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For a commutative ring with unity A, let End A be the category of all pairs 
(PJ), where P is a finitely generated projective A-module and fan endomorphism 
of A. The K-group K0 (A) is a direct summand and ideal of K0(End A), and 
Almkvist showed that the quotient ring W0 (A) = K0{End A )/K0(A) is a functorial 
sub ring of the ring of the big Witt vectors W(A) [ 1 J. In this paper, I determine the 
ring of all continuous functorial operations on W0(- ), and the semiring of all 
operations (and all continuous operations) liftable to End(A ). This solves some of 
the open problems listed in [ i J. 

1. INTRODUCTION, DEFINITIONS AND STATEMENT OF MAIN RESULTS 

Let A be a commutative ring with unit element. With End A, I denote the 
category of pairs (P,f), where P is a finitely generated projective module 
over A, and f an endomorphism of P. A morphism u: (P,J)---t (Q, g) is a 
morphism of A-modules u: P--> Q, such that gu = uf There is an obvious 
notion of short exact sequence in End A: it is a commutative diagram with 
exact rows of the form 

( 1.1) 

0--+ P --+ Q --+ R --+ 0. 
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J.2. DEFINITION [I, 2 ]. K0(End A) is the free abelian group generated by 
all isomorphism classes [P,f] of objects in End A modulo, the subgroup 
generated by all elements of the form [Q,g]- [P,J] - [R, h] for all exact 
sequences ( 1.1 ). 

The tensor product ((P,f), (Q, g)) H (P ® Q,f® g) induces a ring 
structure on K0(EndA) for which the unit element is the class of (A, I). (All 
tensor products are over A.) Further, the classes of the form (Q, 0) form an 
ideal in K0(EndA). This ideal identifies naturally with K 0(A) via PH (P, 0). 

1.3. DEFINITION. The ring of rational Witt vectors. The quotient ring is 
denoted K0(EndA)/K0(A) = W0(A). I like to call the elements of W0(A) 
rational Witt vectors for reasons which will become obvious immediately 
below. 

1.4. The Big Witt Vectors 

For each ring R let W(R) be the abelian group of all power series of the 
form I+ r1t + r2 t2 + ... , r; ER. Obviously, this functor is represented by 
the ring l[XpX2 , ... J; i.e., Ring(l[Xj,R):::: W(R) functorially. The group 
W(R) also carries a multiplication which is characterized by 
(I - r1t) *(I - r2 t) =I - r1r2 t for which I - t acts as a unit. This makes 
W(R) functorially a commutative ring with unit. This functorial ring W(R) 
admits functorial ring endomorphisms called Frobenius operators which are 
characterized by Fn(l - at)= (I - a"t). 

Compare [ 4, Chapter 3] for a rather detailed treatment of Witt vectors. 

1.5. Almkvist's Homomorphism 

Let (P,f) E End A. Let Q be a finitely generated projective A-module such 
that P ® Q is free, and consider the endomorphism/(!) 0 of P (f) Q. Consider 
det(l + t(f® 0)). This is a polynomial in t which does not depend on Q. 
This induces a homomorphism K 0(End A)--. W(A) which is (obviously) zero 
on K 0 (A ). It is also obviously additive and multiplicative, so that there 
results a homomorphism of rings 

c: K0(EndA)/K0(A) = W0(A)-+ W(A), ( 1.6) 

which is functorial in A. In [2] Almkvist now proves: 

1.7. THEOREM [2]. The homomorphism c is injective for all A, and the 
image of c (for a given A) consists of all power series I + a 1 t + a 2 t 2 + · · ·, 
which can be written in the form 
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(Whence the name, rational Witt vectors; the c in (1.6) stands for charac­
teristic polynomial.) 

1.8. Topology on W 0(A ), W(A) 

Let w<n>(A) be the subgroup of all power series of the form 
I + an+ 1 tn+ 1 + · · · E W(A ). These subgroups define a topology on W(A ), 
and W 0 (A) c W(A) is given the induced topology. Let Wt (A) be the subset 
of W(A) consisting of all polynomials 1 +a 1 t + a2 t 2 + ... a,t'. Then Wt (A) 
and W 0(A) are dense in W(A). With this definition, W0 , W, Wt become 
functors Ring-+ Top, where Top is the category of HausdorfT topological 
spaces. The w<n>(A) are in fact ideals in W(A), so that W0 , Wn can also be 
considered to take their values in the categories TRng of topological rings or 
T Ab of topological abelian groups, and Wt can be considered to take its 
values in the category of topological semigroups. 

1.9. Operations 

Let F be a functor, e.g., a functor F: Ring-+ Set. Then an operation for 
F(-) is a functorial transformation u: F-+ F. Below I shall determine all 
operations for the functors W 0 and Wt considered as functors Ring-+ Top, 
i.e., all functorial transformations of sets W0(A )-+ W0(A ), Wt (A)-+ Wt (A) 
which are continuous with respect to the topologies on W0(A ), Wt (A), and 
also of W0 as a functor to T Ab (additive operations) and as a functor to 
TRng (multiplicative operations). Here Wt (A) is the image of EndA in 
W0(A ), which via c identifies with the commutative sub-semiring of W(A) 
consisting of all polynomials I +a 1 t + · · · + a,t'. (This is fairly obvious, but 
cf. also 2.4 below.) I shall also determine what various natural operations on 
End A, like exterior products and symmetric products, correspond to in 
W(A ). All these questions were posed as problems in [I]. 

