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These notes, intended mainly as background information for the special 

session on "Linearization and Geometric Methods" at the 1983 CDC, San Antonio, 

Wednesday morning Dec. 14, are organized around the references I happen to 

know about. Quite a number of papers containing linearization results quoted 

in one of the papers mentioned below are not listed explicitly. I will be 

grateful for comments, remarks and additional references. A few lines about 

the special session itself are contained in Section 5 below. 

1. The Simplest Cases. Basically the situation here is that one has 

a certain class of objects, e.g. input-output dynamical systems; a corresponding 

notion of isomorphism e.g. (local) state space equivalence, or feedback equiva-

lence, or feedback equivalence; ·and a subclass of systems called linear. The 

general problem is to characterize those objects which are isomorphic to the 

linear ones and to find effective ways of constructing the isomorphium. 

1.1 n-tuples of Differential Equations (locally). One of the best known 

and most studied linearization problems is concerned with when a system (1.2) 

( 1. 2) x = f(x), f(O) = 0, x E IRn 

or, more generally an m-tuple (or a whole Lie algebra of such things) 

x = f. (x) , f. ( 0) = 0, i = I , •.. , m 
i i 

is equivalent to its linear part x =Ax, A the Jacobian matrix of f(x) at x = 0, 

resp. the n-tuple of linear parts x =A. x. This can be studied in a formal setting 
i 

(when does there exist a formal power series substitution y = ~ (x) which linearizes 

( ) ) . r co • f . . . CO ( . h 1.2 ; a real analytic setting; a C - or C -in· inity setting; a - i.e. omeomor-

phism) setting. Some references are respectively Sternberg [20], Hermann [ 10, 11,33]; 

Poincare [ 22], Guillemin-Sternberg [34], Chen [ 72], Sedwick-Elliott [35] , Bas art [58], 

Livingston-Elliott [70]; Sternberg [23,24,25]; Hartmann [21,55]. Things may 

go wrong at all levels. I.e. there may even fail to be a formal substitution 

which does the job; if there is a formal linearizing substitution it may fail 

to converge so as to give a real analytic one, but there may be generalized 
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"convergence" in sectors (Francoix [54]). It is true though that Poincare' s 

co 
formal condition also suffices for C linearizability. For the various dif-

ferentiable cases Lie algebras of vector fields play an important role. 

ClH ClH . f If (1.2) derives from a Hamiltonian setting p = aq , q = - ap one is o 

course interested in linearizing transformations which preserve this feature 

(canonical transformations). Both in this case and the usual case (1.2) it is 

natural at first sight to concentrate at first on points where dH = 0 (if 

dH ~ O, there exist a canonical transformation such that in the new coordinates 

q1 l,q2= ••• =qn=O=p1= ••. =pn' cf. e.g. Abraham [47;page 112]) respectively 

f(x) 0 (if f(x) 1 0 there is obviously a similar result). These (zero'th 

order) "linearized" versions carry very little information about the local 

structure of the flow near the point under consideration. This is essentially 

the same level of information as that which says that if f(x) = O, x is an 

equilibrium point. To study the flow up to first order near a non-equilibrium 

point Perrizo [14,26] considered the flow derivative at the point under con-

sideration carried back along the flow. This is obviously the level of 

information one will need for global linearization results obtained via (i) 

local results and (ii) local, global theorems. 

1.3 Conjugacy Problems. Consider a differentiable manifold M and two 

differentiable maps S:M + M,T:M + M. The general question is, when does 

there exist a diffeomorphism ~:M + M such that T = ~-ls~. For instance one 

has the following result [Sternberg,21]. Let S,T be two orientation pre-

serving homeomorphisms of some neighborhood of 0 € Rn into itself such that 

11 S xl I < 11 xl I , 11 Txl I < 11 xl I, there then exists a homeomorphism ttJ such that 

-1 T = iµ siµ. This does not mean that this problem is easy and completely 

settled. Even the easy to state problem of desiding when two linear endomorphisms 

S,T:Rn +Rn are topologically conjugate gives rise to very difficult topo-

logical questions (Kuiper,Cappell-Shaneson). 



