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ABSTRACT. One striking aspect of the class of linear systems is 

that the controls enter in a way which is independent of the 

state; that is they are homogeneous, w.r.t. the underlying 

vectorspace (additive Lie group) structure as far as the controls 

are concerned, and the autonomous term enjoys reminiscent but not 

identical "homogeneity properties". Another class of systems 

which enjoys such properties is the class of systems on Lie 

groups and coset spaces (E.g. g = (A+l:ui Bi)g, g E ~~n' A, 

Bi E gtn) studied by Brockett, Jurdjevic-Sussmann, Hirschhorn 

and others. However, in the case the Lie group G is the additive 

group this class does not specify to the familiar class of linear 

systems (but to x =a+ l:uibi' a, bi E ~n). Yet the analysis of 

these two classes of control systems sugg~sts certain "family" 

characteristics. 

In this paper I discuss several aspects of classes of 

systems, which in one-way or another - there are several 

different choices one can make - generalize both the familiar 

linear systems and the class on Lie groups mentioned above. 

1. INTRO DUCT ION. 

This paper, or more precisely the research program which 

this paper tries to describe, resulted from the following two 

considerations: (i) nonlinear systems theory in general is, at 

the moment, too difficult and - as a ~esearch area - not well 

enough structured: we have relatively little feeling for the 

right problems and questions to ask and perhaps little intuition 

for the phenomena (pathologies) which can occur, and (ii) if in 
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LQG one changes either L, Q or G things get unstuck immediatelv 

and rather severeiy; cne cnree inceracc racner closely and it 

seems to follow that to find interesting generalizations all 

three at once must be adjusted (changed) simultaneously and in a 

compatible manner. 

The lines above are of course the personal opinion of the 

present author; they may not, as far as I know, reflect the 

consensus, if such an unlikely thing exists, of the systems theory 

community. 

A situation as described in (i) above is not unusual in 

mathematics. It has occurred before, e.g. in the theory of 

Riemannian manifolds. In this particular instance the theory of 

symmetric spaces came to the rescue. To quote from [Helgason, 

1962] (or the revised 1978 edition): 

"By their definition, symmetric spaces form a special topic 

in Riemannian geometry; their theory, however, has merged with 

the theory of semi-simple Lie groups. This is the source of very 

detailed and exhaustive information about these spaces. They can 

therefore ofte~ serve as examples on the basis of which general 

conjectures in differential geometry can be made and tested ". 

At the same time symmetric spaces are general enough to 

serve as a real testing ground. 

It seems to me that nonlinear systems and control theory 

could do with a class of examples like that. And the classes of 

"homogeneous", but nonlinear systems described below are mainly 

intended (by me) as a possible testing ground for ideas, 

conjectures and concepts in general nonlinear system theory. 

Special cases, though, do occur naturally in science and 

engineering, cf. e.g. [Brockett,1972] in connection with theorem 

3.14 below. 

Consideration (ii) above also points naturally to Lie groups 

and homogeneous spaces (and some kind of "homogeneous" system on 

them) as a natural possible class of candidates for generalized 
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LQG. Especially in view of the theory of "Gaussian processes" on 

general Lie groups based on Bochner's theorem and a definition of 

positive definite function which makes sense on any Lie group. 

The main philosophy behind what is described below is to 
n study linear systems on ~ and to formulate their characteristic 

properties either in terms of the additive Lie group ~n or in 

terms of the natural connection on ~n. Not surprisingly these two 

possible characterization give rise to different possible 

generalizations when these characteristic properties are 

formulated for general Lie groups (and homogeneous spaces), even 

when we restrict attention to (left-) invariant connections on 

Lie groups. 

Two classes of systems arise thJs way: "Group linear 

systems" and "connection linear systems". In addition there is a 

small section on a third class of systems: "fibre linear 

systems". The "connection linear systems" discussed below are in 

the torsion-free, zero-curvature case precisely the syst·ems 

discussed by Brockett in this volume. 

What follows below is an outline of a research program 

rather than a full grown paper. In particular, also to avoid 

excessive length, I concentrate on ideas and concepts, and proofs 

are only sketched. A more complete (and longer) account will, 

hopefully, appear in the future. 
m 

All manifolds in the following will be C and so will all 

functions and vectorfields defined on them. If M is a 

c• -manifold F(M) denotes the ring of R-valued C~ -functions 

(i.e. infinitely often differentiable functions) on M and V(M) 

denotes the Lie-algebra of all C~ -vectorfields on M. 

2, WHAT MAKES A LINEAR SYSTEM LINEAR 

The reason we are asking this question is that we are 

interested in formulating the conditions for linearity of a 

system in such a way that natural generalizations on 

(noncommutative) Lie groups suggest themselves. Let us consider 
n the familiar class of linear systems on ! 
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( 2. 1) Ax + Bu, y ex 

and see whether we can capture its characteristic properties in 

some "coordinate free way". If .p : l'}n + J,l;n is any diffeomorphism, 

then the nonlinear state space transformation z = .p(x) transforms 

(2.1) into a set of highly nonlinear looking equations, viz. 

