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ABSTRACT. In this paper we are concerned with linear (stochastic) 

systems like dxt· = (Axt+B1 ut)dt + B2 dwt' dyt = Cxtdt + dvt or 

(more or less equivalent) ARMAX models and the problem of 

identifying A,B1 ,B2 ,c on the basis of observations of the inputs 

ut and outputs Yt• In particular we are interested in the problem 

of whether there exists a machine (a system) driven by the 

instanteneous observations (ut,yt) which as output produces a 

"best" estimate of the unknown system (recursive estimation). And 

even more particularly we are interested on how big (in state 

space dimension) such a machine must be. Introducing additional 
1 2 

state space parameters ai.,bkt'bki'c and equations 
1 2 J r,s 

daij = dbkt = dbkt dcrs = 0 converts the original problem into 

a nonlinear filtering problem. For such problems the socalled 

estimation Lie algebra contains a good deal of information (on 

how hard the problem is), and this is what we try to explo~t in 

this paper. 
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1. INTRODUCTION 

Consider a continuous time linear state space model (system) 

or a discrete time ARMAX model 

( 1. 2) I 
i=o 

A y(t-i) = 
i 

m 

l 
i=l 

D.u(t-i) 
1-

+ I 
i=o 

B.w(t-i) 
1-

or the discrete time analogue of (1.1) or the continuous time 

analogue of (1.2) (Do not confuse the A,B's and D's in (1.1) with 

those in (1.2); they refer to rather different things). In this 

paper we are concerned with the problem of identifying optimally 

the various matrices in (1.1) (resp. 1.2) given observations of 

the deterministic inputs ut and the outputs Yt• More precisely we 

are interested in finding a machine which does this in a 

recursive way (i.e. on line). Such a machine should proceed as 

follows: at time t - 1 there is available a model M(t-1) and 

perhaps an additional memory vector R(t-1) and on the basis of 

the state (M(t-1),R(t-l)) and the new data u(t), y(t) the new 

"best" model M(t) and new memory vector R(t) can be calculated by 

some formula ~. There are a number of rather obvious desiderata: 

e.g. ~ must not depend on time and R(t) must (in dimension} 

remain bounded in time. In other words the identification machine 

we are looking for (in the discrete time case) is itself a system 

(most probably nonlinear) of the form 

( 1. 3) s ( t) ~(s(t-1),u(t),y(t)),M(t) y(Ut)),S:(t) E RN 

and a continuous time identification machine could look like 

( 1 • 4) 

One particular question we would like to raise in this context 

is: "how big must N be"; i.e. we are interested in the min:'..mal 
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reali2ation theory of the map 

f sequences or functionsl ~ 

lof input/output data J {
. b ~ s t 1 in e a r mo de 1 o f {l 
given dimensions 

Of course the minimal model for this input/output map may involve 
N more general spaces (manifolds) than the ~ • 

One of the first issues is then "identifiability": can one 

distinguish between all models of type (1.1) (resp. (1.2)) on the 

basis of input/output data alone. In the case of the models (1.1) 

this is obviously not the case: there are superfluous parameters 

to be removed. The next question is finite identifiability how 

many data do we need to distinguish the various candidate models. 

This also provides a lower bound for N (provided we do not alow 

pathological (continuous) maps like the Peano curve (from the 

unit interval onto the unit square); it suffices to require ~ 

and yin (1.3) to be algebraic or differentiable to avoid this). 

This is the topic of section 2 below. 

Section 3 then continues with some remarks and some precise 

(but open) suggestions concerning the possible structure of an 

identification machine (1.3) or (1.4). 

In section 4 below we discuss the nonlinear filtering 

approach to identification. This amount to considering the 

entries of A,B 1 ,B 2 ,c,D in (1.1) as additional state variables and 

adding the equations 

( 1. 5) dA = dB 1 = dB2 = dC dD 0 

(where if E is a matrix of variables dE = 0 stands for de.. 0 
lJ 

for ail the entries eij). Adding (1.5) to (1.1) gives us a 

(rather large) nonlinear filtering problem, namely that of 

findi~g the best estimate of the state vector (x,A,B1 ,B2 ,c,D) 

given the observations(y ,u ), 0 ~ s ~ t. s s 
To every nonlinear 

filtering problem there is associated a certain Lie-algebra 

called the estimation Lie algebra and there is a philosophy (an 

almost theorem), due to [Brockett-Clark 1978] 
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algebra to Lie algebras of vectorf ields correspond to exact 

filters for certain statistics of the system; cf. also 

[Hazewinkel-Marcus 1980], [Marcus-Mitter-Ocone 1978] and quite a 

few papers in [Hazewinkel-Willems, 1981] for more information on 

this. In our particular case of a filtering problem coming from 

an identification problem the estimation Lie algebra turns out to 

be pro-finite dimensional (cf. [Hazewinkel-Marcus 1980] for this 

notion and what it implies) which suggests that there will be 

"sufficiently many" statistics which can be computed recursively. 

