Operations in the K-Theory of Endomorphisms*

Michiel Hazewinkel ${ }^{+}$
Department of Mathematics, Erasmus University, 3000 DR Rotterdam, The Netherlands

Communicated by P. M. Cohn
Received November 2, 1981

For a commutative ring with unity A, let End A be the category of all pairs (P, f), where P is a finitely generated projective A-module and f an endomorphism of A. The K-group $K_{0}(A)$ is a direct summand and ideal of $K_{0}($ End $A)$, and Almkvist showed that the quotient ring $W_{0}(A)=K_{0}($ End $A) / K_{0}(A)$ is a functorial subring of the ring of the big Witt vectors $W(A)[1]$. In this paper, I determine the ring of all continuous functorial operations on $W_{0}(-)$, and the semiring of all operations (and all continuous operations) liftable to $\operatorname{End}(A)$. This solves some of the open problems listed in $|1|$.

1. Introduction, Definitions and Statement of Main Results

Let A be a commutative ring with unit element. With End A, I denote the category of pairs (P, f), where P is a finitely generated projective module over A, and f an endomorphism of P. A morphism $u:(P, f) \rightarrow(Q, g)$ is a morphism of A-modules $u: P \rightarrow Q$, such that $g u=u f$. There is an obvious notion of short exact sequence in End A : it is a commutative diagram with exact rows of the form

* During the research for and writing of this paper, the author was visiting the Inst. de Ciencias, Univ. Autonoma de Puebla, whose hospitality and support is gratefully acknowledged. I would like to thank Ton Vorst for pointing out some gaps in an earlier draft of this paper.
${ }^{\dagger}$ Present address: Center for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
1.2. Definition $[1,2]$. $K_{0}($ End $A)$ is the free abelian group generated by all isomorphism classes $[P, f]$ of objects in End A modulo, the subgroup generated by all elements of the form $[Q, g]-[P, f]-[R, h]$ for all exact sequences (1.1).

The tensor product $((P, f),(Q, g)) \mapsto(P \otimes Q, f \otimes g)$ induces a ring structure on $K_{0}(\operatorname{End} A)$ for which the unit element is the class of $(A, 1)$. (All tensor products are over A.) Further, the classes of the form ($Q, 0$) form an ideal in $K_{0}($ End $A)$. This ideal identifies naturally with $K_{0}(A)$ via $P \mapsto(P, 0)$.
1.3. Definition. The ring of rational Witt vectors. The quotient ring is denoted $K_{0}(\operatorname{End} A) / K_{0}(A)=W_{0}(A)$. I like to call the elements of $W_{0}(A)$ rational Witt vectors for reasons which will become obvious immediately below.

1.4. The Big Witt Vectors

For each ring R let $W(R)$ be the abelian group of all power series of the form $1+r_{1} t+r_{2} t^{2}+\cdots, r_{i} \in R$. Obviously, this functor is represented by the ring $\mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]$; i.e., $\operatorname{Ring}(\mathbb{Z}[X], R) \simeq W(R)$ functorially. The group $W(R)$ also carries a multiplication which is characterized by $\left(1-r_{1} t\right) *\left(1-r_{2} t\right)=1-r_{1} r_{2} t$ for which $1-t$ acts as a unit. This makes $W(R)$ functorially a commutative ring with unit. This functorial ring $W(R)$ admits functorial ring endomorphisms called Frobenius operators which are characterized by $F_{n}(1-a t)=\left(1-a^{n} t\right)$.

Compare [4, Chapter 3] for a rather detailed treatment of Witt vectors.

1.5. Almkvist's Homomorphism

Let $(P, f) \in \operatorname{End} A$. Let Q be a finitely generated projective A-module such that $P \oplus Q$ is free, and consider the endomorphism $f \oplus 0$ of $P \oplus Q$. Consider $\operatorname{det}(1+t(f \oplus 0))$. This is a polynomial in t which does not depend on Q. This induces a homomorphism $K_{0}($ End $A) \rightarrow W(A)$ which is (obviously) zero on $K_{0}(A)$. It is also obviously additive and multiplicative, so that there results a homomorphism of rings

$$
\begin{equation*}
c: K_{0}(\text { End } A) / K_{0}(A)=W_{0}(A) \rightarrow W(A) \tag{1.6}
\end{equation*}
$$

which is functorial in A. In [2| Almkvist now proves:
1.7. Theorem [2]. The homomorphism c is injective for all A, and the image of $c($ for a given $A)$ consists of all power series $1+a_{1} t+a_{2} t^{2}+\cdots$, which can be written in the form

$$
1+a_{1} t+a_{2} t^{2}+\cdots=\frac{1+b_{1} t+\cdots+b_{r} t^{r}}{1+d_{1} t+\cdots+d_{n} t^{n}}, \quad b_{i}, d_{j} \in A .
$$

(Whence the name, rational Witt vectors; the c in (1.6) stands for characteristic polynomial.)

1.8. Topology on $W_{0}(A), W(A)$

Let $W^{(n)}(A)$ be the subgroup of all power series of the form $1+a_{n+1} t^{n+1}+\cdots \in W(A)$. These subgroups define a topology on $W(A)$, and $W_{0}(A) \subset W(A)$ is given the induced topology. Let $W_{0}^{+}(A)$ be the subset of $W(A)$ consisting of all polynomials $1+a_{1} t+a_{2} t^{2}+\cdots a_{r} t^{r}$. Then $W_{0}^{+}(A)$ and $W_{0}(A)$ are dense in $W(A)$. With this definition, W_{0}, W, W_{0}^{+}become functors Ring \rightarrow Top, where Top is the category of Hausdorff topological spaces. The $W^{(n)}(A)$ are in fact ideals in $W(A)$, so that W_{0}, W_{n} can also be considered to take their values in the categories TRng of topological rings or $\mathbf{T A b}$ of topological abelian groups, and W_{0}^{+}can be considered to take its values in the category of topological semigroups.

1.9. Operations

Let F be a functor, e.g., a functor $F:$ Ring \rightarrow Set. Then an operation for $F(-)$ is a functorial transformation $u: F \rightarrow F$. Below I shall determine all operations for the functors W_{0} and W_{0}^{+}considered as functors Ring \rightarrow Top, i.e., all functorial transformations of sets $W_{0}(A) \rightarrow W_{0}(A), W_{0}^{+}(A) \rightarrow W_{0}^{+}(A)$ which are continuous with respect to the topologies on $W_{0}(A), W_{0}^{+}(A)$, and also of W_{0} as a functor to TAb (additive operations) and as a functor to TRng (multiplicative operations). Here $W_{0}^{+}(A)$ is the image of End ${ }_{A}$ in $W_{0}(A)$, which via c identifies with the commutative sub-semiring of $W(A)$ consisting of all polynomials $1+a_{1} t+\cdots+a_{r} t^{r}$. (This is fairly obvious, but cf. also 2.4 below.) I shall also determine what various natural operations on End A, like exterior products and symmetric products, correspond to in $W(A)$. All these questions were posed as problems in [1].

1.10. Two Topologies on the Ring $\mathbb{Z}[X]$

Before I can describe the results I have to define two topologies on the ring $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}, \ldots\right]=\mathbb{Z}[X]$. For each $n \in \mathbb{N}$, let I_{n} be the ideal of $\mathbb{Z}|X|$ generated by the elements X_{n+1}, X_{n+2}, \ldots. . The I-topology on $\mathbb{Z}[X]$ is the one defined by this sequence of ideals. The second and more important topology is also more difficult to describe. Consider the infinite Hankel matrix

$$
\left(\begin{array}{ccccc}
1 & X_{1} & X_{2} & X_{3} & \cdots \tag{1.11}\\
X_{1} & X_{2} & X_{3} & X_{4} & \cdots \\
X_{2} & X_{3} & X_{4} & X_{5} & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

Now for each $n \in \mathbb{N}$, let J_{n} be the ideal generated by all the $(n+1) \times(n+1)$ minors of this matrix. Let $\mathbb{Z}_{I}[X]$ and $\mathbb{Z}_{J}[X]$ denote the completions of $\mathbb{Z}|X|$ with respect to the I-topology and the J-topology.