(2.2) 

where (J~)(x') is the Jacobian matrix of ~at z'. These equations 

still have the form 

(2.3) 
m 

a(x) + r Bi(x)ui, y = y(x) 
i=l 

where a,B., i = l, •.• ,m, are vectorfields on Rn and y is a 
1 = 

nonlinear function l'}n + ~m but beyond that there is little at 

first sight which might tip one of that we are really dealing 

with a linear system written down in the wrong coordinates. Up to 

nonlinear state space equivalence and nonlinear feedback the 

question of when a system like (2.3) is linear has been 

considered and solved by [Brockett 1978], and an answer to the 

question whether a system (2.3) is locally like (2.1) is given by 

[Krener 1973] in terms of the Lie-algebras generated by the 

vectorfields a(x),Bi(x) (locally around O). 

As a very small simple example consider the example with A 
12 1 = C30 l , B = C1), C = (2,0) in (2.1) and z = .p(x) 

given by the diffeomorphism 

+ z 

which gives us the system 

zl = 2z2+(4+6z2+8z~)(zl-l-z~)+(4z2-2)(zl-l-z~) 2 

( 2. 5) 2 3 2 
-8z 2 (z 1-l-z 2 ) + {(2+2z 2 ) + 4z 2 (z 1-l-z 2 )}u 

2 2 2 
z2 = (3+4z2)(zl-1-z2) + 2(zl-l-z2) 

2 3 2 
-4(z 1-l-z 2) + (2z 1-l-2z 2 )u 
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Returning to our original system (2.1), viewing it as a 

special case of systems of the form (2.3), and concentrating for 

the moment on the input part the following "homogeneity 

properties" could be noticed 

( 2. 6) The input vectorfields ~i(x) are invariant with respect 

to the group structure. 

This means the following. Let M be a C00-manifold, F( M) the 

ring of C00-functions on M. Then a vectorfield on M is a 

derivation X: F(M) + F(M). i.e. an !l,-linear map with the 

property X(fg) = X(f)g + fX(g). Let ~ be a diffeomorphism 

M + M, then th~ 1 translated ~fctorfield X~ is defined by 
~ ~ ~ ~ -1 . (X )(f) = (Xf ) where f = f o ~ L If G is a Lie group 

then X is said to be left invariant if X a = X for all a E G 
where La stands for the diffeomorphism g + ag, g E G. 

Indeed a vectorfield on !J:n can be written as 

( 2. 7) x l f.(x)-f--
i xi 

La 
Then the requirement that X 

( 2. 8) af L fi(x-cr) - (x) 
axi 

X for all a € ~n becomes 

\ af 
l fi (x) axi (x) 

for all functions f (and for all a€ !l:n). This means that 

the fi(x) in (2.7) must be constants so that the left invariant 

vectorf ields in gn are precisely the vectorfields a -
L bi a;c:-• bi € ~ which are the vectorfields multiplying the 

controlsiin (2.1). 

The "vectorfield Ax'', or more precisely the vectorfield 

( 2. 9) ~ex)= I cI ai.x.) -f--
i j J J xi 

does not have an equally obvious invariance property. But it does 

have the property 
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Let "1 be the Lie algebra of left invariant vectorf ields 

on !n• then [a,X] E~ for all X€0J. 

The obvious generalization of properties (2.6) and (2.10) 

will define the class of what I like to call "group linear 

systems". They will be discussed in some more detail below in 

section 3. At the moment they are my favourite class of 

"nonlinear but homogeneous systems". 

A totally different way of saying that the vectorfields 

ai(x) in (2.1) are as they are is to remark that the 

coefficients bi in 

(2.11) 

do not vary with 

concept,however, 

l: bij a!. 
J 

ai(x) 

x, i.e. that" _a_ bik" = 0 all k,j. This 
ax. 

is not defined art general manifolds but requires 

a "manifold with connection" to be properly defined. This will 

lead to "connection linear systems" a second class of nonlinear 

but homogeneous systems which will probably repay detailed study. 

Connection linear systems and their relation with group linear 

systems are the topic of section 4 below. 

3, GROUP LINEAR SYSTEMS. 

3.1. Definition of Group Linear Systems. Let G be a Lie 

group, finite dimensional and X a homogeneous space for G, i.e. X 

= G/H where H is a closed subgroup of G. Let m. be the Lie algebra 

of G invariant vectorf ields on X. (This is a Lie algebra because 

[vt,v~] = [V 1 ,v 2 J~ for any two vectorfields v1 ,v 2 on a manifold 

M and any diffeomorphism ~: M + M ) • A group linear system 

on X now looks like 

(3.2) x = a(x) + 1: aiCx)ui, y = r<x) 

where 
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(3.3) Iii (x) E m for all i, 

(3.4) [a,tl]Em for all l!Em 

(3.5) y is a collection of quotient maps X + G/Kj 

where Kj is a closed subgroup of G containing H. 

