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ABSTRACT. One striking aspect of the class of linear systems 1is

that the controle enter in a way which is independent of the
state; that is they are homogeneous, w.r.t. the underlying
vectorspace (additive Lie group) structure as far as

are concerned,

the controls
and the autonomous term enjoys reminiscent but not
identical "homogeneity properties”. Another class of systems
which enjoys such properties is the class of systems on Lie
groups and coset spaces (E.g. § = (A+£uiﬁi)g, g€ UL o, A,
B1 € gln) studied by Brockett, Jurdjevic-Sussmann, Hirschhornm

and others. However, in the case the Lie group G {s the additive
group this class does not specify to the familiar class of linear

systems (but to k¥ = a + zuibi' a, b1 € §n). Yet the analysis of

these two classes of control systems suggests certain "family'
characteristics.
In this paper 1 discuss several aspects of classes of
'systems, which in one-way or another - there are several
different choices cne can make ~ generalize both the familiar

linear systems and the class on Lie groups mentioned above.
1. INTRODUCTILON.

This paper, or more precisely the research prograe which
thies paper tries to describe, resulted from the fullowing two
considerations: (i) nonlinear systems theory in general {s, at
the moment, too difficult and - as a research area - not well
enough structured: we have relatively little feellng for the
right problems and questions to ask and perhaps ltttle intuizivn

for the phenomena (pathologies) which car weeur, arnd (11) if

3
ih
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LOG one changes either L,  or G things get unstuck immediatelv
and rather severely; tne tnree 1nteract ratner closely and it

seems to follow that to find interesting generalizations all

three at once must be adjusted (changed) simultaneously and in a
compatible manner.

The lines above are of course the personal opinion of the
present author; they may not, as far as I know, reflect the
consensus, if such an unlikely thing exists, of the systems theory
community. ‘

A situation as described in (1) above is not unusual in g
mathematics. It has occurred before, e.g. in the theory of
Riemannian manifolds. In this particular instance the theory of
symmetric spaces came to the rescue. To quote from [Helgason,

1962] (or the revised 1978 edition):

"By their definition, symmetric spaces form a special topic
in Riemannian geometry; their theory, however, has merged with
the theory of semi-simple Lie groups. This is the source of very
detailed and exhaustive information about these spaces. They can
therefore often gserve as examples on the basis of which general
conjectures in differential geometry can be made and tested ".

At the same time symmetric spaces are general enough to
serve as a real testing ground.

It seems to me that nonlinear systems and control theory
could do with a class of examples like that. And the classes of
"homogeneous™, but nonlinear systems described below are mainly
intended (by me) as a possible testing ground for ideas, Q
conjectures and concepts in general nonlinear system theory. i
Special cases, though, do occur naturally in science and
engineering, cf. e.g. [Brockett,1972] in connection with theorem
3.14 below.

Consideration (i1) above also points naturally to Lie groups
and homogeneous spaces {and some kind of "homogeneous'

system on
them) as a natural possible class of candidates for gemeralized
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LQG. Especially in view of the theory of "Gaussian processes"” on
general Lie groups based on Bochner's theorem and a definition of
positive definite function which makes sense on any Lie group.

The main philosophy behind what is described below 1is to
study linear systems on gn and to formulate their characteristic
properties either in terms of the additive Lie group gn or in
terms of the natural connection on 5“. Not surprisingly these two
possible characterization give rise to different possible
generalizations when these characteristic properties are
formulated for general Lie groups (and homogeneous spaces), even

.when we restrict attention to (left-) invariant connections on
Lie groups.

Two classes of systems arise this way: "Group linear
systems" and "connection linear systems"”. 1In addition there is a
small section on a third class of systems: "fibre linear
systems". The "connection linear systems" discussed below are in
the torsion-free, zero-curvature case precisely the systems
discussed by Brockett in this volume.

What follows below is an outline of a research program
rather than a full grown paper. In particular, also to avoid
excessive length, I concentrate on ideas and concepts, and proofs
are only sketched. A more complete (and longer) account will,
hopefully, appear in the future.

All manifolds in the following will be C~ and so will all
functions and vectorfields defined on them. If M is a

c¢” -manifold F(M) denotes the ring of R-valued ¢” ~functions
(i.e. infinitely often differentiable functions) on M and V(M)
'denotea the Lie-algebra of all CD ~-vectorfields on M,

2. WHAT MAKES A LINEAR SYSTEM LINEAR

The reason we are asking this question is that we are
interested in formulating the conditions for linearity of a
systea 1n such a way that natural generalizations on
(noncommutative) Lie groups suggest themselves. lLet us consider

the familiar class of linear systems on gn
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(2.1) x = Ax + Bu, y = Cx

and see whether we can capture its characteristic properties in

some "coordinate free way'. If ¢ : B“ + gn is any diffeomorphism,

then the nonlinear state space transformation z = $(x) transforms

(2.1) into a set of highly nonlinear looking equations, viz.
. -1 ~1 -1
(2.2) o= (Je)(4 "(2))(A¢ "(z) + Bu), y = C¢ (z)

where (J¢)(x') 1is the Jacobian matrix of ¢ at z'., These equation.
still have the form

