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Summary. We consider problems connected with the semantics of infinitary rules of proof formulated
in the language of the second order arithmetics. We answer negatively two questions of Enderton
concerning the semantics of his <f-rule. Finally, we discuss the problem of the existence of a
satisfactory syntactical g-rule.

1. Introduction. We consider the problems connected with the semantics of
certain infinitistic rules of proof formulated in the language of second-order
arithmetic. Our results in this direction are far from being complete and we think
that the subject deserves a further study.

We answer negatively for two questions posed in Enderton’s paper [1] which
concern the semantics of his <{-rule. Furthermore we try to throw some light on the
problem of the existence of the satisfactory syntactical B-rule. We discuss some
infinitistic rules of proof which could be useful in the search of a f-rule.

By (A) we mean the second-order arithmetic with function variables which is
described in [2]. AC denotes the axiom of choice for (A), i.e. the following scheme:
Vx3ad (x, a)—3aVxD (x, (a)x)-

By A, we mean the second-order arithmetic with the choice scheme with set
variables which is described in e.g. [3].

By ZFC~ we mean ZF-set theory without the power-set axiom but with the
following version of choice scheme: (Vx e y)3z® (x, 2)—3f ( f is a function with
domain y A (Vx € y) @ (x, £ (x))).

Our notation is that of recursion theory carried out in the natural way into the
language of second-order arithmetic. All the notions concerning the second-order
arithmetic can be found in [4] or in [5].

Every w-model for L (A,) we identify with its class of sets, i.e. with a subset
of P(w) (the power set of ). If 2 and B are w-models, we say that A<} B iff
A<WB and for every X} formula ¢ with parameters from A

Bl=p=U=0.
Let £(X) be X} formula of L (A,) which is satisfied exactly by the constructible
subsets of w [6]. This formula defines over every w-model M, the w-model LM,
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If M is an w-model for L (A,), by Def M we mean the class of all definable
elements of M. If M is a model for L (A) and a is a unary function which is an element
of M then we say that a is definable in M if for some formula @ (x) with one free
variable M = Yx (a(x)=0<>& (x)). M is pointwise definable if every unary function
from M is definable in M. If T'is a set of formulas, by Crn (T) we mean the least set
of formulas containing 7" and axioms of logic and which is closed with respect to
modus ponens (we assume that logic is so axiomatized, that the only rule of inference
is modus ponens). ‘ . o

By "'T71 we mean the set of G&del numbers of formulas from 7.

Let Form be the set of all formulas of the language L (4). In the most general
way we may define an infinitistic rule of proof as a partial mapping f from 2Form
(the power set of Form) into Form, such that if x e domain f then x is infinite.

It is natural to impose the condition that f is definable in L (A).
We recall some definitions.

DErFINITION 1. Let T be a set of formulas of L (A)
() T is closed under the rule f, if Cn(T)=T and for every x, x< T and xe
€ domain f implies f (x) € T.
(i) The closure of T under the rule f, (T), is the least set of formulas which
contains T and is closed under the rule f.
(iii) T is f-comsistent if Cn(T)=T and for every x,x< T and xe& domainf

implies 71/ (x) ¢ T.

DErFINITION 2. Let % be a model for L (A). The rule f ié ‘sound for if Th (W)
is closed under f.

DErFINITION 3. (i) The rule £ has a semantics if there exists a class “K of models
for L (A) such that for every set T of sentences which contains the axioms of (A)
(T);={p: ¢ is a sentence of L (A) and Ak=p for each A e K such that =T}

(ii) The rule f is semantically consistent if for each T which is f-consistent there
exists a model of T for which f is sound. ‘

Thus the rule f is syntactically consistent iff every f~consistent set of formulas
can be extented to a complete one. Note that if f is semantically consistent then T
is f-consistent implies (T), is consistent. ‘

Observe that for every set T of sentences, (T);<{¢: ¢ is a sentence of L(A)
and A=¢ for each A for which f is sound and A=T}.

If f has a semantics and K is the appropriate class of structures then f is sound
for A € ‘K. Thus for f which has a semantics the above holds after replacing the

inclusion by equality. It follows that in definition 3 (i) we may replace A by the set
of all structures for which f is sound.

2. Negative solution of two problems of Enderton. Enderton introduced in [1]
the following rule of proof:

ol — rule: For any function a, from & (a(n)) for each n infer v Vx@ (v(x)).
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According to this rule he introduced the notion of df-model: a model M for
L (A) is called a df-model if whenever

MEYv(Vx Vy (v (x, )=00 (x, »))-Bord ()

then the relation defined by & in M is really a well-ordering.