1.4. Dynamical Control Systems. Now consider more generally a system 

of differential equations like (1.2) but with extra control parameters 

(1. 5) x f(x,u) , f(O,O) 0 

3 

and the question of when and in what sense this is equivalent to a linear 

system x = Ax + Bu locally near O. Two natural groups of allowable trans­

formations are diffeomorphisms of state space y = ~(x) as in 1.1 above 

(Krener [36]) and feedback equivalence (Brockett [41]), which can also be 

viewed as block triangular diffeomorphisms in state plust control space in 

that one allows transformations of the form y = ~(x), v = ~(x,u). There are 

now nice sufficient conditions known for feedback linearizability cf. Hunt-Su 

[37], Jakubczyk-Respondek [40], Su [9], Isidori-Krener [38], Krener-Isidori 

[46]. It is perhaps interesting to note that both the Hunt-Su method [37] 

and Poincare's method [22] for (1.2) proceed by means of writing down partial 

differential equations for y as a function of x. The theory of linearization 

by feedback also is significant for actual applications [Meyer-Cicolani [39], 

Meyer [l]. 

As in the cases described in 1.1 above the question of global lineariza­

tion has hardly been touched. And perhaps there is less need to do so in the 

feedback case as further stabilizing feedback applied to a controllable 

linearization will help to keep the system near the 0 state (its operating 

point). 

Let me also remark that - at least for applications - whether the 

allowable transformations form a (transformation) group or not is not so 

important; what is important is that one can pass freely from the system to 

the linearized version and back. 

1.6. Normal Forms,Moduli, Structural Stability. It is clear that as 

a rule only few objects will be linearizable. More generally one then wants 
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to know a complete set of inequivalent normal forms of objects and one wants 

to know whether these normal forms (canonical forms) form discrete or con­

tinuous families (moduli). The last question is especially important in 

view of robustness and structural stability: do objects which are close to 

each other have the same normal forms or, if not, normal forms of the same 

kind, e.g. both linear? 

1.7. Nonlinear Representations. A dynamical system on a manifold 

x f(x) gives rise to an action of the group R on M (assuming that solutions 

exist uniquely and globally). This is a simple case of a topological trans­

formation group on a nonlinear representation of a lie group. One can ask 

whether every such representation is equivalent to a linear one. (The as-

sociated local question whether this is the case for the associated lie algebra 

plays - as I already remarked - a big role in the local linearizability of 

m-tuples of differentiable equations discussed in 1.1 above.) 

Bochner [13] showed that compact groups of differentiable transformations 

near a fix point are linearizable (the analytic case goes back to Cartan [75]). 

Other linearizability results for representations are contained in Flato a.o. 

[43] and Simon [67]. 

2. Weaker Notions of Linearizability. Often it will be the case that 

not all or not enough objects will be linearizable. It will then still be 

possible and be of interest to compare them to the class of linear ones. 

This gives rise to several groups of questions which might be viewed as weaker 

notions of linearizability. Examples are: "is every object a subobject, 

quotient or sub-quotient of a linear one and questions of partial and ap­

proximate linearization. 

2.1 Embeddings. Can a nonlinear object always be seen as a subobject 

of a linear one. In differential topology e.g., \~1itney's theorem (cf. e.g. 

Poenaru [48]) that every differentiable m-manifold can be embedded in an R2m 
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has been and is of enormous importance. And so are nonembedding results such 

as that the projective plane cannot be embedded in R3 • 

For manifolds together with a flow on them there are (local) embedding 

theorems of McCann [17] and Janos [16]. 

The question has also been considered for control systems and input­

output systems by Monaco, Normand-Cyrot, Claude, Fliess and Isidori [29, 

30,31,32]. Cf. also Isidori [78] for a related approach by means of which 

he can solve the matching problem. 

