EBONORETRIG INSTITUTE

OPERATIONS IN THE K-THEORY OF
ENDOMORPHISMS

M. HAZEWINKEL

REPORT 8131/M

FRASMUS UNIVERSITY ROTTERDAM - P.0. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS




*
OPERATIONS IN THE K-THEORY OF ENDOMORPHISMS )

by

Michiel Hazewinkel
Dept. Math., Erasmus Univ, Rotterdam
P.O. Box 1738, 3000 DR ROTTERDAM, The Netherlands

Abstract. For a commutative ring with unity A let End A be the
category of all pairs (P,f) where P is a finitely generated projective
A-module and f an endomorphism of A. The K-group KO(A) is a direct
summand and ideal of Ké(EQQA) and Almkvist showed that the quotient
ring WO(A) = KO(EQSA)/KO(A) is a functorial subring of the ring of the
big Witt vectors W(A). [11. In this vaver I determine the ring of all
continuous functorial operations on WO(—) and the semiring of all
operations (and all continuous operations) liftable to End(A). This

solves some of the open problems listed in [1].

‘Contents.

. Introduction., Definitions and statement of main results
. +
. Representing the functor WO

. The Fatou property

1
2
3
4, "Representing" the functor W
5. The operations of w:(-)

6. The operations of'wo(—).

7. The operationsA1 and St

References
Appendix: Proof that Jn is a prime ideal

*) During the research for and writing of this paper, the author was
visiting the Inst. de Ciencias, Univ. Autonoma de Puebla, whose
hospitality and support is gratefully acknowledged.



OPERATIONS IN THE K-THEORY OF ENDOMORPHISMS

Michiel Hazewinkel

1. INTRODUCTION, DEFINITIONS AND STATEMENT OF MAIN RESULTS.

Let A be a commutative ring with unit element. With End A we denote
the category of pairs (P,f) where P is a finitely generated projective
module over A and f an endomorphism of P. A morphism u: (P,f) > (Q,g) is a
morphism of A-modules u: P - Q such that gu = uf. There is an obvious notion
of short exact sequence in Epd A: it is a commutative diagram with exact rows
of the form

O+PU+QV—>R—>O

(1.1 v E g +h

0O - P »-Q >R -0

1.2. Definition.[1,2]. Ko(End A) is the free abelian group generated by all
isomorphism classes [P,f] of objects in End A modulo the subgroup generated by

all elements of the form [Q,g] - [P,f] - [R,h] for all exact sequences (1.1).

The tensor product ((P,f), (Q,g)) > (PRQ,fflg) induces a ring structure
on KO(Egg A) for which the unit element is the class of (A,1). (All tenmsor
products are over A). Further the classes of the form (Q,0) form an ideal

in Ko(ggg A), This ideal identifies naturally with KO(A) via P+ (P,0).

1.3. Definition. The ring of rational Witt vectors. The quotient ring is denoted

Ko(ggg A)/KO(A) = WO(A). I like to call the elements of WO(A) rational Witt

vectors for reasons which will become obvious immediately below.

1.4. The big Witt vectors. For each ring R let W(R) be the abelian group of

all power series of the form 1 + rt+ r2t2+ P € R. Obviously this
functor is represented by the ringi&[xl,xz,...];

i.e. gigg(Z:[X],R) = W(R) functorially. The group W(R) also carries a
multiplication which is characterized by (l—rlt)*(l-rzt) =1 - r T,t for
which 1 - t acts as a unit. This makes W(R) functorially a commutative ring
with unit. This functorial ring W(R) admits functorial ring endomorphisms

called Frobenius operators which are characterized by Fn(l-at) = (I—ant).



[4, chapter III] for a rather detailed treatment of Witt vectors.

1.5. Almkvist% homomorphism. Let (P,f) € End A. Let Q be a finitely generated

projective A-module such that P & Q is free and consider the endomorphism

f®0 of P® Q. Consider det(1+t(£60)). This is a polynomial in t which does
not depend on Q. This induces a homomorphism Ko(ggg A) > W(A) which is .
(obviously) zero on KO(A). It is also obviously additive and multiplicative

so that there results a homomorphism of rings
(1.6) c: Ko(gggA)/Kb(A) = WO(A) > W(A)

which is functorial in A. In [2] Almkvist now proves:

1.7. Theorem [2]. The homomorphism c is injective for all A and the image

. . . 2 .
of ¢ (for a given A) consists of all power series 1 + a .t + a.t + ... which

1 2

can be written in the form
2 1+b1t+...+brtr
l +at+at+,,. = , bi’dj € A

! 2 1+d t+...+d 7
1 n

(Whence the name rational Witt vectors; the ¢ in (1.6) stands for characteristic

polynomial).

1.8. Topology on W (A), W(A). Let W(n)(A) be the subgroup of all power
series of the form 1 + an+1tn+1 4+ ... € W(A). These subgroups define

a topology on W(A) and W (A) © W(A) is given the induced topology. Let
W (A) be the subset of W(A) con51st1ng of all polynomials

1 + ajt+ a2t2+ ceeoa t*. Then W (A) and W (A) are demnse in W(A). With
this definition w S W, W become functors Rlng -+ Top, where Top is the
category of Hausdorff topologlcal spaces. The W n)(A) are in fact

ideals in W(A) so that WO, Wn can also be considered to take their
values in the categories TRng of topological rings or TAb of topological
abelian groups and w; can be considered to take its values in the

category of topological semigroups.