Thus M is a dfi-model if the definable well-orderings of M are really well-orderings.

Every dfi-model of (A) is an w-model. Also df-models of (A) are exactly the
o-models of (A) for which the <f-rule is sound. Enderton asked

I° If ¢ is true in every df-model of (A) does € (A)e?

2° If T is <l-consistent, does 7 have a df-model?

If we replace in 1° (A) by (A)-+AC then the answer to 1° is negative. The answer
to 2° is also negative. We prove that the cl-rule has no semantics and is not
semantically consistent.

In the same way we introduce the notion of a df-model for L (A,).

It is easy to see that (A)+AC is faithfully interpretable in A,. This interpretation
assigns for each df-model for L (A) a df-model for L (A,).

By theorem 3 of [1] T((A)+AC); 1e Z%. By theorem 8 of [1] ((A)+AC)) i< Ay,
where A, denotes the set of all sentences of L (A) which are true in every df-model
of (A)+AC.

THEOREM 1. ((A)+AC)g#4,.

Proof. By the above it suffices to show that 4,71 ¢ 2. Because of the facts
connected with the interpretation of (A)-+AC in A, it suffices to prove that (A2)aps
the set of all sentences of L (A,) which are true in every df-model of A,, is not
a X3 set.

Let M be a df-model of A,. Then

1° LM< M, :

2° L™ is a df-model of A,,

3° Def 2 <M and Def 2 is a f-model of A,*).

Proof of 1°. We prove this for arbitrary w-models of A,. Let 3X VY0 be a T}
formula of L (A,). By Shoenfield’s absoluteness lemma (see [7])

ZFCHVZ(L(Z2)-» (3X VY0 (Z2)~»3X (L(X)AV Y @),

(we understand here that X, ¥, Z range over 2°). The close inspection of the proofs
from [6] and [7] shows that the above scheme is already provable in ZFC-.
By a theorem of Kreisel (see [8] pp. 376—377, cf. also Zbierski [9]) ZFC~ is
a conservative extension of A.,. '
Hence the above scheme is provable in A, what easily settles the claim.

Proof of 2°. We prove at first that .2Y=A;, for every w-model M of A,.
The analysis of Godel’s proof shows that constructible sets form an interpretation
of ZFC~ in ZFC~.

*) We have to know the fact that M is a df-model of A, impliés Def 2™ is a f-model of A,.
This was already known to H. Friedman.
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Let @ be an axiom of A,. Then ZFC~+® and ZFC~™t @, where &, is the
relativization of the sentence @ to the constructible universe. But, as we already

mentioned
ZFC™ F(¥x)(xs 0~>(L(x) <> L(x)).

which implies ZFC~ F @ p where @ o is the formula which arises from @, by relativiza-
tion of its set quantifiers to the formula L(X). By conservativeness A, @ p. Thus
if M is an w-model of A, then .2M}=a for every @ which is an axiom of A,.

Let now M be a dp-model of A,. Suppose that 2¥f=Bord (X), where Xe
e Def (2M). By 1° M}=Bord (X). Since .2 is definable over M, also X & Def (M).

Thus Bord (X), i.e. 2¥ is a df-model.

Proof of 3°. If M is an w-model of A,, then in /2 there exists a definable (43)
well-ordering of the universe (we use conservativeness), thus, by a well-known
theorem of Montague-Vaught, Def LY< L.

Hence Def .M is a df-model of A, whenever M is. But in Def LM every set
is definable, thus Def 2™ is then a f-model.

Let now ® be a n} sentence of L (A,) which is true in 2°. Let M be a dfi-model
of A,.

By theorem 6.3. of [4] and 3°, Def 2¥=&. Thus by 1° and 3° M= 2.

Thus a 7 sentence @ is true in 2° iff & € (A,)g- The set of Gddel numbers of
all true 7l sentences is a m3—ZX; set (see, e.g. [10], Corollary XIV § 16.2), thus
T(A)e ¢ 25

COROLLARY 1. The SA-rule has no semantics.