3.6. Example. Translation Invariant Systems, An example is 

afforded by the systems on Lie groups and spheres studied by 

[Brockett 1972,1973], [Jurdjevic-Sussmann, 1972], [Hirschhorn 

1977]. Let G be a closed subgroup of GLn(!) and OJ' the Lie algebra 

of G, viewed as a subalgebra of gin(!)• Consider systems of the 

.form 

The invariant vectorfields on G are the vectorfields gC, 

or more explicitly the vectorf ields a 
~ gijcjk agik 

i,J,k 

(restricted to G) in the coordinates gll•'''•gnn for j~n(!) 

More precisely translation invariant systems are of the form 

(3.7) g - a(g) + l tli(g)ui, y = y(g) = gK, 

where a,tli are left invariant vectorfields, and K is a closed 

subgroup of G. 

3.8. Example. Bilinear systems. Let X • !n {O} and view X 

as a coset space for GLn(!) by letting GLn(!) act on !n in the 

usual manner, i.e. X - GLn(~)/R where R is e.g. the stabilizer of 

e 1; that is H is the subgroup 
I 0 n-1 H = { ( ) : x E JR. , y E GL QR) } • 
x y n-1 

Then the vectorfields Ax, Bix are 
right invariant. under GLn(~), so that (modulo right invariance 

versus left invariance) the familiar bilinear systems 

(3.9) 
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are examples of group linear systems. This also makes it 

probable that the complete study of group linear systems 

will not be a totally trivial matter. Note that ~he equilibrium 

point x = O has been removed in the above set up. Results 

pertaining to this approach to bilinear systems can be found in 

[Hirschhorn 1977]. 
n 

3.10. Remark. Consider ~ as a (vector) Lie group, and 

consider the systems of type (3.7) on it. E.g. embed ~n by 

I 
x + ( n 

(3.11) 

0 

x 
) € GLn+l (~). This gives us systems of the form 

1 

Cx 

i. e. ~ the class of systems x = Ax + Bu, y = Cx. This accounts 

to some extent for the lesser elegance of the results in the 

inhomogeneous case (A ~ 0) with respect to the homogeneous case 

(A=O) in the controllability/reachability results of [_Brockett 

1972, Jurdjevic-Sussmann 1972]. 

3.12. Proposition. Consider ~n as a Lie group. Then the 

group linear systems (according to definition 3.1) on ~n are 

the systems of the form 

(3.13) 

Proof. Easy 

Then [a(x), 

a + Ax + Bu , y = Cx , 

exercise. 
Cl 
Clx. l 

Indeed let a(x) = I fi(x) _a~. 
Clxi 

left invariant, i. e. constant, means 

J 

a 
<ax. fi)(x) = 0 for all i,j and the result follows. 

J 

3.14. Theorem. Let G be a semi-simple or compact Lie group. 

Then every group linear system over G is of the form (3.7). 

E.!:.2..Ql_. Let G be semisimple and let (r) be a system of type (3.2). 

Let "J' be the Lie algebra of G viewed as a subalgebra of V(G) the 

Lie algebra of all vectorfields on G. The vectorfield a has the 

property [a, '1 ] C °d' and hence defines a derivation of~. 

Because '6 is semi-simple every derivation of °! is inner so that 
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The following example shows that there are nontrivial 

intermediate cases. 

3.18. Example. The Heisenberg group. Let H be the following 

subgroup of GL 3 (~), the socalled Heisenberg group 

(3.19) H 
1 

{(o 
0 

x 
1 
0 

z 
y) x,y,z t: ~} 
1 

Using the global coordinates given by this embedding one finds 

that all the left invariant vectorfields are linear combinations 

of 

(3.20) a a b =.L ay- + x az' 3 az 

and that the vectorfields a which have the property that for all 

i = 1,2,3, [a,bi] Et, , the Lie algebra spanned by b 1 , b2 , b 3 are 

linear combinations of b 1 , b 2 , b3 and the six further 

vectorfields 

a a + 1 2 a a x -ax - y ay' x ay 2 x az• x az 
(3.2'1) a 1 2 a a .L + a y -ax + 2 y az• y az· z oz y ay 

3.22. A slight generalization. Complete vectorfields and a 

theorem of Palais.Let M be a differentiable manifold such that 

there is a finite dimensional Lie algebra of vectorfields Tft such 

that the vectors V(x), V € 'm span the tangent space TxM for all 

x €. M. If dim m = dim M this makes M parallellizable of course. 

