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Editorial 

This book is offered to Cor Baayen, whose association with the Stichting Mathe
matisch Centrurn (SMC) has lasted for over 35 years. From 1959 until 1965 Cor 
worked as a scientific researcher at the Department of Pure Mathematics. In 
1965 he was appointed head of this department, and also professor of mathema
tics at the Free University in Amsterdam. In 1980 he became Director of the 
Stichting Mathematisch Centrum, which position he has held until now. 

In the course of the time the ship he was the captain of changed its name 
- from Mathematisch Centrmn to Centrum voor Wiskunde en Informatica -
and travele<l not only in time but also in space - from an old-fashioned and 
run-down sd10ol-b11ilding at the Tweede Boerhaavestraat to the friemlly and 
comfortable manor in the \Vatergraafsmeer, below sea level. It also considerably 
grew, among others by furt her embracing computer science and by expaucliug 
its work in applied mathematics. 

Cor steered this ship vigorously through ever-changing waters, sometimes with 
a full wind behind, sometimes against t he wind. At his initiative a number of 
research areas were initiated or stimulated at CWI, like discrete mathematics, 
computational linguistics, computer algebra, cryptography, image analysis, per
formance analysis, interface teclmology. Thanks to his efforts the INSP-support. 
became available for CWI, and t.he most successful and continuously growing 
conglomerate of European research institutes in mathematics and computer 
sc ience - ERCIM - was created. 

His enthusiasm for am! interest iu the research carried out. at CWI can be illus
trated best by the fact that he could effortlessly give overview lectures about 
the scientific work carried out at the institute. Started as a pure mathemati
cian (with a thesis called "Universal Morphisms"), he has spent tireless efforts 
to get acquainted with the latest developments in mathematics and computer 
science - which he saw as essential for a Director of SMC - , so as to become 
authoritative iu both disciplines a like. 

\Ve an! very grateful to all those who contributed tu t he realization of t his book. 
\Ve thank Iviieute Bakker for mauagiug the editorial process, Coby van Vouderen 
for subst.autial secretarial support , Sjoerd l'viulleuder fur maki11g photographs, 

ubias Baanders fo r designing the cover, R.u<ly de Lemm·, Jau Schipper, \Vim 
Tossijn, and Jos van cler Werf for printing and binding tho book (the largest 
project ever of C\VI's printing division) , am! all authors for their articles . 
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vVe thank them all also for observing the short. deadlines we imposed. The 
fact that they all met these deadlines shows the esteem they hold for Cor and 
expresses their appreciation for his dedication to the advancement of science. 
The breadth spanned by the contributions, from pure mathematics to applied 
computer science, reflects very well the space created and inspired by Cor for 
performing fundamental and applied research. The book tlms offers the reader 
a science non-fiction odyssey through Baayeu Space. 

Cor, by putting thi8 hook with 80 many diverse contributions into your hands 
we hope to 8ustain your intere8t in mathematic8 and computer science. In your 
heart you have always remained a scientis.t. Aud 8cientists never retire. They 
just withdraw with yet another scientific hook into their arm chair. 

Also on behalf of all coutrihutor8 to this volume, we wish you all the best in the 
next stage of your life. You were associated with the Mathemati8ch Cent.rum 
for well more than half of both your life and that of the Cent.rum. The Cent.rum 
bears your imprint and it remain8 yours! 

Krzysztof Apt 
Lex Schrijver 
Nico Temme 

x 



Een woord vooraf 

G.Y. Nieuwland 
voorzitter Curatorium SMC 

Prof.Dr P.C. Baayeu zal op 20 december 1994, D.V. - degeneu die hem ke11-

11en weten dat deze toevoegiug voor hem J)etekenis heeft. - afacheid nemeu als 

Weteuschappelijk Dired.eur vau de Stid1tiug Mathematisch Cent.rum. 

Hij lieeft deze fuuctie sinds HJ80 vervuld eu hepaalde in die periode uat ionaal 

en internationaal in veel opzichten hct gezicht van cle Stichting eu liaar iustituut 

CWI. 

Voor het weteuschappelijk directoraat bestaan in µriu cipe twee modelleu: bij 

het eerste ligt bet accent op dc! voorbeeldfunctie vau de eigeu weteuschappelijke 

prestatie vau de !eider van de organisatie, hij de tweede op zijn fuucti e als 

stunrman . Ik ven11oed dat ook de eerste rol Baayeu goed gelegen zou hebbe11 . 

l\faar er vie! voor hem weinig te kiezen: al kort ua zijn optreden als directeur 

werd d uidelijk dat met name bet instituut van de Stid1tiug respons cliencle 

te geven op de uitdagiug die vauuit de maatschappij werd gesteld. Daarmee 

giug het C\VI een traject in dat aan de stuurmanskunst van de clirect.ie tot 

dusver ongekende eisen st.elde. In deze huudel komt die kaut va11 Baayen 's werk 

allceu impliciet aan de orcle; de redact. ie lrneft erwior gekozen juist de spore11 

te boekst.ave11 cl ie hij daarnaast - liaast schreef ik: desuit!ttegcustaaude - in 

wetenschappelij k opzicht !weft get.rokken . 

Dit boek biedt daarva11 een fraaie staalkaart - i11 vier categorieen. 111 de eerste 

plaats zij11 daar de hijd ragcn va11 vrie11de11-collcga 's uit Baayen 's wetenschappe

lijke land van herkumst: het hrede gebied waarop cle logica en de fuudarneutele 

algebrai·sche, topologisdu~ en cornbi11atorisd1e struct11re11 van de wiskundc in 

i11 teract ie zijn . U mag clit. ook lczen als een r1.d e dr~ pnfaenr:e van dat dee! van 

de SMC dat plaats vimlt. op het. 1111iversit.aire erf. 

Zijn eigen visies cm nitgangspnnten worde11 , behalve i11 een interview, in deze 

bundc>l voornl g()reflcx:t cenl i11 de hijdragen van zijn promoveudi - liie !mu eigen 

weg gingen en la ten zie11 daarop ecu frcmtposit.ie tC' hehben bereikt. 

Da11 is er ce11 brec ~d overzid1t van de wetern;d iappclijke productie van !wt Ce11-

trum voor \Visknmlc e11 Infurrnatini - represe11tatief voor het. 011derzoekspro

gra11u11a waarvoor Baaym1 zovcel jarcn ee11 eerstc vcra11twoordclijkheid droeg. 

treft daarouder niteraard vc!cl infonnatica aan: het vakgebic!d waarvau de 

011tplooi i11g i11 Nedcrland zovecl aa11 ziju wetenschappelijk leiderschap, kmmis 

eu i11zid1 t. te daukeu lteeft. 

Xl 
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Tenslot te een hijdrage met een bijzomler karakter, met ccu omlcrwerp dat twee 
van zijn grote liefdes vereuigt : de wiskunde eu <le t.aal, geschreven door een 
auteur die niet. alleen wetenschappelijk in relatie met hem staat . 

Alles bijeen eeu boek wnaraau velen plezier zullen belevcn, document ook van 
een stukje Nederlandse wetenschapshistorie - maar allereerst naar de bedoeling 
van zijn anteurs: liber amicormn. 

XU 
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1960- 1965 docent ~utsseminarium voor Pedagogiek, Amsterdam 
(avon<lopleiding M.O.) 
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Jaren van berekening 
(met prof.dr. J.H.C. Blom) 
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Oat was volkomen abracadabra voor me, maar het leek me 

wel heel erg interessant 

Een interview met (or Baayen 
door Lex Schrijver 

Laten we beginnen bij je geboortejaar 1934. 

Ik beu geboren in Klaten. Klateu ligt op Midden-Java, in de "vorsteulan

den" , halverwege Solo (of Surakarta) en Yogya (of Yogyakarta). Solo is de zetel 

vau de susuhunan, de "keizer" , en Yogya de zetel van de sultan, ni t eeu zijtak 

van het vorstelijk huis, welke la1 er veel machtiger is geworden clan de tak vau 

de susulmnau. Ook nu heeft Yogya nog steeds een mate van onafhankelijkheid. 

Miju ouders waren beiden verbonden aan het Christelijk on<lerwijs. Miju 

vader is als onderwijzer naar "Nederlandsch Oost-Indie" gegaan, heeft aktes 

erbij gehaald, en is hoofd geworden vau een zogenaamde schakelschool, iu Solo. 

Als ik het goed begrepen heh, is dat een school waar leerlingen die het goed 

gedaan haddeu op het "ouderwijs voor inlanders", bijgewerkt werden om uaar 

de middelbare school te gaan. 
Hij heeft toen weer aktes erbij gehaald eu is uaar een Mulo gegaau, eu vrij 

kort voor de uorlog, ook middelhare aktes, waama hij lernar geschiedenis is 

geworden iu .Jakarta, of Batavia, zoals dat toen uog heette. 

Ook mijn moeder is als ouderwijzeres uaar Indie gegaau (ze is 'met de haud

schoen' met mi ju vader getrouwd), en heeft <laar een t ijd Jes gegeveu, maar 

- zoals in die tijd gehruikelijk - tuen het eerste kiud kwam hield ze op met 

werken. 

Dat was jij? 

Nee, dat was ik niet . Dat is eeu eerder kiud geweest , een me1s.1e, dat is 

uverleden voordat ik ~eboren hen , eu begraven in Klateu . Daar Jigt. ook een 

hroertje van me begraven, die is iu de eerste oorlogsmaaudeu ziek gewonleu, 

ua de laudiug van de .Japanners. Er kou geen hulp verleend wordeu, hij had 

difterie, eu hij was biuuen eeu week overleden. 

Hij was jouger clan ik. Ik hen de oudste, het tweede kind vau mijn ouders, 

maar de oudste overlevende. Ik heb eeu jongere broer, dan een zuster, en clan 

dat hroertje wat overledeu is, en dan uog weer een zusje van voor de oorlog, en 

na de oorlog heh ik nog twee broertjes gekregen. Ik uoem ze nog steeds broertjes 

hoewel de jongste daarvan m1 toch ook al over de veertig is. 
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.. . uiteraard ziju de vroegst.e heriuueringen het. verste weg ... 

W aar kwarnen j e ouders vnndaan? 

Er is vrij veel hekend van het. voorgeslacht van mijn onders. Niet clat ik zelf 
ooit aan genealogisch ouderzoek gedaan heh, maar voor mijn vaclers voorgeslacht 
heeft een achterneef dat gedaan en van mijn moeders zijde lieeft een hroer van 
mijn moeder heel veel onderzoek gedaan. 

Mijn vaders familie is terug te voeren tot Jan .Jauszoou Baaij, die in 1456 nit 
Antwerpen naar Bergen op Zoom kwam, en daarna is dit gcslacht in Bergen op 
Zoom blijven wonen. Daar zijn ze in de tijd van de Doleantie meegegaan met. 
de afscheiding uit de Hervormde kerk, naar wat later de Gereformeerde kerk 
geworden is. 
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Mijn moeders geslacht - zij heten Minderhoud, dus oorspronkelijk komen 

ze misschien wel uit Minderhout, vlak over de grens in Belgie. De naam is heel 

rijk vertegenwoordigd in West-Kapelle op Walchereu. Mijn moeder is geboren 

op Znid-Beveland. 
Ik heh een grote kerkbijbel van mijn ouders, formaat statenbijbel, in leer 

gebonden en gedrukt in 1881, en aangeschaft door mijn overgrootvader. Die 

was toen lid van de Gerefonueerde kerk en is later overgegaan, begrijp ik, naar 

de Gereformeerde Gemeeute. Dat was de vader van mijn moeders moeder. 

Maar mijn moeders vader was weer gereformeerd. 'Ifaditioneel behoorden beide 

kanten van mijn omuiddellijke voorgeslacht tot de Gerefonneerde kerk. 

Wat herinner je j e nog van je eerste jaren? 

Toen ik uog geen jaar oud was zijn we naar Nederland gegaan, mijn ouders 

haddeu er zo'n zeven jaar opzitten en kregen een jaar verlof. Zeff heriuner ik 

me hiervan uiteraarcl niets. 
Ik ben dus 1 jaar geworden in Nederlan<l. Na die lauge verlofperiode zijn we 

weer naar Indie gegaau. Ook die bootreis uaar Nederland en terug heriuuer ik 

me niet, we waren eeu voile maand ouderweg . 

... die bootreis uaar Nederlaud eu terug heri1111er ik me uiet ... 

Van \·oor de oorlog herinner ik me uiet zo erg veel. Ik heh ua het con

centratiekamp een t ij<l Jang hlokkeringen gehad waardoor ik een aantal dingen 

!) 



heel Jang niet meer gewet.en heh. Die zijn later na een periode van ziekte weer 
teruggekomen . 

.Ja, ik herinner<le me het. land t.oen ik daar voor het eerst. drie jaar geleden 
t.erug kwam en in .Jakarta uit. het. vliegtuig stapt.e. Toeu dacht. ik: deze genren 
herinner ik me; ik st.oncl nog boven aan de vliegt.uigtrap. 

En t.oen ik voor het. eerst. in Yogya en Solo t.erugkwam had ik een heel st.erk 
deja vu gevoel, die witte krat.onnmren bijvoorbeeld. Er zijn visuele en olfact.o
rische herinneringen die met.een geact.iveerd werden t.oen ik daar t.erugkwam . 

Maar ik herinner me niet. zo erg veel van het. !even. Uit.eraard ziju de vroegst.e 
herinneringen het. verste weg. 

Merkte je ief8 mw 8pan11i11_qen tu8sen inlanrler8 en Nerlerlnnrlers? 

Voor de oorlog denk ik dat. ik polit.ieke spanningen niet. gemerkt. zou hehbeu 
als die er waren. Rondom mijn ouderlijk lrnis waren die er niet . Mijn ouders 
hadden geregeld student.en in de kost die zoals dat. heett.e uit de lmi teugewest.eu 
kwamen , Celehes, Sumat.ra, en die in .Jakarta kwamen st.uderen of daar naar 
school gingen, en mijn 011ders hadden daar goede relaties mee. We haddeu ook 
personeel. Ik was erg hevrieud met. het zooutje van ouze djongos, we speel
den alt. ijd samen. In eu 0111 ons gezin waren er geen spanningen, en polit.ieke 
spanningen in het. groot. zijn mij als kind van t.oeu zeven jaar ont.gaan. 

Toen kwam de oorlo_q. 

Ik herinner me dat. wij , na bet. nit.brekeu van de oorlog in Europa, in 1!)41 
als kinderen langs keunissen werden gest.mml, met. het. rijmpje "Volgend jaar 10 
mei , is Nederlancl weer vrij" . Zo ging je rond om ellmar heil toe te wensen. 

Het. jaar daarop, in 1942, wareu we inmiddels in heel andere omst.andighedeu 
gekomen. Want, zoals bekend , de aanval van de .Tapanners op Pearl Harbour 
wa." op 7 decemher 1941, en de landing van de .Japanners op .lava was in de nacht. 
van 28 februari op 1 maart 1942. Toen verbleven wij al niet meer in ons huis 
in .Jakarta. Mijn vader was als landstormer, zoals dat heette, als dienstplichtig 
soldaat. opgeroepen, en had zijn gezin naar Klaten gestuurd, mijn geboorte
plaat.s, waar een oom van mij hoofd van de Hollands-Chinese school was, en 
daar konden wij logeren. 

En wat ik mij daarvan nog zeer we\ herinner is, dat dat. niet zo erg Jang voor 
mijn verjaardag was, 10 maart. Ik denk, dat we, na Pearl Harbour, in de loop 
van januari-februari naar Klaten gegaan zijn, en ik zou op mijn verjaardag een 
grote meccanodoos krijgen; die stond al in huis. Die had ik al eens mogen zien, 
maar ik mocht er niet aan komen, want die was immers voor mi.in verjaardag; 
en die heh ik nooit gekregen. Dat is een van de grote trauma's in mijn jeugd. Ik 
heh het idee dat ik tegenwoordig technisch Lego koop voor mijn kleinkinderen 
omdat ik zelf destijds die meccanodoos niet gehad heb. 

De oorlog kwam ook net in je lagere schooltijd, neem ik aan. 

10 



.. . ik was erg hevriend met het zoontje van onze djongos ... 

Ik zat net kort in de derde klas tocn de oorlog uithrak. Dat heh ik in zoverre 

nooit ingehaald, dat ik nooit goed lagere schoolonderwijs gehad heh. 
Wij zijn de oorlog begonnen in een kamp in Sumuwono, dat heh ik terug

gevonden toen ik daar drie jaar geleden terug was. De barakken staan er nog, 

alleen die zijn geweldig klein geworden vergeleken met vroeger. Maar dat kamp 

is onmiskenbaar, door zijn ligging op een heuvel, met allemaal trappen. 
In dat kamp hadden we het nog redelijk goed. Mijn moeder was zoals gezegd 

onderwijzeres, en met andere dames in het kamp organiseerde ze clandestiene 

klasjes. In een schuur, met achterkanten van kasten als schoolbord - het heeft 

we! het nadeel dat je het krijt haast niet knnt uitvegen. Er werden, hoewel 

misschien niet nodig, allemaal lakens gewassen en op lijnen gehangen en tussen 

die Iakens werden clan klaslokaaltjes uitgespaard. En een van de kinderen werd 

op de uitkijk gezet., wirnt het mocht eigenlijk uiet. En als er dan een Japanse 

kampbewaker Iangskwam of een heiho'er (dat waren Javaanse Imlpbewakers), 

clan werd er een of antler afgesproken sein gegeven, en verspreidden we ons. Ik 

heh zo dus we! wat les gehad, op het kampschooltje. 
Ik denk dat we na ongeveer een jaar van daaruit verplaatst zijn naar een van 

de beruchte kampen in Amharawa; daar was een groot aantal conceutratiekam

peu. En wij kwamen terecht in Kamp 7. Vanuit dat kamp zijn eind 1944 de 
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vrouwen en kinderen, waaronder ook mijn moeder en hroer en zusjes, verplaatst. 

Er hleven zo'n 700 jongens achter van tussen de 10 en 13 jaar. 
Als je tien jaar was, gold je voor de Japanner als volwassen, en als je van het 

mannelijk geslacht was, was je dus gevaarlijk en mocht je niet bij de vrouwen 

en kinderen hlijven maar moest je naar een manncnkamp. Dat is niet geheurd 

onmiddellijk nadat ik tien jaar geworden hen, 10 ma.art 1944, maar pas aan 

het eind van dat jaar. Ik heb dus een klein jaar in een mannenkamp gezeten, 

jongens en mannen, en daar werd niets meer aan onderwijs gedaan. 
Oudere jongens waren al een keer eerder weggehaald en er kwamen zo'n 

2000 mannen hij, dat waren zieken en invaliden nit omliggende kampen, dwang

arheiderskampen, krijgsgevangenenkampen, en die moesten wij, 700 jongens, 

verzorgen. In dat kamp heh ik van eind 1944 tot na de capitulatie, augustus

september 1945, gezeten. 
lk zat daar dus zonder te wet.en of mijn vader of moeder en hroer en zusjes 

nog leefden, en zo ja, waar die dan we! zaten. Via het Rode Kruis kreeg je een 

enkele keer we! eens een levensteken, maar er was heel weinig communicatie. 

Hoe kijk je op die tijd terug? Als jongen kun je natuurlijk een hele hoop 

dingen ook heel spannend vinden. 

lk denk dat ik daar net iets te jong voor was. Enerzijds neem je het !even 

heel serieus als je hoofd van de huishouding bent, al is het maar een huishou

ding van een 10-jarig persoon, maar anclerzijds was ik, denk ik, gewoon te jong 

om het als iets spannends te ervaren. Ik heh het veeleer als iets serieus, iet.s 

verantwoordelijks, en toch ook als iets heklemmends ervaren. 
En vergeet niet dat je in toenemende mate uitgeput raakte door ondervoe

ding. Er waren ook heel veel sterfgevallen en het aantal doden per etmaal steeg 

in de loop van de maandcn. En wij moesten als jongens al het werk doen , 

het corvee, de ziekenzorg, het begrafeniscorvee, maar ook alle beschikbare land 

ontginnen, ook nog varkens vet mesten voor de .Japanner, en kippen en eenden 

verzorgen voor de .Japanner, want die at wat. beter dan wij en hield van een vers 

eitje op zijn tijd. Ik heh een tijd Jang in het keukencorvee gezeten, groent.en 

schoonmakcn. Dat nam je heel serieus, maar aan het eind raakte je, t.enminste 

ik , sterk apathisch door de ondervoeding. Ik herinuer mij zeer we! dat al<; bet 

corvee afgelopen was, om een uur of drie of zo, ik in het zonuetje t.egen de muur 

ging zitten, in de tropenhitte. Je was zo ondervoed dat je zelfs de wannte van 

de tropenzon nodig had, als een soort energie-inbreng als het ware. Dan zat je 

daar maar te wachten tot er een gong ging dat er eten gehaald kon worden. 
lk hen die kampherinnering ook een hele tijd grotendeels kwijt geweest. On

derdrukt. Ik hen een keer overspannen geraakt, een tijd van slag geweest, 1969-

1970. Toen heh ik een heel slechte tijd gehad, met veel onrust en nachtmerries, 

en toen zijn met hrokken, moza"iekachtig, geleidelijk allerlei herinneringen te

ruggekmnen die ik dus zo'n 25 jaar weggedrukt had, niet bewust overigens. 

12 



En dat had je 11L'tS8chien oak nodig op rfot moment? 

Ik denk het we!. Als je opgroeit en proheert weer normaal mew; te worden 

dan moet je die diugen uiet in je toegankelijke gehengeu iedere keer tegenkomeu. 

Dus ik deuk dat clat vrij uonuaal is. 
Achteraf hen ik van meuiug, dat geldt voor het hele gezin - daar heb ik het 

onlaugs uog met miju moeder over gehad - , dat wij met z'n alleu, 111ij11 broer eu 

zusters, mijn ouders, die kampervaring heel constructid" verwerkt. hebben. \Vij 

hebben daar voorzover ik kau uagaan gee11 trauma's , geeu psychische uadelen 

van over gehouden. Miju vader kon er met veel humor over vertellen. Die kon 

ook over allerlei 11are dingen in het kmup zo vertellen dat je erom lache11 moest , 

ook ik. Maar goe<l, ik ben te jong geweest 0111 dat zelf te kmmen relativeren . 

Ik kan dat nog steeds niet, maar ik kan er we! met grote gelijkmoe<ligheid op 

terugzien. Ik heh daar echt. geen problemen 111ee. 

Het is overigeus we[ zo dat, toen ik voor het cerst naar J apan giug, <lat toch 

een ervariug was die ik niet helemaal emotieloos doormaakte. lVIaar <lat is ook 

gauw over. 

Hebben j e oorlogsernaringen je snclfor uolwas8C11 yemrwkt? 

lk deuk het eigenlijk we!, ja. Ik heb mij uooit meer kind gevoekl. J e beut 

verautwoordelijk geweest voor je eigeu bestaau, en dat leg je uooit meer helemaal 

af. lu tegeustelliug tot miju broer eu zusters die allemaal jouger ziju dau ik en 

die bij miju moeder gebleveu ziju. Maar die hebbeu natuurlijk ook het uodige 

meegemaakt , die hebbeu ook geeu uormale jeugd gehad, maar die hebbeu de 

dingen toch weer anders verwerkt clan ik. 

Ik denk achteraf dat bet een waardevolle ervaring is geweest, op zijn manier. 

Maar het is we! zo dat ik me er heel Jang niet in heh willen verdiepen. Dat ik 

niets wilde lezen over de oorlog en over het gebeuren iu bet kamp. Ook niet over 

de oorlog bier in Europa hoor, ik wilde daar eigenlijk niet mee geconfronteerd 

word en. 
Enerzijds is er een puur psychisch automatisme geweest waardoor een hele

boel dingen weggedrukt zijn, Freud zou wel kunnen verklaren waarom. Maar 

anderzijds wilde ik er ook zo weinig mogelijk bewust mee bezig zijn. Ook dat 

wordt op den duur milder. Op een gegeven ogenblik hen je toch nieuwsgierig 

wanneer het ook al weer precies was, en dan ga je weer een paar dingen opzoekeu 

en nalezen. lk heb eens een kecr een boek gekocht over de krijgsgevaugeneu

kampen in Indonesie. Dat was trouwens toen ik drie jaar geleden daar voor het 

eerst weer uaar toe giug, toen wilde ik zoveel mogelijk van <lit soort plaatsen 

terugvinden, en bet zit me nog steeds dwars dat ik dat kamp in Ambarawa niet 

teruggevonden heb. Ik wist dat het er niet meer was , boor, ik wist dat het 

helemaal verwijderd is, maar ik had zo'n gevoel van als ik die plek kan terug

vinden dan moet ik dat toch kmmen herkennen. Maar ik heh daar geen enkel 

gevoel van herkenning gehad. Sumuwo110 we! , en daar hen ik blij 0111 , dat ik dat 
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heh kunnen vinden, dat was heel plezierig, toch heel goed 0111 daar weer eens 
te lopen, vooral omdat we met z'n t.weeen waren, mijn zus en ik, zij herinnerde 
zich weer andere dingen dan ik, en ja, dat. was goed. 

Onderen die het. meegemaakt. hebben, dat merk ik wel, praten er makkelijker 
over. Ik heh het. t.och, laat ik zeggen, heel animaal meegemaakt, je was aan het. 
overleven en je leefde in deze omstandigheden, er was niets bijzonders aan , leuk 
was bet niet, extra bedreigend, zo ervoer je het. oak niet - je werd handig in 
bet overleven, en je zorgde voor jezelf, en verder de orde van de dag. 

lk heh eens een keer 's nachts meegedaan aan een inbraak bij het varkensvoer, 
voor de varkens van de .Tappen, dat was gemalen en geperste kaf van rijst, 
gahbah. Ik heh een stukje veroverd en verstopt, zoiets was riskant.. Als je 
gesnapt werd dan kreeg je een behoorlijk zware straf van de .Japanners. Maar 
ik ben niet gesnapt. en dat heeff, mij wat. bijvoeding gegeven enige t.ijd, en dat 
beschouwde je helemaal niet als avont.uurlijk, als leuk, interessant of dapper, of 
wat dan ook, nee, dat was gewoon een stukje overleven. 

Terwijl ik merk van verslagen van ouderen - die hebben het. veel bewuster 
meegemaakt., en hehben veel meer geweten wat ze deden. Twee of drie jaar 
ouder maakt al veel verschil. Ik best.and, ik overleefde. 

Je zag veel doden om je heen. Dat zegt je dan misschien ook heel weinig 
meer . 

.Ja. Er was in het kamp een bard en daarop werden de namen opgeschreven 
van diegenen die de afgelopen 24 uur overleden waren. En of het precies zo 
geheurd is dat weet ik niet, maar zo herinner ik het mij, de commandant had 
er op een gegeven ogenblik een premie op gezet dat als we voor het. eerst. een 
bepaald aantal haalden, 20 of zo, dan zouden we extra et.en krijgen. Toen 
stonden we dus voor het. bard: Ach, er zijn er weer maar 17 dood; en op een 
gegeven ogenhlik: Ha! het zijn er 21, en toen kregen we een extra portie eten. 
En de dag daarop kregen we weer helemaal niets, want ja, die commandant 
moest met zijn budget rondkomen. 

De verjaardag van Tanna Heika, de keizer, werd gevierd en dan kregen we 
vlees. Een of twee honden voor het hele kamp. Die gingen in de soep en als je 
geluk had clan vond je een draadje. 

Ik heh gelezen clat de .Japanse soldat.en heel braaf waren in het. opvolgen 
van orders. Aan het begin van de oorlog is er een bepaald bedrag, zoveel cent 
per dag, per gevangene vastgesteld voor voedsel, en daar hebben ze zich aan 
gehouden. Alleen, in de loop van de oorlog had je een inflatie van een paar 
bonderd procent., en Tokyo is er nooit aan toe gekomen dat bedrag bij te stellen. 
En dus ging ons voedsel met. factoren naar beneden, want het bleef tot het einde 
van de oorlog zoveel cent per dag. Aan het eind kon je er maar weinig meer 
voor krijgen. 

Hoe was het einde van de oorlog '? 
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Na de oorlog hen ik vanuit Amharawa op clandestiene wijze liftend dwars 

door de linies heen, levensgevaarlijk, hij mijn moeder terecht gekomen, die in 

Semarang zat, in een vrouwenkamp. Pas na maanden zijn wij verenigd met mijn 

vader die in een krijgsgevangenenkamp in Bandung zat. 
Dat was ook mijn eerste vliegtocht in zo'n groene leger-Dakota. Zo'n soort 

vliegende aluminium vuilnishak, waar je op klapstoeltjes zat met een grote pa

pieren zak, omdat iedereen zat over te geven en onpasselijk te zijn. Maar daar 

heh ik gelukkig nooit last van gehad, want ik vond het zelf wel prachtig. Ik 

geloof dat ik de enige van het gezin was die alles hinnen hield. 
Na de f' orlog hen ik toeu meteen maar in de tweede helft van de eerste klas 

RBS hegmmen. Dat was misschien niet helemaal volgens de regels, maar mijn 

vader was weer les gaan geven, in Bandung. Hij was, aan een school met zo'n 600 

leerlingen, de enige hevoegde geschiedenisleraar. Hij had een team van mensen 

die tocb werkloos waren, een kapper, een hoekhandelaar die alles kwijt was, en 

die gaf hij dan instructies in wat ze moesten doen. Een of twee scboolhoeken 

waren er, en die circuleer<len dan de hele klas rond. 
Mijn vader had dus nogal een sleutelpositie en wist mij, toen het gezin ein

delijk herenigd was - dat had ook nogal wat voeten in de aarde - , op school 

ingeschreven te krijgen. lk had toen een rapport waarhij ik volgens alle regels 

had moeten hlijven zitten, maar ook daar werd soepel over gedaan, en mijn 

moeder heeft me geweldig hijgestoomd, iedere dag in de vakantie hard werken 

aan allerlei lessen, en zo hen ik in de tweede klas gekomen. Toen ging het al wat 
beter - in bet land der hlinden is eenoog koning, en ik had een goed thuisfront. 

In die tijd merkte ik wel wat" van de spanningen tussen inlanders en Neder

landers. Dwars door Bandung liep de demarcatielijn. Ik heh daar de granaten 

door de straat horen gieren, dan sloegen ze een eindje verderop in, en dan kwam 

er weer een. 
Je kon dus ook de stad niet uit. We zijn een keer naar de Dago-waterval 

geweest met een Nederlandse militair, er waren militairen van de politionele 

acties en mijn ouders stelden daar hun huis onmiddellijk voor open. Dus die 

kwamen hij ons koffie drinken en eten en gezelligheid zoeken, en een keer heeft 

zo'n militair, gewapend, ons meegenomen naar de Dago-waterval. Toen was dat 

gevaarlijk terrein, daar kon je pemuda's tegenkomen, daar kon je niet naar toe 
zonder militair met geweer. Ik was overigens te jong om dat echt als spannend 

te ervaren. Dat was gewoon een randvoorwaarde van bet hestaan. 
Toen proheerde nwn in Bandung het Christelijk Lyceum weer op te richten, 

aan wat toen de Dagoweg heette. Ook daar hen ik drie jaar geleden teruggeweest 

en heh de school herkend, ook die was veel kleiner geworden. 
Maar om die school destijds weer opnieuw te kunnen oprichten was er een 

minimum aantal leerlingen nodig en mijn vader, grootmoedig als altijd , gaf mij 

op voor die school aan de Dagoweg. Toen zat ik ineens in het Gymnasium, dat 

wru:; hijua een uur lopen van waar wij woonden - been, en een uur terug, iedere 

dag. Ncm daar zat ik nog maar net een paar maanden op en toen gingen we 
naar Nederland. 
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Waarorn zijn ju/lie teruggegaan naar Nederland? 

Mijn vader was met hart en ziel leraar, maar hij is in het kamp praktisch 

blind geworden en kon niet alles wat een gezonde, valide leraar kon. Op een 

gegeven ogenblik gaf dat een conflict. De leiding van de school vroeg meer 

van hem clan hij kon opbrengen. Toen heeft hij zich lateu keuren en werd hij 

onmiddellijk afgekeurd en naar Nederland gestuurd met de eerstvolgende boot. 

Dat was november 194 7, en die tocht op de "Oranje" was een geweldige 

belevenis, een van de hoogtepunten in mijn !even. Een lijnboot als de "Oranje" 

was een prachtig stuk teclmiek, erg indrukwekkend. Wij, miju jongere broer 

en ik, hadden <le vrijheid om overal naar toe te gaan. Mijn zusje daaronder 

was net te jong en moest bij de kinderopvang blijven. Maar wij konden over 

de hele boot. Maar het allerbelangrijkste was dat er genoeg te eten was. We 

waren geweldig ondervoed uit het kamp gekomen, en dat eerste an<lerhalf jaar 

na de oorlog was nog steeds een periode van grote zuinigheid, en van, laten we 

zeggen, ook geen bijzonder rijke vocding. En daar aan boord heh ik voor het 

eerst bewust appels en peren gegeten, en havermout en van alles en nog wat, 

dat was een heus paradijs. 
Wij zijn als hele kleine ondervoede magere scharminkeltjes uaar Ne<lerland 

gekomen, en dat was toch al eind 1947. We kwamen aan in het begin van de 

winter, 30 november of zoiets, staat me bij, want de volgende dag zag ik voor 

het eerst hagel, geen idee wat dat was. Er lag ineens wit grind, dat er de vorige 

nacht niet geweest was. lk kreeg dan ook prompt binneu twee maauden een 

zware longontsteking. Nadat ik die overleefd had ben ik in een jaar van de 

kleinste van de klas tot de allerlangste van de klas doorgeschoten en heb een 

heleboel ingehaald in lengte en breedte en massa. 

W aar heb je toen gewoond en ben je naar school gegaan? 

We woonden in Bergen op Zoom, maar ik zat op school in Goes. Aan die 

school, het Christelijk Lyceum voor Zeeland, heb ik heel goede herinneringen. 

Er kwamen leerlingen uit heel Zeeland. Het was boeiend, ik ging graag naar 

school. 
Er was een nadeel aan de situatie. Vanuit Bergen op Zoom moest ik 's 

morgens al oru 6 uur met de stoomtrein mee want de trein van 8 uur was te 

laat, clan kwam ik pas om 9 uur op school. En ik kwam 's avonds laat terug en 

ik had natuurlijk mijn huiswerk. 
Ik kwam niet toe aan een sociaal !even in Bergen op Zoom, behalve zondags 

bij miju grootmoeder, koffie met ontbijtkoek, en dat was ook niet zo erg sociaal 

op mijn niveau. Terwijl ik in Goes ook buiten de. vriendenkringen bleef, want 

ik kwam pas tegen schooltijd en ik ging meteen na school weg om de eerste 

trein te halen , want die treiuen reclen maar eens in de twee nur, clat was niet 

zo erg leuk. Ik ben clus een beetje zonder speelvrienclen, zonder vrienden met 

wie je sociaal contact hebt, opgegroeid. Ik had wel vrienclen op school maar die 

17 



woonden dan ook heel ergens anders. Een goede vriend woonde in Yerseke en 
die zag ik alleen maar op school. 

Het. Christelijk Lycenm voor Zeeland was in die tijd een kleine school, pas 
gestart , nog zoncler erkenning, en dat was een beetje behelpen , wat lokatie 
betreft en wat docenten hetreft . \Ve zaten toen ik daar op school kwam ( dat 
was halverwege de dercle klas ) in een oml gebmm·, ik denk dat. clat ee11 oml 
weeshuis was of zo. 

\Ve waren als derde klas de hoogste klas, en we bleven dat , 111ij 11 hele school
periocle, en dat gaf ons een bijzondere verantwoordelijkheid. Als we ons hadden 
misdragen t.egenover een leraar - clat wil zeggen. dat vond die leraar , die ging 
zich beklagen - dan werden WP hij de rector geroepen en die zei dan: ".Jullie 
zijn de hoogst e klas en jnllie rnoeten het voorbeelrl geven, daarom zal ik jnllie 
nu geen straf geven maar ik reken crop .. :· . .Ja , het was cen heel apart.e sfeer. 

Door mijn lac1111aire ondergrond zakte mij11 rapport. weer volledig in elkaar, 
en toen herhaalde zich het spelletje. Ik had volgens alle regels moeten hlijve11 
zitt.e11, met ee11 3 voor Latijn, ee11 4 voor Grieks en ee11 011volrloemle voor dat. , 
maar de rector in Goes had zdf i11 lndie gczete11 en die wilde me we! ce11 kans 
geven . 

\Veer een zomer heel hard gehlokt c11 in de vierrle klas heh ik toen geleidelij k 
aan rnijn cijfers op wet.en te halcn, en met de ovPrga11g van 4 naar .5 waren alle 
onvoldoendes verclwe11e11, en daar11a is de zaak 11aar ee11 redelijk nh·ean gehracht. 

111 die laatste klassen, 5 en () gym11asi11m , zate11 we met z'n zeve11e11 in de 
klas. Pas in rnijn cindexameujaar, in 1!)51, lieeft de school erkem1ing gekrcge11 . 
Er was nog een tijcl Jang sprnkc \'a11 dat wij op cen a11dere school examcn zomle11 
moeten doen. Net. op t.ijd is dat. in orde gekome11. 

Het. was ook voor de leraren voor ce11 dee! ee11 opoffering. De school was niet 
gesubsidieerd dns ik denk ook nict clat zc het.zelfrle salaris gchad zullcn hebhen 
als de kmtre11 aan een we! erkendc en gesnhsidieerrle school. l\foar !wt was 
heel inticm, doonlat het. klein was en doonlat de leraren enthousiast ware11. Ze 
proheerden je echt wat. over te brengen. Ik heh daar heel positieve herin11eri11ge11 
aan. 

Well.:e vakkcn vond j c Leu.I.: op 8chool? 

Wisknnde vond ik erg leuk, ik had les van de heer Maas; die was K5-cr maar 
cen heel solide en betrouwbare leraar. Als gymnasiast kreeg ik ook analyt.i
sche meetknnde, nit het hoek van Schreck, als ik bet goed heh. Daar kwarnen 
coifrdinaat-trausformaties aan de orclc, maar alleeu maar translaties, en clan 
wilde ik op een gegeven moment weteu wat er gebeurde bij rotatie. Nou meneer 
Maas kwam met zijn exemplaar van Barran en had daar eeu bladwijzer bij ge
daan waar de coordinaat-transformaties stonden en leencle dat aan mij nit, en 
dat bestudeerde ik dan, rlat had hij voor K5 moet.en doen. Hij kon het me niet 
uitleggen maar hij kon we! zijn boek uitlenen en dat vond ik erg leuk. 

En zo waren er meer leraren die echt wat voor je rleden. De leraar Duit.s, die 
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mij een boek over filosofie uitleende en die mij op bet spoor zette van het oud

Duitse Nibelungenlied en dergelijke. En de leraar Nederlands, meneer Cornet, 

die geweldig euthousiast was, die ook altijd bereid was om zich te lateu afleiden 

om over zinnige culturele onderwerpen met de klas te praten. Ik heh daar erg 

veel van geleerd, vooral door zijn enthousiasme. Door natuurkunde werd ik erg 

g1!boeid, door de leraar Hoogteijling. 
Ook kwam er een leraar, de beer Mulder, die pas zijn ingenieursexameu 

in Wageningen had gehaald, zowel voor biologie als voor scheikunde, ook een 

enthousiast iemand, waar ik graag bij op les kwam. Biologie was een van mijn 

lievelingsv;,kken, dat was mijn enige 10 bij het eindexamen. lk was eigenlijk ook 

van plan 01 1 biologie te gaan studeren, maar die enthousiaste leraar natuurkunde 

heeft me overgehaald om naar de VU te gaan voor natuurkunde, daar had hij 

zelf gestudeerd. 
Het was een school die heel weinig had. Proeven konden er nauwelijks gedaau 

warden. Ik herinner mij nog dat er eens een fles kwik was aangeschaft, en toen 

kwam de werkster, die wou de fles oppakken en die had helemaal niet in de 

gaten dat dat kwik was. Ze schrok zo van dat gewicht en liet hem vallen en 

daar brak-ie. Gelukkig in de gootsteen, en uit de elleboog kon nog een dee! van 

bet kwik gered warden. Maar dat was bijna het hele practicumkapitaal dat daar 

werkelijk 'through the drain' ging. 
Maar ach, mijn zwakke vakken waren de talen. Daar heb ik ook erg lacunair 

les in gehad en daar ben ik nooit sterk in geworden. Ik heb nooit goed Frans 

geleerd bijvoorbeeld, want de eerste leraar Frans, die is aan tbc overledeu -

daar stierf je toen nog aan, kort iia de oorlog - , toen hebben we een tijd zouder 

leraar Frans gezeten, en toen kreeg de leraar geschiedenis opdracht om Frans 

te geven want die had in Belgie gewoond, dus die was relatief deskundig. Dat 

was de heer Van Dijk, zijn vrouw is de bekende schrijfster van streekromans 

geweest, Nellie van Dijk-Has. Ik heh van mijnheer Van Dijk leuk geschiedenis 

gehad, maar ik heb geen Frans geleerd. Toen kregen we daarna een juffrouw 

Frans, die was nauwelijks ouder dan de oudste jongen in de klas, misschien nog 

jonger, die had toch wel enige moeite met orde in de klas. Kortom, Frans is 

nooit mijn sterkste vak geworden. 
Maar Grieks vond ik leuk onder de talen, en dat vind ik nog steeds eeu heel 

leuk vak, en van Latijn heb ik ook nog wel wat opgestoken. En voor de exacte 

vakken hoefde ik niks te doen. 