(2.3) % = a(x) + ‘f By(x)u,n y = y{x)
i=1

where a,Bi, i = 1l,...,m, are vectorfields on En and Yy 18 a
anonlinear function Bn + Em but beyond that there 1is little at
first sight which might tip one of that we are really dealing
with a linear system written down in the wrong coerdinates. Up to
nonlinear state space equivalence and nonlinear feedback the
question of when a system like (2.3) is linear has been
considered and solved by [Brockett 1978}, and an answer to the
question whether a system (2.3) i1s locally like (2.1) 1is given by
[Krener 1973] in terms of the Lie-algebras generated by the
vectorfields a(x),ﬁi(x) (locally around 0).

As & very small simple example consider the example with A
-G re (D, 0= (2,00 ta (2.1) and z = g(x)

given by the diffeomorphism ’
X 1+x2+2x x2+x +x“
( l) . 2 271 71 71
%, z = ( 2 )
2 x2+x1

which gives us the system

.

i - . 2 q1-52 - .22
2, 222+(4+6z2+822)(zi 1 z2)+(4z2 2)(zl 1 zz)

R e 2.3 ] _ 2
2.9) 81.2(2l 1 zz) + {(2+2z2) + 6;2(21 1-:2))u

2

—~

) 2 . 2
z, = (3+ﬂ22)(zl—1—22) + L(z1~1~zz)

. 2.3 2
—4(71—1-22) + (221—1-222)u



127

Returning to our original system (2.1), viewing it as a

special case of systems of the form (2.3), and concentrating for

the moment on the input part the following
properties”™ could be noticed

"homogeneity

(2.6) The input vectorfields Bi(x) are invariant with respect

to the group structure.

This means the following. Let M be a Cm—manifold, F(M) the

ring of ¢“-functions on M. Then a vectorfield on M is a

derivation X: F(M) + F(M), i.e. an R-linear map with the

property X(fg) = X(f)g + f£X(g). Let ¢ be a diffeomorphism

M + M, then thgltranslated !fctorfield X0 is defined by

(X’)(f) - (Xfo )Q where f0 = f o Q—lt If ¢ is a Lie group

then X 1s said to be left invariant {f X % w X for all o € G

where Lc stands for the diffeomorphism g + og, g € G.

Indeed a vectorfield on gn can be written

as

(2.7) x o= (0
‘ i Ix

i

Lo n

Then the requirement that X = X for all o € R becomes
3f ¢ 3f
(2.8) 1 £ (x-0) i, (x) =} £,00) 5~ (x)

for all functions f (and for all o € gn). This means that
the fi(x) in (2.7) must be constants so that the left invariant
vectorfields in g“ are precisely the vectorfields

5 bi 33—, bi € R which are the vectorfields multiplying the
L X =
controls in (2.1).

The "vectorfield Ax", or more precisely the vectorfield

2
éx

(2.9) alx) = ) () a,.x,)
{ 3 1373

does not have an equally obvious invariance property. But it does

have the property
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{2.10) Let 0y be the Lie algebra of left invariant vectorfields
on En’ then [a,X]éO) for all xeq .

The obvious generalization of properties (2.6) and (2.10)
will define the class of what I like to call "group linear
systems”. They will be discussed in some more detail below in
section 3. At the moment they are my favourite class of
"nonlinear but homogeneous systems”,

A totally different way of saying that the vectorfields

61<‘) in (2.1) are as they are 1is to remark that the

coefficients by in ‘
(2.11) Y b =g (x)
/ 13 3x, 1
]
" B " -
do not vary with x, i.e. that ry bik 0 all k,j. This

concept,however, 1is not defined 03 general manifolds but requires
2 "manifold with connection"” to be properly defined. This will
lead to "connection linear systems” a second class of nonlinear
but homogeneous systems which will probably repay detailed study.
Connection linear systems and their relation with group linear

ystems are the toplc of section 4 below.
3. GROUP LINEAR SYSTEMS.

3.1. Definition of Group Linear Systems. Let G be a Lie

group, finite dimensional and X a homogeneous space for G, f.e. X
= G/H where H i8 a closed subgroup of G. Let m be the Lie algebra
of G invariant vectorfields onm X. (This is a Lie algebra because
iv?,
M and any diffeomorphism ¢: M + M ). A group

V;] - [Vl,vzl¢ for any two vectorfields Vl,vz on a manifold

linear gysten
on X now looks like

3. x = alx) + ) B, ()uyy y = v(x)
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(3.3) Bi(x)é wm for all i,
(3.4) [a,Bl & m for all Bem
(3.5)

Y i8 a collection of quotient maps X + G/l(j

where KJ is 8 closed subgroup of G containing H.

