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ABSTRACT. Let Rsn be the Lie-algebra of all differential

: 8
operators I cana é*g, c,g € B such that Ja] + |8} < 2.
Here o and 8 are moftiindices and Ja| = @ a.. +oa.
In this note I construct a representation by means of

z 4 3n + 1 dimensional

vectorfields on BN, N = %(n2+3n) of this 2n
Lie algebra which is faithful. Via the Dunean—Mortensen-—Zakal
equation and an anti-isomorphism this representation turns out to
give the Kalman-Bucy filter for all n-dimensional linear systems;
so that, in other words, all Kalman-Bucy filters fit together to
define an antihomomorphism lsn > V(gN).This also establishes in
general that the Kalman-Bucy filter gives rise to an
(anti-)homomorphism of the socalled estimation~Lie-algebra to a
Lie algebra of vectorfields. Finally it turns out that the
representation of ﬁsn alluded to above is very closely related to

the Segal-Shale-Weil representation.
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INTRODUCTION.
Let ksn be the Lie algebra of all differential operators in
n variables with polynomial coefficients of total degree in

variables and derivatives < 2. Thus e.g. Rsl is the Lie algebra
with basis

ar
’
8x2

2

(1.1) %2, x%{—, X, 1

9%’
(The product is of course the commutator product). The symbol

2s for this Lie algebra stands for "linear systems". The reason
for this appellation derives from the following. Consider a

linear stochastic system
(1.2) dxt = Axtdt + Bdwt, dyt = Cxt + dvt

Then an unnormalized version of the density of the conditional
expectation of the state x, given the past observations Vg

0 s { t satisfies a (stochastic) evolution equation
(1.3) dp(x,t) = Lp(x,t)dt + Llp(x,t)dylt+... +Lp(x,t) dypt

with L, Ll""’ Lp € lsn. And for varying systems (1.2) these
operators generate all of £sn.

The Kalman—Bucy filter for x = E{xt[yS,OSSSt] is a system of

the form
(1.4) dz = a(z)dt + Bl(z)dylt + ... + Bp(z)dypt

where z is short for (P,%) and a, Bl, eeey Bp are vectorfields on
(P,%)-space. Let V(gN) denote the Lie algebra of vectorfields

on gN. Then the first main point of this paper is that all
Kalman—Bucy filters combine to define a "universal Kalman-Bucy

filter" in the shape of an anti-homomorphism of Lie algebras

(1.5) K: Lsn+ V(gN), N = 4n(n+l1) + n



(and it is even possible to use this to propagate nongaussian

" anti" means that

initial densities). Here
k[D,D'] = [k(D'"),x(D)] rather than «[D,D'] = [«(D),«(D')].

This also establishes that the Kalman filter does indeed define

an antihomomorphism of Lie-algebras from the Lie-algebra

generated by L, Ll’ ceey Lp in (1.3) (the socalled estimation Lie

algebra) to a suitable Lie algebra of vectorfields, as it should

according to a philosophy (almost a theorem now) first proposed

by Brockett and Clark [1].

The structure of lsn is simple. It is an extension of the
real symplectic Lie algebra SP, by the Heisenberg Lie—algebra h, .
Let Sp, be the symplectic Lie group. Then there is a famous and
somewhat mysterious representation of Sp, (or more precisely its
2-fold covering §pn) which turns up in many distinct areas of
mathematics e.g. number theory and quantum mechanics. It is
called the Segal-Shale-Weil representation or sometimes the
oscillator representation. The second main point of this paper is
that this Segal-Shale-Weil representation and the "filter anti-
representation" (l1.5) above are intimately related. This extends
and strengthens the links between filtering theory and quantum
mechanics which have been noted before [11], cf. also various

contributions in [5].

It seems likely that the fact that all Kalman-Bucy filters
fit together nicely will be useful both for theory and
applications. In fact it is definitely of importance in a class
of nonlinear filtering problems coming from identification and
tracking [4,10] where the estimation Lie-algebra is always a
subalgebra of a current algebra Ksn ® R where R is a ring of
polynomials. Further applications of the "universal filter" (l.5)
and/or its relations with the Segal-Shale-Weil representation

seem likely.