En gymnastiek? 

Nee, daar was ik de miskleun. Dat kwam ook, de eerste jaren ging ik vanuit 

Bergen op Zoom in Goes op school, dat is maar een kilometer of 40, denk ik, 

maar in die tijd ging er nog een stoomtrein eens in de twee uur. En die deed 

er een uur over, ja, en clan kon je soms twee uur later vertrekken als je het 

eerste uur mocht missen. En vooral als bet eerste uur gynmastiek was, clan 

wist ik het voor elkaar te krijgen dat ik daar toestemming voor kreeg. Mijn 
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gymnastiekopleiding laat dus te wensen over. 

Na je eindexam.en, in 1951, bcn je gaan studcren aan de Vrije Universiteit . 

. Ta, daarna hen ik naar de VU gegaan. Mijn vader zag aankomen dat ik zou 
gaan studeren, probeerde de zaak economisch in de hand te houden, en had 
inmiddels gesolliciteerd naar een posit.ie in Alphen aan de Rijn , en in 1951 zijn 
we daarheen verhuisd. 

Toen wij daar woonden is Avifauna opgericht; dat gaf in het dorpsleven nogal 
wat commotie. Ik hen daar geweest. Ik hen altijd een groot liefl1ebher van 
dieren, in het hijzonder van vogels geweest. Dus A vifauna was best de moeite 
waard. Het was alleen nauwelijks te hetalen voor ons. Mijn ouders moesten na 
de oorlog behoorlijk zuinig zijn , want die zijn volledig berooid, zouder iets, nit 
Indie teruggekomen en moesten wel zes kindereu groot brengen. 

Ik herinner me verder nog hoekhandel Haasbeek, die bestaat nog steeds. 
Haasheek trok het land rond en kocht overal winkeldochters op en verkocht clie 
voor een verlaagde prijs. In die boekhandel heh ik heel wat uren rondgehangen 
en heh daar ook heel wat zakcentjes naartoe gehracht om toch maar weer eeu 
boek aan te schaffen. 

Dat heeft de basis gelegd voor je bockencollectie? 

Die basis is al in In<lie gelegd, vlak na de oorlog. De .Tapanners hadden een 
rare gewoonte. Ze sorteerden alles en sloegen dat dan weer op. Dan had je dus 
een straat daar was een aantal huizen helemaal volgestouwd met stoelen, in rle 
volgende straat stonden de tafels, die ameublement.en waren uit elkaar getrok
keu. En weer in een volgende straat. stonden de bedden, en zo was er een groot 
huis volgestouwd met boeken. Alle mensen waren gelnterneerd , alle blauken, 
die lmizeu stonden leeg, eu de Japanners hadden alle huisraad opgeslagen, maar 
eerst wel even sorteren. Alle boeken waren bijeen gebracht in een verdiepiugs
lmis (zoals we dat noemden in Indie). En die hoeken moesten geregistreerd 
worden, en ik heh als jochie in Bandung zakgeld verdiend door van de boeken 
de titels op te schrijven, lijsten te maken van die boeken, en ach, ik mocht wel 
eens een boek meenemen van de toeziende man die daar de leiding gaf. Daar 
komen mijn eerste boeken vandaan. Nog niet zo veel maar daar begon het mee. 
Ik had dus al een paar boekeu toen ik uit Indie kwam. 

W at had jc grootste intcressc? Fictie, non-fiction, ... 

Dat was gemengcl. Zowel De Drie Musketiers als De Wouderen der Werelcl , 
en een boek over kuustgeschiedenis. Van de heer Haa.-;beek, de boekhandelaar 
in Alphen aan de Rijn , heh ik bij mijn doctoraal nog een boek gekregen, en 
dat waren de Analects van Confucius. Ik heh het. nog steeds. De vertaling 
van de wijze woorden van Confucius. Daar was ik ook altijd in geluteresseerd , 
religies, gewoonten, met. name religieuze gewoonten van andere volkeren. Ik heb 
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als student de Koran vau begin tot eind, alle sura's, doorgelezen. Ik had de 

Nederlandse vertaling gekocht, met aan de ene kant, zo hoort het bij een goede 

vertaling, Arabisch waarvan ik alleen de Arabische cijfers heb leren ontcijferen, 

en aan de andere kant Nederlands, in kolommen naast elkaar. 

Ik heb mijn hele !even een zwakke plek gehad en dat zijn maagzweren. En 

daar heb ik voor het eerst voor gekuurd in 1954. Maar toen betekende dat nog 

6 a 7 weken plat en niet bewegen en heel laffe kost. Lezen met behulp van 

een plankje en zo, je mocht niet overeind komen. De theorie was toen nog dat 

dat nodig was orn zo'n maagzweer te genezen. En in die tijd heb ik de Koran 

uitgelezen. Ik had hem al, een vertaling van het Alunadija Genootschap. De 

vertaling van I<ramers heb ik gekocht zodra die uitkwam. Drie Nederlandse en 

twee Engelse vertalingen heb ik van de Koran. lk heb hem toen doorgelezeu en 

hele discussies gehad met de predikant die op ziekenbezoek kwam. 

Je hebt nu heel vaak kerkelijke discussies en zo. Dat mensen de vraag stellen 

van "Waarom is de ene godsdienst meer waar clan de andere?". Nou die vraag 

kwam toen bij mij ook al op en ik heb die vraag ook aan de predikant gesteld, 

van "Ja, waarom moet ik de bijbel voor waar houden en de Koran nou niet?". 

Uiteindelijk is dat natuurlijk geen zinvolle vraag, maar laten we daar nu niet op 

in gaan. Maar dat soort discussies had ik toen met de predikant. 

lk kan wel stimulansen aanwijzen. In de eerste plaats mijn Indische verleden, 

waar je natuurlijk opgroeide in een cultuur die Islamitisch is. In de tweede plaats 

die school in Goes waar ik naar toe ging. Dat was een Christelijke school die 

erg veel werk maakte van zijn Christelijke karakter. Op een Christelijke school 

heb je vaak godsdienstles, maar die school in Goes had verschillende religieuze 

vakken. We kregen een vak Kerkgeschiedenis waar ik echt veel van geleerd 

heb. We kregen een vak Bijbelkennis en een vak Zendingswetenschappen, en 

bij dat vak werden ook de grote godsdiensten van de wereld behandeld. Dus 

op de middelbare school maakte ik al kennis met andere godsdiensten, onder 

deskundige leiding. Er waren dominees die les gaven, maar dit was een dominee 

die er echt we! verstand van had. Met de hoofdlijnen van het Hindoeisme, 

Boeddhisme, de Islam, het begon met animisme en dynamisme, het was keurig 

netjes systematisch opgebouwd. Dat boeide me, dat vond ik interessant , en ben 

ik altijd interessant blijven vinden. 
Ik heb geprobeerd in de loop van de tijd naar de bronnen terug te gaan. 

Ik heh materiaal over het Boeddhisme, Hindoeisme, het heeft me altijd gein

teresseerd. Het interesseert me nog steeds hoe andere mensen, andere culturen 

denken, ik probeer mij in te !even hoe mensen uit zo'n cultuur hun bestaan 

beleven, ik probeer daar enige empathie voor te ontwikkelen, daar hoort de 

Islam zeer beslist bij. 

Hoe verliep je studie? 

Ik heh tot mijn kandidaats vanuit Alphen aan de Rijn als bus-student ge

studeerd aan de VU. Dat betekende dat ik ook geen lid was van een of and ere 
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studentenvereniging, ik was nihilist zoals dat toen heette, maar dat heh ik ook 
overleefd. 

Zoals ik al eerder zei, had ik heel lang biologie willen gaan studeren, maar 
bet is mijn leraar natuurkunde geweest die gemaakt heeft dat het natuurkunde 
werd. En ik heh daar nooit spijt van gehad, al bleek dat later wiskunde te 
worden. 

Je kon op twee manieren kiezen voor natuurkunde in die tijd: letter A en 
letter D. Letter A was wiskunde en natuurkunde met sterrenkunde. Letter D 
was natuurkunde en wiskunde met scheikunde. Ik heh voor A gekozen. Sterren
kunde leek me ook wel leuk en wiskundc vond ik ook leuk. Hoewel scheikunde 
ook niet bepaald een van mijn slechte vakken was. 

De VU was toen nog een kleine universiteit. Als ik het goed heb waren wij 
in 1951 voor A met zo'n 13 studenten. En dan was er nog een aantal studenten 
D (waaronder Maarten Maurice), en wat verder weg zat E en zo. Tussen A en 
D zat niks. Verschillende mensen nit die tijd kom ik nog steeds tegen op de VU. 
Nel Velthorst, Gnus Sornsen, dat zijn allemaal studiegenoten. 

Wat herinner je je nog van de hooglemren natuurkunde? 

Ik herinner me de colleges van Sizoo, dat was ecn inspirerend docent, boei
ende man, was in die tijd bestuurder van TNO. Hij nam geen tentamens af, dat 
liet hij zijn assistenten doen, maar hij gaf nog wel college. 

Ik herinner me ook de colleges van de theoretisch natuurkundige .Jonker, 
maar die heb ik pas leren kennen na bet kandidaatsexamen. Ik herinner me zeer 
wel een van de jongere, zeg maar, adjudanten, van Sizoo, die ook tentamens voor 
hem afnam en dat was Jan Blok. Die is ook al weer jaren geleden overleden. 
Het enige tentamen waarvoor ik ooit gezakt hen was bij Jan Blok, atoomtheorie. 
Toen mocht ik nog geen .Jan zeggen uiteraard, de afstand tussen docenten en 
studenten was groter dan nu. 

In mi.in tijd was Andriessen de portier van het VU-gebouw in De Lairesse
straat., een echte Amst.erdammer, een heel zware man, en die bewaakte de lift, 
want die was alleen voor hoogleraren en wij als student probeerden toch we! 
eens via de lift te gaan. Maar als Andriessen je in de kraag kon grijpen dan 
stuurde die je de trap op boor! 

Wie gaf sterrenkunde? 

Grosheide. Dat deed hij heel conscientieus; ik vind dat hij dat goed deed. Ik 
heh zijn sterrenkunde altijd begrepen. Zijn meetkunde heb ik vaak pas achteraf 
begrepen. Pas later door zelf boeken over lineaire algebra te gaan bestuderen 
ontdekte ik dat ik clat bij Grosheide ook al geleerd had. Ik kon het wel repro
duceren maar ik kon het kennelijk niet in een verband plaatsen. Grosheide was 
heel erg fonneel. Hij gebruikte de kern-index-methode, systematisch, kennelijk 
kun je zo'n methode leren correct te hanteren zonder dat je weet wat je doet. En 
dat hebben meer mensen gemerkt aan colleges van Grosheide. Maar Grosheide 
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gaf boeiend sterrenkunde, dat wil zeggen, ik werd er door geboeid. 

W anneer heb j e besloten toch wiskunde te gaan doen en hoe ben j e daartoe 

gekomen? 

Dat is in de loop van de voorkandidaatsstudie gebeurd. Toen ik eenmaal 

kandidaats gedaan had was het duidelijk dat ik verder zou gaan met wiskunde 

als hoofdvak, in het bijzonder door de colleges van Koksma en Mullender. 

Ik koos wel natuurkunde als bijvak, in eerste instantie, maar ik heb toen een 

aanvaring gehad met de practicumleider, die vond ik niet zo erg plezierig. Ik had 

denk ik ook de pech dat ik mijn kandidaats deed op een moment waarop geen 

anderen ee11 bijvak natuurkunde begonnen, en ik kreeg dus een opdracht om in 

mijn eentje een apparaat in elkaar te zetten. Dat ging van: hier is wat materiaal, 

hier is een soldeerbout, en daar is het magazijn, en maak maar een univibrator. 

Nou ja, de natuurkunde-hoofdassistent, de heer Hamers, verwachtte dat ik daar 

dag en nacht aan zou Wf'rkeu want ik legde daarbij beslag op kostbare appara

tuur: oscillografen e.d. , en lk vond 2 a 3 middagen in de week wel voldoende, 

want ik wilde ook mijn wiskundc bijhouden. En dat heeft op een gegeven mo

ment tot een botsing geleid; toen is mijn apparatuur weggehaald onder het mom 

van: Je bent er toch nooit! En ik ben nou eenmaal zo, ik accepteer een hele tijd 

verschillen van mening, maar clan word ik dwars, dus toen ben ik naar de heer 

Hamers toegegaan en heb gezegd: Ik zie van mijn studie natuurkunde af. 

Dus j e keuze voor wiskunde is terug te voeren op die meccanodoos die j e niet 

gekregen hebt? · 

Ja vast. Een oude frustratie, die blijft doorwerken. Toen ben ik als een 

van de eersten toegelaten tot het uitgebreid wiskunde. Formeel was er die mo

gelijkheid, dus hoofdvak wiskunde met slechts een bijvak. Maar Koksma en 

Grosheide en Mullender waren daar niet voor. Dat gaf maar eenzijdige studen

ten, je moest bijvakken doen, liefst natuurkunde want daar komen tenslotte alle 

differentiaalvergelijkingen vandaan, waar je als wiskundige zoveel plezier aan 

beleeft. Maar ik heb voor elkaar gekregen dat ik uitgebreid wiskunde mocht 

doen, door te beloven dat ik nog meer zou doen clan een dubbele portie, met 

meteorologie als bijvak. Mechanica zat er ook bij, zal wel onderdeel van het 

verplichte wiskundepakket geweest zijn. 

Welke herinneringen heb je aan de wiskundecolleges? 

Koksma was een geweldig enthousiast en inspirerend docent, had vanuit zijn 

enthousiasme een heel leuke manier om met je om te gaan. Tentamens deed je 

toen nog bij hoogleraren thuis en tentamen bij Koksma was een ervaring, daar 

ging je met vrees en beven naar toe. Maar als ik daar op terugkijk, die man was 

ook clan vormend met je bezig, je leerde daar op het tentarnen. Grosheide was 

heel systematisch en verlangde van je dat je bet precies zo terug kon vertellen 
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als hij bet je verteld had, tenminste zo beleefden wij dat. 
Aan de colleges van Mullender denk ik met plezier terug. Hij heeft altijd iets 

speels gehad, je zou bet ook iet.s slordigs kunnen noemen, maar speels en een 
beetje slordig horen vermoedelijk bij elkaar. Die kon heel geniaal met zijn vak 
omgaan maar liep weleens vast in zijn epsilons en delta's . 

De VU was in die tijd klein, en verschillende colleges werden gecombineerd, 
maar voor diegenen die A gekozen hadden werden nog eens op een apart college, 
ik meen op de woensdagmiddag, de puntjes op de l gezet. Dus op bet brede 
college werd wel eens een aantal dingen geponeerd, en dan kreeg je op bet aparte 
college bij voorbeeld de sneden van Dedekind. 

Ik wilde aan bet eind van bet eerste jaar al meteen tent.amen doen, ik was 
kennelijk nogal ijverig en was goed bij. Ik heb toen meegemaakt dat ik tijdens 
bet college analyse, zeg maar voor bet brede publiek, Mullender kon helpen 
die was vastgelopen in een bewijs. Dat bewijs had hij ook al gedaan op bet 
aparte college en dat had ik al geleerd, dus ik kon hem vertellen hoe bet verder 
moest. Ik geloof nog steeds dat dat mij geweldig geholpen heeft. Want toen 
ik eenmaal bij Mullender tentamen kwam doen, toen kwam ik daar vrij vlot 
doorheen. lk zie me nog zitten met bibberende handen, met zo'n kopje thee dat 
mevrouw Mullender binnenbracht, vol prachtige concentrische kringetjes: toen 
was ik geloof ik al geslaag<l ... 

Koksma had de zeer aantrekkelijke gewoonte om colleges te geven voor alle 
jaren - voorkandidaats, nakandidaats, tot vijfde-jaars toe. College verzame
lingenleer, college groepentheorie, en dat waren heel leuke colleges, dat deed hij 
met heel veel flair, met vcel improvisatie ook, maar dat was boeiend. 

In die tijd was het onderwijs aan de VU nog tamelijk conservatief. Het college 
groepentheorie kwam niet verder dan het allereerste beginstukje, een bladzijde 
of zestig in Van der Waerden Deel I, en misschien nog wel minder. En een van 
de argumenten waarmee ik destijds voor elkaar kreeg dat ik uitgebreid wiskunde 
doctoraal mocht doen was dat ik Koksma aanbood om geheel Van der Waerden 
te doen als tentamen. Ik denk dat ik toen meer in Van der Waerden gelezen 
had clan waar hij ooit aan toe gekomen was. Ik heh <laa.r veel van geleer<l. Ik 
vond het een schitterend boek. 

Werd er topologie gegeven in die tijd? 

Ouderejaars vertelden met een zekere nostalgie da.t Grosheide eens een caput 
- en ik verstond hen maar niet, 'tautologie' verstond ik - gegeven had, maar 
ik begrijp dat hij een keer een college topologie heeft gegeven, ik neem aa.n 
voornamelijk algebra"ische topologie. Maar dat was <lus een legende, dat was 
eens een keer gebeurd. Ikzelf was al aan bet eind van mijn studie toen er bij 
de nieuwe boeken in de bibliotheek een boek lag van Kelley, General Topology. 
Ik heb daarin zitten kijken en <lat was volkomen abracadabra voor me, maar 
bet leek me wel heel erg interessant. Ik heh dat boek toen gekocht en gelezen, 
dat was mijn eerste kennismaking met topologie, ma.ar toen was ik al bijna 
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afgestudeerd. 

Waren er nog meer vakken die jou in het bijzonder aantrokken? 

Ik vond eigenlijk bet hele wiskundeprogramma leuk. Als gymnasiast had ik 

geen beschrijvende meetkunde gehad, en dat moest je dus inhalen, net zoals de 

HBS-ers wat analytische meetkunde moesten inhalen. Mullender gaf opdrachten 

voor beschrijvende meetkunde, en ik herinner me nog dat ik als tentamenop

dracht een regelmatig twaalfvlak moest tekenen in drie verschillende projecties, 

dus volledig geconstrueerd. Dan moet je om te beginnen de regelmatige vijfhoek 

construeren en daarna verder met centrale projectie en orthogonale parallel

projectie en zo. Dat moest keurig op een groot papier in inkt, dat werd dan 

ingeleverd en daarna besproken. Het leverde uiteindelijk een handtekening op. 

Ik had nooit leren tekenen, ik heb toen voor het eerst een trekpen gehanteerd. 

Ik heb boeken van Van Veen en zo gelezen, over beschrijvende meetkunde, en 

ik vond dat leuk en boeiend en heb dat met plezier gedaan. 

Eigenlijk vond ik alles leuk. Maar wat mij bijzonder aantrok was alge

bra, verzamelingenleer, en na bet kandidaats ook weer de capita van Koksma, 

bijna-periodieke functies, heel boeiend. Tegenwoordig heb je het over de Bohr

compactificatie en dan trek je het in de harmonische analyse. Maar dat gebeurde 

toen nog echt op reele getallen zonder generalisatie naar topologische groepen. 

Dat vond ik een heel boeiend college. Koksma gaf een aantal colleges waarin 

iedere keer eenzelfde structuur aan de orde kwam, een Banach-ruimte of Banach

algebra die volledig was, en dat heb je bij de bijna-periodieke functies zo. Waar 

had je dat nog meer bij? Bij Fourier-transformaties en Fourier-reeksen, en dat 

behandelde hij dan systematisch op dezelfde manier. Je had een eenduidig

heidsstelling en een volledigheidsstelling en de ongelijkheid van Parcefal en dat 

kwam dus in verschillende contexten terug. Heel weinig efficient maar wel heel 

leerzaam. Je gaat dan inderdaad zien dater een gemeenschappelijke structuur, 

een abstracte structuur, ligt achter allerlei concrete wiskunde. En dat heb ik 

boeiend gevonden. 

Statistiek, daar heb je het nog niet over gehad. 

Nee, dat werd nauwelijks gegeven. Van Rooijen was buitengewoon hoogle

raar en gaf verzekeringswiskunde. Dat heb ik bij hem gelopen. Hij gaf ook van 

tijd tot tijd colleges statistiek en numerieke wiskunde, maar die heb ik nooit 

gelopen. Ik heb dus helemaal geen statistiek gehad. En met zijn numerieke 

wiskunde ben ik ook nooit geconfronteerd. Wel heh ik nog eens een college 

demografie van hem gelopen. Hij werkte bij een verzekeringsmaatschappij, de 

"Hollandsche Societeit", dus demografie was zijn specialiteit en zijn kernbe

langstelling. Maar statistiek en waarschijnlijkheidsrekening en ook numerieke 

wiskunde zijn helemaal aan mij voorbij gegaan. 

Ook omdat het je minder interesseerde? 
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Van Rooijen gaf niet zoveel colleges en het was het ene jaar dit en het andere 
jaar dat en ik ben niet zo erg lang als student blijven hangen. Ik heb in 1954 
mijn kandidaats gedaan en in 1957 mijn doctoraal. Ik had in 1952 een meisje 
ontmoet waarmee ik zou trouwen, ben in 1954 verloofd en heb de hele zomer 
hard gewerkt in een jamfabriek om voldoende te verdienen om verlovingsringen 
te kopen. En ik ben in 1956 voor de klas gegaan, leraar geworden, om een basis 
te leggen voor de bruiloft. 

En ja, op een gegeven ogenblik zette ik er nogal de vaart in, ik was van ons 
jaar de eerste die afstudeerde. Dat betekende dat ik vermoedelijk nauwelijks de 
gelegenheid gehad heb nog veel extra colleges bij Van Rooijen te volgen. 

In welke jamfabriek werkte je? 

Pfeiffer of De Pijper of zo, hij bestaat al lang niet meer. De fabriek stond 
aan de Leidse Rijn, en die jamketels ... Er werd iemand op de uitkijk gezet en 
die ketels werden dan met dat vieze Rijnwater omgespoeld, voordat de volgende 
portie erin gekookt werd. En bovendien, als je zag hoe die frambozenmandjes 
van de veiling kwamen, bedekt met een laag schimmel en rupsen en zo, en 
die gingen gewoon met levende have het vuur op, er ging vervolgens toch een 
heleboel sulfiet bij. Het was zeer leerzaam, ik heb jarenlang geen jam willen 
eten. 

Daarna ben je ook uit Alphen aan de Rijn vertrokken? 

Na mijn kandidaatsexamen in 1954 ben ik op kamers gaan wonen. Ik zat op 
een zolderkamertje op de Tweede Kostverlorenkade, vlakbij de Wiegbrug. Heel 
plezierig om je eigen baas te zijn. 

Wie herinner je je nog van je medestudenten? 

Ik noemde Maarten Maurice al (later hoogleraar wiskunde aan de VU), Wim 
Kuyk (later hoogleraar o.a. in Antwerpen), zijn vrouw Minke Zuidema, die 
kwam een jaar later, maar daar ben ik nog samen mee naar school gegaan in 
Solo, samen in een andong, in zo'n paardewagentje daar. Een jaar eerder Piet 
Born, heeft natuurkunde gestudeerd, gepromoveerd en is naar Pakistan gegaan 
en heeft daar een Christelijk College opgebouwd. Daar is hij nu net bezig 
afscheid te nemen. 

Later uit de kandidaats-fase: Nico Habermann, die gepromoveerd is bij 
Dijkstra in Eindhoven en later naar de VS gegaan, Hoofd Computer Science 
bij Carnegie Mellon geworden. Ik heb hem daar nog opgezocht, de laatste keer 
dat ik daar zijn gast was. Toen ben ik ook te gast geweest bij Dana Scott thuis, 
met mevrouw Habermann en Nico. Laatstelijk was Nico de Computer Science 
Advisor van de National Science Foundation. Maar hij is een jaar geleden, veel 
te vroeg, heel onverwacht, overleden. 

Wim Blokhuis moet ik zeker noemen, die is later naar Den Helder gegaan, 
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naar de Opleidingsschool voor de Marine. Hij was een oudere studiegenoot die 

ons zo nu en dan tot kalmte maande als we weer eens wat te enthousiast met de 

bordenwissers gingen gooien, die wist al dat dat niet hoorde. Eyt Algra, moet 

ik zeker ook noemen, die heh ik al heel lang niet gezien, ook aan hem heh ik 

heel plezierige herinneringen. Een goede vriend die ik nooit meer gezien heh 

sinds we afgestudeerd zijn. 
En iemand die ik dan ook nog even moet noemen dat is Han Schippers, 

de zoon van Professor Schippers, de theoloog. Die jongen had the, en in de 

periode nadat hij uit bet sanatorium was en genezen verklaard heh ik hem leren 

kennen. Wij hehhen toen met een aantal studenten - Maarten Maurice en Wim 

Kuyk ware ·1 daar ook hij, maar Han Schippers prominent ook - een werkgroep 

formele logica opgezet, en zijn daar een aantal hoeken gaan bestuderen, en 

nodigden daar de hooglerareu uit, en die waren zo sportief dat ze ook kwameu. 

Koksma, Grosheide en Mullender. We hestudeerden dus een hoek van Carnap 

en een hoek van Curry. We hadden wel Koksma om advies gevraagd, en die 

had Beth om advies ge raagd en had dat overgebracht. En daar heb ik voor 

het eerst kermis gemaaki met de fonnele logica. Dat voud ik heel erg hoeiend. 

Maar Han Schippers is heel j mg overleden. Waar ik mij hem ook altijd om 

blijf herinneren is omdat hij een heel sympathiek iemand was. Ik heb hem niet 

laug gekend, hij deelde met ons de belangstelling voor dat soort abstracte zaken 

als logica maar hij heeft mij ook gelntroduceerd in andere zaken, Gargantua 

et Pantagruel van Rabelais heb ik van hem geleend in de vertaling van Ernst 

van Altena, daar was ik heel erg door geboeid in die tijd . Ik heb het later zelf 

aangeschaft. 
Dat zijn zo een paar 1mmen die bij me opkomen. 

In 195 7 ben j e af ge8tudeerd. Wnt heb je toen gedaan '? 

Ik wilde graag promoveren bij Koksma, hoewel ik meer tentamens had gedaan 

bij Mullender clan bij Koksma. Maar ik had gesolliciteerd naar een baan als 

leraar in Haarlem, en ik had Koksma gevraagd of hij referenties wilde geven. 

Toen reageerde hij nogal terughoudend, misschieu moet ik zeggen nogal fel. Hij 

vond het niks voor mij en bood me bij die gelegenheid een assistentplaats op bet 

Mathematisch Centrum aan, waarvan Koksma toen Directeur was. Ik hen toen 

naar mi ju vader gegaau, van "Wat moet ik nou doen ?". Die baau in Haarlem 

werd me aangeboden en ik kon assistent worden op het MC. En mijn vader zei: 

"Je moet natuurlijk een echte baan nemen". Hij was in de crisistijd begonneu 

en een school was tenminste een serieuze, betrouwbare werkgever. 

Maar Koksma heeft me van de school geplukt, en gezorgd dat ik een heurs 

naar de VS kreeg. Er was toen nog een programma van het State Department, 

voor uitwisseling met Europa, de International Cooperation Administration, in 

het kader van de wederophouw van Europa. 
Ik heb twee jaar in Berkeley gezeten. lk heh toen college gelopen bij Van 

der Corput, die zat toen in Berkeley, maar vooral bij Tarski en Henkin. Ik heh 
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erg veel steun van Henkin gehad. Hij was heel sociaal gericht en ving mensen 
die van buiten kwamen op, deed daar wat voor. Kelley was met sabbatical, die 
was er niet, maar Loeve, de waarschijnlijkheidstheoreticus, gaf college topologie 
uit het boek van Kelley. 

Ik heb in Berkeley de moderne wiskunde geleerd. Ik heh daar heel veel 
colleges gelopen. Ik kwam daa.r eigenlijk met een fellowship met de hedoeling 
dat ik daar onderzoek zou leren doen of mee zou doen met het onderzoek. 
Maar ik heh daar heel veel colleges gelopen, en daar de moderne benadering 
van de wiskunde leren kennen die ik op de VU niet tegengekomen was, algebra, 
moduletheorie, topologie, veel logica. Mostowski kwam daar in sabbatical, gaf 
axiomatische verzamelingenleer, heel boeiend, heel aimabele, knappe man ook. 
Daar heb ik Dana Scott voor het eerst gezien, ik ken hem }anger dan hij rnij 
kent. Hij hield een verhaal op het seminar van Tarski. In die tijd was er ook 
een keer een congres waar ik als toehoorder bij zat, op het gebied van logica 
en grondslagen. Montague heb ik daar ook ontmoet. Dat is voor mij een heel 
belangrijke ervaring gcweest. 

Na je tijd in Berkeley ben je op 1 oktoher 1959 aan hct MC begonnen. Hoe 
verliep je promotieondcrzoek? Hoe werd dit bei"nvloed door je tijd in Berkeley? 

Toen ik terugkwam uit Californie had ik een heel wat andersoortige wiskunde 
in mijn bagage dan toen ik er naar toe ging. Wat ik in Berkeley geleerd heb is de 
moderne opzet van de wiskunde, de meer abstracte opzet , het gebruik van het 
Lemma van Zorn, de meer algehralsche, meer structnrele henadering van zaken, 
in plaats van alles precies doorrekenen. Koksma gaf toch veel meer colleges 
complexe functietheorie, differentiaalvergelijkingen, op de ouderwetse manier, 
waarbij je de zaak helemaal doorrekent, en begint met eenacht.t.iende epsilon en 
aan het eind komt het precies allemaal goed, en daar was hij geniaal in. 

Mijn bedoeling was om bij Koksma te gaan promoveren. Maar Koksma is 
ik meen eind 1960 ernstig ziek geworden en een tijd lang uitgeschakeld geweest. 
Koksma is toen ook opgevolgd als Directeur van het MC door Van Wijngaarden. 

Koksma kon mij toen niet coachen, en in die periode ben ik in het gravita
tieveld van De Groot terecht gekomen en ben ik aan problemen gaan werken die 
De Groot mij voorhield. Ik was erg geboeid door laten we zeggen de Bourbaki
wiskunde, die ik uit boeken en geschriften in die tijd leerde, en De Groot als 
topoloog deed natuurlijk onderzoek in die richting. 

Dus als K oksma j e m eer had begeleid was j e missch.ien in een meer klassieke 
richting gegaan dan waarin j e nn bent gegaan. 

Ja, maar Koksma had er zeker oog voor dat het inmiddels op een andere 
manier moest en kon. Dat blijkt al uit de opdrachten: probeer die ideeen van 
Wey! over gelijkverdeling nou eens te generaliseren naar andere lokaal compacte 
groepen dan de reele getallen. Dat is natuurlijk al een moderne henadering. 
Dus Koksma wilde me we! degelijk in een andere richting. 
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Ik heh eerst geprobeerd op mijn eentje op het gebied van gelijkverdeling wat 

te doen en op Koksma's suggestie de ideeen van Weyl te generaliseren naar to

pologische groepen. Dat is me toen niet gelukt. Later heb ik samen met Gilbert 

Helmberg op het gebied van gelijkverdeling wat gedaan. Dat was nadat Koksma 

weer voldoende hersteld was. Er is toen een colloquium gelijkverdeling geweest 

en Helmberg was een van de sprekers. Hij was toen een jaar gastmedewerker 

op het MC en ik heh later samen met Gilbert een artikel geschreveu, waarbij 

ik graag ruiterlijk toegeef dat Gilbert daar heel wat meer expertise en kennis in 

ingebracht heeft clan ik. Hij had ook een kleine voorsprong op mij ... 

Maar later heh ik ook een aantal dingen, waar we samen niet uitkwamen, 

opgelost, in de zomer van 1964, bij een bezoek aan Zdenek Hedrlfn in Praag. 

Daarvoor, in diezelfde zomer hen ik ook gepromoveerd. 

. . . iu <liezelfde zomer ben ik ook gepromoveer<l ... 

Hoe was de sfeer op het Centrurn '? 

Leuk, heel plezierig. Ik heb met Van Herk op een kamer gezeten en dat was 

leerzaam. Heel interessante man, een keel- , ueus- en oorarts die altijd wiskunde 

had willen studereu, maar zijn ouders vonden dat je als dokter een betere bo

terham kon verdienen. Hij was bijua bezeten van de Riemann-hypothese. In 

die richting was hij iedere keer aan bet graven. Hij was hoogleraar in Bandung 
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geweest. Aanvankelijk was hij op bet Mathematisch Centrum aangesteld op een 
plek waar op dat moment plaats was en dat was op de Afdeling Statistiek, en 
daar werd hij aan bet werk gezet maar dat had niet zijn hart. Zijn hart was 
de Riemann-hypothese, de get.altheorie, de priemgetalverdeling. Toen is men 
lankmoedig geweest en heeft men gezegd, goed, de helft van je tijd mag je aan 
je dierbare wiskunde besteden, en dat betekende dan ook de helft van de tijd 
gestationeerd bij ZW. En de andere helft van zijn tijd moest hij dan toch bet 
werk van Statistiek blijven doen, consultaties e.d., want als medicus was hij 
daarvoor natuurlijk bij uitstek geschikt. Veel van de consultaties bij Statistiek 
kwam van medici en andere onderzoekers die proeven opzetten en experimenten 
wilden doen en die statistisch wilden interpreteren. En die moesten dan gehol
pen worden om niet van tevoren hun uitkomsten al te projecteren in de wijze 
waarop ze bun experiment deden; Van Herk sprak hun taal. 

Van Herk had ook een eigen 'theory of everything' waarbij hij , geloof ik, bet 
aantal dimensies van de fysische realiteit kon uitrekenen, en dat was weer een 
heel ander aantal dan wat je bij andere auteurs aantreft. Later is Van Herk 
hoogleraar in St. Andrews in Schotland geworden. 

In de lunchpauze werd er gebridged. Ik werd gewoon geronseld, ik kon 
helemaal niet bridgen, non, dat heeft Lekkerkerker me dan maar geleerd. Hij was 
een goed bridger, hij heeft zich vrees ik nogal eens aan mij moeten ergeren want 
ik hen nooit een goed bridger geworden. Maar die traditie die toen begonnen is 
hebben we jarenlang voortgezet. Gert-Jan Forch is toen een tijdlang medewerker 
geweest bij TW, bekend auteur van bridge-handboeken, zeer deskundig. Als 
partner bleef hij altijd heel keurig en hoffelijk. Al was bet nog zoveel troep wat 
ik daar voor hem neerlegde, ik werd heel hoofs bedankt, 'thank you, partner' ; 
ja dat was een levensles! 

We hadden een heel leuke traditie, we gingen heel amicaal met elkaar 0111, 

met name de mensen van TW en ZW. De Rekenafdeling was een groep apart, 
hoewel Dirk Dekker vaak bij ons kwam meebridgen, maar die was natuurlijk in 
feite een oud-ZW-er, bij De Groot gepromoveerd. En Statistiek was ook een 
groep apart, daar hadden we niet zo veel contact mee. 

En de Algemene Dienst? 

De Algemene Dienst, ja, Mevrouw Oosting, hoofd van de huishouding. En 
de beer Van Ommen, die de koffie rondbracht. Die had een heel gore stofjas die 
vermoedelijk in geen jaren gewassen was, waarmee hij achter de stencilmachine 
stond en die onder de inkt zat en zo. In die stofjas zaten dan de lepeltjes, en 
dan kwam hij binnen, geklopt werd er nooit, de deur werd bpengestoten en daar 
zat ik dan met mijn benen op mijn bureau, die trok je clan gauw naar beneden 
(of niet, als je zag dat het Van Ommen was). Dan werd er koffie neergezet en 
clan graaide hij in die grauwe zak en dan kwam er een lepeltje uit, of een klontje 
dat had hij ook los in zijn zak. Dat hoorde er allemaal bij en dat was wel leuk. 

Bep Reckman was natuurlijk een zeer bekende figuur, ook een zeer invloedrij-
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ke figuur, en weleens een wat onvoorspelbare figuur. Ze kon wel eens emotioneel 

zijn. Had ze ook wel aanleiding toe. 
Ook als je goed met haar overweg kon dan kon het je gebeuren dat je op het 

verkeerde moment bij haar kwam en dan werd je dat ook wel duidelijk gemaakt. 

Ze nam nooit een blad voor de mond. Dus als ze vond dat je je niet gedroeg 

zoals zij passend vond dan liet ze je dat wel weten. 

Mevrouw Monasch herinner ik mij op de bibliotheek, op de tijdschrifteuafde

ling. Ik zat altijd veel op de bibliotheek, ik had toen nog de tijd om de nieuwe 

boeken door te kijken en tijdschrifteu door te bladeren, en te studeren. lk kende 

dus de bib1iothecarissen allemaal. Mevrouw Monasch zat op de tijdschrifteuaf

deling, ze ·vas politiek uiterst links en was dus in het bijzouder gericht op alle 

ruilingen met Oost-Europa. En daar heeft de bibliotheek heel veel aan gehad 

want allerlei Russische, maar ook Roemeense en Georgische en Azerbeidjaanse, 

en misschien wel Tsjetsjeense tijdschriften, hadden wij bier en die waren nergens 

anders in West-Europa. Wij hadden een complete collectie. Mevrouw Monasch 

ging bij voorkeur achter het IJzeren Gordijn met vakantie en zocht academies 

op en vertelde ze hoe stom ze waren dat ze niet met ons ruilden en bracht dan 

weer ruilingen tot stand. 
Meestal lag ze overhoop met wie op dat moment bibliothecaris was, wie dat 

ook was. Maar ik kon het goed met haar vinden op de een of andere mauier. 

Ze maakte nogal eens een praatje met me en dat vond ze kennelijk wel leuk. Ik 

mocht haar wel, het was een pittig vrouwtje. 

Hoe heb je K oksrna op het MC leren kennen? 

Koksma zette me meteen aan het werk, hij gooide me meteen in het diepe. 

Die kreeg als secretaris van de Akademie voor de Indagationes artikelen aange

boden en die gaf hij dan aan mij en daar moest ik hem dan een rapport over 

geven en dat soort zaken. Dat ging soms over dingen waar ik nog niets van wist. 

Maar de Afdeling Zuivere Wiskunde bestond toen uit twee personen, de andere 

was Gerrit Lekkerkerker, en die heeft mij geweldig gecoached, daar heh ik erg 

veel van geleerd. Dus als Koksma mij dan weer een hap gaf die eigenlijk mijn 

kunde te boven ging dan zei Lekkerkerker heel wijs en relativerend: "Dat doe 

je zo en zo", op een beetje socratische manier. 

Koksma schakelde me onmiddellijk ook in bij colloquia, het was toen nog be

langrijk dat er ieder jaar een groot colloquium was waar een van de afdelingen 

voor verantwoordelijk was en waar in principe iedereen uit het land uitgenodigd 

was. Koksma heeft colloquia georganiseerd over p-adische getallen en over ge

lijkverdeling. Er werden van tevoren syllabi uitgereikt. Dan werd je, als Koksma 

aau de beurt was als spreker, op zijn kamer geroepeu, daar in de Boerhaave

straat, een kamer beueden, vlakbij de ingang. Daar liep hij te ijsberen - dat 

deed hij altijd als hij diep uadacht , ook op eeu tentamen, als hij je dau vragen 

stelde dan liep hij achter je rug heeu en weer; dau had je het gevoel van wat 

komt die uou weer doen, uit welke hoek zal hij me bespringen. 
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Dan liep hij dus te ijsberen en telefoneerde, het ene telefoontje na het andere, 
Barning, secretaris van de directie, rende in en uit en gaf hem stukken, Koksma 
las al telefonerend de stukken, en tussendoor dicteerde hij zinnen voor zijn 
syllabus. Ik zat dat allemaal ijverig op te schrijven, en werd dan weer naar 
boven gestuurd om dat uit te gaan werken. 

Koksma kon drie dingen tegelijk doen. Daar is hij, denk ik, ook aan dood
gegaan. Hij is uit hetzelfde jaar als mijn vader, 1903, en is in december 1964 
overleden, dus hij was 61 jaar. Koksma heeft het meest van de oprichters gedaan 
aan de realisatie van de Stichting en het instituut. Hij is van de stichters ten 
onrechte het meest verwaarloosd. 

Er is veel meer erkenning voor Van Dantzig als de visionaire man, de man 
van de toepassing van de wiskunde, op alle mogelijke vakgebieden. Van der 
Corput was de man met gezag, de senior, hij was de promotor van Koksma. 
Van der Corput kende Van der Leeuw nog als collega in Groningen, en had 
dus het oor van de minister, want Van der Leeuw was in 1945 Minister van 
Onderwijs, Kunsten en Wetenschappen. 

Maar het werk werd grotendeels door Koksma gedaan. Het Internationale 
Congres van 1954 is door Koksma georganiseerd (met een stel adjudanten zoals 
Jaap Seidel), hij dirigeerde alles, maar de voorzitter van het congres was niet 
Koksma maar Schouten. En in de stukken kom je Koksma nauwelijks tegen. Het 
is Schouten als voorzitter van het congres. Maar het werk, de hele organisatie 
was in handen van Koksma. 