1.10. Two Topologies on the Ring l [X] 

Before I can describe the results I have to define two topologies on the 
ring l'[X1,X2 ,X3 ,. .. J = Z[X]. For each n E IN, let In be the ideal of l'.[X] 
generated by the elements Xn+PXn+i•·". The I-topology on Z[X] is the one 
defined by this sequence of ideals. The second and more important topology 
is also more difficult to describe. Consider the infinite Hankel matrix 

X1 Xi X3 

X 1 X2 X 3 X 4 

X2 X3 X4 Xs 
(1.11) 
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Now for each n E IN, let Jn be the ideal generated by all the (n + 1) X (n +I) 
minors of this matrix. Let l 1[X] and lAXJ denote the completions of l[X] 
with respect to the /-topology and the J-topology. 

The ring of power series in infinitely many variables l [ [ X] I is defined as 
the ring of all expressions La c"'X"' where a runs through all multi-indices 
a= (a1' a 2 , a 3 , ... ), a; E IN U {O}, such that a;= 0 for all but finitely many i. 
Here, X"' is short for the finite monomial 

Xa= fI Xii· 
a;o;,O 

Both 1'.1[X] and 1'.;[X] can be considered as subrings of 1'.[[Xj]. For 
instance, the elements of ZAXJ are power series f(X) in X1' X 2 , ••• , with the 
extra property that f(X) is a polynomial mod In for all n. Thus, e.g., X 1X 2 + 
X1X3 + X 1X4 + X 1X5 + · · · is in Z1[X], but l + X 1 + Xi + Xi + · · · is not in 
1'.1[XJ. . 

We also note that Jn c ln-1' so that there is a natural inclusion 1'.J[X] ~ 
1'.1[Xj. 

With these notions we can state the main results as 

1.12. THEOREM. The continuous operations of Wt ( - ) correspond 
naturally to ring endomorphisms of l. [X] which are continuous in the !­
topology (on both source and target). The (not necessarily continuous) 
operations of Wt correspond naturally to ring endomorphisms of l. 1 [X]. 

1.13. THEOREM. (i) The continuous operations of W 0(-) correspond 
naturally to ring endomorphisms of l. [X], which are continuous in the J­
topology (on both source and target). 

(ii) The additive continuous operations of W 0(-) correspond to 
elements l +x1t+x2 t2 + ... E W(l.[X]), such that 1im;_00 x;=O in the]­
topology, and µ(xn) = Li+i=n X; ® xi, where µ: l. [X] -+ l. [X] @ l. [X J is the 
coalgebra structure defined by xn r---. Li+j=n X;@Xj. 

(iii) The multiplicative and unit preserving continuous operations of 
W0(-) are the Frobenius operations. 

2. REPRESENTING THE FUNCTOR Wt 

2.1. Universal Examples of Endomorphisms 

For each n E IN, let Un= 1[X1, ... ,XnJ, and consider the free module 
P n = u: with the endomorphism fn given by the matrix 



K-THEORY OF ENDOMORPHISMS 289 

x1 -1 0 0 

Xz 0 -1 

fn= 0 (2.2) 

-1 

xn 0 0 

Then, of course, det(l +ifn)= l +X1t+ ··· +Xntn. And (PnJn) has the 

following universality property: for each polynomial of degree ~n, 
I + al t + ... + a II t" = a E w;; (A), there is a unique homomorphism 

~a: U11 -+A such that ~0 .: W;I(Un)-+ W;I(A) takes Yn= [PnJnl into a. This, 

of course, also shows that the image of End A in W0(A) is precisely the sub­

semiring of polynomials of the form 1 + a 1 t + .. ·+ant". 

The y n = l p n Jn I fit together in the sense that if )'[~ + I: ull + I --> u n is the 

projection X; 1--+ X1 for i = 1,. .. , n, x n + I H 0, then 

(2.3) 

The following proposition follows immediately. 

2.4. PROPOSITION. There is a functorial isomorphism bettt·een Wei (A) 

and TRng(1' 1 [X1>X2 , ... ],A), where TRng stands for continuous ring 

homomorphisms from l. [X 1 , X 2 , ... ] with the I-topology, to A with the discrete 
topology. 

Indeed, if ~: 1' [X J -+A is continuous, then there is an In such that 

~(Jn)= 0, so that 9 factors through nn: l[X]-+ Un. Let 9n be the induced 

homomorphism, then the element in W;I(A) corresponding to 9 is 9n.Yn· And 

inversely, if A(t)E W;I(A), a(t)=l+a 1 f+ .. ·+ant", let 9~:Un-+A be 

defined by ~~(X1 ) = a1• Then ~a=~~ o nn is the desired continuous 

homomorphism 1' [X] -+A. 

3. THE FATOU PROPERTY 

3.1. DEFINITION. An integral domain R is said to be Fatou if the 

following property holds. For every power series a(s - i) = I:~ 0 a1s -i in s- 1 

with coefficients in R such that there exist polynomials p(s ), q(s) with coef­

ficients in the quotient field Q(R) such that a(s - 1 ) = q(s )- 1 p(s ), there exist 

also polynomials p(s ), ij(s) E R [ s J such that ij(s) has leading coefficient l 

which also satisfy ij(s )- 1 ft(s) = a(s - 1 ). (The same property then holds 

obviously also with respect to Laurent series.) The following result comes 

out of mathematical system theory [ 7, 8]. 
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3.2. PROPOSITION. Every noetherian integral domain R is Fatou. 