A priori the use of the identification Lie algebra seems 

restricted to finding out things about the existence or 

nonexistence of exact filters. This is probably not the case and 

the last two sections of this paper (section 5 on Gaussian 

approximation; section 6 on the Extended Kalman ftlter) provide 

positive evidence that it also contains information (when 

considered not as a bare Lie algebra but as a Lie algebra with a 

given representation) on approximate filters. 

2. FINITE IDENTIFIABILITY OF ARMA MODELS. 

2.1 The set-up. The class of models we are interested in 

this section is the class of models (1.2) with zero inputs; i.e. 

we are interested in all models 

p q 
( 2. 1) l A.y(t-i) = I Biw(t-i), 

i=o 1 i=o 

where y(t) E cm 
= , t E :fr (outputs) and the u(t) € f m are random 

vectors, independently and identically distributed with mean zero 

and covariance E (positive definite hermitian). The integers p,q 

are supposed given and in additive we assume that A0 is 

nonsingular and the causality (stability) condition 

( 2. 2) det I Akzk * 0 for all z € f of norm ~ 1 
k=o 

We are interested in the identifiability of this class of 

models, i.e. in the question of whether two different models of 

type (2.1) give different probability distributions on the to-be

observed outputs and given a identifiable subclass we are 
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i : 1 t ' · r , •; t •: d I n f i n i t ·~ i d f~ n t !. f i a b L 1 i t y w h i c h r o u g h 1 y me a n s t h a t we 

wunl :o be able to decide this on the basis of the probability 

prope~ties of a finite collection of outputs and how many are 

needed. In particular we want to know how many of the cross 

covar~ances (which by stationarity are independed of t) 

( 2 • 3) 

must be known in order to determine all others. 

:"et A(z) = Z:: Akzk, B(z) = l: Bjzj be the generating functions 

of th2 sequences of matrices (A , ••• ,A), (B , ••• ,B) Form the 
0 p 0 q 

(backwards) transfer function and expand it as a power series 

( 2. 4) T(z) 
-1 

A(z) B(z) 

and iu terms of the T's we are interested in how many of them we 

need co know (in terms of p and q) so that all others are 

d e t e rc:i i n e d • 

The rank of the associated block H nkel matrix H of T(z) 

( 2 • 5) (" T2 T3 . . . 
H T2 T3 T4 . . . 

• 

is of course finite and equal to the MacMillan degree n of the 

A R MA .n o d e l ( 2 • 1 ) • 

2.6. Relations between Hankel matrix and ARMA model. Let 

r = max(p,q). Then the observability Kronecker indices of the 

system ( F,G,H) are ~ r. There is even, as is wellknown, a 

representation of the ARMA model for which the row degrees of the 

parti~ioned matrix [A(z):B(z)] are equal to the observability 

Krone~ker indices. 

This gives n ~ mr. Assume first p f q and consider the 

"shifted" transfer function zp-qT(z) which corresponds to an ARMA 

model 



( 2. 7) 
q 
l B.u(t-j-p-q) 

j=o J 

6 

with MacMillan degree n ~ mp. We shall need a similar upper bound 

for the case p < q. In this case one considers the transfer 

functions 

co 

( 2. 8) 'i' j 
j~oTj+kz 

A(z)-lB(k)(z) 

where B(o) (z) B(z) andB(k)(z) 

(k) 
One has that degree B (z) ~ q-k for k ~ q-p so that the 

MacMillan degree of 

observations we see 

E T ·+ zj is < mp. Combining these 
J q-p = 

that the rank of the Hankel matrix 

(2.11) 

T q-p+l 
T q-p+2 

T q-p+2 
T q-p+3 

• . 
~ 

with Ti = 0 if i < 0 has rank ~ mp. 

••• 
• 0 • 

two 

The next result we need is the following wellknown 

continuation lemma (due to Kalman) of partial realization theory. 