2. THE LINEAR SYSTEMS LIE-ALGE BRA lsn .

2.1. Definition of zsn. Let n € N. If o is a multi-index

a = (al,...,an), a; € N U {0} then [a] denotes apt ee. Foa

and we write



With these motions lsn is by definition the Lie—algebra of all
differential operators of total degree < 2; i.e. all differential
operators I c x%3, with ¢ = 0 unless |a|] + |B] < 2. These

a,B B a, B -
operators are considered to act on some suitable spacs of (real
or complex valued) smooth functions on RT, say the Schwartz space
S(R™) of rapidly decreasing smooth functions on R™. The product
(Lie brackett) of D;,D, is then of course given by the

= - n

commutator [Dl’DZ](¢) Dl(D2¢) DZ(D1¢), beS(R™) .
It is an elementary observation that 2sn is closed under this

commutator product.

I shall call an the linear systems Lie—algebra. The reason

for this name will become clear later (in section 4 below).

2.2. The Heisenberg Lie-algebra h . Let hn be the subspace
of zsn spanned by the operators of total degree < 1, i.e. the
Operators X;, ee.., X ;3 31, ey an; 1 (with an obvious notation).
The products in h, are of course the Heisenberg commutation

relations

(2.3) [ai,X-] = Gij’ [xi,xj] = [3 8:]] = [x

5 iy 1] = (3

1] =0

i? i270

where Gij is the Kromecker 8. The Lie-algebra h, is called the
Heisenberg Lie—algebra.
2.4. The symplectic Lie-algebra sp,. Let J be the 2n x 2n

matrix

where I stands for the n x n unit matrix. The Lie-algebra sp,
consists of all 2n x 2n matrices M which satisfy MJ + JMt = 0
(where Ml is the transpose of M). The product on sp, is the
commutator matrix product [M,M'] = MM' - M'M.



2.5. Structure of 2sn. It is an easy observation that
h, < £s ~is an ideal, i.e. that [D,D'] € h, for all
D € zsn, D' € tﬂf The quotient Lie-—algebra an/hn is isomorphic
to sp,. This can e.g. be seen as follows. Let Ei,j denote the
matrix with a 1 at spot (i, j) and 0 everywhere else. Then the

homomorphism of vectorspaces defined by

%3 7 Fieest By 1,3 =1, .o, n
Xian M Ej_’J - En+j,n+i’ 1,1 = 1, see, 1
82
axiax' En+i>j- En+j,i ’ i,j =1, «c.y, n
h > 0
n

is a surjective homomorphism of Lie—algebras as is easily checked

and induces an isomorphism ﬁsn/hn ) Thus we have an exact

sequence

1 m

(2.6) 0 ~» hn > ksn > sp, * 0

A 1lift of m (i.e. a homomorphism of Lie-algebras o: sp_ + 1is

n
= i -+ =
such that m o o id) is given by G(Ei,n+j Ej,n+i) Xixj’
a2
A T EEZSEE’ OBy 4 B4y, nei) T
X, —— + L §... This defines an action of sp., on h_ and also on
i ox, 2 7ij n n

J

hn/z ~ g2n (as an abelian Lie algebra) where Z is the one
dimensional centre of hj and lsn. Identifying RZn with hn/z by

means of e; * x;, e > —Bi, i=1, ..., n,this action becomes

n+i
the usual action of sp, as a Lie-algebra of 2n x 2n matrices on
R2D0,

3. THE FILTER ANTI-REPRESENTATION OF lsn.

3.1. Description of the anti-representation. If M is a




smooth manifold F(M) denotes the smooth functions on M and V(M)

denotes the Lie~algebra of vectorfields on M, (considered as the

Lie algebra of derivations F(M) + F(M)). If M = RT then in the

coordinates (xl,...,xn) every vectorfield on R™ can be written

p) fi(x) %;—, where the fi(x) are smooth functions.

