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ABSTRACT. One striking aspect of the class of linear systems is 

that the controls enter in a way which is independent of the 

state; that is they are homogeneous, w.r.t. the underlying 

vectorspace (additive Lie group) structure as far as the controls 

are concerned, and the autonomous term enjoys reminiscent but not 

identical ''homogeneity properties". Another class of systems 

which enjoys such properties is the class of systems on Lie 

groups and coset spaces (E.g. g = (A+:Eui Bi )g, g E g~n' A, 

Bi E gin) studied by Brockett, Jurdjevic-Sussmann, Hirschhorn 

and others. However, in the case the Lie group G is the additive 

group this class does not specify to the familiar class of linear 

systems (but to x =a+ :Euibi' a, bi€ ~n). Yet the analysis of 

these two classes of control systems suggests certain "family" 

characteristics. 

In this paper I discuss several aspects of classes of 

systems, which in one-way or another - there are several 
. ' 

different choices one can make - generalize both the familiar 

linear systems and the class on Lie groups mentioned above. 

1. INTRODUCTION. 

This paper, or more precisely the research program which 

this paper tries to describe, resulted from the following two 

considerations: (i) nonlinear systems theory in general is, at 
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the moment, too difficult and - as a research area - not well 

enough s:ructured: we have relatively little feeling for the 

right problems and questions to ask and perhaps little intuition 

for the phenomena (pathologies) which can occur, and (ii) if in 

LQG one changes either L, Q or G things get unstuck immediately 

and rather severely; the three interact rather closely and it 

seems to follow that to find interesting generalizations all 

three at once must be adjusted (changed) simultaneously and in a 

compatible manner. 

The lines above are of course the personal opinion of the 

present author; they may not, as far as I know, reflect the 

consensus, if such an unlikely thing exists, of the systems theory 

community. 

A situation as described in (i) above is not unusual in 

mathematics. It has occurred before, e.g. in the theory of 

Riemannian manifolds. In this particular instance the theory of 

symmetric spaces came to the rescue. To quote from [Helgason, 

1962] (or the revised 1978 edition): 

"By their definition, symmetric spaces form a special topic 

in Riemannian geometry; their theory, however, has merged with 

the theory of semi-simple Lie groups. This is the source of very 

detailed and exhaustive information about these spaces. They can 

therefore of ten serve as examples on the basis of which general 

conjectures in differential geometry can be made arnl tested". 

At the same time symmetric spaces are general enough to 

serve as a real testing ground. 

It seems to me that nonlinear systems and control theory 

could do with a class of examples like that. And the classes of 

"homogeneous", but nonlinear systems described below are mainly 

intended (by me) as a possible testing ground for ideas, 

conjectures and concepts in general nonlinear system theory. 

Special cases, though, do occur naturally in science and 

en g in e e ring , c f • e • g • [ Brock e t t , 1 9 7 2 ] in con n e c t i on with theorem 

3.14 below. 

Consideration (ii) above also points naturally to Lie groups 

and homogeneous spaces (and some kind of "homogeneous" system on 

them) as a natural possible class of candidates for generalized 
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LQG. Especially in view of the theory of "Gaussian processes" on 

general Lie groups based on Bochner's theorem and a definition of 

positive definite function which makes sense on any Lie group. 

The main philosophy behind what is described below is to 

study linear systems on ~n and to formulate their characteristic 
n properties either in terms of the additive Lie group ~ or in 

n terms of the natural connection on ~ • Not surprisingly these two 

possible characterization give rise to different possible 

generalizations when these characteristic properties are 

formulated for general Lie groups (and homogeneous spaces), even 

when we restrict attention to (left-) invariant connections on 

Lie groups. 

Two classes of systems arise this way: "Group linear 

systems" and "connection linear systems". In addition there is a 

small section on a third class of systems: "fibre linear 

systems". The "connection linear systems" discussed below are in 

the torsion-free, zero-curvature case precisely the systems 

discussed by Brockett in this volume. 

What follows below is an outline of a research program 

rather than a full grown paper. In particular, also to avoid 

excessive length, I concentrate on ideas and concepts, and proofs 

are only sketched. A more complete (and longer) account will, 

hopefully, appear in the future. ... 
All manifolds in the following will be C and so will all 

functions and vectorfields defined on them. If M is a ... ... 
C -manifold F(M) denotes the ring of R-valued C -functions 

(i.e. infinitely often differentiable functions) on M and V(M) 
... 

denotes the Lie-algebra of all C -vectorf ields on M. 

2. WHAT MAKES A LINEAR SYSTEM LINEAR 

The reason we are asking this question is that we are 

interested in formulating the conditions for linearity of a 

system in such a way that natural generalizations on 

(noncommutative) Lie groups suggest themselves. Let us consider 

the familiar class of linear systems on ~n 
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( 2.1) x = Ax + Bu, y = Cx 

and see whether we can capture its characteristic properties in 

some "coordinate free way". If <P : Rn + Rn is any diffeomorphism, = = 
then the nonlinear state space transformation z = <P(x) transforms 

(2.1) into a set of highly nonlinear looking equations, viz. 

