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DISCRETE APPROXIMATION 
OF SINGULARLY PERTURBED PARABOLIC PDES 

WITH A DISCONTINUOUS INITIAL CONDITION 

P.W. HEMKERt G.I. SHISHKIN t 

Abstract 

In this paper a Dirichlet problem for a parabolic partial differential equation with a 
discontinuous initial condition is studied. The second order derivative is multiplied 
by a small parameter e:, with an arbitrary value in (0, l]. When this parameter van­
ishes, the PDE degenerates to a first order equation with respect to the time variable 
t. We study the case where the boundary condition for t = 0 has a discontinuity of 
the first kind, so that an internal layer appears. On a uniform rectangular grid we 
construct a fitted difference scheme that converges in the discrete l 00-norm over the 
whole domain, uniformly in the small parameter. 

For a fitted difference schemes we compare the theoretical results and the results in 
practice, and we show the essential differences with those obtained for the classical 
scheme. The order of convergence in the numerical experiment is determined and we 
observe that the new, adapted (fitted) approximation converges on the whole domain 
of definition, uniformly in e. We show that this is in contrast to the approximation 
obtained by the classical scheme, which for a fixed e: and on a uniform grid does not 
converge in the discrete .e00-norm in a neighbourhood of the discontinuous boundary 
condition and it also does not converge uniformly in e in the interior layer. 

1. INTRODUCTION 

The solution of partial differential equations that are singularly perturbed and / or have dis­
continuous boundary conditions generally have only limited smoothness. Due to this fact 
difficulties appear when we solve these problems by numerical methods. For example for reg­
ular parabolic equations with discontinuous boundary conditions, classical methods (FDM or 
FEM) on regular rectangular grids do not converge in the l 00-norm on a domain that includes 
a neighbourhood of the discontinuity [I, 2, 3]. 

If the parameter, e:, multiplying the highest-order derivative vanishes, boundary- and interior 
layers generally appear. When a discontinuity is present in the initial function (given at t = 0), 
an interior layer is generated. Outside a neighbourhood of the discontinuity classical difference 
schemes converge in the .e00-norm for each fixed value of the small parameter, but they do not 
converge in the l°"-norm in the neighbourhood of the discontinuity. Neither do they converge 
uniformly in e: in any neighbourhood of the interior layer [1, 2]. Therefore, it is interesting 
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to construct special methods which are l 00-convergent for parabolic PDEs with discontinuous 
initial functions, both in the regular and in the singularly perturbed case. In the latter case it 
is important to see if and when such convergence can be uniform for the small parameter on 
the whole domain of definition. 

To construct numerical methods that handle problems with singularities, generally one of 
the following three approaches (4) can be used: 1. the singularity is split off and represented 
separately by a special numerical technique (e.g. in the Finite Element Method by introducing 
special basis functions); 2. the mesh is properly refined in the neighbourhood of the singularity; 
or 3. the coefficients of the difference equations are fitted to the singularity. 

In [1, 2) singularly perturbed parabolic equations with discontinuous boundary conditions 
were studied. There, special difference schemes were constructed for these problems. In order to 
be able to construct a method that was uniformly convergent (in the small parameter e ), special 
variables were used in the neighbourhood of the discontinuity. By introducing the variables 
() = x/(2eVt) and t, the singularity was removed from the boundary value problem and the 
solution became a smooth function in the new variables. This behaviour of the transformed 
solution allows the use of a classical scheme in the transformed variables in the neighbourhood 
of the singularity. Away from the singularity the classical scheme can be used with the original 
variables. 

This transformation in the neighbourhood of the singularity. implied the use of a specially 
condensed grid in the neighbourhood of the boundary and interior layers. So we can say that 
the technique used in [1, 2) combines the approaches mentioned under 2 and 3. For these 
schemes £00-convergence on the whole domain is proved, uniformly in the small parameter, but 
a disadvantage of these schemes is that they are very hard to realise in practice. 

Because fitting of the coefficients, combined with fitting of the mesh is generally too complex 
for practical application, in the present paper we propose a new method in which only the 
coefficients are adapted. We use a uniform rectangular grid and a special difference equation 
with fitted coefficients. This method is much easier to realise. 

For the construction of the new scheme the coefficients are selected such that the solution of 
a model problem with a piecewise constant, discontinuous initial function is the exact solution 
of the difference equations. 

This difference scheme with adapted coefficients is studied in this paper and it is compared 
with the classical scheme. 

As was shown in [1, 2), no scheme exists that converges uniformly on a uniform grid for 
the general problem with a parabolic layer. However, for problems with an interior layer, 
that originates at a discontinuous boundary condition, the present method has this favourable 
property, and -moreover- numerical examples show that the method has practical value for far 
more general equations with discontinuous boundary conditions. 
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2. PROBLEM FORMULATION 
We consider the Dirichlet boundary value problem for the following singularly perturbed equa­
tion of parabolic type 1 

where 

L(i)u(x, t) = J(x, t), (x, t)EG, 
u(x, t) = ef>(x, t), (x, t)ES, 

G = {(x, t)I - 1 < x < 1, O < t:::::; T}, S = G\G, 

(la) 

(lb) 

(le) 

The parameter e may take any value eE(O, 1). The coefficients c(t), p(t) and the source J(x, t) 
are sufficiently smooth functions on G and the coefficients are positive: 

c(t) 2".: 0, p(t) 2".: p0 > 0, (x, t)EG. (2) 

The boundary function </>(x, t) has a discontinuity2 of the first kind on the set S': 

S' = {(x,t)I x = 0,t = O}. 