1.9. Operations. Let F be a functor, e.g. a functor F: Ring + Set. Then an
operation for F(-) is a functorial transformation u: F - F. Below I shall
determine all operations for the functors Wo and W; considered as functors
Ring + Top, i.e. all functorial transformations of sets

6;2;) -+ WO(A), WZ(A) - W:(A) which are continuous with respect

+
to the topologies on WO(A), WO(A), and also of wO as a

functor to TADb (additive operations) and as a functor

to 2525 (multiplicative operations). Here W:(A) is the image of
EEQA in WO(A) which via ¢ identifies with the commutative sub-semiring of
‘~W(A) consisting of all polynomials 1 + at + oo 4 artr. (This is fairly
obvious, but cf. also 2.4 below). I shall also determine what various natural
operations on End A like exterior products and symmetric products correspond

to in W(A). All these questions were posed as problems in [1].

1.10. Two Topologies on the ring Z [X]. Before I can describe the results

I have to define two topologies on the ring Z [XI’XZ’X3""] = Z [X]. For each
n €N let In be the ideal of Z [X] generated by Fhe elements Xn+l’xn+2”"
The I-topology on Z [X] is the one defined by this sequence of ideals. The
second and more important topology is also more difficult to describe.

Consider the infinite Hankel matrix

1 Xl X2 X3 N

Xl X2 X3 X4 N
(1.11)

X2 X3 X4 X5 see

Now for each n € IN let Jn be the ideal generated by all the (n+1) x (n+l)

minors of this matrix.



Let ZI[X] and ZJ[X] denote the completions of Z [X] with respect
to the I-topology and the J-topology.

The ring of power series in infinitely many variables Z [[X]]
is defined as the ring of all expressions I caXa where o runs through
all multiindices o = (al,az,a3,...), oy e:%‘u {0} such that a; = 0

for all but finitely many i. Here x% is short for the finite monomial

Both Z I[X] and ZJ[X] can be considered as subrings of Z [[X]].
For instance the elements of ZSI[X] are power series f(X) in X5 X
with the extra property that £(X) is a polynomial mod In for all n.

Thus e.g. §1x2 ; XXy + XX, + X X+ ... is in z:I[x] but
I+ X +X] + X+ ... is not in ZI[X].

We also note that J < TI _, so that there is a natural inclusion
z [x1 » z [x].

With these notions we can state the main results as

1.12. Theorem. The continuous operations of w:(—) correspond
naturally to ring endomorphisms of Z [X] which are continuous in the
I-topology (on both source and target). The (not necessarily continuous)
operations of W: correspond to naturally to ring endomorphisms of
ZI[X].

1.13. Theorem.
(i) The continuous operations of Wo (=) correspond naturally to ring
endomorphisms of Z [X], which are continuous in the J-topology (on both

source and target)
i

(ii) The additive continuous operations of Wo(-—) correspond to elements

1 + x.t + x t2 + ... € W(Z [X]) such that lim x; = 0 in the

1 2
10
J-topology and u(xn) = I x 8x,, vhere y : Z [x] - z [x]a 7z [X]
i+j=n ]
is the coalgebra structure defined by an——> z Xi @ Xj’
i+j=n

(iii) The multiplicative and unit preserving continuous operations of Wo(-)

are the Frobenius operations.

I would like to thank Ton Vorst for pointing out some gaps in an

earlier draft of this paper.



2. REPRESENTING THE FUNCTOR W;

2.1. Universal Examples of Endomorphisms. For each n €N let U, = ZZ[XI,...,Xn]

and consider the free module Pn = UE with the endomorphism fn given by the

matrix
X1 - 0 ... O
X2 0 -1 . '
(2.2) f = . R
" : : . 0
’ -1
Xn 0 ... 0
Then of course det(l+tf ) =1 + X t + ... + X t". And (P_,f_) has the
n 1 n n’ n

following universality property: for each polynomial of degree < n,

+ . . .
1 + at+ ...+ antn = a € WO(A) there is a unique homomorphism

+ + . )
¢a: Un -+ A such that ¢a*: wo(Un) - WO(A) takes Y, = [Pn’fn] into a., This
of course also shows that the image of End A in WO(A) is precisely the
subsemiring of polynomials of the form 1 + ajt+ ... +a ™.

n+1

The Y, = [Pn,fn] fit together in the sense that if oo Un+1 > Un

is the projection Xir» Xi fori =1, ..., 0, Xn+1k* 0, then

n+1

(2-3) (Trn )*Yn+1 = Yn

The following proposition follows immediately.

2.4, Proposition. There is a functorial isomorphism between W:(A) and
TRng (Z&[xl,xz,...,], A) where TRpg stands for continuous ring homomorphisms

from Zi[X],Xz,...] with the I-topology to A with the discrete topology.

Indeed, if ¢: Z [X] - A is continuous, then there is an L such that
¢(In) = 0, so that ¢ factors through T Z [x] ~» U . Let ¢n be the induced
homomorphism, then the element in W:(A) corresponding to ¢ is ¢n*Yn°
And inversely if A(t) € W:(A), a(t) =1+ ajt+ ...+ antn, let ¢;: Un > A

. ' - g . . .
be defined by ¢a(Xi) a. Then ¢a ¢a om is the desired continuous

homomorphism Z [X] -+ A.