3.6, Example. Translation Invariant Systems. An example is

afforded by the systems on Lie groups and spheres studied by
[ Brockett 1972,1973], [Jurdjevic~Sussmann, 19727,

[Hirschhorn
I 1977). Let G be a closed subgroup of GLn(g) and % the Lie algebrs

of G, viewed as a subalgebra of gzn(g). Consider systems of the
form

.

g = s(A+ § Bud, vy = v(g) = Ke

The invariant vectorfields on G are the vectorfields gC, C£l7

»
or more explicitly the vectorfields 2 814 4k %ﬂ~w
1,9, FiTdk By,
(restricted to G) in the coordinates g;j,..-,8,, fOT gkn(g)

More precisely translation invariant systems are of the form

(3.7) § = alg) + 1 8,(gluy, v = ¥(g) = gk,

where a,ﬁi are left invariant vectorfields, and K is a closed
subgroup of G.

3.8. Example. Bllinear systems. Let X = 5“ {0} and view X

' as a coset space for GLn(g) by letting GL1(§> act on 5“ in the
1}
usual manner, i.e. X = GLn(E)/H where H is e.g. the stabilizer of

e;; that is H is the subgroup

1 0 n-1 . N
B -((x y):x ER O, >E‘”a-1@>*-
Then the vectorfields Ax, B.x are
right invariant under GLn(g), so that (module right invariance

versus left invariance) the familiar bilinear systcms

(3.9) x = Ax + ) (81X)ul’ y = Cx
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are examples of group linear systems. This also makes it

probable that the complete study of group 7Jinear systems

will not be a totally trivial matter. Note that the equilibrium

point x = 0 has been rewoved in the above set up. Results

pertaining to this approach to bilinear systems can be found in

"Hirschhorn 1977]}.
3.10. Remark. Consider gn as a (vector) Lie group, and
consider the systems of type (3.7) on it. E.g. embed Bn by

I X

x n ) € GLn+I(§). This gives us systems of the form
0 1

1301 %= a+ | bu, a b €R" y= Cx

{.e. not the class of systems X = Ax + Bu, y = Cx. This accounts

to some extent for the lesser elegance of the results in the

tnhomogeneous case (A ¥ U) with respect to the homogeneous case

{A=U) 1in the controllability/reachability results of [ Brockett

1972, Jurdjevic-Sussmann 1972].
3.12. Proposition. Consider En as a Lie group. Then the

¢

;roup linear systems (according to definition 3.1) on En are

the systems of the form

(3.13) X = a + Ax + Bu, y = Cx,
a €R", & €3t (R), BE R, c e P

Proof. Easy exercise. Indeed let a(x) = 2 fi(x) %;—.

Then [a(x), %;-] left invariant, f.e. constant, meina

]
(%§~ fi)(x) = 0 for all i,j and the result follows.
]
3.14. Theorem. Let G be a semi-simple or compact Lie group.
Then every group linear system over G 18 of the form (3.7).

¢

Proof. lLet G be semisimple and let (L) be a system of type (3.2).

Let q'be the Lie algebra of G viewed as a subalgebra of V(G) the

Lie algebra of all vectorflelds on G. The vectorfield a has the

property (a,q ] ¢ % and hence defines a derivation of G -

Because % is semi-simple every derivation of q 18 inner 8o that
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The following example shows that there are nontrivial
intermediate cases.

3.18. Example. The Heisenberg group. Let H be the following

subgroup of GL3(§), the socalled Heisenberg group

1 x z
(3.19) H={(0 1 yjtx,y,ze R}
0 0 1

Using the global coordinates given by this embedding one finds
that all the left invariant vectorfields are
of

linear combinations

3 3
3.2 -3 -2 3 ]
(3.20) Py T 3% P2 Tyt X3z Pyt

z

and that the vectorfields a which have the property that for all
1 = 1,2,3, [&,bilé & , the Lie algebra spanned by by, b,, bg are
linear combinations of b;, by, by and the six further
vectorfields

S TR W T W S T
3x y y’ dy I P 2

(3.2 a . L 23 3 a3
Y 3x 27 9z Y Gar F oz y 3y

3.22. A slight generalization. Complete vectorfields and s

theorem of Palais.Let M be a differentiable manifold such that

there 18 a finite dimensional Lie algebra of vectorfields M such
that the vectors V(x), V€& mM span the tangent space T /M for all
x € M. If dimm = dim M this makes M parallellizable of course.

Now consider systems of the type
(3.23) X o= alx) + ] u 8,00

with a such that [a,m]c m , Bie ™M . Suppose that the
vectorfields u,e1 are all complete. Thea the Lie algebra
generated by a and the Bi is finite dimensional (ft is contained
in M +Ra) and it follows from a theorem of [Palatis, 1957] (as
was pointed out to me by Roger Brockett) that rrese will be no

finite escape time phenomena for (3.23) (for bhounded inputs
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ui(t)).