( 2. 2) z = ( J 4> ) ( cp - l ( z ) ) ( A 4> - l ( z ) + Bu ) , y = C cp - l ( z ) 

where (Jcp)(x') is the Jacobian matrix of 4> at z'. These equations 

still have the form 

m 
(2.3) x = a(x) + E $i (x)u., y = y(x) 

i=l l 

where a,ei, i = 1, ••• ,m, are vectorfields on ~n and y is a 

nonlinear function ~n + ~m but beyond that there is little at 

first sight which might tip one of that we are really dealing 

with a linear system written down in the wrong coordinates. Up to 

nonlinear state space equivalence and nonlinear feedback the 

question of when a system like (2.3) is linear has been 

considered and solved by [Brockett 1978], and an answer to the 

question whether a system (2.3) is locally like (2.1) is given by 

[Krener 1973] in terms of the Lie-algebras generated by the 

vectorfields a(x),$.(x) (locally around O). 
l 

As a very small simple example consider the example with A 
12 1 = C30 ) , B = C1 ), C = (2,0) in (2.1) and z = <j>(x) 

given by the diffeomorphism 

+ z 

which gives us the system 

• 2 2 2 2 
z 1 = 2z 2+(4+6z 2+8z 2 )(z 1-1-z 2 )+(4z 2-2)(z 1-l-z 2 ) 

( 2. 5) 
2 3 2 -8z 2 (z 1-1-z 2 ) + {(2+2z 2 ) + 4z 2 (z 1-1-z 2 )}u 

2 2 2 z2 = (3+4z 2 )(z 1-I-z 2 ) + 2(z 1-I-z 2 ) 

4 



Returning to our original system (2.1), viewing it as a 

special case of systems of the form (2.3), and concentrating for 

the moment on the input part the following "homogeneity 

properties" could be noticed 

( 2. 6) The input vectorfields Si(x) are invariant with respect 

to the group structure. 

00 

This means the following. Let M be a C -man if old, F( M) the 
00 

ring of C -functions on M. Then a vectorfield on M is a 

derivation X: F(M) + F(M), i.e. an ~-linear map with the 

property X(fg) = X(f)g + fX(g). Let ~ be a diffeomorphism 
~ M + M, then th~ 1 translated !yctorfield X is defined by 

~ ~ ~ ~ -1 . 
(X )(f) = (Xf ) where f = f o ~ L If G is a Lie group 

then X is said to be left invariant if X a = X for all a € G 

where L 0 stands for the diffeomorphism g + og, g E G. 
Indeed a vectorfield on Rn can be written as = 

( 2. 7) x 

L 
Then the requirement that X 0 X for all a € Rn becomes 

= 

( 2. 8) I df 
l fi(x-o) (x) 

axi 

for all functions f (and for all a E Rn). This means that 
= 

the f 1 (x) in (2.7) must be constants so that the left invariant 
n vectorf ields in ~ are precisely the vectorfields 

l bi a! , bi E i. which are the vectorfields multiplying the 

controlsiin (2.1). 

(2.9) 

The "vectorfield Ax", or more precisely the vectorfield 

a(x) =I <I ai.x.) ~ 
i j J J oXi 

does not have an equally obvious invariance property. &t it does 

have the property 
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(2.10) Let O}' be the Lie algebra of left invariant vectorfields 
n 

on ~ , then [a, X] E °i for all X E b( • 

The obvious generalization of properties (2.6) and (2.10) 

will define the class of what I like to call "group linear 

systems". They will be discussed in some more detail below in 

section 3. At the moment they are my favourite class of 

"nonlinear but homogeneous systems". 

A totally different way of saying that the vectorfields 

ei(x) in (2.1) are as they are is to remark that the 

coefficients bi in 

(2.11) 

do not vary with 

concept,however, 

a 
x, i.e. that" -- b 1.k" = 0 all k,j. This ax. 
is not defined od general manifolds but requires 

a "manifold with connection" to be properly defined. This will 

lead to "connection linear systems" a second class of nonlinear 

but homogeneous systems which will probably repay detailed study. 

Connection linear systems and their relation with group linear 

systems are the topic of section 4 below. 

3. GROUP LINEAR SYSTEMS. 

3.1. Definition of Group Linear Systems. Let G be a Lie 

group, finite dimensional and X a homogeneous space for G, i.e. X 

= G/H where H is a closed subgroup of G. Let 1Tt be the Lie algebra 

of G invariant vectorf ields on X. (This is a Lie algebra because 

[vf ,vfJ = [V 1 ,v 2 J~ for any two vectorfields V1 ,v 2 on a manifold 

M and any diffeomorphism ~: M1 + M2 ). A group equivariant system 

on X now looks like 

( 3. 2) 

where 

(3. 3) f3.(x)cm 
1 

for all i, 
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( 3. 4) [a,B]E'YTt for all B E 'YrL 

( 3. s) y is a collection of quotient maps X + G/K. 
J 

where Kj is a closed subgroup of G containing H. 