For simplicity S* consists of a single point only. Outside S' the function ef>( x, t) is sufficiently 
smooth on S. 

Such boundary value problems with discontinuous boundary condition describe e.g. the tem­
perature in a heat transfer problem, when two parts of a material with different temperatures 
are instantaneously connected [5]. Then, the small parameter e corresponds with a small heat 
conduction coefficient. 

The solution of the boundary value problem (1) is a function uEC(G\S') n C 2'1 (G), i.e. on 
Git is C2 in x and C 1 in t. 

We say that the discrete approximation converges e-uniformly (or uniformly in e) on G if 
the £00-norm of the error converges to zero on G, uniformly in e. 

3. THE BEHAVIOUR OF THE SOLUTION AND ITS DERIVATIVES 
In order to see what are the difficulties with the classical difference schemes, to be able to 
construct the special difference scheme for our problem ( 1) and in order to study its behaviour, 

1The subscript number (within brackets) for a symbol denotes the equation in which the symbol is defined. 
2 A piecewise continuous function v(x, t), (x, t)ES\S*, is redefined at the discontinuity by 

v(x, t) = .!. {lim v(x + s, t) + lim v(x + s, t)}, (x, t)ES*, 
2 s\,O s/0 

(3) 

and the jump in the discontinuity is defined by 

[v(x, t)] = {lim v(x + s, t) - lim v(x + s, t)}, (x, t)ES*. 
•'\.O 1/0 

(4) 
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we first need some estimates for the solution and its derivatives. 

To start with, let us take the parameter e fixed. Then we notice that, the solution of 
problem (1) is continuous on G\S*. The discontinuity appears only at the point (0, 0). The 
derivatives exist and are bounded in G, outside a neighbourhood of S*. They only increase, 
without bound, in the vicinity of S*. When the parameter tends to zero, an interior layer 
appears and the derivatives with respect to x increase without bound, also inside G in the 
neighbourhood of the interior layer. 

Due to the maximum principle [6] we have for the solution of (1) the estimate 

lu(x, t)I ~ M, (x, t)EG, (5) 

where 

M = (Pot1T m~ lf(x, t)! + m;x lef>(x, t)! · 

Here and in the following, by M (or m) we denote a sufficiently large (small) positive constant 
not depending on the small para.meter e. In the case of difference problems these constants do 
not depend on the parameters of the grid either. The constants do not necessarily represent 
the same value at different appearances. 

We introduce the standard function w0(x, t), which is discontinuous in S*, 

Wo(x, t) = wo(x, t; PJ.) = ~v( ~ Jff.), (x, t)EG\S*, (6) 

where P1 = p(O) and v(~) = erf(~) = j; JJ exp(-a2) dais the error function. Fort = 0, in 
point x = 0, the function ( 6) is defined by continuous extension. The function w0{ x, t) is the 
solution of the constant coefficient equation 

( 02 a) Lc1> u(x, t) :: e2 ox2 - p1 Ot u(x, t) = 0, (x, t)eG. (7) 

This function is piecewise constant on S at t = 0 and has a discontinuity of the first kind in S* 

[wo(O, O)] = l. 

Suppose 

W(x, t) = [ef>(O, 0)) W0(x, t), (x, t)EG\S*, (8) 

where 

( ft c(~) ) r P 
Wo(x,t) =exp - lo p(~) d~ wo(x,17(t);p1 ), with 17(t) =lo p(~) d~. {9) 

Then the function W(x, t) is continuous on G\S*, it is a solution of the homogeneous equation 

Lc1) u(x, t) = 0, (x, t)eG, (10) 
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and it has a jump at S* : 

[W(x, t)] = [u(x, t)] = [<P(x, t)], (x, t)ES*. 

We now write the solution of problem (1) as a sum 

u(x, t) = W(x, t) + U(x, t), (x, t)EG\S*. 

Here, W( x, t) is the solution of the problem 

L(i) u(x, t) = 0, (x, t)E G, 
u(x, t) = W(x, t), (x, t)E S, 

and U(x, t) is the solution of the problem 

Lc1J u(x, t) = f(x, t), (x, t)E G, 
u(x,t) = <fi(x,t) - W(x,t), (x,t)E S. 
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( 11) 

(12) 

(13) 

On S the function U ( x, t) is continuous and piecewise smooth. For simplicity we suppose 
that U(x, t) is sufficiently smooth on the boundary of G, and that a compatibility condition is 
satisfied at the corner points. We are interested in the solution of problem (1) in the neighbour­
hood of the point of discontinuity and in the neighbourhood of the generated interior layer. 
Therefore, we suppose that the boundary conditions at x = ± 1 are such that no boundary 
layers appear. Then we have the estimates 

I a~::;ko U(x, t)I s M { 1 + e1-kt1l 2-(ko+kf2l exp (- 2: VfJ}' (x, t)EG, (14) 

and for W(x, t), the singular part of the solution, we derive fork, k0 :2: 0, 

l
_fJ_k_+_k0-W(x t)I < M e-k r<ko+k/2 ) exp(-!_ ® (x t)EG\S*. 
8xkf)tko ' - 2e V t} ' ' 

( 15) 

These bounds are determined by means of a priori estimates, see e.g. [7, 8] for the regular and 
[1, 2] for the singularly perturbed problems. Thus, for the singular and the regular parts of the 
solution we have the estimates (14) and (15), respectively. 