For a proof cf e. g. [Hazewinkel 1980]. 

be a sequence of m x m 2.12. Lemma. Let T0 ,T 1 , ••• ,TR,+j+l 

matrices. For all r,s with r+s ~ .R-+j+l write H 
r,s 

for the block 

Hankel matrix with the r + 1 block rows (T , ••• ,T ), 
0 s 

(T 1 , ••• ,Ts+l), ••• , (Tr, ••• ,Tr+s). Then if 

rank(HR,,j) = rank(HR,+l,j) = rank(HR-,j+l) there is a unique 

continuation TR,+j+ 2 , •.• such that rank(H 00 , 00 ) = rank(Ht,j). 

There is also a partial converse. If 

rank(HR,,j) = rank(Ht,j+l) < rank(Ht+l,j) = n then Tt+j+ 2 such 

that rank(Ht+l.j+l) = n is not unique and there are even "free" 

parameters. Cf. [Kalman 1979] for more information concerning 

this in the scalar input, scalar output case. 

2 • 1 2 • Fini t e Iden t i f i a bi 1 i t y • No w cons i de r an AR MA ( p , q ) -

model. Because the MacMillan degree of (A(z), B(q-p)(z)) 
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(:.--esp. A(z), zp-qB(z)) is ~ pm if q ~ p (resp. p ~ q) and all 

th~ observability Kronecker indices are ~ p it follows by the 

ccntinuation lemma that the submatrix 

( 2.. l 3 

... 
o~ (2.11) suffices to determine all of (2.11). It follows that 

th2 T , ••• ,T + suffice to determine all further T's. If o q pm 
c < p this can be sharpened to T , ••• , T + , cf. [Hanzon · o p qm 

1981]. 

Z.14. The Associated Covariance Systems. Let rk be given by 

(~.3). These matrices for k E ~' {O} can be considered as 

inpulse response matrices of some linear system which we call the 

covariance system corresponding to the ARMA-model. Using rather 

s:2ilar ideas as described above and using that the block 

Toeplitz matrix 

is positive 

. . 0 

* 
(

r 

r , 
q-p+t 

. . 

definite hermitian one obtains that the r , 
0 

... , 
e = min(pm+q,qm+p) suffice to determine the remaining ones so 

that (the statistics of) the first e + 1 outputs 

y 0 ,y 1 , ••• , ye suffice for identifiability. 

r , 
e 

For q ~ p ~ 1 this sufficient condition can be proved to be 

necessary as well, cf. (Hanzon 1981]. 

3. IDE,\l'TI FI CATION AND THE GEOMETRY OF THE MODULI SPACE. 

3.1. The set-up. Let us consider the usual state space 

linear systems 

( 3 • 2) Ax + Bu, y 
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and ~onsider at a fairly primitive level the problem of recursive 

"fitting" A,B,C in the "best" possible way to the available data 

:J ( t ) , y ( t ) , t E ~ • I n p a r t i c u 1 a r f o r t he m o m e n t we a r e n o t g o i n g 

to worry about how to put in some stochastics so as to make sense 

of "~;est" in a probabilistic way. Here recursive should be 

interpreted as in the introduction. We shall also assume that 

(3.2) is completely observable and completely reachable and that 

we h~ve available a (reasonable) guess for) n. The first remark 

is o~ course that y(t), u(t) for all t cannot determine (A, B,C) 

uniquely but only the orbit of (A,B,C) under state space 

equivalence, (A,B,C)S (SAS- 1 ,SB,CS- 1 ),S EGL (R). This leads 
===n = 

to 

the .:uotient space Lco,cr/g~ = Mco,cr of the space of all er and 
m,n,p --n m,n,p 

co s;'stems of the indicated dimensions modulo state space 

equivalence. (And of course y(t), u(t) does distinguish between 

points of M = Mco,crJ This space M is a nice smooth 
rn,n,p 

differentiable manifold which, perhaps unfortunately, is as a rule 

not diffeomorphic to an ~N. ([Hazewinkel, 1977]). 

Viewing identification as "walking around on M" makes the 

problem identifiable, i.e. it gets rid of the superfluous 

parameters. And it does so in a way which is much less ad hoe 

then the use of one or <lnother canonical forms. Even when global 

continuous canonical forms do exist (which happens only when 

rn = l or p 1 [Hazewinkel 1977]) there are lots of them; and 

they are not equivalent e.g. in terms of the size of the gradient 

veccors of error functions and there is no especially favorable 

one. 