En zo was het ook onder de oprichters van het MC. Koksma deed geweldig 
veel werk. De basis voor de bibliotheek is gelegd door Koksma, hij was de 
inspecteur van de boekerij van het Wiskundig Genootschap, secretaris van de 
Koninklijke Akademie, had overal zijn netwerk zitten, hij gebruikte dat om 
dingen voor elkaar te krijgen, had geweldig veel informatie en een geweldige 
werkkracht. 

Vond Koksma zichzelf ook ondergewaardeerd? 

Nee, hij was een heel bescheiden man, hij werkte heel hard maar vond dat 
ook zijn vanzelfsprekende plicht. Hij was lid van de KNAW en van de Fryske 
Akademie, zat in allerlei schoolbesturen, deed kerkeraadswerk, deed heel veel. 

Is hij altijd een voorbeeld voor je geweest? 

Ja, Koksma is een voorbeeld voor me geweest in een heleboel opzichten. 
Dat komt ook omdat ik de facto zijn opvolger was aan de VU. Dat is een hele 
verantwoordelijkheid geweest. Het is met name ook Koksma geweest die mij 
aangetrokken heeft op de VU, met zijn collega's uiteraard, want Koksma deed 
dat in goed overleg. Eerst voor leeropdrachten (vanaf 1962), en later heeft hij 
mij voorgedragen voor een buitengewoon hoogleraarschap. En toen hij overleed 
in december 1964 heh ik zijn colleges overgenomen en gecontinueerd. Zo was hij 
bijvoorbeeld bezig met een college variatierekening, daar had ik nog nooit iets 
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. .. Koksma is een voorbeeld voor me geweest in een heleboel opzichteu ... 

van gedaan. Maar ik heb toen het dictaat van Jan de Vries geleend en heb de 

Kerststilstand van de colleges gebruikt om dat door te werken en wat vooruit 

te werken, en ik heb Koksma's college afgemaakt. Ik vertelde op donderdag 

alles wat ik wist en dan rende ik naar huis en dan ging ik weer een week, alle 

ogenblikjes die ik kon vinden, studeren, om dan de volgende week weer drie uur 

college te kunnen geven. 
Ook heb ik de tentamens afgenomen van de mensen die bij hem eerder col

lege hadden gelopen, zoals bijna-periodieke functies en zo. Ik ben dus in ziju 

voetsporen getreden, ik ben altijd beschouwd als zijn opvolger. En ja, dan heb je 

toch het gevoel dat je andermans profetenmantel op de schouder hebt gekregen 

en zo iemand wordt je alleen daardoor al tot voorbeeld. 

Je bent in 1965 niet alleen benoemd tot hoogleraar aan de VU, maar ook tot 

chef van de Afdeling Zuivere Wiskunde van het MC. 

Ja, najaar 1964 stierf niet alleen Koksma, maar ook werd De Groot door 

ziekte getroffen. Ik moest dus zowel op de VU het werk van Koksma overnemeu, 

als op het MC de leiding van de afdeling Zuivere Wiskunde. Ik heb toen echt 

heel hard gewerkt. Dat is een heel zware tijd geweest, maar wel boeiend want het 

lukte. Ik was natuurlijk ook een stuk jonger, je kuut dan ook meer hebbeu. lk 

heh heel veel kunuen doen. Maar er bleef weiuig tijd over voor eigen onderzoek. 

Ik heb de facto eind 1964 de leiding van de afdeling ZW gekregen, woonde 

ook de vergaderingen van de Raad van Beheer bij. Maar alleen het Curatorium 

kon mij benoemen tot lid van de Raad van Beheer en <lit vergaderde pas in 

1965. Toen ben ik ook benoemd tot chef en lid van de Ra.ad van Beheer. Dus 

in 1964 ben ik al begonnen als chef de belangen van de afdeling waar te nemen, 
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maar in 1965 is dat geformaliseerd. 

Hoe groat was de afdeling toen je chef werd'? 

Niet zo erg groot. Maarten Maurice was denk ik vertrokken na zijn promotie, 
hij had een halve baan op het MC en een halve aan de VU. Wim Kuyk was hier 
nog. Dirk Kruyswijk was bier inmiddels, Ietje Paalman was hier en ik denk dat 
.Tan van der Lune al assistent was, ik weet niet of Peter van Emde Boas er al 
was als assistent, ik denk het eigenlijk wel, of misschien al adjunct-medewerker 
of zo . .Tos van de Slot is ook een leerling van De Groot, die zal er ook al geweest 
zijn. Dan hen je al een heel eind. De meeste anderen zijn later gekomen. 

Waar lag je zwaartepunt in die tijd'? Je werkte 4 dagen in de week op de VU 
en 1 dag in de week op het MC. · 

Vanaf 1 juni 1965 ja. Vrijdags was ik hier, maar het meeste werk gebeurde 
op de VU. 

Maar je hebt het MC altijd heel belangrijk gevonden, verhoudingsgewijs meer 
dan eenvijfde baan'? 

Zeker, maar ja, zoals ik al zei, Koksma was overleden, er moest een heleboel 
werk gedaan worden aan de VU, ik had daar een heleboel werk. Maar vrijdags 
was ik hier, en dan ook volledig hier, en clan probeerde ik hier de zaak op te 
bouwen, niet zonder succes want de afdeling ZW is behoorlijk gegroeid in de 
jaren dat ik daar chef was. 

Je bent in die tijd ook een jaar naar Seattle geweest . 

.Ta, dat had De Groot nog voor elkaar gekregen, dat ik kort na mijn promotie 
een jaar naar Seattle zou gaan. Toen overleed Koksma, en is mij gevraagd om 
Koksma te vervangen en is het uitgesteld tot 1966. In 1966-1967 heh ik in 
Seattle gezeten. 

Ik was erg gelnteresseerd in het werk van Edwin Hewitt. "Abstract Harmonic 
Analysis", het tweedelige boek van Hewitt en Ross. Ik had het eerste deel 
helemaal doorgewerkt, er zaten ook heel wat topologische groepen in, prachtig 
boek! Het tweede deel is twee keer zo dik, en daar hen ik nooit echt mee klaar 
gekomen. 

Ik heb daar ook weer genoten van het college geven, ik had een heel goed 
rapport met de studenten. De enige keer in mijh leven dat ik aah het eind van 
een college eeh applaus kreeg; dat is me hier in Nederland nooit gebeurd. En 
ik heh daar het seminar van Hewitt bijgewoond. Ik moet achteraf zeggen dat 
mijn voorkennis onvoldoende was. Ik had meer van maattheorie en harmonische 
analyse van maten moeten weten om daar ten volle van te kunnen profiteren. 

Maar ik heh daar ook wel weer de kans gehad een aantal seminars en zo te 
volgen. Branko Griinbaum die daar aan convexiteitstheorie deed, Victor Klee. 
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Ik heh daar veel opgestoken maar onvoldoende zelf resultaten bereikt vind ik 

achteraf. Ik was toch in sommige opzichten wellicht iets te ambitieus geweest in 

wat ik wilde. 
Ik heh toen wel de tijd gevonden om met De Groot - dat wil zeggen, ik 

schreef, maar we puhliceerden het onder gemeenschappelijke naam - een over

zichtsartikel over mijn proefschrift te schrijven, over een aantal resultaten daar

uit waar De Groot ook aan hijgedragen had. Ik heh zo die tijd in Seattle vooral 

gehruikt om een aantal dingen te consolideren die ik al had. 

Maar de hedoeling was natuurlijk dat ik er met nieuwe ideeen vandaan zou 

komen en lat is onvoldoende gelukt vind ik achteraf. 

. . . eigenlijk de eeuwige student .. . 

Heb j e duur te w1;iniy aandacht uun gegeven ? 

Nou ik denk dat mij daar parten speelde wat mij mijn hele !even parten 

heeft gespeel<l, dat ik te veel tegelijk wilde en een te brede belangstelling heh, 

te weinig focus op een onderwerp. Ik ging naar Griinbaum en ging naar Klee 

eu giug naar Hewitt en ik zat weer college te lopeu hij wijze van spreken. 0 ja, 

ook Namioka gaf een seminar over I\-theorie en ik ging naar eeu seminar over 

Lie-algebra's. Ik vond bet allemaal even interessant, maar ik had minder mijn 
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aandacht breed moeten uitspreiden en mij meer moeten focussen op een of twee 
onderwerpen. 

Waarom? 

Dan had ik zelf meer research kunnen doen. Dan had ik misschien een wat. 
minder brede basis gehad voor later, bijvoorbeeld voor mijn functie op bet MC, 
maar dan was de kans groter geweest dat ik zelf wat originelere bijdragen had 
geleverd. Ik vind dat ik daar een kans gemist heh. 

Maar ik heh er wel weer een helehoel geleerd hoor! Mijn inzicht. in wiskunde 
is daar weer gegroeid. 

Je bent dus eigenlijk de eeuwige student. 

Ja, een beetje wel. 

Vind je dat je te weinig gebruik hebt gemaakt van je capaciteiten? 

Ik heh eens de illusie gehad dat ik meer eigen, origineler, creatief werk kou 
doen en er is een aantal redenen waarom dat niet van de grond is gekomen. 
Een daarvan is een brede belangstelling, waardoor ik mijn aandacht vrij breed 
verdeelde. Een andere reden komt voort nit de problemen in mijn persoonlijke 
leven, die al heel lang, 25 jaar, veel energie en veel tijd van mij gevraagd hebben. 
Waardoor ik mij ook niet zo kon concentreren als wenselijk ware geweest. Ach
teraf gezien zijn die problemen er mede de oorzaak van geweest dat ik eind 1969 
een tijdlang uitgeschakeld geweest hen, afgeknapt , een aautal maanden mijn 
werk niet heh kunnen doen, en daarna heeft het een tijd geduurd voordat ik een 
deel van mijn oude energie terug had. Eigenlijk heh ik altijd het gevoel gehad 
dat ik die nooit volledig terug gehad heh. Ik heh na 1970, vaak, zo gekscherend 
maar niet helemaal badinerend, gezegd: "lk heb weer net gedaan alsof ik nutt.ig 
gewerkt heh" . 

De ziekte van 1969-1970 ging ook terug naar je tijd in het kamp? 

Het was een combinatie van zaken. Het ziekteproces bij mijn vrouw begon iu 
die tijd duidelijk manifest te worden. Ik had het. geweldig druk gehad. Ik was op 
de faculteit. voorzitter van de commissie Computers en daar waren spanningen, 
het was de tijd vlak voor de oprichting van SARA. De natuurkundigeu haddeu 
eeu computer en de wiskundigen vonden dat zij dan tenminste ook een compu
ter mochten. Er moesten leerplannen ontwikkeld worden voor onderwijs in de 
informatica. Ik hen toen ook voor korte tijd voorzitter van de wiskundegroep 
geweest. Ik had een zware belasting zowel op het MC als op de VU. Problemen 
thuis, de gezondheid van mijn vrouw, dat totaal is mij teveel geworden. De
cember 1969 kreeg ik daar een zware griep bij en op de een of andere manier is 
er toen iets geknapt en in die periode zijn allerlei herinneringen uit ludonesie 
en het kamp teruggekomen. Maar de directie aanleiding was gewoon ordinaire 
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overhelasting door comhinatie van mijn twee hanen en mijn huiselijke situatie. 

Dat is alweer 25 jaar geleden. 
Ik hen hinnen een half jaar weer aan het werk gegaan maar ik kon eigenlijk 

nog niks doen. Ik hen toen echt goed van de kaart geweest. 

Je hebt aan de VU gelijk gewerkt m et Maarten Maurice, die ook topoloog is. 

Heb je dat als een probleem gezien ? 

Nee, ik heh trouwens veel meer colleges gegeven clan topologie. Cassels zou 

naar de VU komen en toen heh ik een jaar algehra"ische getaltheorie gegeven. 

Ik heh recursieve functies gegeven, logica, topologische groepen, harmonische 

analyse, het hoek "Integrals and Operators" van Segal en Kuntze heb ik eeu 

keer op college behandeld. Ik heh vooral nakandidaats heel veel ouderwerpeu 

gegeven ook buiten de topologie. Ook de eerste iufonnaticacolleges op <le VU 

heh ik gegeveu. Ik heb automateutheorie gedaau. 

Dat zat ook een kleiu beetje iu mijn leeropdracht, die wa.'i veel bre<ler dau 

topologie, dat was gewoou de zuivere wiskuude, en <lat heb ik ge"iuterpreteenl als 

het intro<lucereu van de moderne wiskunde. Naarmate er specialisteu kwameu 

die bet konden overuemeu schoof ik weer door. 

En dat is je gocd bcvallcn? 

Ik heb er zelf heel veel van geleenl. De topologie liet ik voor eeu belaugrijk 

dee! aan Maarten over. l\faar we hebben ook <liugen samen gedaan, we hebbeu 

een keer samen college categorietheorie gegeveu. \\Te verdeelden ook we! de taak. 

Ik deed topologische groepen, <lat liet 11\'laarten liggen . l\faarten deed meer aan 

homotopietheorie en zo, en <lat liet. ik clan weer liggen. Dat was geen enkel 

probleeiu. 

College geven heb je ook altijd gmay gcdaan. 

Dat heb ik al t ijd heel graag gedaan, ja. Dat mis ik het meeste. Toen ik mijn 

lmidige functie accepteerde was ik net mijn onderzoek weer aan het optuigeu. 

Dat heb ik niet ku1111e11 volhouden, dat is blijven liggeu, maar ik heb uog jaren 

college gegeven en toen ik dat ook moest opgeven vond ik <lat echt sneu. En 

dat had een dubbele reden. 
Enerzijds de toenemen<le werkdruk hier op het CWI en anderzijds, het laatste 

college dat ik gaf was logica voor informatica-studeuten en ik voud het jammer 

om <lat op te geven, dat mis ik nog steeds. 

Ik heb alt ijd met het grootste genoegen ook voorkandidaats-colleges gegeven, 

en speciale colleges zoals Boole'se algebra's, daar haalde je de goe<le studenteu 

mee uit. J an van Mill die op tentamen met veel ouconventionele hewijzen kwam 

omdat hij bij lineaire algebra, groepentheorie, of zo, dingen had geleer<l die hij 

probeerde toe te passen. Het werkte uiet , maar het feit dat hij het probeerde 

was al zo ougewoou dat je meteen dacht, dat is iemaud die denkt voor zichzelf. 
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Het was veel werk maar ik heh de tentamens altijd mondeling afgenomen 
dus ik kreeg ze allemaal langs, ook diegenen die daar niets van brouwden. Maar 
dat persoonlijk contact met de studenten, mis ik ook. Ik persoonlijk vond de 
mondelinge tentamens leuk. 

Hoe was de sfeer op de VU toen je daar als hoogleraar zat? 

Ik heh de sfeer daar altijd fijn gevonden, collegiaal, plezierig, je kon elkaar 
aanspreken op toch een grotendeels gedeelde levensbeschouwing. Het was een 
groep mensen die een flink stuk achtergrond deelden, in leeftijd dicht bij el
kaar zaten, elkaar als student gekend hadden. Maar er is natuurlijk ook een 
gemeenschappelijk uitgangspunt. 

Koksma, Mullender en Grosheide vond ik echt heel nobele en heel humane 
mensen die heel wijs en heel cooperatief bezig waren. Ik heh grote bewondering 
voor deze mensen. Ik kwam vorige week op de dies Mullender nog tegen en 
dan realiseer je je hoeveel warme gevoelens je voor die mensen hebt. Er waren 
eigenlijk nooit spanningen. 

Ik was overigens van geen enkele taak uitgesloten. Ik had een volle onder
wijslast, bestuurlijke taken e.d. Andere hoogleraren hadden een dag om tlmis 
te werken en ik had een dag op het MC. 

Maar je wilde waarschijnlijk ook niet minder? Of was het zo dat je aandrong 
op vermindering van je taken? 

Nee. Ik heb altijd een misschien wat doorgeschoten plichtsgevoel gehad. 

W oekeren met je talenten? 

.Ta. En misschien toch ook een soort schuldgevoel. Ik zei het al, ik heh het 
gevoel dat ik in mijn leven meer eigen creatieve bijdragen had moeten leveren 
en als je daar op de een of andere manier niet aan toe kornt, voel je je verplicht 
dat te compenseren. Dat heeft bij mij beslist ook wel een rol gespeeld. 

Het is natuurlijk ook een keuze van je geweest. 

Je kunt vervolgens dat als excuus gaan gebruiken, maar het is inderdaad 
ook een keuze geweest. Ik heh ook allerlei dingen gedaan op verzoek van stu
dent.en hoor. Ik hen college logica gaan geven op verzoek van studenten. Het 
werkgroepen-idee heh ik destijds voorgesteld, en het is ingevoerd. Ik heh daar 
nog steed heel goede herinneringen aan, werkgroep modale logica, verzamelin
genleer. Ik vond die werkgroepen bijzonder boeiend, met vijf, zes student.en, die 
al gevorderd waren en dan samen literatuur doornemen, ze helpen een verhaal te 
houden en zo. Maar dat betekende ook dat je als docent vrij breed georienteerd 
moest blijven. 

Zag je dat als een zware taak? 
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Nee, dat vond ik leuk. Ik was er zelf enthousiast voor. Ik meende te kunnen 

constateren dat dat overkwam. Ik heh daar vaak positieve reacties op gehad. 

Je hebt ook een aantal promovendi gehad. 

Ja, een stuk of tien. Behalve voor de eerste, Nico Dekker, die begeleid is door 

Rien Kaashoek, heh ik voor alle andere toch wel Hink verantwoording genomen. 

Ook al kwamen ze zelf met een idee, ik was gesprekspartner. Peter van Emde 

Boas kwam terug uit Cornell met ideeen, maar ik hen, denk ik, de enige die zijn 

proefschrift ooit volledig gelezen heeft. 

De ma-.1.ier waarop jij mensen hebt gestimuleerd bestond er ook vaak uit de 

mensen op het goede, bij de persoon passende, spoor te zetten, vaak een modern 

spoor. Is dat een bewust beleid van je geweest of ging dat vanzelf? 

Nou je weet dat ik op het MC bewust de discrete wiskunde ingevoerd heh, 

ter vervanging van de topologie. Het begon met een colloquium met Seidel en 

Van Lint als sprekers. Mensen aantrekken en ook tegen de topologen zeggen: 

"Ja mensen, jullie hebben een aa.ntal jaren kunnen werken, maar nu is het tijd 

9m iets anders te zoeken". 
En ik vind dat dat ook moest. Er zijn maar beperkte middelen in een insti

tuut als bet onze. Je moet een vakgebied een tijdlang stimuleren maar op een 

gegeven ogenblik kun je zeggen: dat wordt aan ·de universiteiten gedaan. Jan 

Aarts in Delft, Maarten Maurice aan de VU, bet MC moet wat anders gaan doen. 

En ik heh toen de discrete wiskunde bewust gekozen en de formatieruimte, ge

leidelijk maar toch, overgeheveld van topologie naar discrete wiskunde. Andries 

Brouwer had een la vol met topologie-resultaten liggen, maar is hier aangetrok

ken om discrete wiskunde te gaan doen. Jij ook. Ik wist er zelf toen niet zo 

erg veel van af. Maar ik dacht: dat is belangrijk, dat gaan we doen! En ik heh 

aan de VU daarover jarenlang college gegeven, geholpen door een uitstekende 

syllabus van Martyn Mulder. 

En logica? 

Dat is altijd een hobby van me geweest. 

Maar je hebt ook mensen in die richting gestimuleerd of aangetrokken. 

Ja, Krzysztof Apt, Danny Leivant, Theo Janssen, Loek Fleischhacker. 

Als chef ZW zat je ook in de Raad van Beheer van het MC. 

De oude Raad van Beheer vergaderde iedere vrijdag bij Van Wijngaarden 

op de kamer. Daaraan heh ik ook heel kostelijke herinneringen. Die Raad van 

Beheer is later omgezet in de Beleidsraad, waar ik persoonlijk van vind dat die 

veel minder goed fuuctioneerde. Een versterking van de Directie en verzwakking 

39 



... koppig <lwars tegen Van Wijngaarden in ... 

van de positie van cle andere afdelingschefs, waardoor het. ook vrijblijvender 
werd. Met. daarin toch een heel const.mct.ieve rela tie tussen de afdelingschefs , 
zowel in de Raad van Beheer als in de Beleidsraad. 

Ik heh altijd een heel plezierige relatie met Van Wijngaarden gehad. l\ilis
schien wel omdat ik ook we! eens hehoorlijk met hem in botsing hen gekomen. 
Ik heh eens een heel duidelijk conflict met Van Wijngaarden gehad over een 
bepaalde zaak. Ik hen hem toen niet uit de weg gegaan en ik heh de indruk over 
gehouden dat hij dat rcspecteerde, en dat we claarna ontspannener met elkaar 
omgingen clan daarvoor. Daarvoor was de relatie met hem wat formeler. Ik 
hen eens een keer, het hetreft een derde, koppig dwars tegen Van Wijngaarden 
ingegaan en ik respecteer en waardeer bet dat dat de relatie met. Aad van Wijn
gaarden alleen maar ten goede is gekomen. Ik heh daar heel goede herinneringen 
aan. 

Heb jij toen je zin gekregen ? 

Het is een wapenstilstand geworden, en door slijtage is het prohleem verdwe
nen. 
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Hoe zag jij het functioneren van Van Wijngaarden? 

Dat is een delicate vraag. Van Wijngaarden was een inspirerend man met 

een warme en echte belangstelling voor de wiskunde, zij het dat zijn wiskundige 

expertise eenzijdig was. Je kunt hem numericus noemen. Hij heeft systematisch 

de numerieke wiskunde opgezet en er college in gegeven. Zijn hart ging naar 

getaltheorie, denk ik. Hij was natuurlijk ten zeerste deskundig, hij had een diep 

inzicht in recursiviteit en hoe dat werkte zonder dat hij nou de theorie van de 

recursieve functies als zodanig in de vingers had. Maar hij wist gewoon hoe het 

werkte en hoe je ermee kon manipuleren. 
Als directeur was hij wel duidelijk afhankelijk van de mensen om hem heen 

voor wat betreft de wiskunde. Hij had natuurlijk in Jan Hemelrijk een plaats

vervangend directeur, die ook al wat ouder was, heel nuchter en bestuurlijk 

heel goed. En die eerste jaren dat ik lid was van de Raad van Beheer had hij 

de inbreng van Hemelrijk, Lauwerier en mij wel nodig. Hij was informaticus, 

druk met de IFIP, druk met Algal 68, daar was hij de motor van. De 2-niveau 

grammatica waarin Algal 68 is gedefinieerd is zijn idee en dat heeft hij moeten 

bevechten in die werkgroep. 
Daarnaast had hij het natuurlijk ook in zijn persoonlijk !even niet gemakke

lijk. Wat ik daarmee wil zeggen is, dat Van Wijngaarden mede aangewezen was 

op de inzichten en ondersteuning van de andere leden van de Raad van Beheer. 

Hij was overigens ook zo dat hij je zijn vertrouwen schonk. Ik heh me altijd zeer 

junior gevoeld naast hem, maar hij liet dingen in vertrouwen aan mij over. Dat 

maakte het samenwerken met hem dus ook plezierig. 

En als persoon was hij een heel aimabele, vriendelijke en breed gelnteres

seerde man met wie je over alles kon praten en die overal een opinie over had, 

maar dan ook een beargumenteerde opinie. ledereen die hem gekend heeft is 

vol anecdotes. Ik dus ook, maar daar zal ik nu niet mee komen. 

In 1980 werd je Directeur van de Stichting Mathematisch Centrum. Die 

functi e heb je niet geambieerd. Waarom niet? 

Daar is een aantal redenen voor. Ik heh ze me recentelijk niet afgevraagd. 

Ik zal daar niet erg systematisch op reageren, maar daar is een aantal redenen 

voor. 
In de eerste plaats hen ik geen wiskundige van topniveau. En voor bet 

nationale instituut voor wiskunde en informatica zou je bij voorkeur iemand 

moeten hebben als Jack van Lint of zo. Iemand van de beste, de hoogste klasse 

die je in Nederland in de wiskunde hebt. 
Dat is een overweging. Een tweede overweging is dat het een baan is met 

een heleboel management. En ik vind onderwijs en onderzoek veel leuker dau 

management. Dat is een van de redenen waarom ik destijds, toen men mij 

onder druk zette, uiteindelijk gezegd heh, ja, maar dan is een uoodzakelijke 

voorwaarde dat er een aparte directeur Beheerszaken komt. Ik ben uiet van 

41 



plan om al dat management echt voor mijn verantwoording te nemen, dan doe 
ik het zeker niet. lk zag dus op tegen al het management-werk, maar eerlijk 
gezegd ook tegen het representatieve karakter van bet werk. Ik voel me altijd 
heter als ik midden of achter in de zaal mag zitten, en vandaar nit mag luisteren 
en meedoen. Voorin zitten, laat staan met de voorzittershamer in de hand, dat 
is iet.s dat. ik helemaal niet. lenk vind. En het. was van te voren al duidelijk dat. 
<iat uiteraard we! van me verwacht. zon wonleu. 

Het is me niet op het lijf geschreven, vim! ik, om voorzit.t.er t e zijn , of socia le 
contact.en te leggen en te omlerhouden. Da.t doe ik uiet van nature, als het 
moet doe ik het wel en tot mijn eigen verbazing meen ik te kunnen constateren 
met sncces. Ik heh een nuttig en breed netwerk vau contacteu opgehomvd , met. 
mensen hij wie je ook echt knnt aankloppen. l\faar het is niet mijn amhitie. Het. 
is ook niet iets waar ik mezelf iii uit.leef. 

Er waren dns allerlei aspect.en aan de baan die me helemaal niet aantrokken. 
Nog afgezien vau het feit dat er op dat moment , iu 1980, een hehoorlijke drnk 
wa.'i. De mi<ldelen liepeu t.erug, het. was de periode van Bestek '81. Er moest 
hezuinigd wordeu. lk weet nog we! dat op de Beleidsraad, waar wij als afdelings
chefs proheenleu posities veilig te stellen, Van \Vijngaarden zei: ".Ja, 2 halen, 
3 betalen" . .Je ziet ook de format ie teruglopen. In 1!)81 zijn er minder menseu 
clan in 1980, in 1982 nog minder, het was een dalende lijn. 

Daar stond nat.uurlijk tegenover dat ik me heel act.ief had ingezet - dat was 
min of meer mijn portefeuille hinnen de Beleidsraad en daarvoor de Raad van 
Beheer - voor de integratie van het MC in het Neclerlanclse gebeuren. Ik was 
de contactpersoon in de Raad vai1 Advies vanuit de Raad van Beheer. Ik was lid 
van de Nederlandse Commissie voor de Wiskunde en had me daar erg ingezet 
voor het idee van een Stichting voor de Wiskunde en niet twee. Dat wa.'i in die 
tijd nog een reele optie, een stichting voor het instituut en een aparte sticht.ing 
voor de landelijke activiteiten. Er lag ook we! duidelijk een taak, namelijk 
proberen te voorkomen dat het MC zou afglijden en proberen de relaties met. 
het onderzoek aan de universiteiten te versterken. Maar opnieuw, als je erover 
nadenkt hoe je dat moet doen, dan is je eerste reactie, dat weet ik eigenlijk ook 
niet, en vervolgens: ik zal daar veel mensen voor moeten aanspreken en zo, en 
dat is nou niet direct wat ik ambieerde. 

W aarom. heb je het uiteindelijk wel gedaan? 

Nou, hoe zat die benoemingscommissie in elkaar? Seidel, iemand die ik goed 
kende en zeer waardeerde, Zandbergen, iemand die ik ook al heel erg Iang ken, 
Tijdeman zat er in, Korevaar zat er in, Wessels en Van Est zaten er in. Nou 
dat waren dus allemaal mensen die ik respecteer en die ik meer of minder tot 
mijn vrienden reken. Die zijn ook niet gelijk met mij begonnen - in de loop 
van de jaren kom je zo nu en clan toch we! signalen tegen waaruit je achteraf 
kunt constateren hoe het proces geweest is - ik weet dus dat ze niet bij mij zijn 
begonnen. Maar we! bij mij zijn uitgekomen en zijn begonnen met druk op mij 
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uit te oefenen. En toen ben ik met mensen gaan praten. Met Van Wijngaarden, 

die tegen mij zei: "Als jij mijn opvolger wordt clan heh ik er vrede mee dat ik 

er eer<ler mee stop". Nou, zoiets maakte indruk. 
Ik hen met alle afdelingschefs gaan praten. Ik herinner rnij die gesprekken 

nog heel scherp. Ik herinner me zelfs bijvoorbeeld de plek nog waar ik met 

I-. ans Lauwerier praatte. Dat was in de grate collegezaal in de Boerhaavestraat. 

Na<lat iedereen weg was, heb ik nog een tijdje met hem zitten praten en hij zei: 

"Ik denk dat je het heel goed zult doen, maar het zal een hele belasting voor je 

zijn, en ik weet niet of je dat aan kunt". 
Ik heb een Jang gesprek gevoer<l met Van Lieshout, met Van Zwet, met Van 

Lint. Ik h"b met verschilleude mensen gesproken en <laaruit groeit het gevoel <lat 

je het mis:;chien toch niet mag weigeren. Zander uitzondering zeiden de mensen 

dat ze er vertrouwen in hadden,· of zelfs positiever dat ze het toejuichten. Jack 

van Lint heeft duidelijk geprobeerd mij te vertellen dat ik het moest doen. En 

heeft me gewaarschuwd dat er aan de universiteiten donkere tijden kwamen. 

En ja op een gegeveu ogenblik denk je: hier kan ik niet onderuit. Het was 

we! zo dat in die periode, voorjaar 1980, mijn vrouw weer een moeilijke episode 

had, ze was niet thuis. Onze d•Jchter was toen 10 jaar oud en die had op de 

lagere school te maken met het efenen voor het landelijk proefwerk en zo. Daar 

moest ik nogal wat extra aandacht aan geven, die was een beetje defaitistisch op 

dat moment. Ik had het toen niet gemakkelijk en ook niet erg veel tijd om alles 

tegen elkaar af te wegen. Ik had ook niet de gelegenheid om met mijn vrouw 

de zaken door te praten, want die was niet aanspreekbaar. En dat maakte het 

niet makkelijker. 
Maar ja, uiteindelijk hen ik voor de druk bezweken. "And the rest is history." 

Vond je het ook niet een "uitdaging"? 

Ook we!, natuurlijk. Het instituut van Van der Corput, Koksma en Van 

Wijngaarden, daar leiding aan geven, dat is we] degelijk een uitdaging. En ik had 

natuurlijk wel veel nagedacht over wat je zou kunnen en moeten doen. De NCW 

had een werkgroep ingestel<l om na te denken over de toekomstige structuur van 

de tweede geldstroom, twee stichtingen of een stichting, en hoe moest die clan 

in elkaar steken. Jan Nuis was lid van die werkgroep, Bob van Lieshout was 

lid. In die werkgroep hebbeu we nagedacht, en ik heh toen voor het eerst een 

diagrammetje getekeud dat je eigenlijk nog steeds, in aangepaste vorm, aantreft 

in Annual Report en .: aarverslag. Een stichting met een stichtingsbureau en een 

instituut. n•Pt ;1frlPli113f' n en werkgemeenschappeu daarbuiten, <lie ook door het 

bureau be<liend warden, een wetenschapscommissie en zo. Ik had wel ideeen, 

eu door de benoeming te aauvaarden was ik in de gelegenheid om die i<leeen te 

toetsen, uit te werken, dat was een uitdaging. 

Zou het je telem:qesteld hcbben als ze j e niet gevraagd hadden ? 

Dat is een vraag waar ik nog nooit over nagedacht heb. Nou, bij miju eerste 
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uitnodiging bij de benoemingscommissie werd mij niet gevraagd of ik directeur 
wilde worden. De commissie wilde met een aantal mensen in het land praten. 
En de commissie heeft mijn mening gevraagd. Als ze dat niet hadden gedaan 
dan was ik wel teleurgesteld geweest, want ik vond dat ik kon meepraten over 
de zaak. We hebben toen gesproken over waar bet naartoe zon moeten met het 
MC, met het instituut, met de Stichting. 

En op een gegeven moment hehben ze mij gevraagd wat ze zouden moeten 
doen als ze geen goede kandidaat zonden knnnen vinden. lk heh toen gezegd 
dat ze Seidel zouden moeten benoemen tot Directeur, als tussenpaus, waarop 
Seidel bijna explodeercle want die vond dat helemaal geen goed voorstel. Als 
ze me niet hacklen uitgenodigd voor dat gesprek dan zou ik me teleurgesteld 
gevoeld hebben ja. Ik wilcle wel meepraten over de toekomst . 

... waarop Seidel bijua explodeerde ... 

Maar ik was totaal niet teleurgesteld dat ze anderen vroegen voor de functie. 
Ze hebben mensen gevraagd waarvan ik het nu uog januner vine! dat die het 
toen niet gedaan hebben. Dat was veel heter geweest, van bet begin af aan . 

.le kijkt niet met Lauter voldoening terug op je tijd als Directeur. 
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Het is gemengd, er ziju hoogtepuuten, er zijn dieptepunten. Er ziju perioden 

waarin ik met geweldig veel enthousiasme en eeu zekere zwier bezig was. En er 

zijn perioden waarva11 ik het gevoel heh dat ik met lood in de schoenen door 

een moeras aan het baggeren geweest hen. 

Als je terugkijkt heb je altijd perspectivische vertekeningen. Als je kijkt naar 

een landschap dan zie je de voorgrond het duidelijkst terwijl de achtergrond 

misschien helangrijker is. Als ik terugkijk, dan zie ik terug op het laatste jaar 

dat ik als uiterst onaaugenaam en grauw heh ervaren. Terwijl op de achtergrond 

jaren zijn waarin ik met enthousiasme heb gewerkt en naar mijn gevoel ook met 

succes. 
Als ik zou moeten proberen de zaken in perioden in te delen dan is er de 

periode, de eerste paar jaar, waarin ik de stiel moest leren. lk moest nog heel 

veel leren. lk heh veel van Barning geleerd, hoe je stukken maakt, hoe je dingen 

opzet. lk heh veel van Nuis geleerd, de terrierachtige vasthoudendheid, het 

doorzettingsvermogen. Ik heh veel gehad aan contacten met iemand als Seidel 

als voorzitter van bet Curatorium. 
Maar het is geen geheim dat ik er op een gegeven ogenhlik uit heh willen 

stappen. Dat ik heel serieus geproheerd heh terug te gaan naar de VU, maar 

daar was in feite mijn positie, hoewel formeel nog heschikhaar, niet echt meer 

vrij. Het is geen geheim dat er persoonlijke spanningen ontstaan zijn tussen 

Nuis en mij. Ik heh altijd grote waardering gehad voor Jan Nuis. Voor 1980 

had ik al intensief met hem samengewerkt maar op een gegeven ogenhlik zijn 

we door onze persoonlijkheden op elkaar gebotst. We hehben geleerd dat te 

hanteren, allehei, maar er is toch iets van de collegialiteit, de vriendschap van 

voor die tijd, door beschadigd en dat betreur ik nog steeds, dat is erg jammer. 

Er zijn ook anderen in meegezogen en dat is niet goed. Daar kijk ik dus niet 

met voldoening op terug. 
Die eerste jareu waren ook financieel moeilijke jaren. Toen is er een periode 

vau contacten gekomen, Van Spiegel, directeur-generaal Wetenschapsheleid van 

het Ministerie van Onderwijs en Wetenschappen, is daarin heel erg helangrijk 

geweest , aan hem heh ik erg veel gehad. Waut jarenlang hen ik , 3 a 4 keer per 

jaar, met Van Spiegel gaan praten, die nam daar ook de tijd voor, gaf me allerlei 

aanwijzingen, deed suggesties. Dat heeft ook geleid tot opname van bet CWI 

in het Informatica Stimuleringsplau (INSP). Dat lieeft een groei van het CWI 

mogelijk gemaakt. Daar kijk ik met voldoening op terug. We hehben een tijd 

gehad van grote hezuinigingeu, Nota-Beiaard, Taak-Verdeling en Conceutratie, 

Selectieve Krimp en Groei, het enc ua bet andere, overal werd bezuinigd. Maar 

in die tijd is het CWI tegeu de verdrukkiug in gegroeid. Ik denk niet alleeu in 

omvang maar ook in kwaliteit. We zijn er verbazeud goed in geslaagd voor de 

iuformatica echt goede meuseu aan te trekkeu, in een hoog tempo. 

Mij is verweteu - van de kaut van NWO met name, maar van die kaut niet 

alleen - dat tijdelijke middelen - vijf jaar Jang twee miljoen maar ook uiet meer 

dau clat - gehruikt zijn om vaste menseu aau te stellen. Ik ben nog steeds van 

meuiug clat ik dat terecht gedaan lrnb. Anders kun je geen centre of excellence 
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in de informatica worden . .Te kunt de informatica niet opbouwen van 20% tot 
50% van de onclerzoeksinspanning van je instituut zonder ook vaste mensen 
aan te stellen. Dat kun je gewoon niet met t.ijdelijke mensen. .le moet nieuw 
onderzoek hinnenslmis halen en daarvoor heb je onderzoeksleiclers nodig . .Ja, 
toen de cont.inucring van de INSP-steun maar voor een deel mogelijk bleek zat.en 
wij met verplichtingen, vast.e aanstellingen die we niet konden en trouwens ook 
niet. wilden afstoten. Ik heb we! eens het gevoel gehad dat op een niet helemaal 
reele en faire wijze aan cle Directie verweten is dat ze die verplicht.ingen lieeft 
aangegaan . 

.Jaren van heel hard werken, van heel veel cont.act.en, van 'voor wat hoort. 
wat'. \Vij kregen geld, maar mij wercl gevraagcl om van alles en nog wat t.e 
doen. Ik zat in allerlei commissies en werkgroepen en zo. Keihard gewerkt in 
die jaren, maar t.oen kwam er ecn periode van reorganisatie. Dat is een heel 
nare periode geweest.. Ik weet dat er mensen in het. inst.it.uut. zijn die daardoor 
beschadigd zijn maar ik hen er in zekere zin zelf ook door heschadigd. 

Het. had geen reorganisatie moet.en worden of hoeven worden denk ik. lk 
denk dat. we in <le weg van de geleidelijkheid - maar misschien is bet. heel erg 
rnt'ief en argeloos wat. ik zeg - dat. we in de weg van de geleidelijkheid de dingen 
ook voor elkaar haclclen knnnen krijgen. Maar zodra het. op een gegeven ogenhlik 
echt. reorganisat.ie heet.t.e moest. er ook een reorgauisat.ieplan komen. Moest.en 
er op een gegeven ogenhlik formaties worden aangegeven, en dns ook wat er 
werd afgestoten. Moest.en er in de laat.st.e fm;e 1iamen worden genoemd. Dat. 
lieeft. allemaal veel te Jang geclunrd. Ik zou knnnen uit.Jeggen waarom, maar daar 
begin ik niet aan. Zo 'n proces moet. je in een half jaar doen en het. heeft we! twee 
jaar gcduurd. Dat. is t.ranmatiserend gewcest voor een heleboel mensen. Ook 
\'<>or mij. Dat is dus ook niet een periode geweest. waarnaar ik met genoegen 
t.erngkijk. 

Maar zeg je nu eigenlijk nict da.t de re01:qanisatie jou uif. de hand gelope11 is ? 
H e/. heetle op een gegeven moment nu eenman.l rcorganisn.f.ie . en f.oen mac.s f er 
cen plan /.:om en, en toe11 rnoesf.en namen genoemd warden. 

\Vij moest.en de t.eriug uaar de nering zett.cn. Dus wij moest.en bezuinigen 
en aangezien loonkost.en onze grootst.c uit.gavcnpost vormen, hetekende dat. een 
reduct.ie in personeelsomvang. Als je dat kunt doen iu de vorm van een herst.ruc
t.urering zonder gedwongen ont.slagen, in overleg (maar je znlt zo m1 en clan t.och 
op mensen druk moet.en 11it.oefene11 ) dan kun je dat. in alle a.rgeloosheid toch soe
peler doen clan wanneer iet.s formeel reorganisatie beet.. De ondememingsraad 
komt t.egenover de clirectie t.e staan , het. onderhandeleu begint., met. adviseurs, 
vakhonden aan <le ene kant, jurist.en aan de audere kant., van wat kuu je nou 
wel zeggen en wat uiet . Ieder woord wegen op een goudschaalt.je. Zodra je 
formeel aan het. reorganiseren hent zijn er kaders en zijn er spelregels waar j e 
je aan moet houden. En die spelregels zijn bedoeld om mensen t.e beschermen, 
maar ze hebben een terugslag, namelijk op een gegeven moment moet je clan 
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ook formeel aangeven wat er te gebeuren staat. Je moet een reorganisatieplan 

hebben waarin staat dat bepaalde functies worden opgeheven en dat dus mensen 

overcompleet zijn en dan moet je namen gaan noemen. 

Was het niet mogelijk om alsnog wat op de rern te gaan staan? 