The ring of power series in infinitely many variables $\mathbb{Z}[[X] \mid$ is defined as the ring of all expressions $\sum_{\alpha} c_{\alpha} X^{\alpha}$ where α runs through all multi-indices $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right), \alpha_{i} \in \mathbb{N} \cup\{0\}$, such that $\alpha_{i}=0$ for all but finitely many i. Here, X^{α} is short for the finite monomial

$$
X^{\alpha}=\prod_{\alpha_{i} \neq 0} X_{i}^{\alpha_{i}}
$$

Both $\mathbb{Z}_{I}[X]$ and $\mathbb{Z}_{J}[X]$ can be considered as subrings of $\mathbb{Z}[\lfloor X \mid]$. For instance, the elements of $\mathbb{Z}_{I}[X]$ are power series $f(X)$ in X_{1}, X_{2}, \ldots, with the extra property that $f(X)$ is a polynomial $\bmod I_{n}$ for all n. Thus, e.g., $X_{1} X_{2}+$ $X_{1} X_{3}+X_{1} X_{4}+X_{1} X_{5}+\cdots$ is in $\mathbb{Z}_{I}[X]$, but $1+X_{1}+X_{1}^{2}+X_{1}^{3}+\cdots$ is not in $\mathbb{Z}_{I}|X|$.

We also note that $J_{n} \subset I_{n-1}$, so that there is a natural inclusion $\mathbb{Z}_{J}|X| \rightarrow$ $\mathbb{Z}_{I}[X]$.

With these notions we can state the main results as
1.12. THEOREM. The continuous operations of $W_{0}^{+}(-)$correspond naturally to ring endomorphisms of $\mathbb{Z}[X]$ which are continuous in the I topology (on both source and target). The (not necessarily continuous) operations of W_{0}^{+}correspond naturally to ring endomorphisms of $\mathbb{Z}_{I}[X]$.
1.13. TheOrem. (i) The continuous operations of $W_{0}(-)$ correspond naturally to ring endomorphisms of $\mathbb{Z}[X]$, which are continuous in the J topology (on both source and target).
(ii) The additive continuous operations of $W_{0}(-)$ correspond to elements $1+x_{1} t+x_{2} t^{2}+\cdots \in W(\mathbb{Z}[X])$, such that $\lim _{i \rightarrow \infty} x_{i}=0$ in the J topology, and $\mu\left(x_{n}\right)=\sum_{i+j=n} x_{i} \otimes x_{j}$, where $\mu: \mathbb{Z}|X| \rightarrow \mathbb{Z}|X| \otimes \mathbb{Z}[X \mid$ is the coalgebra structure defined by $X_{n} \mapsto \sum_{i+j=n} X_{i} \otimes X_{j}$.
(iii) The multiplicative and unit preserving continuous operations of $W_{0}(-)$ are the Frobenius operations.

2. Representing the Functor W_{0}^{+}

2.1. Universal Examples of Endomorphisms

For each $n \in \mathbb{N}$, let $U_{n}=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, and consider the free module $P_{n}=U_{n}^{n}$ with the endomorphism f_{n} given by the matrix

$$
f_{n}=\left(\begin{array}{ccccc}
x_{1} & -1 & & 0 & \cdots \tag{2.2}\\
X_{2} & 0 & -1 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & 0 \\
\vdots & \vdots & & \ddots & -1 \\
X_{n} & 0 & & \cdots & \\
0
\end{array}\right)
$$

Then, of course, $\operatorname{det}\left(1+t f_{n}\right)=1+X_{1} t+\cdots+X_{n} t^{n}$. And $\left(P_{n}, f_{n}\right)$ has the following universality property: for each polynomial of degree $\leqslant n$, $1+a_{1} t+\cdots+a_{n} t^{n}=a \in W_{0}^{+}(A)$, there is a unique homomorphism $\phi_{a}: U_{n} \rightarrow A$ such that $\phi_{a *}: W_{0}^{+}\left(U_{n}\right) \rightarrow W_{0}^{+}(A)$ takes $\gamma_{n}=\left[P_{n}, f_{n}\right]$ into a. This, of course, also shows that the image of End A in $W_{0}(A)$ is precisely the subsemiring of polynomials of the form $1+a_{1} t+\cdots+a_{n} t^{n}$.

The $\gamma_{n}=\left[P_{n}, f_{n}\right]$ fit together in the sense that if $\pi_{n}^{n+1}: U_{n+1} \rightarrow U_{n}$ is the projection $X_{i} \mapsto X_{i}$ for $i=1, \ldots, n, X_{n+1} \mapsto 0$, then

$$
\begin{equation*}
\left(\pi_{n}^{n+1}\right)_{*} \gamma_{n+1}=\gamma_{n} . \tag{2.3}
\end{equation*}
$$

The following proposition follows immediately.
2.4. Proposition. There is a functorial isomorphism between $W_{0}^{+}(A)$ and $\operatorname{TRng}\left(\mathbb{Z}_{I}\left|X_{1}, X_{2}, \ldots\right|, A\right)$, where $\mathbf{T R n g}$ stands for continuous ring homomorphisms from $\mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]$ with the I-topology, to A with the discrete topology.

Indeed, if $\phi: \mathbb{Z}[X] \rightarrow A$ is continuous, then there is an I_{n} such that $\phi\left(I_{n}\right)=0$, so that ϕ factors through $\pi_{n}: \mathbb{Z}[X] \rightarrow U_{n}$. Let ϕ_{n} be the induced homomorphism, then the element in $W_{0}^{+}(A)$ corresponding to ϕ is $\phi_{n *} \gamma_{n}$. And inversely, if $A(t) \in W_{0}^{+}(A), a(t)=1+a_{1} t+\cdots+a_{n} t^{n}$, let $\phi_{a}^{\prime}: U_{n} \rightarrow A$ be defined by $\phi_{a}^{\prime}\left(X_{i}\right)=a_{i}$. Then $\phi_{a}=\phi_{a}^{\prime} \circ \pi_{n}$ is the desired continuous homomorphism $\mathbb{Z}[X] \rightarrow A$.

3. The Fatou Property

3.1. Definition. An integral domain R is said to be Fatou if the following property holds. For every power series $a\left(s^{-1}\right)=\sum_{i=0}^{\infty} a_{i} s^{-i}$ in s^{-1} with coefficients in R such that there exist polynomials $p(s), q(s)$ with coefficients in the quotient field $Q(R)$ such that $a\left(s^{-1}\right)=q(s)^{-1} p(s)$, there exist also polynomials $\bar{p}(s), \bar{q}(s) \in R[s]$ such that $\bar{q}(s)$ has leading coefficient 1 which also satisfy $\bar{q}(s)^{-1} \bar{p}(s)=a\left(s^{-1}\right)$. (The same property then holds obviously also with respect to Laurent series.) The following result comes out of mathematical system theory $[7,8]$.

3.2. Proposition. Every noetherian integral domain R is Fatou.

Proof. Let $a\left(s^{-1}\right)=\sum_{i=0}^{\infty} a_{i} s^{-i}$ be a power series in s^{-1} over R. Write down the Hankel matrix of $a\left(s^{-1}\right)$.