So it seems much more natural to try to use the natural 

geoffietry of M and to do identification directly on M. 

3.3. A Riemannian metric on M. A first thing one needs for 

this is a Riernannian metric on M. A nice one is obtained as 

follows. Given a system (A,B,C) write, as usual 

R(A, B) = 
n 

( B;AB; ••• ;A B), 

(3 .... ) 
T T T T T n T 

Q(A,C) = (C ;AC ; ••. ;(A) C ) 
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(where the T denotes transposes). We shall use dR(A,B) to denote 

the formal differential of R(A, B), e.g. if n 2 one has 

dR(A,B) = (dB;(dA)B + A(dB); (dA)AB + A(dA)B + A2 (dB), where 

(dA,dB,dC) is a tangent vector to Lco,cr at (A,B,C). Using this 
m,n,p 

notation consider the following Riemannian metric on Lco,cr 
m,n,p 

( 3. 5) II (d A ' d B' d c ) II 

where Q is short for Q(A,C) and R for R(A,B). It is not difficult 

to check that this Riemannian metric is positive definite on 

Lco,cr but that it degenerates on the boundary of Lco,cr i.e. 
m,n,p m,n,p' 

it becomes singular for systems of lower MacMillan degree. 

One easily checks that this metric is invariant under GL 
"""" n 

so that the metric descends to give us a Riemannian metric on ~. 

One interesting problem is to calculate the curvature of 

this metric also because of the connection between Gaussian 

curvature and "the Fisher second order efficiency" of a 

statistical estimation problem ([Efron 1975)). 

3.6. Identifying systems. One could now imagine that an 

identification procedure would proceed as follows. At time t we 

have Et and xt. New data come in; assuming Et, xt evolves in a 

known way giving (given u(t)) a prediction for y(t) which can be 

compared to the actual y(t). Calculate the squared error (e.g.) 

function as a function of E E M and take the gradient. Now let 

Et evolve along this gradient (possibly with a gain factor 

inserted). The question we would like to pose is does such an 

identification scheme exist and/or can any of the existing 

recursive identification schemes (cf. [Ljung 1981] for a very 

nice, up to date survey) be viewed in this way (perhaps in 

approximation)? Or more generally can there exist such a scheme? 

One would definitely conjecture yes. Given the fact that there 

are recursive identification schemes it is hard to see how they 

can avoid covering the moduli space M in some way. 
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4. THE NONLINEAR FILTERING APPROACH TO IDENTIFICATION. 

4.1. The Estimation Lie algebra. Consider a general nonlinear 

stochastic system 

( 4. 2) h(x )dt + dv 
t t 

where wt, vt are independent Wiener noise processes also 

independent of the initial random variable x 0 • Here f,h,G are 

vector and matrix valued functions of the appropriate sizes. 

Assume sufficient regularity so that the conditional density 

p(x,t) exists of the state xt given the past observations 

ys, 0 S s ~ t. Then an unnormalized version p(x,t) satisfies the 

socalled Duncan-Mortenson-Zakai equation (Fisk-Stratonovic form) 

p 
( 4. 3) dp(x,t) L p(x,t)dt + l b.(x)p(x,t)dy.t 

0 i=l l. l. 

where h. is the i-th component of h and L is the differential 
l. 0 

operator 

1 
n a2 T 

L 
0 4> l (( GG ) .. qi) -

2 i,j=laxiaxj l. J 

( 4. 4) 
n 

a 1 
p 

h~ l (f.<ji) - l 
i=l ax. l. 2 

j=l J 
l 

The Lie algebra of differential operators generated 

... ' h is called the estfrnat1'.m: Lie a7gebY'n· 
p 

Cf the 

references cited in the introduction for more information on it. 