3.6. Example. Translation Invariant Systems. An example is 

afforded by the systems on Lie groups and spheres studied by 

[Brockett 1972,1973], [Jurdjevic-Sussmann, 1972], [Hirschhorn 

1977]. Let G be a closed subgroup of GLn(~) and' the Lie 

algebra of G, viewed as a subalgebra of gin(~). Consider systems 

of the form 

y(g) Kg 

The invariant vectorfields on G are the vectorfields gC, CEltJ' 

or more explicitly the vectorfields I g .. c "k _a __ 
· · k 1 J J agik 
1' J ' 

(restricted to G) in the coordinates g 11' • • • 'g nn for GL (R) 
n = 

More precisely translation invariant systems are of the form 

( 3. 7) a(g) + L B.(g)u., y = y(g) = gK, 
1 1 

where a,~i are left invariant vectorfields, and K is a closed 

subgroup of G. 
n 

3.8. Example. Bilinear systems. Let X = ~ '-{O} and view X as a 

coset space for GLn(~) by letting GLn(~) act on §n in the usual 

manner, i.e. X = GLn(~)/H where H is e.g. the stabilizer of e 1 ; 

that is H is the subgroup H = { ( 1 
x x E ~n-l, y E GLn-l(~)}. 

Then the vectorfields 

Ax,Bix are right invariant under GLn(~), so that (modulo right 

invariance versus left invariance) the familiar bilinear systems 

(3.9) Cx 
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are examples of group equivariant systems. This also makes it 

probable that the complete study of group equivariant systems 

will not be a totally trivial matter. Note that the equilibrium 

point x = 0 has been removed in the above set up. Results 

pertaining to this approach to bilinear systems can be found in 

[Hirschhorn 1977]. 

3.10. Remark. Consider Rn as a (vector) Lie group, and 
= 

consider the systems of type (3.7) on it. E.g. embed Rn by = 
I 

( n-1 x + 
0 

(3.11) 

x 
) E GLn+l(!)· This gives us systems of the form 

1 

Cx 

i.e. not the class of systems x = Ax + Bu, y = Cx. This accounts 

to some extent for the lesser elegance of the results in the 

inhomogeneous case (A ~ O) with respect to the homogeneous case 

(A=O) in the controllability/reachability results of [Brockett 

1972, Jurdjevic-Sussmann 1972]. 

3.12. Proposition. Consider Bn as a Lie group. Then the 

group equivariant systems (according to definition 3.1) on ~n are 

the systems of the form 

(3.13) 

Proof. Easy 

Then [a(x), 

a + Ax + Bu , y = Cx , 

exercise. 

_a_] left 
ax. 

J 

B E Rnxm C € Rpxn = , = 

Indeed let a(x) =I f.(x) _a_ 
1 axi. 

invariant, i.e. constant, means 

(~x. fi)(x) = 0 for all i,j and the result follows. 
J 

3.14. Theorem. Let G be a semi-simple or compact Lie group. 

Then every group equivariant system over G is of the form (3.7). 

Proof. Let G be semisimple and let (~) be a system of type (3.2). 

Let ~ be the Lie algebra of G viewed as a subalgebra of V(G) the 

Lie algebra of all vectorfields on G. The vectorfield a has the 

property [ n, ~'i ] C '1/ and hence defines a derivation of a;. Because 

UJ-is semi-simple every derivation of <1j is inner so that there exists a vectorfield 

V E OJ' such that [a,f3) = [V,$] for all B E "!. Now the vectorfields f3 for every 

g E G span a basis for the tangent space 
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TgG at g and it follows by the easy lemma below that a = V 

proving the theorem in this case. 

L If G is compact consider the translated vectorfields 
er 

a for all er ~ G • Let dµ be ufit mass left invariant Haar 

measure on G, and define V = J a 0 dµ. Then V is left invariant 

and the remaining bit of the proof is as before. 

3.15. Lemma. Let v1 , ••• , Vn be a set of vectorfields on the 

connected manifold M such that v1 (x), ••• , Vn(x) is a basis for 

the tangent space TxM for all x € M. Let V,W be two more 

vectorfields on Mand suppose that [Vi,V] = [Vi,w], i = 1, ••• , n 

and V(x 0 ) = W(x 0 ) for some x 0 € M. Then V = W. 

Proof. This is an immediate consequence of standard uniqueness 

results for solutions of differential equations. 

Another pleasing consequence of lemma 3.15 is that the 

dimension of the space of all group linear systems on a Lie group 

G is finite, exactly as in the case of linear systems. This is a 

property of the space of all linear systems (of a given 

dimension, with a given number of outputs and inputs) which is 

important in identification problems. 

3.16. Proposition. Let G be an n-dimensional Lie group. Then 
m 

the space of all systems x = a(x) + l u.ei(x) satisfying (3.3), 
i=l l. 