Lex, ik denk niet dat ik op de rem had kunnen gaan staan. Maar ik moet 

hieraan toevoegen - en dan wil ik helemaal niet mijn eigen verantwoordelijk

heden ontkennen - dat op een gegeven ogenblik door de ondernemingsraad, 

in het overleg, is afgedwongen, misschien is dat niet helemaal het juiste woord, 

vastgestel1 :, dat gesproken moest worden van een reorganisatie, en op dat mo

ment kun Je niet meer terug. Het overleg met de OR is met grote zorgvuldigheid 

en met grote vasthoudendheid gevoerd; ik ga er van uit dat het kennelijk niet 

anders kon. 

Maar je wilt toch niet zeggen dat het eigenlijk de schuld is van de OR dat er 

een plan kwam en daariloor ontslagen? 

Nee, nee, dat zeg ik helemaal niet. NWO heeft een grootscheepse actie achter 

de rug en ze hebben kans gezieu dat herstructurering te noemen en te blijven 

noemeu. Dat is ook een reorganisatie geweest. Er zijn geen gedwongen ontslagen 

bij gevallen, maar er zijn posities verdwenen, maar dat is een herstructurering 

geweest. 
Wij moesten herstructureren. Ik denk dater geen schuldige is aan te wijzen, 

ik denk dat het voor een dee! een autonoom proces is. Wat ik herstructurering 

had willen houden, is formeel een reorganisatie gewordeu en zodra het dat is 

moet je een adviesbureau in huis halen en moet je planuen maken en clan is 

er een stoomwals zonder rem die de helling afgaat en die je niet meer kunt 

tegenhouden. 

Maar moet een reorganisatie altijd tot gedwongen ontslagen leiden? 

De herstructurering clie nodig was moest we! leiden tot een verminderde 

formatie. Dat was een absolute voorwaarde van NWO. Een voorwaarde voor 

het vangnet dat NWO ons wikle geven. 
Ik denk dat <lit uiet de goede plaats en gelegenheid is om dat te gaan analy

seren. Ik wil alleen zeggen dat ik het erg jammer vind dat na een aantal jaren 

waarin het CWI zich .1eel goed ontwikkeld heeft, tegeu de verdrukkiug in is ge

groeid, dat : :.:!:: t:.-m!matische proces van reorganisatie kennelijk ouvenuijdelijk 

was. Ik viud dat jammer, en opnieuw: het heeft. meuseu beschadigd maar het 

heeft ook mij beschadigd. Ik beu erg gevoelig voor goede relaties met meuseu 

en som111ige relaties zulleu uooit meer zijn wat ze geweest ziju , want ik hen we! 

verantwoordelijk en die verautwoordelijkheid ga ik ook uiet uit de weg. Juist 

daarom til ik er ook zwaar aau. 

Hoe kijk je temg op de, som8 wat ge.~pannen, relaties met NWO, SION, de 

47 



wiskundige buitenwereld? 

.le noemt weer even een aantal dingen in een adem. De contacten met NWO, 
dat is een vreemde zaak in zoverre dat een groot dee! van die contacten niet door 
mij maar door Nuis werden onderhouden. Dat zat gewoon in de taakverdeling. 
Eens per jaar was er een hearing van GB-E over de noden en de daaruit volgende 
budgettaire behoeften van de stichtingen. Daar zat je met alle E-stichtingen 
en GB-E rond de tafel en iedereen mocht even wat zeggen en iedereen vertelde 
natuurlijk hoe slecht het met ze ging en dat zij in ieder geval niet gekort moesten 
worden in subsidie volgend jaar. Nou, dat was geen reeel contact. 

Contacten met het Algemecn Bestuur zijn er nauwelijks, afgezien van een 
werkbezoek. Nogmaals, de eigenlijke contact.en werden door de directeur Be
heerszaken onderhouden. Dus daar heb ik niet zoveel directe inbreng in gehad. 
En daar heb ik dus ook niet te veel triomfen of teleurstellingen te melden. Ver
der zijn er contacten geweest echt op hoog bestuurlijk niveau, tussen voorzitter 
en voorzitter en dat soort zaken. Opnieuw ben ik daar meer iemand aan de 
zijlijn, clan dat ik daarbij rechtstreeks betrokken ben. 

De relatie met SION is altijd we! turbulent, vurig, impulsief, emotioneel 
geweest, maar dat heb ik altijd boeiend gevonden. Ik heb geen nare nasmaak 
of vervelende herinneringen aan de relatie met SION . .le moet we! leren met 
mensen om te gaan. Met voorzitter Van de Riet moest je op een andere manier 
omgaan dan met voorzit.ter Hertzberger. Uiteindelijk kan ik bet met allebei 
goed vinden. Ik beschouw Reind van de Riet als een van mijn goede vrienden. 
Ik ben iets minder persoonlijk bevriend met Bob Hertzberger, maar ik kan bet 
uitstekend met hem vinden, ook al zijn we hct zo m1 en dan niet met elkaar 
eens. En de spraakmakcnde iuformatici, er is niemand met wie ik het gevoel 
heh dater spanningen zijn tussen hem en mij. Wei eens meningsverschillen maar 
die zijn zonder meer hespreekbaar. Dus, de relatie met SION staat natuurlijk 
vanzelfsprekend onder druk, dat zit hem in de constructie. Dat zit hem in het 
feit dat SION de tweede geldstroom-stichting is voor de informatica, en de helft 
van de tweede geldstroom infonnatica gaat via het CWI. En in bet feit dat 
SION gcen formele zeggenschap over het CWI lieeft. 

Zc hebben daarom rnisschicn het gcvoel dat ze lmitengesloten warden. 

Dan moet je dus een constructie zien te vinden dat ze niet huitengesloten 
worden. Ik heb altijd gezegd dat je een instituut niet als integraal inst.it.nut knnt 
besturen als er via twee geldkranen door twee partijen meegestuurd wordt, dat 
kan niet . .le moet als instituut een bestuur hebhen en geen twee. En je moet. 
als instituut een vast basissubsidie hebben. Maar vervolgens moet bet mogelijk 
zijn om SION een echte, reele greep op bet onderzoek op bet MC te geven. 
Kennelijk is dat nog steeds niet volledig overtuigend gelukt. Nog niet zo heel 
erg Jang geleden heb ik een hele dag in Amersfoort mogen voorzitten waar door 
informatici binnen en buiten het CWI gesproken werd over strategische plannen, 
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en ik had bet idee dat we toen aardig op weg waren mn elkaar te vinden. Daar is 

de klad in gekomen doordat andere dingen de aandacht ziju gaan opeisen. Het 

laatste jaar met name. Ik geloof nog steeds dat het mogelijk is om een echte, 

inhoudelijke, reele betrokkenheid van bet SION-bestuur met het onderzoek hier 

te realiseren zonder dat de integriteit van het CWI daaraan wordt opgeofferd. 

En het is meer een uitdaging om dat nu eindelijk eens een keer goed t e doen clan 

dat ik vind dat ik daar met gemengde of nare gevoelens op terug moet kijken. 

Het is een klus die ik niet afgemaakt heh. 

Maar waarom is er nooit gekozen voor een stichting wiskunde en inforrnatica, 

waarmee je toch veel sterker staat? 

SION wilde dat niet. De informatici wilden dat niet. ZWO, destijds nog, 

heeft de psychologische fout gemaakt die ouders moeten leren niet te maken. 

ZWO heeft er namelijk erg op aangedrongen. Niet voor niets is SION tien jaar 

Jang een stichting in oprichting gebleven. ZWO bleef zijn erkenning onthouden 

want ZWO vond dat SION en SMC samen moesten in een stichting. Nou ja dat 

is bet varkensprincipe. Als je een varken vooruit wil hebben, clan moet je aan 

zijn staart trekken, want als je tegen zijn achterste gaat duwen clan loopt hij je 

achteruit omver. 

Waarom wilde SION dat niet? 

lk heh een vergadering hier meegernaakt, toen SION nog opgericht moest 

warden. Ik heh toen aangeboden, helemaal van harte, om aan werkgemeen

schappen informatici alle ruimte te geven hinnen de SMC. Alles wat aan bureau 

en on<lersteuning beschikbaar is. Het was Blaauw, hij was nog geen curator, die 

op zijn bedachtzame en rustige manier zei dat hij 'geen voorstander was van 

inwoning bij de wiskunde, want inwoning duurt als regel veel te Jang '. Blaauw, 

echt een van de meest bedachtzame, wijze en cooperatieve informatid, was er 

duidelijk voorstander van om een eigen organisatie te ontwikkelen. De jougeren 

waren het daar alleen maar des te meer mee eens. Het zat er gewoon niet in. Ik 

heb geprobeerd dat aan Van Lieshout duidelijk te maken. De informatici willen 

het niet , geef ze clan <le ruimte zoals ze bet zelf willen. En ik ben nog steeds 

van mening dat dat cle enige verstandige manier is. We hebben als Stichting 

MC dan ook iedere keer geadviseerd aan ZWO/NWO om SION we! te erkennen 

en ik vind uog steeds dat wij niets anders kouden doeu. Ik zou het overigens 

geweldig mooi viudeu als er in de toekomst toch nog eens een fusie zou komen. 

Het AB van NWO heeft opuieuw, bij ziju herstructurering, we! degelijk -

laten we zeggeu - gehoopt dat SION en SMC zouden samengaan. Ze hebben 

het iets minder expliciet uitgesproken dan destijds ZWO. Maar ja, uitein<lelijk 

vim! ik dat men moet respecteren wat de onderzoekers in een bepaald gehied 

zelf willen. En je kunt veel bet.er twee goed samenwerkende stichtingen hebben 

die na verloop van t ijd ccmclu<leren dat het toch efficient zou zijn 0111 meer 

dingen samen te gaan doen, dan dat je mensen dwingt tot, wat de Fransen een 
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cohabitation noemen. 

Blaauw zag het als inwoning, maar dat is toch iets anders dan samenwoning? 

Zo is het in Frankrijk gebruikt met betrekking tot de socialistische president 
en de huidige en een vorige regering. Zo bedoelde ik bet dus, in die termen. Een 
accommodatie van twee partijen die nolens volens met. elkaar verder moeten. 

Er i8 in jouw directeurstijd ook steeds meer druk ontstaan vanuit de wiskun
dige buitenwereld op het CW!, ook kritiek. 

Die kritiek is er altijd geweest. Ik ervaar het niet dat de druk grater is dan 
vroeger. Het is natuurlijk wel zo dat het totstandkomen van onderzoeksscholen 
noopt tot een herbezinning over wat dan precies de taak en de positie van het 
CWI is. De onderzoeksscholen hebben financiering nodig, die kijken natuurlijk 
oak naar de tweede geldstroom. En die vragen zich oak af in hoeverre taken, 
met geld en al, van het CWI misschien naar onderzoeksscholen zouden kunnen 
overgaan in de loop van de tijd. Dat soort geluiden hoar ik wel. 

Het antwoord van SMC en het CWI moet. zijn: een herbezinning op eigen 
taken, en vervolgens duidelijk maken aan beleidsmakers in onderzoeksscholen, 
hij NWO, en waar dan oak, dat die eigen taak zo waardevol is, zo ondersteunend, 
complementair. Dat op zichzelf viml ik oak een uitdaging. Dat viml ik niet iet.s 
om benauwd over te ziju, oak niet iets om over t.e chagrijnen. Vooral de laatste 
twee jaar werd er in een bepaalde hoek van de Wetenschapscommissie weleens 
uitgeprobeerd hoe ik, hoe het CWI, op bepaalde dingen zou reageren. Ik vind 
dat dat moet kunnen. Het is misschien niet altijd even plezierig, maar goed. 
That 's in the game. En als CWI moeten we een voldoende duidelijk zelfbeeld 
hebben en voldoeude goed argumenteren waarom we dat zelfbeeld hebben. Dat. 
we ons daar t.egenover staande kunnen houden. Opnieuw vind ik dat meer iets 
dat de zaak spannend maakt, dat de zaak levend houdt, dan dat ik daar nare 
gevoelens van heb. Nare gevoelens heb ik van beschadigingen van personen en 
persoonlijke relaties, niet van belangent.egenstellingen. Daar kun je zakelijk over 
praten, daarover kun je het oak heel goed met elkaar oneens zijn en vervolgens 
samen een biert.je gaan drinken. 

Persoonlijke relaties <lie beschadigd warden, dat is veel erger. En dat heb ik 
in deze veertieu jaar van tijd tot tijd meegemaakt. Van vrij in het begin af aan, 
in verschillende context, en <lat maakt dus dat ik met gemengde gevoelens op 
de tijd terugkijk. Het is echt. niet alleen maar een lenke tijd geweest. 

Er zijn we! hoogtepunt.en en leuke ogenblikken geweest. Ik heh heel veel vol
doening beleefd aan de oprichting van ERCIM en de daaruit voortkomende sa
menwerking. De eerste periode daarvan was uitermate constructief. Seegmiiller 
en Bensoussan en ik, met zijn drieen probeerden wij te zorgen dat de onder
zoeksgroepen elkaar leerden kennen, dat de instituten wat meer van elkaar op 
de hoogte raakten, dat we wat van elkaars cultunr gingen begrijpen. Een aantal 
van de mensen beschouw ik echt als mijn vrienden. Met hen heh ik een heel 
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.. . informatica en toegepaste wiskunde ziju voor de toekomst van ons en onze 

kinderen tenminste even belangrijk als ruimtevaart en hogere energie fysica ... 

plezierige relatie opgebouwd. ERCIM groeit nu zo snel dat bet moeilijk is om 

goed vast te houden aan wat je ermee wilt bereiken. 

W at wil je ermee bereiken? Ik neem aan dat het niet alleen om de persoonlijke 

relaties gaat. 

Nee. Wat ik wil bereiken is samenwerking op organisatieniveau, waar moge

lijk contractonderzoek, uitwisseling op het gebied van fundamenteel onderzoek 

tussen de wiskundigen, met name de toegepast wiskundigen, en de informatici 

in Europa. Om op die mauier voor ons vak te kunnen opkomen. Wat de fysici 

al jaren met groot succes doen rondom CERN e.d. Wat de astronomen eu de 

ruimte-onderzoekers met groot succes doen om nationale en internationale on

dersteuning te krijgen. de publieke opinie te actualiseren voor hun onderzoek. 

Dat moeten wij voor iuformatica en toegepaste wiskunde ook kunnen. Want 

informatica en toege1 aste wiskunde ziju voor de toekomst van ons en onze kin

deren tenminste even belangrijk als ruimtevaart en hogere energie fysica. Onze 

wereld wordt gestructureerd door allerlei toepassingen van computers en van 

informatieverwerking. Onze toekmnstige beschaving wordt daardoor gedomi

neerd . Wij moeten daarin een eigen stem ontwikkeleu en dat kuuueu we alleen 

maar als we gaan samenwerken en als we niet iedere keer met elkaar concurreren 

of niet eens weten wat er aan de overlmnt van de greus gebeurt. Ik wil dus ge

woou een grotere immeuhang, een grotere cohesie, een groter aggregatie-niveau 
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voor het onderzoek in de informatica. Een groter, ook informecl netwerk. Het 
is pas een succes als je ook de onderzoekers in de industrie, in het bedrijfsleven 
daarbij betrekt. De mensen die bezig zijn bij de banken om informatiebeveili
ging toe te passen. Bij de PTT's, bij industrieen op het gebied van de IT, die 
er in Europa nog wel zijn, ook buiten Philips, Siemens en Bull. Die moeten 
van elkaar weten wat voor mogelijkheden er zijn, welke mensen je daarbij kunt 
inschakelen, waar je nou in Brussel, Straatsburg, of bij de nationale regeringen 
moet lobbyen. Dit is een onderwerp waar ik echt in geloof. 

Het is jammer dat je je werk door je ziekte niet goed hebt kunnen afronden. 

Ja. Een jaar geleden hen ik opnieuw ziek geworden. Kennelijk heh ik daar 
aanleg voor. Eigenlijk onder dezelfde omstandigheden als in 1969-1970. Ontwik
kelingen in mijn werk die ik moeilijk vond, gecombineerd met ontzettend ver
velende, nare, traumatische ontwikkelingen in miju persoonlijke leven, en die 
combinatie is kennelijk niet zo gezond voor me. 

Emotioneert het werk j e ook? 

Soms ja. Ik hen daar heel emotioneel bij betrokken ja. 

Te veel volgens jou? 

Nou dat weet ik niet, vermoedelijk functioneer je efficienter als je niet emo
tioneel wordt maar zonodig wel kunt spelen dat je het bent. Maar ik ben niet 
zo goed in simuleren en als je emotioneel wordt dan kun je daar ook energie aan 
ontlenen. En ik heb dat in het verleden ook wel eens bewnst gebruikt. Vechtend 
voor het CWI. In Den Haag. 

Lag je ook wakker van j e werk? 

Ja, daar kan ik echt wel van wakker liggen. Kijk als ik lees, ik geloof gisteren 
in de krant, dat Minister Wijers vindt dat het technologisch onderzoek veel te 
veel navelstaarderig bezig is (dat zijn mi.in woorden), veel te waardevrij bezig 
is en het moet allemaal anders en er moeten Centres of Excellence komen, 
dan heh ik op dat moment de neiging ernotioneel te worden van: verdikkeme 
nog aan toe, Deetman en Van Aardenne samen hebben bij het INSP-gebeuren 
uitdrukkelijk het MC de opdracht gegeven nationaal Centre of Excelleuce for 
Computer Science te worden. In de rapportage aan de Kamer heeft Deetman 
die opdracht nog vier jaar daarna herhaald. Ik moet naar Wijers toe en ik moet 
hem daar mee confronteren, en ik moet hem daaraan herinneren. 

Je bent waarschijnlijk in dat opzicht ambitieus, j e wilt alle dingen goed doen. 

Je l10eft niet alles even goed te doen maar je moet het wel allemaal bijhouden. 
Je kunt je niet veroorloven en zeggen: We laten de wiskunde een tijdje aan zijn 
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lot over en we gaan verder met de informatica, w werkt dat niet. Of nu gaan 

we eens een tijdje aan de landelijke activiteiten werken, het instituut komt de 

volgende keer wel weer. Nee, dat moet je allemaal tegelijk proberen actief te 

houden. In de aandacht van de mensen en in je eigen aandacht te houden. 

Zijn er concrete dingen waarvan jij zeyt: dat had ik echt bet er mocten doen ? 

Ja maar <lie heh ik niet op een rijtje. De relatie met SION is niet af. Er 

zijn natuurlijk diuge11, ik zeg het nu in een bijna lege platitude, die ik met de 

ervaring, bet inzicht en de kennis die ik 1111 heh beter had kmmen doen, als ik 

die ke1111is eerder had gehad. Spanninge11 iu de relatie met Jan Nuis, wareu uiet 

nodig geweest als ik eerder begrepeu had waar bepaalde gevoeligheden liggen. 

Ik betreur die spanniugeu ten zeerste en achteraf zeg i dat had uiet gehoeveu. 

Maar het was misschien ook 011vermijdelijk want pas door er doorheen te gaa11 

merk je hoe het anclers had gekund. 

Ve1yelijkbaar met de reo1yanisat,ie? 

.Ta, vergelijkbaar met de reorganisatie. Er zijn dingen die niet af zijn. Laat 

ik een ding noemen waarvan ik viucl dat dat ook niet goed is zoncler dat ik 

bereid beu nu te analyseren hoe dat zou kunuen komen. De kernwiskunde in 

dit instituut is te zwak geworden. De afdeling AM is te klein, te smal, is bijna 

geheel teruggevallen op twee onderwerpen, algebra, met name computer-algebra, 

en niet-lineaire dynaruica, met name mathematische biologie-modellen. Dat is 

te smal voor <lit instituut. Dat is jammer, dat is niet goed. 

Zie jc dat aL~ een taak voor een opvolger? 

Ik denk dat het voor het instituut heel goed zou zijn als de kernwiskunde, de 

grondmethodologieen, verbreed en versterkt zouden worden. Voor computer

algebra - ik sta in zoverre aan de wieg van CAN dat ik voor het eerst een 

suggestie heh gedaan op een bijeenkomst om eeu beroep te doen op die pot 

expertise-centra. RIACA is terug te voeren op een brief die ik aan NWO heh 

geschreven destijds. Willen CAN eu met name RIACA een succes ziju dan 

moeten we ze ook wiskundig, vanuit fundamenteel onderzoek, vanuit het CWI 

ondersteunen. Daarvoor is een sterkere groep nodig dan er nu bij AM zit. Dus 

enerzijds moet er geinvesteerd worden in de algebra, niet alleen de computer

algebra maar ook de theoretische algebra en de algoritmiek, ten behoeve van 

CAN en RIACA. Anderzijds moet cle bas is verbreed worden. Er zou hier eeus 

een goed project meetkunde moeten kmuen, echte gocde differentiaal-meetkunde 

bijvoorbeeld. 

Omdat wij dat nodig hebben ? 

Omclat dat eeu uitstraling zal blijk1~11 te hebbeu. Als je differeutiaal-meet

kunde kiest, outstaat er als het goe1I is samemverking met controltheorie. Op 
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een gegeven moment ontstaat er ook samenwerking met de biomathematica en 
de niet-lineaire modellen. Dan blijk je daar ook symbolisch rekeneu voor te 
kunnen gebruiken, en raakt CAN erhij hetrokken en je krijgt een nieuwe groep 
mensen in het land die met enige interesse volgen of het experiment lukt of niet. 

Vind je het achteraf, alles overziende, jammer dat je geen biologie bent gaan 
studeren? 

Ik heh nooit spijt gehad van wiskunde. Ik vind het misschien achteraf jammer 
dat ik niet meer wiskunde heh gestudeerd. Maar biologie, ja en nee. De laatste 
tien boeken die ik gelezen heh gingen over hiologie. 

Dit sluit misschien aan bij de vraag: Wat ga je na je afscheid doen? 

Een medicus met wie ik niet zo lang geleden sprak zei tegen mij dat ik heel 
duidelijk nog met het gezicht naar het verleden sta en met mijn rug naar de 
toekomst. En ik denk dat dat waar is. Ik weet nog niet wat ik na mijn afscheid 
ga doen. Ik weet dat ik op de VU nog welkom hen. Ik heh daar een heel 
kleine aanstelling, maar het is wel een vaste aanstelling, en ik hoop dat ik die 
mag houden en dat ik daar nog iets kan opbouwen, onderwijs, of wellicht zelfs 
betrokken kan raken bij onderzoek, bij afstudeerders of wat dan ook. Maar 
dat is geen weektaak. Ik moet mijn baan hier afronden. Ik hen bezig mijn 
afscheidsverhaal op papier te zetten en dan moet ik verder hier alles leeg gaan 
halen en mijn archieven gaan opruimen of weg doen, dan ga ik vervolgens een 
andere woonplaats zoeken huiten de Randstad. Ook om persoonlijke redenen. 
Ik moet nog beginnen te zoeken, ik heh nog geen flauw idee waar, dat gaat ook 
tijd kosten. Dus ik hen in ieder geval voorlopig nog bezig met het afhechten, 
het afronden van bet verleden. En ik kan eigenlijk pas goed nadenken wat ik 
daarna ga doen als ik die deur achter me gesloten heb. 

Wat eigenlijk veel te weinig in <lit gesprek aan de orde is geweest en waarvoor 
ik verwacht veel meer tijd te zullen hebben, zijn mijn kinderen en kleinkinderen. 
Zij hebben altijd heel heel veel voor mij betekend, en zijn ook een belangrijke 
steun voor mij geweest zowel in mijn professionele als in mijn priveleven. 

Ook hoop ik meer tijd te hebhen voor een aantal liefhebberijen, zoals de 
natuur, de tuin, fotograferen (in het bijzonder hloemen en vogels), geschiedenis, 
poezie, (middeleeuwse) muziek. 

.le zei: ik ben nog welkom op de VU. Ga je er van uit dat je op het CW! niet 
meer welkom z01L zijn, of is het meer dat je zelf niet wilt? 

Ik zal hier voorlopig niet komen. Ik ben ervan ovcrtuigd dat ik op allerlei 
niveaus welkom ben maar ik voel me toch op een andere wijze niet thuis. Ik 
voel me ongemakkelijk. Ik heb een erg ongemakkelijk jaar achter de rug, en die 
ervaring wil ik niet voortzetten. 

Maar je bent waarschijnlijk al een aantal jaren niet op de eerste en tweede 
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verdieping geweest. In de bibliotheek bijvoorbeeld, waar je vroeger altijd graag 

kwam. 

Ik kom zelfs niet meer in de kantine. Er is een situatie ontstaan waarin 

ik mij bier erg ongemakkelijk voel. En ik denk niet dat ik die verhreek door 

hijvoorheeld naar de hibliotheek te gaan. Laten we het er maar op houden 

dat er hij mij nog steeds een paar moertjes los getrild zijn en die moeten weer 

aangeschroefd warden. 

Ik denk dat velen je nog vaak hier hopen te zien. 

Een zekere mate van koppigheid is mij niet vreemd. Ik hen niet van plan 

om, als ik hier de deur achter mij dichtgetrokken heh, hinnen afzienbare tijd 

terug te komen, daar heh ik mijn redenen voor. 

Het 50-jarig jubileum, zien we je dan ? 

Een van de levenswijsheden die de Angelsaksische taal ons geleverd heeft is: 

Never say never. Laat ik bet antwoord op die vraag dus maar schuldig hlijven. 

Wordt het een verrassing? 

Ik meen bet antwoord te weten maar ik spreek het niet uit. 

Cor, hartelijk bedankt voor het interessante gesprek. 

Dit interview werd afgenomen op 27 oktober 1994, met medewerkiug van Miente Bak

ker. Met veel dank aan Coby van Vonderen voor bet vervaardigeu van de transscriptie. 
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Operational Operations Research at the 

Mathematical Centre 

Ko Anthonisse and Jan Karel Lenstra 

This (eprint is dedicated to Cor Baayen on the occasion of his retirement 

as scientific director of CWI. It was written in 1982, when CWI and NWO 

were still Institute MC and ZWO. Just before, the Foundation MC had 

confirmed its national position by becoming the 'Netherlands Foundation 

for Mathematics' . Shortly afterwards, the Institute MC changed its name 

to CWI and started to play a leading role in the national computer science 

stimulation program. These events, which are milestones in the history of 

the MC, were largely due to Baayen's efforts. 

The paper was published before in the European Journal of Opemtional 

Re8earch (Volume 15, 1984, pp. 293-296) and, in its original Dutch version, 

in J\wantitatiw11e Mcthoden in !wt Managem ent, edited by C.B. Tilanus, 

0 .8. de Gans and J .K. Lenstra (Het Spectrum, Utrecht, 1983, pp. 252-258). 

We are grateful to Elsevier Science Publishers B.V. for their permission to 

reprint it here. We have chosen to make only a few editorial changes, and 

hope that the paper reflects the spirit of the time of its first publication. 

This note deals with consultation in operations research at the Mathematical 

Centre in Amsterdam . After a short description of the activities of the MC, 

in particular of its Department of Operations Research and System Theory, 

three practical projects are described . 

1. I NTRODUCTION 

The Mathematical Centre (MC) wru:; established in 1946 as a nonprofit fmm

dation for the promotion of mathematics and its applications. 

The Institute MC has six scientific departments: pure mathematics, applied 

mathematics, munerical mathemat ics, mathematical statistics, operations re

search and system theory, and computer science. Among the supporting non

scientific departments, the library and the printing office play a role of national 

importance. The MC is sponsored by the government through the Netherlands 

Organization for the Advancement of Pure Research (ZWO). Next to pure re

search, the MC also carries out consulting activit ies in the private and public 

sectors. The budget for 1980 amounted to more than thirteen million Dutch 
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guilders, of which about 85% was provided by ZWO. The institute employs 
around 150 people. 

The Foundation MC was recently appointed to coordinate. stimulate and 
evaluate mathematical research at universities to the extent that it, is being 
financed hy ZWO. To this encl, a nmnber of research comm1mities in several 
branches of mathematics were created. This new task is mentioned here to 
emphasize the central positiou:of the MC within Dutch mathematics, although 
it is not of primary relevance to the subject matter of this paper: consultation 
in the area of operations research. 

The Department of Operations Research and System Theory is engaged in 
the investigation of mathematical models and methods that could support 
optimal actions in decision situations. The motivation originally canw from 
problems in economics and industrial engineering, and today is also found in 
communication and control and even in the political and social sciences. 

These investigations entail the study of a wide range of mathematical sub
jects, such as complexity theory, combinatorics, probability theory and dif
ferential geometry. The uni(ying element is the potential applicability of the 
models and methods under investigation. Consequently, the department tries 
to become involved in projects that lead to original and advanced applications 
in areas in which it has expert knowledge. Such projects can vary from answer
ing specific question:; explicitly to participating in development research, wit.h 
the purpose of making new theory applicable in practice. 

The involvement in practical projects is an essential part of the department's 
scientific policy. The current research projects and the main application areas 
are: 

- combinatorial optimization, i.e., the determinat.ion of optimal distrilm
tion systems, depot locations, room assignments, timetables, production 
plans, cutting patterns, and other discrete structures: 

- analysis and control of information fiow8 in network.~, such as computer 
networks, telecommunication systems and networks of queues; 

- system and co11t.rol theory, in particular prediction, filtering, nonlinear 
control, system identification and time series analysis. 

Experience has shown that consult.ative activities oft.en !earl to innovative ap
plications as well as to intriguing mathematical problems and results. This 
will be illustrated below 011 three practical projects. They were carried out by 
Antoon Kolen, Ben Lageweg, Leen Stougie, Koos Vrieze, and the authors. 

2. PLAYING FOR KEEPS 

A consortium of four international contractors had completed a large dredging 
contract. An inventory of equipment was left over, consisting of 268 items, in
cluding crane ships, barges, rock breakers and smaller items such as pipes and 
spare parts. An independent consultant had established a price for each item. 
The total value of the inventory wa.<.; about $24.8 million. Since the inventory 
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could not he sold locally, it was agreed among the partners that each would 

buy a quarter of the lot. It was also agreed that the allocation of the items to 

the partners would be determined by an auction , as it was virtually impossible 

to decide on this by straightforward negotiations. 

The auction consisted of 25 rounds. In each of the first 24 rounds each 

partner would he allot ted $0.25 million to buy items or to save money for 

subsequent rounds. It was not allowed, however, to save an amount exceeding 

the price of the most expensive unsold item. lu the last round the remaining 

budgets must be spent. The order in which the companies should buy from the 

inventory in the first round would be determined by drawing lots: S 1 = ( 1, 2, 

3, 4) . The order in the subsequent rounds followed from that in the first one: 

in the second round S'2 = (2, 3, 4, 1), in the third 53 = (3, 4, 1, 2), and in 

the four th S.1 = (4, 1, 2, 3). Then a second cycle of four rounds would follow: 

5 2 , 53 , 54 , 5 1. The third cycle would start with 53 , and so ou. 

Our clieut , oue of the partuers, had composed a list ing of the items with 

the price of each item, its attractiveness for the compauy and guesses of the 

prefereuces of the others. The at trnctiveuess was defined as a classification 

into categories A (very attractive) to E (scrap). Category A coutaiued three 

expeusive craue ships; five to six rounds of saving would be necessary to acquire 

oue. Due to the extended production t imes for new cranes it was expected that 

each partner would try to obtain at least one of these. 

A program was developed to keep track of purchases am! savings of each 

parner am! to provide information, if requested , such m; lists of attractive items 

that could be bought iu the preseut or the uext round. This program was nm 

on the company's computer and used on-line hy the delegation at the auction. 

Our assignment was to develop a strategy to ohtaiu as n111d1 attractive equip

ment as possible. Au aualysis of the iuveutory am! the rules of the game pro

vided useful information. It was impossible to avoid buying from category E; 

minimization of this was selected as the primary objective. The drawing of 

lots was intended to provide equal opportuni t ies but dicl not do so; e.g. , t.he 

company which draws 2 is preceded by company 1 in most rounds and thus 

is at a disadvantage if both prefer t he same items. Another problem was the 

end-game. It was possible t hat only expensive items would he left at the em! 

aud no partner has sufficient savings to buy. Even if this situation did not 

occur, at least $0.8 million worth of material would he left a t the encl, without 

rules for a llocating it. 
For this auction , various strategies are conceivable. With the help of a sim

ulat ion program five strategies were investigated, each with and without going 

after t he cranes. The auction was simulated for over 50 combinat ions of these 

basic strategies for the competitors and assumed preferences for the items, and 

the results were analyzed. 
According to the simulations, the outcome for the company would depend to 

a large extent 011 the drawing of the lots. At the beginning of the game as lit t le 

as possible should be saved. It wa.<; most advantageous to buy an item requiring 

several rouuds of saviug in one of the last few rounds. The rouud in which to 
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start saving depended upon the out.come of the lottery. \Vhile sa\'ing, one 
might not spend more than the competitor with t he closest amount of savings. 
Much atteut.iou should he paid to items priced $0.25 million or less, which clo 
not require saving. Finally, t he game would probably reach a deadlock, so t he 
partners should define rules for the endgame. 

With the help of t he bookkeeping program and the selected strategy, our 
client succeeded in spending only HJ% of the budget in category E and ver.v 
high percent.ages in categories A and B . This is in spite of an unfavourable 
starting position and an arbitrary allocation of the leftovers in the last round. 
The estimates of benefits ranged between $0.25 and $1.50 million. An objec
tive estimate is impossible since the real preferences of the other partners are 
unknown. One of them purcha.<ied different items t han was expected. Iu gen
eral , the others tried to optimize in each round, whereas our client pursued an 
overall opt.i111um. 

This consultat ion was not remarkable hy the prohlem and the res1ilt.s alone, 
but also because we were given only ten days. Nevertheless, as intensive and 
effective preparation for the auction was feasible. 

3. AFTER TH E LAST RIDE 

The public transportation service in one of the major Dutch cities, which oper
ates 16 tramway lines and 270 t ramcars, was interested in au opt imal allocation 
of t rams to depots . Ou each line, a number of t rams nms between both end
points. After the last ride at night , each tram goes to one of seven depots. 
Each depot. has a limited capacity. A ride to the depot costs a certain amount. 
t ha t., among other things, depends 011 t he length of tJ1e ride. The problem is to 
allocate t rams to clepots in such a way that the tota l costs of the depot. rides 
are minimized. 

Three variants of this problem were of interest. The first one represents 
current practice: all t rams of the same line are allocated t.o the same depot .. 
This stimulates contact among the drivers on 011e line. The second variant can 
yield savings: the trams of a line that make t heir last ride to the same endpoint 
have t.o go to the same depot. The lower costs were t.o be weighed against the 
inconvenie11ce of dividing personnel. The third variant is the cheapest. one: each 
tram can go to any depot. This was not considered to be a feasible a lternative, 
but it would set an informative lower hound on the minimum total costs. 

Out of t he seven depots mc~ntio11ecl above, only three clo exist in rea li ty. Two 
of the four fictitious depots are locations at which a depot could be built. Before 
clecidi11g to do this, one wanted to have a definite estimate of the potent ial 
savings as a function of the capacities to he chosen. The other t.wo fictit ious 
depots are in fact two new routes to an existing depot. Building those routes 
could diminish noise pollution at night, again depending on the capacities to 
be chosen - i.e., t he number of t rams that would he allowed to use t he routes. 
One was interested in the relat ion between operat ing costs and usage of one or 
both new routes. All this led to 40 combinations of depot capacit ies for each 
variant. Therefore, a total number of 120 problems had to he solved. 
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The mathematical formulation of these problems was obvious. The third 

variant is nothing but a linear transportation problem, for which standard 

techniques yield integral solutions; there is no concern that a tram will be 

split over several depots. The first and second variants have side constraints 

to enforce that all trams of the same line (or of the same endpoint) go to 

the same depot; this required the introduction of a 0-1 variable for each of 

the 16 x 7 = 112 line-depot combinations (or for each of the 32 x 7 = 224 

e11dpoint-depot combinations). 
The resulting integer linear programming problems were solved by the APEX 

system of Control Data, which is available 011 the Cyber 175 - 750 of SARA 

(Foundation Academic Computing Centre Amsterdam). This program com

puted goo• I to very good solutions at reasonable costs. 

The cou.putations were organized as follows. For each variant, our general 

LP matrix generator produced an input file for one combination of capacities. 

After that, a special procedure handled each case by substituting a combination 

of capacities in the input file, calling the APEX system, and adding the solution 

to au output file. Finally. a report generator made mauageable surveys of all 

solutions. 
The problems have also been solved for possible future situations involving 

iucrea.'ied capacities or modifical.ions of the network. 
As has been stated before, one had no intention to simply implement the 

best solut ion in practice. Many of the variants and sitnations considered are 

unrealistic, hut this very feature does contribute to the value of the collected 

results as au aid to decision making. The transportation service is now invest i

gating the possibility of changing to au allocation rule according to the second 

variant; this wonld yield substantial savings. 

4. NASTY C LIENTS 

A Dutch firm , primarily engaged in the retail trade, had decided to diversify 

and had acquired a large number of summer cottages. A client can make a 

reservation at any of the firm 's branches and is immediately told whether a 

cottage is still available for the period (s) he is applying for. Only at a later 

stage it is determined in which cottage each accepted client has to spend the 

holidays. This procedure led to a conple of questions. 

Does there exist a simple rule that indicates whether a client can be accepted? 

Yes, there does: cottages can be assigned to clients in their desired periods if 

and only if, at any time, the 1111mber of clients is no larger than the number of 

cottages. How ahou t a method that assigns the accepted clients to a minimum 

number of cottages? T his exists as well: assign the clients to cottages in order 

of their starting t imes, giving priority to cottages used before. 

As early as 1954, more complicated versions of these problems were solved 

by G.B. Dantzig and D.R. Fulkerson, founding fathers of operations research, 

as witnessed by the existence of the Dantzig Prize and the Fulkerson Prize. 

The questions asked were closely related to our research in machine sequencing 

and scheduling, so the answers could be given offhand during the first (and , as 
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it turned out, the la.o:;t) cont.act with onr potential dient. 
While leaving, a trivial complication crossed his mind: a client can reserve 

a specific cottage by paying Dfl.25 upon application and is then prea.o:;signerl. 
This has a dramatic effect. on the problem's computational complexity. So far, 
we had identical cottages and uouidentical clients; hut now the cottages are 
nouidentical m; well. The question whether a client who expresses no preference 
can he accepted boils down to the following problem: is it possible to pack 11 

given time intervals (the unassigned clients) into m other given time intervals 
(the idle periods of the cottages)? 

This is a beautiful combinatorial problem, hut it. has not been dealt with pre
viously in the literature. The above necessary and sufficient condition for ac
ceptance remains valid only under the (false) a.o:;sumption that a client would he 
willing to move into another cottage now and then. It. recently turned out that 
the problem is solvable in polynomial time for each fixed m and NP-complete 
for arbitrary m. The complexity theorist is delighted by such a classification. 
However, the polynomial method is not practicable for realistic values of m, 
and NP-completeness does not imply absolute iusolvahility. It seems very well 
possible to develop an algorithm that resolves most cases fairly quickly - al
though one can always construct au artificial instance that keeps the computer 
running until holidays are over. 

\Ve never heard from our client again: the complications caused by the nasty 
clients are probably trivial indeed and do not prohibit the application of the 
existing methods. 

Is this au example of a consultation that failed! No, it rather is the reverse 
of a consultation. A practitioner saddled us with a problem that., after all, was 
of no concern to him. Continuing research on this problem is a task of the 
l\fathematical Centre. It. is primarily motivated by onr professional curiosity, 
hut also hy possible practical demands in the fntnre. 

NOTE ADDED IN PROOF 

Ou September 1, 1983, the Institute MC changed it.s name to CWI (Centre for 
Mathematics and Computer Science). 
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Comparing Negation in Logic Programming 

and in Prolog 

Krzysztof R. Apt 
CW/ 

and 
Faculty of Mathematics and Computer Science 

University of Amsterdam, Plantage Muidergracht 24 

1018 TV Amsterdam, The Netherlands 

Frank Teusink 
CW/ 

Many aspects of Artificial Intelligence can be clarified and made rigorous by 

using tools and concepts originating in mathematical logic. Cor Baayen has 

stimulated this research programme at CWI. This paper provides an example 

of this form of work and is offered to him at the occasion of his retirement 

from CWI. The second author is a PhD student employed by SION . His 

coauthorship is a tribute to Cor Baayen's successfu l efforts of ensuring a 

smooth cooperation between CWI and SION . 

Mathematical logic has played a useful role in clarifying concepts and ideas 

advanced in Artificial Intelligence. However, for specific applications it is 

often needed to modify and extend well-known logic formalisms, sometimes 

in an unusual way. 

A case in point is the treatment of negation in Prolog. To properly render 

its meaning and compare formally its use to that in logic programming we 

had to extend the customary logic programming formalism by allowing vari

ables standing in atom positions (so called 111 et11-ua1·iablcs ) and adopting 

ambivalent syntax. 

To define the computational process of Prolog one needs to define formally 

backtracking, which is an algorithmic concept . We found a simple account 

of it by means of a single operation on finite ordered trees. To deal with the 

cut operator one more operation is needed . 

After taking care of these matters we establish a formal result showing an 

equivalence in appropriate sense between these two uses of negation - in 

Prolog and in logic programming. This result allows us to argue about cor

rectness of various known Prolog programs which use negation by reasoning 

about the corresponding logic programs. 



This paper is a shorter version of a chapter from Meta-programming in 
Logic Pmgmrnrning, K.R. Apt and F. Turini (editors), The MIT Press, (in 
preparation). 