Proof Let a(s- 1) = L~o a;s-i be a power series in s- 1 over R. Write 
down the Hankel matrix of a(s- 1). 

(3.3) 

Now suppose that a(s- 1)=q(s)- 1 p(s) for certain polynomials over the 
quotient field Q(R) of R. This means that there is a certain recursion 
relation, 

(3.4) 

between the coefficients an for all large enough n, and in turn this means that 
the rank of the matrix (3.3) is finite. Let this rank be r. Now consider the A­
module M generated by the columns of (3.3 ). This module can be seen as a 
submodule of some b- 1 R' for some b ER. (For b, one can take any nonzero 
r X r minor of (3.3)). But b- 1w is a finitely generated R-module, and, as R 
is noetherian, it follows that M is finitely generated. Now define an 
endomorphism F of M by F(a(i)) = a(i + 1), where a(i) is the column of 
(3.3) starting with a1• Let g=a(O), and let h:M-tR be defined by 
h(a(i)) = a1• Note that because of the structure of (3.3 ), the endomorphism F 
is well defined. We note that hF;g =a; for all i = 0, 1, 2, .... Now because M 
is finitely generated, there is a surjection of R-modules n:: Rm -t M for some 
m. Define ii= hn; let F be any lift of F, i.e., any endomorphism (matrix) of 
Rm such that rr.F = Frc and g any element of Rm such that rc(g) =g. Then 
fiftig = hFig =a; for all i = 0, 1, 2,... and consequently sh(sl -f)- 1g = 
a(s - i ), proving the proposition. 

4. "REPRESENTING" THE FUNCTOR W 0 

We are now in a position to represent, in a certain sense, the functor 
Wo(-). 

4.1. DEFINITION OF THE "UNIVERSAL OBJECT." Let Jn be the ideal in 
Z[X] defined in the introduction and let Vn = Z[XJ/Jn, let Pn= Z[X]-t Vn be 
the natural projection, let e = 1 + X 1 t + X2 t 2 + .. · E W(Z [X]), and let en= 
(pn)*(l + X1 t + X2t 2 + ... ) E W(Vn)· 
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4.2. Warning and Intermezzo 

It is not clear that ~n is in W 0 (Vn)· In fact, this is definitely not the case, 
because there are integral domains which are not Fatou. It also follows that 
the V n are examples. (The V n are integral by the Appendix.) It follows that 
the Vn are not noetherian. Let D n be the top left n X n minor of ( 1.11 ). Then, 
as we shall see in Sect. 6.10 below, ~n becomes a rational Witt vector over 
V n localized at ( 1, D n, D~ , ... ), where D n = Pn(D n)· It is easy to check that the 
map /Jn of diagram (6.11) contains vn in its image, and it follows that the 
localization ( Vn)D is noetherian. 

It is still not t;ue, however, that ~n over (Vn)D. is universal for rational 
Witt vectors of numerator degree <n - 1 and denominator degree <n. To 
obtain universal rational Witt vectors, one needs something like a universal 
Fatourization construction. 

4.5. THEOREM. For each I + a 1 t +···=a E W0 (A ), let 9a: Z [Xj--> A be 
the ring homomorphism defined by X; Ha;. Then a(t) H 9a is a functorial 
and injective correspondence from W 0(A) to ring homomorphisms l [ X I -->A, 
which are continuous with respect to the ]-topology on l [X] and the discrete 
topology on A. If A is Fatou, so in particular if A is integral and noetherian, 
then this induces a functorial isomorphism. 

Proof The rational Witt vector a can be written a = (I + c 1 t + · · · + 
cntn)- 1(1 +b 1 t+ ··· +bn __ 1 tn- 1 ). Consider l[Yp···• Y"_ 1 ;Z1' ... ,Z"j, and 
define if!: 1 [ Y; Z]--> A by If!( Y;) = c; and l/l(ZJ = bj, i,j = 1, ... , n. Let on be 
the rational Witt vector 

[) = 1 + Y1t+ ... + yn-ltn-1 E w (l[Y,Z]). (4.6) 
n l+Z 1t+···+Znt" O 

Then, of course, l/f *[Jn = a (but there may be several lf/'S with this property). 
Define en:Z[Xj->Z[Y,Z] by en*~=bn. Then (lflen)*~=a, so that 
lj/C,, = 9 a. Now 6 n is rational, so there is a recursion relation between its 
coefficients a;(Y, Z) in 

(4. 7) 

This, in turn, means that the rank of the associated Hankel matrix (cf. (3.3)) 
is finite (over the quotientfield Q(Z [ Y, Z] ), and because 1 [ Y, Z I is an 
integral domain, this means that for some n, all minors of the Hankel matrix 
of ( 4.6) vanish. Thus e,,(J m) = 0 for some m (in fact m = n works), so that a 
fortiori ~a(J ml= 0, i.e., ~a is continuous. The injectivity of a H 9a is obvious, 
because ~a(X;) =a;. 