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \tag{3.3}\\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

Now suppose that $a\left(s^{-1}\right)=q(s)^{-1} p(s)$ for certain polynomials over the quotient field $Q(R)$ of R. This means that there is a certain recursion relation,

$$
\begin{equation*}
q_{1} a_{n+t-1}+q_{2} a_{n+t-2}+\cdots+q_{t} a_{n}=0 \tag{3.4}
\end{equation*}
$$

between the coefficients a_{n} for all large enough n, and in turn this means that the rank of the matrix (3.3) is finite. Let this rank be r. Now consider the A module M generated by the columns of (3.3). This module can be seen as a submodule of some $b^{-1} R^{r}$ for some $b \in R$. (For b, one can take any nonzero $r \times r$ minor of (3.3)). But $b^{-1} R^{r}$ is a finitely generated R-module, and, as R is noetherian, it follows that M is finitely generated. Now define an endomorphism F of M by $F(a(i))=a(i+1)$, where $a(i)$ is the column of (3.3) starting with a_{i}. Let $g=a(0)$, and let $h: M \rightarrow R$ be defined by $h(a(i))=a_{i}$. Note that because of the structure of (3.3), the endomorphism F is well defined. We note that $h F^{i} g=a_{i}$ for all $i=0,1,2, \ldots$. . Now because M is finitely generated, there is a surjection of R-modules $\pi: R^{m} \rightarrow M$ for some m. Define $\tilde{h}=h \pi$; let \tilde{F} be any lift of F, i.e., any endomorphism (matrix) of R^{m} such that $\pi \tilde{F}=F \pi$ and \tilde{g} any element of R^{m} such that $\pi(\tilde{g})=g$. Then $\tilde{h} \tilde{F}^{i} \tilde{g}=h F^{i} g=a_{i}$ for all $i=0,1,2, \ldots$ and consequently $\operatorname{s\tilde {h}(sI-\tilde {F})^{-1}\tilde {g}=}$ $a\left(s^{-1}\right)$, proving the proposition.

4. "Representing" the Functor W_{0}

We are now in a position to represent, in a certain sense, the functor $W_{0}(-)$.
4.1. Defintition of the "Universal Object." Let J_{n} be the ideal in $\mathbb{Z}[X]$ defined in the introduction and let $V_{n}=\mathbb{Z}[X] / J_{n}$, let $\rho_{n}: \mathbb{Z}[X] \rightarrow V_{n}$ be the natural projection, let $\xi=1+X_{1} t+X_{2} t^{2}+\cdots \in W(\mathbb{Z}[X])$, and let $\xi_{n}=$ $\left(\rho_{n}\right)_{*}\left(1+X_{1} t+X_{2} t^{2}+\cdots\right) \in W\left(V_{n}\right)$.

4.2. Warning and Intermezzo

It is not clear that ξ_{n} is in $W_{0}\left(V_{n}\right)$. In fact, this is definitely not the case, because there are integral domains which are not Fatou. It also follows that the V_{n} are examples. (The V_{n} are integral by the Appendix.) It follows that the V_{n} are not noetherian. Let \tilde{D}_{n} be the top left $n \times n$ minor of (1.11). Then, as we shall see in Sect. 6.10 below, ξ_{n} becomes a rational Witt vector over V_{n} localized at $\left(1, D_{n}, D_{n}^{2}, \ldots\right)$, where $D_{n}=\rho_{n}\left(\tilde{D}_{n}\right)$. It is easy to check that the map β_{n} of diagram (6.11) contains V_{n} in its image, and it follows that the localization $\left(V_{n}\right)_{D_{n}}$ is noetherian.

It is still not true, however, that ξ_{n} over $\left(V_{n}\right)_{D_{n}}$ is universal for rational Witt vectors of numerator degree $\leqslant n-1$ and denominator degree $\leqslant n$. To obtain universal rational Witt vectors, one needs something like a universal Fatourization construction.
4.5. Theorem. For each $1+a_{1} t+\cdots=a \in W_{0}(A)$, let $\phi_{a}: \mathbb{Z}[X \mid \rightarrow A$ be the ring homomorphism defined by $X_{i} \mapsto a_{i}$. Then $a(t) \mapsto \phi_{a}$ is a functorial and injective correspondence from $W_{0}(A)$ to ring homomorphisms $\mathbb{Z}[X \mid \rightarrow A$, which are continuous with respect to the J-topology on $\mathbb{Z}[X]$ and the discrete topology on A. If A is Fatou, so in particular if A is integral and noetherian, then this induces a functorial isomorphism.

Proof. The rational Witt vector a can be written $a=\left(1+c_{1} t+\cdots+\right.$ $\left.c_{n} t^{n}\right)^{-1}\left(1+b_{1} t+\cdots+b_{n-1} t^{n-1}\right)$. Consider $\mathbb{Z}\left|Y_{1}, \ldots, Y_{n-1} ; Z_{1}, \ldots, Z_{n}\right|$, and define $\psi: \mathbb{Z}[Y ; Z] \rightarrow A$ by $\psi\left(Y_{i}\right)=c_{i}$ and $\psi\left(Z_{j}\right)=b_{j}, i, j=1, \ldots, n$. Let δ_{n} be the rational Witt vector

$$
\begin{equation*}
\delta_{n}=\frac{1+Y_{1} t+\cdots+Y_{n-1} t^{n-1}}{1+Z_{1} t+\cdots+Z_{n} t^{n}} \in W_{0}(\mathbb{Z}[Y, Z]) . \tag{4.6}
\end{equation*}
$$

Then, of course, $\psi_{*} \delta_{n}=a$ (but there may be several ψ 's with this property). Define $\left.\varepsilon_{n}: \mathbb{Z}[X] \rightarrow \mathbb{Z} \mid Y, Z\right]$ by $\varepsilon_{n *} \xi=\delta_{n}$. Then $\left(\psi \varepsilon_{n}\right)_{*} \xi=a$, so that $\psi \varepsilon_{n}=\phi_{a}$. Now δ_{n} is rational, so there is a recursion relation between its coefficients $a_{i}(Y, Z)$ in

$$
\begin{equation*}
\delta_{n}=1+a_{1}(Y, Z) t+a_{2}(Y, Z) t^{2}+\cdots \tag{4.7}
\end{equation*}
$$

This, in turn, means that the rank of the associated Hankel matrix (cf. (3.3)) is finite (over the quotientfield $Q(\mathbb{Z} \mid Y, Z]$), and because $\mathbb{Z}|Y, Z|$ is an integral domain, this means that for some n, all minors of the Hankel matrix of (4.6) vanish. Thus $\varepsilon_{n}\left(J_{m}\right)=0$ for some m (in fact $m=n$ works), so that a fortiori $\phi_{a}\left(J_{m}\right)=0$, i.e., ϕ_{a} is continuous. The injectivity of $a \mapsto \phi_{a}$ is obvious, because $\phi_{a}\left(X_{i}\right)=a_{i}$.

Now let A be Fatou (and an integral domain). Let $\psi: \mathbb{Z}[X] \rightarrow A$ be continuous. Let $a_{i}=\psi\left(X_{i}\right)$. Then there is an m such that $\psi\left(I_{m}\right)=0$. Thus all
$(m+1) \times(m+1)$ minors of the Hankel matrix (3.3) of $a_{0}=1, a_{1}, a_{2}, \ldots$ vanish, so that this matrix is of finite rank. So there are $q_{0}, \ldots, q_{m} \in Q(A)$ such that $q_{0} a(0)+\cdots+q_{m} a(m)=0$, where as before $a(i)$ is the i th column of (3.3). Hence

$$
\begin{equation*}
q_{0} a_{t}+q_{1} a_{t+1}+\cdots+q_{m} a_{t+m}=0, \quad t=0,1,2, \cdots \tag{4.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{p_{0}+p_{1} t+\cdots+p_{m-1} t^{m-1}}{q_{m}+q_{m-1} t+\cdots+q_{0} t^{m}}=1+a_{1} t+a_{2} t^{2}+\cdots \tag{4.9}
\end{equation*}
$$

with $p_{0}=q_{m}, p_{1}=q_{m} a_{1}+q_{m-1}, \ldots, p_{m+1}=q_{m} a_{m-1}+\cdots+q_{1}$. Now write $t=s^{-1}$, multiply numerator and denominator of (4.6) with s^{m}, and apply the Fatou property to find an expression

$$
\begin{equation*}
\frac{c_{n} s^{n}+c_{n-1} s^{n-1}+\cdots+c_{1} s+c_{0}}{s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}=1+a_{1} s^{-1}+a_{2} s^{-2}+\cdots \tag{4.10}
\end{equation*}
$$

with $c_{0}, \ldots, c_{n}, b_{0}, \ldots, b_{m-1} \in A$. It follows that $n=m$ and $c_{n}=1$. Now write $t=s^{-1}$ again, and multiply numerator and denominator in (4.10) with t^{n} to find the desired expression.