3.24. Reachability Conditions. Both for group linear systems
and the slight generalization mentioned just above omne expects to
find pieasing conditions for reachability/controllability, (and
observability, invertability) guided and stimulated by the
results of[Brockett 1972}, [Jurdjevic-Sussmann 1972], [Hirschhorn
1977] and of course the results of the linear theory. The most
natural, coordinate invariant object to consider with respect to
controllability is probsbly the Lie-sub-algebra of o generated by
the adia(ﬁj). Jom 1, e, m3i=0,1,2, .00
Here ad®a(B) = 8, adiu(B) - [a,adi—lu(s)], i = 1,2,... . One has
e.g.

3.25. Proposition. Let x = a(x) + I uisi(x) be a group
linear control system on the Lie group G with Lie algebra, and
suppose that a(e) = 0. Then the system is weakly locally
reachable around e 1ff the Lie algebra generated by
the adiu(sj), J= 1, cee, @i to= 0,1,2,... is equal togy.Here
locally reachable around e meane that for every open
neighbourhocod U of e the set of points reachable from e such that
the trajectory does not leave U contains e in ‘#ts interior. The
sufficiency of the condition for weak local reachability at e 1is
wellknown, cf. e.g. [Hermann-Krener 1977). Here "weak" means that
one 1s allowed to travel backwards aslong the vectorfield a

(negative time). The example a = L x2 LI + x 3 8 2 on the

2 9z 3y’ " 3x
Heisenberg group (cf. 3.18 above) shows that “weakly”™ cannot be @
removed from the statement of the proposition. If all B8's are {n

the centre of Qr(cf. (4.27) below) then weakly can be removed by
a result of Hirschhorn.

The proof of the necessity of the condition 1s most easily
done via connections and & sketch is postponed till we have
discussed these. That proof in fact yields the stromnger result

that all trajectories remain in the connected subgroup H of G



corresponding to the Lie algebra generated by the ad u(ﬁ Y,
8o that being able to move far away does not improve the

reachability, precisely as in the case of linear systems.

4. CONNECTION LINEAR SYSTEMS.

To be able to say how a vectorfield I f (x)

x changes ags x
varies on a general manifold we need the 1dea of a %onneccion (or

covariant differentiation).

4.1, Connectione. Let M be a C-—manifold;
algebra of C--vectorfields on M;
functions on M.

V(M) the Lie
F(M) the algebra of C.—

A linear connecticn on M by definition assigns to
each X &€ V(M) a derivation Vx: V(M) + V(M), of V(M) as a F(M)

module; 1.e. a map Vx which gatisfies

(4.2) Vx(fV) = X(£)V + fo(V),'f € F(M), V€ V(M)

Moreover the assignment X » Vx must satisfy

(4.3) Tixegy = fVx * 8%y, f.8 € F(M); Y € V(1)

4.4, Example. Canonical comnnection on En . Assign to

%——- € V(R") the derivation
x, =
3f
( 4.5) If (x) e *;1 (x) 77—

4,6, Torsion and CurvAture. Given a cgnnection V on M tts

torsion and curvature tensors are defined by

(4.7) T(X,Y) = Vx(” - Vy(x) - [x,y]

(4.8) R(X,Y) = VXVY - VYVX - V[X,Y)

The manifold with connection (M,V) is said to be torsionfree it
T(X,Y¥) = O and flat £f R(X,¥Y) = O (in some texts the terminology
“flat" is supposed to imply also torsion free). The canonical
connection on Bn ie both flat and torsionfree.

4.9, Geodesics and Completeness. Let y; (5 pb) » 3 De & curve
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in M. It i{s called a geodesic 1if VX(X) = 0 along v where X is the
vectorfield ¥(t), f.e. dy(%?) along v(a,b) T M.

Given m € M, v € T M there is a unique (local) geodesic
y: Ca,b) » M, 0 &€ (a,b) such that Y(0) = =m, Y(0) = v. The
manifold with connection (M,V) is called complete if every
geodeslic can be extended indefinitely.

4.10. Flat, torston free manifolds. Let (M,V) be a flat,

torsion-free manifold with connection. The universal covering
space M of a manifold with connection carries a natural
connection V {(cf. e.s. [Wolf, 1976]) and 1f (M,V) is flat torsion
free then (:‘7&,6) is Jdiffeomorphic to (l_{n,Vo) where VO is the Q\,
canonical connection on 5“ described above in example 4.4.

