(III.7,) 

The final pattern is characterised by these two values U0 

and u1 (under restriction: sum U is zero). 

In figure 2.1, r 1 = O, r 2 = -1/3 and U0 = 13, U1 = -13. 

In figure 2.2, r 1 = -4/S, rz = -1/5 and 
4 + 193 4 - 193 

uo = 3 • u1 = 3 
See also figure 2.3b. 
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III.2.2.2 .L!...Q. 

In this case we can choose y such that the null solution is 

unstable in modes with wavelength bounded away from zero. 

The pattern evolution is dominated initially by the 

k11x k 2 11 2 
mode cos-r;- with ~ ~y (see section 11.1). 

In figure 2.3a, 
1 

r2 = -3 and y = 

the pattern evolution is shown for r 1 = O, 

0,00482; the largest positive eigenvalue is 

for k = 16 which corresponds to a wavelength~ 0,6 (e.h.) in 

figure 2.3. The final pattern shows a wavelength which is at 

least twice as long. The same holds for other values 

of y; in figure 2.4 we have taken y = 0,00241 (largest 

eigenvalue fork= 24, wavelength 0,4 (e.h.); figure 

2.5: y = 0,01563 (largest eigenvalue for k = 9, 

wavelength~ 1,1 (e.h.). 
4 

In figure 2.6, r 1 = -5. r 2 
1 -5. y = 0,01563. Compared with 

figure 2.5, the difference must be a consequence of the fact 
4+/93 that the number of gridpoints with U0 = ~-3-- (figure 2.2) 

is far less than the number of gridpoints with U /3 
0 

(figure 2.1) which are the corresponding figures if y = O. 

In figure 2.3b, we have set y = 0 after reaching the final 

pattern as depicted in lll.3a. The final block form is 

totally given by the values U0 and u1 as derived in section 

III.2.2.1. 

III.3. Figures 

Figure 2.1: ~(U) = -u + ~u 3 ; y = o 

Figure 2.2: ~(U) = -u - ~u 2 + ~u 3 ; y = o 

Figure 2.3: ~(U) -u + !u3 • o 3 ' y = '00482 
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2.3a: dotted curve initial evolution pattern; 

continuous curve final pattern. 

2.3b: after setting y = O, the final pattern of 

figure 2.3a becomes block-like. 

Figure 2.4: <f>(U) 

Figure 2.5: <f>(U) 

1 3 -u + ~u 3 ; y = 0,00241. 

-U + 3U ; y = 0,01563 

dotted curve: initial evolution pattern; 

continuous curve: final pattern. 

Figure 2.6: qi(U) = -U - ~u 2 + ~u 3 ; y 

0 
0 0 
N 

?- 0 

E- ~ 
1-1 

(f) 
2 
w 
0 

0 
0 

0 

0,01563 

N 
'-.-0-0,--~1~.~0~0~~-=-2~0~00,,--~----::3~0~0~0~~-4--;---<-;.o~o~~--;:-"5000 

DISTANCE 

Figure 2.1: <j>(U) 0 
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Figure 2.3b: Continuation of final pattern of (2.3a) after 

setting y = O. 
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Conclusion 

Thom's river basin model describes the situation in which 

for a certain basin width, large basins grow at the cost of 

smaller ones. In defining a continuous distribution function 

for the watersheds of the basins, we have derived an 

evolution equation of pure diffusion type. The diffusion 

coefficient is density dependent and negative for some range 

of density values. In deriving this continuous form of 

Thom's discrete model, it is quite natural to incorporate a 

fourth order derivative term which can be interpreted as 

modelling viscosity effects. 

We have found a class of stationary solutions of this so

called anti-diffusion equation, which are, however, not 

stable. If the diffusion term is of cubic form with two 

stable branches, numerically we have found bounded non

constant solutions. Existence of stable non constant 

solutions is analytically established. By deleting the 

fourth order derivative term, the solution becomes block 

form like and is totally characterised by two unique density 

values. 

As such, this anti-diffusion equation seems a respectable 

candidate for modelling evolution processes which form 

patterns in the case that there is only one substance 

involved. 
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