5. The Operations of W_{0}^{+}

5.1. Functorial Transformations $W_{0}^{+} \rightarrow W$

Consider the functor W_{0}^{+}and W as functors Ring \rightarrow Set, and let $u: W_{0}^{+} \rightarrow W$ be a functorial transformation. Consider the element $\gamma_{n} \in W_{0}^{+}\left(U_{n}\right)$, cf., Section 2.1 above. Let

$$
\begin{equation*}
u\left(\gamma_{n}\right)=1+u_{1}(n) t+u_{2}(n) t^{2}+\cdots \in W\left(U_{n}\right) \tag{5.2}
\end{equation*}
$$

and let $\phi_{n}: \mathbb{Z}[X] \rightarrow U_{n}=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be the unique homomorphism of rings, such that $\phi_{n}\left(X_{i}\right)=u_{i}(n)$ for all i. We claim that the ϕ_{n} are compatible in the sense that

$$
\begin{equation*}
\pi_{n}^{n+1} \phi_{m+1}=\phi_{n}, \quad n=1,2, \ldots \tag{5.3}
\end{equation*}
$$

Indeed, because u is functorial, we have $u\left(\gamma_{n}\right)=u\left(\left(\pi_{n}^{n+1}\right)_{*} \gamma_{n+1}\right)=$ $\left(\pi_{n}^{n+1}\right)_{*} u\left(\gamma_{n+1}\right)$, and (5.3) follows. Thus the ϕ_{n} combine to define a homomorphism of rings

$$
\begin{equation*}
\phi_{u}: \mathbb{Z}[X] \rightarrow \mathbb{Z}_{I}[X] \subset \mathbb{Z}[[X]] . \tag{5.4}
\end{equation*}
$$

Moreover, ϕ_{u} determines u uniquely. Inversely, given a ring homomorphism $\phi: \mathbb{Z}[X] \rightarrow \mathbb{Z}_{I}[X]$, there is an induced functorial transformation

$$
\begin{equation*}
u_{\phi}: W_{0}^{+}(A) \simeq \operatorname{Ring}\left(\mathbb{Z}_{I}[X], A\right) \xrightarrow{\phi^{*}} \operatorname{Ring}(\mathbb{Z}[X], A) \simeq W(A) . \tag{5.5}
\end{equation*}
$$

Now suppose that u : $W_{0}^{+} \rightarrow W$ is continuous. By continuity (because $W_{0}^{+}(A)$ is dense in $W(A)$), u extends to a functorial transformation $u: W \rightarrow W$. Because $W(A)=\operatorname{Ring}(\mathbb{Z}[X], A), u$ induces a ring endomorphism $\phi_{u}: \mathbb{Z}|X| \rightarrow$ $\mathbb{Z}[X]$. Inversely, every ring endomorphism $\phi: \mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$ obviously defines a functorial transformation $u_{\phi}: W(A) \simeq \operatorname{Ring}(\mathbb{Z}[X], A) \xrightarrow{\phi^{*}} \operatorname{Ring}(\mathbb{Z}[X], A) \simeq$ $W(A)$. This u_{ϕ} is automatically continuous. Indeed, let $a \in W(A)$ and $u_{\phi}(a)=b$. Given m, let $n(m) \in \mathbb{N}$ be such that $\phi\left(X_{1}\right), \ldots, \phi\left(X_{m}\right)$ involve only the indeterminates $X_{1}, \ldots, X_{n(m)}$. Then if $a^{\prime} \in W(A)$ is such that the first $n(m)$ coefficients of a^{\prime} are equal to those of a, we have that the first m coefficients of $b^{\prime}=u_{\phi}\left(a^{\prime}\right)$ are equal to those of b. This proves the continuity of u_{ϕ}.

Putting all this together we have
5.6. Proposition. Every operation $u: W_{0}^{+} \rightarrow W$ corresponds uniquely to a ring homomorphism $\phi_{u}: \mathbb{Z}[X] \rightarrow \mathbb{Z}_{I}[X]$ and inversely. If the image of ϕ_{u} is in $\left.\mathbb{Z}[X] \subset \mathbb{Z}_{1} \mid X\right]$, the operation is continuous and extends uniquely to an operation $W \rightarrow W$. The continuous operations $W_{0}^{+} \rightarrow W$ and the (automatically continuous) operations $W \rightarrow W$ correspond bijectively to the ring endomorphisms $\mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$.

There are also discontinuous operations $W_{0}^{+} \rightarrow W$ and $W_{0}^{+} \rightarrow W_{0}^{+}$. An example is the one given by the ring homomorphism $X_{1} \rightarrow X_{1} X_{2}+X_{1} X_{3}+$ $X_{1} X_{4}+\cdots, X_{i} \rightarrow 0$ for $i \geqslant 2$.
5.7. Proof of Theorem 1.12. The ring of operations $O p\left(W_{0}^{+}\right)$. Let $O p\left(W_{0}^{+}\right)$be the ring of operations $W_{0}^{+} \rightarrow W_{0}^{+}$, and let $u \in O p\left(W_{0}^{+}\right)$. Then $u\left(\gamma_{n}\right)$ (cf. (5.3) above) is a polynomial, and it follows that $\phi_{n}\left(I_{t}\right)=0$ for t large enough (where I_{t} is the ideal $\left.\left(X_{t+1}, X_{t+2}, \ldots\right) \subset \mathbb{Z}[X]\right)$. Thus, ϕ_{u} satisfies $\phi_{u}\left(I_{t}\right) \subset I_{n}$. There is such a t for every n so that ϕ_{u} is continuous. Inversely, let $\phi: \mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$ be continuous, and let $a \in W_{0}^{+}(A)$. Let $\phi_{a}: \mathbb{Z}[X] \rightarrow A$ be the classifying homomorphism of a (cf. Proposition 2.4). Then $\phi_{a}\left(I_{r}\right)=0$ for some r. Because ϕ is continuous, there is an m such that $\phi\left(I_{m}\right) \subset I_{r}$. Now $\left.u_{\phi}(a)=\left(\phi_{a} \phi\right)_{*}(\xi), \xi=1+X_{1} t+X_{2} t^{2}+\cdots \in W(\mathbb{Z} \mid X]\right)$, and it follows that $u_{\phi}(a)$ is in $W_{0}^{+}(A) \subset W(A)$. This proves the second statement of Theorem 1.12. The first statement follows because for continuous operations u the homomorphism ϕ_{u} is such that $\operatorname{Im}\left(\phi_{u}\right) \subset \mathbb{Z}[X]$ (by Proposition 5.6).

6. The Operations of W_{0}

6.1. J-Continuous Endomorphisms of $\mathbb{Z}[X]$ Define Operations

Let $u \in \operatorname{Opc}\left(W_{0}\right)$ be a continuous operation of W_{0}. Then, because W_{0} is dense in W, as in Section 5.1 above, u defines uniquely an endomorphism of $\mathbb{Z}[X]$. It remains to determine what endomorphisms can arise in this way. The first step is to show that J-continuous endomorphisms indeed give rise to operations.

Let $T_{n}=\mathbb{Z}\left[Y_{1}, \ldots, Y_{n} ; Z_{1}, \ldots, Z_{n-1}\right]$, and consider the element

$$
\begin{equation*}
\eta_{n}=\frac{1+Z_{1} t+\cdots+Z_{n-1} t^{n-1}}{1+Y_{1} t+\cdots+Y_{n} t^{n}}=1+v_{1}(Y, Z) t+\cdots \in W_{0}\left(T_{n}\right) . \tag{6.2}
\end{equation*}
$$

The $v_{i}(Y, Z) \in T_{n}$ are easy to calculate explicitly. The result is

$$
\begin{align*}
& v_{1}+Y_{1}=Z_{1} \\
& v_{2}+v_{1} Y_{1}+Y_{2}=Z_{2} \\
& \quad \vdots \\
& v_{n-1}+v_{n-2} Y_{1}+\cdots+v_{1} Y_{n-2}+Y_{n-1}=Z_{n-1} \tag{6.3}\\
& \\
& v_{n}+v_{n-1} Y_{1}+\cdots+v_{1} Y_{n-1}+Y_{n}=0 \\
& \quad \vdots \\
& v_{n+r}+v_{n+r-1} Y_{1}+\cdots+v_{2} Y_{n-1}+v_{2} Y_{n}=0
\end{align*}
$$

