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... each problem they solve 
creates ten problems more. 

Piet Hein 

Second order arithmetic A2 is a theory which considers the properties 
of sets of natural numbers. Being an extension of Peano arithmetic, the 
second order arithmetic is a theory in which one can already state the 
induction axiom in the desired form. On the other hand, the restrictions 
of the language force us to construct the sets by usfrig the comprehen­
sion scheme. 

Although A2 seems to be a fairly weak system, it is already possible 
to formalize within it quite a big part of classical mathematics. It is 
even possible to do that in some subsystems of A2 with the scheme of 
comprehension suitably restricted. In this paper we do not consider the 
above subject and we always assume the full comprehension scheme. 

A number of results concern the second order arithmetic with the 
scheme of choice. The intermediate systems - almost unknown so far 1 

are not considered here. 
* This paper is an ex tended version of a lecture which was read by the second author at the 

Logical Congress in Orleans, France. While preparing this lecture, the second author was par­
tially supported by the S.U.N.Y. Research Foundation. 

1 Recently, important results in this direction have been obtained by W. Guzicki. Among others 
he has shown that the choice sch-eme without parameters does not imply in A2, the choice scheme 
for ni formulas with parameters. On the other hand, it is known that the choice scheme for :Ei 
formulas (with parameters) is provable in A2 (by the Kondo-Addison theorem which is, as a 
scheme, provable in A2l-
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By the theorem of GOdel, second order arithmetic is incomplete, and 
thus it has models elementarily non-equivalent to the standard one '.7' ( w ). 
A theorem of Rosser [59] states that such models can be found even 
among those which have standard natural numbers, i.e., the so-called w­
models. Thus w-models form a large class of models of A2 . 

The aims for which second order arithmetic was created - a study of 
the properties of sets of natural numbers - suggest the restriction to w­
models in semantical considerations. In these models, sets are sets of 
natural numbers. Almost all the models studied in this paper are w­
models. These models preserve first order, i.e., predicative statements. 

A2 is an intermediate system between Peano arithmetic and set theory. 
Although it is much stronger than the former, yet it lacks some of the 
means available in the latter. For instance, we cannot yet define the 
notion of an ordinal. Fortunately, we may use the notion of well-order­
ing instead, which suffices in many considerations. Their properties, 
being similar to those of ordinals (for instance comparability), allow us 
to constructions like inductive definability, etc. 

The importance of the notion of well-ordering suggests that we should 
consider those models of second order arithmetic for which this notion 
is absolute. These models, introduced by Mostowski, are called ,(3-models. 

They form a subclass of the class of w-models and may be compared 
to transitive models of set theory (some more precise explanation of this 
analogy is contained in § 6). 

These two classes of models play the most important role in the study 
of models of A2 , and considerations about them cover the main part of 
the paper. 

The reader may sometimes need to consult Rogers' book [ 5 8] when 
we use recursion-theoretical results and Spector's paper [65] when we 
use results on inductive definitions. 

We have divided the paper into 10 sections. Sections 1-10 start with 
a short summary together with an indication of the most important 
methods and results, thus enabling the reader to get a summary of the 
paper by reading them separately. 
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§ 0. Preliminaries and basic notions 

The second order arithmetic is a theory formulated in a two sorted 

language L(A2 ) with equality and with the basic symbols S, +, <, . , E. 

Small Latin letters denote variables ranging over natural numbers and 

capital Latin letters those ranging over sets of natural numbers. The 

axioms of second order arithmetic are the following: 

(A) Peano's axioms for natural numbers (cf. Shoenfield [62, p. 22 

and p. 204] ). 

(B) Axiom of extensionality. 

(C) Induction axiom, i.e., (0 EX & (x)(x EX-+ Sx EX)-+ (x)(x EX)). 

(D) Comprehension scheme. Universal closure of the following: 

(EX)(x)(x EX+-+ <I>(x)) (X is not free in <I>). 

(E) Scheme of choice. Universal closure of the following: 

(x )( E Y)( <l>(x, Y) -+ ( E Y)(x) <l>(x, ( Y)x) , 

where (Y)x = {y: 2x(2y+ 1) .!... l E Y}. 

The theory based on axioms (A)-(E) is called full second order arith­

metic and abbreviated throughout the paper as A2 . The subtheory based 

on groups (A)-(D) is denoted by A:;_. Strictly speaking, all our work is 

done in a certain recursive extension A~ (A~-) of A2 (A2) satisfying the 

following three conditions ( cf. [ 62, p. 206] for the definition of a recur­

sive ex tension): 

( 1) All the functions and the predicates defined in Paragraphs 6.4 and 

6.6 of Shoenfield's book are included into the language. For the terms 

and the formulas denoting these - newly introduced - functions and 

predicates, we use the same denotations e.g. Seq(x) corresponds to the 

predicate A.x Seq(x). 

(2) There is a binary function symbol -;- ( ·) with the following axiom: 

X(y) =a+-+ Seq(a) & (lh(a) = y) 

& (i)(i< y-'; [(i Et X-+ (a)1 = 1) & (iE X-+ (a)i = 0)]). 

Informally speaking, X(y) is nothing else but xx(y ), where Xx is the 

characteristic function of the set X. 
(3) The functions (X)i, <X 1 , .. ., Xn > are introduced by appropriate 
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axioms e.g. 

<X1 ... xn > = y +-+ (y)(y E y +-+ Seq(y) & (lh(y) = n) 

&(i)(i< n-"" (y)iEXi+l)). 

The extension obtained in this way is a conservative one. Therefore we 
denote it by A2 (A2) since it does not lead to confusion. If T is a set of 
formulas of L(A2 ), then 17'1 denotes the set of GOdel numbers of the 
formulas from T. 

0.1. Definition. (a) A formula of L(A2) is called arithmetical if it is in 
prenex form and does not contain any quantifiers binding sets. 

(b) A formula <I> of L(A2 ) is L ~ (Il~) ifthere is an arithmetical for­
mula iir such that <I>= (EX1)(X2) ... (QnXn)q, 

((X1)(EX2) ... (OnXn)'ll), 

where Q is the appropriate quantifier. 

A good reason for assuming the scheme of choice is the following: 

0.2. Lemma. (a) For every formula <I> of L(A2), there exists a formula 
'¥in Un(L~ U 11~) such that A 2 1- (<I>+-+ '11). 

(b) If <I> is L~, then there is a L~ formula '11 such that A 2 r-- ((x)<I>) +-+ '11. 

In the class of models of the language of A2 , we distinguish those whose 
number-theoretic part is isomorphic to the set w (the set of natural num­
bers); in other words, they are exactly those models whose natural num­
bers are well-ordered by the relation< of the model in type w. These 
models are called w-models. Evt:ry w-model determines (and is determined 
by) some family of subsets of w. Thus we identify w-models with families 
of subsets of w. The cardinality of an w-model is the power of this family 
of subsets of w. By the standard model of A2 (and A2 ) we mean '.7'(w), 
the power set of w. Throughout this paper we assume the theory ZFC as 
the meta-theory. This enables us to claim that '.7'(w) is a model of A2 . 

Let us note that second order arithmetic is often formulated in the lan­
guage with functions and not sets as the second order objects. This is, 
however, a minor obstacle and the results can be translated from one 
language into the other in a simple way. (Cf. Rogers [58, p. 382] where 
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it is shown that the set of natural numbers is ~;1 with respect to the 
function quantifier hierarchy iff it is L: ~ with respect to the set q uanti­
fier hierarchy.) Let us finally mention that quite often we shall identify 
a definable relation with the formula defining it. 

In the language of A2 , we can express the fact that the relation X is 
a well-ordering. 

Bord(X) +-+ (x)(y)(x E FldX & y E FldX & (x, y) EX & (y, x) EX 

-+ x = y) 

& (Y)(Y * 0 & Y ~ FldX 

-+ (Ez)(z E Y & (t)(t E Y-+ (z, t) EX))), 

where FldX is (X) 0 u (X) 1 . 

The formula Bord(X) is clearly equivalent to a ni formula (even in 
A2). 

0.3. Definition (Mostowski [ 46] ). A model M (of the language of A 2 ) 

is called a fr-model if the formula Bord is absolute for it, i.e., 

MI= Bord[X] -+ {(x,y): <x,y> EX} 

is a well-ordering. 

In particular, every 13-model of A2 is an w-model (since in A2, we can 
prove that< is a well-ordering). 

0.4. Definition. (a) An ordinal o: is representable in an w-model Miff 
there is a set X EM such that {(x,y): <x,y> EX} = o:. 

(b) Osp (M) is the supremum of the ordinals representable in M. 
(c) In the case where Mis a 13-model, we use h(M) instead of Osp (M). 

Note that Osp(M) is a limit ordinal. In fact, it is an admissible ordinal, 
and in the case of a 13-model it is even a regular quasi cardinal (cf. Kripke 
[35] ). (It need not to be even L 2-admissible if Mis not a 13-model of A2.) 

Let us define 

Aw = {IP: IP is a sentence of L(A2 ) 

& (M}(M is an w-model of A2-+ MI= 1P)}, 
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Ail = { ip: ip is a sentence of L(A2 ) 

& (M) (Mis a ~-model of A2-+ Mt= ip)} 

Clearly, these theories satisfy the inclusions A2 c Aw c Ail. As we will 

see, both inclusions are proper. 

§ 1. Representability 

1.0. The question which sets are weakly or strongly representable in a 

system extending Peano arithmetic is a natural question about the 

strength of the system. In the case of Aw, this problem has been solved 

by Grzegorczyk, Mostowski and Ryll-Nardzewski [23]; and in the 

case of Ail by Mostowski [47] and Gandy and Putnam [57]. The 
results of Grzegorczyk, Mostowski and Ryll-Nardzewski revealed for 

the first time the great analogy between the notions of recursiveness 

and hyperarithmeticity. 
Namely recursive (recursively enumerable) sets are exactly the sets 

which are strongly (weakly) representable in Peano arithmetic, and 

hyperarithmetical (111) sets are exactly those sets which are strongly 

(weakly) representable in Aw. 

1.1. Definition. LetM be a countable family of subsets of w. Any set 

X such that M = {(X\: i < w }"is called a code for M. In this case we 

denote M by nx. 

Let us note that the downward Lowenheim-Skolem theorem enables 

us to restrict ourselves - in the definition of Aw and Ail - to countable 

models (since an elementary submodel of a ~-model is also a ~-model). 

Once we consider only countable families of sets, we may pass to their 
codes and consider subsets of w as w-models. 

1.2. Theorem. The relation Q(X, t,x,y) +-+ t is the Godel number of a 

formula <P of L(A2) with the free variables V 1 , ... , V m , v 1 , ... , v11 and 

nx t= <P[(X)(xlo' ... , (X)(x)m-1' (y)o, ... , (y)n-11 is .6.(. 

Proof. This follows from the fact that the expression "Y is a satisfaction 
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sequence for <I>" is an arithmetical one ( cf. Mostowski [ 4 7] ). 

1.3. Definition. (a) Modw (X) ...__,. (x) (x is an axiom of A2 _,. Q(X,x, 0,0)). 
(b) ModiJ(X) *--7 Modw (X) & (Y)(x0 )(((X)(x)0= Y & Q(X, IBord1 , x 0 , 0)) 

_,. Bord ( Y)). 

Thus Modw is the class of all codes for w-models of A2, and ModiJ is 
the class of all codes for P-models of A2. 

1.4. Lemma. (a) Modw is a .6. i predicate. 
(b) Modil is an} predicate. 

l 5 P .t. 'A -i . n1 'A1 . n1 . . ropos1 1011. w 1s a 1 set, iJ 1s a 2 set. 

Proof. x E 1 A 1 *--7 (X) (Mod (X)-+ Q(X, x, 0, 0)). w w 
x E 1 A;1 *--7 (X) (ModiJ(X) -+ Q(X, x, 0, 0)). 

1.6. Definition. Let T be a theory in the language of A 2 . A set Sf:. w is 
(a) weakly representable in T if there is a formula <I> of L(A 2) such 

that for all natural numbers n, n ES *--7 T r-- <P(n); 
(b) strongly representable in T if there is a formula <I:> such that 

(n)[(n ES *--7 T r- <I:>(n)) & (n fj. S-<--+ T r- i<I:>(n))]. 