3. THE FATOU PROPERTY.
3.1, Definition.

An integral domain R is said to be Fatou if the following property
holds.

©o .
. - -1 . -1 . . . .
For every power series a(s l): z a;s in s with coefficients in R such

i=o0
‘that there exist polynomials p(s), q(s) with coefficients in the quotient
field Q(R) such that a(s_]) = q(s)—]p(s), there exist also polynomials
p(s), q(s) € R[s] such that q(s) has leading coefficient 1 which also
satisfy a(s)—lﬁ(s) = a(s-]). (The same property then holds obviously also
with respect to Laurent series). The following result comes out of mathematical

system theory [7,8].

3.2. Proposition. Every noetherian integral domain R is Fatou.
o .
Proof. Let a(s—]) = I ais«1 be a power series in s ! over R, Write down

.i=0

the Hankel matrix of a(s_l).

aO a] 3.2 cee

a a a ° e
(3.3) 1 2 3

32 a3 34 LRI

Now suppose that a(s_l) = q(s)—]p(s) for certain polynomials over the
quotient field Q(R) of R. This means that there is a certain recursion

relation

(3.4) D8n+e-1 * LBpeg-g * oeee T Q3 =0

between the coefficients a for all large enough n, and in turn this

means that the rank of the matrix (3.3) is finite. Let this rank be r.



Now consider the A-module M generated by the columns of (3.3). This module

can be seen as a submodule of some b—]Rr for some b € R. (For b

1T is a finitely

one can take any nonzero r x r minor of (3.3)). Butb
generated R-module and as R is noetherian it follows that M is finitely
generated. Now define an endomorphism F of M by F(a(i)) = a(i+1) where

a(i) is the column of (3.3) starting with a. Let g = a(0) and let

h: M - R be defined by h(a(i)) = a;. Note that because of.the structure of
(3.3) the endomorphism F is well defined. We notg that hFlg = a, for all
i=0,142, ... . Now because M is finitely generated there is a surjection
of R-modules 1 : RT » M for some m. Define N = hrs let ¥ be any lift of

F, i.e. any endomorphism (matrix) of R such that m = Fr and % any element
of R™ such that T(g) = g.

Then B ?i E = hFig = ai for all i = 0,1,2, ... and comnsequently

sK(s1-?) 'Y

]

-1 . P
a(s ') proving the proposition.

4, "REPRESENTING'" THE FUNCTOR WO.

We are now in a position to represent, in a certain sense, the
functor WO(~).
4,1, Definition of the "universal object"”. Let I be the ideal in Z [X]
defined in the introduction and let V. =Z [X]/Jn, let p & Z [X] -V

be the natural projection, let § = 1 + X.t+ X2t2 + ... €EW(zZ[XD

2
and let gn = (pn)*(l+X]t+X2t +...) € W(Vn).

n

4,2, Warning and intermezzo. It is not clear that En is in wo(vn). In fact

this is definitely not the case, because there are integral domains

-which are not Fatou. It also follows that the Vn are examples.

(The Vn are integral by the appendix). It follows that the Vn are not
noetherian. Let Bn be the top left nxn minor of (1.11)then as we shall
see in 6.10 below En becomes a rational Witt vector over Vn 1pcalized at

2 ~ .
(l,Dn,Dn,...) where Dn = pn(ﬁn). It is easy to check that the map Bn of
diagram (6.11) contains Vn in its image and it follows that the localization

(Vn)Dn is noetherian.



It is still not true, however, that En over (Vn)D is universal
n

for rational Witt vectors of numerator degree < n—l and denominator
degree < n. To obtain universal rational Witt vectors one needs something

like a universal Fatourization construction.

4,5, Theorem. For each 1 + at+...=a € WO(A) let ¢_: Z [X] » A be the

ring homomorphism defined by Xihf a;. Then a(t)+ ¢a is a functorial and
injective correspondence from WO(A) to ring homomorphisms Z [X] -+ A which
are continuous with respect to the J-topology on Z [X] and the discrete
topology on A. If A is Fatou, so in particular if A is integral and
noetherian, then this induces a functorial isomorphism.

-1

n
Ftaoot
]t cnt )

=1 Zl,...,Zn] and define

and w(Zj) = bj’ i,j =1, «e., n. Let Gn

Proof. The rational Witt vector a can be written a = (l+c
(1+blt+...+bn_]tn_l). Comsider Z [Y ,...,Y

Y+ ZI[Y;2] >~ A by V) = ey
be the rational Witt vector

1+Y1t+...+Yn_1tn_1
(4.6) §_ = — € (zlv,z])

1+Z t+...+2Z t
1 n

Then of course w*dn = a (but there may be several U's with this property).