Let $\Delta_{n}(X)$ be the $n \times n$ upper left-hand corner submatrix of (1.11), i.e.,

$$
\Delta_{n}(X)=\left(\begin{array}{cccc}
1 & X_{1} & \cdots & X_{n-1} \tag{6.4}\\
X_{1} & X_{2} & \cdots & X_{n} \\
\vdots & \vdots & & \vdots \\
X_{n-1} & X_{n} & \cdots & X_{2 n-2}
\end{array}\right)
$$

Finally, let $d_{n}(Y, Z) \in T_{n}$ be obtained by substituting $v_{i}(Y, Z)$ for X_{i} in (6.4) and taking the determinant of the resulting matrix. It is not difficult to see that

$$
\begin{equation*}
0 \neq d_{n}(Y, Z) \in T_{n} \tag{6.5}
\end{equation*}
$$

Indeed, take, e.g., $Z_{1}=\cdots=Z_{n-1}=0, Y_{1}=\cdots=Y_{n-1}=0, Y_{n}=1$. Then $v_{1}=\cdots=v_{n-1}=0, v_{n}=-1, v_{n+1}=\cdots=v_{2 n-2}=0$, so that for these values d_{n} becomes -1 (if $n \geqslant 2$).

Now let $\sigma_{n}: \mathbb{Z}[X] \rightarrow T_{n}$ be defined by

$$
\begin{equation*}
\sigma_{n}\left(X_{i}\right)=v_{i}(Y, Z) \tag{6.6}
\end{equation*}
$$

Then, because the $v_{i}(Y, Z)$ satisfy the recurrence relations (6.3), we have that $\sigma_{n}\left(J_{n}\right)=0$, so that

$$
\begin{equation*}
J_{n} \subset \operatorname{Ker} \sigma_{n} \tag{6.7}
\end{equation*}
$$

Now let $\phi: \mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$ be continuous with respect to the J-topology. Let u_{ϕ} be the associated functorial transformation $W(-) \rightarrow W(-)$. Then, in particular,

$$
\begin{equation*}
u_{\phi}\left(\eta_{n}\right)=\left(\sigma_{n} \phi\right)_{*}(\xi) . \tag{6.8}
\end{equation*}
$$

Now ϕ is continuous with respect to the J-topology. So there is an $m \in \mathbb{N}$ such that $\phi\left(J_{m}\right) \subset J_{n}$, and then $\left(\sigma_{n} \phi\right)\left(J_{m}\right)=0$. Because T_{n} is Fatou (Proposition 3.2), it follows that $u_{\phi}\left(\eta_{n}\right) \in W_{0}\left(T_{n}\right) \subset W\left(T_{n}\right)$. It follows that u_{ϕ} maps $W_{0}(A) \rightarrow W_{0}(A)$ for all rings A, because for every $a \in W_{0}(A)$ there is a ring homomorphism $\psi: T_{n} \rightarrow A$ for some n such that $\psi_{*}\left(\eta_{n}\right)=a$. So we have proved
6.9. Proposition. For every J-continuous ring endomorphism ϕ of $\mathbb{Z}|X|$, the associated functorial transformation $u_{\phi}: W \rightarrow W$ maps W_{0} into W_{0}.

6.10. Operations on W_{0} Give Rise to J-Continuous Endomorphisms

To obtain the inverse statement, we need the inverse inclusion of (6.7). To that end, consider the following diagram:

Here, the homomorphism in the upper right-hand corner is the natural projection π_{n}. Because $J_{n} \subset \operatorname{Ker} \sigma_{n}, \sigma_{n}$ factors through V_{n} to give α_{n}. Finally, $V_{n} \rightarrow\left(V_{n}\right)_{D_{n}}$ is localization with respect to the multiplicative system $\left(1, D_{n}, D_{n}^{2}, \ldots\right.$). This is injective because $D_{n} \neq 0$ (by 6.5), and because D_{n} is not a zero divisor, (cf. the Appendix).

Now we claim that there exists a homomorphism β_{n}, making the lower triangle commutative. To define β_{n} we try to solve

$$
\begin{equation*}
\frac{1+Z_{1} t+\cdots+Z_{n-1} t^{n-1}}{1+Y_{1} t+\cdots+Y_{n} t^{n}}=1+X_{1} t+X_{2} t^{2}+\cdots \tag{6.12}
\end{equation*}
$$

for $Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n-1}$ in terms of the X 's. Substituting X_{i} for v_{i} in the Eqs. (6.3), this gives in particular

$$
\left(\begin{array}{cccc}
1 & X_{1} & \cdots & X_{n-1} \\
X_{1} & X_{2} & \cdots & X_{n} \\
\vdots & \vdots & & \vdots \\
X_{n-1} & X_{n} & \cdots & X_{2 n-2}
\end{array}\right)\left(\begin{array}{c}
Y_{n} \\
Y_{n-1} \\
\vdots \\
Y_{1}
\end{array}\right)=\left(\begin{array}{c}
-X_{n} \\
-X_{n+1} \\
\vdots \\
-X_{2 n-1}
\end{array}\right),
$$

and from this we can calculate Y_{1}, \ldots, Y_{n} as a polynomial $b_{i}(X), i=1, \ldots, n$ in $X_{1}, \ldots, X_{2 n-1}$, and $\tilde{D}_{n}(X)^{-1}$, where $\tilde{D}_{n}(X)$ is the determinant of (6.4). Given the Y_{1}, \ldots, Y_{n-1}, the Z_{1}, \ldots, Z_{n-1} follow directly from the first $n-1$ equations of (6.3), and are also polynomials $c_{i}(X)$ in $X_{1}, \ldots, X_{2 n-1}$ and $\widetilde{D}_{n}(X)^{-1}$.

It is now straightforward to check that the expression

$$
\tilde{D}_{n}(X)\left(X_{n+r}+X_{n+r-1} Y_{1}+\cdots+X_{r-1} Y_{n-1}+X_{r} Y_{n}\right), \quad r \geqslant n,
$$

is precisely equal to the minor of the Hankel matrix (1.11) obtained by taking the first $n+1$ rows and columns $1,2, \ldots, n$ and $r+1$. (Alternatively, we can use the proof of Proposition 3.2 to see that it suffices to invert D_{n} to be able to solve Eqs. (6.12). Thus, we can define $\beta_{n}: T_{n} \rightarrow\left(V_{n}\right)_{D_{n}}$ by $Y_{i} \mapsto b_{i}(X)$ and $Z_{i} \mapsto c_{i}(X)$. The polynomials $b_{i}(X), c_{i}(X)$ are unique, and it follows that the lower triangle in (6.11) commutes. It follows that α_{n} is injection, so that

$$
\begin{equation*}
\operatorname{Ker} \sigma_{n}=J_{n} \tag{6.13}
\end{equation*}
$$

Now let $u \in \operatorname{Op}\left(W_{0}\right)$ be a continuous operation, and let $\phi_{u} \in \operatorname{End}(\mathbb{Z}[X])$ be the associated endomorphism. Consider $u\left(\eta_{n}\right) \in W_{0}\left(T_{n}\right)$. Because $u\left(\eta_{n}\right)$ is rational, there is a T_{m} and a homomorphism of rings $\psi: T_{m} \rightarrow T_{n}$, such that $\psi_{*} \eta_{m}=u\left(\eta_{n}\right)$. Both $\sigma_{n} \phi_{u}$ and $\psi \sigma_{m}$ take $\xi \in W(\mathbb{Z}[X])$ to $u\left(\eta_{n}\right)$, therefore $\sigma_{n} \phi_{u}=\psi \sigma_{m}$

follows that ϕ_{u} takes the kernel of $\psi \sigma_{m}$ into the kernel of σ_{n}. But the el of σ_{n} is J_{n}, and the kernel of σ_{m} is J_{m}, which is contained in the kernel σ_{m}. Thus $\phi_{u}\left(J_{m}\right) \subset J_{n}$. There is such an m for every n, which proves that ; continuous, w.r.t. the J-topology. This finishes the proof of part (i) of orem 1.13.