1.7. Theorem. (a) If Sis weakly representable in Aw, then Sis a Ili set. 
(b) If Sis weakly representable in Ail, then Sis a n1 set. 

Proof. It follows immediately from the fact that I A~ is a n i and I Ai 
a n1 set, respectively. 

1.8. Corollary. (a) If Sis strongly representable in Aw, then Sis a .6.i 
set. 

(b) !JS is strongly representable in Aw then Sis a .6.1 set. 

1.9. Lemma. (a) If if> is an arithmetical formula, nx an w-model and 
all Ai belong to nx. then '.7>(w)F= <P[A 1 . ... ,An] *-7nx I= <P[A1, .. .,An]· 

(b) If if> is a Il} formula and nx an w-model and all Ai belong to nx, 
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We proceed now to the proof that ~-models preserve 2: i formulas. 

1.10. Lemma. Let 1> be a l:i formula, then there is an arithmetical 

formula \[! such that 

A2 r- <l>(X1 , ... , Xn) ~ (EZ)(t)'lt(Z(t),X1(t), ... ,Xn(t)). 

Proof. Note that the following equivalences are theorems of A2: 

x EX+-+ (y) (y = x--* (X(y + l))y = 0); 

x €/:. X +-+ (y) (y = x --* (X(y + 1) )y = 1); 

- -
X = Y +-+ (y) (X(y) = Y(y)); 

X=I= Y +-+ (Ez) (X(x) =I= Y(z)). 

Now replace each of the above atomic formulas by its equivalent form. 

All the rest is just a transformation. 

1.11. Theorem. Let et> be a 2: i formula. Then there is an arithmetical 

formula '1t such that 

A2 I- <l>(X) +-+ (E Y) Cl Bord (Y) & (X) (x EX+-+ 'l'(X, x, Y))) . 

The proof follows from Lemma 1.10 using the Brouwer-Kleene 

ordering of the appropriate sequences of natural numbers (cf. Rogers 

[ 5 8] ). 

1.12. Definition. Let T be a theory in L(A2). A formula 1> of L(A2) is 

T-provably A1~ if there exist "L~ formulas ct> 1 and 1> 2 such that 

TI- (et>......,. <1>1) & (1> ~ lcl>2)· 

1.13. Theorem. (a) Ifct> is a ni formula, nx a ~-model of A:2 and 

A 1, .. ., An E nx, then nx I= <l>JA 1, .. ., An]+-+ '.7>(w) I= <l>[A 1, .. ., An]. 

(b) If 1> is a II1 formula, nx a ~-model of A2andA 1, ... , An E n X• 

then '.7>(w) F= <l>[A 1 , ... ,An] --* nx I= <l>[A 1, ... ,An]. 

(c) If 1> is a T-provably A.1 formula, n x a ~-model of T, T 2 A:2, 

'.f>(w) I= Tand A 1, ... , A 11 E nx, then 

'.f>lw) I= <l>[A 1, .. ., An] +-+nx t--1>[A 1, ... , Anl-
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Proof. Clearly, (b) and (c) follow from (a). Let <P be a~ l formula. We 
use the reduction obtained in Theorem 1.11 and obtain (a). 

Now we immediately obtain the following: 

1.14. Corollary. (a) Every ITi set is weakly representable in Aw. 
(b) Every IT~ set is weakly representable in A(J' 

Ai sets are exactly the hyperarithmetical sets and it turns out that 
one can formalize the construction of the hyperarithmetical hierarchy 
in Aw. Using this we get: 

1.15. Theorem (Grzegorczyk, Mostowski and Ryll-Nardzewski [23] ). 
Every Al set is strongly representable in Aw. 

By the comprehension scheme, every set which is strongly represent­
able in Aw (A13 ) belongs to every w-model (j'.3-model) of Az-. Thus every 
Ai set is in every w-model of Az-. By relativation, we get that if X is 
Af in Y, then X is in every w-model of A2 in which Y is (see §3 for 
strong representability in A 13 ). 

§ 2. Development of the semantics of A2 

2.0. In this section we prove some results on w-models which, either 
in formulation or in proof, have some connections with the recursion 
theory. 

An important role in these considerations is played by the w-consis­
tency theorem, which links the w-rule and w-models. The importance 
of this theorem lies in the fact that it gives a method for building w­
models, which is used almost in every theorem about w-models. 

Kreisel's w-compactness theorem shows that in certain situations the 
notion of hyperarithmeticity corresponds to the notion of finiteness 
rather than to that of recursiveness. This way of looking at the analogies 
arising here has led to the important development of the theory of 
infinitary languages. Barwise's compactness theorem (see e.g. Keisler [ 34]) 
is a generalization of the above theorem. 
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The Gandy-Kreisel-Tait theorem gives the characterization of hyper­
arithmetical sets in sernantical terms, namely they form the intersection 
of all w-models of A2 (A2). Together with Kleene's result, which says 
that hyperarithmetical sets are not closed under the comprehension 
scheme, this shows that there is no smallest w-model of A2, (A2). 

Friedman's theorem says much more: there is no minimal model of 
A2 . This theorem shows that the class of w-models of A2 is very rich 
and complicated. 

2.1. Definition. (i) The following infinitary rule of proof is called the 
w-rule: from J- cI>(n) for each n infer J- (x)ct>(x). 

(ii) Cnw (T) is the set of all w-consequences of T, i.e., formulas prov­
able in Tusing additionally the w-rule. 

(iii) A set of sentences T of L(A2) is w-consistent if Cn (T) = T and if 
for all formulas c1> with one free variable the fact that ct>(n) E T for all n 
implies (Ex) I ct>(x) El. T. 

(iv) A set of sentences T of L(A2) is w-complete if Cn(T) = T and if for 
all <I> with one free variable the fact that <I>(n) E T for all n implies 
(x)<P(x) ET. 

2.2. Remark. A consistent, complete set of sentences is w-complete iff 
it is w-consistent. 

2.3. Theorem.(w-consistency theorem, Orey [56] ). Every consistent, 
w-complete set T of sentences of L(A2) has an w-model. 

Proof. It suffices to observe that the type f' = {x =I= n : n < w r is non­
principal in Cnw (T); and use the omitting types theorem (see e.g. Shoen­
field [ 62] ). 

2.4. Theorem Cw-completeness theorem, Orey [56] ). If Tisa theory in 
L(A2), then Cnw (T) is exactly the set of all sentences true in all w­
models of T 

Proof. In one direction the inclusion is immediate. In the other it follows 
from Theorem 2.3. 

2.5. Theorem (w-compactness theorem, Kreisel [33] ). Let T be a theory 
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in L(A2) such that 1 T1 E Di. If eiiery Sc;_ T suclz that 1S1 E A J has an 
some w-model, then T has an w-model. 

2.6. Corollary. Let T be as above. lf <fJ E Cnw (T), then <PE Cnw (S) for 
some Sc T such that rs-, E ill 

1 . 

The proof uses some facts concerning inductive definitions, which we 
review briefly. 

2.7. Definition. Let r be an operator on '.fl(w) which is monotone, i.e., 
X c Y-+ f(X) c f(Y). 

(i) A subset S of w is inductively defined with respect to the relation 

r if r 0 (X) = X, 1°' (X) = u A<°' 1(P\. (X)) for a > 0, and s = u °' 1°' (0). 

(ii) The least a such that 1(1°'(0)) = 1°'(0) is called the closure ordi­
nal of rand denoted by lrt (then S = 1 1 r 1 (0) and r(S) = S). 

(iii) 1 is I;~ if the relation n E 1(X) is a I;~ relation. 

2.8. Theorem (Spector [ 65] ). (i) If SE n ~, then there exists an arith­
metical r such that sis inductively defined with respect to 1. 

(ii) If r is n;' then lfl < WI. 

(iii) If r is Al, then f'°' (0) E Al for a < w 1. 

(w 1 denotes the first non-recursive ordinal; see Rogers (58] .) 

Proof of Theorem 2.5. Let r be an arithmetical monotone operator 
such that 1 T1 = U 1°' ((!!). Let .Q be a monotone opera tor such that for 

°' every set X of sentences of L(A 2), .Q(X1 ) is the set of Godel numbers 

of all logical consequences of X and the consequences obtained by a 

single application of the w-rule. Then n is arithmetical. 

Let <fJ be an operator such that 

<f.J°'((!J) = 1°'(0) u u .Q(<f.J13 (0)). 
!3< °' 

Then such a <P can be chosen among Til ones. By induction on a, we 

obtain that 

<f.J°'((!J) ~ U .Qll(ra(0)) = 1Cnw (1"(0))1 . 

f3 

Thus, by Spector's results, 
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== u <P°'(0) == u rcnw(r°'(0))1 . 
oi<w1 oi<w1 

But for a< wl' roi(0) E Ai, i.e., by assumption, roi (0) has an w-model. 
Hence Cnw (T) is consistent, i.e., T has an w-model. 

2.9. Theorem (Hard core theorem, Gandy, Kreisel and Tait [21] ). Let T 
be a theory in L(A2) such that T 2 A2, and ryi is a TI 1 set. Assume that 
there exists an w-model of T. Then a set of natural numbers is At iffit 
belongs to every w-model of T. 

Proof. One direction follows from the Grzegorczyk-Mostowski-Ryll­
Nardzewski Theorem 1.15. Suppose now that Z belongs to every w­
model of T. If the type A= {n EX: n E Z} u {n fj.X: n t/:. Z} was non­
principal in Cnw (T), then, by omitting types rand A, we would get an 
w-model of T to which Z does not belong. Thus A is principal in Cnw(T). 

This leads to the conclusion that Z is ant set because 1Cn~(T) is a II~ 
set. But w - Z also belongs to every w-model of T, therefore Z is A~. 

Observe that the same result was proved in [24]. Notice that Mostow­
ski [52] proved that if {An} n<w is a family of non-hyperarithmetic sets, 
then there exists an w-model of A2 disjoint with this family. 

The "hard core" Theorem 2.9 implies that there is no smallest w-model 
of A2 since A~ sets do not form a model of A2 . (Indeed, Kleene [31] 
proved that the comprehension scheme is false in A}.) This would not 
exclude the existence of a ~-minimal w-model of A2 , but we soon prove 
that this is not the case. 

2.10. Definition. (a) Def M = {a EM: there is a formula <P such that 
MF= ((E ! x) <P) & <P[a]} . 

(b) Mis called pointwise definable iff Def M = M. 

2.11. Theorem (Friedman [ 17] ). If M is an w-model of A2, then there 
is an N ~ M which is also an w-model of A 2 . 

Proof. Let M be an w-model of A2 . We may as well assume that Mis not 
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a {:l-model since the statement (EX) (Modw(X)) is preserved by {:l-models. 
We may also assume that M satisfies (X) Constr(X) (i.e., analytical form 
of the axiom of constructibility 2 ) and therefore we may additionallv 
require that Mis pointwise definable because if MF (X) Constr(X): 
then Def(M) -< M (by the definability of Skolem functions). 

2.12. Definition. A theory Tin L(A2 ) is w-n-complete iff 
(a) A2 u {(X) Constr(X)} ~ T, 

(b) T = ({IP: IP E T & IP is a r,~ u n~ sentence} u A1 u {(X) Constr Dw' 
(c) T decides all formulas with at most n quantifiers, 
(d) T is consistent. 

Let Ube the family of all w-n-complete theories belonging to the 
modelM (for all n < w). We define a certain tree-like structure between 
some finite sequences of elements of M. Let T = <V, >->,where V = {<IT01 , 

... , 1 Tn' >: 1 T? EM, Tj is w-j-complete and i < j-+ Ti~ Tj, X >- Y +-+ 

(lh(X) < lh( Y) and X = Y ~ lh(X))}. Now consider B = {< 1 T0', ... , 1T'): 
n 

Tj is the set of all sentences of L(A2 ) with at most j quantifiers, true in 
M}. Since the partial truth is definable in A 2 , each 1 Tn1 belongs to M, 
and so B is an infinite descending branch in T, so finally T is not well 
founded. Yet T is definable over M. 