1 lNTHODUCTION 

During the last 15 years, a lot of attention was devoted to the study of negation 
in logic programming. No less than seven survey articles on this subject were 
published . .Just to mention two mo:;t recent ones: Dix [Dix!J~] and Apt"<rnd 
Bo! [AB!J4]. 

The main rem;on for this interest. is that in the logic programming setting neg
ative literals can he used to model non-monotonic reasoning. The computation 
process of logic programming provides then a readily available computational 
interpretation. This is not the case with other approaches to non-monotonic 
reasoning. This computation process is called SLDNF-resolution and was pro
posed by Clark [Cla78]. Negation is interpreted in it nsiug the "negation as 
finite failure" rule. Intuitively, this rule works as follows: for a ground atom A, 

• A succeeds iff A finitely fails, 
· A finitely fails iff A succeeds, 

where "finitely fails" means that the corresponding evaluation tree i:; finite and 
all its leaves are marked as failed. 

However, SLDNF-resolution is not a practical way of computing and usually 
one resorts to Prolog when seeking for a computational interpretation. But 
in Prolog negation is implement.eel in a different way, namely by the predicate 
(or synonymously relation symbol) neg definecl internally by the following two 
clauses: 

neg(X) ,___ X, !, fail. 

neg(X) ,___ . 

(1) 

(2) 

where "!" is the cut operator and fail i:; a Prolog built-in with the empty 
definition. 

The intuition behind this definition is perhap:; best revealed by first intro
ducing the iLthen_else predicate defined as follows: 

iLthen_else (P, Q, R) ,___ P, ! , Q. 

iLthen_else (P, Q, R) ,___ R. 

iLthen_else is intended to model within Prolog the cu:;tomary 

if P then Q else R 

construct of imperative programming languages. Then neg can be equivalently 
defined by 

neg(X) ,___ iLthen_else(X, fail, D). 
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where Dis the empty query which immediately succeeds. So intuitively, neg(X) 

can be interpreted as "if X succeeds then fail else succeed". 

It is usually tacitly assumed that logic programming and Prolog ways of 

dealing with negation are "equivalent", in the sense that SLDNF-resolution 

combined with the leftmost selection rule (henceforth called LDNF-resolution) 

properly reflects Prolog's way of handling negation. Upon closer scrutiny this 

assumption is far from being obvious. The above definition of the neg predicate 

and its use in programs calls upon a number of features which are present in 

Prolog, but absent in logic programming, and for which a formal treatment is 

lacking. These are: 

• the use of meta-variables, that is variables which occur in an atom posi

tion, like X in the first clause, 

• the use of meta-programming facilities that arise when applying this def

inition of neg, so in constructs of the form neg(A) where A is au atom, 

or a query in general. 

Additionally, two better understood, though not necessarily simpler to handle, 

features of Prolog need to be taken care of, namely: 

• the ordering of the program clauses, 

• the use of the cut operator "!". 

The aim of this paper is to relate precisely these two uses of negation: in logic 

programming and in Prolog. To do this we appropriately tune the definition 

of the SLDNF-resolution given in Apt and Doets [AD94] to our present needs 

and formally define "Prolog trees" in the presence of the cut operator. Then 

we prove a result that shows an appropriate equivalence between these two 

definitions of negation. 
The outcome of this study is that we can now interpret various results 

about correctness of general logic programs executed by means of the LDNF

resolution (see e.g. Apt [Apt94]) as correctness results about the corresponding 

Prolog programs that use negation. 

2 SYNTACTIC MATTE RS 

2.1 General Logic Programs 

To relate general logic programs to Prolog programs we have to he precise about 

the syntax. Fix a first-order language£. To make this comparison possible we 

assume that 

• a general program is a seq'Uence and not a set of general clauses, 

• the predicates !, neg ancl fail are not present in the language£. 
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A general clause is defined in the usual way (see e.g. Lloyd [Llo87]) , so as a 
construct of the form A - £ 1 , ... , L,,, where A is an atom and £ 1 , ••• , L 11 are 
literals, i.e. atoms or their negations, all in the language £. And a query is 
a finite sequence of literals. In the context of logic programming the negation 
connective is \Vritt.en a.." "• " _ 

2. 2 Prolog Programs 

Prolog programs here considered are intended to be the programs that allow 
us to model the negation by means of the predicate neg defined by the clauses 
(1) and (2). However, the syntax of clause (1) creates a number of problems, 
even if we ignore the cut. operator "!". 

First of all, the use of the meta-variable X in clause (1) violates the syntax 
of the first-order logic. This use of X in the re~mlution process leads to further 
complications. Take an 11-ary function symbol p in the language C and let 
s 1 , •.• , s 11 he some terms. Consider now the query neg(p (.'1 1 , ... , s,,)). Dur
ing Prolog computation process it resolves using the clause (1) to the query 
p (s1, ... , s,,), ! , fail. Now in the first query p occurs in a position of a function 
symbol, whereas in the second one p occurs in a position of a relation symbol. 
So every function symbol needs also to he accepted as a relation symbol. 

Also conversely: take an 11-ary relation symbol p with some terms .'1 1 , ... , .'I,,, 
and consider the general clause p( s 1 , •.. , s,, ) - • p( s 1 , •.• , s,, ). It.s desired trans
lation into a Prolog clause is p (s 1 , ... , .'!,,) - neg(p (.<; 1 , ... , s,,)). In the head 
of the latter clause p occurs in a position of a relation symbol, whereas in its 
body in the position of a function symbol. 

As in both cases p was arbitrarily chosen, we conclude that t.o render the 
resolution process meaningful we need to accept. that t.he classes of function 
symbols and of relation symbols in the underlying language coincide. 

This is clearly in violation with the (usually tacit) assumption that in the 
first-order language, say £, fixed above, t.he classes F111 and R,, of, respectively, 
its function symbols of arity 111 and its relation symbols of arity 11 are pairwise 
disjoint for m, n :'.'.'. 0. In short, the use of the clause (1) cnnnot. he properly 
accounted for by just referring to the first-order logic. 

A simple solution to the above mentioned two prohlems is to modify t.he 
syntax of the language C hy allowing 

• m eta-variables, so variables that can occur in atoms positions, both in 
the queries and in the clause bodies, 

• ambivalent syntax, so - in this case - by assuming that the classes of 
function and relation symbols coincide. 

The latter can be achieved hy extending C to a language in which for each 
m :'.'.'. 0 F111 U R 111 are the classes of both its function symbols and relation 
symbols. Tims in this language terms and atoms coincide. 

Additionally, we assume that 
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• the predicates !, neg and fail are present iu the underlying language, 

• ! is a built-in 0-ary predicate (with a meaning to be explained later), and 

no clause uses it in its head , 

• neg is a built-in predicate defined by the clauses (1) and (2), so no other 

clause uses it in its head, 

• fail is a built- in 0-ary predicate with the empty definition , so no clause 

uses it in its head. 

The last two assumptions ensure that neg and fail are indeed defined in

ternally in the desired way. For the purposes of syntax t he cut operator "!" is 

viewed here as a 0-ary predicate with the empty definition. This might suggest 

that its meaning coincides with that of fail. However, this is not the case. Its 

real, operational, "meaning" will be defined in Section 4 hy means external to 

the resolution process. 
So in the resulting language, apart of the customary atoms, also !, fail and 

meta-variables are admitted as atoms (henceforth called special atoms) . 

Now, a Prolog program is defined as a sequence of Prolog clauses preceded 

by the clauses (1) and (2). In turn a Prolog cla-use is a construct of the form A 

<--- B1 , ... , B 11 , where A, B 1, •• . , B,. are atoms in t he language £ , and A is not 

a special atom. And a Prolog query is a fini te sequence of atoms. For brevity, 

in the exam pies of Prolog programs, we drop the listing of the clauses ( 1) and 

(2). Finally, we denote sequences of a toms or literals hy bold capital letters. 

Note that at this stage we use two notions of an atom - oue within the 

language L aud another in its ambivalent extension just defined. From the 

context it will be always clear tu which of these two languages we refer. 

2.3 Restricted P rolog Programs 

The translat ion of a general program to a Prolog program is now straightfor

ward and as expected: we just replace everywhere a logic programming li teral 

-,A by Prolog's atom neg(A) and prefix the resulting program with the clauses 

( 1) and ( 2). In short, the logic programming negation connective "-," is traded 

for the built-in predicate neg. Similarly, a general query is translated to a 

Prolog query by replacing everywhere -,A by neg(A). 

This translation process maps every general program ( resp. general query ) 

onto a Prolog program. However, not every Prolog program (resp. Prolog 

query) is the result of translating a general program (resp. general query). 

Indeed , in general the cut operator "!" can be used in any Prolog clause, not 

only (1). 
Let us now characterize the Prolog programs (resp. Prolog queries) which are 

the result of the above translation of general programs (resp. general queries). 

We call them restricted Prolog programs (resp. restricted Prolog q-uer·ies). To 

this we translate "back" every Prolog program (resp. Prolog query) onto a 

general program (resp. general query) by replacing everywhere neg( A) by -,A, 
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and omitting the clauses (1) and (2) that define the neg predicate. Then a 
Prolog program (resp. Prolog query) is restricted if the outcome of this reverse 
translation is a syntactically legal general program (resp. general query). For 
example the Prolog query neg(q) ,q is restricted because its reverse translation 
is • q, q, whereas neither neg(q (neg(a))) nor p(q) ,q is restricted because their 
respective reverse translations violate the syntactic assumptions concerning 
general programs. 

Of course, it is possible to define the class of restricted Prolog programs and 
queries directly, though the resulting definition is rather tedious. 

We now define a resolvent of a Prolog query a.o:; follows. 

DEFINITION 2 .1 Com;ider a non-empty Prolog query A, M and a Prolog clause 
c. Let H <- L be a variant of c variable disjoint with A, M and let (} be an mgu 
of A and H. Then (L, M)O is called a resolvent of A, M and c with an mgu 0. 
D 

The only unusual feature in the present setting is, that now the mgu's also 
bind the meta-variables. Also, note that the selected literal is always the left
most literal. 

It is worthwhile to mention that a resolvent of a restricted Prolog query 
w.r.t. a restricted Prolog program is not necessarily a restricted Prolog query. 
This is due to the use of clause (1), which introduces a cut atom. Thus, the 
Prolog queries generated in a computation of a restricted Prolog query are not. 
necessarily restricted Prolog queries. However, the Prolog queries so generated 
do have one important property: they do not contain meta-variables. To prove 
this fact we need a stronger property. 

DEFINITION 2.2 

• An atom A is called unsafe if one of the following holds: 

A is a meta-variable, 

A is neg(X) where X is a variable, 

A is neg(neg(s)) where s is a term. 

• A Prolog query is called m eta-safe if none of its atoms is unsafe. D 

For example, X, p (X) is not meta-safe because its leftmost atom is a meta
variable, neg(X) is not meta-safe because the argument of neg is a meta
variable, and neg(neg(p (X))) is not meta-safe because the argument of the 
outermost neg predicate is itself a neg predicate. 

Note that restricted Prolog queries and bodies of the restricted Prolog clauses 
are meta-safe. 

LEMMA 2.3 Let Q be a m eta-safe Prolog query and P a restricted Prolog pro
gram. Then all resolvents of Q are rneta-S<Lfe. 

Proof: Let Q be of the form A, L, and let (M, L)(} be a resolvent of Q, with 
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an input clause c and mgu (). As Q is meta-safe, we know that LO is meta-safe. 

We prove that M() is meta-safe as well. Three cases arise. 

Case 1 : c is clause (1). 

Then MO is of the form B, ! ,fail, where A is of the form neg(B). But 

Q is meta-safe, so B is neither a meta-variable nor of the form neg (B'). 

So MB is meta-safe. 

Case 2 : c is clause (2) . 

Then MB is the empty query, so obviously meta-safe. 

Case 3 : c is different from clauses ( 1) and ( 2). 

The1, the body of c is meta-safe, and consequently so is MB. 

This proves that (M , L )() is meta-safe. D 

COROLLARY 2.4 All Prolog queries generated in a cornputatfon of a restricted 

Prolog query and a restricted Prolog program are meta-safe. D 

In Prolog, if the selected atom is a meta-variable, an error arises. The above 

result thus shows that no errors arise in Prolog computations for queries and 

programs that are obtained by a translation of a general query and a general 

program. 

3 COMPUTING WITH GENERAL LOGIC PROGRAMS: LDNF-RESOLUTION 

As the next step we define the LDNF-resolution that allows us to compute with 

general logic programs. The definition ofLDNF-resolution given here is derived 

in a straightforward way from that of the SLDNF-resolution given in Apt and 

Doets [AD94]. Apart of the fact that we view in this paper a general program 

as a finite sequence and not as a finite set of general clauses, the differences are 

that: 

• the leftmost selection rule is used, 

• ]foundering, so - in this context- an abnormal termination due to selection 
of a non-ground literal is ignored. 

In this way we bring the procedural interpretation of general programs closer 

to that of the corresponding Prolog programs and make the subsequent com

parison possible. Recall from Clark (Cla78] and Lloyd (Llo87] that floundering 

is a problem that arises only when dealing with the semantic aspects of the 

SLDNF-resolution, which are irrelevant here. 
Before giving the definition of LDNF-resolution, we recall the definitions of 

resolvent and pseudo-derivation. 

DEFINITION 3.1 Consider a non-empty general query L, Mand a general clause 
c. 
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• Suppose L is a positive literal. 

Let H <-- L be a variant of c variable disjoint. with L , M and let fJ he au 

mgu of L and H . Then (L , M )fJ is called a resolvent of L , M and c w. r . t . 

L , with an mgu (). 

We write then L , M ~ (L , M)O, and call it a positive derivation step. 

We call H <-- L the input clause of the derivation step. 

• Suppose L is a negative literal. Then M is called a resolven t of L , M 

with the identity substitution E w. r. t. L. 

We write then L , M ==i=;. M , and call it a negative derivation step. 

• A general clause c is called applicnble to an atom if it. has a variant the 

head of which unifies with the atom. D 

Fix, unt il t he end of this sect.ion, a general program P. 

D EFINITION 3.2 A (finite or infinite) sequence Q0 ~ Q 1 · · · Q,, ~ Q11 + 1 · · · 

of derivation steps is called a pseudo derivation of P U { Q11 } if 

• Q0 , •.• , Q,,, .. . are general queries, 

• 81, • . . , 811 , • •• are substitutions, 

• c1 , . .. , c,., ... are general clauses of P , or 0, 

aucl for every step involving selection of a posit ive literal t he following condition 

holds: 
Standardization apart: the input clause employed is variable disjoint from 
the initial general query Q0 and from t he substitut ions and input clauses used 

at earlier steps. D 

Intuit ively, an LDNF-derivation is a pseudo derivation in which t he deletion 

of every negat ive literal is justified hy means of a subsidiP.ry (finitely failed 

LDNF-) tree. This brings us t.o consider special types of trees, called fo rests. 

DEFINITION 3 .3 A fo rest is a system :F = (:F, T, s·ubs ) where 

• :F is a set of trees, 

• T is an element. of :F called the m ain tree, and 

• subs is a function assigning to some nodes of trees in :F a ("subsidiary" ) 
tree from :F. 

By a path in :F we mean a sequence of nodes N 0 , . .. , N ;, . . . such that for all 

i, N ;+l is either an immedia te descendant of N; in some tree in :F, or the root 

of the tree snbs(N ;) . The depth of :Fis the lengt h of the longest path in :F. D 
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Thus a forest is a special directed graph with two types of edges - the "usual" 

ones stemming from the tree structures, and the ones connecting a node with 

the root of a subsidiary tree. Au LDNF-tree is a special type of forest, built as 

a limit of certain finite forests: pre-LDNF trees. 

DEFINITION 3.4 A 1ire-LDNF-tree (relative to P ) is a forest whose nodes are 

queries. Leaves can he uumarked , or can be marked as either success or failure. 

The class of pre-LDNF-trees is defined inductively: 

• For every general query Q, the forest consisting of the main tree which ha:; 

the single unmarked node Q is a pre-LDNF-tree (au initial pre-LDNF

tree), 

• If Tisa pre-LDNF-tree, then any extension of Tisa pre-LDNF-tree. 

Before defining the notion of an extension of a pre-LDNF-tree, we need to 

define the notion of .mccessful and finitely failed trees: for T E T , 

• T is called successful, if one of its leaves is marked as success, and 

• T is called finitely fa iled, if it is finite and all its leaves are marked as 

failure. 

Now, au extension of a pre-LDNF-tree T is defined by performing the following 

actions for every non-empty general query Q (with leftmost literal L) which is 

an unmarked leaf in some tree T E T: 

• Suppose that L is a positive literal. 

If Q has no resolveuts w.r.t. L and a clause from P: 

Mark Q as failure. 

If Q has such resolvents: 

For every clause c from P which is applicable to L, choose one 

resolvent Q' of Q w.r.t. L and c, with an mgu (), and add this as au 

immediate descendant of Q in T. Choose the input clauses in such 

a way that all branches of T remain pseudo derivations. 

• Suppose that L is a negative literal, say • A. 

- If subs( Q) is undefined: 

Add a new tree T', consisting of the single node A, to T , and let 

subs(Q) = T'. 

If subs( Q) is defined and successful: 

Mark Q as failure. 

If subs( Q) is defined and finitely failed: 

Add the resolvent Q - { L} of Q as the only immediate descendant 

ofQ in T. 
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FIGURE 1. Step-by-step construction of an LDNF-tree for the query p w.r.t. 
the general program p +-- •q, r q +-- . 

Additionally, all empty queries are marked as success. D 

Note that, if no tree in T has unmarked leaves, then trivially T is an extension 
of itself, and the extension process becomes stationary. 

Next, we define LDNF-trees as the limit of sequences of pre-LDNF-trees. 
Every pre-LDNF-tree is a tree with two types of edges between possibly marked 
nodes, so the concepts of inclusion between such trees and of limit of a growing 
sequence of such trees have a clear meaning. 

DEFINITION 3.5 
• An LDNF-tree is a limit of a sequence 1(i, ... , T<,, ... such that Tci is an 

initial pre-LDNF-tree , and for all i 1i+i is an extension of T;. 

• An LDNF-trce for Q is an LDNF-t.ree in which Q is the root of the main 
tree. 

• A (pre-) LDNF-tree is called .mccessful (resp. finitely failed) if the main 
tree is successful (resp. finitely failed). 

• An LDNF-tree is called finit e if no infinite path exists in it ( cf. Definition 
3.3). D 

In Figure 1, we show how the notions of initial pre-LDNF-trees and extensions 
of pre-LDNF-trees are used to construct a P-tree. 

Finally, we recall the not.ion of a computed answer substitution. 

DEFINITION 3.G Consider a branch in the main tree of a (pre-)LDNF-tree for 
Q which ends with the empty query. Let a 1 , ... , O'.n be the consecutive substi
tutions along this branch. 

Then the restriction (a1 · · ·a11 )IQ of the composition a 1 · · ·a11 to the vari
ables of Q is called a computed answer substitution ( c.a.s. for short) of Q. 
D 
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4 COMPUTING WITH PROLOG PROGRAMS: P-RESOLUTION 

In this section, we define the computation process used in Prolog to find answers 

to queries, which we call P-resolution. To this end we proceed in two steps. 

First , we restrict the LDNF-resolution to logic programs, so general logic 

programs without negation, by simply disregarding the selection of a negative 

literal. We call the resulting computation process LD-resolution. 
Then, we extend the LD-resolution to Prolog programs by allowing the choice 

of a meta-variable or of a cut atom as a selected atom. In the first case an 

error is reported, and in the second case the computation tree constructed so 

far is appropriately pruned. 
In Prolog, answers are computed using a left to right depth-first strategy. 

In particu lar, Prolog processes the cut atoms in the tree from left to right. 

On the other hand, LD-resolution is defined in a breadth-first manner: the 

process of extending a pre-tree consists of extending all unmarked leaves of that 

tree simultaneously. To solve this problem, we have to refine LD-resolution so 

that the depth-first strategy is used instead of the breadth-first strategy. At 

first sight it seems that to this end we have to implement the backtracking 

mechanism used by Prolog. Fortunately, it is not so. A simpler alternative 

is to generate at each stage all direct successors of the leftrnost unmarked leaf 

only. In this way the backtracking process is taken care of automatically. 

Having discussed the modifications of the LD-resolution we now model the 

computation process of Prolog, by providing a formal definition of P-resolution. 

The central notion in this definition is that of a P-tree. We define them as the 

limit of a sequence of pre-P-trees, which in turn are a subclass of a class of 

ordered trees called semi-P-trees. 

DEFINITION 4.1 A serni-P-tree (relative to P) is an ordered tree whose nodes 

contain queries, possibly marked with success, fail'Ure, or e17'01·. D 

The first step in defining pre-P-trees is to define the effect of the cut operator. 

DEFINITION 4.2 Let B be a branch in a semi-P-tree, and let Q be a node in 

this branch with a cut atom as the leftmost atom. Then, the origin of this cut 

atom is the first predecessor of Q in B that contains less cut atoms than Q. 0 

To see that this definition properly captures the informal meaning of the 

origii1 note that, when following a branch from top to bottom, the cut atoms 

are introduced and removed in a First-In Last-Out manner. 

DEFINITION 4.3 Let T be a semi-P-tree, Q a query in T which has a cut atom 

as the leftmost atom, and Q' be the origin of this cut atom. Then, the operator 

cut(T, Q) removes from T all the nodes that are descendants of Q' and lie to 
the right of Q. D 

In Figure 2, we illustrate the effect of cut(T, Q). 

DEFINITION 4.4 The class of pre-P-trees is defined as follows: 
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FIG URE 2. The effect of the operator cut(T , Q) 

• For every query Q, the tree consisting of the single unmarked node Q is 
a pre-P-tree (an initial pre-P-tree) . 

• If T is a pre-P-trce, then any exten.~ion of T is a pre-P-tree. 

An extension of a pre-P-tree T is defined as follows: 
Let Q be the leftmost unmarked leaf in T. If Q is t he empty query, mark Q 

as successful. Otherwise, let Q be of the form A, M. 

• Suppose A is an ordinary atom (i.e. not a special atom). 

If Q ha.o;; uo resolvent,s w.r.t. a clause from P: 

Mark Q as failure. 

If Q has such resolvents: 

For every clause c from P which are applicable to A, choose oue 
resolvent Q' of Q w.r.t. c and add this as a child of Qin T. Choose 
the input clauses in such a way that all branches of T remain pseudo 
derivations. Order these children according to the the order in which 
their input-clauses appear in P. 

• Suppose A is a cut atom. 

Apply the operation cut(T , Q). 

Provide Q with a single child M. 

• Suppose A is a meta-variable. 

Mark Q as error. 0 

We now define P-trees as the limit of sequences of pre-P-trees. In Figure 3, we 
show how the notions of initial pre-P-trees and extensions of pre-P-trees can be 
used to construct a P-tree (the program used in the figure is the translation of 
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FIGURE 3. Step-by-step construction of a P-tree for the Prolog query p w.r.t. 

the Prolog program p +--- neg(q), r. q +--- •• 
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the program used in Figure 1). Note that in this Figure, the result of the 'cut 
step' (that is, the fifth tree) is not itself part of the sequence of extensions; it 
was added to clari(y the use of the cut operator in the construction of P-trees. 

To be able to define the limit of a sequence of pre-P-trees, we have to define 
a notion of an inclusion hetween pre-P-trees, and of the limit of a growing 
sequence of pre-P-trees. For pre-LD-trees and pre-LDNF-trees, these notions 
were obvious. In the case of pre-P-trees, the pruning that takes place when 
extending a pre-P-tree, complicates the matters a bit. 

DEFINITION 4.5 Let T and T' he pre-P-trees. T is said to he included in T' if 
T' can be constructed from T by means of one of the following two operations: 

1. adding some children to a leaf of T. 

2. removing a single suhtree from T, provided its root is not a single child 
in T. 

We say that T is properly included in T', if T is included in T' and T' is not 
included in T. We use C to denote the transitive closure of the relation "T is 
properly included in T'" and define T ~ T' as (T C T') V (T = T'). D 

Note that operation (2) never turns an internal node into a leaf. 

LEMMA 4.6 The relation C is a strict partial order on pre-P-t.rees. 

Proof: We have to prove that the conditions for a strict partial order hold. 

1. T(/_T 

Suppose hy contradiction that T c T. Then, there exists a T' such that 
T is properly included in T', and T' ~ T. There are two cases: 

• T' is constructed by adding children to a leaf of T. 
But then, some node Q that is a leaf in T, is an internal node in T'. 
By definition of inclusion, and the fact that T' ~ T, Q is an internal 
node in T. This is in contradict.ion with the fact that Q is a leaf T. 

• T' is constructed by pruning a single subt.ree from T. 
By definition of inclusion, the parent of the pruned suhtree has at 
least two children in T, and therefore, it has at least one child in T'. 
Moreover, new nodes can only "grow" from leaves. Thus subtrees 
pruned from T can never he "regenerated" , to reconstruct T out of 
T'. Therefore, T' i T, which leads to a contradiction. 

2. T c T' and T' c T" imply T c T". 

Straightforward by the definition of C. D 

COROLLARY 4. 7 The relation ~ is a partial order on pre-P-trees. D 
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FIGURE 4. A P-tree for the query neg(p) w.r. t. p +- p. 

Clearly, with this notion of inclusion, we have t hat if T extends T' in the 

sense of Definition 4.4, then T' ~ T, so we can use this notion of extension to 

construct monotonously growing chains of pre-P-trees. 

DEFINITION 4.8 

• A P-tree is a limit of a sequence To, ... , T;, . .. such that To is an initial 

pre-P-tree, and for all i, T;+1 is an extension of T;. 

• A P-tree fo r Q is a P-tree whose root is the query Q. 

• An P-tree is called finit e if no infinite branch exists in it. D 

Formally, this definition is justified by the fact that every countable partial 

order with the least element (here the relation ~ on pre-P-trees with the initial 

pre-P-tree as least element) can be canonically extended to a countable cpo 

(see e.g. Gierz [GHK+so]). 
Next, we define the concepts of successful and fin itely failed P-trees. 

DEFINITION 4. 9 

• A P-tree is called successful if one of its leaves is marked as success. 

• A (pre-)P-tree is called finitely Jailed , if it is finite, and all its leaves are 

marked as failure. D 

Note that in P-trees, in contrast to LDNF-trees, some leaves can be un

marked. Whenever this is the case, the P-tree will contain exact ly one infinite 

branch to the left of all these unmarked leaves. Such unmarked leaves repre

sent the resolveuts the Prolog computation process did not reach, because it 

got "trapped" in an infinite derivation (the infinite branch). For example, take 

the program p +- p., and the query neg(p). Its P-tree is shown in Figure 4. 

This tree contains a branch ending with a leaf containing the empty query. 

However, this leaf is never reached by the Prolog computation process (and 

therefore never marked) because there is an infinite branch to the left of it. 

Finally, it is clear how to define the notion of a computed answer substitution. 
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DEFINITION 4.10 Consider a successful derivation in a pre-P-tree for Q. Let. 
ll'J, ... , 0'11 he the consecutive substitutions along this branch. 

Then the restriction (a 1 · · ·0'11 )ICJ of the composition n 1 · · ·n,. to the vari
ables of Q is called a compuf.ed answer substitution (c.a.s. for short) of Q. 
D 

5 CORRESPONDENCE BETWEEN LDNF-TREES AND P -TREES 

In this section, we prove that. there is a close correspondence between ( com
puted answers of) LDNF-trees and P-trees. More precisely, we prove that. ter
mination results on general programs w.r.t. LDNF-resolution translate direct!~· 

into termination of their translated Prolog programs w.r.t. Prolog computa
tion. For this purpose, we start by examining finite LDNF-t.rees, and their 
corresponding P-trees. 

THEOREM 5.1 Let TL be a finite LDNF-tree for a general query Q. Then, 
I.here exists a finit e P-tree Tp for Q such that 'h and Tr hnve I.he same set of 
computed answers. 

Proof: We prove the claim by induct.ion on the depth of LDNF-t.rees (cf. 
Definition 3.3). Assume that the claim holds for all LDNF-t.rees of depth less 
than r. We have to prove the claim for LDNF-trees of depth r. 

Let TL he an LDNF-t.ree for Q of some finite depth r. In the remainder of 
this proof, we identify a general query with its translation into a Prolog query. 
From the cont.ext it will always be clear whether we refer t.o a general query, 
or a Prolog query. Two cases arise. 

• Suppose that. Q is of the form A, L. 

Let Q 1 , ... , Qk· (1..: 2: 0) be the children of Qin TL· Let., for i E [l..A:], T{ 
denote the subtree of TL starting at. Q;. 

As, for i E [1..k], Ti is finite and of depth lesi; than r, hy induct.ion 
hypothesis there exists a P-tree Tj. for Q; such that. Tj. contains the same 
computed answers as T{. Now consider the i;emi-P-tree Tr with root Q, 
children Q 1 , . .. , Qk· (ordered according to the order of their input clauses 
in P) and, for i E [LI.:], Tj. as the suhtree starting at Q ;, as depicted by 
the following diagram: 

80 



To prove that Tp is a P-tree for Q, it is sufficient to show that all pruning 

caused by selection of cut atoms is guaranteed to be local to the respective 

subtrees Tt (for i E (1..k]). Neither Q, nor its childreu Q1 , ... , Qk in Tp , 

contain a cut atom, so no atom in Tp has Q as its origin. It follows from 

the definition of the cut operator that all pruning is indeed local to the 

respective subtrees Tt. Thus Tp is a P-tree for Q. From its construction, 

it follows that it contains the same computed answers as TL. Moreover, 

it is finite. 

• Suppose that Q is of the form -.A, L. 

Let Ti be the subtree ofTL starting at the root of subs(Q). As the LDNF

tree Ti for A is finite and of depth less than r, by induction hypothesis 

there exists a finite P-tree T/, for A that has the same computed answers 

as Ti. There are two sub-cases. 

- Suppose that Q has a child in TL. 

Then, Ti is finitely failed, and therefore T/, is finitely failed as 

well. But then, we can construct a finitely failed P-tree T/,' for 

A, ! , fail, L. In this P-tree, the cut atom introduced at the root 

will never he reached. 

Let Tl be the subtree of TL starting at the single child L of Q. 

As the LDNF-tree T[ for L is finite and of depth less than r, by 

induction hypothesis there exists a finite P-tree Tt for L that has 

the same computed answers as Tl. 

Using ~f and Tf, we can construct a finite P-tree Tp for Q that has 

the same computed answers as TL. This tree has the following form: 

,. - ........ 
Tp,/ neg(A) ,L 

,.--~, 
I' / A I f · 1 L L ' 2 ~J ,,. , • , ai , 'T,, 

I I 
Suppose that Q has no children in TL. 

Then, Ti is successful, and therefore T/, is successful as well. But 

then we can construct a finitely failed P-tree T/, 1 

for A,! ,fail,L, 

in which the cut atom present in its root is selected at some point. 

Let Tp be the semi-P-tree such that its root is Q, and the subtree 

starting at the single child A,! ,fail,L of Q is T/,'. In this tree, 

the origin of the cut atom that appears in the single child of Q, is Q. 

This cut atom is the selected atom in some node within T/,'. Thus 

Tp is a P-tree for Q, because the potential second child of Q, that 
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neg(p) 

///-A 
/ I f "l 1 p,., ai D 

/~ 
II/~ 

! ,fail p, ! ,fail 

fail 

failure 

-.p 

failure ',, 
' ' 

p 

A 
D p 

success A 
D 

FIGURE 5. A P-tree and an LDNF-tree for neg(p) 

would contain the query L has heen pruned at some stage. Thus Tr 
is finitely failed, just as TL is. D 

Thus if we have a general query Q that terminates w.r.t. a general program 
P , we know that Prolog computation on that query and that program will 
terminate, and give the same computed answers as LDNF-resolution. 

Now what if we have a finite P-tree for a restricted Prolog query Q and a 
restricted Prolog program P? Consider the following restricted Prolog program 

]J i

p i- ]J 

and the restricted Prolog query neg(p). The P-tree and LDNF-tree for this 
query and this program are shown in Figure 5 (note that the pruned branches 
are not really part of the P-tree for neg(p), but existed at some point during 
the construction of this P-tree). In this example, the P-tree is finite, because 
the potentially infinite branch caused by the clause p i- p is pruned. However, 
in the LDNF-tree, this branch has been constructed in full, and therefore this 
LDNF-tree is infinite. 

6 APPLICATIONS 

Due to the presence of cut in the definition of the predicate neg it is difficult 
to reason in a declarative way about Prolog programs that use negation. In 
other words, it is not clear how to prove correctness of such programs using 
their declarative interpretation. 

We now show how this is possible using the results of this paper. The key 
observation is that Theorem 5.1 provides a crucial relationship between the 
computational behaviour of Prolog programs and their translations into general 
logic programs. 
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In the subsequent discussion we assume that the variables in the input clauses 

and the mgu's are chosen in a fixed way. We can then assume that for every 

Prolog program P and Prolog query Q there exists exactly one P-tree, and 

similarly for general logic programs, general queries and LDNF-trees. 

So consider a restricted Prolog program P with a restricted query Q and 

their translation PL and Q L onto a general logic program and a general logic 

query, respectively. To reason about correctness of P with Q it is sufficient 

to reason about PL and QL. Indeed, suppose that we proved already that 

all LDNF-derivations of P and Q are finite. Then by Theorem 5.1 the P-tree 

for PL and Q L is finite , and PL with Q L and P with Q have the same set of 

computed answers. 
As an example consider the following well-known Prolog program TRANS 

about which one claims that it computes the transitive closure a binary re

lation e : 

trans(X, Y, E, Avoids) +- member( [X, Y], E). 

trans(X, Z, E, Avoids) +-

member( [X, Y], E), 
neg(member(Y, Avoids)), 
trans(Y, Z, E, [Y I Avoids]). 

member (X, [X I Xs] ) +- . 

member(X, [Y I Xs]) +- member(X, Xs). 

In Apt [Apt94] the following facts about its translation TRANSL to a general 

logic program and a binary relation e were established: 

• all LDNF-derivations of trans(X, Y, e , []) are finite, 

• the computed answer substitutions of trans(X, Y, e, []) determine all 
pairs of elements which form the transitive closure of e. 

Now, by Theorem 5.1 the same conclusions can be drawn about the original 

program TRANS. 

The fact that above approach to correctness is limited to restricted Prolog 

programs is in our opinion not serious. In fact, we noticed that practically all 

"natural" Prolog programs that use negation are restricted. 
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Management of the communications among a set of concurrent processes 

arises in many applications and is a central concern in parallel computing. In 

this paper we introduce MANIFOLD: a coordination language whose sole 

purpose is to describe and manage complex interconnections among inde

pendent, concurrent processes. In the underlying paradigm of this language 

the primary concern is not with what functionality the individual processes in 

a parallel system provide. Instead , the emphasis is on how these processes 

are inter-connected and how their interaction patterns change during the 

execution life of the system. This paper also includes an overview of our 

implementation of MANIFOLD. 

As an example of the application of MANIFOLD, we present a series of small 

manifold programs which describe the skeletons of some adaptive recursive 

algorithms that are of particular interest in computer graphics. Our concern 

in this paper is to show the expressibility of MANIFOLD and its usefulness 

in practice. Issues regarding performance and optimization are beyond the 

scope of this paper. 

1 INTRODUCTIO N 

Specification and management of the communications among a set of concur

rent processes is at the core of many problems of interest to a number of contem

porary research trends. The theory of neural networks and the connect ionist 

view of computation emphasize the significance of the concept of management 

of connections versus the local computation abilities of each node. The con

cept of dataflow programming has a certain resemblance with connectionism, 

albeit, it is closer to the discrete world of conventional programming than neu

ral networks. Theoretical work on concurrency, e.g., CCS [1] and CSP [2, 3], is 

primarily concerned with the semantics of communications and interactions of 

concurrent sequential processes. Communication issues also come up in virtu

ally every other type of computing, and have influenced the design (or at least , 
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a few constructs) of most programming languages. However, not much effort 
has been spent on conceptual models and languages whose sole prime focus of 
attention is on the coordination of interactions among processes. 

In their recent paper [4], Gelernter and Carriero elaborate the distinction 
between computational models and languages versus coordination models and 
languages. They correctly observe that relatively little serious attention has 
been paid in the past to the latter, and that "ensembles" of asynchronous 
processes (many of which are off-the-shelf programs) running on parallel and 
distributed platforms will soon become predominant. 

MANIFOLD is a language whose sole purpose is to manage complex intercon
nections among independent, concurrent processes. As such, like LINDA [5, G], 
it is primarily a coordination language. However, there is no resemblance be
tween LINDA and MANIFOLD, nor is there any similarity between the under
lying models of these two languages. The details of the MANIFOLD model and 
the syntax and semantics of the MANIFOLD language are, of course, beyond the 
scope of this paper and are described in a separate document [7]. In this paper, 
we give an overview of the MANIFOLD language and its implementation and 
present the skeleton of some recursive algorithms which are of particular inter
est in computer graphics. Abo, an application of the language in the field of 
scientific visualization is presented. \Ve summarize only enough of the descrip
tion of the MANIFOLD model and language here, to make the examples and 
the significant implementation issues presented in this paper understandable. 

The rest of this paper is organized as follows. In §2 the main motivations 
behind the MANIFOLD language and its underlying computing moclel are dis
cussed. In §3 a more detailed description of the language is presented. In §4 we 
mention some of the application areas where MANIFOLD can prove to be a use
ful tool. In §5, we present the skeleton of a few adaptive recursive algorithms 
taken from the field of computer graphics. The purpose of these examples is 
to illustrate the use of some of the features of the MANIFOLD language and to 
demonstrate the general applicability of MANIFOLD concepts. The analysis of 
these programs gives us a good opportunity to show the descriptive power of 
MANIFOLD. In §6, we discuss some of the similarities and major differences 
between MANIFOLD and certain related systems and models for parallel com
puting. In §7 we mention some of the extensions and enhancements we plan to 
make to the MANIFOLD system in the future. Finally, §8 concludes this paper. 

2 MOTIVATION 

One of the fundamental problems in parallel programming is coordination and 
control of the communications among the sequential fragments that comprise a 
parallel program. Programming of parallel systems is often considerably more 
difficult than (what intuitively seems to be) necessary. It is widely acknowl
edged that a major obstacle to a more widespread use of massive parallelism 
is the lack of a coherent model of how parallel systems must be organized and 
programmed. To complicate the situation, there is an important pragmatic 
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concern with significant theoretical consequences on models of computation for 

parallel systems. Many user communities are unwilling and/or cannot afford 

to ignore their previous investment in existing algorithms and "off-the-shelf" 

software and migrate to a new and bare environment. This implies that a 

suitable model for parallel systems must be open in the sense that it can ac

commodate components that have been developed with little or no regards for 

their inclusion in an environment where they must interact and cooperate with 

other modules. 
Many approaches to parallel programming are based on the same computa

tion models as sequential programming, with added on features to deal with 

communications and control. This is the case for such concurrent programming 

languages like Ada [8], Concurrent C [9, 10], Concurrent C++ [11], Occam [12] 

and many others (the interested reader may consult, e.g., the survey of Bal et al. 

[13] for more details on these languages). 
There is an inherent contradiction in such approaches which shows up in 

the form of complex semantics for these added on features. The fundamental 

assumption iu sequential programming is that there is only one active entity, 

the processor, and the executing program is in control of this entity, and thus 

in charge of the application environment. In parallel programming, there are 

many active entities and a sequential fragment in a parallel application cannot, 

in general, make the convenient assumption that it can rely on its incrementally 

updated model of its environment. 
To reconcile the "disorderly" dynamism of its environment with the orderly 

progression of a sequential fragment, "quite a lot of things" need to happen at 

the explicit points in a sequential fragment when it uses one of the constructs to 

interact with its environment. Hiding all that needs to happen at such points 

in a few communication constructs within an essentially sequential language, 

makes their semantics extremely complex. Inter-mixing the neat consecutive 

progression of a sequential fragment , focused on a specific function, with up

dating of its model of its environment and explicit communications with other 

such fragments, makes the dynamic behavior of the components of a parallel 

application program written in such languages difficult to understand. This 

may be tolerable in applications that involve only small scale parallelism, but 

becomes an extremely difficult problem with massive parallelism. 

Contrary to languages that try to hide as much of the "chaos of parallelism" 

as possible behind a facade of sequential programming, MANIFOLD is based 011 

the idea that allowing programmers to see and feel this parallelism is actually 

beneficial. It is a formidable intellectual experience to realize that if one frees 

oneself from the confines of the sequential paradigm and accepts that logical 

processes are "cheap" (that is , they are fast to activate and to communicate 

with), then a number of practical problems and applications can be described 

and solved incomparably more easily and more elegantly. In other words , there 

often is a pay-off in using parallel or distributed programming, even if higher 

speeds are not (nece:;sarily) achieved. Just as a practical example, the bas ic 

approach of using multi-processing is very clearly one of the reasons for the un-
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deniable technical superiority oft.he Ne\VS windowing system over X Windows 
[14]; also, almost all the applications listed in s4 fall in this category. 