i. Additive Operations in $\mathrm{Opc}\left(W_{0}\right)$

he addition in $W_{0}(A)$ and $W(A)$ corresponds to a comultiplication on ${ }^{r}$]. It is in fact (as is very easily verified) the comultiplication $\mu: X_{n} \mapsto$ ${ }_{\cdot j=n} X_{i} \otimes X_{j}$. There is also a counit $\mathbb{Z}[X] \rightarrow \mathbb{Z}, X_{i} \mapsto 0$, and a coinverse. ; turns $\mathbb{Z}[X]$ into a Hopf-algebra (with antipode). An operation $\mathrm{Op}\left(W_{0}\right)$ is additive (group structure preserving) iff its associated omorphism is a Hopf-algebra endomorphism. Now according to Moore
$\mathbb{Z}[X]$ is the free Hopf-algebra on the coalgebra $\oplus \mathbb{Z} X_{i}, X_{n} \mapsto$ ${ }_{r j=n} X_{i} \oplus X_{j}$, meaning that for every Hopf-algebra H and coalgebra comorphism $\oplus \mathbb{Z} X_{i} \rightarrow H$, there is a unique extension $\mathbb{Z}[X] \rightarrow H$, which is fopf-algebra endomorphism. Thus the endomorphism of an additive ration u is uniquely specified by the elements $\phi_{u}\left(X_{i}\right)=x_{i}$ subject to $\mu x_{n}=$ ${ }_{+j=n} x_{i} \otimes x_{j}$, and inversely. This proves part (ii) of Theorem 1.13.
5. Addendum to Theorem 1.13(ii)
et $\phi \in \operatorname{End} \mathbb{Z}[X]$ be a Hopf-algebra endomorphism, and suppose it is itinuous as a morphism $\mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$, with the J-topology on the source I the I-topology on the target. Then, cf. 5.1 above, the associated :ration takes $W{0}^{+}(A)$ into $W_{0}(A)$, and hence by additivity $W_{0}(A)$ into (A). It follows that ϕ also has the stronger continuity property of being a atinuous J-topology endomorphism of $\mathbb{Z}[X]$.

7. Splitting Principle and Frobenius Operators

Before discussing multiplicative operations we need to define the sbenius operators and the splitting principle. Consider $\mathbb{Z}[X]$ as a subring $\mathbb{Z}\left[\left\lfloor\xi_{1}, \xi_{2}, \ldots\right]\right]$ by viewing X_{i} as $(-1)^{i} e_{i}\left(\xi_{1}, \xi_{2}, \ldots\right)$, where e_{i} is the i th mentary symmetric function in ξ_{1}, ξ_{2}, \ldots. Then we can write $\xi=1+X_{1} t+$ $t^{2}+\cdots=-\prod_{i=1}^{\infty}\left(1-\xi_{i} t\right)$. It follows that to specify an additive operation $W(-)$, it-suffices to specify what it does to elements of the form $1+a_{1} t \in$ (A), and similarly the functorial multiplication on $W(A)$ is also characized by the equation $(1-a t) *(1-b t)=(1-a b t)$. The Frobenius erations are now characterized by

$$
\begin{equation*}
F_{n}(1-a t)=\left(1-a^{n} t\right) \tag{6.18}
\end{equation*}
$$

ley are functorial endomorphisms of $W(A)$ (cf., e.g., 14 , Chap. 3]). They e defined on the level of $\operatorname{End} A$ by

$$
\begin{equation*}
(P, f) \mapsto\left(P, f^{n}\right) \tag{6.19}
\end{equation*}
$$

6.20. Multiplicative Operations

Define new coordinates for the Witt vectors by the equation

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1-Z_{i} t^{i}\right)=1+X_{1} t+X_{2} t^{2}+\cdots \tag{6.21}
\end{equation*}
$$

Then the Z_{i} can be calculated as polynomials in the X_{i}, and vice versa, defining an isomorphism $\mathbb{Z}[Z] \leftrightharpoons \mathbb{Z}[X]$. Some aspects of the big Witt vectors are more easily discussed using " Z coordinates" than " X coordinates." Let

$$
\begin{equation*}
w_{n}(Z)=\sum_{d \mid n} d Z^{n / d} . \tag{6.22}
\end{equation*}
$$

Then the w_{n} define a functorial homomorphism of rings $w: W(A) \rightarrow A^{\mathbb{N}}$, where $\mathbb{N}=\{1,2, \ldots\}$, and if A is a Q-algebra this is an isomorphism. Here $A^{\mathbb{N}}$ is a ring with component wise addition and multiplication. Now let $u: W \rightarrow W$ be a transformation of ring valued functors. Then, at least for Q algebra's, this induces a transformation on $A^{\mathbb{N}}$, functorial in A. These are easy to describe and are given by an infinite matrix with precisely one 1 in each row, and zero's elsewhere. Let $\tau: \mathbb{N} \rightarrow \mathbb{N}$ be the corresponding mapping. Now if this transformation comes from one on $W(A)$, there must be polynomials $U_{1}(Z), U_{2}(Z), \ldots$ such that

$$
\begin{equation*}
w_{n}\left(U_{1}(Z), U_{2}(Z), \ldots\right)=w_{\tau(n)}\left(Z_{1}, Z_{2}, \ldots\right) . \tag{6.23}
\end{equation*}
$$

Taking $n=1$, gives $U_{1}(Z)=w_{\tau(1)}(Z)$, so that this transformation takes an element $(1-a t) \in W(A)$ to $\left(1-a^{n} t\right)$. But this determines, by the splitting principle, the transformation uniquely, and moreover there is a multiplicative transformation acting precisely like this. Thus the functorial ring endomorphisms of $W(A)$ are the Frobenius operators F_{1}, F_{2}, \ldots, and they obviously take $W_{0}^{+}(A)$ and $W_{0}(A)$ into themselves. This proves part (iii) of Theorem 1.13.

Note. Not all mappings $\tau: \mathbb{N} \rightarrow \mathbb{N}$ give rise to a functorial ring endomorphism of W. For that to happen, the polynomials $U_{1}(Z), U_{2}(Z), \ldots$ defined by (6.22) must turn out to have integral coefficients. As it turns out (and this is proved by the preceding), this is the case iff there is a number n such that $\tau(m)=n m$ for all m. This follows because the Frobenius operators F_{n} satisfy (and are characterized by) $w_{m} F_{n}=w_{n m}$, cf. [4, Chap. 3].
6.24. Remark. It is not clear (to me at least) whether the (not necessarily continuous) operations $W_{0} \rightarrow W_{0}$ correspond bijectively to continuous ring endomorphisms $\mathbb{Z}_{J}[X] \rightarrow \mathbb{Z}_{J}[X]$. Certainly such a ring
endomorphism gives rise to an operation $W_{0} \rightarrow W_{0}$. The opposite is less clear (and in my opinion probably not true). The difficulty is of course that the canonical "representing elements" ξ_{n} are not in $W_{0}\left(V_{n}\right)$.