Now Friedman's proof breaks into two facts. 

(I) Every infinite descending path in T determines a submodel of M. 
Different branches determine different models. 

Proof. Let G be an infinite branch in the tree T. Consider U G. U G deter­
mines the set 

M(UG) = {y ~ w: (E<ti) (y = {n: 14i(n)1 E UG})}. 

Since G is a complete, w-complete consistent theory, it has an w-model 
M 1 . Now since (X) Constr(X) E UC, Def(M 1)-< M 1 . Now by compre­
hension, Def(M 1) = M(UG) and so M(UG) F A 2 . Thus we only need to 
show that M(UG) ~ M. Let <ti be a formula. Then there is a k, so that for 

2 An exact exposition of the facts connected with the notion of constructibility in A1 will be 
developed later. 
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all n, '<t>(njl E UG iff 1<I>(n)1 E Tk. Since Tk EM, {n: 1<l>(n)1 E Tk} EM. 

Thus for ally E M(UC), y EM. Clearly, our demonstration shows that 

different branches determine non-elementarily equivalent models. 

(II) There are at least two different branches in T. 

Proof. We consider all subtrees of Twhich are (coded as) elements of M. 
Case (a). There is a tree which is not well founded inside of the model. 

Then this tree has an infinite descending branch inside of the model. The 

branch gives an w-model of A2 which cannot be the original model since, 

if it was, we could code M inside itself, which by diagonal reasoning leads 

to a contradiction. Thus we may pass to Case (b ). 
Case (b ). All trees under consideration are well founded inside the 

model. Then to every well-founded tree, we may uniquely correlate the 

rank of this tree in the model (here we use once more the axiom of con­

structibility). The rank is a well-ordering. 

There are two possible subcases. 
( 1) There is a nonstandard well-ordering which is a rank for such a 

tree. Then - outside the model - one can find a descending, infinite 

branch. It does not belong to the model and hence it can not be unique 

(since then, having a code of this branch implicitly defined, it would be 

hyperarithmetic in this tree and so would be inside the model). Thus 

there are at least two branches and we are done. 

(2) All the ranks of the trees under consideration are real well-order­

ings. Friedman shows that this is impossible. Namely let o: 0 be Osp(M). 

By the definition, a: 0 is not representable in M. For X E T, we define 

F(X) to be the supremum of the ranks of all the sub trees of Tin which 

X appears. 
The proof splits once more: 

(i) There is a bound for F(X) for all X E T, and this bound is less than 

o: 0 . Then T is well founded, which is false since we exhibited an infinite 

descending branch in f. 
(ii) The bound for F(X) is o: 0 . Then o: 0 has to be represented in M. 

Indeed, it is so since all the trees under consideration have restricted 

height (in M). Thus there must be a well-ordering (in the sense of M) 

which is a bound for all of them. Since they all are real well-orderings, 

the bound has to be real as well, and thus o: 0 is represented in M, which 
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is a contradiction. Thus subcase (2) is excluded and so we are done. 

Note that the same proof applies for any extension T of A2 such that 
TE ni and T f- Constr(T). Moreover, we can keep the set of natural 
numbers fixed inside the smaller model. 

§3. The ramified analytical hierarchy 

3.0. In the previous section we have found that there is no smallest w­
model of A2 . The situation in the case of ,13-models is different: there 
exists the smallest .J'.)-model of A2 (it is even a model of A2 ). The model 
is constructed as a result of a certain hierarchy, called the ramified 
analytical hierarchy. 

The construction of the initial segment of this hierarchy up to recur­
sive w 1 has been introduced by Kleene, who has shown that the sets 
that are obtained up to this point are exactly the hyperarithmetical sets. 
From the semantical point of view the construction strongly resembles 
that of the smallest transitive model of ZF. 

An important paper of Boyd, Hensel and Putnam [ 8] has revealed that 
from the recursion-theoretical point of view the ramified analytical 
hierarchy is an extension of the hyperarithmetical jump hierarchy. 

This deep fact shows that from the recursion-theoretical point of 
view there is an analogy between the intersection of all ,13-models of A2 
and the intersection of all w-rnodels of A2 which is hard to observe in 
semantical considerations. Also, similarly as in the case of w-models, 
the sets strongly representable in A(3 form the intersection of all ,13-models 
of A2· 

3.1. Definition. The hyperjump of X is Kleene's universal Tii·x set. 

The following theorem is part of the "mathematical folklore" and 
can be found explicitly in [ 8] . 

3.2. Theorem. An w-model of A2 is a ,G-model iff it is closed under the 
operation of the hyperju.mp. 
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Proof. By Kleene's basis theorem (every nonempty L},x family of sets 

contains an element which is recursive in the hyperjump of X), the im­

plication from right to left follows. The other direction follows from 

the absoluteness of n[ fonnulas with respect to /3-models. 

3.3. Definition. (a) Let W ~ '.7> (w ). We define D(20 to be the family of 

all subsets of w definable in the relational system 

(b) We define inductively the ramified analytical hierarchy as follows: 

R.A. 0 = 0, 
R.A.O'+l = D(R.A.0,), 

R.A.r_ = U~<t-R.A.~ for 'A limit, 

R.A. = U~ R.A.;. 

By a cardinality argument, there is a~ such that R.A.~ = R.A.;+J (the 

existence of such~ may be proved already in zp- + "'.l'(w) exists"). 

The smallest ~ such that R.A.~ = R.A.~+ 1 is called /30 . The ramified 

analytical hierarchy was introduced by Kleene [31]. Cohen [9] observed 

that one can prove in ZF that /3 0 is countable. Namely one can carry out 

the whole construction of the hierarchy faithfully within a countable 

transitive model of zp- + "'.fi(w) exists", and the existence of such a 

model is provable in ZF. (ZF- denotes ZF set theory without the power­

set axiom.) 

The following theorem of Gandy and Putnam shows the importance 

of R.A. in studying f)-models. 

3.4. Theorem (Gandy and Putnam). (a) R.A.ilo is the smallest /3-model 

of A2. It is also a model of A 2. 

(b) h(R.A.il0 ) = J'.) 0 . 

(c) R.A.130 = {X: X is strongly representable in Ail} 

= {X: X is Ail-provably .6.p . 

The proof of this theorem was published in [ 8] . In fact, Boyd, Hensel 

and Putnam prove much more. To present the content of their paper we 

need some definitions. 
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3.5. Definition. Let A denote the degree of unsolvability of the set A 
and let j(a) denote the jump of the degree a. If r is a collection of degrees, 
then by R U(r) we mean the collection of all sets recursive in sets whose 
degrees are in r. 

3.6. Definition. If r is a set of degrees, we say that a degree b is a uniform 
upper bound (u.u.b.) on RU(r) if the class R U(r) is uniformly recur-
sive in a member of b. A degree bis an-least u.u.b. on RU(r) if for every 
c which is an u.u.b. on RU(r), c ~r j(n)(b). 

3.7. Definition. Let d be a function from an initial countable segment of 
ordinals into the degrees, dis called an admissible degree hierarchy if d 
satisfies the following three conditions: 

(1) d(O) =cl>, 
(2) d(a + I) = j(d(a)), 
(3) d(A.) is an n-least u.u.b. on RU( {d(a): a< A.}) for some n (1'-limit). 

Condition (3) says that every u.u.b. onRU({d(a): a< A.}) is arith­
metical in d(I\). Such a hierarchy is a natural extension of the arithmetical 
hierarchy into the transfiniteness. 

The main result of Boyd, Hensel and Putnam is the following: 

3.8. Theorem. ( 1) There exists an admissible degree hierarchy on ~ 0 • and 
for any such a.d.h., 

RU( {d(a): a < ~o}) = R.A.130 • 

(2) If dis an a.d.h. on a, then d can be extended to an a.d.h. on some 
~ > a if fa < ~o . 

We give here a rough sketch of the proof. By induction on A, we easily 
find that if d 1, d 2 are two a.d.h. on a limit A, then RU( {d1 (a): Ol <'A})= 
RU({d2(a): a< 1'} ). Also if d 1 ~ d 2 ~ ..• is a sequence of a.d.h.'s, then 
Un<w dn is an a.d.h. too. From the first fact we infer that if dis an a.d.h. 
on the recursive w 1 , then RU(d(a): a< w 1) =Al, because the hyper­
arithmetical hierarchy is (by Spector's "uniqueness" theorem) an a.d.h. 
Using the fact that "the truth in an w-model" is a Ai relation, we get 
that there exists a Ai formula def(X, Y) such that if Bord ( Y), then 



194 K.R. Apt, W. Marek, Second order arithmetic and related topics 

( E ! X) def (X, Y) and for this X, n x = R.A. y. This fact together with 
some information concerning the hyperarithmetical hierarchy implies 
Kleene's theorem: R.A.w 1 = Af. 

Now relativizing the proof of Kleene's theorem and using the Spector­
Gandy hyperarithmetic quantifier theorem (every nt set is k t definable 
over At; see (64] ), we get that R.A.wo(n) = At·o(n) co<n> denotes the nth 
iteration of the hyperjump of </J). By the same reasoning, there exists an 

o(n) f h d a.d.h. dn on w1 and or any sue , 

RU( {d(a): a < w~(n)}) =A l,o(n) . 

These hierarchies dn may be set in a nested sequence, so we get an 
a.d.h. on wi =sup {w~(n): n < w}. 

Define a to be a HYP-ordinal if R.A.°' is closed under the hyperjump 
operation. By the above, wi is the least HYP-ordinal. Suppose now that 
a is a HYP-ordinal such that there exists an a.d.h. d on a such that 
RU({d(A.): A.< a})= R.A.°'. It turns out that the further extension of 
d depends on the f~llowing claim: there exists a set X E R.A.a:+I such 
that Bord(X) and X =a. If the claim holds, then relativizing the proof 
concerning wi to the set X we can extend the hierarchy d to wi·x still 
keeping the appropriate equality between this hierarchy and the rami­
fied analytical hierarchy until wi·x. In such a situation, wi·x will be 
the next HYP-ordinal after a. 

The claim is guaranteed by the following main step in the proof: if 
a < (30 , then over R.A.°' we may define a well-ordering of type a. This 
technically non-trivial result follows mainly from the fact that there is 
a definable well-ordering of R.A.°' for all a ~ {30 (it is interesting that 
for all a such that wi ~ a ~ {3 0 , the same formula defines this well­
ordering). Thus the main step implies that (3 0 is a HYP-ordinal (because 
the limit of HYP-ordinals is a HYP-ordinal) and we get the proof of 
part ( l ). 

The proof of part (2) depends on the following result (based on a 
"generic" argument): if Mis a countable w-model of A2, then for any 
n, no u.u.b. on Mis an n-least one. 

On the other hand, just by the definition of {30 , R.A.130 F= A2. These 
facts together with part ( 1) imply that no a.d.h. can be extended further 
than {30 . 



K.R. Apt, W. Marek, Second order arithmetic and related topics 195 

Proof of Theorem 3.4. The proof now easily follows from the above 
results. Since R.A.110 is closed under the hyperjump operation and has a 
definable well-ordering, we obtain that R.A.130 is a {3-model of A2 . Since 
R.A.110 is countable, we may write 

x E R.A.130 ~ (E Y) (ES) (Bord(Y) & def(S, Y) & (En) (X = (S)11 )). 

Denote this ~ ~ formula by R.A. (X). 

LetM be a /j-model of A2. Then R.A.h(M) = R.A.M ~ M. By the main 
step, if h(M) < {3 0 , then over R.A.M we can define a well-ordering of the 
type h(M) which would then belong to M. Thus R.A. 130 is the smallest 
{3-model and our main lemma assures that h(R.A.110 ) = [3 0 . Since there is 
a definable well-ordering of R.A., Def (R.A.110 ) -< R.A.130 , and by the 
minimality of R.A., Def(R.A.110 ) = R.A. 110 , i.e., R.A.130 is pointwise 
definable, which, by definability of R.A.110 in any other {3-model, settles 
(c). 

The fact that R.A.110 is a {3-model can be proved in a much more direct 
way (the reasoning presented here comes from the original proof of 
Gandy). 