Now let A be Fatou (and an integral domain). Let w: Z [X]--> A be 
continuous. Let a;= lf!(X;)· Then there is an m such that l/f(I ml= 0. Thus all 
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(m + 1) X (m + 1) minors of the Hankel matrix (3.3) of a0 = 1, a 1 , a 2 , ••• 

vanish, so that this matrix is of finite rank. So there are q0 , ••• , qm E Q(A) 
such that q0a(O) + · · · + qma(m) = 0, where as before a(i) is the ith column 
of (3.3). Hence 

t = 0, 1, 2, .. ., (4.8) 

so that 

with Po= qm, P1 = qmal + qm-1 "'"Pm+ I= qmam-1 + ... +qi. Now write 
t = s- 1, multiply numerator and denominator of (4.6) with sm, and apply the 
Fatou property to find an expression 

(4.10) 

with c0 , •• .,cn, b0 , ... ,bm-i EA. It follows that n=m and en= I. Now write 
t=s- 1 again, and multiply numerator and denominator in (4.10) with tn to 
find the desired expression. 

5. THE OPERATIONS OF Wt 

5.1. Functorial Transformations Wt -+ W 

Consider the functor Wt and W as functors Ring-+ Set, and let 
u: Wt-+ W be a functorial transformation. Consider the element 
Yn E Wri(Un), cf., Section 2.1 above. Let 

and let ~n: l [X]-+ Un= 1 [X" .. ., Xn] be the unique homomorphism of rings, 
such that ~n(X;) = u;(n) for all i. We claim that the ~n are compatible in the 
sense that 

nn+1.o _ .o 
n 'l'm+l -'f'n' n =I, 2, .... (5.3) 

Indeed, because u is functorial, we have u(yn)=u((n~+ 1 )*Yn+ 1 )= 
(n:+ 1)* u(Yn+ 1), and (5.3) follows. Thus the ~n combine to define a 
homomorphism of rings 

(5.4) 
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Moreover, ~u determines u uniquely. Inversely, given a ring homomorphism 
~: "ll [Xj-> Z1 [X], there is an induced functorial transformation 

u<t>: Wt(A)::::::: Ring(Z1[X],A)_t::_, Ring(l[Xj,A) ~ W(A). (5.5) 

Now suppose that u: Wt-> W is continuous. By continuity (because w; (A) 
is dense in W(A) ), u extends to a functorial transformation u: W-+ W. 
Because W(A) =Ring(£: [X], A), u induces a ring endomorphism 1u: I [XI-+ 
1 [X]. Inversely, every ring endomorphism 1: l [Xj-+ 7L [XI obviously defines 
a functorial transformation utl>: W(A)~Ring(I.[X],A)~Ring(l[X],A)~ 
W(A ). This u<t> is automatically continuous. Indeed, let a E W(A) and 
u<t>(a) =b. Given m, let n(m) E rN be such that ~(X 1 ), ••• , 1(X,,,) involve only 
the in determinates x l , ..• , xn(m). Then if a I E W(A) is such that the first n(m) 
coefficients of a' are equal to those of a, we have that the first m coefficients 
of b' = u<t>(a') are equal to those of b. This proves the continuity of u.,. 

Putting all this together we have 

5.6. PROPOSITION. Every operation u: w;-+ W corresponds uniquely to 
a ring homomorphism ~u: Z [X] _, l 1[X] and inversely. If the image of <Pu is 
in l [X] c Z' 1 [X], the operation is continuous and extends uniquely to an 
operation W-> W. The continuous operations Wei -+ W and the 
(automatically continuous) operations W-+ W correspond bijectively to the 
ring endomorphisms l [X] _, l [X]. 

There are also discontinuous operations W; -+ W and Wei -+ W;. An 
example is the one given by the ring homomorphism X 1 -> X 1X 2 + X 1 X) + 
X 1 X 4 + · ·., X;-+ 0 for i ~ 2. 

5.7. Proof of Theorem 1.12. The ring of operations Op(Wtn· Let 
Op( W;) be the ring of operations Wei -> Wei, and let u E Op( Wei). Then 
u(yn) (cf. (5.3) above) is a polynomial, and it follows that 9n(/1)=0 for I 

large enough (where 11 is the ideal (X1+ 1 , X 1+2 , ••. ) c :Z [X]). Thus, lf>u satisfies 
~"(11 ) c In. There is such a t for every n so that ~" is continuous. Inversely, 
let rj;: ;z [Xj _, I [X] be continuous, and let a E w; (A). Let 1/)0 : 1 [X\-+ A be 
the classifying homomorphism of a (cf. Proposition 2.4). Then <PaVrl = 0 for 
some r. Because rp is continuous, there is an m such that l/>Uml c Jr. Now 
u<t>(a) =(~a~)*(~), ~ = 1 + X 1 t + X2 t 2 + ··· E W(l[X]), and it follows that 
u<t>(a) is in WQ'(A)c W(A). This proves the seco~d statement. of 
Theorem l.12. The first statement follows because for continuous operations 
u the homomorphism ~u is such that lm(1u) c I [X] (by Proposition 5.6). 
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6. THE OPERATIONS OF W 0 

6.1. ]-Continuous Endomorphisms of l [X] Define Operations 

Let u E Opc(W0 ) be a continuous operation of W 0 • Then, because W0 is 
dense in W, as in Section 5.1 above, u defines uniquely an endomorphism of 
l [X]. It remains to determine what endomorphisms can arise in this way. 
The first step is to show that ]-continuous endomorphisms indeed give rise to 
operations. 