2 (3.4) is of dimension ~ n + n + mn. 

Indeed, the control vectorfields e., i = 1, ••• , m account 
l. 

for mn dimensions. The vectorfield a induces an endomorphism of 

the n-dimensional vectorspace °t' the Lie algebra of G and is 

uniquely determined by this endomorphism and its value a(e) 

(by lemma 3.15). Note that if G = ~n then the upper bound 

n 2 + n + mn is reached. It is maybe also worth noticing that the 

control systems (3.2) satisfying (3.3) - (3.5) are automatically 

analytic. 

3.17. Remarks. Thus the familiar linear systems x =Ax+ Bu 

and the systems (3.7) are the extreme examples of the class of 

group equivariant systems, corresponding respectively to the 

abelian and semi-simple cases. Their theory though exhibits 

considerable similarly which gives reasonable grounds for 

optimism for the whole class. 
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The following example shows that there are nontrivial 

intermediate cases. 

10 

3.18. Example. The Heisenberg group. Let H be the following 

subgroup of GL 3 (~), the socalled Heisenberg group 

(3.19) H 
1 

{ ( 0 
0 

x 
1 
0 

z 
y) 
1 

x,y,z E ~} 

Using the global coordinates given by this embedding one finds 

that all the left invariant vectorf ields are linear combinations 

of 

(3.20) a 
ax· 

and that the vectorf ields a which have the property that for all 

the Lie algebra spanned by b 1 , b 2 , b 3 are 

linear combinations of b 1 , b 2 , b 3 and the six further 

vectorf ields 

a a a + 1 2 a a 
x 

dX 
y ay' x 

ay 2 
x 3z' x 

(lz 

(3.21) a 1 2 a a l_ + a 
y ax + 2 

y a-z· y az· z 
az y 

ay 

3.22. A slight generalization. Complete vectorfields and a 

theorem of Palais.Let M be a differentiable manifold such that 

there is a finite dimensional Lie algebra of vectorfields msuch 

that the vectors V(x), VE m span the tangent space TxM for all 

x E M. If dim m = dim M this makes M parallellizable of course. 

Now consider systems of the type 

(3.23) et(x) +I u.S.(x) 
1 1 

with et such that [et,m] cm, S. E "N"l • Suppose that the 
1 

vectorfields et,S. are all complete. Then the Lie algebra 
1 

generated by et and the S. is finite dimensional (it is contained 
1 

in -m. +~a.) and it follows from a theorem of [Palais, 1957] (as 

was pointed out to me by Roger Brockett) that there will be no 
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finite escape time phenomena for (3.23) (for bounded inputs 

ui(t)). 

3.24. Reachability Conditions. Both for group linear systems 

and the slight generalization mentioned just above one expects to 

find pleasing conditions for reachability/controllability, (and 

observability, invertability) guided and stimulated by the 

results of[ Brockett 1972], [Jurdjevic-Sussmann 1972], [Hirschhorn 

1977] and of course the results of the linear theory. The most 

natural, coordinate invariant object to consider with respect to 

controllability is probably the Lie-sub-algebra of generated by 

the adia.($.), j = 1, ••• , m;i=0,1,2, •••• 

Here ad 0 a(~) = $, adia.($) = [a,adi-la.($)], i = 1,2, •••• One has 

e.g. 

3.25. Proposition. Let x = a(x) + r uiei(x) be a group 

linear control system on the Lie group G with Lie algebra, and 

suppose that a.(e) = O. Then the system is weakly locally 

reachable around e iff the Lie algebra generated by 

the adia.($j), j = 1, ••• , m; i 0,1,2, ••• is equal to'{f.Here 

locally reachable around e means that for every open 

neighbourhood U of e the set of points reachable from e such that 

the trajectory does not leave U contains e in its interior. The 

sufficiency of the condition for weak local reachability at e is 

wellknown, cf. e.g. [Hermann-Krener 1977]. Here "weak" means that 

one is allowed to travel backwards along the 
i 2 a 

(negative time). The example a= 2 x az + x 

Heisenberg group (cf. 3.18 above) shows that 

vectorfield a 
a a 
~ e = ~ on the ay' ax 
"weakly" cannot be 

removed from the statement of the proposition. If all $ 1 s are in 

the centre of Dj (cf. (4.27) below) then weakly can be removed by 

a result of Hirschhorn. 

The proof of the necessity of the condition is most easily 

done via connections and a sketch is postponed till we have 

discussed these. That proof in fact yields the stronger result 

that all trajectories remain in the connected subgroup H of G 
i corresponding to the Lie algebra generated by the ad a.($.), 

J 
so that being able to move far away does not improve the 
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reachability, precisely as in the case of linear systems. 

4. CONNECTION LINEAR SYSTEMS. 

a 
To be able to say how a vectorfield E fi(x) changes as x ax. 

varies on a general manifold we need the idea of a ~onnection (or 

covariant differentiation). 