Observe that already in A2 we can prove that any two well-orderings 
are comparable. This implies that if Mis an w-model of A2, then the 
non-standard well-orderings in M are all "longer" than all the standard 
ones. 

Suppose that R.A.130 is not a /j-model. Let X 0 E R.A.130 be such that 
R.A.130 I= Bord (X 0), but !Bord (X 0 ). Let S E R.A.110 • 

Case (I): (5 0 is limit. Then SE R.A." for some 'Y < {30 . By the main 
step and the fact mentioned above, for some n, we have Bord (X 0 I' n) 

and X 0 ~ n = -y. Thus by the properties of the formula def(X, Y), we get 
that Sis Lll in X0 . 

Case (II): [3 0 is not limit. The first ordinal which cannot be coded by 
a set from an w-model of A2 must be limit, thus by the same reasons 
as above, for some n, we have Bord(X0 11 n) and X 0 ~ n = {3 0 and Sis 
~1 in X 0 as well. 

Hence R.A.130 = ~[,Xo which is impossible by the relativization of 
Kleene's result [31]. 

Let us observe that there is a close analogy between strongly con­
structible sets of Cohen [ 9] and the ramified analysis. In both cases we 
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successively close the previous steps of construction under certain opera­
tions and the operations are closed in such a way that we obtain at the 
critical point just a model for the appropriate theory. 

We already noticed that R.A./30 turns out to be defined by means of 
a 2:; formula of L(A2) and defines in every {3-model an w-submodel. 
By the Kondo-Addison basis theorem (every nonempty L:i family of 
sets contains a A1 element), we find that R.A. has a A1 code. Indeed, 
the predicate P(X) ~ Mod/.l(X) & nx I= (Y) R.A.(Y) is a Di one and 
is nonempty (by the Gandy-Putnam Theorem 3 .4 ). Clearly, P consists 
of all codes for R.A./30 . Thus R.A. has a Ai code. 

Therefore we get the following: 

3.9. Theorem. (a) R.A.llo ~ t:.i · 
(b) {3 0 is an t:. i ordinal. 

Let us note the following: 

3.10. Theorem (Leeds and Putnam [38] ). If in the definition of R.A. we 
do not allow parameters (in the construction of the next step), we get 
the same hierarchy (starting from the step w ). 

The connection between the ramified analysis and the constructible 
sets (i.e., the ramified set theory) was shown by Boolos [ 7]. 

3.11. Theorem (Boolos). For all 0 < o: < {30 , R.A.°' == Lw+°' n '.7> ( w). 

(Further strengthening of this result was proved by R. Jensen in his 
"Habilitationschrift" - as pointed out to us by R.O. Gandy.) 

Let us note that if a set X is definable by an All-provably A 1 formula, 
then it belongs to every {3-model of A2. Thus {3 0 is not a Ail-provably 
t:.1 ordinal and by point (c) of the Gandy-Putnam Theorem 3.4, it is 
the first non Ap-provably t:.i ordinal. (This fact was pointed out to us 
by R.O. Gandy.) Thus {30 is not an Ai-provably t:.i ordinal. It is even 
not the first non A2-provably .C:.~ ordinal. However, we are not able to 
evaluate exactly the latter. -
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§4. Definable quantifiers 

4.0. While trying to extend w-models one wants to retain the set of 
natural numbers while enlarging the family of sets of natural numbers. 
Often we want to preserve also some other properties of the model. A 
definable quantifier, a natural notion of size turned out to be a useful 
tool for this purpose. 

In order to behave like a notion of size, a definable quantifier has to 
satisfy some natural conditions. The properties that are "small" with 
respect to the quantifier may be preserved whereas the "big" ones get 
new elements. 

If one has a countable w-model of A2- in which there exists a defin­
able quantifier, then, by a model-theoretic reasoning, one can elemen­
tarily extend the model to a bigger w-model. The choice of an appro­
priate quantifier allows us to produce w-models with the desired proper­
ties. 

This subject - in the general situation - is studied by Krivine and 
McAloon [36] and we refer the reader to this paper. 

We noticed that an elementary submodel of a {3-model is also a{}­
model. This, however, does not hold for elementary extensions. Namely 
we have the following: 

4.1. Theorem (Mostowski and Suzuki [ 5 5] ). Every countable {3-model 
M of A 2 has a countable elementary extension N which is an w-model 
but not a {3-model. 

The corresponding result for the ZF set theory case was proved, with 
the use of similar methods, by Keisler and Morley [30]. Note that the 
fact that there are w- but not }3-models followed already from the differ­
ent nature of the sets Aw and A13 • 

Recently, Miss M. Dubiel, using a theorem of Krivine and McAloon 
[36] (see Theorem 4.9), has proved that additionally we may require 
that Osp(N) is equal to h(M). 

On the other hand, the continuum of Levy's model of ZF in which 
l<\ 1 = "Kt is a counterexample to Theorem 4.1 in the case of A2 . One 
easily checks that every w-model which extends this model and is ele-
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mentary equivalent to it must be a ~-model with the same height. On the 
other hand, Guzicki proved that this ~-model of A_2· has a proper elemen­
tary extension which is an w-model (cf. Guzucki [27] ). 

We also have the following: 

4.2. Theorem (Keisler [29], Mostowski [53] ). Every countable w-model 
of A 2 has a countable proper elementary extension which is an w-model. 

In the proofs of the above theorems, we shall use the suggestive notion 
of a definable quantifier, introduced by Mostowski. 

4.3. Definition. Let F be a symbol not occurring in L(A2 ). We add to the 
formulas of L(A2) new atomic formulas of the fonn F(X), where X is a 
variable of L(A2). Each sentence of this new language containing the 
symbol Fis called a definable quantifier. 

4.4. Definition. Let Q be a definable quantifier, <I> a formula of L(A2) 
and X a variable. By (QX)cf> we denote the formula of L(A2 ) obtained 
by means of the following operations: 

(i) all bound variables of 0 are replaced by variables occurring neither 
in cf> nor in 0; 

(ii) for every variable Y, each occurrence of an atomic formula F( Y) 
in 0 is replaced by <l>y [X]. 

4.5. Definition. Let Q be a definable quantifier, <I>, <I> 1 , <I> 2 formulas of 
L(A2) with exactly one free set variable and 'It a fonmila of L(A 2) with 
exactly two free set variables. Then: 

(i) Q is non-trivial if for every formula <I>, 

A2 I- (OX) cf>(X)-+ (EX) (E Y)(X :;i= Y & <P(X) & <I>( Y)) ; 

(ii) Q is mono tone if for every cf> 1 , <I> 2 , 

A2 I- (X)(<l> 1 -+ <I> 2)-+ ((0X)<I> 1(X)-+ (0X)<I> 2(X)); 

(iii) Q is additive if for every cf> 1, <I> 2 , 

A2 I- (OX) (cf> 1 (X) v cf> 2(X))-+ ((OX) <I> 1 (X) v (OX) <I> 2(X)); 
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(iv) Q is a-additive if for every <P, 

A 2 t-(OX)(Ey)<P(X,y)-+ (Ey)(QX)<P(X,y); 

(v) Q is normal with respect to formulas <P, '¥ if 

A 2 t- (QX) <P(X) 

and 
A 2 t- (X) (<P(X)-+ l(QY)l'll(X, Y)). 

4.6. Theorem (Mostowski [ 53] ). Let Q be a definable quantifier which 
is non-trivial, monotone, additive, a-additive and normal with respect to 
formulas <f>. \II. !JM is a countable w-model of A2 , then there exists an 
w-model N such that M-< Nanda C ff. M such that N t= ;J;[C] and 
N t= \II [X, CJ j(;r each X E M such that M t= ;J; [X]. 

Proof. (The proof presented here is in fact Keisler's proof of the Keisler­
Mostowski Theorem 4.2.) Let L(M) denote the language obtained from 
L(A 2) by adding for each X EM a new constant. Let MM denote the 
expansion of M to the model of L(M), and let C be a new constant sym­
bol. Let T = Th(MM) u { <P(C): Mt= i(OX) i<P(X)}. 

Fact 1. <l>(C) is consistent with Tiff M = (QX)<P(X). 

The implication from left to right is immediate. Using additivity and 
monotonicity of Q (and Theorem 2.5), we easily obtain the converse 
implication. 

By the assumptions on Q, we have Mt= (QX);J;(X), thus T is consis-

tent. 
/<act 2. T is w-complcte. 
It follows immediately from the a-additivity of Q and Fact 1. 
By the w-consistency theorem, theory T has an w-model. Let N be 

the rcduct of it to the language L(A2). Then M-< N and in virtue of 

the normality of Q and Fact 1, N is the desired model. 

Proof of Theorem 4.2. Let Q be the following definable quantifier: 

(X)(EY)[F(Y)& i(Ex)(Y=(X)x)]. 

(QX)<l>(X) has the following intuitive meaning: the family of sets satis­

fying <I> is uncountable. Let <P be X = X and ~ be X =I= Y. It is easy to 
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check that Q satisfies all conditions required in the above theorem. 

Proof of Theorem 4.1. (This proof, due to Mostowski, is not the original 
one.) Let E> be the following definable quantifier: 

(X) (Bord (X) -+ ( E Y) (F( Y) & Bord ( Y) & X -< Y)) , 

where X-< Y means that X is similar to an initial segment of Y. 8X<I>(X) 
means that there are arbitrary large well-orderings satisfying <I>. By ;J;, we 
now take Bord(X) and by~, Bord(Y)-+ X-< Y. (We stress the fact that 
the proofs of a-additivity of Q and E> use the axiom of choice.) 

The properties of E> imply that every countable {3-model of A2 has the 
proper elementary extension which is either an w- but not a /3-model, or 
it is a /3-model of bigger height. Let M be a countable /3-model of A2 . 

Suppose that every elementary extension of M which is an w-model is 
also a /3-model. By the above, we get an increasing chain 

M=M0 -<M1 -< ... -<M~-< ... , ~ < ~1' 
of countable {3-models with increasing heights. 

Thus the following equivalence holds: Bord (X) +-+ (Ef) (E Y) (EN) 
(M-< N & (N is a countable w-model) & YEN & N F= Bord(Y) & (/is 
an isomorphism between the orderings coded by X and Y, respectively)). 
By applying the facts from § 2, we obtain that Bord (X) is a ~}'A rela­
tion, where A is a code of M, this is, by a classical result of Kuratowski, 
impossible. 

Recently, Mostowski obtained the following result: 

4.7. Theorem (Mostowski). Let M be a countable {3-model of A2 such 
that for some w-model N of ZFC + 21-10 > ~ 1 , M = N n ':J(w ). Then 

there exists a proper elementary extension of M which is a {3-model with 
the same height. (Note that in this case, N is automatically ~ 1 -standard.) 

A different proof of Theorem 4. 7 than the one we give later, based 
on a theorem of Krivine and McAloon (Theorem 4.9), was given by M. 
Srebrny. 

4.8. Definition. (a) Formula A(·) is countable-like (c - l) in a model M 

~c:·~. '" '."'. ~~ ;" ~ ..... '·'\""' ." ... t..1-.: , ., ... :-~ ;~ .... ~..c;. 
Mo,I .: ........... ' 
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iff 

MI= Ox(Ex)('P & A)-+ (Ex)Ox('P & A) 

for all formulas 'P(y,x) such thaty is not free inM. 
(b) N is a complete end extension ( c.e.e.) of M if M -<: N and 
(i) for every formula A(·) which is c - t in M, if NI= A [a] , then 

a EM; 

(ii) for every formula A(·) which is not c - tin M, there is a E N-M 
such that NI= A [a]. 

4.9. Theorem (Krivine and McAloon). M has a complete end extension. 

(Proof of this theorem may be obtained using similar reasoning as 
was used in Mostowski's proof of Theorem 4. 7 .) The theorem of Krivine 
and McAloon, when applied to the model of set theory, in which 
2Ko > ~ 1 and with the quantifier "There is more than ~ 1 x such that ... ", 
gives a model whose continuum N is the desired model. Indeed, N is a 
13-model since in ZFC every well-ordering is isomorphic with some ordi­
nal and since we are interested in countable ordinals which are in N the 
same as in M. 