The assumption of having cheap logical processes is not only in line with the 
direction of future hardware development, it is also compatible with the cur
rent trend in t.he evolution of contemporary soft.ware systems. The increasingly 
more frequent use of so-called "light-weight" processes within conventional op
erating systems1 is a clear indication (see, for example, the Brown Uuiversity 
Thread Package [15], the so-called pSystem [lG], or even the way some of the 
above cited languages, e.g., AT&T's Concurrent C, are implemented) . . More re
cent. operating system designs offer light-weight processes in their kernels (e.g. , 
OSF / 1, based on the Mach system [17, 18] of Carnegie Mellon, or SunOS [l!J]). 

Separating communication issues from the functionality of the component. 
modules in a parallel system makes them more independent of their cont.ext. , 
and thus more reusable. It. also allows delaying decisions about the interconnec
tion patterns of these modules, which may he changed subject. t.o a different set 
of concerns. This idea is one of the main motivations behind the clevelopment 
of the MANIFOLD system. 

There are even stronger reasons in distributed programming for delaying 
the decision about the interconnections and the comnmnicat.ion pat.terns of 
modules. Some of the basic problems with the parallelism in parallel comput
ing become more acute in real distribnt.ed computing, due t.o the dist.rilmt.ion 
of the application modules over loosely coupled processors, perhaps running 
under quite different environments in geographically different locations. The 

implied communications delays and the heterogeneity of the computational en
vironment. encompassing an application become more significant. concerns tha11 
in other types of parallel programming. This num<late8, among ot.her things , 
more flexibilit.y, reusabilit.y, and robustness of modules wit.h fewer hard-wired 
assumptions about their environment. 

The tangible payoffs reaped from separating the comm1111ications aspect of 
a multi process application from the functionalit.y of itH in<iividual pror:esses 
include clarit.y, efficiency, and reusahilit.y of modules and the communicat.ions 
specifications. This separation makes t.he comm1111icat.ions control of the coop
erating processes in an application more explicit., clear, and underst.anclable at. 
a higher level of abstract.ion. It also encourages individual processes to make 
less severe assumptions about. t.heir environment.. The same comnmnicat.ions 
control component can be used wit.h various processes that. perform funct.ions 
8imilar to each ot.her from a very high level of ahst.ract.ion. Likewise, t.he same 
processes can be used with quit.e different communicat.ions control components. 

3 THE MANIFOLD LANGUAGE 

In this section we give a brief and informal overview of the MANIFOLD lan
guage. The sole purpose oft.he MANIFOLD language is to describe and manage 

1Some authors prefer the term "pseudo-parallelism'" for such or similar forms of paral
lelism, again, see Bal et al [13]. 
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FIG URE 1. The model of a process in Manifold. 
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complex conuuunications and interconnections among independent, concurrent 

processes. As stated earlier, a detailed description of the syntax and the se

mantics of the MANIFOLD language and its underlying model is given else

where [7]. Other reports contain more examples of the use of the MANIFOLD 

language [20, 21, 22, 23]. 
The basic components in the MANIFOLD model of computation are proce8ses, 

events, ports, and streams. A process is a black box with well defined ports 

of connection through which it exchanges 'Units of information with the other 

processes in its environment. The internal operation of some of these black 

boxes are indeed written in the MANIFOLD language, which makes it possible 

to open them up, and describe their internal behavior using the MANIFOLD 

model. These processes are called manifolds. Other processes may in reality 

be pieces of hardware, programs written in other programming languages, or 

human beings. These processes are called atomic processes in MANIFOLD. 

In fact, au atomic process is any processing element whose external behavior 

is all that one is interested in observing at a given level of abstraction. In 

general, a process in MANIFOLD does not, and need not, know the identity of 

the processes with which it exchanges information. Figure 1 shows au abstract 

representation of a MANIFOLD process. 
Ports are regulated openings at the boundaries of processes through which 

they exchange units of information. The MANIFOLD language allows a.'lsiguing 

special filters to ports for screening and rebundling of the units of information 

exchanged through them. These filters are defined in a language of extended 

regular expressions. Any unit received by a port that does not match its regular 
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expression is automatically diverted to the error port of its manifold and raises 
a baduni t event (see later sections for the details of events and their handling in 
MANIFOLD) . The regular expressions of ports are an effective means for "type 
checking" and can he used to assure that the units received by a manifold are 
"meaningful." 

Interconnection:-; between the ports of processes are made with streams. A 
stream represents a flow of a sequence of units between two ports. Conceptu
ally, the capacity of a stream is infinite. Streams are dynamically constructed 
between ports of the processes that are to exchange some information. Adding 
or removing streams does not directly affect. the status of a running process. 
The constructor of a :-it.ream (which is a manifold) need not he the sender nor the 
receiver of the information to he exchanged: any third party manifold process 
can define a connection between the ports of a producer process and a consumer 
process. Furthermore, stream definitions iu MANIFOLD are generally additive. 
Thus a port. can simultaneously be connected to many different ports through 
different streams (see for example the network in Figure 2). The flows of unit.s 
of information iu streams are automatically replicated and merged at out.going 
and incoming port. junctions, as necessary. The uni ts of information exchanged 
through ports and streams, are passive pieces of information that are producer\ 
and consumecl at the two ends of a stream with their relative order preserved. 
The consumption and production of units via ports hy a proce:-is is analogous 
to read and write operations in conventional programming languages. The 
word "passive" is meant to suggest the similarity between units and the data 
exchanged through such conventional I/ O operations. 

Independent of the stream mechanism, there is an event mechanism for in
formation exchange in MANIFOLD. Contrary to units in streams, events are 
atomic pieces of information that. are broadcast by their sources in their envi
ronment. Iu principle, any process iu au environment can pick up a broadcast 
event. In practice, usually only a few processes pick up occurrences of each 
event. , because only they are "tuned in" to their sources. Occurrences of the 
same event from the same source can override each other from the point of view 
of some observer processes, depending ou the difference between the speed of 
the source and the reaction time of an observer. This provides an automatic 
sampling mechanism for observer processes to pick up information from their 
environment which is particularly useful in situations where a potentially sig
nificant mismatch between the speeds of a producer and a consumer is possible. 
Events are the primary control mechanism in MANIFOLD. 

Once an event is raised hy a source, it. generally continues with it.s processing, 
while the event. occurrence propagates through the environment. inclependent.ly. 
Event occurrences are active pieces of information in the sense that in general, 
they are observed a.c;;ynchronously and once picker! up, they preempt ively cause 
a change of state in the observer. Communication of processes through events 
is thus inherently asynchronous in MANIFOLD. 

Each manifold defines a set. of events and their sources whose occurrences it is 
interested to observe; they are called the obsernahle set of events and sources, 
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respectively. It is only the occurrences of observable events from observable 

sources that are picked up by a manifold. Once an event occurrence is picked 

up by an observer manifold, it may or may not cause an immediate reaction 

by the observer. In general, each state in a manifold defines the set of events 

(and their sources) that are to cause an immediate reaction by the manifold 

while it is in that state. This set is called the preemption set of a manifold 

state and is a subset of the observable events set of the manifold. Occurrences 

of all other observable events are saved so that they may be dealt with later, 

in an appropriate state. 
Each state in a manifold defines a pattern of connections among the ports 

of some processes. The corresponding streams implementing these connections 

are create<i as soon as a manifold makes a state transition (caused by an event) 

to a new state, and are deleted as soon as it makes a transition from this state 

to another one. This is discussed in more detail in §3.2. 

3.1 Man if old Definition 

A manifold definition com;ists of a header, public declarations , and a body. The 

header of a manifold definition contains its name and the list of its formal pa

rameters. The public declaratioHs of a manifold are the statements that define 

its links to its environment. It gives the types of its formal parameters and 

the names of events and ports through which it communicates with other pro

cesses. A manifold body primarily consists of a number of event handler blocks , 

representing its different execution-time states. The body of a manifold may 

also contain additional declarative statements, defining private entities. For an 

example of a very simple manifold, see Listing 1 which shows the MANIFOLD 

source code for a simple program.2 More complete manifold programs are also 

presented, e.g., in §5. Declarative statements may also appear outside of all 

manifold definitions , typically at the beginning of a source file. These decla

rations define global entities which are accessible to all manifolds in the same 

file, provided that they do not redefine them in their own scopes. 

Conceptually, each activated instance of a manifold definition - a manifold 

for short - is au independent process with its own virtual processor. A manifold 

processor is capable of performing a limited set of actions. This includes a set 

of primitive actions, plus the primary action of setting up pipelines . 

Each event handler block describes a set of actions in the form of a group con

struct. The actions specified in a group are executed in some non-deterministic 

order. Usually, these actions lead to setting up pipelines between various ports 

of different processes. A group is a comma-separated list of members enclosed 

in a pair of parentheses. In the degenerate case of a singleton group (which con

tains only one member) the parentheses may he deleted. Members of a group 

are either primitive actions, pipelines, or groups. The setting up of pipelines 

2 111 this aud other MANIFOLD program listings in this paper, the characters "//" denote 

the beginning of a comment which continues up to the end of the line. Keywords are typeset 

in bold. 
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11 This is the header (there are no arguments): 
example() 
I I These are the public declarations: 
11 Two ports are visible from the outside of tl1e manifold "example"; 
I I one is an input port and tlie otlier is an output one. 
I I In fact, these ports are the default ones. 

{ 

} 

port in input. 
port out output. 

I I The body of the manifold begins here. 

II 
I I private declarations: 
11 three process instances are defined: 
process A is A_type. 
process B is B_type. 
process c is c _type. 

11 First block (activated wlien "example" becomes active) 
I I The processes described above are actiwited on their turn 
I I in a "group" construct: 
start: ( activate A, activate B, activate C) ; do begin. 

11 A direct transfer to this block has been given from "start". 
I I Three pipelines in a group are set up: 
begin: (A ----> B,output ----> C,input ----> output). 

I I Event bandier for tlie event "el "; several pipelines are 
I I set up (see Figure 2): 
el: (B ----> input,C ----> A,A ----> B,output ----> A,B ----> C,input ----> output). 

I I Event handler for tlie event "e2"; a single pipeline 
I I is set up (see Figure 3): 
e2: C----> B. 

Listing 1. An example for a manifold process. 
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input output 

c 

A 

B output 

example 

input output 

FIGURE 2. Connections set up by the manifold example on event el. 

within a group is simultaneous and atomic. No units flow through any of the 

streams inside a group before all of its pipelines are set up. Once set up, all 

pipelines in a group operate iu parallel with each other. 

A primitive action is typically activating or deactivating a process, raising an 

event, or a do action which causes a transition to another handler block without 

an event occurrence from outside. A pipeline is au expression defiuing a tandem 

of streams, represented as a sequeuce of oue or more groups, processes, or ports, 

separated by right arrows. It defines a set of simultaueons connections among 

the ports of the specified groups aud processes. If the initial (final) name in 

such a sequence is omitted, the initial (final) connection is made to the current 

input (output) port. Inside a group, the current input and output ports are the 

input aud output ports of the group. Elsewhere, the current input and output 

ports are input and output, i.e., the executing manifold's standard input and 

output ports. As an example, Figure 2 shows the connections set up by the 

manifold process example on Listing 1, while it is in the handling block for 

the event el (for the details of event handling see §3.2). Figure 3 shows the 

counections set up in the handling block for the event e2. 

In its degenerate form, a pipeline consists of the name of a single port or 

process. Defining no useful connections, this degenerate form is nevertheless 

sometimes useful in event handler hlocks because it has the effect of defining 

the named port or process as an observable source of events aud a member of 

the preemption set of its containing block (see §3.4). 

An event handler block may also describe sequential execution of a series of 
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FIGURE 3. Connections set up by the manifold example on event e2. 

(sets of) actions, by specifying a list of pipelines and groups, separated by the 
semicolon (;) operator3 . In reaction to a recognized event, a manifold processor 
finds its appropriate event handler hlock and executes the list of sequential sets 
of actions specified therein. Once the manifold processor is through with the 
sequence in its current block, it terminates. 

S.2 Event Handling 

Event handling iu MANIFOLD refers to a preemptive change of state in a man
ifold that observes an event of interest. This is done by its manifold processor 
which locates a proper event handler for the observed event occurrence. An 
event handler is a labeled block of actions in a manifold. In addition to the 
event handling blocks explicit.ly defined in a manifold, a number of default 
handlers are also included by the MANIFOLD compiler in all manifolds to deal 
with a set of predefined system events. The manifold processor makes a tran
sition to an appropriate block (which is determined by its current state, the 
observed event and its source), and starts executing the actions specified in 
that block. The block is said to capture the observed event (occurrence). The 
name of the event that causes a transfer to a handling block, and the name 
of its source, are available in each block through the pseudonyms event__name 

3 In fact, the semicolon operator is only an infix manner call (see §3.5) rather than an 
independent concept in MANIFOLD. However, for our purposes, we can assume it. to be 
the equivalent of the sequential composition operator of a language like Pascal. 

94 



and event_source, respectively. 
The manifold processor finds the appropriate handler block for an observed 

event e raised by the source s, by performing a circular search in the list of 

block labels of the manifold. The list of block labels contains the labels of all 

blocks in a manifold in the sequential order of their appearance. The circular 

search starts with the labels of the current block in the list, scans to the end 

of the list, continues from the top of the list, and ends with the labels of the 

block preceding the current block in the list. 
The manifold processor in a given manifold is sensitive to (i.e., interested 

in) only those events for which the manifold has a handler. All other events 

are to be ignored. Thus, events that do not match any label in this search 

do not affoct the manifold in any way (however, see §3.5 for the case of called 

manners). Similarly, if the appropriate block found for an event is the keyword 

ignore, the observed event is ignored. Normally, events handled by the current 

block are also ignored. 
The concept of an event in MANIFOLD is different than the concepts with 

the same name in most other systems, notably simulation languages, or CSP 

[2, 3]. Occurrence of an event in MANIFOLD is analogous to a flag that is 

raised by its source (process or port), irrespective of any communication links 

among processes. The source of an event continues immediately after it raises 

its flag , independent of any potential observers. This raised flag can potentially 

be seen by any process in the environment of its source. Indeed, it can be seen 

by any process to which the source of the event is visible. However, there are 

no guarantees that a raised flag will be observed by anyone, or that if observed, 

it will make the observer react immediately. 

3.3 Event Handling Blocks 

An event handling block consists of a comma-separated list of one or more block 

labels followed by a colon (:) and a single body. The body of an event handling 

block is either a group member (i.e., an action, a pipeline, or a group) , or a 

single manner call(see §3.5). If the body of a block is a pipeline, and it starts 

(ends) with a --+ , the port name input (respectively, output) is prepended 

(appended) to the pipeline. 
Event handler block labels are patterns designating the set of events captured 

by their blocks. Blocks can have multiple labels and the same label may appear 

more than once marking different blocks. Block labels are filters for the events 

that a manifold will react to. The filtering is done based on the event names 

and their sources. Event sources in MANIFOLD are either ports or processes. 

The most specific form of a block label is a dotted pair e.s, designating 

event e from the source (port or process) s. The wild-card character * can be 

replaced for either e, or s, or both, in a block label. The form e is a short-hand 

for e.* and captures event e coming from any source. The form *.s captures 

any event from source s. Finally, the least specific block label is *. * (or *, for 

short) which captures any event coming from any source. 
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S.4 Visibility of Event Sources 

Every process instance or port defined or used anywhere in a manner (see 
§3.5) or manifold is an observable source of events for that manner or manifold. 
This simply means that. occurrences of events raised by such sources (only) 
will be picked up hy the executing manifold processor, provided that there is 
a handling block for them. The set of all events from observable sources that 
match any of the block label1'! in a manner or manifold is the set of observable 
events for that manner or manifold. The set of observable event.s of an executing 
manifold instance may expand and shrink dynamically due to manner calls and 
terminations (see ~3.5). Depending on the state of a manifold processor (i.e., 
its current block), occurrences of observable events cause one of two possible 
actions: preemption of the current hlock, or saving of the event occurrence. 

In each block, a manifold processor can react to only those events that are 
in the prcemptiun .~ et of that block. The MANIFOLD language defines the 
preemption set of a block to contain only those observable events whose sources 
appear in that block. This means that, while the manifoM processor is in a 
block, except. for the manifold itself, no process or port other than the ones 
named in that block can be the source of events to which it react.s immediately. 
There are other rules for the visibility of parameters and the operands of certain 
primitive act.ions. It is also possible to define certain processes as permanent. 
sources of events that are visible in all blocks. A manifold can always internally 
raise an event that. is visible only to itself via the do primitive action. 

Once t.he manifold processor enters a block, it is immune to any of the events 
handled by that block, except if the event is raised by a do action in the 
block itself. This t.emporary imnmnity remains in effect until the manifold 
processor leaves the block. Other observable event occurrences that are not. in 
the preemption set of the current block are saved . 

.'J. 5 Manner.~ 

The state of a manifold is defined in terms of the events it is sensitive to, its 
visible event sources, and the way in which it reacts to an observed event. The 
possible states of a manifold are defined in its blocks, which collectively define 
its behavior. It. is often helpful to abstract and parameterize some specific 
behavior of a manifold in a subroutine-like module, so that. it can be invoked 
in different places within the same or different manifolds. Such modules are 
called manners in MANIFOLD. 

A manner is a construct. that is syntactically and semantically very similar 
to a manifold. Syntact.ically, the differences between a manner definition and 
a manifold definition are: 

1. The keyword manner appears in the header of a manner definition, before 
its name. 

2. Manner definitions cannot have their own port. definitions. 
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Semantically, there are two major differences between a manner and a man

ifold. First, manners have no ports of their own and therefore cannot be con

nected to streams. Second, a manner invocation never creates a new processor. 

A manifold activation always creates a new processor to "execute" the new 

instance of the manifold. To invoke a manner, however, the invoking processor 

itself "enters and executes" the manner. 
The distinction between manners and manifolds is similar to the distinction 

between procedures and tasks (or processes) in other distributed programming 

languages. The term manner is indicative of the fact that by its invocation, 

a manifold processor changes its own context in such a way as to behave in a 

different manner in response to events. 
Manner invocations are dynamically nested. References to all non-local 

names in a manner are left unresolved until its invocation time. Such ref

erences are resolved by following the dynamic chain of manner invocations in 

a last-in-first-out order, terminating with the environment of the manifold to 

which the executing processor belongs. 
Upon invocation of a manner, the set of observable events of the executing 

manifold instance expands to the union of its previous value and the set of 

observable events of the invoked manner. The new members thus added to this 

set, if any, are deleted from the set upon termination of the invoked manner. 

A manner invocation can either terminate normally or it can be preempted. 

Normal termination of a manner invocation occurs when a return primitive 

action is executed inside the mauner. This returns the control back to the 

calling environment right after the manner call (this is analogous to returning 

from a subroutine call in conventional programming languages). Preemption 

occurs when a handling block for a recognized event occurrence cannot he 

found inside the actual manner body. This initiates a search through the 

dynamic chain of activations similar to the case of resolving references to non

local names, to find a handler for this event. If no such handler is found, 

the event occurrence is ignored. If a suitable handler is found, the control 

returns to its enclosing environment and all manner iuvocations in betweeu are 

abandoned. 
Manners are simply declarative "subroutiues" that allow encapsulatiou aud 

reuse of eveut handlers. The search through the dynamic chain of manner calls 

is the same as dynamic binding of handlers in calling environments, with event 

occurrences picked up in a called manner. Preemption is nothing but cleanly 

structured returns by all manner invocations up to the environment of a proper 

handler. 
In principle, dynamic binding can be replaced by the use of (appropriately 

typed) parameters. Our preference for dynamic binding in manners is moti

vated by pragmatic considerations. Suppose a piece of information (e.g., how to 

handle a particular event, or where to return to) must be pa.'lsed from a calling 

environment A, to a called environment B, through a number of intermediaries; 

i.e., B is not called directly by A, but rather, A calls some other "subroutine" 

which calls another one, which calls yet another one, ... , which eventually calls 
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B. Passing this information from A to B using parameters means that all inter
mediaries must know about it and explicitly pass it along, although it has no 
functional significance for them. Dynamic binding alleviates the need for this 
explicit passing of irrelevant information and makes the intermediary routines 
more general, less susceptible to change, and more reusable. 

3.6 Scope Rules 

The scope of a name is the syntactic context wherein that name is known as to 
denote the same entity. The scope of the names of atomic process specifications, 
manner definitions, and manifold definitions contained in a source file is the 
entire source file. The scope of the names defined in the private declarative 
section (inside the body) of a manifold or manner is the manifold or the manner 
itself. The scope of the names defined in the declarative statements outside of 
any manifold or manner definition, is the entire source file. 

Ports of a manifold or atomic process are accessible to any process that knows 
its name and the name of its ports. Ports of a process, together with the events 
defined in its public declaration section, provide the communication links of a 
process with other processes running in its environment. 

Except in manners, non-local names (i.e., used hut not defined in a context), 
are statically bound to the entities with the same name in their enclosing con
texts. It is a compile-time error if such a non-local name remains unresolved. 
The binding of non-local names (i.e., used but not defined) in manners is dy
namic: these names are hound upon activation of a manner to the entities 
with the same name in the environment of its caller. The chain of manner 
activations leading to the present activation are traversed all the way up to the 
environment of a manifold instance, in search of appropriate targets for this 
binding. Names that remain unresolved at this point are hound to appropriate 
benign defaults (e.g. , void described in §5.1.1). 

MANIFOLD supports separate compilation. This is a very effective mecha
nism for modularization of large applications. In principle, all names defined 
and used in a source file are strictly local to that file. Names (of events, man
ners, manifolds, or atomic processes) that are used in different source files and 
must indeed designate the same entity at execution time, must be explicitly 
declared as such using extern, import, and export constructs (see [7]) . 

4 APPLICATIONS 

The MANIFOLD language has already been used to describe some simple exam
ples, like a parallel bucket sort algorithm, a simplified version of a (graphics) 
resource management and the like. The interested reader is referred to the 
reports published elsewhere [20, 21]. These examples were primarily meant 
to test the MANIFOLD concepts themselves. In this section we mention some 
of the possible application areas for MANIFOLD in large-scale and non-trivial 
parallel systems. 
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MANIFOLD is an effective tool for describing interactions of autonomous ac

tive agents that communicate in an environment through address-less messages 

and global broadcast of events. For example, elaborate user interface design 

means planning the cooperation of different entities (the human operator being 

one of them) where the event driven paradigm seems particularly useful. In 

our view, the central issue in a user interface is the design and implementa

tion of the communication patterns among a set of modules4 • Some of these 

modules are generic (application independent) programs for acquisition and 

presentation of information expressed in forms appealing to humans. Others 

are, ideally, acquisition/presentation-independent modules that implement var

ious functional components of a specific application. Previous experience wit h 

User Interrace Management Systems (see, e.g., [24]) has shown that concur

rency, event driven control mechanisms, and general interconnection networks 

are all necessary for effective graphical user interface systems. MANIFOLD 

supports all of that and, in addition, provides a level of dynamism that goes 

beyond many other user interface design tools. As an example, it has recently 

been used to successfully reformulate the GKS5 input model [25]; this work 

is regarded as a starting point in the development of new concepts for highly 

flexible , reconfigurable graphics systems suitable for parallel environments. 

Separating the specification of the dynamically changing communication pat

terns among a set of concurrent modules from the modules themselves, seems to 

lead to better user interface architectures. A similar approach can also be useful 

in applications of real time computing where dynamic change of interconnection 

patterns (e.g., between measurement and monitoring devices and actuators) is 

crucial. For example, complex process control systems must orchestrate the 

cooperation of various programs, digital and/ or analogue hardware, electronic 

sensors, human operators, etc. Such interactions may be more easily expressed 

and managed in MANIFOLD. 

Coordination of the interactions among a set of cooperating autonomous 

intelligent experts is also relevant in Distributed Artificial Intelligence applica

tions, open systems such as Computer Integrated Manufact uring applications, 

and the complex control components of systems such as Intelligent Computer 

Aided Design. 
Recently, scientific visualization has raised similar issues as well. The prob

lems here typically involve a combination of massive numerical calculations 

(sometimes performed on supercomputers) and very advanced graphics. Such 

functionality can best he achieved through a distributed approach, using segre

gated software and hardware tools. Tool sets like the Utah Raster Toolkit [26] 

were already a first step in this direction, although in the case of this toolkit 

the individual processes can be connected in a pipeline fashion only. More 

recently, software systems like the apE system of the Ohio Supercomputer 

4 In fact, given the previous experiences of the authors, the problems arising in user

interface techniques provided some of the basic motivation to start this project in the first 

place. 
5Graphical Kernel System is the ISO Standard for Computer Graphics. 
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Center [27], the commercially available AVS Visualization Package of Stardent 
Computer Ltd. [28], the IRIS Explorer system [29] and others, work on the ba
sis of inter-connecting a whole set of different software/ hardware components 
in a more sophisticated communication network. The successes of these pack
ages, and mainly the general ideas behind them, point toward a more general 
development trend which leads to reconsideration of the software architecture 
used for graphics packages in general. 

For the emerging new technologies and application areas that are expected to 
result in a tremendous growth in computer graphics in the nineties, a new soft
ware base is necessary to accommodate demands for high performance special 
hardware, dedicated application systems, distributed and parallel computing, 
scientific visualization, object-oriented methods and multi-media, to name just 
a few. Some of the major technical concerns in the specification and the devel
opment of new graphics systems is extensibility and reconfigurability. To ensure 
these features it is fea.o;;ible to envisage a highly parallel architecture which is 
based on the concept of cooperating, specialized agents with well defined but 
reconfigurable communication patterns. An "orchestrator" like MANIFOLD can 
prove to be quite valuable in such applications. 

5 ADAPTIVE REC URSIVE ALGORITHMS IN MANIFOLD 

In this section, a well-known class of algorithms in the field of computer graphics 
and image processing is described using the MANIFOLD formalism. It is not 
the purpose of this section to analyze these methods from a strictly algorithmic 
point of view, nor do we intend to devise new versions of already existing 
algorithms. We simply intend to show the descriptive power of MANIFOLD 

using well-established algorithms. 
It is beyond the scope of this paper to give all the specific details of each 

algorithm. The interested reacler can consult one of the standard textbooks on 
computer graphics and/ or image processing (e.g., [30] for computer graphics 
and [31] for image procesHing) or refer to the literature given in the references 
(e.g. , [32, 33, 34, 35, 36] or others). 

5.1 Warnock's Algorithm 

One of the very well known problems in computer graphicH is what is usually 
referred to as Hidden Surface Removal. The problem is as follows. When 
a three-dimensional scene, usually modeled using a large number of planar 
polygons in space, is visualized on a screen, all of its polygons must he projected 
onto a plane (i.e., the plane of the display screen) from a given viewpoint. 
Mathematically, this projection is well understood, but there is an additional 
problem to solve: those polygons, or parts of polygons, that are occluded by 
another one, as seen from the selected viewpoint, must be eliminated. The 
removal of these (sub-)polygons is what is called the removal of hidden surfaces. 

There are several well-known and widely applied solutions to this problem. 
One of the earliest is Warnock's algorithm which is described in detail in the 
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TestAndColor() import . 
DivideArea () 

{ 

} 

port out first-area . 
port out second_area. 
port out third_area. 
port out fourth_area. 
import . 

export Warnock() 

process tesLand_color 
process divide_area 
process v 
process n 

start: 

is TestAndColor. 
is DivideArea. 
is variable. 
is variable. 

activate v, activate n 

activate test ..and_color, 
input --> (--> test_and_color , --> v), 

). 
subdivide: 

activate divide_area , 
v --> divide_area, 
divide_area.firsLarea --> Warnock(), 
divide_area.seconcLarea --> Warnock() , 
divide_area.third_area --> Warnock() , 

divide_area.fourtl1-area --> Warnock() , 

n = 4 
); 
do wait_to_die. 

terminate: 
save. 

wait_to_die: 
void. 

terminate: 
n = n - 1; 
if( 11 == 0, do end, do wait_to_die ). 

done: 
do end. 

end: 
deactivate parent . 

Listing 2. Manifold Program for Warnock's Algorithm. 
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literature, e.g., in [30]. A short description of this algorithm is as follows. 
This algorithm is based on a recursive area-subdivision of the computer 

screen. At each stage in the recursive subdivision process, the projection of 
each polygon has one of four relationships to the area of interest (which is, at 
the beginning, the full screen of the display): 

1. sm7mmding polygons completely contain the area of interest; 

2. intersecting polygons intersect the area; 

3. contained polygons are completely inside the area; 

4. disjoint polygons are completely outside the area. 

Based on these tests, there are certain cases where the exact color(s) for 
rendering the area of interest can be determined very easily. Obvious cases 
include when all polygons are disjoint from the area (and hence the background 
color can he used), when there is only one polygon which either intersects the 
area or is contained in it , or when there is one and only one polygon which 
completely surrounds the area. There are also some less obvious hut still easily 
decidable cases which the original version of the algorithm takes into account. 

There are, however, cases where there is no easy way to color the area. In 
these cases, Warnock's algorithm subdivides the area into four equal sub-areas 
to simplify the problem and then the same method is applied recursively for 
each of the four sub-areas. The recursion stops when the dimension of the sub
area has reached the size of one pixel on the screen; some additional calculations 
are then done to <let.ermine the color of this single pixel. 

5.1.1 A Manifold Program for Warnock's Algorithms 

Before commenting further on the algorithm, let us see how its skeleton can be 
described using MANIFOLD. The complete listing of the program appears as 
Listing 2. 

The program uses two (atomic) processes which implement its truly algo
rithm specific and numerically oriented details. These atomic processes are 
"imported", which means that they are external to the present MANIFOLD 

source file and will he made available at link-time. TestAndColor is supposed 
to receive the description of an area on its standard input (as far as MANIFOLD 

is concerned, this description is just an abstract unit to be forwarded; we refer 
to it as "area handle" in what follows). It then performs the test on all poly
gons in the scene, following the scheme described in the previous section. The 
result of this step is either: 

• the area can be filled without ambiguities, in which case TestAndColor 
raises the event done, fills the area with the calculated color(s) and ter
minates; or 
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• the area cannot be filled without ambiguities, in which case TestAndColor 

raises the event subdivide and terminates. 

The atomic process Di videArea receives an area handle on its standard 

input; it has, apart from the standard ports, four publicly declared output 

ports , onto which it places the four area handles after it perfonrn a subdivision. 

Once these units are produced, Di videArea terminates. 

It is the manifold process Warnock that embodies the skeleton of Warnock's 

algorithm. It is important to understand the details of this program to gain 

a real insight into the descriptive power of MANIFOLD; this is why a more 

detailed description of this process is given in what follows. 

In the cieclaration part of Warnock, two instances of the atomic processes 

described above are declared. This means that the manifold Warnock now has 

a reference for these processes and can, therefore, involve them into several 

parallel pipelines, if necessary. The additional two declarations concern two 

"utility" processes (part of the standard environment of the MANIFOLD sys

tem) which are ahle to store some units and, if the type of the units permit, to 

perform some elementary arithmetic on them. 
The start state of Warnock adivates the two variable processes and the 

local instance of TestAndColor. A pipeline is then set up, which involves a 

group as well. This pipeline describes the following relationships: 

• a unit (i. e., an area handle) arriving on the input of Warnock is redirected 

to the local instance of TestAndColor, and 

• a copy of the same unit is "stored" in the variable v. 

The manifold is suspended in this block and must receive an external event 

to change its state. According to our specifications, these external events may 

be either subdivide or done, depending on the result of the test performed 

on the local area. (Note that although many instances of TestAndColor may 

be active and raise the events subdivide and/or done, the only instance of 

TestAndColor visible to an instance of Warnock is its locally declared one. 

This is why the other events raised by other instances cause no confusion.) 

The state labeled subdivide is obviously the essential part of the manifold 

Warnock. The corresponding block contains, in fact, two statements, joined by 

the connective ";", which can be though of as a delimiter for sequential execu

tion. In the first statement, the local instance of the atomic process Di videArea 

is activated and, also, four independent instances of the manifold Warnock are 

implicitly created and activated (using a process specification name in a state

ment, instead of declaring an instance in the declaration section, means the 

implicit creation and activation of an instance of that process). The pipelines 

defined in the group are fairly straight-forward: 

• the content of the variable v is transferred to the area divider, and 
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• the four handles for the generated sub-areas are forwarded, respectively, 
to the four (recursive) instances of Warnock li. 

This series of pipelines are t he ones which realize the recursive step. 
The rest. of the manifold Warnock makes sure that the processes are termi

nated properly. A separate variable (n) is used to store the (constant ) value 
of 4. The top-level instance of Warnock waits for all of its "children" to deacti
vate before it deactivates itself. This is done by the combination of the states 
labeled wai t _to_die and terminate. The basic idea is that each instance of 
the Warnock manifold sends a deactivat ion re<1uest to its parent, before its own 
deactivation (see the state laheled end). This deactivation request is turned 

by the MANIFOLD system into a system event called terminate on the re
ceiver's side; the particularity of this event is that it can always he caught in 
a manifold , irrespective of the visibility of its originator. This is exactly what. 
the manifold Warnock does: it catches the event ancl checks against its counter 
t.o see if all of its children processes are deactivated before it terminates itself. 
The if statement. used for this purpose is, in fact, a manner, with the obvious 
meaning and is part of the "standard" MANIFOLD environment. 

Note that there are two blocks in Warnock with the same label terminate. 

The reason is to avoid a race condition which can happen in the hlock for 
subdivide. Indeed, it is perfectly possible that di vide_area is still busy cal
culating, e.g., the fourth sub-area while the Warnock instance for , say, the first 
sub-area already terminates. Obviously, Warnock must not (yet) change state 
but it must not ignore the event either (otherwise a non-termination will oc
cur). By putting a separate block for terminate with the statement save we 
make sure that the event is neither lost nor preempts the state subdivide. 

If no subdivision is necessary, Warnock makes a state transition to the hlock 
labeled done , which does an immediate state transition again. This, finally, 
leads to the termination of the manifold. Strictly speaking, it is not necessary 
to have a separate intermediary state in this case (a block may have multiple 
labels). However, when our example is extended further in the next sections, 
having a separate state will prove to be beneficial. 

5. 2 Analysis of the Program 

Warnock's algorithm is an example of the image space algor'ith.ms in computer 
graphics. These algorithms are primarily concerned with images and compute 
the attributes of each pixel on the screen. Hesolution of the relationships among 
objects in a scene becomes a secondary concern. On the other hand, object 
space algorithm .. ~ are concerned with the properties of and relationships among 
the objects in a scene and compute an image only after these relationships 

6 The use of t he term recursille is perhaps somewhat misleading here. Contrary t.o its 
common connotations in other programming languages, there is no implie<l "wait for return 
or <leath of your child" process in MANIFOLD. This means that a parent process can 
terminate (and have its resources deallocated) as soon as it spins off it.s (recurs ively crea ted ) 
chilclren , if there is no functional requirement for it. to wait for their results. 
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are determined. Warnock's algorithm is not very much in use today. Indeed, 

if the hidden surface removal is to be performed in image space, availability 

of powerful hardware makes other methods (primarily, the so called Z-buffer 

method) more attractive. Whether or not this preference will persist in the 

future is a matter of debate and its details are far beyond the scope of this 

paper. 
Nevertheless, Warnock's algorithms is still of interest, because it is a very 

simple example of a general principle which seems to be extremely popular 

both in computer graphics and in image processing. This principle is what 

we might call recursive subdivision. The idea is the extremely simple, albeit 

very powerful, concept of divide and concur: if a problem cannot he solved at a 

given level, the underlying model is somehow divided and the same algorithm is 

used recursively on the results of the division. If the subdivision of the problem 

is chosen appropriately, the problem becomes more easily solvable for each of 

the results of the subdivision. Interestingly, with a properly chosen subdivision 

scheme, such algorithms are sometimes readily adaptable for parallel hardware. 

Although, obviously, the principle of recursive subdivision is not restricted 

to computer graphics, its popularity within the computer graphics community 

seems to be related to the special nature of the field. Indeed, the geometric na

ture of the underlying problems often gives very clear clues for how to perform 

the subdivisions and how to control its recursion in au optimal way. Thus, the 

application of recursive subdivision is very natural in working with synthetic 

or digital images. Apart from Warnock's algorithm for removal of hidden sur

faces, similar or more elaborate approaches can be used in calculating and/ or 

displaying spline curves or surfaces (33], perform calculations on CSG7 objects 

using quadtrees [32], digital filtering of images, global histogrammiug of digi

tal images (37], parallelizing such time consuming rendering procedures as ray 

tracing [35] especially on CSG objects, performing the calculations necessary 

to visualize volumes [38], etc. 
What is the role of MANIFOLD in this respect? Looking at the program on 

Listing 2, it is clear that MANIFOLD has a real expressive power in describing 

the skeleton of a recursive subdivision algorithm. Note that the atomic pro

cesses used by the program are defined in a fairly abstract way; any atomic pro

cess, abiding to these specifications, can be "plugged in" the same MANIFOLD 

program to serve a different application. Although most of the algorithms listed 

above require a more sophisticated version of the algorithm (and we will elab

orate on these improvements in the following sections), we believe the listing 

commented in detail in §5.1.1 makes the essential point: that using MANIFOLD 

it is possible to describe in a very concise and declarative form, the primary 

communication skeleton of a certain class of systems or algorithms without 

bothering with their computational details. 

These examples also reveal another general and more important characteris

tic: most of the algorithms cited above were, originally, not meant for parallel 

7 Constructive Solid Geometry 
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hardware. Instead, the recursive subdivision approach made the problems at 
hand just (more) easily solvable and manageable; it was the expressive power 
of "parallelism" and not performance gains per se, that was important here. It 
is almost a "by- product" that some of these algorithms are good candidates for 
true parallelism. We use the term "some" because it is no even certain that all 
these algorithms run much more efficiently on a true, massively parallel hard
ware, than on a conventional sequential ·machine. There may be a trade-off 
between the obvious gains of parallelism and other considerations (e.g. , bulk 
data access) . 

Nevertheless, MANIFOLD is useful for expressing the communications and 
control structure of these algorithms, even if the actual implementation of a 
MANIFOLD system may run only on a conventional single-processor computer 
supporting simulated parallelism only (as in the case of our first experimental 
implementation based on Concurrent C++ ). This seems to be a clear case of 
a more general principle: it may be extremely beneficial to use mental models 
which use concurrency, communication, and coordination, as natural paradigms 
to gra..<;p the essence of a problem and/or of an algorithm. Concurrency need 
not be considered a "necessary curse," as perceived hy a large number of prac
titioners. On the contrary, it is often very helpful in conceptual simplification 
of the problem at hand. Gelernter and Carriero ([4]) stress that: 

. . . in principle you can use the same coordination language that 
you rely on for parallel applications programming when you develop 
distributed systems. You can use the same model in building ... a 
file system. 

We agree both with this statement, and with their implied position that the 
same language can also he used to describe systems and problems at large, that 
will not necessarily end up running in a parallel or distributed environment. 
We believe that as a coordination language, MANIFOLD is useful towards these 
ends. 

5. 3 Improvements to the Program 

In this section we present enhancements to the MANIFOLD program described 
in !j5.1 and evolve a better framework for expressing different version of the 
adaptive recursive algorithms mentioned above. The improvement to the pro
gram is done in two steps. First, the restriction of a fixed number of subdivisions 
is relaxed. Second, we allow the possibility of backward control in the recursive 
processes; i.e. , allow a parent to wait for and use the results produced by its 
children. 

5.3.1 Variable Number of Subdivisions 

The program in §5.1 has an obvious restriction that may make it inappropri
ate for general use in other applications. This program has a "hardwired" 
subdivision feature: each area must be subdivided into exactly four sub-areas. 
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Although this is natural in the case of Warnock's algorithm, and it is trivial to 

change the number four, imposing any fixed number by itself is a constraint that 

hinders more general usability of this program for other applications. In partic

ular, a more general class of recursive subdivision algorithms use an adaptive 

subdivision scheme wherein the number of subdivisions at each level of recur

sion, as well as the subdivision boundaries, may depend on the data and thus 

cannot be predetermined. 
In this section, we present an improvement to the MANIFOLD program of 

§5.1 that allows the number of subdivisions to be determined dynamically at 

each level. To put our revised MANIFOLD program in the right perspective, we 

remark that a later version of Warnock's algorithm, called the Weiler-Atherton 

algorithm (see [30]), subdivides the screen along polygon boundaries, rather 

than along the two mid-lines of the screen. Clearly, the Weiler-Atherton algo

rithm requires a variable number of subdivisions. 

The revised MANIFOLD program now consists of two parts: the one in List

ing 3 and the one in Listing 4. The first part is, in fact , a somewhat simplified 

version of the program in Listing 2. We have changed the specification of the 

DivideArea process: what we require now is that when DivideArea receives 

an area handle, it produces a series of area handles (one for each sub-area) on 

its standard output and then terminates. 
The recursive step is now hidden into a separate manifold process, called 

Distribute. This program appears in Listing 4 and will be explained later. 

As far as the manifold Warnock8 is concerned, Distribute receives the area 

handles for this level's sub-areas on its standard input and, somehow, takes care 

of the recursion. A separate pipeline is set up in the block labeled subdivide 

to send these handles to a local instance of Distribute. Note that now it 

is Distribute that is responsible for proper termination; consequently, the 

counter n has disappeared from Warnock. 