7. The Operations Λ^{i} and S^{i}

These are several operations which are naturally defined on End A, and the question arises as to what these correspond in $W_{0}(A) \subset W(A)\{1\}$. On the other hand, a number of the more mysterious operations of $W(A)$ have natural interpretations on the level of End A which sometimes can be used to advantage, [3]. Thus, e.g., the Frobenius operator corresponds to $f \mapsto f^{n}(f$ composed with itself n times), and the Verschiebung operator corresponds to

$$
V_{n}: f \mapsto\left(\begin{array}{ccc}
0 & 0 & f \tag{7.1}\\
1 & & \\
0 & 1 & 0
\end{array}\right) .
$$

In [1] the question was asked to what the exterior and symmetric products correspond. The answer is rather obvious.
$W(A)$ is functorially a λ-ring, with the operations λ^{i} defined as follows. Because in any λ-ring $\lambda^{n}(x+y)=\sum_{i+j=n} \lambda^{i}(x) \lambda^{j}(y)$, it suffices by the splitting principle to specify the λ^{i} on elements of the form ($1-a t$). The characterizing definition is now

$$
\begin{equation*}
\lambda^{1}(1-a t)=1-a t, \quad \lambda^{i}(1-a t)=1 \quad \text { for } \quad i \geqslant 2 . \tag{7.2}
\end{equation*}
$$

(Recall that 1 is the zero element of the abelian group $W(A)$.)
Now consider the module with endomorphism $\left(P_{n}, f_{n}\right)$ over $U_{n}=$ $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ of Section 2.1. Write $1+X_{1} t+\cdots+X_{n} t^{n}=\prod_{i=1}^{n}\left(1-\xi_{i} t\right)$. Then over $Q\left(\xi_{1}, \ldots, \xi_{n}\right)$, the module with endomorphism (P_{n}, f_{n}) is isomorphic to a free n-dimensional module with diagonal endomorphism with eigenvalues $-\xi_{1}, \ldots,-\xi_{n}$. Thus there is a splitting principle for End A also. Now $\Lambda^{1}=i d$ and Λ^{i} (one dimensional module) $=0$ if $i \geqslant 2$, and finally if ξ_{i} is the endomorphism multiplication with ξ_{i} of A, then $c\left(\xi_{i}\right)=1+\xi_{i} t$. It follows that the Λ^{i} on End A correspond to the natural λ-operations on $W(A)$.

7.3. Adams Operations

Every λ-ring has Adams operations defined on it, which are defined by the formula

$$
\begin{equation*}
\frac{d}{d t} \log \lambda_{t}(x)=\sum_{i=0}^{\infty}(-1)^{n} \psi^{n+1}(x) t^{n} \tag{7.4}
\end{equation*}
$$

where $\lambda_{t}(x)=1+\lambda^{1}(x) t+\lambda^{2}(x) t^{2}+\cdots$. Using this one easily checks that the Adams operations ψ^{n} on $W(A)$ coincide with the Frobenius operations F_{n} (Adams $=$ Frobenius). It follows that the Adams operations corresponding to the Λ^{i} on End A are given by $(P, f) \rightarrow\left(P, f^{n}\right)$.

7.5. Symmetric Powers

For any projective module P over A, there is a well-known exact sequence of projective modules

$$
\begin{align*}
0 & \rightarrow S^{n} P \rightarrow S^{n-1} P \otimes \Lambda^{1} P \rightarrow S^{n-2} P \otimes \Lambda^{2} P \rightarrow \cdots \\
& \rightarrow S^{1} P \otimes \Lambda^{n-1} P \rightarrow \Lambda^{n} P \rightarrow 0 \tag{7.6}
\end{align*}
$$

It follows that the exterior product operations λ^{i} and the symmetric product operations s^{i} on $W_{0}(A) \subset W(A)$ are related by the formula

$$
\begin{align*}
s^{n}(a) & -s^{n-1}(a) \lambda^{1}(a)+s^{n-2}(a) \lambda^{2}(a)-\cdots \\
& +(-1)^{n-1} s^{1}(a) \lambda^{n-1}(a)+(-1)^{n} \lambda^{n}(a)=0 \tag{7.7}
\end{align*}
$$

A description for the s^{i} similar to the one given above for the λ^{i} is given by

$$
\begin{equation*}
s^{1}\left((1+a t)^{-1}\right)=(1+a t)^{-1}, \quad s^{i}\left((1+a t)^{-1}\right)=0 \quad \text { for } \quad i \geqslant 2 . \tag{7.8}
\end{equation*}
$$

The s^{i} of the other elements are determined by this because the s^{i} also satisfy $s^{n}(a+b)=\sum_{i+j=n} s^{i}(a) s^{j}(b)$ (where + denotes the addition in $W(A)$), and on the right-hand side we have both multiplication and addition in $W(A)$. In other words, the s^{i} define a different λ-ring structure (also functorial) on $W(A)$. This comes about as follows. If the X_{i} are the elementary symmetric functions in $-\xi_{1},-\xi_{2}, \ldots$ so that $1+X_{1} t+X_{2} t^{2}+\cdots=\Pi\left(1-\xi_{i} t\right)$, then the complete symmetric functions h_{i} in the $-\xi_{1},-\xi_{2}, \ldots$ are given by $1+h_{1} t+$ $h_{2} t^{2}+\cdots=\Pi\left(1+\xi_{i} t\right)^{-1}$. They are (therefore) related by $\sum_{i=0}^{n}(-1)^{i}$ $X_{i} h_{n-i}=0$, cf. (7.7).

Now the functorial λ-ring structure on $W(A)$ is given by certain ring endomorphisms $\left.\phi\left(\lambda^{i}\right): \mathbb{Z} \mid X\right] \rightarrow \mathbb{Z}[X]$, or, equivalently, by certain universal polynomials, the $\phi\left(\lambda^{i}\right)\left(X_{j}\right)=\Phi_{i j}\left(X_{1}, X_{2}, \ldots\right)$. Now recoordinatize $\mathbb{Z}|X|$, and view it as $\mathbb{Z}|h|$. Write down the polynomials $\Phi_{i j}\left(h_{1}, h_{2}, \ldots\right)$, and substitute the expressions in X_{1}, X_{2}, \ldots to which the h_{i} are equal. Then these new universal polynomials define the new functorial λ-ring structure on $W(A)$ defined by the s^{i}.

APPENDIX: Proof that J_{n} is a Prime Ideal

A.1. Sylvester's Theorem |10]

Let x_{1}, \ldots, x_{n} be n vectors. Denote with $\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)$ the determinant of the matrix consisting of the columns x_{1}, \ldots, x_{n} (in that order). Then Sylvester proved a noteworthy identity concerning products of the form

$$
\begin{equation*}
\operatorname{det}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \operatorname{det}\left(y_{1}, \ldots, y_{n}\right) . \tag{1}
\end{equation*}
$$

Namely, choose any subset of r integers $i_{1}, \ldots, i_{r}, 1 \leqslant i_{k} \leqslant n$. For each r tuple $1 \leqslant j_{1}<\cdots<j_{r} \leqslant n$, let

$$
\left(\begin{array}{lll}
i_{1} \cdots & i_{r} \tag{2}\\
j_{1} \cdots & j_{r}
\end{array}\right) \operatorname{det}\left(x_{1}, \ldots, x_{n}\right) \operatorname{det}\left(y_{1}, \ldots, y_{n}\right)
$$

denote the expression (1), with $x_{i_{k}}$ interchanged with $y_{j_{k}}, k=1,2, \ldots, r$. Then Sylvester's identity says that for any fixed set i_{1}, \ldots, i_{r}

$$
\begin{equation*}
\operatorname{det}\left(x_{1}, \ldots, x_{n}\right) \operatorname{det}\left(y_{1}, \ldots, y_{n}\right)=\Sigma\binom{i_{1} \cdots i_{r}}{j_{1} \cdots j_{r}} \operatorname{det}\left(x_{1}, \ldots, x_{n}\right) \operatorname{det}\left(y_{1}, \ldots, y_{n}\right) \tag{3}
\end{equation*}
$$

where the sum is over all $\binom{n}{r}$ possible choices for $j_{1}<\cdots<j_{r}$.
A.2. Proof that D_{n} is not a Zero Divisor in $\mathbb{Z}[X] / J_{n}$. Consider the semiinfinite matrix

$$
\left(\begin{array}{cccccc}
1 & X_{1} & X_{2} & X_{3} & X_{4} & \cdots \tag{4}\\
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & \cdots \\
\vdots & \vdots & & & & \\
X_{n} & X_{n+1} & \cdots & & &
\end{array}\right)
$$