Define € : Z [x]1 > zI[¥Y,z2] by en*f;'= 6n' Then (wen)*g = a so that

¢€n = ¢a. Now 6n is rational so there is a recursion relation between its

coefficients ai(Y,Z) in

(4.7) S =1+ a (1,0t + a,(¥,20t" + ...
This in turn means that the rank of the associated Hankel matrix

(cf. (3.3)) is finite (over the quotientfield Q(Z [Y,Z]) and because
Z[Y,2] is an integral domain this means that for some n all minors of
the Hankel matrix of (4.6) wvanish. Thus en(Jm) = 0 for some m (in fact
m = n works) so that a fortiori ¢a(Jm) =0, i.e. ¢a is continuous. The
injectivity of a»> ¢a is obvious, because ¢a(Xi) = a..

Now let A be Fatou (and an integral domain). Let ¥ : Z [X] - A be

continuous. Let a, = w(Xi). Then there is an m such that w(Im) = 0, Thus



10

all (m+1) x (m+!) minors of the Hankel matrix (3.3) of a = l,al,aq,...
vanish so that this matrix is of finite rank. So there are
Ao wees G € Q(A) such that qoa(0)+ eee * qma(m) = () where as before

a(i) is the i-th column of (3.3). Hence

(4.8) 92, *+ 93, t ... v QA = 0, t =0,1,2,...
so that
P *P tHe e tp ltm"1 )
(4.9) —— = 1 + a;t +at+ ...
Q *q  t*e..*qt
with P, = 4. P, = 9.3, + Up-1? **> Ppig =qa . + ... * q- Now write

t = s“l multiply numerator and denominator of (4.6) with s™ and apply

the Fatou property to find an expression

c e s% 1. +c ste
(4.10) = n—l_l ! =1+ als‘] + azs_-2 + oaee
sTb__ 8™ T+, .+b s+b
m-1 1 0
with ¢, veey ¢ 3 b, cee, b € A, It follows that n =m and ¢_ = 1.
o n;y o m1 n

Now write t = s ! again and multiply numerator and denominator in (4.10)

. n . . .
with t to find the desired expression.

5. THE OPERATIONS OF w:.

. . + . +
5.1. Functorial transformations W - W. Consider the functor WO and W as

functors Ring - Set, and let u: W W be a functorial transformation.

Consider the element Yo € wg(Un), cf. section 2.1 above. Let
(5.2) u(y) = 1+ u ()t + uy ()% + ... € W)

and let ¢n: zZ [X] -~ U, = Z.[X],...,Xn] be the unique homomorphism of rings

such that ¢n(Xi) = ui(n) for all i. We claim that the ¢n are compatible

in the sense that

(5.3) LA ! =¢_, n=1,2, ...



. +1]
Indeed because u is functorial we have u(Yn ) = u((wz ) %Y

) =

n+l

(1r2+1)*u(Yn+1) and (5.3) follows. Thus the '¢n combine to define a

homomorphism of rings
(5.4) ¢+ zI[X] »zlx]lc z [[X]]

Moreover ¢ determines u uniquely. Inversely given a ring homomorphism
u

o: zZ[X] - Z]_IX] there is an induced functorial transformation

*

: §4) ~ Ring(Z0x1,0 & Ring(z [x],4) = W(a)

(5.5) uy

Now suppose that u: W: - W is continuous. By continuity (because
W;(A) is dense in W(A)), u extends to a functorial transformation

u: W > W. Because W(A) = Ring(Z [X],A), u induces a ring endomorphism
qSu: Z [X] » z [X]. Inversely every ring endomorphism ¢:Z [X] » Z [X ]
obviously defines a functorial transformation

uyt W) ¥ Ring(z [x1,4) % Ring(Z [X],4) = W(A). This u

continuous. Indeed let a € W(A) and u

is automatically

0
(a) = b. Given m let n(m) € N

¢

be such that q>(Xl), cees ¢(Xm) involve only the indeterminates

X], ey Xn(m)' Then if a' € W(A) is such that the first n(m)

coefficients of a' are equal to those of a we have that the first

m coefficients of b' = u¢(a') are equal to those of b. This proves
¢

Putting all this together we have

the continuity of u

5.6. Proposition. Every operation u: W: - W corresponds uniquely
to a ring homomorphism d)u: Z[X] »2zZ I[X] and inversely. If the image of
ct)u is in Z [X] < ZI[X] the operation is continuoui and extends uniquely
to an operation W -+ W. The continuous operations Wo -+ W and the
(automatically continuous) operations W + W correspond bijectively to
the ring endomorphisms Z [X] » 7z [X].

There are also discontinuous operations WZ -+ W and
wg - w:. An example is the ome given by the ring homomorphism

X] +X]X2 +X]X3 + X]X4 + e, )(i + 0 for i > 2.
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5.7. The ring of operations Op(W:). Proof of theorem 1,12. Let

Op(WZ) be the ring of operations W: - W:, and let u € Op(W:). Then

u(Yn) (cf. (5.3) above) is a polynomial and it follows that ¢n(It) =0

ce1°Xpagse-) © Z[XD). Thus

<% satisfies, ¢u(It) <I. There is such a t for every n so that ¢u is

for t large enough (where It is the ideal (X

continuous. Inversely let ¢: Z [X] - Z [X] be continuous, and let

a € W:(A). Let ¢a: Z [X} - A be the classifying homomorphism of a
(cf. proposition 2.4). Then ¢a(1r) = 0 for some r. Because ¢ is
continuous there is an m such that ¢(Im) c Ir' Now u¢(a) = (¢a¢)*(E),

£E=1+ Xlt + X2t2 + oo. € W(Z [X]) and it follows that u¢(a) is in

WE(A) < W(A). This proves the second statement of theorem 1.12. The
first statement follows because for continuous operations u the

homomorphism ¢u is such that Im(¢u) c Z [X] (by proposition 5.6).