Proof of Theorem 4.7. We give a brief sketch of the proof. The idea of 
the proof of this theorem somewhat resembles the original proof of 
Mostowski and Suzuki of Theorem 4.1 in the following sense: 

In both cases one constructs step by step a sequence of finite sets of 
sentences. Yet there is an important difference. In the Mostowski­
Suzuki Theorem 4.1, one has to produce a "false well-ordering". In 
Theorem 4.7, we assure that there is no new type of well-ordering. In 
the language of set theory we describe this situation as increasing the 
width but not the length of the model. In the proof of the Mostowski­
Suzuki theorem, apart from the new ordering which has been constructed, 
many other things could have been added to the model. Here we want to 
make our construction as economic as possible. So we go one step further 
and construct directly a Henkin-Orey model as follows: 

Firstly, we construct a Skolemization (as usual in a Henkin-type proof). 
(Let <I>* denote an open formula of the extended language equivalent to 
<I>.) Now we add to the extended language Lan additional constant C (a 

lllLIOTHEiK UAMMATISCH CENTROM 
AllllSTUIDAM 
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name for the new set of natural numbers). L contains also names for all 
elements of N n J>(w ). 

Secondly. we enumerate several sets. 
(a) {Fi} i<w is an enumeration of all sentences of the extended 

language. 

(b) {Ai}i<w is an enumeration ofTh(Nn J>(w)) and {At}i<w is 
the corresponding enumeration of the equivalent open formulas of the 
extended language. 

(c) {ti}i<w is an enumeration of all terms (note that here we have 
two kinds of terms, first order terms and second order terms). 

(d) {D)i<w is an enumeration of N n '.7'(w). 
Finally, we are able to constmct a sequence of finite sets of formulas 

{'13 i} i<w subject to two groups of conditions. The first group contains 
auxiliary conditions needed in the Henkin proof. The second one con­
tains some specific conditions which ensure that the construction suc­
ceeds. 

Let t, t 1, t 2 denote terms in the extended language. 
Group I: 

(I.I) t1 =t2 E'13n &A(t1)E'1311 -+A(t2)E'13 11 +1· 

(1.2) t occurs in a formula from '13n-+ t = t E '13 11 +1. 

(1.3) t1 = t2 E '1311-> t2 = t1 E '1311+1 · 

(1.4) t1 = t2 E '1311 & t2 = t3 E '13n-+ t1 = t3 E '13n+l · 

( 1.5) If t 1, t 2 are second order terms & I (t 1 = t2 ) E '13n, then there is a 
first order tem1 s such that 

Group 2: 

(2. I) '13n decides F11 • 

(2.2) (j) U < n-+ Al* E '13 11 ). 

(2.3) If t11 is a first order term, then for some k E w t = kE'13 
' n+I · 

(2.4) If t is a second order term and (Bord(t))* E '13 11 , then there is an 
A EN n J>(w ), such that N n J>(w) I= Bord[A] and such that 
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Sim ( t, A) E CX3 n+ 1 (where Sim (., ·) is a formula expressing "there 
is a similarity map"). 

(2.5) (j) (j < n -+ C =I= Di E '13n ). 

(2.6) cf.>(ti1, .... '. tik) E C)3n -+ _<Jl{ti1 , ... , tij-r, f(t), tij+I, ... , tik) E '13n+l, 
where f 1s an appropriate Skolem function for <P. 

==~-::-----

(2. 7) NI= {c f;_ w:/X\C)3n(c)} > ~ 1 . 

The reduct to L(A 2) of the Henkin model constructed from tenns 
(with the help of the equivalence relation r"" s ~ r = s E U C)3 ) has n<w n the following properties: 

(a) It is an w-model (by (2.3 )). 
(b) It extends elementarily N n '.ll(w) (by (2.2)). 
(c) It has the same types of well-orderings and so it is a ~-model (by 

(2.4)). 

(d) It is bigger than N n '.ll(w) (by (2.5)). 
((2.6) and (2.1) are used to make the sequence closed under Skolem 

functions and to make it complete, and then (2. 7) is the main thing used 
to make the construction of '13n+ 1 possible.) 

§ 5. The method of trees 

5.0. In second order arithmetic we have only objects of type 0 (natural 
numbers) and of type 1 (sets of natural numbers). Thus second order 
arithmetic is at a great disadvantage with respect to set theory. We can­
not directly perform any operations on sets of natural numbers and we 
have to use codes for this purpose. (We encountered this phenomenon 
while studying countable models of second order arithmetic.) As a 
natural antidote against this disadvantage we use trees. 3 They provide 
a natural way of coding (some) higher type objects within sets of 
natural numbers. Thus with the help of trees we are able to model here­
ditarily countable sets, a natural model for zpc- within the continuum, 
the standard model for A2 . Trees turn out to be an interpretation of 

3 Let us notice that the method of trees (in various contexts) has been used by several people, 
e.g., Addison, Kreisel, Scott and Specker. 
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zpc- within A2 and owing to this fact we find that under the natural 

embedding of A 2 into zpc- the latter theory is a conservative extension 

of the former. Every model of A 2 determines a model of zpc- whose 

continuum is isomorphic to the original model. In the case of j'.3-models, 

the model obtained is well founded. This useful fact, due to Kreisel and 

Zbierski, allows us to use interchangingly the results concerning transitive 

models of zpc- and those concerning j'.3-models of A 2 . 

The models of zpc- which arise in this way may be viewed as closures 

of models of A 2 under certain set-theoretical operations (a similar phe­

nomenon exists in the case of admissible sets). 

5.1. Definition. (a) The theory zpc- is the theory formulated in the 

language Lzr of set theory and arises from ZF as follows: We omit the 

power-set axiom and add the following scheme of substitution-choice: 

(x )2 ( Ey) <P(x, y) __,, (E/) (Fune (f) & Dom (f) = z 

& (x\ <P(x,f(x))). 

(b) V= HC denotes the statement "everything is countable". 

5.2. Definition. A subset X of w is called a tree if 

(i) the relation a< x b -<-+ <a, b > E X is a partial ordering with no 
loops; 

(ii) there is a unique maximal element MAXx in the partial ordering 

<x; 
(iii) every linear subordering of <x is finite. 

By AMAXx we denote the set of direct predecessors of MAXx in 

the ordering <x. 

5.3. Definition. A tree X is called a reduced tree if <x has no auto­
morphisms. 

We can express the fact that a set X is a reduced tree as a n 1 formula, 

thus absolute with respect to j'.3-models. 1 

5.4. Definition. Let X, Y be reduced trees. Then 

(a) XEq Y-<-+ <x is isomorphic to< y, 
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(b) XEps Y +-+ XEq Ya for some a E AMAXy (where Ya = Y n {<x,y>: 
Y <x a}. 

We can express both Eq and Eps relations as ~ i conditions. Take the 
following interpretation of LzF in L(A2): as the universe of interpreta­
tion let us take the reduced trees. Equality is interpreted as Eq and 
membership as Eps, respectively. 

5.5. Theorem (Kreisel [ 34] , Zbierski [ 67] ). Under the interpretation 

described above, the theory ZFc- + V = HC is interpretable in A2 . 

The proof is straightforward but laborious and we omit all the details. 

The interpretation allows us to produce from models of A2, models of 

ZFc- + V = HC. Let M be a model of A2 . Let M' be the model consist­

ing of the trees from M. Clearly, M' has no absolute notion of equality. 

LetM" be the modelM'/Eq. Being a model of ZFc- + V=HC,M" deter­

mines its set of natural numbers and continuum, wM" and ('.l!(w))M", 

respectively. 

M" ·'\JU" M" ~ M \JU 5.6. Lemma. <w , ('.7J(w)J , E )- <w , ('.JJ(w)r , E). 

Thus we get the following: 

5.7. Theorem (Kreisel and Zbierski). The theory ZFc- + V=HC is a 

conservative ex tension of A 2 (under the usual embedding of A 2 into ZF ). 

A specially interesting case is when M is a /3-model of A2 . Then the 

relation Eps is well founded and the model M" is thus also well founded 

(the formulas X Eq Y and XEps Y are absolute with respect to /3-models 

and therefore the well-foundedness is preserved). Using Mostowski's 

collapsing theorem, we get M, the transitive collapse of M". 

Using Lemma 5.6, we get the following: 

5.8. Theorem (Zbierski). If Mis a /3-model of A2 , then M =Mn '.7J ( w ). 

5. 9. Corollary. M is a f3-model of A2 iff there is transitive N, N F ZFC- + 
V= HC, such that M = N n '.JJ(w). 
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It is easy to see that h(M) = h(M) and since MI= ZFc-, h(M) is l.:n 
admissible for every JZ, i.e., h(M) is a regular quasicardinal (cf. Kripke 
[35] ). 

Trees serve as codes for higher type sets. 

5 .10. Definition. Let X be a tree. By llXll we denote the realization of 
the tree, i.e., the operation defined as follows: 

llallx = {llbllx: a is a <x-successor of b}, 

llXll = llMAXx llx . 

By induction on the rank, we get that for every a E HC (the collection 
of all hereditarily countable sets), there exists a tree X such that llXll =a. 
Conversely, if llXll =a for X a tree, then a E HC. 

Also it is easy to see that the realizations of trees from a {3-model M 
(which are thus real trees) form a transitive model of zpc- + V= HC. 
From the definition of the collapsing isomorphism we find that this 
model is just M. 

The above interpretation is the formalization of the above facts. 
A natural question arises if the analogue of the above theorem on the 

conservative extension may be proved when the scheme of choice is 
deleted from both theories. We have two results here. 

Let Z be the set theory of Zermelo. 

5.l 1. Theorem (Kreisel [34] ). z- (i.e. the theory of Zermelo without the 
power set axiom) is a conservative extension of A2. 

In fact, the same interpretation works. 

5.12. Theorem (Gandy [ 19] ). zp- is not a conservative extension of A2. 

Thus we see that the interpretation of the replacement scheme cannot 
be proved without using the scheme of choice. 

The model theoretic counterpart of Zbierski's Theorem 5.8 on {3-
models of A2 is in the case of A; somewhat bizarre. 

We have the following: -
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5.13. Theorem. Let M be an w-model of A2. Then there exists a transi­
tive model N of z- such that M = N n 1Ji ( w ). 

Note that M does not need to be a {3-model. 

Proof. In the standard way, we define the height of a tree. To get the 
model N we consider all the trees of height less than w + w which are 
elements of M. N is now the set of their realizations. 

This striking difference in relationship between A2 and A2 and their 
conservative extensions z- and ZFC-, respectively, is connected with 
the different status of the formula "x is a well-ordering" in z- and 
ZFc-. In the first it is n 1 whereas in the second Ci. 1 . 

Addison [2] showed that there exists a L; formula Constr(X) which 
is satisfied in 1Ji(w) exactly by the constructible subsets of w. This for­
mula, roughly speaking, says that there exists a well-ordering T, such 
that X is F

1
'y

1
, where Fis the function from GOdel's monograph [22]. 

By the absoluteness results concerning {3-models, we have the follow­
ing: 

5.14. Lemma. If Mis a {3-model of A~. then (MF= Constr[X]) ~ XE L, 
i.e., EM= {X: MF= Constr[Xl} ~ !vt n L. 

Let us notice that a simple Cohen argument allows us to state the 
following lemma: 

5.15. Lemma. There is a {3-model M of A2 such that l'f-1 EL and EM-=!= Mn L. 

5.16. Theorem (Enderton [ 13] ). If Mis a {3-model of A2, then so is EM. 

5.17. Corollary. R.A./J 0 I= (X) Constr(X). 

The proof is based on a careful inspection of the nature of Addison's 
formula. 

In the case when Mis model of A2 , the proof due to Zbierski easily 
follows from our previous considerations. Namely, 
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EM = {X: M I= Constr [Xl} = {X: M I= Constr [X]} 

= {x:Ml=x~w&L(x)} = {x:LMl=x~w} =LMn'JJ(w). 