Notice that, with 

0 < ao S I ;2
2
t I S a1 < oo, k + 2k0 :2: 1, 

we have 

I f)k+ko W(x t)I > me-kt-(ko+k/2) -+ oo for x, t -+ 0, 
oxkf)tko ' - ' 

(16) 

for any value of the parameter e, and with 

I:: I S a, t :2: to > 0, 
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we have 

1::,. W(x, t)I ~ me-k-+ oo, fore-+ 0 (17) 

for any fixed a > 0. This means that in the neighbourhood of the set S* the derivatives of 
the solution a.re unbounded, for any fixed value of e and also that the space derivatives are 
unbounded, uniformly in e, in the neighbourhood of the interior layer. 

4. AN e:-UNIFORMLY CONVERGENT SCHEME 

On the set G we introduce the rectangular grid 

G,. = w x wo. (18) 

Here w and w0 are uniform grids on the segments [-1, 1] and [0, T] respectively. For some 
N,N0 > 0 we take x; = ih, ie.?l; -1$x;$1; h = 2/N; ti = jr; j = 0,1,2,···,No, 
r = T/N0 ; and 

G,. = G n G,.; s,. = s n G,.; s:: = S* n G,.. 

On the set ~ the boundary function <jJ(x, t) is defined by 

<jJ(x, t) = ~ {lim <jJ(s, t) + lim r/>(s, t)}, (x, t)E~-
2 •/:I: 1'\,.:i; 

(19) 

For the numerical approximation of (1) we may use the classical difference approximations 
(see e.g. (9, 10]). E.g. in the case of the implicit central difference scheme we have 

where 

A(2o) z(x,t) = j(x,t), (x,t)eG,., 
z(x, t) = rf>(x, t), (x, t)eSi., 

A(20)::::: e:28:i:z - p(t)Sr- c(t), 

(20a.) 

(20b) 

with Srz(x, t) and 8:i:x-z(x, t) the usual first and second difference of z(x, t) on the uniform grids 
wo and w respectively; the bar denotes the backward difference. It is well known that the 
opera.tor Ac20) is monotone (10]. It implies that the maximum principle holds for (20). 

Nevertheless, the classical difference scheme (i) does not converge on the whole domain 
GZ = G,. \~for a fixed value of e:, and (ii) outside a neighbourhood of the discontinuity it does 
not converge uniformly with respect toe: in the interior layer (see Section 5). To obtain uniform 
convergence, in the present paper we introduce a specially fitted scheme for the approximation 
of equation (la), 

where 

A(21)z(x, t) = f(x, t), (x, t)eG,., 
z(x, t) = rf>(x, t), (x, t)eS,., 

A(21) = e:2')'(x, t)8:i;z - p(t)Sr- c(t). 

(21a) 

(21b) 

According to the principle mentioned in the introduction, here -y(x, t) is a fitting coefficient, 
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which is chosen such that the singular solution, W(x, t), is the exact solution of the homogeneous 
difference equation (22): 

Ac21)W(x, t) = { e21(x, t)oxr - p(t)c5r- c(t)} W(x, t) = 0, (x, t)eGh. (22) 

More generally we can select 1(x, t) such that (22) is satisfied by v(x, t) = W(x, t)+u0(x, t), 
where W is the principal part of the singular solution and u0 is some smooth solution of the 
homogeneous equation 

Lei) u(x,t) = 0, (x,y)EG. 

This leads to the following expression for 1: 

( ) _ p(t)biv(x, t) + c(t)v(x, t) ( ) G 
'YX,t - 2 c ( ) , x,iE h> 

e U.r:XV X, t 

for any point (x,t) where O.r:xv(x,t) =f. 0. Because of the linearity of (23) we can use 

v(x, t) = W0(x, t) + u0(x, t), (x, t)EGh. 

(23) 

(24) 

(25) 

We notice that for u0 (x, t) = 0 the differences 6.r:xv(x, t) and orv(x, t) can be very small because 
of the exponentially small derivatives of W0 (x, t) for large x/(e../i). To improve the numerical 
behaviour in the computation of 1(x, t), we choose the function u0 such that the differences 
o.,;xWo and O.rrUo have the same sign, for (x, t)EGh. In particular, in the remaining part of this 
paper we take e.g. 

u0 (x, t) = - { x3 + 6e2x l p(~) d~} exp (- l ;~~~ dv) , (x, t)EG, (26) 

so that, for example for c(t) = 0 and p(t) = 1, we obtain 

u0(x, t) = uc27)(x, t) = -x3 - 6e2 xt, (x, t)EG. (27) 

Then, for 1(x, t) we have the general representation 

( t) = p(t)(orW0 (x, t) + oruo(x, t)) + c(t)(Wo(x, t) + uo(x, t)) _,_ O (28) 
/X, 2 ( ) 2 ( ) ,X-r' eoxrWox,t +e5.,.,.uox,t 

where the functions W0 and u0 are defined by (9) and (26) respectively. We notice that O:z::xv = 
btv = v = 0 at x = 0, t > 0. Therefore, for definiteness we set 1(x,t) = 1forx=0. 3 Now we 
define the resulting difference scheme as (21), where 1(x, t) is determined by (28). 