Now observe that all the $(n+1) \times(n+1)$ minors of the Hankel matrix (1.11) are linear combinations (with integral coefficients) of the minors of the matrix (4). This is essentially also a result from linear system theory, more precisely realization theory, cf., e.g., Section 4 of [9]. Let $m\left(i_{1}, \ldots, i_{n}\right.$; j_{1}, \ldots, j_{n}) denote the determinant of the submatrix of (1.11) whose top row consists of $X_{i_{1}}, \ldots, X_{i_{n+1}}$ and first column consists of $X_{j_{1}}, \ldots, X_{j_{n+1}}\left(i_{1}=j_{1}\right.$; $\left.i_{1}<\cdots<i_{n+1} ; j_{1}<\cdots<j_{n+1}\right)$ and $m\left(j_{1}, \ldots, j_{n+1}\right)$ denotes the minor of (4) obtained by taking the columns starting with $X_{j_{1}}, \ldots, X_{j_{n+1}}$. Then, for example, $m(1,3,5 ; 1,4,7)=m(1,5,9)+m(2,4,9)+m(1,6,8)+2 m(2,5,8)+$ $m(3,4,8)+m(2,6,7)+m(3,5,7)$. Hence, J_{n} is the ideal generated by all the $(n+1) \times(n+1)$ minors of (4). Recall that $\Delta_{n}(X)$ is the $n \times n$ upper left
hand corner submatrix of (4), and that \tilde{D}_{n} is the determinant of $\Delta_{n}(X)$, or, what is the same, the determinant of

$$
\left(\begin{array}{ccccc}
1 & X_{1} & \cdots & X_{n-1} & 0 \tag{5}\\
\vdots & & \vdots & \vdots \\
X_{n-1} & \cdots & X_{2 n-2} & 0 \\
X_{n} & \cdots & X_{2 n-1} & 1
\end{array}\right)
$$

We shall from now on write D for \tilde{D}_{n}. Let the columns of (4) be numbered $0,1, \ldots$. Let $m\left(j_{1}, \ldots, j_{n+1}\right)$ denote the minor of (4) obtained by taking columns j_{1}, \ldots, j_{n+1}, and let m_{s} be short for $m(0,1, \ldots, n-1, s), s \geqslant n$. Let J denote the ideal generated by the m_{r}.

Then, by applying Sylvester's identity with $r=n$ and $\left(i_{1}, \ldots, i_{r}\right)=(1, \ldots, n)$ to the product of the determinant of (5), i.e., D, and $m\left(j_{1}, \ldots, j_{n+1}\right)$, we see that

$$
\begin{equation*}
D J_{n} \subset J \tag{6}
\end{equation*}
$$

Now suppose that $D P \in J_{n}$ for some polynomial P. Then we can write

$$
\begin{equation*}
D^{2} P=\sum_{i=1}^{t} f_{i} m_{i} \tag{7}
\end{equation*}
$$

for certain polynomials f_{i}. We can, of course, even assume that the f_{i} are monomials. Let f be any monomial, and let X_{s} be the largest X occurring in f. Then we can write, if $f=f^{\prime} X_{s}$

$$
\begin{equation*}
D f=f^{\prime} D X_{s}=m_{s-n} f^{\prime}+p\left(X_{1}, \ldots, X_{s-1}\right) f^{\prime}, \tag{8}
\end{equation*}
$$

where p is a polynomial in X_{1}, \ldots, X_{s-1}. Using this repeatedly, we obtain from (7) an expression of the form

$$
\begin{equation*}
D^{k} P=\Sigma f_{\underline{i}} m_{\underline{i}} \tag{9}
\end{equation*}
$$

where \underline{i} is a multi-index, $m_{\underline{i}}$ is short for $m_{i_{1}} m_{i_{2}} \cdots m_{i_{r}}$ if $\underline{i}=\left(i_{1}, \ldots, i_{r}\right)$, and the $f_{\underline{i}}$ are polynomials in $X_{1}, \ldots, X_{2 n-1}$ only.

Let k be minimal such that there exists an expression of the form (9) with the property just mentioned. If $k=0$, we are through, so assume $k>0$. The sum in (9) is over multi-indices \underline{i} such that $n \leqslant i_{1} \leqslant \cdots \leqslant i_{r}$. Now rewrite (9) as a sum

$$
\begin{equation*}
D^{k} P=\sum_{\underline{j}} g_{\underline{j}} m_{\underline{\underline{\prime}}}, \tag{10}
\end{equation*}
$$

where the $g_{\underline{i}}$'s are equal to

$$
\begin{equation*}
g_{\underline{j}}=\sum f_{\underline{i}} m_{n}^{t}, \tag{11}
\end{equation*}
$$

where the sum is over all \underline{i} such that $i_{1}=\cdots=i_{t}=n<i_{t+1}$ and $\underline{j}=$ $\left(i_{t+1}, \ldots, i_{r}\right)$. The $g_{\underline{j}}$ in (10) depend on $X_{1}, \ldots, X_{2 n}$, but the dependence on $\bar{X}_{2 n}$ occurs only through polynomials in $X_{1}, \ldots, X_{2 n-1}$ and the product $D X_{2 n}$. Now let $V(D)$ be the subvariety of $\mathbb{C}^{2 n-2}$ of zero's of D. Let $x \in V(D)$, $x=\left(x_{1}, \ldots, x_{2 n-2}\right)$ and $x_{2 n-1}$ be fixed, $x_{2 n-1} \neq 0$. Let $m_{j}(x)$ denote the polynomial obtained from $m_{\underline{j}}$ by substituting x_{i} for $X_{i}, i=1, \ldots, 2 n-1$. Suppose $D_{n-1}(x)=t \neq 0$. Then the lexicographically largest term in $m_{\underline{j}}(x)$ is, $\underline{j}=\left(j_{1}, \ldots, j_{s}\right), n<j_{1} \leqslant \cdots \leqslant j_{s}$

$$
\begin{equation*}
\left(t x_{2 n-1}\right)^{s} X_{n+j_{1}-1} X_{n+j_{2}-1} \cdots X_{n+j_{s}-1}, \tag{12}
\end{equation*}
$$

and these terms are different for different \underline{j}. This means that by varying the $X_{2 n}, X_{2 n+1}, \ldots$ we can produce a nonsingular $N \times N$ matrix of $m_{\underline{j}}$ values where N is the number of terms in (10). Now because g_{j} is a polynomial in $X_{1}, \ldots, X_{2 n-1}, D X_{2 n}$, the $g_{j}(x)$ do not depend on $x_{2 n}, \bar{x}_{2 n+1}, \ldots$ (as long as $x \in V(D)$). Therefore, $g_{\underline{i}}(\bar{x})=0$ for all $x \in V(D)$ such that $D_{n-1}(x) \neq 0$. These x form an open dense subset of $V(D)$, so that $g_{j}(x)=0$ for all $x \in V(D)$. Hence, the $g_{\underline{j}}(X)$ in (10) are divisible by D, so that we can reduce k by 1 and we are through. (D_{n} is a prime element as an easy induction shows.)
A.3. Proof that J_{n} is a Prime Ideal. Consider again diagram (6.11). Because D_{n} is not a zero divisor, the lower right hand arrow is injective. Hence α_{n} is injective, so that V_{n} is a subring of the integral domain T_{n}, which proves that V_{n} is itself integral and that J_{n} is a prime ideal.

References

1. G. Almkvist, K-theory of endomorphisms, J. Algebra 55 (1978), 308-340.
2. G. Almkvist, The Grothendieck ring of the category of endomorphisms, J. Algebra 28 (1974), 375-388.
3. D. Grayson, The K-theory of endomorphisms, J. Algebra 48 (1977), 439-446.
4. M. Hazewinkel, Formal groups and applications, Academic Press, New York, 1978.
5. A. Liulevicius, Arrows, symmetries and functors, preprint, Univ. of Chicago, 1979.
6. J. C. Moore, Algèbres de Hopf universelles, Sém. H. Cartan 12 (1959/1960), exposé 10.
7. Y. Rouchaleou, B. F. Wyman, and R. E. Kalman, Algebraic structure of linear dynamical systems, III: Realization theory over a commutative ring, Proc. Nat. Acad. Sci. USA 69 (1972), 3404-3406.
8. E. D. Sontag, Linear systems over commutative rings: A survey, Richerche Automat. 7 (1976), 1-14.
9. M. Hazewinkel, On the (internal) symmetry groups of linear dynamical systems, in "Groups, Systems and Many-body Physics" (P. Kramer and M. Dal Cin, Eds.), Vieweg, Brunswick, 1980, pp. 362-404.
10. J. J. Sylvester, Phil. Mag. 4, No. 2 (1851), 142-145.