i Now consider RN with N = %n(n+l1) + n + 1 with coordinates
Pij = Pji’ i,j =1, «¢«¢y, n3 my, i = 1, ..., n; c. Consider the
homomorphism of real vectorspaces

N
(3.2) K: Esn > V(R
defined by the formulas
3
(3.3) 1 > “a—-é—
n
3 3
(3.4) Xp 0T Wy e * z Piv om
t=1

3 3

(3.5) ax. om
i i
x,x, * (m,m ,+P )E— + ) (m,P, +m.P_ ) 2
i7j i~j "ij’% y i”jt it amt
(3.6)
3 N 9
+ I O S
st is” jt BPst ¢ it” jt aPtt
3 3 3 3 3
(3.7 X1 9x. "3 m 613 dc Pij 9P . . z Pit 9P .
J J 1] t jt
2 2
3 39 3 9
. # j
(3.8) 3, 9x, b, 1 F 3 523
i ij Bxi ii

3.9. Theorem. The vectorspace homomorphism «: ksn > V(RN)
defined by the formulae (3.3) - (3.8) is an injective anti-
homomorphism of Lie algebras. (I.e. it satisfies

«[D,D'] = [k(D'), x(D)] for all D,D' € lsn.

The proof of this theorem is a straightforward but perhaps

somewhat tedious calculation. As an example we have [ai,xi] =1

as



and

- 9
om 1= dc

P d
[m, — + ) P, —+—, -
i de¢ hy it amt i

which fits. As another example if i # j we have

2
3 _ 3 3
[Bx 9x .’ xlxj] ] Bxi M Xj Ix 1
Now
3 3 _ 9
537 (mymy*Py50] = 52
1]
3 3 3 3
[ , y(m P, +m P )e—] = m, + m, —
apij ¢ 1 jt it 8mt 13m1 Jamj
) 3 N 3 \ 3
[e=—, J P, P, =1 =17 P, + Y P, =
aPij st is™ jt aPs,t y jt BPjt s 1s BPS i
3 ) 3 3
[&=—, ) P, P. =——] =P, + P
aPij . it JtBPtt ji Bij ii BPii
So that indeed
32 3 3 ] 3
[«(x.x.),x(-—5)] = - — - m, — - _— - z P
i%3 axiaxj dc i Om, j ij ¢ It BPjt
3 3 9
L Pig 39 Pi3 3., Fii 3p
s is jj ii
= k(x, ) + elx, 2y + k(1)
i 9x, j ox.
J
The remaining identities are checked similarly.
3.10. Remark.
I S T T O
X, ox .’ i 9x, i 9x.’> Ti7j i7j’ 9x,9x., 9x.0x .’
i i j j i 73 i3
Xy > X4, 1 » 1 defines an anti—-automorphism of 2sn. Thus

changing the sign in formulas (3.5) and (3.7) defines a
representation of zsn in V(RN).

4.DMZ EQUATIONS AND KALMAN FILTERS.

4.1. The Duncan—Mortenson—Zakal equation and the estimation



Lie-algebra. Consider a general nonlinear stochastic system (in

Ito form)

(4.2) dxt = f(xt)dt + G(xt)dwt,dyt = h(xt) + dvt, X €&

W

where f,G,h an suitable vector and matrix valued functions and Wy
and v, are independent unit covariance Wiener processes also

independent of the initial random vector x Given sufficiently

0.
nice f,G,h an unnormalized version p(x,t) of the probability
density p(x,t) of the state x. given the past observations

Yg» 0 £ s < t satisfies the (forced) diffusion equation (Fisk-

Stratonovié form)

(4.3) dp = Lpdt +
]

hod
R L2

I Mo

where hj is the j-th component of h and L is the second order
differential operator