4.5. The Estimation Algebra of an Identification Problem. 

Now consider the problem of identifying a system (1.1) where, for 

ease of notation mainly, we take D = Ip, B1 = 0 (so that there 

are no deterministic inputs). Write it as a nonlinear filtering 

problem by adding the equations (1.5). This gives 

( 4. 6) dB dC 0' dy t Cx +dv 
t t: 

(Note that usually there is redundancy in A, B,C in spite of the 

fact that we have already normalized D). Writing out L0 and hi 

in this case one notices that these operators are all sums o!-
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expre3sions of the form 

( 4 • 7 ) 

where CaS is a polynomial in the entries of A, B,C and where 

a= (a 1 , ••• ,an)' S = (S 1 , •• .,!3 11 ) are multiindices such that 

II a ii , Ji B 11 ~ 2 w he re i f y i s a nu 1 t i i n d ex h I d e n o t e s 

r 1+ 2 + Y0 • Now the xaa 13 with lo:I/, JIBll ~ 2 form 

a 2n + 3n + l 

dimensional Lie algebra (under the commutator brackett) which we 

denot~ LS 0 • It follows that the estimation Lie algebra of (4.6) 

is a 3ub-Lie-algebra of the Lie-algebra 

( 4 • 8) LS ®~[A,B,C] 
n 

where ![A,B,C] stands for the polynomial ring over! in the 

entrl<.:!s of A, B,C. In particular this implies that the estimation 

l,ie algebra L(l:) of (4.6) is profinite dimensional. This. means 

that there are idea 1 s I 1 ~"l I 2 ::> I 3 "::J such that L ( r.) I I j is 

finite dimensional for all j and n I, = {O}. And in turn this 
. J 

sugge3ts that there are safficien~ly many recursively computable 

statistics. 

~f M is a manifold let V(M) denote the Lie-algebra of 

vectorfields on M. For a fixed El= (A,B,C) the Kalman-Bucy filter 

defines an anti-homomorphism of Lie-algebras of the estimation 

r) 1 2 3 
Lie algebra L( El ) to V(! , r = in + ~n 

(for :;. proof cf. [Brockett-Clark, 1978] in the simplest case and 

!Ha,:e,~inkel, 1981] in general). Letting 8 vary these "combine" to 

d t~ f j n c: a J, i. e a 1 g e b r a h L) m o m o r p h i t5 m o f t h e e s t i m a t i o n L i e a 1 g e b r a 

r N ? ( 
of (4.b) to V(! x~ ), N = n~ + nm+ np the number of parameters 

in A,B,C).Or, better, one can use a certain representation 

of LS in V(~r) which is essentially all possible Kalman filters 
il 

combL1ed, cf. [Hazewinkel 1981]. 

This Lie algebra anti-homomorphism (essentially a family of 
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Kalman-Filters) does calculate some statistic viz. the 

conditional density p[xtlYs' 0 ~ s ~ t,6] as a function of e. 
This and some related and/or derived entities which can be 

recursively computed can be used in a variety of ways, cf. e.g. 

[ Krishna p r as ad- Marcus , 1 9 8 1 ] , [Hanz on - Haze wink e 1-Krishna p r as ad 

1981 a, b] and also below in section 5. But this filter does not 

give us an identification procedure of the type we want because 

it involves no equations which tell us how e evolves. 

S. GAUSSIAN APPROXIMATION. 

The filter described above does give most useful information 

though, and combines nicely with Gaussian approximation ideas 

[Stratonovic 1960,1970]. Let us illustrate this by means of a 

most simple example 

( 5 • 1 ) 

The D-M-Z equation in this case looks like 

( 5. 2) dp = Cl: a 2 - e - ex a 
2 ax2 ax 

1 2 
2 x )pdt + xpdyt 

and the estimation Lie algebra is easy to calculate, cf. example 
-s 6.6 below. Write p = e • Then S satisfies the equation 

( 5. 3) 

which is a family of evolution equations for S parametrized 

by e • Moreover if for a certain value 00 of 8 the initial 

distribution p(x ,e ) is Gaussian so that S(x, 8 ,0) is quadratic 
0 0 

in x at e0 . , then p ( x , 0 0 , t ) is Gau s s i an f or a 11 t ( be c au s e 

given 00 we are dealing with a linear system, i.e. S(x,1-)0 ,t) is 

quadratic. This can also been seen from (5.3). 

Assume p(x , 8,0) is Gaussian for all 8· Write S = ax 2+bx+c, 
0 

where a, b,c are functions of 0 and t. Then equation (5.3) gives 

us 



. 
a 

( 5 • 4) 

2 1 
-2a + 2 - 2ae , 

- 2ab - be 

a + e - l b 2 
2 

dy t, 

13 

which is simply another way of writing down (deriving) the family 

of Kalman filters alluded to before in the last part of section 4 
1 -1 

above. In fact writing a = - ~ p the reader will recognize in 

the first equation of (5.4) the equation for the covariance p 

give:l. e. 
Of course the Lie algebra of the filter (5.4) is a 

homo;1orphic image of the estimation Lie algebra. From the 

para~etrized family of covariance equations p = 1 - p 2 + 28p 

one obtains (also families of) equations for the (partial) 

deriJative(s) ~~ = p (in this case ?6 = -2pp 8 + 2p + 28p 6 ) 

whic.1 is linear, given p. 