It requires a long and tedious computation to derive the error estimate for the scheme (21), 
(28). It is derived along the lines as given in [1, 2, 3] from expression (11) along the following 
lines. Using (28) we find estimates for b(x, t)I and b(x, t) - lj. Then, applying the maximum 

3 According to (9) for computation 6.,;-W0 (x, t) on time layer t = jr we use difference derivatives 
6,,zwo(x, 71(t)). The difference derivative 6rW0 (x, t), 6,,;-W0 (x, t), 6ruo(x, t), 6,,i'u.o(x, t) ca.n easily be found 
e.g. when function p( t), c( t) a.re analytical. 
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principle for the difference problem, we estimate the error for the function 

le(29)(x, t)I = zu(x, t) - U(x, t), (x, t)eGh, (29) 

where U(x,t) is the smooth part in (11) and zu(x,t) is its representation obtained by the 
difference approximation. We obtain the estimates 

(30) 

and 

{31) 

Then we estimate e(29i(x, t) for t ~ p. We apply the maximum principle [10] for t ~ p, take 
into account the estimate (14) and the truncation error 

if t ~ p. So, we get 

le(29)(x, t)I S M {pt + p-0 (h + r) + 7~2 } , (x, t)eGh, t ~ p. 

for any aE(l, 2). Because p is arbitrary in this inequality, we arrive at the estimate 

{ 7"3/2} -
lzu(x, t) - U(x, t)I SM (h + r)" + h , (x, t)EGh, 

for any vE(O, 1/3). In a similar way we find a similar estimate for the error 

le(3s}(x, t)I = zw(x, t) - W(x, t), (x, t)EGh, 

(32) 

(33) 

(34) 

(35) 

where W(x,t) is the singular part of (11) and zw(x,t) is its representation obtained by the 
difference approximation. Both, estimates lead to the following error estimate for problem (21), 
(28). 

~~ lu(x, t) - z(x, t)! SM { (h + r)" + r~2 } , 

for any vE(O, 1/3). Let h and r decrease such that 

r3f2 

h S 1f;(h, r) 

(36) 

(37) 

where ,,P(h, r) > 0 and ij;(h, t)-+ 0 for h, r-+ 0, then the scheme (21), (28) converges uniformly 
m c: 

lllax lu(x, t) - z(x, r)I SM {(h + r)" + ij;(h, r)}. 
Gh 

(38) 
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If, for instance, 

then 

__L_ 
h 2'.: 0( 72(1+~)) 

niax lu(x, t) - z(x, t)I s; M(h"1 + r"1 ), 

Gh 
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(39) 

( 40) 

for any v1 E(O, 1/3). Thus, we arrive at the following conclusion about thee-uniform convergence 
of the fitted scheme (21), (28). 

Theorem 0.1 Fork+ 2k0 s; 4, let the estimate (14) hold for the functions U(x, t) that repre­
sents the continuous component of u in (11). Then, under condition (37), the solution of the 
difference scheme (21), (28) converges on Gh in the discrete l'00-norm to the solution of problem 
(1) uniformly in e. Under the conditions (37) or (39) respectively, the estimates (38) or (40) 
hold for the solution of the difference problem. 

5. NUMERICAL RESULTS 

By theory [1, 2] and by numerical experiments [11] it is shown that, for discontinuous initial 
conditions, classical difference schemes do not converge in the l'00-norm everywhere on the set 
Gh \S*, even for a fixed value of e. Neither do they converge uniformly in e in the neighbourhood 
of the interior layer, outside a neighbourhood of S*. However, both the true solution u(x, t) 
and the numerical approximation z(x, t) are bounded, uniformly in e and it would be possible 
that the error max0 h lz(x, t) - u(x, t)I is not too large for the classical difference scheme. That 
would reduce the need for a special scheme. 

On the other hand, the above theorem shows that the fitted scheme converges uniformly in 
e on Gh, but no indication is given about the value of the order constant M in ( 40). Moreover, 
the order of convergence is rather small. It might be possible that the error is rather large for 
any reasonable value of h or r. This might also reduce the practical value of our fitted scheme. 
To decide on the practical value of the new scheme numerical experiments should give the final 
answer. 

5.1 The model problem 

To see the effect of the fitted scheme in practice, for the approximation of the model problem 
for singularly perturbed heat equation with a discontinuous initial condition 

82 8 
L(41 Ju(x, t) = £ 2 fJx 2 u(x, t) - &t u(x, t) = 0, (x, t)EG, 

( 41) 

u(x, t) = ef>(x, t), (x, t)ES, 

we compare the numerical results for the classical scheme (20) and the fitted scheme (21), (28). 
For v(x,t) in (28) for problem (41) we have 

v(x, t) = w0 (x, t; 1) + uc27J(x, t), 
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Fig.l: Computed solution with the fitted scheme. 
The solution of problem (41), (43) with U(4i)(x, t) = ~w0(x, t) + u2(x, t); e = 1/8; 
N = 32; No = 40. 

so that the coefficient 'Y(x, t) in (21) take the form 

{ 
orwo(x, t) - 6e2X f ( ) G ..J. 