2 3 2

= 1 L N - '
i, 7173 i i i -

Here f; is the i-th component of f and (GGT)ij the (i,j)—-entry of
the matrix product GeT, Equation (4.3) is called the Duncan-
Mortenson—-Zakai equation. Cf.e.g. [3] for a derivation. The Lie

algebra of differential operators (on S(E®) say) generated by L

and
hl’ h2, es ey hp is called the estimation Lie algebra.
4.5. Exact filters and Lie—algebra anti—-homomorphisms. Now
let
(4.6) 4g, = a(g)dt + B (£ )dy) +.uukB (E Ay, x, = Y(x,)

be a stochastic system (in Fisk-Stratonovi¢ form) driven by Ye

which calculates the conditional expectation

(4.7) x, = E[xtlys,OSSSt]

of the state given the past observations. I.e. (4.6) is a filter

~

for X, . Then as Brockett and Clark observed [1] we have two ways



of calculating ;t’ once via (4.3) and once via (4.6). Minimal
realization theory then suggests that there will be a
corresponding homomorphism of Lie-algebras from the estimation
Lie alzebra L of the system to the Lie algebra of vectorfields
generated by the vectorfields ayBis eees Bp in (4.6) given

by A + «a, hi > Bi’ i=1, ¢ve, po In [1l] this was verified to be
indeed the case for the case of the Kalman filter of one of the
simplest possible linear systems, namely dx, = dwy,

»dyt = xgdt + dvt. The proof sketch in [2] that the Kalman filter
for general one input/one output linear systems gives rise to a

homomorphism of Lie-algebras seems wronge.

As a matter of fact a filter like (4.6) for ;t (or for some
other statistic) should give rise to an gnti -homomorphism from
the Lie-algebra of differential operators to the Lie~algebra of
vectoriields generated by the vectorfields in the filter. The
reason is that Ap and hjp in (4.3) must be interpreted as
vectorfields on S(R™) and the mapping which assigns to a linear
operator the corresponding linear vectorfield is an
injective antt ~homomorphism of Lie-algebras.(E.g.

gln(g) > V(gn), A+ I (Ax)i %;—; in general the linear
vectorrield associateé to an operator A assigns the tangent
vector Ax to the point x). The fact that exact filters give rise
to antihomomorphisms rather than homomorphisms of Lie algebras
has apparently been overlooked. This small error does not affect
must of the results obtained so far involving the estimation Lie-

algebra (E.g. those in [6]).

4.8.The Kalman-Bucy filter. Now consider an n-dimensional

linear system with m inputs and p outputs

(4.9) dxt = Axtdt + Bdwt, dyt = Cxtdt + dvt ()

A

The Kalman=-Bucy filter for X, is given by the equations

~

(4.10) dx

1]

- T ~
" Axtdt + PtC (dyt Cxtdt)

T T T

(4.11) dp (APt+PtA + BB —PtC CPt)dt
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-~

Write my; for X, and P, = (Pij). Then the part of the right

hand side of (4.10) involving dyy. and contributing to dm;, is

t
equal to

% Pii% 39 ke

It follows that if we write (4.10), (4.11) in the form (4.6) then

the vectorfields Bl’ oeey Bp are equal to

-— __3 =
(4.12) By = ) P ooCrs 3o K l, «ee, P
r,s r

Similarly the a vectorfield of (4.10) (4.11) is equal to

(4.13) a = ‘2. a;4my gm. - -2 Pijcrjcrsms %ET
i,] i i,j,r,s i
M r’zsjairprj gPij M r’gsjpirajr %F;; *
+ r’gijbirbjr gPij
- r’S’z’iSjPircsrcstPtj %F;;