4. 1 • 
00 

Connections. Let M be a C -manifold; V(M) the Lie 

algebra of 
00 00 

C -vectorfields on M; F(M) the algebra of C -

functions on M. A linear connection on M hy definition assigns to 

each X E V ( M) a de r iv at ion V X : V ( M) + V ( M) , of V ( M) as a F( M) 

module; i.e. a map VX which satisfies 

( 4. 2) X(f)V + f'VX(V), f € F(M), V € V(M) 

Moreover the assignment X + VX must satisfy 

( 4. 3) 

a 
ax. 

]. 

vfX+gY = fV'x + gVY, f,g E F(M); y E V(M) 

4.4. Example. Canonical connection on ~n • Assign to 

€ V(~n) the derivation 

( 4. s) 
a 3f · a 

E f .(x) ~- + L ~-J (x) ~-
J ax. ax. ax. 

4 • 6 • Torsion and Curvtlture. Gtven a cdnnection V on M its 

torsion and curvature t8nsors are defined by 

( 4. 7) T(X,Y) 

( 4. 8) 

The manifold with connection (M,V') is said to be torsionfree if 

T(X,Y) = 0 and flat if R(X,Y) = 0 (in some texts the terminology 

"flat" is supposed to imply also torsion free). The canonical 

connection on Rn is both flat and torsionfree. 
= 

4.9. Geodesics and Completeness. Let y: (a,b) + M be a curve 

in M. It is called a geodesic if VX(X) = 0 along y where X is the 

vectorfield y(t), i.e. dy(~t),along y(a,b) CM. 
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Given m € M, v E TmM there is a unique (local) geodesic 

y: (a, b) + M, 0 € (a, b) such that y(O) = m, y(O) v. The 

manifold with connection (M,V) is called complete if every 

geodesic can be extended indefinitely. 

4 • 1 0 • Flat , tor s ion free man if o 1 d s • Let ( M, V ) be a f 1 at , 

torsion-free manifold with connection. The universal covering 

space M of a manifold with connection carries a natural 

connection V (cf. e.g. [Wolf, 1976]) and if (M, V) is flat torsion 
~ ~ n 

free then (M,V) is diffeomorphic to (~ ,V 0 ) where 17 0 is the 

canonical connection on Rn described above in example 4.4. 

More precisely let En be the Lie group of affine motions of 

~n, i.e. E(n) = ~nx ~~n(~) as a space acting on ~n by 

(x,g)(v) = x + g(v), which also defines the group action on En. 

Then every f 1 at , tor s ion free , connected man if o 1 d M with 

connection is diffeomorphic to Rn/r where r is a discrete = 
subgroup of En acting properly discontinuously, so that M is a 

product of a torus and an ~m 

In particular if (M,V) is flat, torsion free, connected and 

simply connected then M = ~n with the canonical connection (up to 

connection preserving diff eomorphism) and this gives a not very 

practical answer to the question of what makes a system (2.3) 

linear up to diffeomorphism (neglecting outputs). This will be 

the case if and only if there is a flat, torsion free 

connection V such that VS. = 0 for all i and all vectorfields V 
1 

(such vectorfields are called constant) and VXa is constant for 

all constant vectorfields X and finally there is an equilibrium 

point for zero controls. 

4.11. Connection Linear Systems. This brings us quite 

naturally to the definition of a connection linear system. A 

control system 

(4.12) 

on a manifold with connection (M, V) will be called connection 

linear> if 

(4.13) OallVEV(M) 
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so that the ei are constant vectorfields, and 

(4.14) V a = constant for all constant vectorfields X. x 

It would I think perhaps be even more interesting to 

consider the class of control systems (4.12) which satisfy (4.13) 

and 

(4.15) [a,V] constant for all v. 

War~ing. On an arbitrary manifold with connection (M,V) there may 

very well be no constant vectorfields other than the zero 

vectorfield. 

A last interesting class of connection defined systems, more 

or less analogous to 3.19 above, consists of systems (4.12) such 

that the $. belong to a finite dimensional Lie algebra m such 
J. 

that the m(x) form a basis (or span) TxM for all x € M and which 

satisfy 

(4.16) 

In the case of a connected, simply connected, flat torsion 

free manifold both (4.13) + (4.14) and (4.13) + (4.15) lead to 

control systems x = a + Ax + Bu. If the manifold with connection 

(M,V) is connected, flat, torsion free (but not simply 

connected) then these conditions result in the class of systems 

described by Roger Brockett in these proceedings (and some of 

these naturally occur in engineering, loc. cit.). 

4.17. Intermezzo on foliations and distributions and the 

distributions defined by a control system.A foZiation of an n-

dimensional manifold M by q-dimensional submanifolds is a 

collection of q-dimensional submanifolds (called the leaves) such 

that through every x e M there passes exactly one leaf and such 

that locally around every point the partitioning of M by the 

leaves looks like ~n partioned by the 

q { R0 •• O} a+- R ac x E x = ••• = x = 
= ' = 1 q ' 
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Rq = {x E Rn: x = ••• = x = 0}. 

n = = q+l 
A distribution of dimension q on M assigns to every x € M a 

q-dimensional subspace D(x) C TxM of the tangent space of M at x 

such that D(x) varies differentiably with x. 