2 2 or x, t E h, x 1 0, 
J'(X, t) = e 00:%Wo(x, t) - 6e X 

1 for (x, t)EGh, x = 0. 

Fore= 1/8, N = 32, No= 40 the solution of the model problem (41) where 

5 
efJ(x, t) = 2wo(x, t) + u2(x, t), (x, t)eS, 

u2(x, t) = -(x + 0.5)2 - 2e2t, 

for which we have the representation 

5 
u(x, t) = U(x, t) + W(x, t) = 'U2(x,t) + 2w0(x, t), (x, t)eG\S*, 

which is shown in Fig.l. The fitting coefficient ( 42) is shown in Fig.2. 

(42) 

(43) 

(44) 

(45) 

We can see that the solution has a jump at S* for t = 0, and for t > 0 it is smooth. The 
space derivatives of the solution are large in the neighbourhood of the interior layer. The fitted 
coefficient varies strongly in the neighbourhood of the set S* and becomes almost constant 
(equal to 1) away from S*. 

5.2 The behaviour of the numerical solution for the classical scheme 

Before we see the special properties of the fitted scheme, we first show the behaviour of the 
classical difference scheme (20), central in x and backward in t, for the model problem (41), 
(43). We know that this scheme converges for a fixed parameter e on each smooth part of the 
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Fig.2: Coefficients -y( x, t) in the fitted scheme. 
Scheme (21), (28) for the same problem as used in Fig.I. 

solution of (41), (43). Therefore we are primarily interested in the singular part of the solution 
to problem ( 41 ), ( 43) for the classical scheme. Hence, first we select the boundary conditions 
such that u(x, t) = w 0 (x, t), 

<f>(x, t) = w0(x, t), (x, t)eS. (46) 

For the approximation of problem (41), (46) we use the classical scheme (20). We solve the 
problem for different values of the mesh, h = 2/N, and the timestep, T = 1/N0 , and for different 
values of the small parameter e. The results for a set numerical experiments are summarised 
in Table 1 and Table 2. 

First we notice that -as will be obvious- asymptotically for larger N or N0 and smaller e, 
the £00-norm of the error does not depend one, N and No separately, but behaves as depending 
on a single parameter N0e-2 or N e-1 for Table 1, and N0e-2 or N for Table 2. Note that 
lwo(x, t)I ~ 0.5. From Table 1 we see that for no value of the parameter e we can guarantee 
the error on G to be less than 123 for any sufficiently large N, N0 : 

ri1(K,e) = ma.x {[ ma.x_lwa(x,t)lr1 E(N,No,e)} ~ 123 
N, No~K (.x,t)EG 

when K is sufficiently large. From the results in Table 2 we see that for no values of N0 , N we 
can guarantee the error on G, t ~ 0.2 to be less than 63 for ee(O, 1): 

172(N, No)= max{[ mp: lwo(x, t)lt1 E(N, No, e)} ~ 63. 
• (.x,t)EG,t~0.2 

Thus, from the computations we observe that: (i) the classical scheme converges on the set Gh 
with t ~ t 0 > 0 for a fixed value of e; (ii) on G\S* the classical scheme does not converge for 
any fixed e; (iii) on the set Gh with t ~ t0 > 0 the scheme does not converge uniformly in e. 

5.3 The behaviour of the numerical solution for the fitted scheme 

Now we study the behaviour of the fitted scheme applied to model problem ( 41), (43), where 
the function u(x, t) is the sum of a smooth and a singular part 

5 -
u(x, t) = u2 (x, t) + 2w0 (x, t), (x, t)eG\S*. (47) 
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Table l. Table of errors E(N, N0 , e) for the classical scheme 
In this table E(N,No,e) = ma.x(x,t)Eahle(x,t;N,No,e)I, 
e(x, t; N, N0 , e) = z(x, t) - w0(x, t) with h = 2/ N and r = l/No. 
The solution w0 is as defined in (6) with P1 = l. 

~;----· N 
8 16 32 64 ---u,-- --g = 1 5. 76(-2) 6.08(-2) 6.16(-2) 6.25(-2) 

40 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 
160 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 
640 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 
10 g = 1/8 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 
40 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 
160 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 
640 3.29(-2) 3.29(-2) 3.2~~2) 3.18(-2) 

-· 
g 

No= 40 1 2.48(-2) 5.69(-2) 6.01(-2) 6~.i0(-2) 
0.5 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 
2-2 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 
2-3 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 
2-4 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 
2-s 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 
2-6 1.95(-3) 7.69(-3) 2. 70(-2) 3.27(-2) 
2-7 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 
2-s 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 
2-9 3.05(-5) 1.22(-4) 4.88(-4) 1.95(~3) 

--· 

128 
6.26(-2)-

256 
6:26f..2) 
6.20(-2) 
6.20(-2) 
6.10(-2) 

6.20(-2) 
6.10(-2) 
6.01(-2) 
6.01(~2) 
5.69(-2) 
2.47(-2) 
2.93(-2) 