Proof. According to Theorem 1 ((A)+AC) S Aap- We show that Ayy={p: A=
for every U such that A=(A)+AC and the f-rule is sound for A}. Indeed, let A
be a model of (A)+AC, such that the o{-rule is sound for 2. The e-rule is derivable
in (A) from the «{-rule ([1], Theorem 1), thus Th (20) is c-closed. By Henkin—Orey
theorem (see, e.g. [11] p. 231) Th (W) has an w-model, say M. Thus M is an w-model
for which the ¢l-rule is sound, i.e. M is a dB-model which is elementary equivalent
to 9. Thus the equality holds. Now our statement follows from the remark at the
end of 1.

COROLLARY 2. There exists a set T of sentences of L (A), which is A-consistent
but has no df-model.
Proof. Let @ € Ag—((A)+AC) .
Then Cn(((A)+AC)U{T1®}) is a consistent «{-closed set and a fortiori it is
dl-consistent. Indeed, suppose that for some a
y (@ (m) € Cn (((A)+AC) U {T18}) for every n.

Then for every n T1®—y (a(n)) € ((A)+AC) 4, thus by <l-rule 1P~ Vxy (v(x))e
€ (A)+AQ)y, ie. I Vxy (v (x)) € Cn(((A)+AC) L {T18}).
On the other hand Cn(((A)+AC)y U {T19}) has no df-model.

COROLLARY 3. The gl-rule is not semantically consistent.
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Proof. In the proof of Corollary 1 we observed that every model of (A) for
which the o{-rule is sound is elementarily equivalent to a df-model. Hence the above
set Cn (((A)—{—AC)Q{U{_I(D}) violates the semantic consistency of the c{-rule.

3. Some infinitistic rules of proof. We now discuss certain rules of inference
from the point of view of their semantical properties. Aczel observed in [11] (p. 326)
that the «{-rule is an example of the rule of inference which comes from the notion
of the generalized quantifier. Let F(a) be an analytical relation on w®. Let Focd )

denote the following formula of L (A)3v (Vx (v ()=0® (x)) A #()) (here we
treat F(a) as a formula of L (A)).

F(a) determines the following infinitistic rule of proof:
Frule: from the fact that Jq (Vn(a(m)=0tg @ (m)) A F(a) infer Fxd (x).*)

Thus a set T of formulas is closed under the Frule if for every formula @ (x)with
one free number variable

Ja(VYn(a(n)=0—n) e T) A F(a)) implies Fxd(x) e T.

For H(a)e>Vn(a(n)=0) we get the w-rule, for F(a)<s3f Vn (a (B (m)=0)
we get the gi-rule.

DEFINITION 4. Let M be an w-model for L (A). The formula @ (v) with one
free variable is M-downward absolute with definable parameters if for every ae M
which is definable in M

P(a)>MED(a).

‘We have the following simple

THEOREM 2. Let M be an w-model for L (A). The F-rule is sound for M iff F(v)
as a formula is M-downward absolute with definable parameters.

Proof. Immediate. We do not know any %rule not equivalent to the -rule
which has a semantics or is semantically consistent. For the F-rules stronger that
the w-rule the above theorem describes the semantics if it exists.

THEOREM 3. If the Frule is semantically consistent then it has as semantics.
The proof is straightforward and uses the fact that if ¢ is a sentence and & (x)
a formula, then

Fx (p— @ (x)) is logically equivalent to g— Fx@® (x).

Observe that Corollary 3 follows from Corollary 1 as a special case of the above
theorem.

The only infinitary rule of proof known to us, which is not equivalent to the w-rule,
has a semantics and is semantically consistent, is the following

*) Such a formulation of the F-rule will be useful in 4. However it is more natural to define
the F-rule in the language of A,. Namely, let 7 be an analytical relation on 2%, definable in 2
by a formula ¢, i.e. X€F<29|= ¢ (X). Then the F-rule is a mapping which assigns to the set of
sentences {® (W)}, 4 where 4 €7, the sentence (3X)(p (XA Vx(x € X—>D ).
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Def-rule. From {Fp.s ﬂv{Vx(v(x):Oe—)'@'(x))Al//(v)) for all @ with one free
variable infer Vvyv.

THEOREM 4. (i) The pointwise definable models of (A) form a semantics for the
Def-rule.

(i) Every Def-consistent set of sentences has a pointwise definable model.

Proof. Let I'={3x[(v (x)=0A 1D (A ®)#0AP (X)]: & is a formula
with one free variable}. Observe that a model M for L (A) is pointwise definable
iff it omits the type I". We proceed further analogously as in the proof of Henkin—
Orey theorem.