Similarly one can ask when a group of differentiable transformations is 

linearizable in the sense that it is a subobject of a linear one, I.e. we 

are now interested in the embedding version of the matter discussed in 1.6 

above. Here there are results of Mostow [76,77] and in the topological case 

there are the remarkable results of Baayen-de Groot [12] and de Vries [27,28] which 

essentially say that for every reasonably nice (such as locally compact) group 

G there exists a universal linear G-space in which every G-space of smaller 

weight can be embedded. On obvious question with applications in control and 

system theory is whether something similar could be true for semigroups in-

stead of groups. 

2.2. Quotients. Dually one can ask when a manifold or a manifold with 

a flow on it (i.e. (locally) an n-t11ple of differentiable equations) is a quo­

tient of a linear one. In this category this appears to be a rather stronger 

property than being a subobject of a linear one. So strong indeed that such 

objects are often called linearizable. For instance the matrix Riccati 

equation K = -Q-ATK-KA+KBBTK is soid to be linearizable. More precisely 

the situation is that it can be completed to an equation on a suitable Grassmann 

manifold. This Grassmann manifold is a quotient of a space of matrices of 

full rank and on this space there exists a linear flow which descends to the 

Grassmann manifold and induces the Riccati flow. 
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Much the same kind of picture is presented by the Sabat-Zaharov socalled 

"dressing method" cf. e.g. Zaharov-Mahankov [74] of solving the completely 

integrable equations of mathematical physics such as the KdV-equation, the 

sine-Gordon and the nonlinear Schrodinger equation. There the "covering 

linearization" is a suitable Riemann-Hilbert boundary value problem. 

2.3. Other Kinds of Linearization. Consider by way of example the KdV 

equation u + uu + u = O with initial data u(O,x). The inverse scattering 
t x xxx 

transform method of solving the KdV associates to the initial potential u(O,x) 

certain asymptotic scattering data, these evolve linearly if u evolves ac-

cording to the KdV and via the Gelfand-Levitan equation or Marcenko equation 

(as the case may be) the potential u(t,x) may be recovered from the scattering 

data at time t, cf. e.g. Drazin [73]. Whether this can be viewed as a lin-

earization as in 1.1 above, with Rn replaced by a suitable function space, 

is not clear to me. Apparently all the socalled "completely integrable 

equations" of mathematical physics are linearizable in some such sense, cf. 

also Adler-v Moerbeke [ 44], Krishnaprasad [ 63]. A generalization to "non-

commutative complete integrability" is discussed by Marle [45]. The (not 

completely integrable) Yang-Mills equations are also linearizable, at least 

formally, Flato-Simon [42]. 

2.4. Partial Linearization, Approximate Linearization. If e.g. a control 

system or set of differential equations is not linearizable one can ask whether 

it can be presented (more or less) as a fibre product of two systems one of 

which is linear and maximally large (in dimension) with respect to that 

property. This can take various forms. A fibre linear system (cf. Hazewinkel 

[71], Respondek [7]) is one of the form y = g(y,u), ~ = A(y)x + B(y)u at 

least locally, where A(y), B(y) are matrices depending on the possibly non-

linearly evolving vector y. This relates to linear extensions of a flow and 

linearization around an invariant submanifold, cf. e.g. Samoilenko [53], 
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Osipenko [56]. The extended Kalman filter can also be viewed in this light. 

Alternatively and more or less dually one may look for equivalent systems of 

. 
the form y = Ay + Bv, x = f(x,y,v). This type of partial linearization occurs 

in Krener-lsidori-Respondek [ 4]. Stochastic lineariza tion (Beaman [18], 

Taylor [64,65]) seems to be of a somewhat different nature and more related 

to the idea of a more global linear approximation, a topic which I shall not 

discuss here. Though it is clear that on occasion related ideas like 

"averaging" e.g. may well result in a linear quotient of a nonlinear system 

and thus a fibre structure of the second type indicated above, Balbi [19]. 