6.20(-2) 
6.10(-2) 
6.01(-2) 
5.69(-2) 
2.47(-2) 
2.93(-2) 
3.18(-2) 
3.27(-2) 
2.70(-2) 
7.69(-3) 

6.Io(-2) 
6.01(-2) 
5.69(-2) 
2.47(-21_ 

6.20(-2) 
6.20(-2) 
6.10(-2) 
6.01(-2) 
5.69(-2) 
2.47(-2) 
2.93(-2) 
3.18(-2) 
3.27(-2) 
2.70(-2) 

Because the problem is linear, we can study both parts of the error independently. First we 
consider the behaviour of the fitted scheme for the singular part, i.e for the model problem with 

ifi(x, t) = wo(x, t), (x, t)EG\S*, {48) 

as we did for the classical scheme. This initial function w0 (x, t) is representative for any initial 
function with a discontinuity. For problem {41), (48) we have the solution 

u(x, t) = w0(x, t), (x, t)EG\S*. (49) 

Then, considering the smooth pa.rt of the solution in the expression ( 47) we study problem ( 41) 
with 

</J(x, t) = u2(x, t) = -(x + 0.5)2 - 2e2t, (x, t)eG. (50) 

For problem (41), (50), we have the solution 

u(x, t) = u2(x, t), (x, t)eG. (51) 

The results of the numerical experiments a.re given in the Tables 3 - 4. 

From the results in the tables 3 - 4 we see that errors for singular and regular parts, wo(x, t) 
and u2(x, t), vanish with increasing N, where N = min(N, N0 ) for a fixed value of the para.meter 
e = 2-K, K = 0, 1, · · .. Also the errors vanish with increasing N uniformly in e. The relative 
error is guaranteed less than 1% for N :C: 8, N0 :C: 160, e = 2-K, K 2 0 when u(x, t) = wo(x, t). 
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Table 2. Table of errors E0 .2 (N, N0 , e) for the classical scheme 
In this table Eo.2(N,No,e) = max(:c,t)Ech,t~o.2 1e(x,t;N,Na,e)I, 
e(x,t; N,Na,e-) = z(x,t)-w0(x,t) with h = 2/N and 7 = 1/N0 • 

The solution w0 is as defined in (6) with p1 = 1. 

Na N 
8 16 32 64 128 256 

10 e = 1 3.08(-2) 3.39(-2) 3.40(-2) 3.40(-2) 3.40(-2) 3.40(-2) 
40 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3) 
160 3.77(-3) 2. 73(-3) 2.45(-3) 2.38(-3) 2.37(-3) 2.36(-3) 
640 2.12(-3) 9.97(-4) 6.98(-4) 6.22(-4) 6.02(-4) 5.98(-4) 
10 e = 1/8 3.18(-2) 2.05(-2) 2.47(-2) 3.01(-2) 3.32(-2) 3.33(-2) 
40 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 
160 3.29(-2) 2.56(-2) 7.40(-3) 2.59(-3) 2.29(-3) 2.20(-3) 
640 3.29(-2) 2.50(-2) 7.57(-3) 2.17(-3) 7.35(-4) 5.89(-4) 

e 
Na= 40 1 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3) 

0.5 7 .67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 8.61(-3) 
r2 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 
2-3 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 
2-4 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 
2-5 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 
2-6 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 
r1 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 
2-B 1.19(-4) 4. 76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 
2-9 2.98(-5) 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 
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The relative error is guaranteed less than 13 for the same parameters when u(x, t) = u2(x, t). 
The functions ~wo(x, t) and u2(x, t) are components of the solution of the problem (41), 

(43). Thus we have: (i) for model problem (41), (43) the numerical scheme converges for a 
fixed e in the discrete £00-norm on G,.; (ii) we observe e--uniform convergence for the model 
problem (41), (43); (iii) a relative error for the model problem is guaranteed less tha.n 2%. 

5.4 The observed order of convergence 

To determine the quality of the convergence, using the data from the Tables 3 and 4 we can 
examine the experimental order of convergence of the fitted scheme. 

When we use the classical scheme (20) for problem (41), (51) then, according to the classical 
theory, we typically find an estimate of the form 

(52) 

This estimate means that function zc2o)(x, t) converges to function u2(x, t) for fixed value of e. 
The constant Q(e) increases fore-+ 0. 

From theory we know that the solution of the fitted difference scheme (21), (28) z(x, t) 
converges e--uniformly to the solution of problem ( 41), (51). To investigate the e-uniform 
convergence of a function z(x, t) = z(x, t; e, h, r), it is natural to express an error estimate in 
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Table 3. Table of errors E(N,N0 ,e) for the new scheme. 

the form 

In this table the scheme (21) is used to solve a. problem (41), (48) 
with an interior layer. E(N, N0 ,e) = max(:i:,t)EGh le(x, t; N, No,e)I, 
e(x,t;N,N0 ,e) = z(x,t) - w0 (x,t) with h = 2/N and r = 1/N0 ; the 
solution w0 is as defined in ( 6) with p1 = 1. 