Let T11 = l [ Y 1 , ••• , Yn; Z 1 , ... , Z n _ 1 j, and consider the element 

l+Zt+ .. ·+Z t''- 1 

l/n = 1 n-I n = 1 + Vi(Y, Z)t + · · · E Wo(Tn). (6.2) 
1 + YI t + ... + Y,, t 

The V;(Y, Z) E Tn are easy to calculate explicitly. The result is 

(6.3) 

V n + r + V 11 + r ·I YI+ "· + V2 Yn- I + V2 Yn = 0. 

Let A n(X) be the n X n upper left-hand corner submatrix of ( 1.11 ), i.e., 

(6.4) 

Finally, let d11 ( Y, Z) E T 11 be obtained by substituting v;(Y, Z) for X; in (6.4) 
and taking the determinant of the resulting matrix. It is not difficult to see 
that 

0-:/:- d11 (Y, Z) E T 11 • (6.5) 

Indeed, take, e.g., Z i = · · · = Z 11 _ 1 = 0, Yi=···= Yn-i = 0, Y,, = I. Then 
Vi=···= V 11 _ i = 0, V 11 = -1, V 11 + 1 = · .. = Vin-2 = 0, SO that for these Values 
d 11 becomes -1 (if n ?: 2 ). 
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Now let an: l [X]--> Tn be defined by 

(6.6) 

Then, because the v;(Y, Z) satisfy the recurrence relations (6.3), we have that 
a n(Jn) = 0, so that 

( 6. 7) 

Now let 9: l [X]--> Z' [X] be continuous with respect to the ]-topology. Let 
u <1> be the associated functorial transformation W(-)--> W(- ). Then, in par­
ticular, 

(6.8) 

Now 9 is continuous with respect to the I-topology. So there is an m E ~ 
such that 9(Jm)cJn, and then (an9)(Jm)=O. Because Tn is Fatou 
(Proposition 3.2), it follows that u<1>(1Jn) E W0(T11 ) c W(T,J It follows that 
Uq, maps W0(A)-> W0(A) for all rings A, because for every a E W0(A) there 
is a ring homomorphism lfl: T11 --> A for some n such that lf1*(1J 11 ) =a. So we 
have proved 

6.9. PROPOSITION. For every I-continuous ring endomorphism 9 of? [Xj, 
the associated functorial transformation u<1>: W--> W maps W0 into W0 • 

6.10. Operations on W0 Give Rise to I-Continuous Endomorphisms 

To obtain the inverse statement, we need the inverse inclusion of ( 6. 7 ). To 
that end, consider the following diagram: 

Z:[X] 

:/ ~ 
T,, 

an 
l[XJ/Jn= V" ( 6.11) 

' / ' Bn ',ll 

(V,,)n. 

Here, the homomorphism in the upper right-hand corner is the natural 
projection nn. Because J 11 cKera 11 , an factors through V 11 to give an. 
Finally V __, (V ) is localization with respect to the multiplicative system 

' n n Dn · 
( 1, D n, D ~ , ... ). This is injective because D n =f:. 0 (by 6.5 ), and because D n IS 

not a zero divisor, (cf. the Appendix). 
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Now we claim that there exists a homomorphism f1n, making the lower 

triangle commutative. To define f1n we try to solve 

l+Zit+···+Zn-ltn-1 1 X X 2 

1 + YI t + ... + Yntn = + It+ zl + ... (6.12) 

for Y1,.··· Yn, Z1, ... , zn-1 in terms of the Xs. Substituting X; for V; in the 
Eqs. (6.3), this gives in particular 

Xn-1) ( Yn ) ( -Xn ) 
xn yn-1 -Xn+ I 

X2~-2 ~1 -X~n-1 , 

and from this we can calculate Y1 , ••• , Yn as a polynomial b;(X), i = 1, ... , n in 

X 1 , ••• ,X2n-I• and bjx)- 1, where Dn(X) is the determinant of (6.4). Given 

the Y1 ,. •• , Yn-1> the Z 1 , ••• ,zn-i follow directly from the first n -1 equations 
of (6.3), and are also polynomials c;(X) in Xw.,X 2n-i and Dn(X)- 1• 

It is now straightforward to check that the expression 

r ~ n, 

is precisely equal to the minor of the Hankel matrix ( 1.11) obtained by 

taking the first n + 1 rows and columns l, 2, ... , n and r + I. (Alternatively, 

we can use the proof of Proposition 3.2 to see that it suffices to invert D n to 

be able to solve Eqs. (6.12). Thus, we can define f1n: T,,--> (Vn)n. by 

Y; 1-t b;(X) and Z; H C;(X). The polynomials b;(X), c;(X) are unique, and it 
follows that the lower triangle in ( 6.11) commutes. It follows that an is 

injection, so that 

Ker an= J,,. ( 6.13) 

Now let u E Op( W 0 ) be a continuous operation, and let ~u E End(Z [X]) 
be the associated endomorphism. Consider u(IJn) E W0 (Tn)· Because u(17,,) is 
rational, there is a Tm and a homomorphism of rings 1/1: Tm--> Tn, such that 