More preciseiy let E  be the Lie group of affine motions of
E", i.e. E(n) = §“x ggn(g) as a space acting on 5“ by
(x,8)(v) = x + g{v3, which also defines the group action on E_.
Then every flat, torsion free, connected manifold M with
connection s diffecmorphic to g“/r where T {8 a discrete
subgroup of E, acting properly discontinuously, so that M is a
product cf a terus and an gm

In particular tf (M,V) 18 flat, torsion free, connected and
simply connected ther M = Bn with the canonical connection (up to
connection preserving diffeomorphism) and this gives a not very
practical answer to the questlion of what makes a system (2.3)
linear up to diffecavrphism (neglecting outputs). This will be
the case 1f and only 1t there is a flat, torsion free
connection ¥V such trat VBi = 0 for all 1 and all vectorfields V
(such vectorfielis are called constant) and qu is constant for

all constant vectorcields X and finally there is an equilibrium ﬁ
point for zero contils,

4,11, Connection Linear Systems. This brings us quite

naturally to the :2Z:-ition of a connection linear system. A

control system

(4.12) e o= a(x) + § Bi(x)ui

on a manifold w:iir :onnection (M,9) will be called oormection



there exists a vectorfield V é<7 such that [a,8)] = [V,8] for

all 8617 . Now the vectorfields g for every g € G span a basis

for the tangent sgpace

TSG at g and it follows by the easy lemma below that a = V
proving the theorem in this case.

L If G is compact consider the translated vectorfields

a for all o0 € G . Let du be uﬂit mass left invariant Haar

measure on G, and define V = f a cdu. Then V 1is left invariant

and the remaining bit of the proof is as before.

3.15. Lemma. Let V,, ..., V, be a set of vectorfields omn the

‘connected manifold M such that Vl(x), eesy, V (x) is & basis for
n

the tangent space TyM for all x € M. Let V,W be two more

vectorfields on M and suppose that [Vi,V] = [Vi,W], & =1

s ses, T

and V(xo) = w(xo) for some Xo € M. Then V = W,

Proof. This is an immediate consequence of standard uniqueness

results for solutions of differential equations.
Another pleasing consequence of lemma 3.15 is that the

dimension of the space of all group linear systems on a Lie

G is finite, exactly as in the case of

group
linear systems. This 1is a

property of the space of all linear systems (of a given
dimension, with a given number of outputs and inputs) which {s

important in identification problems.

3.16. Proposition. Let G be an n;dimensional LLie group. Then
the space of all systems x = a(x) + | uiBi(x) satisfying (3.3),
{=1
(3.4) 18 of dimension < n2 + n + mn.
Indeed, the control! vectorfields Bi‘ i =1, «.., m account
‘for mn dimensions. The vectorfield 2 induces an endomorphism of
the n-dimensional vectorspace % , the Lie algebra of G and is
uniquely determined by this endomorphism and its value a(e)
(by lemma 3.15). Note that {if G = 5" then the upper bound
al + n + mn {8 reached. It is maybe also worth noticing that the
control systems (3.2) satisfying (3.3) = (3.95) are automatically
analytic.,
3.17. Remarks. Thus the familiar linear systems X = Ax + Bu
and the systems (3.7) are the extreme examples of the class of
group equivariant systems, corresponding respectively to the
abelian and semi-simple cases. Then rheory though exnhibirs consider-
able similarity which giwves reasonable grounds for evrimiem for

the whole class.
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(4.13) Vvﬁi = 0 all V€ V(M)

so that the 81 are constant vectorfields, and
(4.14) qu = constant for all constant vectorfields X.

It would I think perhaps be even more interesting to

congider the class of control systems (4.12) which satisfy (4.13)
and

(4.15) (a,V] = constant for all counstant V. Q

Warning. On &n arbitrary manifold with connection (M,7) there may
very well be no constant vectorfields other than the zero
vectorfield.

A last interesting class of connection defined systems, more
or less analogous to 3.22 above, consists of systems (4.12) such
that the B1 belong to a finite dimensional Lie algebra wm such

that the m(x) form a basis {or span) TXM for all x € M and which
satisfy

(4.16) qu emMm for all Xem
In the case of a connected, simply connected, flat torsion
free manifold both (4.13) + (4.14) and (4.13) 4+ (4.,15) lead to
control systems X = a + Ax + Bu. If the manifold with counection
(M,9) is connected, flat, torsion free (but not simply
connected) then these conditione result in the class of systems
described by Roger Brockett in these proceedings (and some of

these naturally occur in engineering, loc. cit.).

4.,17. Intermezzo on foliations and distributions and the

distributions defined by a control system.A foliation of an n-
dimensional manifold M by q-dimensional submanifolds is a

collection of gq-dimensional submanifolds (called the leaves) such

that through every x € M there passes exactly one lezf and such
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that locally around every point the partitioning of M by the
leaves looks like 5“ partioned by the
a + Eq, a € {x¢ gn: X) = el X - 0},
5q = {x € gn: Xpl T e roxp S O}.
A distritution of dimension g on M assigns to every x M a
q~dimensional subspace D(x) C TyM of the tangent space of M at x

such that D(x) varies differentfably with x.