4.14. Estimation Lie—algebra and Kalman—-Bucy filter.

Consider again the linear system (4.9). The operators which occur

in the DMZ equation for this system are

(4.15) hy = Y S

r

2
-1 9o 9 _
L =3 . L birbjr 9X, 9% ., ) 2iv¥r 3x

i, j,r i%%; , i

(4.16)
1
. Z Cri®ri*i¥®; 2 834
1,],T 1

Let L(Z) be the estimation Lie-algebra of the linear system
(4.9). This is obviously, cf. (4.16), a sub-Lie-algebra of 2sn,
and for varying I the various L(I) generate all of lsn. Whence

the name "linear systems Lie-algebra" for an.
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As in section 3 above let N = in(n+l) + n + 1. Consider the
projection BN =+ B¥"! which maps (m,P,c) to (m,P). Under this
projection the vectorfields occurring in the right hand sides of

N-1
R

(3.3) - (3.8) map to vectorfields on . The vectorfields

arising Zn this way are the same ones except that the %E terms
are removed. Let

(4.17) <:ogs > V(RN

)

be the resulting anti-homomorphism of Lie—algebras.

4.18. Theorem. The restriction of k' to L(Z) maps the
operator L of (4.16) to the vectorfield a of (4.13) and the
operators hi of (4.15) to the vectorfields Bi of (4.12). In other
words the restriction of «' to L(I) < 2sn is the Kalman—-Bucy
fFilter for the system (I).

The proof of theorem 4.18 is an entirely straightforward

verification, lightly complicated by the fact that Pij = Pji must
be taken into account which is not automatically done by the
32
notation used. Thus the coefficient of 5% 5w in L in (4.16) is
i3

. e . 2 L. .
equal to i birbjr if i # ] and % I bir if 1 = j and under K

which takes

82 3 32 3
>

, g
Sxiaxj aPij sz BPii

this gives the fifth term of o in (4.13). Similarly the

coefficient of x 3 in (4.16) is =-a;,_. The morphism x' takes
r Bxi ir

5 5 5 ~ 3
X 5% 7 TP sme  Pri 3P T L Pre 37
1 1 11 t it

and these terms account for the first, third and fourth terms in

(4.13). Finally the coefficient of Xjx4 in (4.16) is ~§ cricrj
if i # j and -} I Cii if i = j. The morphism k' takes XX 5 into
. 3 3 - 3
s
Y (m,P, +m,P, )o— + J PP, ——=—+ ) P P, o
c i jr T jit Bmt st is  jt aPst £ it” jt aPtt
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and this accounts for the second and sixth terms in 4.13.
Similarly (and rather easier) one checks that «' takes the h; of
(4.15) into the Bi of (4.12). This proves that «' indeed
restricts to the Kalman—Bucy filter on L(Z).

4.19. Remarks. Another way to state theorem 4.18 is to say
that all possible Kalman-Bucy filters combine to define an anti-
representation of lsn which is faithful modulo the one-
dimensional centre. The lifted anti-representation x is faithful

l!n ksn itself and permits us to propagate also nongaussian

initial densities. Cf. also section 6 below.

As a corollary of theorem 4.18 we of course obtain that

L » a hi > Bi (with L, «a. hi, Bi

(4.13), (4.15), (4.12)) does indeed define an anti-homomorphism

respectively given by (4.16),

of Lie-algebras, as it should.

4.20. Example. For special linear systems L + a, hi *> Bi
may accidentally also define a homomorphism of Lie algebras. This
happens e.g. for all one-dimensional systems and all systems
(4.9) for which the A matrix is zero. In general this is not the

case as the following example shows

dx 0 1 x 0

1 1
P2y « H o= YO Dde + (Odw
d dx . 0 0 x 1
2
dyl 1 0 X, dvlt
( ) = ( YO T)dt + ( )
dy2 0 1 X, dvzt
For this example we have
2
Lo Lt 3 1 2 _ 1 2 . _ hoe
2~ 2 *2 %% 2 *1 2 X0 M1 T X M 2
3x1 1
_ p2 _p2 y 3 - _ 9
a = (2P, ,-P1=P})) T (P, P Py B 0F ) 9%, +
2 2 3
+ (1-P%.-P2.) £—
1277227 3P,
3 3 3 3 3
+om, om Piimy om Plamy om Piomy om, Poomy om,



P 3
B, = P —— + P _ —
1 11 aml 12 8m2
~ 3 d
By = Py 3w T Poo 3m
1 2
Now [L,h,] = -x and [a,B,] = P I + P 3——. So
7 1 2> ’T1 12 3m 22 3m
if x: L +» «a, hl > Bl’ h2 > 82 did define a Lie adalgebra

homomorphism we would have

-8, = k(-x,) = ¥[L,h [K(L), k(h)] = [a,8,] = 8, a

1]
contradiction.