Obviously a q-dimensional foliation defines a distribution, 

the viz • x + T F where F is the unique leaf of x x x 
foliation 

passing through x. Such distributions are called integrable .They 

have the following property (obviously): if X, Y are two 

vectorfields on M such that X(x), Y(x) E D(x) for all x then also 

[X,Y](x) € D(x). Such distributions are called i.nvolutive .It is a 

theorem of Frobeni us that such dis t ri bu tions are integrable, 

i., e., come from foliations. 

Now consider a control system (2 .3). For each x € M define a 

nested series of subspaces of the tangent space TxM 

(4.18) 
j = o, •.. ,i; k = 1, ••• , m 

If the s y s t em ( 2 • 3 ) is 1 in ear the Bi form a n e s t e d s y s t em of 

integrable distributions. And inversely [Brockett 1979] for a 
n cont r o 1 s y s t em ( 2 • 3 ) on ~ , if dim B1 ( x) is co n s tan t as a 

function of x (so that the Bi are distributions) and these 

distributions are all integrable then the control system is 

linear up to nonlinear feedback (and nonlinear base change in 

input and state space). 

There is a version of the results described in 4.10 above 

relative to a foliation [Blumenthal, 1980] (in which the 

conditions are stated in terms of a connection "adapted to" the 

foliation, a socalled basic connection) which - it seems to me -

will be worth considering in this constant (e.g. to obtain 

similar results on more general spaces 1 ike the ~ n / r, r a 
n 

discrete subgroup of~ x GL0 (~)). 
4.19. Parallel displacement. Let (M,V) be a manifold with 

connection. Let X € V(M) and y: [a,b] +Man integral curve of X, 
a 

i.e. dy(at) = X(y(t)) for all t € [a, b]. Let Y be another 

vectorfield. The vectorfield Y is called par>allel along y if 
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VX(Y)(y(t)) = 0 for all t. This definition does not depend of 

course on the vectorfield X but only on y. This notion can be 

used to identify the tangent spaces TxM for x c y[a,b] (parallel 

displacement along y) with v e: TxM corresponding to v' E Tx, M iff 

there is a parallel vectorf ield Y along y with 

v = Y(x), v' = Y(x'). 

4.20. Intermezzo on Riemannian manifolds and the Levi-Civita 

conn~ction. A pseudo-Riemannian (resp. Riemannian) manifold is a 

manifold equipped with a nondegenerate (resp. positive definite) 

symmatric bilinear form on each tangent space TxM which varies 

diffarentiably with x. Given a pseudo-Riemannian manifold there 

exiscs a unique torsion-free connection which preserves the 

bili~ear form (inner product) under parallel displacements along 

geodesics. This connection is called the Levi-Civita connection. 

It will perhaps be advantageous to analyse connection linear 

systems first for connections of this type. 

4.21. Group--linear versus connection linear systems. 

Now let G be a Lie group. More generally similar things can be 

discussed for homogeneous spaces. There are at least three rather 

special connections on G which stand out and seem to deserve 

special attention. All 

connection 

three are left-invariant where a 

V on G is called left invariant if for all X,Y e V(M) we ~ave 

(4.22) 

where I have simply written a for the left translation 

L : G + G, g + og • a 
Left-invariant connections on G correspond biuniquely to 

bilinear forms o:: °i x °! + OJ- , where o; is the Lie algebra of G. 

Here o: is simply equal to a(X,Y) = V~(Y) (e), where X,Y are the 

left-invariant vectorfields whose taagent vectors at e € G are 

equal to X, YE°! 

this. 

respectively. Cf. e.g. [Helgason 19781 for 

Let v1 ,v 2 ,v 3 be the three connections on G defined by the 

bilinear forms 
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(4.23) 1 
a (X,Y) 0 (the zero-connection) 

(4.24) 2 
a (X,Y) [ x. y] (the + connection) 

(4.25) 3 
t[X,Y] (the connection) a (X,Y) -

1 
Under V the constant vectorfields are precisely the left-

invariant ones. So that using v1 conditions (4.12) and (4.14) 

t o g e the r p re c i s e 1 y d e f i n e what we c a 11 e d a gr o up 1 i near 

system in section 3 above. 

v3 is the only torsion free connection among these 3 and 

seems to be by far the most natural torsion free connection on G. 

It is perhaps worth remarking here that there exist no left

invariant torsion free flat connections on reductive homogeneous 

spaces ([Doi 1979], cf. also [Matsushima-Okamoto 1979] for the 

case of real semisimple Lie groups. This very nicely 

distinguishes ~n from the reductive homogeneous spaces (such as 

Bn '- {0}, the natural state space of bilinear systems). 