Now consider systems of the type 

(3.23) 

with a such that [a,m] cm, f\ em. Suppose that the 

vectorfields a,$i are all complete. Then the Lie algebra 

generated by a and the Bi is finite dimensional (it is contained 

in m +,!!.a) and it follows from a theorem of [Palais, 1957] (as 

was pointed out to me by Roger Brockett) that there will be no 

finite escape time phenomena for (3.23) (for bounded inputs 
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ui(t)). 

3.24. Reachability Conditions. Both for group linear systems 

and the slight generalization mentioned just above one expects to 

find pleasing conditions for reachability/controllability, (and 

observability, invertability) guided and stimulated by the 

results of[Brockett 1972], [Jurdjevic-Sussmann 1972], [Hirschhorn 

1977] and of course the results of the linear theory. The most 

natural, coordinate invariant object to consider with respect to 

controllability is probably the Lie-sub-algebra of °l generated by 

the adia.(6j), j • 1, ••• , m;i•0,1,2, .... 

Here ad 0 a(I!) • 6, adi11(6) • [11,adi-l11(6)], i • 1,2, .... One has 

e.g. 

3.25. Proposition. Let x • 11(x) +I uil!1 (x) be a group 

linear control system on the Lie group G with Lie algebra, and 

suppose that a(e) • O. Then the system is weakly locally 

reachable around e iff the Lie algebra generated by 

the adia(6j), j • l, ... , m; i • 0,1,2, ... is equal toO}'.Here 

locally reachable around e means that for every open 

neighbourhood U of e the set of points reachable from e such that 

the trajectory does not leave U contains e in 'MS interior. The 

sufficiency of the condition for weak local reachability at e is 

wellknown, cf. e.g. [Hermann-Krener 1977]. Here "weak" means that 

one is allowed to travel backwards along the vectorf ield a 

1 2 a a a 
(negative time). The example a• 2 x az + x ay• 6 • aK on the 

Heisenberg group (cf. 3.18 above) shows that "weakly" cannot be 

removed from the statement of the proposition. If all 6's are in 

the centre of Oj (cf. (4.27) below) then weakly can be removed by 

a result of Hirschhorn. 

The proof of the necessity of the condition is most easily 

done via connections and a sketch is postponed till we have 

discussed these. That proof in fact yields the stronger result 

that all trajectories remain in the connected subgroup H of G 
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i corresponding to the Lie algebra generated by the ad a(a.), 
J so that being able to move far away does not improve the 

reachability, precisely as in the case of linear systems. 

4. CONNECTION LINEAR SYSTEMS. 

a To be able to say how a vectorfield L fi(x) a- changes as x 
xi varies on a general manifold we need the idea of a connection (or 

covariant differentiation). 

4.1. Connections. Let M be a c"'-manifold; V(M) the Lie 
algebra of c"'-vectorfields on M; F(M) the algebra of c""-
functions on M. A Zinea1• connection on M by definition assigns to 
each X c V(M) a derivation VX: V(M) + V(M), of V(M) as a F(M) 
module; i.e. a map VX which satisfies 

(4.2) Vx(fV) = X(f)V + fVX(V), f e F(M), v E V(M) 

Moreover the assignment X + VX must satisfy 

(4.3) VfX+gY a fVX + gVy• f,g E F(M); Y E V(M) 
4.4. Example. Canonical connection on ~n • Assign to 
€ V(~n) the derivation 

a at· a 4,5) L f (x) -- + E __J_ (x) --j Clx Clx Clx 
4.6. Torsion and Curvjture. Gtven a cdnnection V on M its 

torsion and curvature tensors are defined by 

( 4. 7) 

(4.8) 

The manifold with connection (M,V) is said to be torsionfree if 
T(X,Y) = O and flat if R(X,Y) • 0 (in some texts the terminology 
"flat" is supposed to imply also torsion free). The canonical 

n connection on ~ is both flat and torsionfree. 
4.9. Geodesics and Completeness. Let ye (a,b)-+ M be a curve 
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in M. It is called a geodesic if VX(X) = 0 along y where X is the 

vectorfield Yet), i.e. dy(~t) along y(a,b) CM. 

Given m E M, v E TmM there is a unique (local) geodesic 

y: (a,b) + M, 0 E (a,b) such that y(O) = m, y(O) v. The 

manifold with connection (M,V) is called complete if every 

geodesic can be extended indefinitely. 

4 .10. Flat, torsion free manifolds. Let ( M, V) be a flat, 

torsion-free manifold with connection. The universal covering 

space M of a manifold with connection carries a natural 

connection 'l (cf. e.g. [Wolf, 1976]) and if (M, V) is flat torsion 

- - n 
free then (M,V) is diffeomorphic to (~ ,V 0 ) where V0 is the 

canonical connection on ~n described above in example 4.4. 

