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Abs·tract. In this paper we are concerned with linear (stochastic) systems 
like dxt = (Ax +B1u )dt + B2dw , dy = Cx dt + dv or (more or less equi-
valent) ARMAX ~odel~ and the pfoble~ of iaentifyiAg A, Bi, B2, Con the 
basis of observations of the inputs ut and outputs Yt· In particular we are 
interested in the problem of whether there exists a machine (a system) driven 
by the instant neous observations Cut, Yt) which as output produces a "best" 
estimate of the unknown system (recursive estimation). And even more particularly 
we are interested on how big (in state space dimension) such a machine must be. 
Introducing additional state space parameters aij• bti• b~i• er and equations 
dai· = db~i = db~i =de = 0 converts the original problem int~ a nonZ~near 
filtering problem. For r~ch problems the socalled estimation Lie algebra contains 
a good deal of information (on how hard the problem is), and this is what we try 
to exploit in this paper. 
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INTRODUCTION 

Consider a continuous time linear state space 
model (system) 

(I . I) 

or a discrete time ARMAX model 
p m q 
i~o Aiy(t-i) = i~I Diu(t-i) + i~o Biw(t-i) 

(I • 2) 

or the discrete time analogue of (I.I) or the 
continuous time analogue of (1.2) (do not 
confuse the A, B's and D's in (I.I) with those 
in (1.2); they refer to rather different 
things). In this paper we are concerned with 
the problem of identifying optimally the va
rious matrices in (I. I) (resp. 1.2) given 
observations of the deterministic inputs ut 
and the outputs Yt· More precisely we are 
interested in finding a machine which does 
this in a recursive way (i.e. on line). Such 
a machine should proceed as follows: at time 
t-1 there is available a model M(t-1) and per
haps an additional memory vector R(t-1) and 
on the basis of the state (M(t-1),R(t-l)) and 
the new data u(t), y(t) the new "best" model 
M(t) and new memory vector R(t) can be cal
culated by some formula ~- There are a number 
of rather obvious desiderata: e.g. ~must not 
depend on time and R(t) must (in dimension) 
remain bounded in time. In other words the 
identification machine we are looking for (in 
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the discrete time case) i.s :itself a system 
(most probably nonlinear) of the form 

s (t) 

M(t) 

~(s(t-1), u(t), y(t)), 

Y(s(t)), s(t) E ~N 
(I. 3) 

and a continuous time identification machine 
could look like 

dst = a(st)dt + S1Cst' ut)dt + 

M(t) = Y(st), s(t) E ~N (I. 4) 

One particular question we would like to raise 
in this context is: "how big must N be"; i.e. 
we are interested in the minimal realization 
theory of the map 

{sequences or functions}+{best linear model } 
of input/output data of given dimensions 

Of course the minimal model for this input/ 
output map may involve more general space 
(manifolds) than the RN· 

One of the first-issues is then "identi
fiability": can one distinguish between all 
models of type (I.I) (resp. (1.2)) on the 
basis of input/output data alone. In the case 
of the models (!.I) this is obviously not the 
case: there are superfluous parameters to be 
removed. The next question is finite identifi
ability; how many data do we need to distin
guish the various candidate models. This also 
provides a lower bound for N(provided we do 
not allow pathological (continuous) maps like 
the Peano curve (from the unit interval onto 
the unit square); it suffices to. require~ and 



y in (1.3) to be algebraic or differentiable 
to avoid this). This is the topic of section 
2 below. 

Section 3 then continues with some re~ 
marks and some precise (but open) suggestions 
concerning the possible structure of an iden
tification machine (1.3) or (1.4). 

In section 4 below we discuss the non
linear filtering approach to identification. 
This amounts to considering the entries of 
A, B1, B2 , C, Din (1.1) as additional state 
variables and adding the equations 

dB 2 = dC = dD = 0 
(I. 5) 

(where if E is a matrix of variables dE = 0 
stands for de .. = 0 for all the entries eij). 
Adding (1.5) E6 (1.1) gives us a (rather 
large) nonlinear filtering problem, namely 
that of finding the best estimate of the 
state vector (x,A,B 1,B2,C,D) given the ob
servations (y ,us)• 0 ~ s ~ t. To every non
linear filterrng problem there is associated 
a certain Lie-algebra called the estimation 
Lie algebra and there is a philosophy (an 
almost theorem), due to [Brockett-Clark, 1978] 
to the effect that homomorphisms of Lie alge
bras from the estimation Lie algebra to Lie 
algebras of vectorfields correspond to exact 
filters for certain statistics of the system; 
cf. also [Hazewinkel-Marcus, 1980], [Marcus
Mitter-Ocone, 1978] and quite a few papers in 
[Hazewinkel-Willems,1981] for more information 
on this. In our particular case of a filter
ing problem coming from an identification 
problem the estimation Lie algebra turns out 
to be pro-finite dimensional (cf. [Hazewinkel
Marcus, 1980] for this notion and what it im
plies) which suggests that there will be 
"sufficiently many" statistics which can be 
computed recursively. 