- Finally v2 is such that V~(V) is left-invariant for all left 

invariant X if and only if [X,V] is left-invariant for all left

invariant X so that under v3 conditions (4.16) and (4.4) are 

equivalent, cf. also 4.15. 

Indeed any vectorfield Yon G can be written as l fi(x)Xi 

where x1 , ••• , Xn is a basis for~. So that for X E C1J 

V~(Y) :E X(f. )X. + :E f. [X,X.] 
. 1 1 . 1 1 
1 1 

On the other hand :E X((f.X.)(<j>)) - :E f.X.(X(<jl)) 
1 1 1 1 

[X,Y](<j>) 

:E X(f.)X.(cp) + :E f. X(X.(<jl)) - :E f.X.(X(<j>)) So that for the+ 
1 1 1 1 1 1 

connection, 

(4.26) vi(Y) = [X,Y], X E Of , YE V(M). 

However, under v2 the left-invariant vectorf ields are 

longer the constant ones, so that if G is noncommutative 

"connection linear" systems and "group linear" systems are 

no 



different objects. 

But of course the vectorfields in the centre of' are 

constant. This defines a special class of systems 

(4.27) 
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with 13 1 E Z( °l ) , the cent re of UJ' and [a, °i] C l!J' • This class is 

intermediate between linear systems and group linear (and 

bilinear) systems and certainly will repay detailed further 

investigation. I would also not be surprised if this class 

yielded further examples of finite dimensional estimation 

algebras (cf. section 6 below for this notion). 

4.28. On the necessity of the controllability condition of 

proposition 3.25. 

Consider a group linear control system on the Lie group G. Let H 

be the connected Lie subgroup of G corresponding to the sub Lie 

algebra 'f) of Uj generated by the adia.(6j) E OJ' • We show that any 

trajectory starting in e E G remains in H. To see this consider 

the + connection on G. First notice that this connection 

restricts to a connection on H so that parallel displacements of 

vectors tangent to H at e along a curve y in H results in vectors 

in Ty(t)G which are tangent to H. Now let h E H and y a curve 

from e to h = y(!) in H. Then identifying tangent vectors in the 

various tangent spaces to G along y by means of parallel 

displacement along y we have 

a(h) 
1 

a(e) + J (Vy'(t)a)(y(t))dt 
0 

(cf. [Helgason 1978, thm 7.1, page 41). 

Now y'(t) E Ty(t)H' a(e) = 0 and VXCl = [X,Cl] by (4.26) and [a,frJ 

C 'fr and it follows by the remark made above that Cl(h) is 

tangent to H (at y(l)), so that a(h) + t u 1 6i(h) is in 

ThH C ThG for all h € H. 

4.29. Another example. Consider the linear Lie group G 

consisting of all 2 x 2 matrices of the form (~ ~), x,z E ~, 
x > O. The Lie algebra a; of G consists of all real 2 x 2 

matrices of the form (~ g). In the coordinates x,z the invariant 
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vectorfields are linear combinations of 

a a 
x 3x' x az 

and the vectorfields a such that [a, OJ] C °! and a(e) 

linear combinations of the three vectorf ields 

0 are 

xtnx a z a _a_ - x a 
3x' 3z' 3z az 

5 • FI BRE LINE AR SYS TE MS • 

A rather different class of nonlinear systems with enough 

special structure to make one optimistic is what I like to call 

fibre linear systems. As 

state x can be partioned 

according to 

( 5 • 1) *1 = Alxl 

an example consider a system whose 
xl 

into two parts x = ( ) evolving 
x2 

+ Bl ul ' xl e. ~ 
nl 

. 
A2 ( x 1 'u 1 ) + B2 ( x 1 u 1 ) u 2 ' 

n2 
x2 x 2 E R 

= 
( 5. 2) 

total 

where A1 and B1 are constant matrices and A2 and B2 depend only 

on x 1 and u 1 • Thus the total system consists of an ordinary 

linear system on the base and the state and controls of this 

influence the systems in the fibre which are also linear given 

x 1 ,u 1 • One can of course even write down the input-output map of 

such a system explicitly (more or less). 

More generally the first system in the base can itself be 

nonlinear, perhaps itself a fibre linear system with linear base 

giving rise so to speak to a three stage tower of linear systems. 

Generalizations on arbitrary rather than trivial vectorbundles 

now are easy to define. 

5.3. The Heisenberg group again. Consider the Heisenberg 

group H example of section 4 above again. 

Write x 1 = (x,y), x 2 = z. Then for all the group linear systems 

on H, x 1 evolves as a linear system and given x 1 then z = x 2 

evolves as a slightly generalized linear system 
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So that these systems are also fibre linear with linear base. 

This is a general phenomenon: every group linear system on a 

unipotent Lie group can be considered as a tower of linear 

systems in the sense suggested above. 