More precisely let En be the Lie group of affine motions of 

Rn i.e. E(n) = Rnx GL (R) as a space acting on Rn by 
= ' = ==n = = 

(x,g)(v) = x + g(v), which also defines the group action on En. 

Then every flat, torsion free, connected manifold M with 

connection is diffeomorphic to ~n/r where r is a discrete 

subgroup of En acting properly discontinuously, so that M is a 

product of a torus and an ~m 

In particular if (M,V) is flat, torsion free, connected and 

simply connected then M = ~n with the canonical connection (up to 

connection preserving diffeomorphism) and this gives a not very 

practical answer to the question of what makes a system (2.3) 

linear up to diffeomorphism (neglecting outputs). This will be 

the case if and only if there is a flat, torsion free 

connection V such that VBi = 0 for all i and all vectorfields V 

(such vectorfields are called constant) and VXa is constant for 

all constant vectorfields X and finally there is an equilibrium 

point for zero controls. 

4.11. Connection Linear Systems. This brings us quite 

naturally to the definition of a connection linear system. A 

control system 

(4.12) 

on a manifold with connection (M,17) will be called oonnection 
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there exists a vectorfield V "'-"J' such that [a,S] [V,13] for 
all SE °1 • Now the vectorfields 13 for every g E G span a basis 
for the tangent space 

TgG at g and it follows by the easy lemma below that a V 
proving the theorem in this case. 

L If G is compact consider the translated vectorfields 
a cr for all cr € G • Let dµ be ufit mass left invariant Haar 

measure on G, and define V = J a 0 dµ. Then V is left invariant 
and the remaining bit of the proof is as before. 

3.15. Lemma. Let v1 , ••• , Vn be a set of vectorfields on the 
connected manifold M such that v1 (x), ••• , Vn(x) is a basis for 
the tangent space TxM for all x € M. Let V,W be two more 
vectorfields on Mand suppose that [Vi,V] [Vi,W], i = 1, ... , n 
and V(x 0 ) = W(x 0 ) for some x 0 E M. Then V W. 
~· This is an immediate consequence of standard uniqueness 
results for solutions of differential equations. 

Another pleasing consequence of lemma 3.15 is that the 
dimension of the space of all group linear systems on a Lie group 
G is finite, exactly as in the case of linear systems. This is a 
property of the space of all linear systems (of a given 
dimension, with a given number of outputs and inputs) which is 
important in identification problems. 

3.16. Proposition. Let G be an n;dimensional Lie group. Then 
the space of all systems x = a(x) + L uiS.(x) satisfying (3.3), 

i=l l. 

(3.4) is of dimension 5 n 2 + n + mn. 
Indeed, the control vectorfields Si' i = 1, ••• , m account 

for mn dimensions. The vectorfield a induces an endomorphism of 
the n-dimensional vectorspace "J , the Lie algebra of G and is 
uniquely determined by this endomorphism and its value a(e) 
(by lemma 3.15). Note that if G = ~n then the upper bound 
n 2 + n + mn is reached. It is maybe also worth noticing that the 
control systems (3.2) satisfying (3.3) - (3.5) are automatically 
analytic. 

3.17. Remarks. Thus the familiar linear systems x =Ax+ Bu 
and the systems (3.7) are the extreme examples of the class of 
group equivariant systems, corresponding respectively to the 
abelian and semi-simple cases. Then theory though exhibits consider­
able similarity which gives reasonable grounds for optimism for 
the whole class. 
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7,J:nea.r i f 

(4,13) VVei = 0 all Ve V(M) 

so that the ei are constant vectorfields, and 

(4.14) VXa = constant for all constant vectorfields X. 

It would I think perhaps be even more interesting to 

consider the class of control systems (4.12) which satisfy (4.13) 

and 

(4.15) [a,V] = constant for all constant V. 

Warning. On an arbitrary manifold with connection (M,V) there may 

very well be no constant vectorfields other than the zero 

vectorfield. 

A last interesting class of connection defined systems, more 

or less analogous to 3.22 above, consists of systems (4.12) such 

that the ei belong to a finite dimensional Lie algebra m such 

that the m.(x) form a basis (or span) TxM for all x e M and which 

satisfy 

(4.16) 

In the case of a connected, simply connected, flat torsion 

free manifold both (4.13) + (4.14) and (4.13) + (4.15) lead to 

control systems i • a + Ax + Bu. If the manifold with connection 

(M,V) is connected, flat, torsion free (but not simply 

connected) then these conditions result in the class of systems 

described by Roger Brockett in these proceedings (and some of 

these naturally occur in engineering, loc. cit.}. 