I/I* IJm = u(17n)· Both a,,~u and lflOm take ~ E W(.Z:[XJ) to u(IJn), therefore 

an~u = lflOm 

Z[XJ ~ l[XJ 

1 Gm 1 Gn (6.14) 
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follows that ~u takes the kernel of l/fOm into the kernel of an. But the 
el of an is Jn, and the kernel of am is J m, which is contained in the kernel 
am· Thus ~u(J m) c Jn. There is such an rn for every n, which proves that 
; continuous, w.r.t. the I-topology. This finishes the proof of part (i) of 
:>rem 1.13. 

i. Additive Operations in Opc( W 0) 

he addition in W0(A) and W(A) corresponds to a comultiplication on 
T It is in fact (as is very easily verified) the comultiplication µ: X n H 

-j=n X;@Xj. There is also a counit Z [X]--+ Z, X 1 H 0, and a coinverse. 
; turns Z [X) into a Hopf-algebra (with antipode). An operation 
Op( W 0 ) is additive (group structure preserving) iff its associated 

omorphism is a Hopf-algebra endomorphism. Now according to Moore 
2 [ X] is the free Hopf-algebra on the coalgebra (jj ZX;. X n H 

c-j = n X 1 EB Xj, meaning that for every Hopf-algebra H and coalgebra 
:i.omorphism i:±J ZX1 --+ H, there is a unique extension l [X]--+ H, which is 
·fopf-algebra endomorphism. Thus the endomorphism of an additive 

ration u is uniquely specified by the elements ~u(X;) = x 1 subject to µxn = 
+-j=n x 1@xj, and inversely. This proves part (ii) of Theorem 1.13. 

6. Addendum to Theorem 1.13(ii) 

Jet <jJ E End Z[X] be a Hopf-algebra endomorphism, and suppose 1t 1s 
1tinuous as a morphism Z [X]--+ 1 [XJ, with the J-topology on the source 
l the I-topology on the target. Then, cf. 5.1 above, the associated 
:ration takes w;;- (A) into W0(A ), and hence by additivity W0(A) into 
,(A). It follows that ~ also has the stronger continuity property of being a 
ttinuous ]-topology endomorphism of Ji: JX J. 

7. Splitting Principle and Frobenius Operators 

Before discussing multiplicative operations we need to define the 
::ibenius operators and the splitting principle. Consider l [XJ as a subring 

if[[i;p~2 ,. •• )] by viewing X 1 as (-1) 1 e 1 (~1'~2 ,. •• ), where e1 is the ith 
mentary symmetric function in ~ 1 , ~2 ,. ••• Then we can write~= 1 + X 1 t + 
/ 2 + · • • ,-_ n~ I ( J - ~;f ). lt fol!OWS that tO Specify an additive Operation 
W( - ), it-suffices to specify what it does to elements of the form 1 + a 1 t E 

(A), and similarly the functorial multiplication on W(A) is also charac­
·ized by the equation (1 - at)* (1 - bt) = (1 - abt). The Frobenius 
,erations are now characterized by 

Fn(l -at)= (I -ant). ( 6.18) 

iey are functorial endomorphisms of W(A) ( cf., e.g., [ 4, Chap. 3 J ). They 

e defined on the level of End A by 

(P,f) H (P,fn). (6.19) 
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6.20. Multiplicative Operations 

Define new coordinates for the Witt vectors by the equation 

(6.21) 

Then the Zi can be calculated as polynomials in the X;, and vice versa, 
defining an isomorphism 1[Z]~1 [X]. Some aspects of the big Witt vectors 
are more easily discussed using "Z coordinates" than "X coordinates." Let 

w (Z) = " dzn!d. n "-' . (6.22) 
din 

Then the wn define a functorial homomorphism of rings w: W(A )--+A 1-.1, 

where IN = { 1, 2, ... }, and if A is a Q-algebra this is an isomorphism. Here A°" 
is a ring with component wise addition and multiplication. Now let 
u: W--+ W be a transformation of ring valued functors. Then, at least for Q­
algebra's, this induces a transformation on A IN, functorial in A. These are 
easy to describe and are given by an infinite matrix with precisely one 1 in 
each row, and zero's elsewhere. Let r: IN --+ IN be the corresponding mapping. 
Now if this transformation comes from one on W(A ), there must be 
polynomials U1(Z), Ui(Z), ... such that 

(6.23) 

Taking n = l, gives U1(Z) = wT(ll(Z), so that this transformation takes an 
element ( 1 - at) E W(A) to ( 1 - ant). But this determines, by the splitting 
principle, the transformation uniquely, and moreover there is a multiplicative 
transformation acting precisely like this. Thus the functorial ring 
endomorphisms of W(A) are the Frobenius operators F 1 , F 2 , ••• , and they 
obviously take Wt(A) and W0(A) into themselves. This proves part (iii) of 
Theorem 1.13. 

Note. Not all mappings r: IN --+ IN give rise to a functorial ring 
endomorphism of W. For that to happen, the polynomials U1(Z), Ui(Z), ... 
defined by (6.22) must turn out to have integral coefficients. As it turns out 
(and this is proved by the preceding), this is the case iff there is a number n 
such that r(m) = nm for all m. This follows because the Frobenius operators 
Fn satisfy (and are characterized by) wmFn = Wnm• cf. [4, Chap. 3 ]. 