The Def-rule is sound in the standard model of (A) iff the analytical basis theorem
(every non-empty analytical family of unary functions has an analytical element)
holds, which is known to be independent from the axioms of set theory.

4. Searching a satisfactory syntactical S-rule. It seems that the question raised
by Mostowski in [4] about the existence of a syntactical f-rule should be formulated
in the following way: does there exist an infinitistic rule of proof f such that the
class of all f-models of ‘(A) forms a semantics of this rule and every f~consistent
set of sentences has a f-model? '

This rule should.be of course in a certain sense natural (we are not able to fomulate
criteria which could decide whether a rule of proof is “natural” or not).

We shall construct now a rule of proof such that the closure of (A) under
this rule is equal to 4, i.e. to the set of all sentences of L (A) true in all f-models
of (A).

We think that this rule is a good example of an “‘unnatural” one, because the
connection between premises and conclusion is very artificial.

Consider the following
D-rule: if Ya 3 Ytz & (C@(n), B(n)y) then ag ¥y Juxd (v (x), u(x)).
Thus the “)J-rule is an rule for
Fa)>Vp Iy Vx (@ (CB (), 7)) =0).

Let ¢ be a true n; sentence of L (A). Then ¢ is of the form Vv3uVx @ (v (x), @ (x))),
where @ is an open formula. Since true open formulas of L (4) are theorems of (A),
we get ¢ e (A)y;.

Recall that a set S of natural numbers is weakly representable in a set of sentences.
T if for some formula @ with one free number variable

Vn(ne S (meT).

By the above, every 73 set is weakly representable in (A);. (A)); can be defined
as the intersection of all sets of sentences which are closed under the “3-rule which
gives that [(A); 1 is a 7, set. This fact together with the former one implies
F(A); 1 is a complete 7} set.
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Ay is also a complete 72 set ([4]). By Myhill’s isomorphism theorem there exists.
a 1—1 and onto recursive function A (x) such that

() Vx(xeT(A) 5 1> h(x) e TA,T).

The index of this function can be found, because the sets "(A) 3 land 4 5 have explicit
definitions, which implies that the indices of the functions which 1—1 reduce one
set to the other are given. Now the analysis of the proof of Myhill’s theorem shows
that the function 4 (x) is effectively -dependent only on these two functions.

Define now a C-rule of proof by the following closure condition: a set 7 of
sentences is closed under the C-rule if

1° Ya3p Vn(h ("o (a(n), Bm>) )T and R(TVY 3u Vx& (Kv (x), @ D))
is the Gédel number of a sentence implies R(TYv3uVx & (v (x), a(x)y) el T

22 h(Cy e T ARy e ™I implies hCp el T,

Using (*) and the induction on the levels of the construction of (A)y3 and (A)¢
it is easy to see that (A)p=A,. We do not know whether % is identity. Probably
not.

The example of the C-rule suggests that the existence of an artificial B-rule is
very probable. The heart of the problem thus rather lies in the finding of a natural
f-rule.

One thing is certain. No f-rule can be simple. It follows from the following
restriction “from below”. Every rule f determines an inductive definition of the set
of f-consequences. If the graph of fis a = > relation then the set (A), is inductively
defined with respect to a X} relation, thus is a X set. (This follows from an un-
published result of Gandy). Thus the graph of the f-rule cannot be a = 3 relation.
It can be n,; and we should search among such rules.
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Addendum. P. Aczel has recently proved that the function % from page 885 is
not identity. We generalized his result as: for no %rule 4;=(4)z. On the other
hand, we constructed a syntactical f-rule with a ny graph (see [12]).

K. P. Apr, Beckoneunbie IpaBHIa BLIBOAA H WX CEMAHTHKA

Conepxanve. B macrosmielt pabore paccCMATPHBAIOTCS NpPOOIEMPI, CBA3AHHBIE C CEMAHTHUKOH
OECKOHEYHBIX NPaBHI BLIBOJA B JOKA3aTEIbCTBAX, CHOPMYIHPYEMBIX HA A3BIKE BTOPOrO MOpsAIKA
apudmerrku. OTpHUATENHHO PEILAOTCA [Ba BONpOCcAa DHAEPTOHA, KACAIOLIMECS CEMRHTHKHU €ro
ol-npasuna BeBOOAa. B xasmouenue obcyxmaercs upobieMa CyIEeCTBOBAHHA YIOBIETBOPHUTENb~
HOTO CHHTaKCHYECKOro f-npaBuiia BHIBOAA.