Obviously a g~dimensional foliation defines & distribution,
viz. x =+ Txe vhere Px is the unique leaf of the foliation
passing through x. Such distributions are called 7ntegrable .They
have the following property (obviocusly): if X,Y are two
vectorfields on M such that X(x), Y(x) € D(x) for all x then also
[X,Y](x) € D(x). Such distributions are called 7nvcoiutive .lt is a
theorem of Frobenius that such distributions are integrable,

i.,e., come from foliations.

dow consider & control system (2.3). For each x € M define a

nested series of subspaces of the tangent space T /M

Bi(x) = gubspace spanned by adja(Bk)(x),
(4.18)

3 = 0,000,y k= 1, ..., m
If the system (2.3) is linear the B, form a nested system of
integrable distributions. And inversely [Brockett 1979] for a
control system (2.3) on 3“ , 1f dim Bi(x) {8 constant as &
function of x (8o that the By are distributions) and these
distributions are all integrable then the control system is
linear up to nonlinear feedback (and nonlinear base change in

input and state space).

There i1s a version of the results described in 4.10 above
relative to a foliation [ Blumenthal, 1980] (fn which the
conditions are stated in terms of a connection "adapted to" the
foliation, a socalled basic connection) which - it seems to me =~
will be worth considering in this connection (e.g. to obtatin
gsimilar results on more genersl spaces like the g“/r, T a
discrete subgroup of Bn x GLH(E)).

4,19, Parallel displacement. Let (M,7) be a manifocld with
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connection. Let X € V(M) and y: [a,b] » M an integral curve of X,
i.e. dy(%?) = X(y(t)) for all t & [a,b]. Let Y be another
vectorfield. The vectorfield Y is called parallel along Y if
vx@g{Y(n). 0 for all t. This definition does not depend of
course on the vectorfield X but only on y. This notion can be
used to identify the tangent spaces T M for x € vy({a,b] (parallel
displacement along y) with v € T M corresponding to v'€ T, M iff
there {s a parallel vectorfield Y along y with

v o= Y(x), v' = Y(x').

4,20, Intermezzo on Riemannian manifolds and the Levi-Civita

concection. A pseudo-Riemannian (resp. Riemannian) manifold is
manifold equipped with a nondegenerate (resp. positive definite)-
symmetric bilinear form on each tangent space TxH which varies
differentiably with x. Given a pseudo-Riemannian manifold there
exists a unigue torsion-free connection which preserves the
bilinear form (inner product) under parallel displacements along
geodesics. This connection is called the Levi~Civita connection.
It will perhaps be advantageous to analyse connection linear
systems first for connections of this type.

4.21., Group—-linear versus connection linear systems. Now let

G be a Lie group. More generally similar things can be discussed
for homogenecus spaces. There are at least three rather special
connections on G which stand out and seem to deserve special

attention. All three are left-invariant where a connection

c ~

¢ on G 1s called left invariant if for all X,Y € V(M) we have
o c-1
VX<Y) =V U(Y ) O
X \
wvhere [ have simply written o for the left translation
L: G +GCG, g + 0g .

~
<

-~
3
.
r
3]
~

Left-invariant connections on G correspond biuniquely to
bi{linear forms a: % xt? + q', where } is the Lie algebra of G.
Here a 1is simply equal to o(X,Y) = V~(§) (e), where X,¥ are the
lefr~invariant vectorfields whose ta%genc vectors at e € G are

equal to X,Y € °%t respectively. Cf. e.g. [Helgason 1978] for
this.

Let TlﬁJ.VJ be the three connections on G defined by the
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bilinear forms

(4.23) GI(X,Y) = 0 (the zero-connection)
) .

(4.24) a”(X,Y) = [X,Y] (the + connection)

(4.25) QB(X,Y) = $[X,Y) (the - connection)

Under Vl the constant vectorfields are precisely the left-—
4 nvariant ones. So that using Vl condittons (4.12) and (4.14)
together precisely define what we called a group iinear systemw in
section 3 above.

3 .
V™ 18 the only torsion free connection among these 3 and

seems to be by far the most natural torsion free connection on G.
It is perhaps worth remarking here that there exist no left-
{nvariant torsion free flat connections on reductive homogenecu s
spaces ([Doi 1979], cf. also [Matsushima-Okamoto 1979] for the
case of real semisimple Lie groups. This very nicely
distinguishes En from the reductive homogeneous spaces (such as
gn N {0}, the natural state space of bilinear systems).

Finally V2 is such that Vi(v) 18 left-invariant for all left
invariant X if and only 1f {X,V] 18 left-invariant for all left—
invariant X so that under V3 conditions (4.16) and (4.4) are

equivalent, cf. also 4.15.