6.24. Remark. It is not clear (to me at least) whether the (not 
necessarily continuous) operations W0 _.. W 0 correspond bijectively to 
continuous ring endomorphisms lAXI--+ l;[X]. Certainly such a ring 
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endomorphism gives rise to an operation W0 ~ W0 • The opposite is less clear 
(and in my opinion probably not true). The difficulty is of course that the 
canonical "representing elements" en are not in W0(Vn)· 

7. THE OPERATIONS Ai AND Si 

These are several operations which are naturally defined on End A, and 
the question arises as to what these correspond in W0(A) c W(A) [ 1 J. On 
the other hand, a number of the more mysterious operations of W(A) have 
natural interpretations on the level of End A which sometimes can be used to 
advantage, [ 3 ]. Thus, e.g., the Frobenius operator corresponds to ff-+ f n (/ 

composed with itself n times), and the Verschiebung operator corresponds to 

(
0 0 f) 

Vn:f't-+ 1 ~ . 

0 1 0 

(7.1) 

In [ 1] the question was asked to what the exterior and symmetric products 
correspond. The answer is rather obvious. 

W(A) is functorially a A-ring, with the operations A; defined as follows. 
Because in any A-ring A n(x + y) = Li+j=n A_i(x) A.j(y), it suffices by the 
splitting principle to specify the A; on elements of the form (1 - at). The 
characterizing definition is now 

A. 1(1-at)= I-at, for i ~ 2. (7.2) 

(Recall that I is the zero element of the abelian group W(A ). ) 
Now consider the module with endomorphism (Pn.fn) over Un= 

£'[X1 ,. .. ,Xnl of Section2.l. Write l+X1t+· .. +Xntn=f17o. 1(1-e;t). 
Then over Q(e 1 , ... , ~n), the module with endomorphism (Pn.fn) is isomorphic 
to a free n-dimensional module with diagonal endomorphism with eigen­
values -e 1'""' -en. Thus there is a splitting principle for End A also. Now 
A I = id and Ai (one dimensional module) = 0 if i ~ 2, and finally if e; is the 
endomorphism multiplication with e1 of A, then c(O = I+ ~;t. It follows 
that the A; on End A correspond to the natural A-operations on W(A ). 

7.3. Adams Operations 

Every A-ring has Adams operations defined on it, which are defined by the 

formula 

(7.4) 
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where A/x) = l +A 1(x)t+A 2(x) t2 + ·. ·. Using this one easily checks that 
the Adams operations lfln on W(A) coincide with the Frobenius operations 
F n (Adams = Frobenius ). It follows that the Adams operations 
corresponding to the A; on End A are given by (P,f)-> (P,r ). 

7.5. Symmetric Powers 

For any projective module P over A, there is a well-known exact sequence 
of projective modules 

O-tSnp-;5n-1P@A1p_.sn-2p(X)A2P-t ... 

->SI p@ A n-1 p-> An P-> 0. (7.6) 

It follows that the exterior product operations A; and the symmetric product 
operations si on W0 (A) c W(A) are related by the formula 

sn(a)-sn- 1(a)A 1(a)+sn- 2(a)A 2(a)- ... 

+(-l)"- 1 s 1(a)An-I(a)+(-ltAn(a)=0. (7.7) 

A description for the si similar to the one given above for the Ai is given 
by 

for i > 2. (7.8) 

The si of the other elements are determined by this because the si also satisfy 
s 11 (a+b)=LiU-nsi(a)sj(b) (where+ denotes the addition in W(A)), and 
on the right-hand side we have both multiplication and addition in W(A ). In 
other words, the si define a different A-ring structure (also functorial) on 
W(A ). This comes about as follows. If the Xi are the elementary symmetric 
functions in -.;I, -.;2 , ... so that 1 + xl t + X2 t 2 + ... = n (1 - .;it), then the 
complete symmetric functions h; in the -.;1 , -.;2, ... are given by l + h 1 t + 
h 2 t 2 + ... = rI (1 + .;;r )- 1• They are (therefore) related by .L7 u(-1 )i 
Xih 11 _;=0, cf. (7.7). 

Now the functorial A-ring structure on W(A) is given by certain ring 
endomorphisms ~(A;): Z IXI-> Z [XJ, or, equivalently, by certain universal 
polynomials, the ~(A;)(Xj) = <Pu(Xp X 2 , ••• ). Now recoordinatize Z [Xj, and 
view it as Z!hj. Write down the polynomials <Pu(hph 2 , ••• ), and substitute 
the expressions in X 1 , X 2, ... to which the hi are equal. Then these new 
universal polynomials define the new functorial A-ring structure on W(A) 
defined by the s;. 
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APPENDIX: PROOF THAT Jll IS A PRIME IDEAL 

A. l. Sylvester's Theorem I l 0] 

301 

Let x 1'"'' X 11 be n vectors. Denote with det(x 1' .. ., x 11 ) the determinant of the 

matrix consisting of the columns x 1 , ... , x,, (in that order). Then Sylvester 

proved a noteworthy identity concerning products of the form 

det(X I, X 2,. .• ,X11 ) det(y I , .• .,Jn). (1) 

Namely, choose any subset of r integers i1 ,. • ., i,, I~ ik ~ n. For each r tuple 

1 ~j1 < .. · <jr ~ n, let 

(2) 

denote the expression (I), with xik interchanged with yh, k = l, 2,. . ., r. Then 

Sylvester's identity says that for any fixed set i 1,. .. , i,. 