"-----
No N 

8 16 32 64 128 256 
10 e = 1 2.26(-2) 1.96(-2) 1.89(-2) 1.87(-2) 1.87(-2) 1.87(-2) 
40 1.27(-2) 1.06(-2) 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2) 

160 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3) 
640 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 
10 E = 1/8 5.46(-3) 3.01(-3} 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 
40 5.56(-3) 2.30(-3} 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-4) 
160 5.57(-3) 2.12(-3) 7.00(-4) 2.64(-4) 1.44(-4) 1.12(-4) 
640 5.58(-3) 2.07(-3} 6.36(-4) 1.92(-4) 6.90(-5) 3.66(-5) 

E 

No =40 1 1.27(-2) 1.07(-2} 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2) 
0.5 7.74(-3) 5.30(-3} 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3) 
r2 6.13(-3) 3.01(-3} 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 
r3 5.56(-3) 2.30(-3) 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-3) 
r4 4.48(-3) 1.70(-3) 6.56(-4) 2.60(-4) 1.44(-4) 1.12(-4) 
r5 1.23(-3) 6.55(-4) 3.69(-4) 1.46(-4) 5.90(-5) 3.27(-5) 
2-6 3.08(-4) 1.79(-4) 8.37(-5) 5.67(-5) 2.63(-5) 1.12(-5) 
2-7 7.71(-5) 4.47(-5) 2.28(-5) 1.05(-5) 7.77(-6) 4.25(-6) 
2-s 1.93(-5) 1.12(-5) 5.71(-6) 2.86(-6) 1.34(-6) 1.15(-6) 
2-9 4.82(-6) 2.80(-6} 1.43(-6) 7.15(-7) 3.58{-7) 2.09(-7) 

max .!):lax Ju(x, t, e) - z(x, t; e, h, r)I :::; M(h2 +rt, 
• Gh \S* 

(53) 

where 11 does not depend on the parameters e, h or r. To compute 11 we shall use an inequality 
of the form 

_!Ilax lu(x, t, e) - z(x, t; e, h, r)I :::; M(h2 + r) 11(•). 

Gh\S* 
(54) 

We call 11(e) in expression (54) for the error the generalised order of convergence for a 
fixed value of the parameter e, and 11 in expression {53) the generalised order of e-uniform 
convergence. 

We determine the experimental generalised order in the point (N, N0 ) as 

ii(N, N0 , e) = (ln E(N, N0 , e) - ln E(2N, 4N0 , e))/ln 4, (55) 

where E(N, No, e) = max0 h\S* ju(x, t, e) - z(x, t; e, h, r)I, hN = 2 and rNo = 1. We introduce 
the experimental generalised order of convergence for fixed e as 

ii(e) = min ii(N, No, e), 
N,No 

(56) 
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Table 4. Table of errors E(N, N0 ,e). 
In this table the scheme {21) is used to solve a problem ( 41 ), ( 50) 
with a smooth solution. In this table E(N, No, e) = m84z,t)EGh 
ie(x, t; N, No, e)I, e(x, t; N, N0 , e) = z(x, t) - u2 (x, t) with h = 2/N and 
r = l/N0 ; the solution u2 is as defined in {51). 

No e N 
8 16 32 64 128 256 

10 e=l 5.10(-2) 8.72(-2) 1.16(-1) 1.36(-1) 1.47(-1) 1.53(-1) 
40 1.46(-2) 2.27(-2) 3.15(-2) 3.89(-2) 4.50(-2) 4.87(-2) 
160 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2) 
640 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 
10 e = 1/8 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 
40 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4) 
160 7.46(-3) 2.94(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4) 
640 7.46(-3) 2.89(-3) 1.15(-3) 4.63(-4) 2.09(-4) 2.55(-4) 

E 

No= 40 1 1.-46(-2) 2.27(-2) 3.14(-2) 3.89(-2) 4.50\:2)-4.87(-2) 
0.5 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2) 
2-2 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 
2-3 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4) 
2-4 5.98(-3) 2.39(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4) 
2-5 1.64(-3) l. 75(-3) 1.00(-3) 4.59(-4) 2.09(-4) 1.26(-4) 
2-6 4.11(-4) 4.77(-4) 4.47(-4) 3.04(-4) 1.47(-4) 6.90(-5) 
2-7 1.03(-4) 1.19(-4) 1.22(-4) 1.12(-4) 8.30(-5) 4.45(-5) 
2-s 2.57(-5) 2.98(-5) 3.04(-5) 3.05(-5) 2.80(-5) 2.17(-5) 
2-9 6.42(-6) 7.45(-6) 7.~~(-6) 7.63(-6) 7.63(-6) __ .]_:Q_~~~.L 

and the experimental generalised order of e-uniform convergence as 

Y1 = min 17( e) . 
• 

Similarly the the experimental e-uniform generalised order in the point (N, N 0 ) is 

v(N, N0 ) = min v(N, N0 , e) . 
• 

In the Tables 6 and 5 the results are given. 
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(57) 

(58) 

From the results in the Tables 5 and 6 we see: (i) for w0 ( x, t) and u2 { x, t) the experimental 
generalised order of e-uniform convergence for the fitted scheme is approximately 0.413 and 
0.450 respectively; (ii) for N 2 16 and N0 2 40 the generalised orders of e-uniform convergence 
for wo(x,t) and u2(x,t) are apparently not less than 0.50. This means that in practice 