This can be useful in view of a theorem of Nishimura (cf. 

[ J a z ',.;ri n s k y 1 9 7 0 , p a g e 2 5 ·+ , T h m 7 • 8 ]) t o t he e f f e c t t ha t p ( G , t ) 

assu:nes its minimum value at p(00 ,t) if 8 0 is the true value. 

The equations (5.3) also nicely show why Gaussian 

approximation might work well. Write 

S = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 1 x4 + •.• Substituting this in 

(5.3) yields equations for the a 1 , i = 0,1,2, •.• , viz. 

a 
0 

1 2 
a2 + 6 - 2 al 

3a 3 - 2a 1 a 2 -

2 2a 2 3a 1a 3 

. . 

ea 1 - dyt 

l 2a 2 e + 2 + 6a 4 

Taking the quadratic (Gaussian approximation) is stable in the 
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sense that if a 3 = a 4 = as = 

they remain zero, but if e.g. a 4 

0 at the starting time then 

a = s 0 at the starting 

time then a 4 , as, etc. do not remain zero. In fact Gaussian 

approximation is the only approximation which works in this 

sense. 

The filter (S.4) calculates a,b,c as functions of 8, but is 

of course still an infinite-dimensional machine. Writing a,b,c as 

power series in (8-8 ) (around a previous estimate e e.g) we 
0 0 

find from (S.4) differential equations for the coefficients 

ao,al, ••• ; bo,b1,•••; 

because the estimation 

algebra LSn ~ ~ [8] we 

c 0 ,c 1 , ••• of these power series and 

Lie algebra is a subalgebra of the current 

have that LS ®(8-8 )iR [8] is an ideal so 
n o = 

that these equations are such that ak,bk,ck, k ~ i remain zero 

for all time t if this is the case at time t = 0. This holds for 

all i, in particular for i = 3. Thus we can calculate the 

quadratic part (around e ) of S by an exact finite dimensional 
0 

filter, and this quadratic part in turn contains all the data 

needed for the joint Gaussian approximation of the density 

p(u,e) (up to a scalar factor) and from that an (approximate) 

estimate e results. 

6. EXTENDED KALMAN FILTER AND ESTIMATION LIE ALGE BRA. 

In this section we shall only consider two examples. The results, 

however, suggest a general theorem which remains to be 

established. 

6.1. Example 1. Consider the identification type non linear 

filtering problem given by the equations 

( 6. 2) 

The estimation Lie algebra of this system is easily calculated. 

As a basis it has the operators 

A 
1 2 a2 a 1 2 B. 

2i 
i 0,1,2 ••• ; a - a x ; a x, "' 2 

ax 
2 ax 2 l. 

c. 2i a 2i-l 
i 1,2, ••• ; D. 

2i i 1 , 2 , •••• The a - a a 
l. ax l. 



nonzero commutation relations are 

[A,B"] = C.+l' [A,C.] =B., [B.,C.] = -D·+·· 
'- 1. 1. ]. 1. J ]. J 

Xow consider the extended Kalman filter for (6.2) 

(cf. [Jazwinsky 1970, page 338}. This gives 

(6.3) 
2 

dP,, 2 = - P 12 dt ,_ 

14A 

Thus, writing x and b instead of i, 6 for typographical 

convenience, the vectorfields defining the EKF (6.3) are (cf. 

also (1.4)) 



a = 2 a a 
( 2 Pl2+l-Pll)~ + (P22-Pllpl2)ap-

ll 12 

2 a a a 
pl2 3P 22 - xPll ax - xP12 3b 

a a 
P11 --a;+ P12 ab 

Calculating interated bracketts in the a and S0 is a rather 

exhausting business. But a few are needed 

y 1 = [ a 0, a] 
a - - -
ax 

Now observe that if 6 is a vectorfield of the general form 

( 6. 4) 