As a commentary on MANIFOLD programming, note the difference between 

the two pipelines: 

v -+ divide_area, divide_area --> distribute 

that appear as separate group members in the state subdivide , and the some

what similar single pipeline: 

v -+ divide_area --> distribute 

that may be mistaken as their equivalent. While the two alternatives work 

the same as long as the flow of units are concerned, they indeed behave quite 

differently on termination. In MANIFOLD, a pipeline breaks up as soon as any 

one of its processes terminates or raises a special event break. In case of our 

single pipeline, this can happen as soon as the process v has delivered its value, 

8 By now "Warnock" is a misnomer for this program and "Weiler..Atherton" is probably a 

better name. However, we prefer to keep the name "Warnock" to preserve the s imila rity with 

the previous MANIFOLD program, for pedagogical reasons. 
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TestAndColor() import . 
Divi<leArea{) import. 
Distribute() import. 

Warnock{) 
{ 

} 

process tesLancLcolor 
process v 

is TestAndColor. 
is variable. 

process divide_area 
process distribute 

is DivideArea. 
is Distribute. 

start: 
activate v, 
activate tesLand_color, 
input ---> (---> t esLan<l_color ,---> v), 

). 
subdivide: 

); 

activate divide_area, 
activate distribute, 
v ---> clivide_area, 
divide_area ---> distribute 

do em!. 
done: 

do end. 
end: 

deactivate parent. 

Listing 3. Program with variable area subdivision; part I. 
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Distribute() 
{ 

} 

port in internal. 
process u is variable. 

start: 
( activate 11, n = 0 ); do mairi_cycle. 

main_cycle: 
getunit(iuput) --+ internal; 

do nexLarea. 
next_area: 

(n = 11 + 1, getunit (internal) --+ Warnock); 

do main_cycle. 
terminate: 

save. 
disconnected.input: waitJor _<leath: 

void. 
terminate: 

II = II - 1; 
if ( 11 == 0, do end, do waitJor_death ). 

end:. 

Listing 4. Program with variable area subdivision; part II. 

which can result in the breakup of the connection between divide_area and 

distribute, if they are all in the same pipeline. Having them in two separate 

pipelines in a group, as in the state subdivide in Listing 3, ensures that such 

premature breakups will not happen. (In MANIFOLD , a group terminates when 

all of its members are broken up. ) 
A number of constructs used in the original Warnock program (Listing 2) 

now appear in Distribute (see Listing 4). Using the counter n to count the 

number of activated child processes, as well as handling of their deactivations, 

are exactly the same as before. The primary difference is, of course, in the 

handling of a variable number of incoming units. 

The Distribute manifold uses the built-in pseudo-process9 getunit which 

acts as follows: 

• it is suspended on a port of the caller, as long as there is no unit available 

for delivery on the port; 

• when a unit is or becomes available, this unit is sent out onto the output 

port of getunit and the pseudo-process terminates (i.e., the pipelines in 

9 By pseudo-process we m ean oue of the primitive actions of MANIFOLD that behave 

like a real process in a pipeline, although they are not truly sepa rate processes. 

109 



--i · ~ . -.=~ : =.-_-· __ -

which it is involved are broken); 

• if there is no unit available for delivery on the port and there is no external 
process connected to that port, getuni t is not only suspended, but it also 
raises the disconnected event (with the selected port as the source of 
the event). 

The Distribute manifold takes advantage of these features of getuni t. In 
the block labeled main_cycle (which, except for activation of the counter is the 
effective starting block of Distribute), a pipeline is set up using get unit with 
its output connected to another (externally non-visible) port of Distribute. 
The role of this pipeline is twofold: 

1. When a unit arrives (actually, an area handle from the Di videArea pro
cess, although Distribute does not know the origin of the unit), it is 
picked and put into the internal port. Next, an internal state transi
tion is made which results in the activation of a new instance of Warnock. 

2. When there is no unit in the buffer of the input port of Distribute, 
and this port is no longer connected to any other port (which means 
that the connecting DivideArea process has terminated), getunit raises 
a disconnected event (which results in the preemption of the current 
state). 

The rest is relatively clear: the unit stored in the internal port is picked 
by another instance of getunit, which passes it to an (implicitly activated) in
stance of Warnock, and the manifold returns to its waiting state in main_cycle. 

It may not be immediately obvious why we use a separate state (next_area) 
to activate a new instance of Warnock. Indeed, merging the two states main_cycle 
and next_area is possible and also alleviates the need for the port internal, 
since we can use the pipeline 

getunit(input) -> Warnock 

in the block labeled main_cycle. However, the advantage of having two sep
arate states instead of one is that we avoid an unnecessary activation of yet 
another instance of Warnock in each recursion. Using two distinct states, we 
can be sure that Warnock is activated if and only if there is another area handle 
in the internal port of Distribute. 

5.3. 2 Handling Return Values 

The algorithms that can use the MANIFOLD programs in §5.1.1 and §5.3.1 are 
constrained by another limitation. Once the recursive branches of the algorithm 
start off, they do not communicate with their parents any more (or, to be 
precise, they have no communication expressed by the MANIFOLD program). 
This is fine (indeed, desirable) with the original Warnock's algorithm: the sub
areas of a screen can be filled independently of one another, and a parent has 
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Permaneut(inp,outp) 
port out inp. 
port in outp. 

{ 
start: 

inp --+ outp. 
} 

Permanent( middle,second) 
process middle. 
process .;econd. 

{ 
start: 

input --+ middle --+ second. 

} 

Listing 5. Programs to set up permanent pipelines. 

no reason to stay alive and take up resources once its children are started. 

However, this is obviously inappropriate in a number of other applications. 

Once again, a slight improvement on Warnock's algorithm serves as a good 

motivating example. In §5.1.1 we assumed that the recursion stops when the 

size of an area reaches the size of a pixel. Strictly speaking, this assumption 

is true, but it results in aliasing problems (i. e., the appearance of "staircase" 

polygon edges and unpleasant color transitions). One of the anti-aliasing meth

ods which can be easily used with Warnock's algorithm requires the recursion 

to go on at least one more step, to the level of sub-pixels. The color properties 

computed at sub-pixel levels are then returned to the pixel level routines, which 

in turn average them out to calculated the color of their pixels. 

To use MANIFOLD for such an algorithm implies that (at least between the 

pixel and sub-pixel levels) each recursive branch must compute and return a 

value to its parent , and each parent must wait for the returned result of all of 

its children before it can complete its function and terminate. In this section, 

we modify our MANIFOLD programs to accommodate returned values. 

Listings G and 7 show the new version of our MANIFOLD program; they 

correspond to the Listings 3 and 4, respectively. As in the previous section, 

we only highlight the differences between the old and the new versions in this 

section. 
The specification of the atomic process TestAndColor is now slightly dif

ferent. Representing the "bottom" of the recursion, this atomic process is 

also required to return a value to be forwarded to the upper level (e.g., the 

color value, in the anti-aliasing example). Additionally, a new process, called 

Merge, is defined: this process receives "values" on its standard input port and 
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Warnock 

Warnock 

input Merger 

input c__ _____ _,output 

Warnock 

input '---------' output 

FIGURE 4. A pictorial representation of the manifold Distribute. 

"merges" them into one value delivered on its out.put. port (in our anti-aliasing 
example, this process calcnlat.es the average of color values it receives) 10

. 'What 
Merge does is to read an unknown number of units from its standard input , 
compute their "merged" result (e.g., their average), write it out to its stan
dard output, and terminate. It detects the equivalent of an end-of-file on its 
standard input (if it is in fact an atomic process), or reacts to a disconnected 
event (if it is another manifold), to realize that it hm; received all input units 
it is expected to process. 

With these definitions in mind, the differences between the new and the 
old version of Warnock are not too difficult. to understand. In the start 
block, the pipeline contains an additional item, which st.ores the output of 
test_and_color in a local port. Also, the new version of Distribute is 
expected to have an output, too, which is redirected to the output port of 
Warnock. Finally, the state labeled done is no longer only a state transition; it 
first reads the value produced previously hy the bottom of the recursion and 

10 Note that. in Listing 6, the declaration of Merge does not specify whether it. is an atomic 
process or yet another manifold. It simply states that its declaration is contained in a separate 
MANIFOLD source file , and will he availahle at link time. 
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transfers it to the output port. Apart from these differences, the new version 

of the Warnock manifold has an identical behavior to the previous one. 

The new version of Distribute uses two small manifolds of Listing 5 which 

are usually part of the standard MANIFOLD environment. The meaning of 

these two manifolds is clear: they set up pipelines which remain unbroken as 

long as members of the pipeline are active. Remember that, according to the 

specification of MANIFOLD, if a manifold leaves a state, all pipelines set up in 

that state are broken before leaving. The use of the Permanent manifolds is to 

avoid this breakup. 
Distribute now sets up a slightly more complicated network of connections. 

Figure 4 is a pictorial representation of these connections. In the start up state 

of Distribute, a permanent connection (using the first version of Permanent 

in Listing 5) is set up from the output port of merge (au instance of Merge) 

to the output port of the running instance of Distribute. Note that this 

is a perfectly legitimate set up: ports of a process instance (e.g. , merge) can 

be connected in pipelines even before the process is activated. Additionally, 

another pseudo-process, guard, is activated. The role of this pseudo-process is 

to raise an event (named in its argument) if a unit appears on its designated 

port. 
The pipelines set up in the state next_area are slightly different: the con

nection between each new instance of Warnock and merge is set up using 

Permanent , to prevent its breakup in case of a state transition. This is where 

t he second version of Permanent is used (note that the different signatures of 

the two Permanent manifolds disambiguates the choice) . 

The two events disconnected. input and wai t _for _death are now handled 

by two distinct states. The state labeled wait_for_death is the same as before: 

it is used to wait to receive the right number of terminate events before dying. 

The new state for disconnected. input activates merge aud then makes a 

t ransition to wai t_for_death. 

There is a subtlety about merge that needs more explanation here. Our 

specification of Merge states that it receives an unknown number of input units, 

and detects t he equivalent of an end-of-file to know t hey have been exhausted. 

Thus, we must make sure that at least all connections between merge and its 

suppliers are established before it is activated. This is why we connect all 

instauces of Warnock to merge before arriving at disconnected. input where 

we activate it. 
Before terminating, Distribute must not only wait for all of its local in

stances of Warnock to terminate, but it must also make sure that the output 

value of merge has actually arrived and is transferred out of its output port. 

This is done by the event output_arri ved which is raised by guard. Note 

the use of the save action for this event; its role is the same as for the event 

terminate, as explained earlier. 
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6 RELATED WORK 

The general concerns which led to the design of MANIFOLD are not new. The 
CODE system [39, 40] provides a means to define dependency graphs on se
quential programs. The programs can be written in a general purpose pro
gramming language like Fortran or Ada. The translator of the CODE system 
translates dependency graph specifications into the underlying parallel com
putation structures. In the case of Ada, for example, t hese are the language 
constructs for rendezvous. In the case of languages like Fortran or C, some suit
able language extensions are necessary . .Just as in traditional dataflow models , 
the dependency graph in the CODE system is static. 

The MANIFOLD streams that interconnect individual processes into a net
work of cooperating concurrent active agents are somewhat similar to links in 
dataflow networks. However, there are several important differences between 
MANIFOLD and dataflow systems. First, dataflow systems are usually fine
grained (see for example Veen [41] or Herath et. al [42] for an overview of the 
traditional dataflow models). The MANIFOLD model, on the other hand, is 
essentially oblivious to the granularity level of the parallelism, although the 
MANIFOLD system is mainly intended for coarser-grained parallelism than in 
the case of traditional dataflow. Thus, in contrast to most dataflow systems 
where each node in the network performs roughly the equivalent of an assembly 
level instruction, the computational power of a node in a MANIFOLD network is 
much higher: it is the equivalent of an arbitrary process. In this respect, there 
is a stronger resemblance between MANIFOLD and such higher level dataflow 
environments like the so called Task Level Dataflow Language (TDFL) of Sullier 
et al. [43]. 

Second, the dataflow-like control through the flow of information in the net
work of streams is not the only control mechanism in MANIFOLD. Orthogonal 
to the mechanism of streams, MANIFOLD contains an event driven paradigm. 
State transitions caused by a manifolcl's observing occurrences of events in its 
environment, dynamically change the network of a running program. This 
seems to provide a very useful complement to the dataflow-like control mech
anism inherent in MANIFOLD streams. 

Third, dataflow programs usually have no means of reorganizing their net
work at run time. Conceptually, the abstract dataflow machine is fed with 
a given network only once at initialization time, prior to the program execu
tion. This network must then represent the connections graph of the program 
throughout its execution life. This lack of dynamism together with the fine 
granularity of the parallelism cause serious problems when dataflow is used in 
realistic applications. As an example, one of the authors of this paper partic
ipated in one of the very rare practical projects where dataflow programming 
was used in a computer graphics application [44] . This experience shows that 
the time required for the effective programming of the dataflow hardware (al
most 1 year in this case) was not commensurate with the rather simple func
tionality of the implemented graphics algorithms. 

The previously mentioned TDFL model [43] changes the traditional dataflow 
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model by adding the possibility to use high level sequential programs as com

putational nodes, and also a means for dynamic modification of the connec

tions graph of a running program. However, the equivalent of the event driven 

control mechanism of MANIFOLD does not exist in TDFL. Furthermore, the 

programming language available for defining individual manifolds seems to be 

incomparably richer than the possibilities offered in TDFL. 

Following a very different mental path, the authors of LINDA [5, 6] were also 

clearly concerned with coordination of communications and the reusability of 

existing software. LINDA uses a so called generative communication model, 

based on a t'Uple space. The tuple space of LINDA is a centrally managed space 

which contains all pieces of information that processes want to communicate. 

A process in LINDA is a black box. The tuple space exists outside of these 

black boxes which, effectively, do the real computing. LINDA processes can 

be written in any language. The semantics of the tuples is independent of the 

underlying programming language used. As such, LINDA supports reusability 

of existing software as components in a parallel system, much like MANIFOLD. 

Instead of designing a separate language for defining processes, the authors of 

LINDA have chosen to provide language extensions for a number of different ex

isting programming languages. This is necessary in LINDA because seemingly, 

its model of communication (i.e., its tuple space and the operations defined for 

it) is not intended to express computation of a general nature by itself. The 

LINDA language extensions on one hand place certain communication concerns 

inside of the "black box" processes. On the other hand, there is uo way for a 

process in LINDA to influence other processes in its environment directly. Com

munication is restricted to the information contained in the tuples, voluntarily 

placed into and picked up from the tuple space. We believe a mechanism for 

direct influence (but not necessarily direct control), such as the event driven 

control in MANIFOLD is desirable in parallel programming. 

One of the best known paradigms for organizing a set of sequential processes 

into a parallel system is the Communicating Sequential Processes model for

malized by Hoare [2, 3] which served also as a basis for the development of the 

language Occam [12]. Clearly not a programming language by itself, CSP is 

a very general model which has been used as the foundation of many parallel 

systems. Sequential processes in CSP are abstract entities that can conmmni

cate with each other via pipes and events as well. CSP is a powerful model for 

describing the behavior of concurrent systems. However, it lacks some useful 

properties for constructing real systems. For example, there is no way in CSP to 

dynamically change the communications patterns of a running parallel system, 

unless such changes are hard-coded inside the communicating processes. The 

communications between a process and its environment are an integral part of 

its semantics in CSP. Occam inherits both of these characteristics from CSP. 

In contrast, MANIFOLD clearly separates the functionality of a process from 

the concerns about its communication with its environment, placing the latter 

entirely outside of the process itself. The responsibility for establishing and 

managing the interactions among processes in a parallel system is completely 
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taken over by manifolds. A manifold orchestrates the interactions among a set 
of processes (some of which may be other manifolds) without their knowledge. 

Another significant difference between CSP (and Occam) and MANIFOLD 

is that all communication in CSP is synchronous, whereas everything (inclml
ing events) in MANIFOLD are asynchronous. Furthermore, the data-flow-like 
means of com1mmication and its associated control mechanisms are deemed es
pecially important in MANIFOLD, for which it has first class support through 
special language constructs. 

An important distinction between MANIFOLD and many other systems (e.g., 
Occam) is that they generally fix the 1111111ber of processes, the topology of 
the communication network, and the potential connectivity of each individual 
process at compile time. MANIFOLD processes, 011 the other hand, do not know 
who they are connected to, can he created dynamically, and can be dynamically 
connected/ disconnected to/ from other processes while they are running. 

An ISO standard for open systems interconnection is t.he language LOTOS 

(Language Of Temporal Ordering Specification)[45, 4G, 47]. It is a formal 
description technique based on the temporal ordering of observable hehavior of 
concurrent processes. The LOTOS language is based on a concurrency model of 
parallelism described by Milner , called CCS (see [l ]) . (CCS is similar in its flavor 
to CSP, although there are significant differences between t hem. ) The atomic 
form of interaction in LOTOS is through events which, as in CSP , synchronize 
t.heir participating processes. The hehavior of a process in LOTOS is described 
in behavior expressions that. are composed of simpler hehaviors using sequential 
and choice operators. LOTOS includes many other language constructs, e.g., to 
support abstract data types. Nevertheless, its view of parallelism is essentially 
the same as CSP. 

As mentioned in s2, the complexity of using languages like Ada, Occam, 
and Concurrent C++ can become overwhelming in highly parallel applications 
that require dynamically changing communication patterns. The MANIFOLD 

environment. offers an abstract.ion of the necessary communication facilities 
which can then be built. on top of a distributed programming language like 
Concurrent C++, or Ada. 

7 DIRECTIONS FOR F URTHER WORK 

More experience is needed wit.h a fully operat.ional MANIFOLD system to eval
uate its potentials and the adequacy of its constructs in real , practical appli

cations. Nevertheless, it is already clear that certain changes an<l extensions 
to the MANIFOLD language can have a positive impact. 011 its use in large and 
complex systems. Several such improvements are currently in our list , of which 
we mention only a few major ones here. 

For instance, the notion of derived manifolds may he a useful extension to 

the language. This concept leads to a hierarchy of manifold definitions with 
inheritance, analogous to the class hierarchies in object. oriented languages. 
Language support for such syntactic conveniences seem to be quite useful in 

116 



large software developments. 

An issue that we have encountered a few times in our examples is a need for 

directed events. Strictly speaking, the concept of event in the MANIFOLD model 

is, of course, contrary to the notion of directed events , because MANIFOLD 

events are broadcast and can be picked up by any process in the environment. 

We do not yet know how important the need for directed events is, because we 

have been able to do without them so far. Nevertheless, the effect of directed 

events can be supported at the language level in MANIFOLD by int roducing 

proper constructs to explicitly control the observability of event sources and/or 

the preemption sets of manifolds. Observability and preemptiou sets are both 

defined implicit ly in the current MANIFOLD language: they are derived by 

the compiler from the source code. Symmetric to the way in which a third 

party process can define streams between two other processes in the current 

MANIFOLD language, new language constructs can allow processes to define 

aud modify observability and/or preemption sets. 

8 CONCLUSIONS 

This paper is au overview of the MANIFOLD system and sketches the highlights 

of its implementation. More experience is still necessary to thoroughly evaluate 

the practical usefulness of MANIFOLD. However, our experience so far indicates 

that MANIFOLD is well suited for describing complex systems of cooperating 

parallel processes. 
MANIFOLD uses the concepts of modern programming languages to describe 

and manage connections among a set of independent processes. The unique 

blend of event driven and data driven styles of programming, together with the 

dynamic connection graph of streams seem to provide a promising paradigm for 

parallel programming. The emphasis of MANIFOLD is ou orchestratiou of the 

iuteractious among a set of autouomous expert ageuts, each providing a well

defined segregated piece of functionality, into an integrated parallel system for 

accomplishing a larger task. The declarative nature of the MANIFOLD language 

and the MANIFOLD model's separation of communication and coordination 

from fuuctionality and coordination, bot h significantly contribute to simplify 

programming of large, complex parallel systems. 

In the MANIFOLD model, each process is respousible to protect itself from its 

environment , if necessary. This shift of responsibility from the producer side to 

the consumer of information seems to be a crucial necessity in open systems, 

and contributes to reusability of modules in general. This model imposes only 

a "loose" connection between au individual process aud its euviroumeut: t he 

producer of a piece of iuformation is uot coucerned with who its consumer 

is. In contrast to systems whereiu most, if uot all, information exchange takes 

place through targeted send operations within the producer processes, processes 

in MANIFOLD are not "hard-wired" to other processes in their environment. 

The lack of such strong assumptions about their operat ing environment makes 

MANIFOLD processes more reusable. 
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The recursive algorithms as well as the example related to the IRIS Explorer 
system, described in MANIFOLD, are only small-scale albeit important. practical 
examples for the usage of MANIFOLD. However, MANIFOLD can be used to 
implement more complex interactions, e.g., in a user interface toolkit., as well. 
For example, in a separate paper, [25], we describe an implementation of the 
GKS logical input device in MANIFOLD. 

In our view, massive parallel systems and the current trend in computer 
technology toward computing farms open new horizons for large applications 
and present new challenges for software technology. Classical views of paral
lelism in programming languages that are based on extensions of the sequential 
programming paradigm are ill-suited to meet this challenge. We also believe 
that it is counter-productive to base programming paradigms for computing 
farms and massively parallel systems solely on strictly synchronous communi
cation. Many of the ideas underlying the MANIFOLD system, if not the present 
MANIFOLD language itself, seem promising towards this goal. 
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· .·='--

TestAndColor() 
DivideArea{) 
Merge() 
Distribute() 

import . 
import . 
import. 
import . 

Warnock() 
{ 

} 

process test_and_color 
process v 

is TestAndColor. 
is variable. 

process divide_area 
process distribute 
port in internal. 

is DivideArea. 
is Distribute. 

start: 
activate v, 
activate tesLamLcolor, 
input -+ (-+ test_ancLcolor -+ , --+ v) --+ internal, 

). 
subdivide: 

( activate clivide_area, 
activate distribute, 

); 

v --+ divide_area, 
divide_area -+ distribute, 
distribute --+ output 

do end. 
done: 

getunit (iuternal) --+ output; 
do end. 

end: 
deactivate parent . 

Listing 6. Program wit h return values I. 
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Distribute() 
{ 

} 

port 
process n 
process merge 

start: 

in internal. 
is variable. 
is Merger. 

activate n, 
Permanent(merge.output ,self.output) , 
guard( self.output ,outpuLarri ved), 
II = Q 

); 
do maitLcycle. 

main_cycle: 
getunit(input) ---> internal; 
do nexLarea. 

nexLarea: 
(n = n + 1, getunit (intemal}---> Permanent (Wamock,merge}}; 
do main.cycle. 

terminate: 
save. 

disconnected.input: 
( activate merge, do wait..for_death ). 

wait..for _death: 
void. 

terminate: 
II = n - 1; 
if ( n == 0, do end, do wait..for-death ). 

output_arrived: 
save. 

end: 
void. 

output_arrived: . 

Listing 7. Program with return values II. 
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The randomness assumption in word frequency statistics 

R. Harald Baayen 

Max Planck Institute for Psycholinguistics, Nijmegen 

1 INTRODUCTION 

The mathematical and computational tools available for the study of word fre

quency distributions have become increasingly powerful since Zipf published his 

seminal studies some 60 years ago (Zipf 1935, 1949). The first frequency counts 

were obtained manually, either by going through a text and filing new words 

and updating the frequencies of words already encountered on slips of paper, 

or by going through (manually compiled) concordances. The first statistician 

to study word frequency distributions, G. U. Yule, obtained the data for his 

book on "The statistical study of literary vocabulary" (Yule, 1944) in this way. 

The first frequency dictionary of Dutch, "De meest voorkomende woorden en 

woordcombinaties in bet Nederlandsch", was similarly compiled manually by 

De la Court in 1937. 
The first frequency list of Dutch obtained by means of a computer was com

piled at the Mathematical Centre in 1965 by van Berckel, Brandt Corstius, 

Mokken, and van Wijngaarden. By 1967, Kucera and Francis had compiled 

a corpus of one million wordforms for English, and had published frequency 

counts and analyses in their famous "Computational Analysis of present-day 

American English" (Kucera and Francis, 1967). This prompted the construc

tion of a slightly smaller corpus (727000 wordforms) of similar design for Dutch 

by the 'Werkgroep Frequentie-Onderzoek Nederlands', leading to the publica

tion of "Woordfrequenties in geschreven en gesproken Nederlands" (Uit den 

Boogaart, 1975) and "Spreektaal. Woordfrequenties in Gesproken Nederlands" 

(de Jong, 1979). The most recent frequency information for Dutch is avail

able in the CELEX lexical database (Burnage 1990), which can be queried 

on-line in the Netherlands, and of which a version on CD-ROM is also avail

able (Baayen, Piepenbrock and van Rijn, 1993). The frequency counts in the 

CELEX database, which also contains information on spelling, phonology, mor

phological structure and syntactic features, are based on a corpus of 42 million 

wordforms compiled by the Institute for Dutch Lexicology in Leiden. 

The transition from printed frequency lists based on relatively small corpora 

to on-line lexical databases based on corpora of tens of millions of words is 

accompanied by an ever increasing body of texts available in electronic form. 

Some collections of texts are made accessible via sophisticated software that 

enables users to search for words or word collocations. Typically, the matches 

found are presented with some preceding and following context. 
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For Dutch, the Institute for Dutch Lexicology (INL) has recently made a 
corpus of 5 million wordforms available for such on-line queries. Similarly, a 
Dutch newspaper, 'de Volkskrant', is now available on CD-ROM. The software 
facilitating access to 'De Volkskrant' and to the INL on-line corpus has as a 
serious drawback that the user is denied access to the texts themselves. Access 
to the full text, however, is especially critical for the question addressed in this 
study, namely the randomness assumption underlying all presently available 
statistical models for word frequency distributions. 

Word frequency models build on the fundamental assumption that word to
kens occur randomly in texts. It is clear that for natural language this assump
tion is too strong. The syntax of natural languages imposes severe constraints 
on where words can occur. For instance, following the Dutch determiner de, 
adjectives and nouns, but not verbs, are allowed (de lamp, de Jelle lamp, *de 
schijnt). Similarly, semantic constraints and principles of discourse organiza
tion may severely limit the way in which words occur in texts. This raises 
the question to what extent the predictions of theoretical models can be relied 
on, especially since it is known that the interpolated vocabulary size tends to 
seriously overestimate the observed vocabulary size (Brunet 1978, Hubert and 
Labbe 1988, Labbe and Hubert 1993). The aim of this paper is to trace the 
source of this overestimation, and to evaluate its consequences for the applica
tion of word frequency models in lexical statistics. 

To do so, we need access to complete texts in electronic form. Fortunately, 
collections of raw electronic texts without limiting software-guided access are 
available by anonymous ftp. The Oxford Text Archive, at black.ox.ac.uk, the 
Gutenberg Project at mrcnext.cso.uiuc.edu, and the Online Book Initiative at 
obi.std.com have brought together large numbers of electronic texts, most of 
which are in English, ranging from election speeches by Clinton to electronic 
Startrek novels, and from Milton's 'Paradise Lost' to the Book of Mormon. 
From the Project Gutenberg, I obtained an electronic copy of Alice in Won
derland, by Lewis Carroll, and a copy of Moby Dick, by Herman Melville. 1 The 
Online Book Initiative has recently made available the first complete text of 
a Dutch novel to come to my attention, Max Havelaar by Multatuli, which I 
have also included in my analyses. 

My discussion is structured as follows. In section 2, I introduce some basic 
expressions for the expectation and variance of the vocabulary size V N as a 
function of the number of word occurrences N in the sample, and of the fre
quency spectrum, the number of different word types VN(m) with frequency 
m, again as a function of N. In section 3, the randomness assumption is tested 
by studying the development of the vocabulary in the three texts mentioned 
above. For each of these texts, it is shown that the observed and expected 
values diverge significantly for a large range of values of N. The goal of sec
tion 4 is to trace the source of this misfit, which may arise due to syntactic and 

1The header of the electronic version of Melville's Moby Dick requires that I mention that 
this version was prepared by E. F. Tray at the University of Colorado, Boulder, on the basis 
of the Hendricks House Edition. 
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semantic constraints operating at the sentence level, to lexical specialization 

(Brunet 1978, Hubert and Labbe 1988), or to the discourse organization of the 

text. I will show that it is the way in which discourse is developed over time 

that gives rise to the misfit. The consequences of these findings are discussed 

in section 5. 

2 WORD FREQUENCY MODELS 

A text can be viewed as an ordered sequence of occurrences (or tokens) of words 

Usually, tlw number V of distinct words, the so-called word types, in the ob

served vocabulary 
(A1, A2, AJ, ... , Av) 

is much smaller than the sample size N, due to the repeated occurrence of 

many word types. Let f N (Ai) denote the frequency with which word type 

A; occurs in a sample of size N. Expressions for the numbers of different 

word types occurring for arbitrary sample sizes, as well as expressions for the 

numbers of different word types occurring with some specified frequency at a 

given sample size have been available since Good (1953), Kalinin (1965) , and 

Good and Toulmin (1976) (see Chitashvili and Baayen (1993) for a review of 

word frequency models). In this section I introduce the expressions required for 

studying in what way the randomness assumption is violated in written texts. 

Let J N(Ai) = rn denote the event that word type A i occurs with frequency 

m in a sample of N tokens. The expected total number of such word types, 

E[VN(m)], is given by 

E[L llJN(A;)=mil 

~ ( ~ ) p(Ai )"'(l - p(Ai ))N- m. 

' 

(1) 

Note that the assumption that fN(Ai) is bin(N,p(Ai)) distributed implies that 

the tokens of Ai occur randomly in the text. The expected overall number of 

different types in the sample, irrespective of their frequency, follows immedi

ately: 

L L ( ~ ) p(Ai)"'(l - p(A;))N- m 
m <". l i 

(2) 
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For large N and small p, binomial probabilities can be approximated by 
Poisson probabilities, leading to the simplified expressions 

"""""" (A(Ai)N)"' - A( A ;) N 
L., I e . m. , 

(3) 

Conditional on a given frequency spectrum (VN(m), m = 1, 2, ... ), the vocab
ulary size E[Vi1] for sample size M < N equals 

i = l 

VN 
""""""( -~M L., 1 - e --,;r- ) 

i= l 

VN - L VN(m)e- ifm. (4) 
m = l 

Note that ( 4) suggests that, under randomness, and conditional on the words 
appearing in the first N tokens, f M(Ai) can alternatively be viewed as a bino
mially distributed random variable with parameters M / N and f N (A;). 

The Poisson approximation is especially useful for obtaining expressions for 
covariances: 

s 8 

COV(L l[JN (A;)= m] ' L l[JN(Aj )= kJ) 
i= l j = l 

j 

-L L E[I[!N(A;)= mJ]E[I[!N (Aj)= kJ] 
i j 
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(
m + k) 1 

= OmkE[VN(m)j - rn 
2
m+kE[V2N(m + k)j. (5) 

Let S denote the number of different word types in the population from which 

a given text is sampled. Since E[VN] = S - E[VN(O)j, 

(6) 

3 TESTING THE RANDOMNESS ASSUMPTION 

The left hand panels of Figure 1 show the characteristic divergence between the 

observed and expected vocabulary size measured at 40 equally spaced intervals 

for Lewis Carroll's Alice in Wonderland (top), Herman Melville's Moby Dick 

(middle), and Multatuli's Max Havelaar (bottom). The type definition used 

here is a very simple one in which distinct strings represent different types. 

No morphological preprocessing has been applied. Hence house and houses 

are counted as two different types. The expected vocabulary size E[Vi1 J was 

obtained using (4) , for each novel conditioning on the frequency spectrum of 

the complete text. 
Note that for all three novels the difference between the expected and ob

served vocabulary size tends to be substantial for a large range of values of !11 

(!11 < N). In the case of Alice in Wonderland, the expected vocabulary size 

exceeds the observed vocabulary size for the full range of values of !If. For 

Moby Dick and Max Havelaar, this divergence is reversed for large Al, where 

the expected vocabulary size is smaller than the observed vocabulary size. For 

the first 20 measurement points, (6) can be used to estimate the variance of 

VN, so that standardized scores Z = (VN - E[VN])/JVAR[VN] can be ob

tained. Measurement points for which IZI > 1.96 have been highlighted. For 

the three novels studied here, all Z-scores obtained, except for one text size in 

Multatuli's Max Havelaar, are smaller than - 1.96, suggesting informally that 

the divergence between the observed and expected growth curves is significant 

for at least the first half of the text. 

4 TRACING THE SOURCE OF THE MISFIT 

We have seen that the predictions derived from the basic model for word fre

quency distributions, essentially a simple urn model (without replacement ), 

diverge substantially from the empirical intermediate vocabulary sizes. In

stead of rejecting the model as unfit for the study of actual language data, it is 

useful to study the source of the misfit in some more detail, as this may shed 

some light on the conditions under which the model might remain valid. 

There are three possible sources for the divergence between the empirical 

and expected vocabulary growth curves. Syntactic and semantic constraints 

at the level of the sentence are in conflict with the randomness assumption. 

These constraints might give rise to the observed misfit. Alternatively, it has 

been claimed that lexical specialization is at issue here. If the use of specialized 

words is restricted to particular text fragments, as it often appears to be, the 
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FIGURE 1. The size of the divergence between the empirical and expected 
vocabulary size E[VM] - VM for 40 equally spaced measurement points for L. 
Carroll's Alice in Wonderland, H. Melville's Moby Dick, and Multatuli's Max 
Havelaar (left column), and the size of this difference for a version of the novel in 
which the order of the sentences but not the order of the words in the sentences 
was randomized (right. column). Significant differences have been highlighted. 

uneven, clustered occurrence of the tokens of these types may underlie the 
misfit. Finally, it might be the case that the discourse organization of the 
text induces a non-random development of the vocabulary. I will explore these 
possibilities in turn. 

4 .1 Syntactic and semantic constraints 

In order to trace the possible role of syntactic and semantic constraints, I made 
artificial versions of the three novels in which the order of the sentences was 
randomized, while keeping the order of the words in the sentences unchanged. 
Table 1 summarizes for each text the number of tokens N, the number of types 
V, the number of sentences s and the mean sentence length msl. The mean 
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novel 
Carroll 
Melville 
Multatuli 

N 
26611 

213756 
99819 

v 
2695 

16741 
11126 

8 

2323 
16307 
6791 

msl 
11.45 
13.11 
14.69 

TABLE 1. Number of tokens N, number of types V, number of sentences sand 
mean sentence length msl for Lewis Carroll's Alice in Wonderland, Herman 
Melville's Moby Dick, and Multatuli's Max Havelaar. 

sentence length ranges between 11 and 15 words per sentence. Given these far 
from trivially small mean sentence lengths, syntactic and semantic constraints 
at the senl ence level cannot but be operative. If their presence induces the 
misfit between the observed and expected vocabulary size, the randomized 
versions of the novels should show a similar pattern as found in the left hand 
panels of Figure 1. 

The right hand panels of Figure 1 plot the results obtained. For all novels, 
the divergence between the observed and expected vocabulary sizes is substan
tially reduced. For all measurement points, the Z-score did not reach signifi
cance (IZI < 1.96). Moreover, the direction of the difference appears to vary 
randomly, yielding largely negative scores for Alice in Wonderland, generally 
positive scores for Moby Dick, and both negative and positive scores for Max 
Havelaar. These results show that syntactic and semantic constraints at the 
sentence level can be ruled out as factors responsible for the lack of goodness
of-fit. 

4. 2 Lexical specialization 

It has been argued that lexical specialization is to be held responsible for this 
lack of goodness-of-fit (Brunet 1978, Labbe and Hubert, 1993). The argument 
is based on the observation that the curve of V N often reflects differences be
tween texts when texts of different authors, or even different texts of the same 
author are studied jointly. To illustrate this simple observation, I concatenated 
Carroll 's Alice in Wonderland, Baum's The Wizard of Oz, a collection of elec
tion speeches by Clinton, and Barrie's Peter Pan.2 The observed and predicted 
vocabulary growth curves are shown in Figure 2. A marked discontinuity in the 
growth curve can be observed at the second vertical line, where the officialese 
of Clinton's election speeches succeeds Alice in Wonderland and The Wonder
ful Wizard of Oz. The specialized, concentrated use of officialese in the third 
partition of this artificial text gives rise to both substantial quantitative as well 
as qualitative differences between the observed and expected growth curves. 

In this example, it is evident that the texts have not been sampled from the 
same population. Different authors will generally tend to use different sets of 
words. In addition, present-day officialese can hardly be compared with books 

2 The last three texts were obtained from the Project Gutenberg, the Online Book Initia
tive, and the Oxford Text Archive, respectively. 
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FIGURE 2. Empirical (solid line) and expected (dotted line) growth curves for 

the concatenated texts of L. Carroll 's Alice in Wonderland, L. F. Baum's The 

Wonderful Wizard of Oz, election speeches by B. Clinton, and .J. M. Barrie's 

Peter Pan, for 160 measurement points. Dotted vertical lines indicate the 

transition points between texts. 

written for children more than 70 years ago. The substantial misfit, comes as 

no surprise. Within a single novel, the effects of lexical specialization will not 

be as extreme. At first sight, there are two ways in which lexical specialization 

might violate the randomness assumption. It might be that lexical special

ization is characteristic of certain parts of the text, but not for others, as in 

the above artificial example. Alternatively, lexical specialization, although uni

formly distributed in the text, might as such give rise to the misfit between 

the observed and expected vocabulary size. If lexical specialization leads to 

local concentration of the tokens of a specialized type, this local concentration 

might imply that within the relevant text slice tokens that would otherwise 

have been free to represent additional non-specialized types are now allocated 

to one specialized type. For text slices with specialized words, this would result 

in a lower expected value for the vocabulary size. 
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This idea has been formalized by Hubert and Labbe (1988) and Labbe and 

Hubert (1993), who present the following modification of (4): 

E[VM] = p~ VN + (1 - p){VN - L(VN(m)e- *m)}. (7) 
m 

To obtain (7), assume that all tokens of a specialized word occur jointly in a 

particular fragment of the text. Also assume that a proportion p of all V N types 

in the text enjoy specialized use, and that this specialization affects the same 

proportion p of the VN(m) types for all m. Finally, assume that the chunks 

of tokens of the specialized word types (S;, i = 1, 2, ... ,pVN) appear randomly 

distributed over the text. If so, 

pVN (1 - p)VN 

E[Vi1] E!L: I lJM(S;) > OJ + L I [fo(A;) > OJ 
i = l i= l 

pVN Jvf 
L - + L (1 - p)VN(l - e- *fN(A;)) 
i= I N i = I 

~PVN + (1 - p)VN - L(l - p)VN(m)e- %"'. (8) 

"' 
For K measurement points (Mk , k = 1, 2, ... , K , lvh < N), Labbe and Hubert 

(1993) determine p by minimizing the chi-squared statistic 

(9) 

conveniently ignoring that the variance of E[VM,k] increases with Jvl. In this 

way, much improved and often excellent fits can be obtained. For instance, for 

Alice in Wonderland, the optimal value of p for K = 40 equals 0.16, and the 

fit obtained is a perfect smoothed curve through the observed values of VM,k 

(x(39l = 3.58, p > 0.05). These results would suggest that lexical specialization 

as such violates the randomness assumption and gives rise to the discrepancy 

between the observed and expected vocabulary growth curves. Unfortunately, 

some of the assumptions underlying (7) are questionable. 
First, for the majority of texts, the number of so-called hapax legomena, 

VN(l), accounts for roughly hal(the number of types VN. Hapaxes, by virtue 

of occurring once only, cannot enjoy specialized use, if the operationalization 

of lexical specialization in terms of the bundled occurrence of all the tokens 

of a given type in a particular segment of the text is not to be trivialized. 

Second, if text slices in which specialized words occur are characterized by a 

deficit in the number of types, there should also be text slices with a surplus 

of types - the successive increments in the vocabulary size sum up to V N for 

both the expected and the observed counts. If the text slices with a surplus 

of types also occur randomly in the text , it may well be that the effects of 
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lexical specialization are counterbalanced by effects of lexical richness. If so, 
no discrepancy between theory and observation should arise. Third, observe 
that in Figure 1 E [VM] - VM tends to be negative for large Min the novels by 
Melville and Multatuli. Application of (7) and (9) shows that for Moby Dick 
the optimal choice for Labbe and Hubert 's parameter p, 0.12, does not yield an 
acceptable fit (xf39l = 162.79, p < 0.001) , and the same holds for Max Havelaar, 

xfa9J = 92.58,p < 0.001 for the Labbe and Hubert parameter 7> = 0.10. If the 

modification of ( 4) proposed by Labbe and Hubert (1993) is has any validity 
at all, this validity is restricted to texts with the developmental profile of Alice 

in Wonderland only. Texts with skewed profiles such as observed for Moby 

Dick and Max Havelaar cannot be analyzed in this way. We may conclude that 
if lexical specialization is to lead to violation of the randomness assumption, 
specialized types should not be randomly distributed in the text. 

4 .. 'J Di.~course Structure 

To test for possible effects of lexical specialization as a function of the discourse 
structure of the text, we need a formal definition of lexical specialization. Given 
the intuitive idea that lexical specialization implies a significant concentration 
in the occurrences of a word, we can define lexical specialization in terms of 
underdispersion. If a text is divided into J( text slices, t he dispersion d; of 
word A; is defined as the number of text slices in which this word occurs. 
If a word's dispersion is smaller than expected under chance conditions, it is 
underdispersed. To test whether A; is significantly uuderdispersed, the test 
statist.ic 

d - E[d ·] z. - l I 

I - JVAR[d;] 
(10) 

can be used. Since we have no reason to suppose that overdispersion occurs, 
we may assume that A ; is significantly underdispersed at the 5% level when 
Z ; < - 1.645. 