A priori the use of the identification 
Lie algebra seems restricted to finding out 
things about the existence or nonexistence of 
exaat filters. This is probably not the case 
and the last two sections of this paper 
(section 5 on Gaussian approximation; section 
6 on the Extended Kalman Filter) provide po
sitive evidence that it also contains infor
mation (when considered not as.a bare Lie 
algebra but as a Lie algebra with a given re
presentation) on approximate filters. 

2. FINITE IDENTIFIABILITY OF ARMA 
MODELS 

2.1. The set-up. The class of models 
we are interested in this section is the class 
of models (1.2) with zero inputs; i.e. we are 
interested in all models 

p q 
.L Aiy(t-i) = .L Biw(t-i) , 
i=o i=o (2. 1) 

where y(t) E gm, t E 1 (outputs) and the 
u(t) E cm are-random vectors, independently 
and ide~tically distributed with mean zero 
and covariance L (positive definite hermitian). 
The integers p,q are supposed given and in 
additive we assume that A0 is nonsingular and 
the causality (stability) condition 

det t Akzk * 0 for all z E ~ of norm < __ 1 
k=o 

(2.2) 

We are interested in the identifiability 
of this class of models, i.e. in the question 
of whether two different models of type (2.1) 
give different probability distributions on 
the to-be-observed outputs and given a identi
fiable subclass we are interested in finite 
identifiability which roughly means that we 
want to be able to decide this on the basis 
of the probability properties of a finite 
collection of outputs and how many are needed. 
In particular we want to know how many of the 
cross covariances (which by stationarity are 
independed of t) 

(2.3) 

must be known in order to determine all others. 
Let A(z) = L ~zk, B(z) = L B.zj be the 

generating functions of the sequenJes of ma
trices (A0 , ••• , Ap), (B0 , ••.• , Bq). Form the 
(backwards) transfer function and expand it 
as a power series 

T(z) = A(z)- 1B(z) 
co 
E T k-1 

k=l kz (2.4) 

and in terms of the T's we are interested in 
how many of them we need to know (in terms of 
p and q) so that all others are determined. 

The rank of the associated block Hankel 
matrix H of T(z) is of course finite and equal 
to the MacMillan degree n of the ARMA model 
(2. 1) . 

2.5. Finite identifiability. Let 
r = max(p,q). Then the observability Kronecker 
indices of the system (F,G,H) are ~ r. There 
is even, as is wellknown, a representation of 
the ARMA model for which the row degrees of 
the partitioned matrix [A(z):B(z)] are equal 
to the observability Kronecker indices. 

This gives n ~ mr. Similar arguments for 
suitability shifted and adjusted transfer 
functions (forwards and backwards) combined 
with a well-known result from partial realiz
ation theory due to Kalman (cf. e.g. [Hazewin
kel, 1980] ), now lead to the theorem that 
T0 , ••• , Tq+pm s~ffice to determine all further 
T• s. If q < p this can be sharpened to T0 , ••• , 

Tp+qm• cf. [Hanzon, 1981]. 

2.6. The associated Covariance Systems. 
Let fk be given by (2.3). These matrices 

for k E N ' {O} can be considered as inpulse 
response-matrices of some linear system which 
we call the covariance system corresponding 
to the ARMA model. Using rathe~ similar ideas 
as described above and using that the block 
Toeplitz matrix 

'. q-p+ 1) 
ro 

is positive definite hermitian one obtains 
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~' J-
~tMt the f 0 , • .".,re, e,. min(pm+q, qm+p) 
r: suffice to determine the remaining ones so 
6' that (the statistics of) the first e + 1 out-
ri puts y0 , Yp ... , Ye suffice for identifiabil-
: itY· 

For q ~ p ~ 1 this sufficient condition 
can be proved to be necessary as well, cf. 
[Hanzon, 1981]. 

3. IDENTIFICATION AND THE GEOMETRY OF 
THE MODULI SPACE 

3.1. The set-up. Let us consider the 
usual state space linear systems 

x =Ax+ Bu, y = Cx, x E ~n, y E ~P, u E ~m 

(3. 2) 

and consider at a fairly primitive level the 
problem of recursive "fitting" A, B, C in the 
"best" possible way to the available data 
u(t), y(t), t E g. In particular for the 
moment we are not going to worry about how to 
put in some stochastics so as to make sense 
of "best" in a probabilistic way. Here recur
sive should be interpreted as in the intro
duction. We shall also assume that (3.2) is 
completely observable and completely reach
able and that we have available a (reasonable) 
guess for n. The first remark is of course 
that y(t), u(t) for all t cannot determine 
(A, B, C) uniquely but only the orbit of 
(A, B, C) under state ~ace equivalence, 
(A, B, C) s = (SAs-1 'SB, cs- ) ' s E ~~n (~). This 
leads to the quotient space 

tco,cr /GLn = Mco,cr of the space of all er 
m,n,p == m,n,p 

and co systems of the indicated dimensions 
modulo state space equivalence. (And of course 
y(t), u(t) does distinguish between points of 