L M is a transitive model of zpc-, thus EM is a ~-model. 
We also have the following: 

5.18. Theorem (Zbierski). If Mis an w-model of A2 • then so is EM. 

Proof. Let i.p be an axiom of A2 . Then zpc- f- i.p. An analysis of Godel 's 
proof shows that Lis an inner model of zpc-. Thus ZFC- f- (i.p)L. On 
the other hand, an analysis of Addison's proof shows that we can dispense 
with the power set axiom, i.e., zpc- r (x) (x ~ w -r (Constr(x) +-+ L(x))). 
Hence zpc- f- i.p Constr (<.p Constr is the formula which results from i.p 
by the relativization of its set quantifiers to the formula Constr ). But 
ZFc- is a conservative extension of A2 , thus A2 /'-- <.p Constr, hence 
MI= i.pConstr, i.e., EM I== <.p. (In fact, the proof shows that Constr( ·)is 
an inner interpretation of A2 in A2 , which preserves natural numbers.) 

Yet the fact that EM is a {3-model does not ensure that M is also a 
~-model. 

To see this, consider a transitive model of ZFc- + V = HC + "wf exists". 
A model of this sort is easily obtained by the Cohen forcing. Applying 
the Mostowski--Suzuki Theorem 4.1 to the continuum of this model, 
we get an w-model with the same constructible sets, which is not a {3-
model (this proof is based on an observation of W. Powell). 

As an additional profit from this remark, we note that the height of 
EM may be smaller than the height of the ~-model M (take M to be the 
continuum of a transitive model of zpc- + V= HC + "wf exists"). 

The following theorem easily follows from an analysis of the opera­
tion -;; . 

5.19. Theorem (Zbierski). If N is a transitive model of ZFc-, then 
N n '.fl(w) = HCN_ In particular, ifN I== V= HC, then N n 9 (w) = N. 

The method of trees gives us some additional information about {3-
models of A2 + (X) Constr(X). 
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5.20. Theorem (Zbierski). Let M be a (3-model of A2 + (X) Constr(X). 

Then M = Lh(M) n 'J> (w) and Lh(M) = M. 

5.21. Corollary. Lf3 0 is the smallest transitive model of ZFc-. 

Proof. We hav~ already proved LM 11 1J>(w) = M. But h(L'<if),;;;;; h(M). 

th~refore h(LM) = h(M). M is transitive, thus L M is equal to some LCI. so i; =.Lh(@· By Theorem 5.20, M = Lh(Ml 11 ?(w) = HCLh(M) f. Lw,n = 
L , i.e., M = Lh(M). Now the corollary follows from the facts that 

R.A.!3 0 F= A2 + (X) Constr(X) and h(R.A.!30 ) = (3 0 . 

'We now establish some further connections between (3-models of 

A1 + (X) Constr(X) and the constructible hierarchy. 

5.22. Definition. (a) a: is called a gap iff(La,+l - L°') 111J>(w) = 0. 
(b) a is called the beginning of a gap if a is a gap, but 

5.23. Theorem (Leeds and Putnam [37], Marek and Srebrny (44] ). 

(a) If a: is a gap, then L°' II 1J> ( w) is a (3-model of A2 + (X) Constr(X). 

(b) a: is the beginning of a gap if! LCI. is a model of zpc- + V= L = HC. 

Leeds and Putnam prove (a) using the fact that in this case LCI. is closed 

under the hyperjump operation. Another proof is obtained using the 

method of trees. 
In fact, (a) follows from (b).We prove (b) as follows: just because a 

is a gap, LCI. n 'J> (w) is an w-model of Ai,. Now using the method of 

arithmetical copies of Boolos and Putnam [7] 4 (a subset X of w is 

called an arithmetical copy of LCI. if <LCI., E >is isomorphic to <Fld(X), <x >. 
where a <x b -<-+ (a, b) E X), we find that V = HC holds in LCI.. Then we 

use the fact that if a is a gap, then the following form of the scheme of 

choice holds in LCI.: 

(n)w (EX)'.7'(w) <l>(n, X)-+ (E Y)'.7'(w)(n)w <l>(n, yCn)) 

(for all set-theoretical <I>). 

4 This method was first used by Boolos in proving his theorem on the connections between the 

ramified analytical hierarchy and the constructible hierarchy. 
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These facts together imply the reflection property for LOI. which com­
bined with the fact that a is limit (and so ~ 0 -comprehension holds) 

settle replacement. There is a definable well-ordering of LOI., so the 

scheme of substitution-choice holds as well. 

5.24. Proposition. If LOI. I= z- + V = HC, then LOI. I= zpc- + V = HC = L. 

We may interpret it as a weak semantical counterpart of the follow­

ing result: 

5.25. Theorem.Each of the theories A2, A2 , zpc--, ZFC- +V=HC, 

z-, z- + V=HC is interpretable in the other. 

A number of results on w-models and ~-models, which have analogues 

in set theory, have been established. Let us note among them the follow­

ing: 

5.26. Theorem (Mostowski [50] ). Every countable w-model of A 2 +DC 
may be expanded by a binary relation, which is a linear ordering such 

that in the expanded model the following conditions exist: 

(I) El'e1y definable class (in the ex tended language) has a first element. 

(2) Comprehension and tlze scheme of choice (in the extended language) 

hold. 

DC is the following scheme: 

(X)(EY)<P(X, Y)-+ (EX)(n)<P((X)n, (X)n+I). 

The similar fact for ZFC set theory has been proved by Feigner [ 16] . 

5.27. Lemma. 5 The smallest transitive model of zpc- is pointwise 

definable and has no proper transitive elementary extension. 

As a simple application of Zbierski's theorem and Lem•11:1 :~.27. we get 
the following: 

5 Mostowski [48] proved that the smallest transitive model of ZF has no proper transitive ele­
mentary extensions. 
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5.28. Theorem. 17ie smallest (3-model of A2 has no proper elementary 
ex tension being a (3-model. 

In connection with this fact, Marek [ 41] studied the so-called "Dam 
Hypothesis". 

5.29. Dam Hypothesis. Let M be a countable µ-model of A2 . Then there 
is an elementary extension of M, say M 1 , being a µ-model such that if 
M 2 is an elementary extension of M 1 , then either M 2 is not a (3-model or 
h(M 2) = h(M 1). 

It may be shown that the hypothesis holds if 9(w) s;, Lor M f= 
(X) Constr(X). 

Zarach [ 66] developed the theory of forcing with classes for the case 
of zpc-. Using this, Guzicki [ 25] obtained the following result on un­
countable {J-models of A2 . 

5.30. Theorem. (a) If Mis a countable (3-model of A2, then there exists 
an uncountable (3-model of A2 , M 1 2 M such that h(M 1) = h(M). 

(b) Assuming Martin's axiom ( cf. Martin and Solovay [ 45] ), M 1 can 
be found of the power continuum. 

The proof uses Zbierski's theorem and the striking fact that in the 
case of zp- some generic extensions of some models may happen to be 
elementary ones (which is impossible for the full ZF case). 

Part (b) provides (under the assumption of Martin's axiom) a positive 
answer to the following question of Mostowski: Do there exist two 
different w-models of A2 of the power of the continuum? 

Recently, G. Sacks (private communication) has shown a positive 
solution of this question. 

§6. w-models of the theory of 9(w) 

6.0. Among extensions of A2 specially interesting is the theory of the 
continuum Th(~(w)). Unfortunately, not too much is known about 
models of it. They have been studied by Ellentuck [ 11] and Mostowski 
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[52]. Let us note that the theory of '.J>(w) depends on the set theory in 

which the considerations are carried out and thus the structure of the 

family of w-models of Th('.J>(w )) may vary. 

6.1. Theorem (Ellen tuck [ 11] ). The following facts are equivalent: 

(i) Def('.7>(w)) F= Th('.J>(w)), 

(ii) Def('.7>(w)) is the smallest w-model ofTh('.J'(w)), 

(iii) Def('.7>(w)) -< '.J>(w), 
(iv) the analytical basis theorem (every non-empty analytical family 

of sets contains an analytical element) holds. 

(Recall that Def('.J>(w)) is the family of all subsets of w definable in 

:7>(w) by a formula of L(A2), i.e., the family of all analytical sets). 

Note that (iv) is true if there is an analytical (without parameters) 

well-ordering of the continuum. The last is true when the axiom of con­

structibility (or '.J>(w) s;. L) holds. In that case, there is a Ai well-ordering 

of the continuum (see Addison [ 2] ). 

Let us note that one can show the following (see Marek [39, 42] ): 

6.2. Theorem. (i) If Mis an w-model of A2 , then MF= Th('.J'(w)) iff 

MF= Th(HC). 

(ii) There is an analytical well-ordering of the continuum if! there is 

a definable well-ordering of HC. 

Mostowski [51] considers the following relation between countable 

w-models: MEN iff there is a code of M which is an element of N. 

6.3. Theorem (Mostowski). The type ri· t-<; 1 can be embedded into the 

partial ordering€ of the w-models o/Th('.f>(w)). 

Some other results of a similar type are proved in [ 46, 51 ] . 

§ 7. Models of higher order arithmetics and Kelley-Morse set theory 

7.0. Consecutively adjoining higher types, we get so-called higher order 

arithmetics. Some methods introduced in the case of second order arith-
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:::: work here as well. In particular, the method of trees gives fairly 
ar results. Another theory which - roughly speaking - plays the 
role with respect to ZF set theory as does A2 with respect to 

o's arithmetic (this has been pointed out to us by G. Kreisel) is the 
~y-Morse set theory. 
ie common feature here is the ''highest" level and the full compre­
[on scheme (or the full choice scheme). In the case of Kelley-
e theory, we get similar results which seem to suggest deeper ana­
s behind. The analogy between the results obtained should not 
.lfe some very important differences between A2 on the one hand 
:he higher order arithmetics and the Kelley-Morse theory on the 
r. In particular, the position of the notion of well-ordering is differ­
'.1 the two cases. This, in turn, leads to a different status of construc­
ty in these theories. 

Theorem (Zbierski [67] ). Let n ~ 2. 
) The full nth order arithmetic An (i. e., the theory with the full 
ne of choice) is mutually interpretable with the theory ZFc- + 
- 2l(w) exists". 
) zpc- + "?(n-2l(w) exists" is a conservative extension of An. 
) The operation-;- works as in the case of n = 2 (see page 206), and 
'.]n-l (w) =Min the case when Mis a ~-model of An. 
) ? (n-l) ( w) = H(In_ 2 ) (the sets of the power hereditarily ~ In _2 ). 

Le connections between A2 + (X) Constr(X) and the gaps in the 
:ructible universe found by Leeds and Putnam [37] in the case of 
ere extended by Marek and Srebrny [44] for the case of the full 
1rder arithmetic. 

Jefinition. ll'. is an nth order gap iff 

(L - L ) n 1J>(w) = ... = (L -L ) n 1J><n-l)(w) = 0. a+l a a+l a 

fheorem. If a is an nth order gap, then L°' n ?(n-ll(w) is a ~-model 
e full nth order arithmetic+ the appropriate form of the axiom of 
'ructibility. 
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The proof, using the method of trees, is similar to that of the A], case 
with the following change: One considers a copy of L built not from 
integers but from elements of J><11 - 2l(w). 

The Kelley-Morse theory of classes (called below 9J?) (cf. Mostowski 
[49]) resembles the second order arithmetic in many points, yet there 
are striking differences. Roughly speaking it is an impredicative exten­
sion of ZF set theory and thus arises in a similar way as second order 
arithmetic arises from the Peano arithmetic. (One can imagine second 
order arithmetic simply as the Kelley-Morse theory without the axiom 
of infinity and third order arithmetic as the Kelley-Morse theory with­
out the axiom of the powerset in the sense of mutual interpretability -­
as shown in Marek and Srebrny [ 43] .) 

Several similarities between A2 and 9J? were noted by Marek [ 40] 
and Guzicki [ 26]. The most striking difference is the status of the 
formula Bord in both theories. In A2 , Bord is TI1 (i.e., not predicative) 
whereas in s.m it is predicative. This difference leads to a "one-down" 
phenomenon occurring in [TI with respect to A2 . For instance, the con­
structibility formula is I: 1 in sm (being :q in A2 ). This in turn allows 
us (under the assumption that the class form of the axiom of constructi­
bility is true) to generalize Addison's results on the separation and re­
duction principles (l:: 11 definable superclasses possess the reduction 
property). Also under the same assumptions one gets a Ll 1 (over sm) 
definable well-ordering of all classes. (These results are due to Guzicki 
[ 26] .) 