Indeed any vectorfield Y on G can be writteun as E fi(x)x

{
.ihere Klseees Ko 18 a basis for g . So thac for X € op

2 .
YY) =L x\fi)xi + L fi[X,Xil
1 1
On the other hand [X,Y](¢) = & x((fix“(w) - T fjxl(xw)) =

- ) - I (Y Yooy, 40U e
L X(fi)xi(") +Ef X(Xi(w.‘ I X (¥09)) Su thar for the +
connection,

(4.26) V>2<(‘” S (XY1, NET v e v,
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However, under V2 the left—invariant vectorfields are no
lenger the constant ones, 80 that if G 18 noncommutative
"connection linear" systems and "group linear" systems are
different objects.

But of course the vectorfields in the centre of¢7 are

constant, This defines a special class of systems
(4.27) x = a(x) + L uiﬁi(x)

with 3, € Z(0p), the centre ofoz and (a,ol} Cor . This class 13&
interrnediate between linear systems and group linear (and
bilinear) systems and certainly will repay detailed further
investigation. I would alsoc not be surprised 1{f this class

ylielded further examples of finite dimensional estimation

algebras (cf. section 6 below for this notion).

4.28. On _the necessity of the controllability condition of
proposition 3.25.

Consider a group linear control system on the Lie group G. Let H
be the connected Lie subgroup of G corresponding to the sub Lie
algebra'$ of 7 generated by the adia(ﬂj)é 7" We show that any
trajectory starting in e € G remaine in H. To see this consider
the + connection on G. First notice that this connection
restricts to a :zonnection on H so that parallel displacements of
vectors tangent to d at e along a curve Y in H results in vectors
in Tx(t)G which are tangent to H. Now let h € H and Yy a curve
from e to h = y(?T: 4irn H. Then identifying tangent vectors in the

various tangent spa-es to G along Y by means of parallel O

displacement 3ilcn: v we have

alh) = 2.e: +

fo JE—

(71 (@) (r(e))ae

{cf. {Helgason [¥7%, thw 7.1, page &41).

Now Y'(t) € TYV><4. a’‘e) = O and an = [X,a] by (4.26) and

(a,ﬁ] < b and t: fzllows by the remark made above that a(h) is
tangent to H (at ~7:%Y), so that a(h) + uiﬁi(h) is in

ThH (- ThQ for all - &€ H.

4,29. Anoth2t exanmple. Consider the linear Lie group G
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consisting of all 2 x 2 matrices of the form (g ?), x,z & R,

x > 0. The Lie algebra 7 of G consists of all real 2 x 2

a b
matrices of the form (0 0). In the coordinates x,z the iavariant

vectorfields are linear combinations of
3 .8
*axr * 5z

and the vectorflelds a such that [0,?.]C 7 and a{e) = 0 are
lidear combinations of the three vectorfields

3 3
. xinx ==, 2 ==,

Iw

S
9z

L%

z

5. FIBRE LINEAR SYSTEMS.

A rather different class of nonlinear systems with enough

speclal structure to make one optimistic is what I like to call

fibre linear systems. As an example consider g systenm whose total

state x can be partioned into two parts x = ( 1) evolving
X,

according to 2
. "
(5.1) X, = Alxl + Blul’ X, € R
"2
(5.2) X, = AZ(XI'UI) + BZ(xlul)uz’ x, € R

where Al and Bl are conatant matrices and A2 and 82 depend only
on x, and up. Thus the total system consists of an ordinary
linear system on the base and the state and controls of this
nfluence the systems in the fibhre which are also linear given
Xyauyge One can of course even write down the input—-output map of

such a system explicitly (more or less).

More generally the first system in the base can itself be
nonlinear, perhaps itself a fibre linear system wlth linear base
glving rise so to speak to a three stage lower ol linear systems.
Ceneralizations on arbitrary rather than trivial vectorbundles

now are easy to define.

5.3. The Heilsenberg group again. Consider tne Helsenberg

group H example of section 4 above again.
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Write x, = (x,y), x, = z. Then for all the group linear systeums
on H, x, evolves as a linear system and given x; then z = X,
evolves as a slightly generalized linear system

z = a(x‘,ul) + A(xl)z + B(xl)u2

So that these systems are also fibre linear with linear base.
This i{s a general phenomenon: every group linear system on a
unipotent Lie group can be considered as a tower of linear N

systems Iin the sense suggested above.

6. REMARKS ON FILTERING FOR GROUP-LINEAR SYSTEMS. &

Consider the general nonlinear filtering problem (Ito

equations)
d = f -+ =
(6.1) X, f(xt)dt G(xc)dwt, dy, h(xt)dt + odv,

where w:’vt are {ndependent Wiener nolse processes also
independent of the inftinnal random variable x_ . Here h,f,G are
vectnr ari matrix valued functions of the appropriate dimensions.
Given enough regularity so that the density of the p(x,t) of

;[ = E{x}ys,ﬂ < s € t], the conditional state at time t given
the nbservations y'& = (ys : 0 < s £ thexists a certain
unnorxzalized version p(x,t) of p(x,t) satisfies the socalled
"uncan-Mortenson-Zakail equation (which 1s driven by the

cowervations?