4,22, Remark. I have not found an example of a scalar input-
scalar output system (4.9) for which the Kalman filter does not
induce a homomorphism of Lie algebras. It is conceivable (though
I do not see a good reason why this should be the case) that
accidentally for these systems the Kalman filter does induce also
a homomorphism of Lie-algebra. This seems to be the case for one

and two dimensional systems.

5. THE SEGAL-SHALE-WEIL REPRESENTATION.
This section simply 1lists some wellknown facts on the basis

of [7! with a few elaborations.

5.1. The symplectic group. Let J be an in 2.4 above. Then

the symplectic group Sp  consists of all real 2n x 2n matrices M
such that MIM! = J. The Lie-algebra of Sp, is the Lie-algebra sp,

which we encountered in section 2 above.

A certain representation of Sp, or more precisely of its
two-fold covering §pn on LZ(RH) which is called the Segal-Shale-
Weil representation is of considerable importance in several
areas of mathematics, notably number theory [l4] and quantum
mechanics [12,13]. As we shall see it is also closely related to

all Kalman—-Bucy filters.

5.2. Definition of the Segal-Shale-Weil representation. One

wellknown way to obtain this representation is via the Stone-Von
Neumann uniqueness theorem. Let H, denote the Heisenberg group,
Ho= 20 x B® x s!, where S! is the circle, with the

0 -2midxy'>

multiplication (x,y,z)(x',y',z') = (x+x',yty',e zz').

The Lie-algebra of H, 1s h, (which we also encountered in section
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2 above). This Lie—algebra can also be described as h = R™ x BT
X R and then the Lie-bracket defines a bilinear form

R20 x R2D 5 B which is given by the matrix J. Thus Sp, can be
seen as a group of automorphisms of h, and H, which moreover is

the identity on the centre si C Hy-

One version of the Stone-Von Neumann theorem says that up to
unitary equivalence there is a unique irreducible representation
of Hn whose character on S1 is the identity. Now let p be the
standard (Schrddinger) representation of H_  in Lz(Rn) which is
given by

2milx,x">
e

(x,0,0) » M, M £(x") £(x")

(0,y,0) » Ty, T E(x") £(x"-y)

(0,0,z) ~» Sz’ Szf(x') zf(x")

Now let g € Sp, and consider Sp, as a group of automorphisms of

H . Then h » p(g(h)) is also an irreducible representation of Hy
with the same central character. By the uniqueness theorem there
is an intertwinning operator w(g) such

that w(g)p(h)m(g)-1 = p(g(h)). These w(g) are unique up to a
scalar factor. It remains to see whether these scalar factors can
be fixed up to yield a representation of Sp, on Lz(ln) (instead
of omn P(Lz(ln))). This can almost be done and the result is the
Segal-Shale-Weil representation of the two-fold covering

Sp_ of Sp_ in LZ(xD).