11!.ax iu(x, t) - z(x, t)I :S: M(h + r112) 
Gh 

for N 2 16 and No 2 40, 0 < e :S: 1, for each value of the parameter e. Not in contradiction 
with the theory, for each value of e the experimental generalised order of convergence tends 
to 1 for vanishing h and r. Thus, the experimental generalised order of convergence for the 
fitted scheme (21), (28) for the full model problem (41), {43) is not less than predicted by the 
theory. The behaviour of the errors e(x, t; N, N 0 , e) = z(x, t)-u(x, t) for the fitted scheme (21), 
(28) and for the classical scheme (20) are shown in Figs.3 and 4. We can see that the largest 
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Table 5. Experimental generalised order of convergence iJ(N, N0,e). 
The fitted scheme (21), (28) for the problem (41), (48), applied to 
the solution u(x,t) = w0(x,t) with the interior layer. v(N, No,e) = 
(ln E(N, N0 , e) - ln E(2N, 4No, e))/ ln 4, 
E(N,N0 ,e) from Table 3. 

~No N 
8 16 32 64 128 

10 e:=l 0.544 0.479 0.454 0.450 0.450 
40 0.631 0.653 0.640 0.650 0.651 
160 0.681 0.782 0.792 0.818 0.818 
10 e = 1/8 0.625 0.834 0.882 0.891 0.892 
40 0.696 0.858 0.922 0.938 0.945 
160 0.714 0.868 0.932 0.967 0.987 

e 
No= 40 l 0.631 0.653 0.640 0.650 0.651 

0.5 0.681 0.782 0.792 0.818 0.818 
2-2 0.708 0.834 0.882 0.891 0.892 
2-3 0.854 0.904 0.934 0.939 0.946 
2-4 1.387 1.104 1.084 1.070 1.067 
2-5 1.391 1.484 1.351 1.237 1.195 
2-6 1.392 1.485 1.498 1.433 1.314 
2-1 1.393 1.485 1.498 1.486 1.378 
2-s 1.393 1.485 1.498 1.500 1.340 

Table 6. Experimental generalised order of convergence v(N, No, e). 
v(N,N0 ,e) = (lnE(N,N0,e)-lnE(2N,4N0 ,e))/ln4, E(N,N0 ,e) from 
Table 4. 
Computation with the new scheme (21), {28) for the smooth solution 
u(x,t) = u2(x,t). 

No e N 
8 16 32 64 128 

10 e:=l 0.583 0.736 0.789 0.795 0.798 
40 0.656 0.850 0.949 0.992 1.016 

160 0.413 0.551 0.828 1.012 1.041 
10 E = 1/8 0.604 0.652 0.702 0.691 0.687 
40 0.668 0.669 0.719 0.733 0.744 

160 0.685 0.676 0.718 0.769 0.276 
E N 

No =40 1 0.656 0.850 0.949 0.992 1.016 
2-1 0.413 0.551 0.828 1.012 1.041 
r2 0.603 0.652 0.702 0.691 0.687 
r3 0.820 0.669 0.719 0.733 0.744 
r~ 0.887 0.627 0.724 0.769 0.783 
rb 0.891 0.984 0.859 0.820 0.799 
2-6 0.892 0.985 0.998 0.938 0.863 
rr 0.893 0.985 0.998 0.999 0.966 
rs 0.893 0.985 0.998 I.OOO I.OOO 
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Fig.3: Discretisation error the fitted scheme. 
Scheme (21), (28) is used for the same problem as used in Fig.l. 

Fig.4: Discretisation error the classical scheme. 
Scheme (20) is used for the same problem as used for Fig.1. 

errors are in the neighbourhood of the set S* and that the errors for the classical scheme are 
significantly larger than for the fitted scheme. 

6. SUMMARY 

For a singularly perturbed boundary value problem of parabolic type with discontinuous initial 
condition ( 1 ), we have constructed a specially fitted difference scheme that converges in G\S* 
c:-uniforrnly in the .e00 -norm. 

Numerical experiments for a model boundary value problem with discontinuous boundary 
function show that a classical difference scheme does not converge c:-uniformly. Moreover, 
for a fixed value of c: this scheme doesn't converge in the £00-norm in the neighbourhood of 
the discontinuity, and away from the discontinuity it does not converge e-uniformly in the 
neighbourhood of the interior layer. In the case of the constant coefficient problem and a 
simple discontinuity, for which the error-function is the solution, we find that an error less than 
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63 on G, t ~ t0 = 0.2, or less than 123 on G \S* cannot be guaranteed for any small h and 7. 

By theory and by numerical experiments it is also shown, that the fitted difference scheme 
converges e-uniformly in the l 00-norm on Gh. Moreover, for the fitted scheme, for a model 
problem an experimental generalised order of convergence of not less than 0.5 is observed if 
h ::5 1/8 and T ::5 0.025 e.g. v{e, N, N0 ) ~ 0.5 at N ~ 16, N0 ~ 40. The experimental 
generalised order of convergence is substantially larger than the bound guaranteed by the 
theory. Both for the singular and for the regular part of the solution an error less than 13 is 
guaranteed already for N ~ 8, N0 > 40 for any ee(O, l]. 
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