6. THE OPERATIONS OF Wo.

6.1. J-continuous endomorphisms of Z[@m deffine operations.

Let u € Opc(wo) be a continuous operation of WO. Then because WO is

dense in W, as in section 5.1 above u defines uniquely an

endomorphism of Z [X]. It remains to determine what endomorphisms can arise
in this way. The first step is to show that J-continuous endomorphisms

give indeed rise to operations.
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Let T =zly seeesY 3 Z.seeeyl ] and consider the element
n 1 n 1 n—1

142 t4. .. 47 ]
1 n—1

14Y t+. .. +Y t"
1 n

(6.2) n =1+ v](Y,Z)t +... € Wo(Tn)

The vi(Y,Z) € Tn are easy to calculate explicitly. The result is

vyt =2
Vot vt v ¥, =2,
(6.3) vn—l+vn-2Y1+°"+V]Yn—2+Yn—l = Zn—l
v +v Y +oeetv. Y +Y =0
n n-1"1 1"'n~-1 "n
vn+r+vn+r-~1Y1+'"+v2Yn~l+v2Yn =0

Let An(X) be the n x n upper left hand corner submatrix of (1.11), i.e.

1 X1 os Xn—l

X] 2 " n
(6.4) A =3 :

XomtXn oo Xon-2

Finally let dn(Y,Z) € Tn be obtained by substituting vi(Y,Z) for Xi in
(6.4) and taking the determinant of the resulting matrix. It is not difficult

to see that

(6.5) 0 # dn(Y,Z) €T

Indeed take e.g. Z1 = .. = Zn-l = 0, Y] = L., = Yn_1 = 0, Yn = |, Then
Vi S eee =V < 0 VoS T Vo T e SV S 0 so that.for these
values dn becomes -1 (if n > 2).

Now let o Z [x] » T, be defined by

(6.6) 0, (X)) = v; (¥,2)
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Then because the vi(Y,Z) satisfy the recurrence relations (6.3) we have

that Un(Jn) = 0, so that
(6.7) J < Kero
n n

Now let ¢: Z [X] > Z [X] be continuous with respect to the
J-topology. Let y be the associated functorial transofrmation W(-) - W(-).

Then in particular

6.8 uy () = (0, 0)4 (8)

Now ¢ is continuous with respect to the J-topology. So there is an m € N

such that ¢(Jm) < Jn and then (Un¢)(Jm) = 0. Because Tn is Fatou (proposition
3.2) it follows that u¢(nn) € Wo(Tn) c W(Tn). It follows that u¢ maps

WO(A) > WO(A) for all rings A because for every a € WO(A) there is a ring
homomorphism {: Tn -+ A for some n such that w*(nn) = a,

So we have proved

6.9. Proposition. For every J-continuous ring endomorphism ¢ of z [X],

the associated functorial transformation u,: W - W maps WO into WO.

2

6.10. Operations on WO give rise to J-continuous endomorphisms. To obtain

the inverse statement we need the inverse inclusion of (6.7). To that end

consider the following diagram

Z [X]

(6.11) T

Here the homomorphism in the upper righthand corner is the natural

i i . c o h v ive o_.
projection T, Because Jn Kercn, o, factors through o to glve o

Finally Vn -> (Vn)D is localization with respect to - the multiplicative
n
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system (l,Dn,Di,...). This is injective because Dn # 0 (by 6.5)) and

because D is not a zero divisor; (cf the appendix).

Now we claim that there exists a homomorphism Bn making the lower

triangle commutative. To define Bn we try to solve

l+Z]t+...+Zn_ltn—]
(6.12) = 1+Xt+X,
n

1+Y t+,..+Y t
1 n

2
t +...

for Y], cees Yn’ Z], cees Z in terms of the X's., Substituting Xi

n-1
for Ve in the equations (6.3) this gives in particular

N
=]
=]
i
=}
+

¢ s
6 q
¢t o
¢ ®
]

<« w

X1 %0 oo oo 1 Xon-1

and from this we can calculate Y

'..’X

12 e Yn as a polynomial bi(X),

n n o, . .
i=1, «v., nin X and Dn(X) 1 vhere Dn(X) is the determinant

1’ 2n—-1
of (6.4). Given the Y]’ cves Yn_1 the Zl’ ooy Zn_1 follow directly from
the first n-1 equations of (6.3), and are also polynomials ci(X) in

v -]
X], cees in_] and Dn(X) .