2
1 ) T )
(£.2) dp = 5 L o= ((667), ,p) - I (f,0) - ’
2 i’jaxiax 1] ¢ Bxi i
1 T 2, -
E‘ L hiv L hidyi
(2f. e.g., IJavis-Marcus 1981] for a derivation of this equation).

Inils eguativa {3 In Fisk-Stratonovic form. The Lie algebra

fenerated btv the differentilal operator

J

-

N 3 T
£ z I, sm——(¢G ) - 1
2 3 dxiaxj 13

A2
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(where (GGT)ij is the (1,3)-th entry of the matrix CGT, £

the i-th component of the vector f,h) and the operators

1° hi
(multiplication with) hl’ s hp 18 called the estimation
algebra. It is likely to be of considerable importance in the
analysis of the filtering problem (= building finite dimensional
systems driven by the obgervations which produce ; as outputs),
cf. [Brockett 1981], [Hazewinkel~Marcus, 1980] and several more

papers in [Hazewinkel-Willems, 1981].

The most general group linear stochastic 1to equation on the
.ieinenberg group is
dx1 a, x, + a,x,
(6.4) dx2 =|~a,x, + a, %, + ag%, dt
2 2
d13 &ale +oaax, + §34x2 toagx, ¢+ ag%g
/bli
a
+ I b dw
{=1 21 i
SEPTRLEN

LEEERRRL P bji € R, and the most general observati{on equations

coming from a group homomorphism H + R are of the form

(6.5) dyi = (¢,,x,+c

1151 21xz)dt + dv

i

6.6, Proposition. Consider a system on the Heisenberg group
given by a signal equation of type (6.4) with observation
equatione of type (6.5). Then the observation Lie algebra is

always pro~finite dimensional.

A Lie algebra L is pro-finite dimensional {f there exists a
sequence of ideals L1 D L2 D ... such that L/Li is finite
dimensional for all i and N Li = (0., Cf.e.y.[Hazewiankel~Marcus,
1980} for a number of remarks on the relevance of this property

for filtering problems.

Indeed writing out the various ocperators explicitly one

observes that they are sums of operators of the type
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) .
g g Lm0 L2 el sl < 2

X,
X = (xz), z = x4

where a and B are multiindices |a| = o + 9y . The operators
¢ 3‘3. la] , I8} < 2 span a finite dimensional Lie algebra LS,
Ix

(of dimension 15) so that the estimation algebra is a subalgebra
of the "current-algebra"

Ls, @ R [57] Q

which 18 of course profinite dimensional. As a finite dimensional
Lie algebra LS2 can of course be embedded in a Lie algebra of
vectorfields on g", some large N) and this then easily gives rise
to an inbedding of the current algebra L82 @ 5[%;]. In this case,
however, there exists an inbedding of L52 modulo 1ts centre in
the vectorfields on 55 which comes from all Kalman-Bucy filters
put together (and is closely related to the Segal-Shale~Weil

representation), cf. [Hazewinkel, 1981}, which is more likely to
be useful.

(A result like proposition 6.6 holds generally also for
higher dimensional Helsenberg groups (and hence for all 2-step
nilpotent Lie groups) and I would like to pose the question
whether it holds for every fibre linear system with linear base

(and suitable output maps "linear" in the fibres).

Things change dramatically 1if instead of using observation'
like (6.5) one uses an observation equation '

(6.7) dy = x3dc + dv

E.g. the system

(6.8) dx, = dw, dx., = x,dt, dx, = + x2dt, dy = x.dt + dv
. 1 » 4%y 195, €X3 = 7 %) ¢t 4y 3

has the Weyl algebra w,- §<xp g;— > 88 a subalgebra. This 1s

1
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perhaps not surprising because the map (xl’xz’x3) * Xy is not

"homogeneous'" with respect to H. Indeed there 1is no action of H

on R which wmakes this map H-equivariant. There is an action of H
2
on R” which makes (xl,xz,xa) + (xz,x3) H-equivariant. This, at

first sight, would make an observation equation like

@& Gy w e+ OO
. = t + )
dy2 X4 dv2

permissible, and this would also give a subalgebra W

estimation Lie algebra. However,

1 in the

in (6.9) the noises do not enter
in a8 group-equivariant way.

equations like

To achieve that one needs observation

dy1 x dv

(6.10) (gl = ("i)dt +(
2

)
14V,

And this raises the general question of obtaining a D-M~Z type
equation for an (unnormalized) conditional density for more
genaeral systems

(6.11) dx = f(x)dt + G(x)dw, dy = h(x)dt + J(x)dv
‘1th this open question I would like to conclude this paper,
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