15 

then [o,a] is of the same general form. Also observe that if 

6,6' are two (different) vectorfields of the form (6.4) t~en 

[6,6'] = O. Finally observe that if y is a vectorfield of the 

form (6.4) which can be written as 

( 6. 5) y 

with all polynomials in c of degree~ s+l. Then [y,a] is of the 

form 

s+l 2 a 
c(s+Z)Pll Pl2 3b + o' 

with all polynomials in o' of degree~ s+2. This proves that the 

(ada)n(S ) are all linearly independent and that combined with 
0 

the previous observations shows that A + a, B + S induces an 
0 0 

anti-homomorphism of Lie algebras of the estimation Lie algebra 

of (6.2) onto the Lie algebra generated by the vectorfields of 

the corresponding extended Kalman Filter. The kernel of this 

anti-homomorphism is the centre of the estimation Lie algebra of 

(6.2). 
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6.6. Example 2. Now consider the identification type 

nonlinear filtering problem also considered in section 5 above 

give~ by the equations. 

( 6. 7) 0. dy t x d t + dv , x € R 
t t t 

Agai~ it is not difficult to write down the estimation Lie 

algebra of (6.7). It has a basis consisting of 

A 

') 

l a~ 
2 ') 

Clx~ 

a - ax ax - a -
1 2 
2 x 

Ci (a 2 +1) 2 i(~x - ax), Di= (a 2+1) 2 i, i = 0,1,2, ••• and the 

nonzero commutation relations are [A,Bi] = Ci' 

[B.,C.] = - D.+·· So that modulo its center this 
]_ J ]_ J 

Lie algebra is an infinite dimensional vectorspace with a shift 

operator exactly as in the previous example. In fact the Lie 

algebra modulo its centre of every identification type nonlinear 

filtering problem is a vectorspace with one endomorphism. 

Now consider the extended Kalman filter of (6.7). The 

equations are 

( 6 • 8) 

Thus the two vectorf ields involved are 
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ex 

( 6. 9) 

a a 
P 11 a x + P 12 aa 

Let L be the estimation Lie algebra of (6.7) and L' the Lie 

algebra of vectorf ields generated by a and B • Note that if y 
0 

is a vectorfield of the form P 12 o + P 22 0 1 then [o.,y] and [[3 0 ,y] 

are of the same form and hence (Jacobi identity) all the 

vectorfields in L' of that form are an ideal I 1 of L'. 

Calculating L' mod I 1 is not difficult. Indeed o. and B become 
0 

(6.10) ex = 
3 

Pi 1 a x 

Let y be any vectorfield of the form r(a,P 11 ) ~x• then [a,yJ 

is of the same form and the brackett of two such vectorfields is 

- n -
zero. Also the (adex) (~ ) are all independent, this time because 

0 

the unique highest degree term in (ada)n(S 0 ) is anP 11 ~x as is 

easily checked. Thus A + a, B + S induces an antihomomorphism 
0 0 

L + L'/1 1 whose kernel is the centre of L. 

Now consider all vectorfields in L' of the form 

Pi 2 o + P 22 o' + P 12 (1-Pi 1+2aP 12 )o". Check that bracketting with 

ex or B gives again a vectorfield of the same form so that these 
0 

vectorfields form an ideal r 2 • 

Consider any vectorfield of the form 

(6.11) y 

where r 1 ,r 2 ,r 3 ,r 4 are polynomials in P 11 and a. Observe that 

bracketing a vectorfield (6.11) with ex yields a vectorfield of 

the same type modulo I 2 • Also observe that bracketing two 

vectorfields of this type yields a vectorfield of the type 

(modulo 1 2 ) 
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(6.1.?.) 

wher2 sis a polynomial in a,P 11 • Finally observe that if o is of 

type (6.12) then [6,a] = [o,S 0 ] = 0 mod 1 2 so that these o are in 

the ~entre of L'/1 2 • Putting all this together we see that the 

natural projection L'/1 2 + L'/1 1 induces an isomorphism of 

L'/1 1 with L'/1 2 mod its centre and that hence A+ a, 

B + S0 induces an isomorphism of Land L'/1 2 modulo their 

centres. 

6.13. Remarks. L + L' /I is in fact the "family of Kalman 
1 

filter~ antihomomorphism mentioned in section 4 above. This is a 

first order approximation to the filtering problem. 

L/Centre + (L'/1 2 )/centre is in the nature of a second order 

approximation. Indeed near the true parameters P 22 is second 

order small, P 12 is first order small and cf. equations (6.9), 
') 

(l-Pl 1 +2aP 11 ) is also first order small so that 1 2 is a second 

order small ideal. 
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