It 1s now straightforward to check that the expression

n
>
Dn(x)(Xn+r+xn+r—1Y1+'"+Xr-1Yn—]+XrYn)’ r=n
is precisely equal to the minor of the Hankel matrix (1.11) obtained by

taking the first n + 1 rows and columns 1,2, ..., n and r + 1.
(Alternatively we can use the proof of proposition 3.2 to see that it
suffices to invert Dn to be able to solve equations (6.12). Thus we can

: . - > 1
define Bn' T (Vn)Dn by Y, bi(X) and Z; ci(X). The polynomials

bi(x), ci(X) are unique and it follows that the lower triangle in (6.11)

commutes. It follows that an is injection so that
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(6.13) Ker 0 =J
n n

continuous
Now let u € Op(W ) be a/ /operation and let ¢ € End(Z [X]) be the

associated endomorphism. Consider u(nn) € WO(Tn). Because u(nn) is

rational there is a Tm and a homomorphism of rings ¥ : Tm > Tn such that

Yyn, = u(n ). Both 0 ¢, and Yo take £ € W(Z [X]) to u(n ) therefore
Opdy = ¥

zlx] —= 5 zI[x]
(6.14) o o,

T ,____EL*_~,; T

m n

It follows that ¢u takes the kernel of wom into the kernel of O,°
But the kernel of o, is J, and the kernel of o, is Jm which is contained
in the kernel of wcm. Thus ¢u(Jm) < Jn. There is such an m for every n
which proves that ¢u is continuous w.r.t. the J-topology. This finishes

the proof of part (i) of theorem 1.13.

6.15. Additive operations in Opc(Wo). The addition in WO(A) and W(A)

corresponds to a comultiplication on Z [X]. It is in fact (as is very easily

verified) the comultiplication u: X 'z Xi & Xj' There is also a
i+j=n
counit Z [X] > Z, Xir—* 0, and a coinverse. This turns Z [X] into a Hopf-

algebra (with antipode). An operation u € Op(WO) is additive (group
structure preserving) iff its associated endomorphism is a Hopf-algebra
endomorphism. Now according to Moore [6], Z [X] is the free Hopf—algebra

on the coalgebra @ Z:Xi, X = z XiQ X., meaning that for every
i+j=n

Hopf-algebra H and coalgebra homomorphism 6 Z Xi + H, there is a unique
extension Z [X] -+ H which is a Hopf-algebra endomorphism. Thus the
endomorphism of an additive operation u is uniquely specified by the

elements ¢u(Xi) = % subject to ux = ; xi.é xj, and inversely.
1+3]=n

This proves part (ii) of theorem 1.13,

6.16. Addendum to theorem 1.13 (ii).
Let ¢ € End Z [X] be a Hopf-algebra endomorphism and suppose it is

continuous as a morphism Z [X] » Z [X] with the J-topology on the source

and the I-topology on the target. Then, cf. 5.1.above, the associated’
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operation takes W;(A) into WO(A) and hence by additivity WO(A) into
WO(A). It follows that ¢ also has the stronger continuity property

of being a continuous J-topology endomorphism of Z [X].

6.17. Splitting principle and Frobenius operators. Before discussing

multiplicative operations we need to define the Frobenius operators

and the splitting pri?ciple. Consider Z [X] as a subring of ZZ[[EI,EZ,...]]
by viewing Xi as (—1)1ei(51,52,...) where e is the i-th elementary
symmetric function in g], 52, .... Then we can write

L)

E=1+ Xlt + thz +o0e =TI (l—git). It follows that to specify an
i=1

additive operation on W(-) it suffices to specify what it does to

elements of the form 1 + a,t € W(A), and similarly the functorial

1

multiplication on W(A) is also characterized by the equation

(1-at)*(1-bt) = (1-abt). The Frobenius operations are now characterized
by
(6.18) F_(1-at) = (1-a"t)

They are functorial ring endomorphisms of W(A) (Cf. e.g. [4, Chapter III]).
They are defined on the level of EndA by

(6.19) (P,£) > (P, M)

6.20, Multiplicative Operations.

Define new coordinates for the Witt vectors by the equation

2

[ee] -
(6.21) I (l—Zitl) =1+ Xt Xt L

1=1 2

Then the Zi can be calculated as polynomials in the Xi and vice versa,
defining an isomorphism Z:[Z]k Z [X]. Some aspects of the big Witt vectors
are more easily discussed using 'Z coordinates' than 'X coordinates'. Let

(6.22) w (z) = T az/d

dln

Then the W define a functorial homomorphism of rings w: W(A) » gw, where
N = {1,2,...} and if A is a Q-algebra this is an isomorphism. Here gN is

a ring with component wise addition and multiplication. Now let
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u: W > W be a transformation of ring valued functors. Then at least
for Q-algebra's this induces a transformation on gN, functorial in A.
These are easy to describe and are given by an infinite matrix with
precisely one 1 in each row and zero's elsewhere. Let T: N + N be the
corresponding mapping. Now if this tranformation comes from one on

W(A), there must be polynomials UI(Z)’ UZ(Z),... such that
(6.23) wn(U](Z), U2(Z),...) = wT(n)(Z],Zz,...)

Taking n = 1 gives U](Z) =W ])(Z). So that this transformation takes an
element (l-at) € W(A) to (l-a t). But this determines by the splitting
principle the transformation uniquely and moreover there is a multiplicative
transformation acting precisely 1like this. Thus the functorial ring
endomorphisms of W(A) are the Frobenius operators Fl’ F2,... and they
obviously take W:(A) and WO(A) into themselves. This proves part (iii) of
theorem 1,13,

N.B. Not all mappings T: N +~IN give rise to a functorial ring endomorphism
of W. For that to happen the polynomials UI(Z)’ UZ(Z)’ «.. defined by
(6.22) must turn out to have integral coefficients. As it turns out

(and this is proved by the preceding) this is the case iff there is

a number n such that T(m) = nm for all m. This follows because the
Frobenius operators Fn satisfy (and are characterized by)

wF =w_, cf. [4, Chapter III].