6. REMARKS ON FILTERING FDR GROUP-LINEAR SYSTEMS. 

Consider the general nonlinear filtering problem (Ito 

equations) 

( 6 • 1) h(x )dt + dv , 
t t 

where wt,vt are independent Wiener noise processes also 

independent of the initional random variable x 0 • Here h,f,G are 

vector and matrix valued functions of the appropriate dimensions. 

Given enough regularity so that the density of the p(x,t) of 

xt E[xjys,O is it], the conditional state at time t given 

the observations yt = {:'s 0 S. s S. t} exists, a certain 

unno~malized version p(x,t) of p(x,t) satisfies the socalled 

Duncan-Mortenson-Zakai equation (which is driven by the 

observations) 

( 6. 2) dp 
i a2 r a 
2 _E .ax.ax.((GG )ijp) - E -a~(f.p) 

i,J i J i xi 1 

1 2 
- - E h.p - E h 1.dyi. 

2 i ]_ i 

(cf. e.g. [Davis-Marcus 1981) for a derivation of this equation). 

This equation is in Fisk-Stratonovic form. The Lie algebra 

generated by the differential operator 

£ 
i a2 T a i h2. 
-2 .E. a a (GG ) .. - E -~~ f]_. - 2 L 

i,J x 1 xj 1J i ox 1 i i 

(where (GGT)ij is the (i~j)-th entry of the matrix GGT, fi, hi 

the i-th component of the vector f,h) and the operators 

(multiplication with) h 1 , h 
p 

is called the estimation 
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algebra. It is likely to be of considerable importance in the 

analysis of the filtering problem (= building finite dimensional 
A 

systems driven by the observations which produce xt as outputs), 

cf. [Brockett 1981], [Hazewinkel-Marcus, 1980] and several more 

papers in [Hazewinkel-Willems, 1981]. 

The most general group linear stochastic Ito equation on the 

Heisenberg group is 

( 6. 4) 

m 

+ 
i=l 

dw. 
1-

dt 

a 1 , ••• ,a 6 ; bji E !}, and the most general observation equations 

coming from a group homomorphism H ? R are of the form 

( 6. 5) 

6.6. Proposition. Consider a system on the Heisenberg group 

given by a signal equation of type (6.4) with observation 

equations of type (6.5). Then the observation Lie algebra is 

always pro-finite dimensional. 

A Lie algebra L is pro-finite dimensional if there exists a 

sequence of ideals L1 .::::> L 2 :J ••• such that L/Li is finite 

dimensional for all i and n L. = 0. Cf.e.g.[Hazewinkel-Marcus, 
1-

1980] for a number of remarks on the relevance of this property 

for filtering problems. 

Indeed writing out the various operators explicitly one 

observes that they are sums of operators of the type 

a as ai 
i 0,1,2 ••• ; I al , I~ I < 2' x s i ax az xl 
x == (x ), z == X3 

2 



22 

where 13 a and f3 are multi indices I al = a 1 + a 2 • The operators 

xa ~' jaj, Jf3/ .i 2 span a finite dimensional Lie algebra LS 2 
dX 

(of dimension 15) so that the estimation algebra is a subalgebra 

of the "current-algebra" 

which is of course profinite dimensional. As a finite dimensional 

Lie algebra LS 2 can of course be embedded in a Lie algebra of 

vectorfields on !N' some large N) and this then easily gives rise 
a 

to an inbedding of the current algebra LS 2 0 ~Ca-zl· In this case, 

however, there exists an inbedding of LS 2 modulo its centre in 

the vectorfields on ! 5 which comes from all Kalman-Bucy filters 

put together (and is closely related to the Segal-Shale-Weil 

representation), cf. [Hazewinkel, 1981], which is more likely to 

be useful. 

(A result like pro~osition 6.6 holds generally also for 

higher dimensional Heisenberg groups (and hence for all 2-step 

nilpotent Lie groups) and I would like to pose the question 

whether it holds for every fibre linear system with linear base 

(and suitable output maps "linear" in the fibres). 

Things change dramatically if instead of using observation 

like (6.5) one uses an observation equation 

( 6. 7) dy 

E.g. the system 

(6.8) 

a 
has the Weyl algebra w1 = ~<x 1 ,ax-> as a subalgebra. This is 

perhaps not surprising because th~ map Cx 1 ,x2 ,x3 ) + x 3 is not 

"homogeneous" with respect to H. Indeed there is no action of H 

on ! which makes this map H-equivariant. There is an action of H 



first sight, would make an observation equation like 

(6.9) 
dyl 

(dy ) = 
2 

permissible, and this would also give a subalgebra w1 in the 

estimation Lie algebra. However, in (6.9) the noises do not enter 

in a group-equivariant way. To achieve that one needs observation 

equations like 

(6.10) ( x2)dt dvl 
X + (x dv ) 

3 1 1 

And this raises the general question of obtaining a D-M-Z type 

equation for an (unnormalized) conditional density for more 

general systems 

(6.11) dx f(x)dt + G(x)dw, dy = h(x)dt + J(x)dv 

With this open question I would like to conclude this paper. 
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