4.17. Intermezzo on foliations and distributions and the 

distributions defined by a control system.A foliation of an n­

dimensional manifold M by q-dimensional submanifolds is a 

collection of q-dimensional submanifolds (called the leaves) such 

that through every x E M there passes exactly one leaf and such 
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that locally around every point the partitioning of M by the 
leaves looks like ~n partioned by the 

a + !-q• at: {x E Rn: x 1 = ••• = x = O}, n = q ! q = {x € !- : xq+l = • • • = xn = 0}. 
A distribution of dimension q on M assigns to every x M a 

q-dimensional subspace D(x) C TxM of the tangent space of M at x 
such that D(x) varies diff erentiably with x. 

Obviously a q-dimensional foliation defines a distribution, 
viz. x + TxFx where Fx is the unique leaf of the foliation 
passing through x. Such distributions are called integrable .They 
have the following property (obviously): if X,Y are two 
vectorfields on M such that X(x), Y(x) € D(x) for all x then also 
[X,Y](x) E D(x). Such distributions are called invoZutive .It is a 
theorem of Frobenius that such distributions are integrable, 
i.,e., come from foliations. 

Now consider a control system (2 .3). For each x t: M define a 
nested series of subspaces of the tangent space TxM 

(4.18) 
j - o, ... ,i; k:;:::;: 1, ••• , m 

If the system (2.3) is linear the Bi form a nested system of 
integrable distributions. And inversely [Brockett 1979] for a 

n control system (2.3) on !3: , if dim Bi(x) is constant as a 
function of x (so that the Bi are distributions) and these 
distributions are all integrable then the control system is 
linear up to nonlinear feedback (and nonlinear base change in 
input and state space). 

There is a version of the results described in 4.10 above 
relative to a foliation [Blumenthal, 1980] (in which the 
conditions are stated in terms of a connection "adapted to" the 
foliation, a socalled basic connection) which - it seems to me -
will be worth considering in this connection (e.g. to obtain 
similar results on more general spaces like the ~n/r, r a 
discrete subgroup of Rn x GL (R)). = n "' 

4.19. Parallel displacement. Let (M,V) be a manifold with 



138 

connection. Let X € V(M) and y: [a,b] +Man integral curve of X, 

i.e. dy(;t) = X(y(t)) for all t E [a,b]. Let Y be another 

vectorfield. The vectorfield Y is called parallel along y if 

VX(Y)(y(t))= 0 

course on the vectorfield X but only on y. This notion can be 
for all t. This definition does not depend of 

used to identify the tangent spaces TxM for x € y[a,b] (parallel 

displacement along y) with v E TxM corresponding to v' € Tx' M iff 

there is a parallel vectorfield Y along Y with 

v = Y(x), v' = Y(x'). 

4.20. Intermezzo on Riemannian manifolds and the Levi-Civita 

connection. A pseudo-Riemannian (resp. Riemannian) manifold is a 

manifold equipped with a nondegenerate (resp. positive definite) 

symmetric bilinear form on each tangent space TxM which varies 

differentiably with x. Given a pseudo-Riemannian manifold there 

exists a unique torsion-free connection which preserves the 

bilinear form (inner product) under parallel displacements along 

geodesics. This connection is called the Levi-Civita connection. 

It will perhaps be advantageous to analyse connection linear 

systems first for connections of this type. 

4.21. Group-linear versus connection linear systems. Now let 

G be a Lie group. More generally similar things can be discussed 

for homogeneous spaces. There are at least three rather special 

connections on G which stand out and seem to deserve special 

attention. All three are left-invariant where a connection 

V on G is called left invariant if for all X,Y € V(M) we have 

(4.22) 

where I have simply written o for the left translation 

L 0 : G + G, g + erg • 

Left-invariant connections on G correspond biuniquely to 

bilinear forms a: O'J' x °! + "J' , where ' is the Lie algebra of G. 

Here a is simply equal to a(X,Y) = V (Y) (e), where X,Y are the 

x 
left-invariant vectorf ields whose tangent vectors at e E G are 

equal to X, Y € '1 
this. 

respectively. Cf. e.g. [Helgason 1978] for 

be the three connections on G defined by the 
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bilinear forms 

(4.23) 1 a (X,Y) 0 (the zero-connection) 

(4.24) 2 
a (X,Y) [X, Y] (the + connection) 

(4.25) 3 a (X,Y) Hx, YJ (the - connection) 

Under v1 the constant vectorfields are precisely the left­
invariant ones. So that using v1 conditions (4.12) and (4.14) 
together precisel~ define what we called a group linear system in 
section 3 above. 

v3 is the only torsion free connection among these 3 and 
seems to be by far the most natural torsion free connection on G. 
It is perhaps worth remarking here that there exist no left­
invariant torsion free flat connections on reductive homogeneous 
spaces ([Doi 1979], cf. also [Matsushima-Okamoto 1979] for the 
case of real semisimple Lie groups. This very nicely 
distinguishes ~n from the reductive homogeneous spaces (such as 
Rn'- {O}, the natural state space of bilinear systems). = 2 2 Finally V is such that VX(V) is left-invariant for all left 

invariant X if and only if [X, V] is left-invariant for all left­
invariant X so that under v3 conditions (4.16) and (4.4) are 
equivalent, cf. also 4.15. 