6.24. Remark. It is not clear (to me at least) whether the
(not necessarily continmmuaoperations WO -> WO correspond bijectively
to continuous ring endomorphisms ZJ[X] - ZJ[X]. Certainly such a ring
endomorphism gives rise to an operation WO > W The opposite is less
clear (and in my opinion probably not true). The difficulty is of course

that the canonical "representing elements" En are not in WO(Vn).



19

7. THE OPERATIONS A" AND s’.

There are several operations which are naturally defined on End A
and the question arises to what these correspond in WO(A) c W) [11.
On the other hand a number of the more mysterious operations of W(A)
have natural interpretation on the level of End A which sometimes can be
used to advantage, [3]. Thus e.g. the Frobenius operator corresponds to
fre £ (f composed with itself n times) and the Verschiebung operator

corresponds to -

0 0 £
] N\,

7.1) Ve \\
0 1 0

In [1] the question was asked to what the exterior and symmetric product
correspond. The answer is rather obvious.

W(A) is functorially a A-ring, with the operations A’ defined as follows.

Because in any A-ring ln(x+y) = I Al(x)kJ(y) it suffices by the
i+j=n

splitting principle to specify the A' on elements of the form (l-at).

The characterizing definition is now

(7.2) Al(1-at) = 1 - at, AT(1-at) = 1 for i > 2
(Recall that 1 is the zero element of the abelian group W(A)).
Now consider the module with endomorphism (Pn’fn) over n
n _ _
t+ ...+ Xnt .H (1 Eit).

U =2ZI[X ,...,X_ ] of section 2.1. Write 1 + X
n 1 n i=1

1

Then over Q(El,...,En) the module with endomorphism (Pn’fn) is isomorphic
to a free n—dimensional module with diagonal endomorphism with eigenvalues

”El, ceey — En' Thus there is a splitting principle for End A also. Now
Al = id and At (one dimensional module) = 0 if i > 2, and finally if gi is
the endomorphism multiplication with gi of A, then c(ii) =1+ Eit. It

follows that the A* on End A correspond to the natural A-operations on
w(a).
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7.3. Adams Operations.

Every A-ring has Adams operations defined on it, which are defined

by the formula

(_1)nwn+](x)tn
o

(7.4) %E log At(x) =

W™ 8

i
1 2 2 . . .

where Xt(x) =1+ X (x)t + A7°(x)t” +... . Using this one easily checks

that the Adams operations wn on W(A) coincide with the Frobenius operations

Fn (Adams=Frobenius). It follows that the Adams operations corresponding
to the A" on End A are given by (P,f) ~ (P,f").

7.5. Symmetric Powers. For any projective module P over A there is a

wellknown exact sequence of projective modules

(7.6) 0-+s"Pp>s" o gAle > 5™ 2pga%p 5., .>slp @A™ P 5ATP 5 0

. . i .
It follows that the exterior product operations A~ and the symmetric

product operations s' on WO(A) < W(A) are related by the formula

(7.7 s%@) - Pt + sP2@n%@) - ...+ DY @A )

+ D"\ =0

A description for the s' similar to the one given above for the
i. .
A7 is given by

1 1

(7.8) st(ava)™ = (ra)™!, st (+a)™!) = 0 for i > 2
The s* of the other elements are determined by this because the s’ also

satisfy sn(a+b) = z si(a)sJ(b) (where + denotes the addition in
i+j=n

W(A) and on the right hand side we have both multiplication and addition
in W(A). In other words the s’ define a different A-ring structure

(also functorial) on W(A).
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- This comes about as follows. If the Xi are the elementary symmetric

functions in - El, - 52, eee. S0 that 1 + Xlt + X?_t2 + ies = H(]-Eit),

then the complete symmetric functions hi in the - El, - EZ’ ess are

1

given by 1 + h. t + h t2 +,.. =11 (1+Eit)— . They are (therefore) related

1 2
n

by iio(-wlxihn_i =0, cf (7.7).

Now the funétoria} A-ring structure on W(A) is given by certain
ring endomorphisms ¢(A\'): z [X] + Z [X], or, equivalently, by certain
universal polynomials, the ¢(Ai)(xj) = @ij(Xl,Xz,...). Now recoordinatize

Z [X] and view it as Z [h]. Write down the polynomials (I)ij (hl’h ) and

2,...
substitute the expressions in Xl’ XZ’ «+. to which the hi are equal. Then
these new universal polynomials define the new functorial A-ring structure

on W(A) defined by the st.
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APPENDIX, PROOF THAT Jn IS A PRIME IDEAL.