5.3. More or less explicit description of the Segal—-Shale-

Weil representation. Let

(5.4) M= ( ) Sp

C D o

where A,B,C,D are n x n matrices. Then the A,B,C,D satisfy asl =
BAT, cpT = DCT, apT - pcT = I. Important special elements in Sp

are

(5.5) ( ), ( -1 T)’ ( ), N symnmetric



15

and it is not especially difficult to show that these generate
all of Sp,+ Thus in principle to describe the Segal-Shale-Weil
representation it suffices to describe the unitary operators

corresponding to these matrices. These are as follows

0 I

(5.6) ( ) » Fourier transform F: Lz(gn) > L2(§n)
-1 0
A O 1 T
(5.7) ( -1 T) > (f(x) + |detA]*£(A"x))
0 A7)
I N .
(5.8) ( ) » (£(x) » "N g(yy)
0 I

where N(x) is the quadratic form defined by the symmetric matrix
NC

5.9. The Lie-algebra representation defined by the Segal-

Shale-Weil representation. First consider a symmetric matrix

N = (nij). Then

a I 0
S GO = (TNGOI(£G0)
tN I t=o
Next let B be an n x n matrix, A = et B, Then
etB 0
4 = (41 T 5
Tt (e‘tB>T)(f)|t=o (HT(BHI(30 ;5 ()

Finally consider the one—parameter subgroup

I cost I sint
s, = ( )
-1 sint I cost
of Sp, whose tangent vector at t = 0 is J (and which also passes

through J). Writing

0 I I cos—lt 0 1 Isint cost
s, = ( ) ( ) ( )
-1 0 0 I cost I 0
0 -I I Itgt
( ) ( )
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it is not difficult to write down (Stf(x) and to calculate the

derivative at t= 0., The result is

2 2

. 2 2 i 9 )
ﬂl(x1+...+xn) Z?(—~2+"'+—~§)
Bxl an

It readily follows that the Lie—algebra of operator arising from
the Segal-Shale—-Weil representation is the one with basis
2
] 1
*x Bx. + 2 8

9
4 9x, 9x.’ Tk

Tix, X.,
J k7] J

k lq
which is of course isomorphic to sp,, for example to the
incarnation of sp, as the subalgebra o(spn) C Rsn via the

isomorphism induced by the coordinate change X, (Vﬂi)xk.

6. KALMAN-BUCY FILTERS AND THE SEGAL-SHALE-WEIL REPRESENTATION.

6.1. Outline of the connection. Given that the Kalman-Bucy

filters combine to give an anti-representation of sp 6 C lsn
with sp, realized as a Lie-algebra of differential operators and
that the differentiated version of the Segal-Shale-Weil
representation is also a representation of this same Lie-algebra
of differential operators it would be odd if they were not rather
closely related. Indeed, as the attentive reader will have seen
coming, the filter anti-representation is essentially a real and

local version of the Segal-Shale—-Weil representation.

The connection is essentially given by assigning to a pair
(P,m), m R", P a symmetric positive definite matrix the

corresponding normal density

] e Gxem)

Y(2m)" |p|

where P is the absolute value of the determinant of P and

(6.2)

P—l(y) is the quadratic form defined by P~l. These functions form
a total system in Lz(Rn) meaning that the finite linear

combinations are dense, so that to define a representation of say
Sp, of Lz(ln) it suffices to know what the representation does on
these special functions. For the Segal-Shale-Weil representation

one uses more generally n x n matrices Q whose real part is
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positive definite. And in fact it seems that Weil originally
constructed his representation essentially in this way (cf. his

comments, also referenced under [14], on the paper in question).

To spell things out in more detail and to avoid equations in
p"1 (and calculating trouble) it is useful to use the Fourier

transform.

6.3. Some Fourier transform facts. Let F denote the Fourier

transform. Then we need the following more or less wellknown

facts

3 1 9
— = 2wix F, F x, = - -
axk k k 27i Bxk

(6.4) F

F

where e.g. F x, stands for the composition of the

operator"multiplication with xk' with the operator F. The second

fact we need is the formula

-1 1 e—%P_l(x—m)+c ec+<211m,x>-2w2P(x)

Y(2m)™ ¢l

Finally it 1s useful to note that the set of all functions of the

(6.5) F )

form

(6.6) p(x)e U

where p(x) is a (complex) polynomial and Q a (complex) polynomial
of degree 2 whose real homogeneous part of degree 2 is positive

definite, is stable under the Fourier transform, multiplication

with polynomials and partial differentiation with respect to the
Xy -

6.7. Obtaining the filter anti-representation.

c+<2nim,x>—2w2P(x)