Indeed any vectorfield y on G can be written as I fi(x)Xi 
where x 1 ' ••• ' xn is a basis for °l . So that for X € "( 

'Ji(Y) E X(fi)Xi + E fi[X,Xi] 
i i 

On the other hand [X,Y](~) = E X((fiXi)(~)) - E fiXi(X(~)) 
= E X(fi)Xi(~) + E fi X(Xi(~)) - E fiXi(X(~)) So that for the+ 

connection, 

(4.26) v i ( y) = [ x. y l • x € I . y € v ( M) • 
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However, under v2 the left-invariant vectorfields are 

longer the constant ones, so that if G is noncommutative 

"connection linear" systems and "group linear" systems are 

no 

different objects. 

But of course the vectorfields in the centre of°{ are 

constant. This defines a special class of systems 

(4.27) x = a(x) + i: uiai (x) 

with ai E Z( "j'), the centre of "J' and [a,°!] C °1 • This class is 

intermediate between linear systems and group linear (and 

bilinear) systems and certainly will repay detailed further 

investigation. I would also not be surprised if this class 

yielded further examples of finite dimensional estimation 

algebras (cf. section 6 below for this notion). 

4.28. On the necessity of the controllability condition of 

proposition 3.25. 

Consider a group linear control system on the Lie group G. Let H 

be the connected Lie subgroup of G corresponding to the sub Lie 

algebra 1y of °J' generated by the adia(aj) € °J' • We show that any 

trajectory starting in e E G remains in H. To see this consider 

the + connection on G. First notice that this connection 

restricts to a connection on H so that parallel displacements of 

vectors tangent to H at e along a curve y in H results in vectors 

in Ty(t)G which are tangent to H. Now let h E H and y a curve 

from e to h = y(1) in H. Then identifying tangent vectors in the 

various tangent spaces to G along y by means of parallel 

displacement along y we have 

1 
a(h) a(e) + f (Vy'(t)a)(y(t))dt 

0 

(cf. [Helgason 1978, thm 7.1, page 41). 

Now y'(t) E Ty(t)H' a(e) = 0 and VXa = [X,a] by (4.26) and 

[a,'frJ C T, and it follows by the remark made above that a(h) is 

tangent to H (at y(l)), so that a(h) + l: uiai(h) is in 

ThH C ThG for all h E H. 

4.29. Another example. Consider the linear Lie group G 
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consisting of all 2 x 2 

x > O. The Lie algebra 
a matrices of the form ( 0 

x z matrices of the form ( 0 1 ), x,z E ~. 

°{ of G consists of all real 2 x 2 
b 
0 ). In the coordinates x,z the invariant 

vectorfields are linear combinations of 

a 
x ax• x az 

and the vectorfields a such that [et, "J'] C '1 and et(e) 
linear combinations of the three vectorfields 

xinx ~x' a 
z az-· az- - x a-z 

5. FIBRE LINEAR SYSTEMS. 

0 are 

A rather different class of nonlinear systems with enough 
special structure to make one optimistic is what I like to call 
fibre linear systems. As 

state x can be partioned 

according to 

(S.1) *1 Alxl 

an example consider a system whose 
xl 

into two parts x = ( ) evolving Xz 

+ Bl ul' 
nl 

x 1 E ~ 

(5.2) *2 Az (xl 'ul) + B2 (xl ul )u2 • x 2 E ~ 
n2 

total 

where A1 and B1 are constant matrices and A2 and B2 depend only 
on x 1 and u 1 • Thus the total system consists of an ordinary 
linear system on the base and the state and controls of this 
influence the systems in the fibre which are also linear given 

x 1 ,u 1 • One can of course even write down the input-output map of 
such a system explicitly (more or less). 

More generally the first system in the base can itself be 
nonlinear, perhaps itself a fibre linear system with linear base 
giving rise so to speak to a three stage tower of linear systems. 
Generalizations on arbitrary rather than trivial vectorbundles 
now are easy to define. 

5.3. The Heisenberg group again. Consider the Heisenberg 
group H example of section 4 above again. 
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Write x 1 = (x,y), x 2 = z. Then for all the group linear systems 

on H, x 1 evolves as a linear system and given x 1 then z = x 2 
evolves as a slightly generalized linear system 

So that these systems are also fibre linear with linear base. 

This is a general phenomenon: every group linear system on a 

unipotent Lie group can be considered as a tower of linear 

systems in the sense suggested above. 

6. REMARKS ON FILTERING :FUR GROUP-LINEAR SYSTEMS. 

Consider the general nonlinear filtering problem (Ito 

equations) 

( 6. 1) h(xt)dt + dvt' 

where wt,vt are independent Wiener noise processes also 

independent of the initional random variable x 0 .• Here h,f,G are 

vector and matrix valued functions of the appropriate dimensions. 