Another analogy was noted by Marek [ 40] . Let T be a set-theoretical 
statement asserting the existence of a strongly inaccessible family (i.e., 
a transitive family X containing w, closed under the power set and the 
image of elements under functions included in X). Let WC' be the Kelley-­
Morse theory together with the full irnpredicative scheme of choice; then 
we have the following: 

7.4. Theorem. (i) \JJI' is mutually interpretable with ZFc- + T. 
(ii) ZFc- +Tisa conservative extension of lffi' (under the interpreta­

tion Cls (x) ~ x f;. X. where X is an inaccessible family). 
(iii) 77ze operation-;- works as in the case of A2 . 
(iv) If Mis a ~-model of 9J( ', then Mn ']> (X) = M, where X is the 

maximal inaccessible family in M. 
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The proof of this theorem strongly resembles Zbierski's proof. The 

analogue of the Mostowski·-Suzuki Theorem 4.1 for the case of 9.l?' 

holds. Analogous results for higher order set theories were obtained by 

Marek and Zbierski. 

Let us note finally that Guzicki (in his thesis [26]) finds an inter­

esting extension of WI' mutually interpretable with ZFC + T. 

§8. ~n-models 

8.0. The hierarchy of formulas of L(A2) naturally introduces a hierarchy 

of w-models of A2. As we know, w-models preserve arithmetical state­

ments and ~-models Li stateme_nts. ~n-models are thus introduced as w­

models preserving L ~ statements. 

As in the case of the smallest ~-model, there exists a smallest~? -model. 

It may also be characterized as a result of union of certain hierarchy. In 

the case of n > 2, the situation becomes more complicated. Under suitable 

conditions (the nth basis assumption) there is a smallest ~11 -model and an 

analogous hierarchy may be used to characterize it. The situation is ana­

logous to that in higher levels of the analytical hierarchy where - in 

order to get certain results - we have to assume additional hypotheses. 

8.1. Definition. (a) If M f. N f. '.7> (w ), then M-< ~ N iff for every L ~ for­

mula et> and sequence of parameters X from M, we have 

NI= cf>[X] +-+MI= cf>[X] ' 

(b) An w-modelM is called a ~11 -model iff M-<;1 '.Jl(w). 

Obviously, in this case,M preserves D~+l formulas downward and 

L~+l formulas upward. 

8.2. Theorem. If Mis an w-model, then Mis a ~11 -model iff Mis a basis 

for the rr~ __ 1 collections of sets with the parameters from M. 

Using Kleene's universal L~ relation, we get that the statement "X is 

a code of a R -model" is a D 1 formula. Therefore we get the following 
~n n 

corollary: 
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8.3. Corollary. Every {311 +1-model contains a code of a {311 -model. 

Using Shoenfield's lemma (which states that L n '.7>(w) is a {32 -model) 
and the fact that Constr(X) is a 1:1 formula, we get the following: 

8.4. Theorem (Enderton and Friedman [ 14] ). If Mis a f3rmodel of Az. 
then 

(i) EM= L n M, 
(ii) EM-< 1 M, i. e., EM is a {32-model of Az-. 

As a corollary, we get that there exists a smallest {32 -model of Az-. In 
this model the scheme of choice and (X) Constr(X) hold also. 

8.5. Definition. (a) Let M ~ N be structures for the language of set 
theory. M possesses the property of 'L 11 reflection with respect to N 
(M-< 11 N) if for every 2: /1 formula <I> (in the sense of Levy) of LsT and 
sequence parameters_'( from M, 

M 1= <P[.XJ ~ N 1= <P[x] . 

M possesses the property of 1:11 reflection if M -< 11 V. 
(b) An ordinal a is stable if La possesses the property of 1: 1 reflection. 

A characterization of {3 2-models of A2 , analogous to the one obtained 
by Zbierski in the case of {3-models of A2 is the following: 

8.6. Theorem (Marek [42] ). 6 Mis a f3rmodel iff Mis a model of 
zpc- + V= HC with the property of 1: 1 reflection. 

Using similar methods one gets: 

8. 7. Theorem. Let a be the beginning of a gap. Then La n '.7> ( w) is a 
{32 -model of A2 if[ a is stable. 

Now using the Enderton-Friedman Theorem 8.4 and Zbierski's theo­
rems, we obtain the following corollary: 

6 Using this theorem we may prove that the smallest /lrmodel of A2 cannot be elementarily 
extended to a 13-model. 
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8.8. Corollary. The smallest {3 2-model of A; (A?) is equal L Ii '.fl(w), 
- - °' 

where a: is the least stable ordinal such that L°' I= zpc- (i.e., a: is the 

least stable gap). 

The proofs of both above theorems may be obtained using the follow­
ing translation lemma: 

8.9. Lemma. Let M be a ~-model of A2 . Then: 

(a) for every formula r.p of LST' there exists a formula r.pT of L(A2) 

such that if llA 1 11 = a 1 , ... , llAnll =an, then 

MI= r.pT[A 1, ... ,An] ~MI= .p[a 1, ... ,an]; 

(b) in the case when rp is a A 0 formula, <PT may be chosen as Ai, if <P 

is a ~ n formula (n;;. 1 ), then ..pT may be chosen as a ~ ~+ 1 formula. 

Moreover the choice of a formula does not depend on a model M and 

the lemma holds even in the case of arbitrary models after suitable pre­

cautions. 

8.10. Theorem (Enderton and Friedman [ 14] ). The smallest {3 2-model 

of A2, has height less than the constructible 83 and has a (constructible) 

A1 code. 

Using Theorems 8. 7 and 8.10, we get the following: 

8.11. Corollary. There are stable gaps less than the constructible 83 

(which is less than or equal to the "real" 83 ). 

(We recall that o denotes the least non A 1 ordinal.) Let us notice 
n n 

that the assumption that a: is the beginning of a gap cannot be omitted 

in Theorem 8.10. 82 serves as a counterexample. Namely Shoenfield 

[ 62] proved that L 82 n '.7' (w) =Ai and Ai is not an w-model of A2 

(see Remark 8.16). On the other hand, 82 is stable 7 (Kripke (35] ). 

Another construction of the smallest {3 2-model of A2, is due to 

Shilleto [ 60] . His point of departure is the following corollary of the 

Kondo-Addison theorem. 

7 A proof that Ii 2 is stable, which uses the method of trees, can be found in Marek [42]. 
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8.12. Corollary. An w-model M is a {3 2-model iff it is closed under rela­

tive 1.i.~-ne.ss. 

This "ramified style" construction of the smallest {3n -model is the 
following (we give here a simpler construction of Enderton and Fried­
man [ 14) ): 

F6 = (/J, 

F2 = U t.i.l,X 
O'+l 2 2 ' 

XEDef(FO') 

8.13. Theorem (Enderton and Friedman [ 14] ). The smallest {3?-model 
of A~ is equal to F 2 for~ the smallest such that F 2+ 1 = F 2 . -

- Cl' Cl' °' 

This construction is generalized for the case n > 2 by Shilleto [ 60] 
under the assumption ~(w) ~Land by Enderton and Friedman [ 14] 
under a weaker nth basis theorem assumption: the 1.i.~,x sets form a 
basis for "L ~,x families of sets. 

8.14. Remark. Using basis theorems, we can obtain a very easy proof of 
the fact that for non, A2 (A2) is axiomatizable using only n~ formulas. 
Assume V=L. Then the nth basis theorem holds (see Addison [2] ). 
Hence by the Tarski-Vaught test, 1.i.~-< ~ '.7>(w) which implies that 
D(l.i.~) 2 IT~ u 2: 1~ and so 1.i.~ is not an w-model of A2. (For n = 2, we 
may omit the assumption V=L by using the Kondo--Addison theorem.) 
Suppose that for some n, A2 (A2) is axiomatizable by using n~ formu­
las. Then, by the above, 1.i.~ is an w-model of A2, which gives a contra­
diction. Now we can eliminate the assumption V = L, because the state­
ment "For any n, A2 (A2) is not axiomatizable by using IT~ formulas" 
is a IT~ sentence, thus absolute with respect to L. 

8.15. Theorem (Enderton and Friedman). Assume the nth basis theorem 
(n:;;;,: 2). Then the sets strongly representable in A(30 (the set of all sen­
tences true in all f3n-models of A2) are exactly the elements of the 
smallest {3n-model of A2_. 
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8.16. Remark. It is easy to see that under the same assumptions, this 
smallest {3 11 -model cannot be elementarily extended to a f3n-model. 
Under the yet stronger assumption '.7'(w) f:. Lone may prove that this 
smallest {3n -model cannot be elementarily extended to a {3-model. 

The proof of Theorem 8.15 uses a ramified style construction ana­
logous to the above. The basis assumption implies that the w-model of Az obtained in such a way is a {311 -model. The heart of the proof is the 
lemma analogous to the main lemma from the proof that the ramified 
analytical hierarchy is the smallest {3-model of A2. However, the proof 
of this lemma is much more difficult, because the construction of the 
model is more complicated. 

In the general case of the {312 -models, the following characterization 
holds: 

8.17. Theorem. A (3-model M of A2 is a {3 11 -model iff MF= zpc- and 
M-<12 _ 1 HC. 

Observe that the arithmetical axiom of constructibility (X) Constr(X) 
is a II~ sentence, thus if it is true, then it is true in every {3 2-model. On 
the other hand, Shoenfield's lemma says that L n Jl(w) is a {3 2-model of 
A 2 + (X) Constr(X). 

In opposition to {3-models and {3 2 -models of A2 , {33-models have the 
following feature: 

8.18. Lemma. (a) 111ere exists a [3 3-model of A2 + (X) Constr(X) iff 
'.7'(w) :;:_ L. 

(b)!fMisa {3 3 -model, thenh(LM)=h(M)iffw 1 =wf. 

The existence of a smallest {33-model of A2 (A2) is relatively consis­
tent with the existence of a Ramsey cardinal. This follows from the fact 
that the required third basis assumption holds in L[O#] (cf. Solovay 
[ 63] ). 
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§9. Infinitistic rules of proof 

9.0. The various applications of the w-consistency theorem suggest that 
we should look for some other infinitary rules of proof which would 
satisfy the consistency theorem and the completeness theorem. The 
existence of such rules would lead to some new methods of construc­
tion of models of A2. 

Enderton has introduced the stf.-rule which comes from the notion of 
Souslin's quantifier. However, it turns out that this rule does not satisfy 
either the consistency or the completeness theorem. On the other hand, 
the syntactical properties of the stl.'-rule give interesting characterizations 
of the recursion in Ef, an object of type 2. 

The question: "does there exist a syntactical f3-rule ?" seems to be 
especially interesting. We shall see that the existence of such a rule is a 
special case of a general fact. On the other hand, the theorem which 
states that no /3-rule can be found among those which result from the 
notion of a generalized quantifier shows that it seems hopeless to find 
such a rule among natural rules. This theorem, imposing severe restric­
tions on the methods of constructing /3-models, indicates a radical differ­
ence between the notion of an w-model and a /3-model. 

We begin our considerations in the general situation. 

9.1. Definition. Let L be the classical language. 
(i) f is a rule of proof if f is a partial mapping from the power set of 

the formulas into formulas. If Tisa set of sentences of L, then (T)1 
denotes the closure of T under logical consequences and the rule f 

(ii) A rule f is sound in a structure ~ if (Th( ~t ))1 =Th(2l ). 
(iii) A set of sentences T is [-consistent if Cn(T) = T and 

X c T & XE domf-+ lf(X) f$. T. 

(iv) A set of sentences T isf-complete if Cn(T) = T and X c T & 
X E domf-+ f(X) ET. 

9.2. Definition. (i) A rule f satisfies the completeness theorem if for 
every set T of sentences ( T)1 = {<I>: <I> is a sentence and 2l F= <I> for every 
9t such that 2l F= T and f is sound in 2l } . 

(ii) A rule f satisfies the consistency theorem if every consistent,/­
complete set of sentences has a model in which/ is sound. 