Mco,cr.) This space M is a nice smooth dif-
m,n,p 

ferentiable manifold which, perhaps unfortun
ately, is as a rule not diffeomorphic to an 
~N, [ Hazewinkel, 1977 l . 

Viewing identification as "walking around 
on M" makes the problem identifiable, i. e. it 
gets rid of the superfluous parameters. And 
it does so in a way which is much less ad hoe 
then the use of one or another canonical 
form • Even when global continuous canonical 
forms do exist (which happens only when m = 1 
or p = 1 [Hazewinkel,1977}) there are lots of 
them; and they are not equivalent e.g. in 
terms of the size of the gradient vectors of 
error functions and there is no especially 
favorable one. 

So it seems much more natural to try to 
use the natural geometry of M and to do 
identification directly on M. 

3.3. A Riemannian metric on M. A first 
thing one needs for this is a Riemannian 
metric on M. A nice one is obtained as fol
lows. Given a system (A,B,C) write, as usual 

R(A,B) = (B;AB; ••. ;AnB), 

Q(A,C)T 
(3.4) 

(where the T denotes transposes). We shall 
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use dR(A,B) to denote the formal differential 
of R(A,B), e.g. i'f n = 2 one has dR(A,B) =dB; 
(dA)B + A(dB); (dA)AB + A(dA)B + A2(dB), where 
(dA,dB,dC) is a tangent vector to 

Lco,cr at (A,B,C). Using this notation con
m,n,p 

sider the following Riemannian metric on 
1 co,cr 

m,n,p 

11(dA,dB,dC)11 

Tr((dQ)RRT(dQ)T)+Tr((dR)TQTQ(dR)) 

(3.5) 

where Q is short for Q(A,C) and R for R(A,B). 
It is not difficult to check that this Rie
mannian metric is positive definite on 

Lco,cr but that it degenerates on the bound-
m,n,p co er 

ary of L ~ P' i.e. it becomes singular for 
systems ~! lower MacMillan degree. 

One easily checks that this metric is 
invariant under ~~nso that the metric des
cends to give us a Riemannian metric on M. 

One interesting problem is to calculate 
the curvature of this metric also because of 
the connection between Gaussian curvature and 
"the Fisher second order efficiency" of a 
statistical estimation problem ([Efron,1975]). 

3.6. Identifying systems. One could now 
imagine that an identification procedure 
would proceed as follows. At time t we have 
Lt and xt. New data come in; assuming Lt• xt 
evolves in a known waYi this gives (given 
u(t)) a prediction for ytt) which can be com
pared to the actual y(t). Calculate the 
squared error (e.g.) function as a function 
of r E M and take the gradient. Now let Et 
evolve along this gradient (possibly with a 
gain factor inserted). The question we would 
like to pose is does such an identification 
scheme exist and/or can any of the existing 
recursive identification schemes (cf. [Ljung, 
1981] for a very nice, up to date survey) be 
viewed in this way (perhaps in approximation)? 
Or more generally can there exist such a 
scheme possibly evolving on a manifold 
M1 .... M covering M? One would definitely con
jecture yes. Given the fact that there are 
recursive identification schemes it is hard 
to see how they can avoid covering the moduli 
space M in some way. 

~ 

4. THE NONLINEAR FTITERING APPROACH 
TO IDENTIFICATION 

4.1. The Estimation Lie algebra. Con
sider a general nonlinear stochastic system 

t4.3) 

where wt, vt are independent Wiener noise pro
cesses also independent of the initial random 
variable Xo• Here f,h,G are vector and matrix 
valued functions of the appropriate sizes. 
Assume sufficient regularity so that the con
ditional density p(x,t) exists of the state 
Xt given the past observations Ys• 0 ~ s ~ t. 



Then an unnorm.alized version p(x,t) satisfies 
the socalled Duncan-Mortenson-Zakai equation 
(Fisk-Stratonovic form) 

p 
dp(x,t) = L0 p(x,t)dt + i~ 1 bi(x)p(x,t)dYit 

where hi is the i-th component of h 
is the differential operator 

1 n a2 T 
Locj> 2 i 4:J-10X·oX· ((GG )ij<f>) -

' - l. J 

- i~l a!i (fi$) - ~ j!1 hl 

(4. 3) 

(4 .4) 

The Lie algebra of differential operators 
generated by L0 and h1, •.• , hp is called 
the estimation Lie algebra. Cf. the references 
cited in the introduction for more information 
on it. 