Consider a function of the type e ,(m and

P real). Imagine that m and P vary with time and try to see what

this involves for an evolution equation of the type

9

__(ec+<2ﬂim,x>~2ﬂ2P(x)) Lec+<2ﬂim,x>-2n2P(x)
ot

(6.8)
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where L is a differential operator from lsn. As 1is easy to see
this yields a system of ordinary differential equations for my
and Prs provided that L is in £sn. And these first order
differential equations which have polynomial righthand sides are
at least locally uniquely solvable.

As one of the most complicated examples for n = 2 consider
a2
77 3% € 2s . Writing exp(-) for the e-power in (6.8) we find
x18x2 n

8 exp(=) = exp(-)(¢+27min. x +27im, x —ZHZ(P x2+2P X.xX.+P xz))
ot P 1%1 2%2 11517 12%1 %27 2272
52 2 3 3
3;:3;; exp(-) = exp(l)[-4nm mlm2—8n imlePll—Bw 1m2x2P12—

- 8n3im x., P

172722
4 4 2 3
+ 16w X1P11x2P22 4+ 16w x2P12P22 ~ 87 imlle12
4 2 4 2 2
+ 16 = X1P11P12 + 167 XIXZPIZ 4o P12]

Comparing these two expressions yields the differential equations

¢ = —4ﬂ2m1m2 - 4n2P12
Zniﬁl = —817311112?11 - ~8n3iml%2
27 @, = -8 im,P, - 87 im B,
--21r2P11 = 16n4P11P12
—2n2P22 = 161r4P12P22
—4v2P12 = 161r4P11P22 + 16n4P%2

Writing down the associated vectorfield and using (6.4) and (6.5)
the result is that the time evolution of an unnormalized normal
probability density ecN(m,P) with mean m and covariance P in an
evolution equation

(6.9) %E eN(m,P) = x.x., e°N(m,P)

172
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is given by

(6.10) %’E (¢,m,P) = alc,m,P)

where a is the vectorfield

3 ? ?
(myma*Pi)ae © MP ™™ Pip)ge + (Pt Pyy)em
. 1 2
(6.11;
3 d 2 d
+ 2p. P = + 2P _P = + (P.. P, _+P7,) o
11712 aPll 12722 3P22 11722 12 3P12
which is of course the special case n = 2 of formula (3.6).

£€.12. Obtaining the Segal-Shale-Weil representation. To

obtain the Segal-Shale-Weil representation one can proceed in
almost precisely the same way. Now of course one admits complex m
and P (with the real part of P positive definite) and one uses
2
i K A— ix,.x, instead of x.x A
’ ik ik’ 9x,0x%, °

dX , 90X
ik "k

6.13. Finite escape time. The class of functions

. 2
ec+<2w1m,x> 2m P (x) is stable under Fourier tranform,

multiplication with eiQ(X), Q a real quadratic form and under

x * Ax, A invertible, i.e. they are stable under the
transformations corresponding to the special elements (5.5) of
Sp,- As these elements generate Sp, it follows that there will be
no finite escape time phenomena for the equations of the Segal-

Shale-Weil case analogous to (6.10).

In the real case, i.e. the Kalman-Bucy filter case this can
not be guaranteed. Indeed finite escape time does occur (cf. also
[9]) and it is easy to see why. In this case (é ?) acts on f(x)
by multiplication with eN(X) and depending on f(x) this may or
may not result in a function eN(x)f(x) which is not Fourier

transformable.

Writing elements of Sp, as products of the special elements
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(5.5) gives more or less explicit solutions of Riccati equations

for elements not too far from the identity and this also gives a

good deal of information about in what directions (of sp, or Ksn)

finite escape time phenomena do not occur. Of course the one

parameter subgroups of LSn (the Lie group of lsn) involve many

more directions than those defined by "classically" studied

Riccati equations.
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