3. Obstructions. As a rule one expects that such properties as being 

linearizable, being a subobject of a linear one, a quotient of a linear one, 

etc. will be of a cohomological nature. That is whether such a property 

holds or not is determined by whether certain cohomology classes (obstruc-

tions) vanish or not. Such obstructions may arise at various levels, e.g. 

in the case of vector fields (cf. 1.1 above) there are formal obstructions 

(cf. e.g. Hermann [10,11]) which are definitely of a cohomological nature 

(for the related case of systems, cf. Hermann [52]), there are local ob-

structions and there are no doubt local global obstructions which may 

prevent a system that is everywhere locally linearizable from being globally 

isomorphic to a linear one. 

4. Uses of Linearization. Obviously, assuming that we know more about 

linear objects than nonlinear ones, linearization is an exceedingly valuable 

tool in all sorts of applications. This makes it important to have algorithms 

for deciding when a given object is linearizable. In many cases effective 

recognition procedures do not exist (not even in principle), e.g. in the 

case of the completely integrable equations of mathematical physics. 

The use of repeated infinitesimal linearization in numerical procedures 

is well known [59-62]. (Newton methods, gradient methods). Less known are 
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such methods as Razumihin's (69] for dealing with e.g. quadratic (more gen-

erally polynomial) programming problems. Consider e.g. max Lb .. x.x. subject 
l] l J 

to linear constraints. Replace this by max Lb .. x.y. with additional con­
lJ l J 

( 0) 
straints x.=y .• Now fix a y , solve the resulting (inconsistent as a rule, 

l l 

i.e. ) 1 (O) f" (O) f. d (l) f" nonf easible LP prob em to find x ; now ix x to in y ; ix 

y(l) to find x(l); etc. This converges and constitutes a repeated lineari-

zation process which is not of the infinitesimal type but more of the embedding 

sort. 

Perturbation calculus is of course linearization around a solution i.e. 

linearization around an invariant subobject and will not be further discussed 

here. Nor interpolation and the question of approximating objects by piece-

wise linear ones, all valuable methods based on a philosophy of linearization. 

Let me remark though that presenting or obtaining an object as a quotient 

of a linear one is especially useful for getting hold of its symmetry properties 

especially more global ones. This is the most promising approach to showins 

that the symmetries of the integrable equations of mathematical physics dre, 

as they shoud be, Kac-Moody Lie algebras and, leads e.g. to super position 

principles. Cf. e.g. Shayman [8] for symmetries of the matrix Riccati equa-

tion (via linearization) and Hamad a.o. [51] for super position principles 

for these equations. 

5. On the Special Session "Linearization and Geometric Methods". 

The topic of the session is somewhat wider than linearization itself. More 

accurately it can be described as the use of nonlinear feedback control to 

achieve certain goals such as (partial) linearization. But linearization may 

be the wrong thing to do (Nymeyer [S]). Lie-algebraic ideas and techniques 

tend to play a central role. 

In [l] G. Meyer discusses the idea and philosophy of feedback lineari-

zation as applied to flight control, both the problems and successes of this 



r::i.ann is lincarizatiun and esp~~ially 

t (' in\.tariants f t11c s f ffian svsteMs. ne turns the 

l.~:·:t~J into a problem of is 1J'f:'1nr i.sr:i, fc~r an associated (~artan-\.' i. t ra 

ted to deformation theoretic ideas and shows the local obstructions co 

in r .izab i 1 to be cohomo ical in natur~:. 

Ir~ Hunt and Su discuss lint"ar approximation if one is away frum an 

ilibrium point of the drift term of a nonlinear system. It could be 

interest to compare this to the wurk of Perrizo [26,14] and to study the 

ulting family of linear systems parametrized state space. 

ln .:+] Krener, Isidori and Res are concerned with partial linear-

izatio:i. and robustness of the process, cf. also 1.6 above. The linearization 

c;mditions are not robust and this has implications for the technique of lin-

earization, certainly in applications. A much related preprint is [7]. 

In [5 Nymeyer is not concerned with linearization but with the general-

ization of techniques (of decoupling) which work in the linear case to a non-

linear solution. Here linearization might be the wrong thing to do. 

Final in [6] Gilbert and Ha present a theory of nonlinear (feedback) 

c'.Ontrol for tracking problems which yields a unified framework for a number 

lems in the control of mechanical manipulators. 
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