4.5. The Estimation Algebra of an 
Identification Problem. Now con

sider the problem of identifying a system 
0.1) where, for ease of notation mainly, we 
take D = Ip. B1 = 0 (so that there are no 
deterministic inputs). Write it as a non
linear filtering problem by adding the equat
ions (1.5). This gives 

(4. 6) 

dA = dB = dC = 0 , dyt = Cxt+dvt 

~ote that there is redundancy in A,B,G). 
Writing out L0 and hi in this case one notices 
that these operators are all sums of express
ions of the form Caexa(aS/axS) where CaS is 
a polynomial in the entries of A,B,C and 
where a= (a1•····~), S = ($1, ••• ,Sn) are 
mu1 tiindices such that I la 11. 11e11 ~ 2 where 
if y is a multiindex I IYI I denotes -

Yt+ ••• +yn. Now the xacaS;axS) with I lal I 
I ISI I ~ 2 form a 2n2 + 3n + 1 dimensional Lie 
algebra (under the commutator brackett) which 
we denote LSn. It follows that the estimation 
Lie algebra of (4.6) is a sub-Lie-algebra of 
the Lie-algebra LSnB R [A,B,C] where R[A,B,C] 
stands for the polynomial ring over R in the 
entries of A,B,C. In particular this=implies 
that the estimation Lie algebra L(L) of (4.6) 
is profinite dimensional. This means that 
there are ideals I 1 :::> I2 :::> I 3 :::> •. •. such that 
L(r)/Ij is finite dimensional for all j and 
0 Ij = {O}. And in turn this suggests that 
there are sufficiently many recursively com
putable statistics. 

If M is a manifold let V(M) denote the 
Lie algebra of vectorfields on M. For a fixed 
6 = (A,B,C) the Kalman-Bucy filter defines an 
anti-homomorphism of Lie algebras of the 
estimation Lie algebra L(6) to V(Br), 
r·= ln2 + 0/2)n (for a proof cf. TBrockett
Clark,1978] in the simplest case and [Haze
winkel, 1981] in general). Letting 6 vary 
these "combine" to define a Lie algebra homo
morphism of the estimation Lie algebra of 
(4.6) to V(RrxRN), N = n2 +nm+ np (the num
ber of para~et~rs in A,B,C). Or, better, one 
can use a certain representation of LSn in 
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V(Br) which is essentially all possible 
Kalman filters combined, cf. [Hazewinkel, 
1981]. 

This Lie algebra anti-homomorphism 
(essentially a family of Kalman-Filters) 
does calculate some statistic viz. the con
ditional density p[xtlYs• 0 ~ s ~ t,6] as a 
function of e. This and some related and/or 
derived entities which can be recursively 
computed can be used in a variety of ways, 
cf. e.g. [Krishnaprasad-Marcus,1981], 
[Krishnaprasad-Marcus-Hazewinkel,1981] 
[Krishnaprasad-Hazewinkel-Hanzon,1981] and 
also below in section 5. But this filter does 
not give us an identification procedure of 
the type we want because it itllTolves no 
equations which tell us how 6 evolves. 

5. GAUSSIAN APPROXIMATION 

The filter described above does give 
most useful information though, and combines 
nicely with Gaussian approximation ideas 
[Stratonovic,1960,1970]. Let us illustrate 
this by means of a most simple example 

(5. 1) 

The D-M-Z equation in this case looks 
like 

1 a2 a 
<2 ~ - 6 - ex ax dp 

(5. 2) 

- ~ x2)pdt + dpdyt 

and the estimation Lie algebra is easy to 
calculate, cf. example 6.3 below. Write 
p = e-S. Then S satisfies the equation 

-xdyt (5.3) 

which is a family of evolution equations for 
S parametrized by 6. Moreover if for a cer
tain value 60 of 6 the initial distribution 
P(Xo,60) is Gaussian so that S(x,8,0) is 
quadratic in x at 6 • then p(x,6 ,t) is 
Gaussian for all t ~because giveR 60 we are 
dealing with a linear system, i.e. S(x,60,t) 
is quadratic. This can also be seen from 
(5.3). 

Assume P(Xo,6,0) is Gaussian for all 6. 
Write S = ax2+bx+c, where a,b,c are functions 
of 6 and t. Then equation (5.3) gives us 

-2a2 + l - 2a6 
2 

-2ab - b6 - dyt 

c = a + 6 - .!. b 2 
2 

(5.4) 

which is simply another way of writing down 
(deriving) the family of Kalman filters allud
ed to before in the last part 1of section 4 
above. In fact writing a = - 2 p-1 the reader 
will recognize in the first equation of (5.4) 
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