(3) 

where the sum is over all ( ; ) possible choices for j 1 < · · · < j,. 

A.2. Proof that D 11 is not a Zero Divisor in d'. [X]/J11 • Consider the semi­

infinite matrix 

u 
x, X2 X3 x4 

. ) X2 Xi x4 Xs ... 

xn Xn+ I 

(4) 

Now observe that all the (n + 1) X (n + 1) minors of the Hankel matrix 

( 1.11) are linear combinations (with integral coefficients) of the minors of 

the matrix ( 4 ). This is essentially also a result from linear system theory, 

more precisely realization theory, cf., e.g., Section 4 of [9 J. Let m(ip ... , i 11 ; 

j 1' ... ,j 11 ) denote the determinant of the submatrix of ( 1.11) whose top row 

consists of X; 1 , .. .,Xin+i and first column consists of Xj,, ... ,Xj"'' (i 1 =}1 ; 

i1 < ··· <in+ 1 ;}1 < ... <ln+il and m(j,,. .. ,jn+i) denotes the minor of (4) 

obtained by taking the columns starting with Xh , .. ., X1,, +,. Then, for example, 

m(l, 3, 5; I, 4, 7) = m(l, 5, 9) + m(2, 4, 9) + m(l, 6, 8) + 2m(2, 5, 8) + 
m(3, 4, 8) + m(2, 6, 7) + m(3, 5, 7). Hence, J 11 is the ideal generated by all 

the (n + I) x (n + I) minors of (4). Recall that .d 11 (X) is then X n upper left 
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hand corner submatrix of ( 4 ), and that D n is the determinant of LI ,,(X), or. 
what is the same, the determinant of 

( 5) 

We shall from now on write D for D n. Let the columns of ( 4) be numbered 

0, 1,... . Let m(j w··j n + 1) denote the minor of ( 4) obtained by taking 

columns } 1 , ••• ,Jn+ 1 , and let m5 be short for m(O, 1, ... , n - l, s), s): n. Let J 

denote the ideal generated by the mr. 
Then, by applying Sylvester's identity with r = n and (i 1 ... ., i rl = ( 1, ... , n) 

to the product of the determinant of (5 ), i.e., D, and m(j 1 , ... ,j,, + 1 ), we see 
that 

Now suppose that DP E Jn for some polynomial P. Then we can write 

t 

D 2P = \' J,.m. 
- I I 
;~ 1 

(6) 

(7) 

for certain polynomials f;. We can, of course, even assume that the}~ are 

monomials. Let f be any monomial, and let X, be the largest X occurring in 

f Then we can write, if f = f' X s 

(8) 

where p is a polynomial in X 1 ,. •• , Xs 1 • Using this repeatedly, we obtain 

from (7) an expression of the form 

(9) 

where j is a multi-index, m..!. is short for m;, m;, .. · m;, if j = (i 1 , ... , i,.), and the 
f; are polynomials in X 1 , ••• , X 2,, _ 1 only. 
- Let k be minimal such that there exists an expression of the form (9) with 

the property just mentioned. If k = 0, we are through, so assume k > 0. The 

sum in (9) is over multi-indices j such that n !( i 1 !( · · · ~ i,.. Now rewrite (9) 

as a sum 

( 10) 
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where the gl.'s are equal to 

( 11) 

where the sum is over all i such that i 1 = ... = i = /1 < i and 1· -
- I t+ I -

U1+1, ... , ir). The gj in (10) depend on x1' ... ,x2n' but the dependence on x, 
- -" 

occurs only through polynomials in X 1 , ••• , Xin- i and the product DX in· 
Now let V(D) be the subvariety of (:in- 2 of zero's of D. Let x E:: V(D ). 
x=(xp···•Xzn_ 2) and Xin-i be fixed, Xin-i*O. Let mj(x) denote the 
polynomial obtained from mj by substituting X; for X;. - i = 1 •.... 2n - I. 
Suppose D n _ 1 (x) = t * 0. Then the lexicographically largest term in m;(x) is, 
f = (jp···•js), 11 <j1 :( ·· · :(js -

( 12) 

and these terms are different for different j. This means that by varying the 
X in, X in+ 1 ,... we can produce a nonsingular N X N matrix of m j values 
where N is the number of terms in ( 10). Now because gj is a polynomial in 
X 1 , ... ,X2n_ 1 , DX2n, the gj(x) do not depend on Xzn•·{in+i···· (as long as 
x E V(D) ). Therefore, g/x) = 0 for all x E:: V(D) such that D n . 1 (x) * 0. 
These x form an open- dense subset of V(D), so that gj(x) = 0 for all 
x E V(D ). Hence, the gj(X) in ( 10) are divisible by D, so that we can reduce 
k by 1 and we are through. (D n is a prime element as an easy induction 
shows.) 

A.3. Proof that Jn is a Prime Ideal. Consider again diagram (6.11). 
Because Dn is not a zero divisor, the lower right hand arrow is injective. 
Hence an is injective, so that Vn is a subring of the integral domain Tn, 
which proves that vn is itself integral and that Jn is a prime ideal. 
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