A.1. Sylvester's theorem [(0]. Let x cees X be n vectors. Denote with

]’
det(xl,...,xn) the determinant of the matrix consisting of the columns

Xis ooy X (in that order). Then Sylvester proved a noteworthy identity

concerning products of the form
(n det (x5%Xy500erx )det(y)5.0.5¥))

Namely choose any subset of r integers i cees i, 1 <1

1’ r < n. For

k
each r tuple 1 < j1 <ooa< jr < m, let

L ees ir
(2) det(x],...,xn)det(yl,...,yn)

ipoeee 3y

denote the expression (1) with X interchanged with y.. , k = 1,2, ..., T.
k

Then Sylvester's identity says that for any fixed set il’ AN ir

l LN 2 i
1 r
(3) det(xl,...,xn)det(yl,...,yn) = Z(

) ) )'det(xl,...,xn)det(yl,...,yn)
Jl LY Jr

where the sum is over all (:) possible choices for j] <eae< jr.

A,2, Proof that Dn is not a zero divisor in ZL[X]/Jn. Consider the semi-

infinite matrix '
1 _X] X2 X3 ARRE
X1 X2 X3 X4 X5 0o

(4) I
Xn Xn+l e

Now observe that all the (n+1) x (n+l1) minors of the Hankel matrix

(1.11) are linear combinations (with integral coefficients) of the minors
of the matrix (4). This is essentially also a result from linear system
theory, more precisely realization theory, cf. e.g. section 4 of [9). Let
if m(il,...,in; jl""’jn) denotes the determinant of the submatrix

of (1.11) whose top row consists of Xi s eeus Xi and first column
1 n+1
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5 J]< ---<Jn) and

ist . . . i.=j ; i Lo L1
consists of X. , ..., XJ (1l i3 11( <1n

3 n+1
m(jl,...,jn+])denotes the minor of (4) obtained by taking the columns
starting with Xj s cees Xj . Then for example m(1,3,5;1,4,7) =

1 n+l
m(1,5,9) + m(2,4,9) + m(1,6,8) + 2m(2,5,8) + m(3,4,8) + m(2,6,7) + m(3,5,7),
Hence Jn is the ideal generated by all the (n+1) x (n+1) minors of (4).
Recall that An(x) is the n x n upper left hand cormer submatrix of (4)
and that ﬁn is the determinant of An(X), or, what is the same, the

determinant of

1 X, eee X 0
(5) ) ’

X1 e Xop-2 O

Xn o X2n—l 1

. . N
We shall from now on write D for Dn' Let the columns Of (4) be numbered O,1,... .

Let m(jl,...,j ) denote the minor of (4) obtained by taking columns

n+l
jl’ cens jn+1 and let m be short for m(1,2,...,0,8), s > n, Let J denote
the ideal generated by the m_.

Then by applying Sylvesters identity with r = n and (i],...,ir) = (ly004,11)

to the product of the determinant of (5), i.e. D, and m(j],...,jn+]) we
see that
(6) D Jn cJ

Now suppose that DP € Jn for some polynomial P. Then we can write
t
(7 DP = I f.m.

for certain polynomials fi' We can of course even assume that the fi
are monomials. Let f be any monomial and let Xs be the largest X occurring
in f. Then we can write if f = f'XS

(8) Df = £'DX_ = m__ f' + p(X,...,X__)f'

s-1
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where p is a polynomial in X], cess Xs—l' Using this repeatedly we obtain

from (7) an expression of the form

k
) DP =213 gi?i

where 1 is a multiindex, m. is short for m, m ... W, if

- 1 l2 1r

1= (ll""’lr) and the fi are polynomials in X], ooy X2n—1 only.,

Let k be minimal such that there exists an expression of the form

(9) with the property just mentioned. If k = 0 we are through, so

assume k > 0. The sum in (9) is over multiindices i such that

n < i1 <eea< ir. Now rewrite (9) as a sum
(10) DkP=Zj g.m.

s 1

J
where the gj s are equal to

_ t

(11) gi-— T fi m_
where the sum is over all i such that i1= ee. = it =n< it+1 and
j= (lt+]""’1r)' The gj in (10) depend on X], ey X2n but the

dependence on in occurs only through polynomials in XI’ e in_] and
the product DXZn‘ Now let V(D) be the subvariety ofilCzn-~2 of
' _ .
zero's of D. Let x€ V(D), x = (xl""’XZh-Z) and X1 be fixed,

Xyn-1 # 0. Let mj(x) denote the polynomial obtained from mj by

substituting X for X, i=1, ..., 2n-1. Suppose Dn*l(X) =t # 0.

Then the lexicographically largest term in mj(x) is, j = (jl""’js)’

n < j1<...< js

s
(12) (tx2n—l) Xn+j1—lxn+j2—l cee

X ..
n+_]s 1
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and these terms are different for different j. This means that by
varying the in, X2n+1’ ... we can produce a nonsingular N x N matrix
of mj values where N is the number of terms in (10). Now because gj
is a polynomial in Xl’ cees in_], DX, the gj(x) do not depend on
Xons Xopepr *o- (as long as x € V(D)). Therefore gj(x) = 0 for all

x € V(D) such that Dn—l(x) # 0. These x form an open dense subset of
V(D) so that gj(x) = 0 for all x € V(D). Hence the gj(X) in (10) are
divisible by D so that we can reduce k by 1 and we are through, (D

n
is a prime element as an easy induction shows.)

A3, Proof that Jn is a prime ideal. Consider again diagram (6.11).

Because D is not a zero divisor the lower right hand arrow is injective.
Hence o is injective so that v, is a subring of the integral domain T

which proves that v is itself integral and that Jn is a prime ideal.
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