(iii) A class K of structures is a semantics of the rule f if for every set 
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T of sentences, (T)f = (T)K = {$:<Pisa sentence and 9t F= <P for every 
2l such that 21 E Kand 9l I== T}. 

9.3. Remark. (i) lfa rulefhas a semantics, then/satisfies the complete­
ness theorem. 

(ii) If a rule has a semantics and satisfies the consistency theorem, 
then every consistent !-complete set of sentences has a model belong­
ing to the semantics. 

(iii) If a rule satisfies the completeness theorem, then it satisfies the 
consistency theorem. 

The following general result holds. 

9.4. Theorem. Let L be a language and Ka class of structures for L. 
Then there exists a rule f such that K is a semantics off and every!­
consistent set of sentences has a model belonging to K. 

Let fr: Cn(0) ~ (T)K. Then the following rule is the required one: 

domf = U {(T- Cn(0)) u {<P}} 
T=Cn(TJ 
<I>ECn(0) 

and 
f((T-Cn(0))u {<P})=fr(<P). 

In the above terminology, the w-rule has a seman ties, namely w­

models, and it satisfies the consistency theorem and the completeness 
theorem. 

An interesting rule of proof has been introduced by Enderton [ 12]. 
Enderton worked in the second order arithmetic with function variables 
and therefore we have to change his rule in order to express it in L(A2). 

sll. -rule. For any set X from f-91 cJ>(X(n)) for each n, infer 
f-91 (EX)(x) <P(X(x)). 

It turns out that the w-rule is derivable in Ai from the sll.-rule, but 
not conversely. 

9.5. Definition (Enderton [ 12] ). A model M of L(A 2) is called a d(3-

model if MI== Bord [X] implies thqt X is a well-ordering provided that 

XE Def(M). 
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Enderton noted that every d{3-model of ki. is an w-model but not 
conversely. Also, by the Mostowski-Suzuki Theorem 4.1, every coun­
table (3-model of A2 has an elementary extension which is a d{3-model 
but not a f)-model. 

Also the following theorem, based on an observation of Friedman, 

holds. 

9.6. Theorem. Every d(3-model of A2 contains as a subset a {3-model 
ofA2. 

Proof. If M is a d(3-model of A7 , then .e M is also a d{3-model of A2 . But 
then, since .e·M has definable Skolem functions, Def .eM-< .e M. Finally, 
Def .eM is a pointwise definable d(3-model and so it is a f)-model. 

The following simple theorem gives the reason for introducing the 
notion of a d(3-model here. 

9. 7. Theorem (Enderton [ 12] ). (i) An w-model M of A.2 is a d{3-model 
iff the sll.-rule is sound in M. 

(ii) lf cf> E (k2)sll., then cp is true in every d{3-model of ki.. 

On the other hand, we have the following: 

9.8. Theorem (Apt [ 5] ). The Sll.-rule does not satisfy either the com­
pleteness theorem or the consistency theorem. 

Proof. It is easy to see that if the .9'l-rule satisfies the consistency theorem 
(Theorem 2.3), then it satisfies the completeness theorem (Theorem 2.4). 
By the above results, it is now sufficient to prove that d{3-models do not 
fonn the semantics of the .9'l-rule. 

One easily checks that 1 (A2 u {(X) Constr(X)} )."11 E Li whereas by the 
above facts 1{ cp: 21 i= <Ii for every 21 such that 21 is a d{3-model of 
A2 + (X) Constr(X)f1 = r(A 2 + (X) Constr(X))~ E TI~ - I:~. It even turns 
out that one can replace here A2 + (X) Constr(X) by A2 . 

The problem of the weak and strong representability in (A2)91 (i.e., 
the closure of A.2 under the Sll.-rule) was solved by Aczel [ 1) . 

Let E f be the functional such that for partial functions f, 
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E#(j) '.::=_ { 0 
1 I 

if 'i/a. 3n/(5.(n)) = 0, 
if 3 a.'ifnf(fi.(n))> 0. 

Aczel slightly changes Kleene's definition (see Kleene [32]) of the 

recursion in the functional defined on total functions in order to define 
the recursion in functionals defined on partial functions. 

9.9. Theorem (Aczel). (a) The following are equi11alent for X f. w: 

(i) A set X is weakly representable in (A2)91 , 

(ii) X is semirecursive in Ef, 
(iii) X is inductively definable with respect to a 2:: i monotone relation 

(b) The following are equivalent for X f. w: 

(i) X is strongly representable in (A2) 91 , 

(ii) X is recursive in Ef, 
(iii) X and w-X are weakly representable in (A2)91 . 

9.10. Definition. We call a rule fa syntactical {3-rule if /3-models form the 

semantics off and every consistent /-complete set of sentences has a {3-model. 

9.11. Theorem (Apt). (i) There exists no syntactical {3-rule withal:~ 

graph (after Godlization). 

(ii) There exists a syntactical {3-rule with a n~ graph. 

Proof. (i) If the graph off is 2::~, then the set (A2)t is inductively de­

fined with respect to a 2::~ monotone relation, thus it is a 2::~ set (an 

unpublished result of Gandy). On the other hand, 1 A; E IT~ - 2::~. 
(ii) The required ruleis obtained by taking the appropriate rule from 

the general result. 

Unfortunately, such an artificially constructed rule cannot be used at 

all for building {3-models. This suggests to look for a {3-rule among rules 

which are in a certain sense natural. 
Such a class of rules has been introduced by Aczel [ 1 l . 

9.12. Definition. Let F be .an analytical subset of 'J>(w) which is mono­

tone, i.e., X c Y & X E F-+ YE F. Then F determines the following 

rule of proof frrule: from the fact that {n: f]F <t>(n)} E F infer 

r-1F (EX) (F(X) & (x) (x EX*-* <t>(x))). 
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Of course, the w-rule and the szi-rule belong to this class of rules. In the considerations about this class of rules, the following criterion 
found by Aczel is very much useful. 

9.13. Theorem (Aczel). Let f be a rule of proof formulated in L(A2) 
such that the graph off is analytical. 

Suppose that for every sentence 1> and every ~-model M of A2, we 
have 

M F lq>I E r(A~)f -+ 1> . 

T71en (E<l> )( 1> E A.B - (A2)t ). 

Proof. It is easy to check that the Godelian sentence 1> such that A2 f-- 1> +-+ 1(11>1 E 1(A2~) is the required one. 

Using this criterion we obtain the following: 

9.14. Theorem. Let f be a rule of proof from the above class of rules. 
Then 

(i) (E<I>)(<P E A.B-(A2)1 ), 
(ii) there exists a consistent fcomplete set of sentences which does not have a (}model. 

Proof. For every n, there exists anfrrule stronger than those which come from FE TI~. This rule comes from the following F: 
Fn+ 1(X) ...._. (X1)(EX2) ... (QXn+l)(Qx) (<X1 (x), .. ., Xn+l (x)> EX) , 

where Q is the appropriate quantifier, and Q the dual one. But thefFn -rules satisfy Aczel's criterion which can be checked (it is Aczel 's idea) by induction on the proof (outside the ~-model). 
(ii) Let <I> be the sentence found in (i).Then Cn((A2)t u {i<P}) is the required set of sentences. 

Thus there is no syntactical ~-rule in this class of rules. 

Besides of the w-rule we know only one natural infinitary rule of proof with a semantics and which satisfies the consistency theorem. It is the following: 
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9.15. Def-rule. Infer (X)<I>X from {<P(Y): Y is analytical set}. 

The proof of both properties is analogous as in the case of the w-rule. 
Namely pointwise definable models of A? form a semantics for the Def­
rule and every consistent Def-complete s~t of sentences has a pointwise 
definable model. The Def-rule is sound in 'J> (w) iff the analytical basis 
theorem is true. 

§ 10. Non-standard models and expandability 

10.0. Apart from general model theoretical results, not too much is 
known about non-standard models of the second order arithmetic. Since 
there are sentences of the language of Peano arithmetic unprovable in 
Peano arithmetic, but provable in Ai (for instance Godel's sentence 
stating consistency of Peano arithmetic), there are models of Peano 
a.rithmetic non-expandable to the model of A.2 (i.e. with the preserva­
tion of type 0 objects). 

Much deeper results have been obtained by Ehrenfeucht and Kreisel 
[ 10 l . 

I 0.1. Theorem. There is a model M being an elementary extension of 
the standard model of Peano arithmetic such that for no 2! s; 'J>(M), 
<M, 2{, +M, ·M,<M' SM,E) is a model of A"].. 

A similar phenomenon in the case of the higher order arithmetic has 
been obtained by Zbierski. 

10.2. Theorem (Zbierski [67] ). The smallest model of An is not expan­

dable to the model of An+I. 

The proof follows from the fact that in An+ 1 we are able to prove 
strong reflection property for the nth order objects. 

Similar results hold in the case of ZF set theory; here we have the 
following: 
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10.3. Theorem. The smallest transitive model of ZF is not expandable to 

the model of Kelley-Morse set theory. 

In fact. stronger results hold: Let~°' be a consecutive enumeration of 

the heights of transitive models of ZFC. Let pry, be a consecutive enumer­

ation of continuity points of the function t then we have the following: 

10.4. Theorem. (a) If a< ~°'' then a transitive model of ZFC of the height 

~" is expandable to the model of Kelley-Morse theory. 
(b) The same result holds for Pa. 

One can obtain several further improvements of the theorem along 
this line. 

Since all nonstandard models of Peano arithmetic contain as an initial 

segment a copy of w, it seems reasonable to consider a trace on w of a 

nonstandard model of A 2 . Let M be a nonstandard model of A 2. We 

may assume that M = (X, cy, ... >such that cy <; '.f>(X). 

(Notice that in that case cy i= '.f>(X), moreover we may assume that 
w is an initial segment of X). 

Form M' as follows: M' = (w, 2!, +, ·, ... ), where SE 21 +-+ (E Y)'Y 
(S = w n Y). 

10.S. Theorem (Mostowski [54) ).17zere is an M elementarily equivalent 
to 'J>(w) such that M' is not a model for A2 . 

§ 11. Problems 8 

(1) Let 21 <; 'J> ( w ), i5i = 1-1 0 . Does there exist the small est {3-m odel of 
A2 (A2) which contains 91? 

(2) Can the smallest {3-model of A (n > 2) be characterized "from 
12 

below" similarly to the "ramified analytical" characterization in the 
case of A2 ? 

(3) ls the theorem of Keisler-Mostowski true for w-models of A2-? 
( 4) Characterize set theoretical assumptions under which there is the 

smallest {311 -model (n > 2) of A2 . 

8 Several problems in this list have already been considered by other authors and no claim to 
originality is made for any of them. 



K.R. Apt, W. Marek, Second order arithmeric and related topics 22 7 

(5) Is it consistent to assume that '6.;1 sets for some n > 2 form an 
w-model of A2? 

(6) Is the Dam Hypothesis that is formulated in the paper true? 
(7) Does there exist an extension T of A? such that there is no smal­

lest w-model of T but there is a minimal w~model of T'? 
(8) Characterize {X: X< w & (E2!) (21 is an w-model of A? & 

21 f= Bord [X]} . Clearly, each such object is a pseudo well-ord;ring in 
the sense of Feferman and Spector [ 15], yet one can easily show that 
these classes do not coincide. 

(9) Can the axiom of choice be finitely axiomatizable over the com­
prehension scheme, i.e., does there exist a sentence tp such that 
A2 u { ip} is equivalent to A2 ? 

( 10) Characterize the conditions under which a countable ~-model 
of A2 has an elementary proper extension which is a ~-model. 

( 11) Define X < /3 Y ~ ( 21 ) ( 21 is a ~-model of A2 & YE 21 -+ X E 21 ) 
and X ~13 Y ~ X ~/3 Y & Y </3 X. 'Ji (w )/~/3 gives a structure of ~-degrees. 
(Note that analogous <w relation leads simply by the Gandy-Kreisel­
Tait result (relativised version) to hyperdegrees.) 

It is easy to see that X is i6. i in Y-+ X ~ Y-+ X and is '6.~ in Y. 
Both implications cannot be reversed. A forcing argument leads to 

the existence of incomparable ~-degrees. What else can be proved about 
this structure? 
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