Given enough regularity so that the density of the p(x,t) of 

xt = E[xjys,O S s St], the conditional state at time t given 

the observations yt = {ys : 0 S s S t},exists,a certain 

unnormalized version p(x,t) of p(x,t) satisfies the socalled 

Duncan-Mortenson-Zakai equation (which is driven by the 

observations) 

(6.2) dp 

(cf. e.g. [Davis-Marcus 1981] for a derivation of this equation). 

This equation is in Fisk-Stratonovic form. The Lie algebra 

generated by the differential operator 

£ 
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(where (GGT)ij is the (i,j)-th entry of the matrix GGT, fi' hi 
the i-th component of the vector f,h) and the operators 
(multiplication with) h 1 , ••• hp is called the estimation 
algebra. It is likely to be of considerable importance in the 
analysis of the filtering problem (= building finite dimensional 
systems driven by the observations which produce xt as outputs), 
cf. [Brockett 1981], [Hazewinkel-Marcus, 1980] and several more 
papers in [Hazewinkel-Willems, 1981]. 

The most general group linear stochastic Ito equation on the 
Heisenberg group is 

(6.4) Cl ( "1 x, + a4 x2 

'°6J 
dx 2 = -alx22+ a2 xl + a6x2 dt 

l 2 dx 3 -!-a2x 1 + a3xl + ,-a 4x 2 + a5x2 

("" ) 
m 

+ i: b2i dwi 
i=l 

xlb2i+b3i 

a 1 , ••• ,a 6 ; bji E Jil.• and the most general observation equations 
coming from a group homomorphism H + Jil. are of the form 

( 6. 5) 

6.6. Proposition. Consider a system on the Heisenberi group 
given by a signal equation of type (6.4) with observation 
equations of type (6.5). Then the observation Lie algebra is 
always pro-finite dimensional. 

A Lie algebra L is pro-finite dimensional if there exists a 
sequence of ideals L1 :::::> L2 .::> ••• such that L/Li is finite 
dimensional for all i and n Li= 0. Cf.e.g.[Hazewinkel-Marcus, 
1980] for a number of remarks on the relevance of this property 
for filtering problems. 

Indeed writing out the various operators explicitly one 
observes that they are sums of operators of the type 
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Cl all ai 
i 0' 1, 2 ••. ; I al , 1131 i 2. x 

axl> i ' az xl 
x (x ), z = X3 

2 

where 13 a and 
a a I x --s· aj 

ax 

I> are multiindices /aj = a 1 + a 2 • The operators 

JS/ ~ 2 span a finite dimensional Lie algebra LS 2 

(of dimension 15) so that the estimation algebra is a subalgebra 
of the "current-algebra" 

which is of course profinite dimensional. As a finite dimensional 
Lie algebra LS 2 can of course be embedded in a Lie algebra of 
vectorfields on ~N. some large N) and this then easily gives rise 

a to an inbedding of the current algebra LS 2 ~ ~[~]. In this case, 
however, there exists an inbedding of LS 2 modulo its centre in 

s the vectorfields on ~ which comes from all Kalman-Bucy filters 
put together (and is closely related to the Segal-Shale-Weil 
representation), cf. [Hazewinkel, 1981 J, which is more likely to 
be useful. 

(A result like proposition 6.6 holds generally also for 
higher dimensional Heisenberg groups (and hence for all 2-step 
nilpotent Lie groups) and I would like to pose the question 
whether it holds for every fibre linear system with linear base 
(and suitable output maps "linear" in the fibres). 

Things change dramatically if instead of using observation 
like (6.S) one uses an observation equation 

( 6. 7) 

E.g. the system 

(6.8) 

has the Wey! algebra w1 

dy 

a R<x -- > as a subalgebra. This is = I' ax1 
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perhaps not surprising because the map (x 1 ,x2 ,x 3 ) + x 3 is not 
"homogeneous" with respect to H. Indeed there is no action of H 
on R which makes this map H-equivariant. There is an action of H -2 
on~ which makes (x 1 ,x2 ,x3 ) + (x 2 ,x 3 ) H-equivariant. This, at 
first sight, would make an observation equation like 

( 6. 9) 
dy 1 x dv 1 

(dy ) = ( 2)dt + ( ) x dv 2 3 2 

permissible, and this would also give a subalgebra w1 in the 
estimation Lie algebra. However, in ( 6. 9) the noises do not enter 
in a group-equivariant way. To achieve that one needs observation 
equations like 

(6.10) 

And this raises the general question of obtaining a D-M-Z type 
equation for an (unnormalized) conditional density for more 
general systems 

(6.11) dx f(x)dt + G(x)dw, dy h(x)dt + J(x)dv 

With this open question I would like to conclude this paper, 
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