Expressions for E [d;] and VAR[d;] can be obtained using occupancy theory 
(Johnson and Kotz 1977: 113-114). Let X denote the number of text slices 
unoccupied by a token of word A; with frequency f N(A;) . On partit ioning a 
text into J( slices, we can express X as the sum of the individual unoccupied 
slices: 

with 

K 

X = LXk,, 
k = l 

if A; appears in the k 1
" text slice, 

otherwise. 

(11) 

(12) 

The number of text slices occupied by at least one token of A ; equals d; = 
K - X. Since Pr(Xk = 1) = (1 - pk)fN (Ad, withpk, the probability of assigning 
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a word token to the kth text slice, we find that 

K 

E[d;] = E[K - L Xk] 
k=l 

K 

= K - LE[Xk] 
k=l 
K 

K - L(l - Pk)fN (A;). 

k=l 
(13) 

When a given word token is equally likely to be assigned to any of the text 

slices, (13) reduces to 

E[d;] = K(l - (1 - ~)fN(Ad ). (14) 

After allotting N word tokens to K equiprobable text slices, each text slice will 

contain on average N/ K word tokens. This allows us to use (14) to estimate 
the expected dispersion of all types Ai for the 40 equally large text slices of 
Alice in Wonderland, Moby Dick, and Max Havelaar. 

The variance of d; is obtained as follows. 

K 

VAR[X] VAR[LXk] 
k=l 

k 11. < 1n 

k 

As Xf is nonzero only when Xk = 1, E[Xf] = E[Xk]- Similarly, we have that 

E[XnXm] = 1 iff Xn = X ,,. = 1, and hence 

E[X11Xm] 

This leads directly to 

K 

Pr(X .. Xm = 1) 

Pr({X .. = 1} n {X111 = 1}) 
(1 - Pn - Pm)fN (A;) · 

VAR[X] = Z.:::<1 - Pk)fN (A;)( l - (1 - Pk)fN (A;)) 

k=l 

+ 2 L L(l - Pn - Pm)fN (A;) - (1 - Pn)fi(l - p,,.)fN(A;) _ 

n < m 
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For equally sized text slices, VAR.[d;] = VAR[K - X ] = VAR.[X] is simplified 
to 

VAR.[d;] = /\ (1 - L )fN(A ; ) + /\(!\ - 1)(1 - ~ )fN ( A ; ) 

- J\2(1 - ;\ )'2fN(A;) . (18) 

For each of the 40 text. slices of Alice in Wonderland, Moby Dick, and Max 
Havelaar, I calculated the number of significantly underdispersed words. To 
study the relation between the growth of the vocabulary and the amount of 
underdispersion, it is useful to compare, for each successive text slice, the influx 
of new types with the influx of new underdispersed types. In order to compare 
observed with empirical values, it is convenient. to introduce two difference 
functions. Let D v(k) denote the difference between the expected and observed 
number of new types in text slice k, 

D F(k ) = (E [VM.k] - E [VM. ~, - 1]) - (VM.k - ViJ.k- 1 ), (10) 

and let 
Du U:) = (UM,k - UM.k - d - (E [UAt. ~· J - E[U.\u-- iJ), (20) 

with UM.~· the number of underdispersed types in the ~: 11' text slice, denote the 
difference between the observed and expected numbers of new underdispersed 
types in text slice k. Figure 3 plots DF(k) (small dots) and Du(~~) (large dot.s) 
and the corresponding smoothed curves using running medians (Tukey, 1077) 
for our three texts. In each case, we find that the two curves tend to he each 
other's mirror images. Especially for the firs t 7 measurement points, D i:( k ) 
tends to be large and Du ( k) small. Iu other words, in the init ial parts of these 
novels, both new types and significantly underdispersed types are scarce. In 
later parts of the novels, t here is a tendency for the expected increa.'ie in vocab
ulary to slightly underestimate the empirical increa .. 'ie, and it. is here that the 
empirical numbers of underdispersed words are slight.ly higher than expect.eel. 

This pattern of results suggests that lexical specialization, defined in terms of 
significant. underdispersion, is not randomly distributed in the text, and that. 
it is the scarcity of significant. underdispersiou in the initial segments of the 
text , combined with a deficit. in type richness, that gives rise to the divergence 
between the observed and expected vocabulary growth curves. In hindsight., it 
is obvious that lexical specialization and vocabulary richness go hand in hand . 
When a particular topic is discussed in detail , key words for that. topic will be 
used intensively. These key words are the significant.ly underdispersed words 
of this study (see Baayen, 1994, for detailed discussion). At the same time, 
additional vocabulary is called upon, without. which the many facets of the 
topic that make it worth mentioning could not be discussed. 

What we find, then, is that the organizat ion of t;exts at the discourse level is 
at issue. In the initial sections of the text, the reader is introduced gently to 
the fictive world of the novel. Here, large numbers of specialized words, both 
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FIGURE 3. Difference scores Dv(k) {dotted line, small dots) and Du(k) (solid 

line, large dots) for L. Carroll's Alice in Wonderland, H. Melville's Moby Dick, 

and Multatuli's Max Havelaar. 

the hard-worked underdispersed words, as well as the specialized low-frequency 

words their use brings along, are avoided. Once the general topic domain has 

been established, specialized vocabulary is put to use to elaborate more specific 

topics in full. 

5 DISCUSSION 

I have shown that the lack of goodness-of-fit of any probabilistic model for 

word frequency distributions of texts that assumes that words occur randomly 

in texts is due to the way in which texts are structured on the discourse level. 

Syntactic and semantic constraints operating on the sentence level, as well as 

lexical specialization by itself, do not play a significant role. 
This finding has important consequences for the statistical analysis of word 

frequency distributions, as it shows that the theoretical predictions of the urn 

model will be accurate either if the textual materials studied do not have the 
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discourse structure observed for the novels studied here, or if this discourse 
structure is irrelevant to the question at hand. The first possibility arises in 
studies where corpora are investigated. Corpora such as Uit den Boogaart 
(1 975) and Kucera and Francis (1965) are collections of randomly sampled 
short text fragments of approximately the same length. No discourse organi
zation will be present in the sequence of such fragments. Hence the model will 
accurately predict the observed vocabulary size for J\tf < N. 

The second possibility arises when the model is used to obtain estimates of 
population parameters that are relatively independent of discourse organiza
tion. For instance, in studies of vocabulary richness (Good and Toulmin 1!)76, 
Efron and Thist.ed 1976, Sichel 1986), the number of different word types in an 
author's vocabulary is estimated on the basis of one or more of his texts. If the 
number of different word types an author chooses to use to discuss a particular 
topic domain is independent of the way in which he structures the text to fa

ci li tat,e comprehension for the reader, then the rhetorical structure of the text 
becomes irrelevant when one's aim is to estimate the size of the vocabulary the 
author had at his disposal for discussing this topic domain, including the words 
he knew but did not use. 

Summing up, the finding t hat the randomness assumption is violated at 
the level of discourse struct.ure implies that word frequency models for which 
this assumption is crucial can nevertheless be reliably applied in corpus-based 
studies and in studies of lexical richness. 

G EPILOG UE 

Having come to the end of my discussion of the randomness assumpt ion in 
word frequency statistics, I would like to add a few words on t he occasion of 
Cor Baayen 's retirement as scientific director of the Cent re for Mathematics 
and Computer Science. 

As ment ioned in the introduction, the first computerized frequency list of 
Dutch was compiled in 1965 at t he Mathematical Centre, the name of t.he 
Centre for Mathematics and Computer Science at, that t ime. The director of 
the institute, Aad van Wijngaarden, one of the pioneers of computer science in 
the Netherlands, had a keen interest in language in general, and in lexicology 
and etymology in particular. Not surprisingly, the first study of the Dutch 
language in which the computer was used as a tool for obtaining word frequency 
counts and for carrying out, morphological analyses to appear in print was a 
Mathematical Centre Tract (van Berckel et, al., 1965). 

Van Wijngaarden's successor as director of the Mathematical Centre was Cor 
Baayen. While sharing the same interest in historical linguistics and etymology, 
Cor was well aware of the importance of methods of formal logic as tools for 
the analysis of problems of ambiguity and scope that arise at the level of the 
syntax and semantics of natural language, and he has stimulated research in the 
interdisciplinary domain of language, logic and computer science throughout 
his directorship. 
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Looking back, it is clear that the study of natural language in the Netherlands 
has profited from the erudition and breadth of vision of the Mathematical 
Centre's last scientific directors. It is to be hoped that the future CWI will 
be able to demonstrate a similar breadth of vision, stimulating the use of new 
mathematical techniques not only in the sciences and in engineering, but also 
in the humanities. 
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CW/, Amsterdam 

A coding for a (type-free) lambda term M is a lambda term ' Al ' in normal 

form such that M (and its parts) can be reconstructed from ' Al ' in a lambda 

definable way. Kleene[1936] defined a coding 'JI! ' /\ and a self-interpreter 

EI\ EA0 such that 

VMEA.0 E l\ ' M ' I\ == 1\1. (1) 

In this style one can construct a discriminator 111\ EA.0 such that 

VJ\/ N EA 1).1\ ' JII ' l\ ' N 'I\ == { true (:= >. :1:y.:1:) if J\! := N ; (2) 
' false (:= >.:i:y.y ) else. 

The terms E l\ and 111\ are complicated . They depend on the lambda defin

ability of functions on the integers dealing with coded syntactic properties. 

Inspired by a construction of P. de Bruin (see Barendregt [1991]) Mogensen 

[1992] constructed a different coding ' M' and an efficient self-interpreter 

EEA.0 such that 

(3) 

This construction does not use an encoding of syntax as numbers but direct ly 

as lambda terms. This results in a much less complex E. Mogensen 's 

construction was simplified even further in Bohm et al. [1994]. In this paper 

we construct a simple discriminator 11EA.0 such that 

VM N EA.o 11' M " N ' == { true if 1\1 = .. N; (4) 
' false else . 

Note that in (1) and (4) the statement is only about closed lambda terms, 

while that in (2) and (3) is about all lambda terms. It will become clear why 

this is so . 

141 



·:.-:r."'. : . · •• -

1 . INT ROD UCT ION 

The most import.a11t. 11ot.atio11s for the type-free lambda calculus will be given 
here. Background can be fou11d in Barendregt [1fl84]. 

1.1. D EFINITIO N. Variables and terms of the lambda calculus are defi11ed by 
the following abstract. syntax. 

var "· I var' 

term var I term term I >. var term 

OTATION . (i) AI , N, . .. , P, CJ, ... range over >.-terms. The letters :1:, JI, z , . .. 
range over variables. Note that. the variables are {a , a' , a" , . . . , a (" l , .. . } . 

(ii ) A is t.he set of lambda terms. FV(J\J) is the set. of fre1~ variables of 
AI.The set of closed terms is A0 = {MEA I FV(M ) = Ql} . 

(iii ) The relation = denotes syntactic equality; t.lw relation =" denotes sy11-
t.act.ic equality np to a change of names oft.he hound variables. For example 

(iY) The relation = denotes ()-convertibility, axiomati:zed by 

(>.:i;.AJ )N = M [:i: := N]. 

Here [:i: := n] de11otes substitution of N in the free occurrences of :1; . E.g. 

(:i:(>.:1: .:r))[:1; := a]= a(>.:1:.:r). 

(v) JN is t he set. of natural muubers. For n EJN the terms c ,, = >.f:1:.f":i: , 
where f 11 :1; = :i; and J11 + 1:i: = f(J 11 :1;), denote the so called Church 11111nerals. 
Note that t.he c ,, are rlist.inct normal forms; hence 

C 11 = C 111 => 'II = II/. 

by the Church-Rosser theorem. 

A lambda term can be seen as an executable: the redexes want t.o he eval
uated. In this sense a normal form is not. executable anymore. For a lambda 
term AI its code r AI' is a normal form such that AI is reconstructible from M. 
Kleene [1936] 1lefined a code r M'K essentially a.c; follows. 

1.2. DEFINITION . (i) By induct.ion on the structure of M we define #M. 

#(a(")) 

#(PQ) 

#(>.:i:.P ) 

< 0,n >; 
< l, < #(P) , #(Q) >>; 
< 2, < #(x), #(P) >> . 

Here < - , - > denotes a recursive pairing function on JN with the recursive 
projections ( - )o, ( - h: 

( < 110, n1 > ); = n;. 
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(ii) The map r - -, K : A~A is defined by 

K r M ' = C#M· 

Note that for all Iv/EA the term r A11 K is in normal form. Moreover , 

r !vf' K = r N -,K => Nf := N. 

L J. PROPOSITION. There is no lambda term Q .mch that for all AfEA(o) one 

has 

PROOF. Snppose Q exists. Then for I = .>..x .x one has 

Q (ll ) = r 111 K = c#(ll ) = c <l,<# l,#b >" 

But also 
K 

Q (ll ) = QI = r 11 = c#I = c<:l. <# (a:) ,#(a:)>>-

Hence < 1, < #(1), #(I ) > > = < 2, < # (x), #(:1:) > > , a contradiction.• 

In spite of this fact that the 'q11ote' Q does not exists, the inverse 'evaluation' 

E can he constructed. 

1.4. THEOREM (Kleene (1936]). There exists an EK EA° such that for all M EA0 

one has 

PROOF. See Kleene (1936] or Barendregt (1984], t heorem 8.1.16. • 

The self-interpreter E can work only for closed terms Af (or terms having at 

most a fixed fini te set of free variables). The reason is that if 

EK r Al'K = Al , 

then 
FV(M ) <,;;; FV(EKr M 'K) = FV(EK ). 

Therefore if EK is closed , then the M have to be closed as well. This causes one 

difficulty in the construction of EK. The closed terms do not form a context

free language. Kleene solve<l this problem by constructing E first for the set of 

co111binatory terms C0 built from the hasis {K, S} using application only; then 

the real self-interpret.n can be obtained by t ranslations between A0 and C0
• 

A different construction of a self-interpreter was given by a former student 

of mine, using ideas from <lenotational semantics. 

1.5. TH EOREM (P. de Bruin). There exists an E0 EA0 such that for all !If EA 

and all F EA one has 

E r •,f ' F - " l [x x· ·- F r,,. 1 F r,,. 1] 
lJ 11 - 1 1 • j l • • • ) 1t . - J o 1 l • o o ) J • 71 (5) 

{simultaneous substitution), where { x 1, ..• , x,. } = FV(AI). 
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PROOF. By t.he repre::;ent.ahility of computable functions and the fixedpoint 
theorem there is a term E0 EA0 such that. 

E0 ':i:'/\ F 

E0 ' PQ' I\ F 

Eo' >..:r:.P'K F 

where F [r:r:' >-- x] = F; with 

F;•a:' 
F' ' ., :r. y 

F'x'h.; 

F(Eo' P' I\ F )(Eo'Q' '' F ); 

>..:r:.( Eo ' P' I\ F [r T•,....,,J), 

:i:; 

Note that. F; can he writ.ten as GF:r:, with G closed. By induct.ion on the 
structure of Al EA one can show that. the statement holds. • 

1.6. COROLLARY. There e:1:i8l8 an E"8 EA0 .mr:h that. for all M EA0 one has 

E' M'l\ = M. 

PROOF (P. de Bruin). We can take 

Er/B = >..m.Eoml. 

Indeed, for closed terms A/ it. follows from (5) that. 

Er!Br Al' = Eo' Al'I = Al. • 

2. REPRESENTING DATA TYPES 

After seeing the method of P. de Bruin , Mogensen [1992] gave an improved ver
sion of it. by representing dat.a types directly (i.e. not. using the natural numbers) 
in lambda calculus as done in e.g. Bohm and Berarducci [1985]. This approach 
was improved later by Bohm et. al. [1994] by constructing a new representation 
of data types into type-free lambda calculus. This new representation will he 
treated in a slightly modified form in this section. 

2.1. DEFINITION. Write 

Note that 

(M1 , ... ,M,,) 

U? 
true 

false 

>.. z .zM 1 ••• Al,,; 

>..x 1 ••• x,,.:i:;; 
u2. 

Ji 

u~. 

(M1, ... ,M,,)Uf' 

truePQ 

falsePQ 

M;; 

P ; 

Q. 

In particular we have (M ) = >.. z .zM and ( ) = >..x. :r: = I. Now we define the 
notion of lists inspired by the language LISP, McCarthy et al. [1961]. 
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2.2. DEFINITION. (i) Write 

(ii ) Define 

So for example 

nil 

cons 

car 

cdr 

null? 

[ J 

[.IH1, ••• , M,,+iJ 

(); 

>.:i:y. (x, y); 

(Ui}; 

(U~ } ; 
"l 2 (U3 , U1 , false , true ). 

() ; 

cons M1 [.l\{1 , ... ,1\1,,+il· 

[.l\·fi, .l\h, .l\{1] = (.1\11, (.l\h (.l\h , ( ) ) ) ). 

(In Barendregt [1984] this term is written as [.l\11 , M2 , M:i , I]. At the t ime of 

writing that hook we did not yet see the usefulness of terminating a list with 

a special constructor. ) Note that 

car ( cons PQ ) = P· , 

cdr ( cons PQ ) = Q; 

null? nil = true; 

null"!( cons PQ) = false. 

2.3. PROPOSITION. There exists lambda definable functions ( ); sucli that for 

1 :<::: i :<:; n une has 

PROOF. Take 

([M1 , ... ,M,,]) i = M ;. 

(l)i 

(l);+1 

earl; 

( cdrl );.• 

2.4. DEFINITION. An (algebraic) signature s consists of a munber n EIN (thought 

of as the list of symbols [!1, •• . , f 11 ]) together with a list of numbers [s 1 , • . • , ;;,, ] 

(thought of as t he arity of the respective f ;'s). We writes = [s 1 , . • . , s,, J. 

For example a field has signature s = [2, 2, 1, 1, 0, OJ (thought of a:-; the arities 

of the functionsymbols [+, x , - , - 1 , 0, l]; so f 1 = +, h = x etcetera) . 

2.5. DEFINITION. If s is a signature then term ,. , the set of tem1s of signatm·e 

s , is defined as follows. 

x Evar ==> :i;Eterms; 

t1, ... ,t8 , E term s ==> f; (t 1, ... ,t., . )E term ., . 
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For example in the signature of fields the term fi(f1(x,f:1(h(y,f4( z ))), fr. ) is 
usually written as :i; - yz - 1 + 1. 

2.6. DEFINITION. Let:; = [.'i1' ... ' s,, ] be a signature. 
(i) A lambda interpretation of sis a list of 'constructors' C,, ... , C,, EA. 

(ii ) Let C 1 , •.. , C,, he a lambda interpretation of fl. Then we define a map 

a.<; follows. 

T,, 

TJ;(l, ..... t , ,) 

x; 

where [T1, , ••• , T1 • ; ] is the list. operation ou lamhcla terms defined in 2.2. 

Example. The signature of binary trees is [O, 2]. The term t = h(h(f1, Ji), Ji) 
denotes a simple tree and t' = h(/1 , hU1, Ji)) its miror image. Can we find a 
lambda interpretatiou for this signature in such a way that. mirroring becomes 
lambda definable, i.e. for some F EA0 one has FT1 = T, ,? The following result , 
due to Bi:ihm et al. [1994], will affirm this. We present the result. in a modified 
form that will be useful for §4. 

2.7. THEOREM. For every algebraic signature s = h, ... , s,, ] there exists a 
lambda interpretation C1 , •• • , C,, .mch that the following hold. 

(i) V' A 1 ••• A,, 3F 

l :=; i ~ n . (6) 

(ii ) The C 1, ... , C,, only depend on n, not on the [si, ... , s,, ]. In (6) we can 
take F = ((A 1, ••• , A,,)). 

PROOF. Define CJ; ::::: .Xle.eUj' / (e) . 
(i) Given A" . . . , A,,, we try whether F = ( (A1 , .. . , A,,)) works. Indeed, 

FTJ;( t,, .... t .• ; l ( (A1, ... , An ))( CJ; [Ti, , . . . , T1 .• ;]) 

= CJ; [T1,, ••• , T1 _, ;](A1, ... , A,.) 
(A1, ... , A,.) u ;• [T,,, .. . , Tt .• ; ]( (A1, ... , A,,)) 

= A; [T1,, ••• ,T1,;] F. 

(ii ) By t he construction.• 

2.8. COROLLARY. Lets = [s1, ... , s11 ] be an algebraic signature. Let C1, ... , C,, 
be the lambda interpretation of s constructed in theorem 2. 7. Then for all 
B1 ... B 11 there exists an F such that 

1 ~ i ~ n. (7) 
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PROOF. Let B1, . .. , Bn be given. Define A; = .>..L.B;(l )1 ... (l)s; · Then 

A;[x1, .. . ,:i:,. i] = B;x1, . .. ,x .• i " 

Then the F for the A ; found in theorem 2.7 is the F satisfying (7). • 

Now we cau program t he function that 'mirrors' trees. In the signature [0,2] 

fo r binary trees let 

leaf 
tree 

Th 
.>..ab.Th(u ,b) 

CJ. ( ); 
.>..ab.Ch (a, b) . 

By corollary 2.8 there exists an F such that 

Fleaf 

F (tree a b) 

leaf ; 

tree(/b)(/a ). 

This F has the mirror effect. E.g. F (h (h (/1,Ji ), f i)) = h(J1, h(f1,fi )) . 

3. A SIMPLE SELF- INTEilPRETER 

In Mogensen [1992] a simple coding and self-interpreter for lambda terms is 

defined , using t he fact that data types (term algebras of a signature s) have 

a lambda interpretation. The method was simplified by Bohm et al. [1994] by 

making use of their lambda representation of algebraic signatures given in §2. 

3.1. D EFINITION. Let s be the signature [l , 2, l ]. Define 

const Ch .>..te.eU1t(e); 
app 
abs 

Ch .>..t e . eU~l (e); 
Ch = .>..t e . eU~l (e). 

3.2. DEFINITION. For M EA definer M ' as follows. 

Note that FV(r M ') = FV(M ). 

const [x]; 

app [r P', r Q'] ; 

abs [.>..x.r P '] . 

3.3. THEOREM (Mogensen [1992]) . There exists an EEA0 s'Uch that 

'l:/M EA FM' = M . 

PROOF (B"olnn et al. [1994]) . By corollary 2.8 there exists a term EEA° such 

that 

E( const [p]) 

E( app [p, q]) 
E( abs [p]) 
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:" : -~.- = ... 

Then 

Era:' 

FPQ' 

Er J..:r:. P ' 

x; 

(Er P ')(ErQ'); 

A.:1:.Er P' . 

Now the resul ts follows hy induction on t.he structure of A1. • 

Using the construction::; in s2 the self-interpreter becomes 

E =: ( (>.l f .(l ) i, >.l f .f (l)i (f (1)2), Al f:i:.f ( ( l) 1 a:))) . 

The construct.ion in Bohm et. al. [1994] is simpler. They take 

const 

app 

abs 

J..:i:e.eu =;a:e; 

J..xye . eU~:i:yc ; 

>. :ce . cu~:a:c. 

The resulting self-interpret.er then becomes E 8 = ( ( K, S, C) ) . Here K = >.:cy .:1:, 
S = >.xyz.:cz(yz) and C = >.xyz.:1:(zy). For reasons of uniformity we have given 
the definit ion of const , app and abs as in 3.1. This will he useful in fi 4. 

4. A Sll\IPLE DISCRIMINATOR 

In this sect;ion we will construct a simple term discriminating between coded 
clo::;ed lambda term. The discrimination is even modulo a-conversion. For open 
terms discrimination is possible only for the coding r -, K of Kleene. 

4.1. LEMMA. (i) There e.r.ists a term OJN EA0 such that 

liJN c ,, c ,,, = { true 
false 

if 11 = m; 
el.~ c . 

(ii) There exists a term and EA° such that 

and true true 

and true false 

and false true 

true; 

false ; 

false ; 

and false false = false. 

PROOF. (i) By the representability of the recursive functions. 
(ii) Take and = >.ab.a true b. • 
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4.2. PROPOSITION. There exists a term 6EA0 s'Uch that {writing fin fo r 8c,.) 

one has 

8,.r x •r x'' 
8,. r :i; -ir P' Q' ' 
15n r X -ir AX' .P'' 

011 r PQ'r x'' 

81N x y; 
false ; 
false; 

false; 
611 r PQ-ir P' Q'' 
15,,r PQ-ir A:i:'.P' ' 

and (b,. r p -ir P'')(6,.rQ-irQ'') 
false; 

15,. r AX _p•r x" false; 
false ; 071 r AX.P-ir P' Q'' 

811 r AX _p •r A:i:' .P'' 811+1( P'[x := c,,])( P"[x' := c,.]) . 

PROOF. We introduce the following ad hoe notation. 

(i) Let A1, •. . , A,,EA. Then we write 

Ai ![A1 , ... , A,.] = ((Ax.Ai , ... , ,\x.A,,) ). 

(ii ) If B ; = [Ail, .. . , A;,.], then we write 

,\x!![B1, . .. , B"] = ( (,\x!B1 , ... , Ax!B,.)) . 

(iii ) Let for 1 :S i ::; n, 1 :S j :S n be given A ijE A. Then 

[Aij] [[A u, . .. , A111J, 

[A21, .. . , A:i,.], 

[AnJ, ... , A,,n]] . 

If n = 3 we may write [Aij] as 

Now define t5 = ,\ntt'. 

( [ 

61N(t )1 (t')i 
>..tdL\t' d' n!! false 

false 

false 
and ( d( t ) I ( t') J II) ( d( f )2(t,'h II) 
false 

false l) 
false tt'n, 
d( tn )( t' n )(S+u) 

where s+ lambda defines t he successor function . This ti satisfies the specifica

t ion.• 

4.3. PROPOSIT ION . For all !l'l,M' EA s'Uch that FV(MM') ~ {x1, .. . ,xn } and 

for ::;ubstitutions * = [:i:1 := Ck1 ] • • • [:i:,. := c~, ..J with I.:; # kj (for 1 :S i < j :S n) 

one has for p > I.: ; (fur all 1 :S i :S n) that 

ti ,r !vl'r 111''* = { true 
1 false 
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PROOF. By induction on the structure of !YI, in each case making distinctions 
according to the structure of M'. We treat four instructive cases. 

Ca.."ie A·f = :r., Iv!' = x '. Then 

8 r Af"lr AI''* = 8JNC• .. C•. JI h ·1 "·i'' 

where :r. = :i: ; , x' = X;•. This is true or false depending on whether :1; = :i:' (so 
. "/ ) ,± I ( • -1- ·/) 1. = 1 or :r. 7"' :r. so 1. / z • 

Case A1 = x, M' = P'Q'. Then 

Case M = PQ, M' =: P'Q'. Then 

8,,r AJ"lr Al''* and ( 8,,r p -ir P''* )( 81,rQ-irQ' ' *) 
= JH and (true / false)( true / false ) 

true / false , 

as it. should (= true only if PQ = P'Q' i.e. if both P = P' and Q = Q'). 
Case A1 = >.x .P,A1' = >.x '.P'. Then 

81+ 1 (r P '[:1: := c,,])(r P''[x' := c,,]) * 
8,,+1 r p -ir P' [x' := x]'[x := c,,] * 
i;: r p 1rp' [ .I · - ]' / 11,,+1 :i, .- x * ' 

with *' = *[:i: := c1,] being au admissible suhstit11tion. So 

8 ,r A1'r kl''* = / H { true 
1 false 

l.f P - P1[·1.1 • ~·] · = n· , , ·= "'' ' 
else. 

Now AI = ,. Iv!' iff >.x .P =:,. >.:r.'.P' (=" >.x .P' [x' := x]) iff P =:,, P' [:r. ' := x]. 
Hence we are <lone. • 

4.4. COROLLARY. Write ~ = 80 . Then for all A1, !vf'EA0 one has 

~r Jvf"lr A1'' = { true 
false 

PROOF. Immediate from the proposition.• 

if M =" M'; 
else. 

Note that this corollary cannot hold for arhit.rary A1, A1' EA. For example, 
it is impossible to discriminate r x 1 and r x' ' . Indeed take :i: "¥. x' and make a 
substitution: 

a contradiction. 
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New Trends in Applied Mathematics 

Ded'icated to Professor Cor Baayen 

A. Bensoussan 

University Paris-Dauphine and INRIA 

Applied mathematics has become an extremely important and useful dis

cipline in the context of development of powerful computers. On the one 

hand, mathematics (in a broad sense) is the most efficient approach to model 

reality, especially complex reality. Moreover, it provides the best possibili

ties of reasoning. With cheap powerful computers, mathematics becomes 

implementable and unavoidable in designing, producing, deciding .. . 

On the other hand, mathematics has evolved considerably to extend its ap

plicability to real problems. This is why applied mathematics is so alive and 

fast progressing. Needless to say, the connection between applied mathe

matics and information technology is an extremely fruitful approach to new 

ideas and a basic source of research topics. This is a line to which Professor 

Cor Baayen has always dedicated his efforts. He has greatly contributed to 

closing the gap between mathematics and computer science. To give an 

exhaustive presentation of all directions of applied mathematics in a short 

talk is of course out of reach, and beyond the possibilities of one speaker. 

So the purpose of this lecture is more to outline some significant features, 

among many others. 

1 SCIENTIFIC COMPUTING 

The traditional applications of mathematics arise in Physics, Mechanics, 

Powerful computing means and supercomputers have permitted : 

• to study completely new areas of physical sciences. 

• to consider new numerical techniques 

• to investigate new approaches. 

1.1 New Areas of physical sciences 

It would be particularly unrealistic to be exhaustive here. Nevertheless, among 

important developments in several fields, we emphasize the Nurneri,cal Simu

lation of Reactive flow. It applies indeed to combustion, aeronomy, partially 
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ionized plasm.as, aerodynamics, gas dynamic lasers, astrophysics, general mul
tiphase and magneto-hydrodynamic flows, .... 

The model takes into account the coupling between fluid dynamics and chemical 
reactions, and thus opens the door to a large family of complex problems. 

The traditional model of an homogeneous, viscous, incompressible flow with 
no chemical reactions and no external forces consists of Navier Stokes equations 

OU 
Po( ot + (u · D)u) - JLfiu + Dp 0 

divu = 0 

If the fluid has a constant specific heat c and there are no external heat sources, 
then the temperature of the fluid is the solution of : 

DT 
poc( -{} + u · DT) - >.6..T == 2tn:2 (u) 

t 
where e = 4(Du + (Du)T) is the velocity tensor. The internal energy density 
is cT. 

In general, all variables are coupled and appear as the solution of a complex 
system of P.D.E. 

The main unknown are the mass density p, the velocity of the flow u, the 
number densities ni of the individual chemical species and the total energy 
density E. 

The system of equations is the following : 

Dp - + D · (pu) 
8t 

8(pu) -- + D · (puu) + D · a 
Dt 

0 

where a is the pressure tensor, q the heat flux, qr the radiative heat flux , n i 

represent external forces, and Qi, Li represent the chemical product.ion rates 
and losses of species i, ui is the diffusion velocity of species i. They are highly 
nonlinear expressions of the unknowns, including the temperature T. 

In view of the complexity, a modular approach is useful. Each physical 
process is calculated accurately and calibrated separately . 

The physical properties should be incorporated in the numerical algorithms 
and a mathematical analysis of the behaviour of the algorithms should be 
performed. For more details, see [18]. 
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1.2 Numerical methods 

We shall illustrate the general idea of decoupling the difficulties in the case of 

Navier Stokes equations: 

au 
8t + (u · D)u - µAu+ Dp = J 
div u = 0 
u(x,O) = u0 (x) 

u = g on r 
div uo = 0 

frv·gdf = O 

The two main difficulties are non linearities and incompressibility condition. 

Operator 8plitting will realize the decoupling. 

Let B be a parameter in ( 0, ~) and a, {3 with a + {3 = 1. 

Knowing u", we compute {u11+6,p11+6},u11+1- 11 and {u11+1 ,p11+1 } by the it

eration : 

u 11+6 u" 
(}!1~ - n µAu11+6 + Dp11+11 = {3µAu" 

-(u" · D)u" + f' '+o 
div u11+6 = 0 

(1) 

un+6 = g"+ll on f 

(2) 

un+l _ un+l - 11 
------ - aµAu" +l + Dp11+1 = {3µAu 11+1- 9 

- (u"_f?-~. D)un+i-6 + r+1 
div u11+1 = 0 

(3) 

u 11+1 = g11+1 on r 

(2) is nonlinear and solved by a least square technique , and conjugate gradient 

minimization. (1) and (3) are linear and can be reformulated as variational 

problems for the pressure p. 

Various possibilities of finite element approximation, multigrid methods and 

domain decomposition can then be used at the discretization stage. 

Efficient software packages result in the combination of all these techniques. 

For more details, see (10]. 

1.3 New approaches 

We present two new directions : 
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1. 3.1 Wavelets 

An alternative to Fourier analysis has been developed in recent years, with ap
plications to signal and image processing, sound analysis and numerical analy
sis. It has foundations in quantum field theory, statistical mechanics and pure 
mathematics (geometry of Banach spaces) . This is the Wavelet analysis. 

It combines advantages of the Haar system and of the trigonometrical system. 
The Haar system is defined by : 

{ 

1. O :S:r: < ~ 
'l/l(x) = - 1 ~ ::; :i: < 1 

0 otherwise 
7/J111,11(x) = 2- 11f 'l/J( 2- 111 :1: - n), m,n E Z. 

The ijJ111 •11 form an orthonormal basis of L 2 (R), (and even LT' ) but. not. for 
Sobolev spaces (unlike trigonometric series for periodic Sobolev spaces). On 
the other hand, the 7/J111 .11 have good localization properties unlike trigonometric 
functions (the reverse being true for their Fourier transforms). 

A wavelet system is defined by a function ijJ ( x) and 

with the property 

, / ( ) - ill. ., / ( - m ) '9J111.n :i: = 2 2 '9J 2 :i: - 11 

EB111 E z l·V,,, 

span {·l/J 111.11 }, orthogonal spaces 

{ l/J111 ,1,, n E Z} is an orthonormal basis for VF,,, . 

Y. Meyer has constructed a wavelet. system with l/J , C with rapide decay 
(faster that any power). Lat.er one ha.'i constructed a wavelet system with l/1 , Ck 
with exponential decay, and finally I. Daubechies has shown the exist.ence of 
wavelet systems with compact support and arbitrary regularity. They will be 
very useful for all kinds of applications. 

They are obtained from sequences h,, , with compact support, satisfying ad
ditional a.~sum71tions by the following procedure : 

with 

v'22: h111/k - 1(2x - n) 
11 
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then 

n 

The most compact support corresponds to the two possible choices : 

h - l =Fv'3 
0 - 4v'2 ' 

h - 3=Fv'3 
I - 4J2 ' 

h· - 3 ± v'3 
2 - 4v'2 ' 

I l ±J3 
!3 = 4v'2 ' 

For more details, see [15], [9]. 

1. 3. 2 Cellular Automata 

The availability of massively parallel computers, has motivated the use of cel

lular automata on large lattices for obtaining solutions to P.D.E. , in particular 

the incompressible Navier Stokes equations. A lot of work is necessary to justify 

this approach. 

We describe here a model due to B.M. BOGHOSIAN, C.D. LEVERMORE, [5] . 

See also U. FRISCH, B. HASSLACHER, Y. POMEAU, (13]. 

Consider Burgers' equation : 

Replacing 
OU 

by 
u(x , t +At) - ·u(x, t) 

at At 

Replacing 
a 

by 
1 u(x +Ax, t) - u(x - Ax, t) 

gP.u 
2 Ax 

by 
1 

Replacing 
8x2 Ax2 (u(x +Ax, t) + u(x - A x , t) - 2u(x, t)) 

2 

and choosing At, Ax such that 2v = ~ , we obtain the discretizatiou scheme 

u(x, t +At) 
1 - ..£. box 1 + ..£. box 

21
' ·u(x + Ax t) + 21' u(x - A x t) 

2 ' 2 " 
cb.x . , 

+ 8v(u2 (x +Ax, t) - u2 (x - Ax, t)) 

This can be simulated "approximately" by the stochastic process : 

~1 (x +Ax, t +At) 
1 + w(x t) 

2 
' (6(x,t)+6(x,t)) 

w(x, t)6(x, t)6(x, t) 

6(x - Ax,t +At) 
1 - w(x, t) 

2 
(6(x,t)+6(x,t)) 

+ w(x, t)6 (x, t)6(x, t) 
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where f, 1, 6 take the values 0, 1, w is random and takes the values -1 or 1. The 
random variables are independent and : 

It can he proved that : 

c 
Ew = -~x 

2v 

u(x, t) "' E(6 + 6) 

The process f, 1, 6 is a cellular automata which can he simulated on a massively 
parallel computer. 

Reseach on similar types of stochastic processes is important in the context 
of solving nonlinear P.D.E. on massively parallel machines. 

2 CONTROL, IDENTIFICATION , ESTIMATION. 

The applications of these techniques are extremely diversified and come from 
physical sciences as well as from economic or even social sciences. 

We describe some : 

• new areas of applications 
• new algorithms 
• new approaches . 

2.1 New areas of application 

2.1.1 Environmental studies. The program "Global Change" 

In view of the growing importance of environmental issues, a worldwide pro
gram of research has been developing in recent years, under the name of" Global 
Change" . It connects specialists of Climate Dynamics , Oceanography, Plane
tary Physics, ... It seems that this direct.ion is a source of important mathe
matical problems, of somewhat new nature. 

The basic problem deals with the prediction of physical quantities, solutions 
of a set of nonlinear evolution P.D.E., with unknown parameters and unknown 
initial state. Nonlinearity creates an important. sensitivity with respect to init ial 
data and unknown quantities, resulting in a lack of predictability beyond some 
length of time. A fundamental question is t.o identi(y the important regimes 
of the physical variables, t hose which contain the main futures of interest and 
are persistent. There are several ways to give a mathematical meaning to this 
question. The interesting feature is that they result in a mfa:ture of statisl.ical 
and dynamical m ethods. A lot of work is needed in that direction, even for 
simple nonlinear systems. 

The point of view of dynamical systems is to obtain the stationary solutions 
of the nonlinear P.D.E. (or system of P.D.E.) ancl the long-time behaviour of 
solutions. This is the theory of attractors. 
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A complementary statistical theory has been developed, for which we de

scribe only two ideas, that of persistent anomalies and that of EOF analysis 

(Empirical orthogonal functions). 

Consider a vector representing physical variables (typically a flow) which 

is computable through a model, which is not in general completely known 

(this is an important difficulty, which we leave aside). We represent it by 

1/Jk(t), k = 1 ... N where k may represent a point Xk on a grid, or a component 

if the solution is obtained by an expansion. 

We set < 1/Jk >= average of 1/Jk(t) over some record of data. 

The instantaneous anomaly is defined by : 

The pattern correlation between an anomaly at time t and at a later time t + r 

is defined by : 

where 

p(t, r) = Lk '~k(t) ;pk(t + r) - (Lk ,if;k(t))(L:k 'if;k(t + r)) 
a(t)a(t + r) 

a(t)2 = L: ;pk(t)2 - (L: ;pk(t))2. 
k k 

We say that an anomaly ;pk(t0 ) persists from t = t0 , tot = t0 + Jr , if: 

p(tj,r) ~ po, where ti = t0 + jr,j = 0 ... J - l 

and p0 represents the persistence criterion. What is expected is that the anoma

lies which satisfy a reasonable persistence criterion fall into a small number of 

easily identifiable pattems, related to the attractors of dynamical system. 

The EOF analysis goes as follows. Let : 

rkf =< ·1/Jk'l/Je > 

Consider the eigenvalues of the matrix r ,\ 1 . .. ,\ N' ranked in decreasing order 

and e1 
•.. eN are the corresponding eigenvectors, called the lst EOF, the 2nd 

EOF, ... 

Next expand the vector 'if;( t) = ( ;pk( t)) on the basis e1 · · · eN, hence : 

N 

·if;(t) = L a;(t)e; 
i= l 

then one cau easily check that : 
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The coefficients a;(t) are called the principal components. The EOF are in
terpreted as directions of variability of the anomaly, >/ representing the part 
of the variance related to EOF e; (the total variance being >. 1 + ... + >.N). 
The important conjecture is that the main OEF are related to the patterns 
associated to persistent anomalies. 

In [16] theses connections are exhibited experimentally on some models. 

Is there a general theory for these phenomenon, at least for some class of 

nonlinear dynamical systems ? This is an open question, which has a crucial 
importance for the understanding of the variability of atmospheric dynamics. 

2.1. 2 Computer vision 

2.1. 2.1 The segmentation problem An image can he represented by a func
tion g(x) measuring the strength of the light signal striking a plane at point :i; . 
Such a function is expected to have discontinuities reflecting edges of objects, 
and shadows. Outside such lines t.he function g is expected to behave more 
smoothly. 

Having this in mind, one defines a segmentation of a region 12, as a set of open 
connected subsets 12;, i = 1 · · · n, each one with a piecewise smooth boundary 
and r is the union of the parts of the boundaries of the 12; inside 12. 

An approximation of g is a function u which is differentiable on 12 - r. One 
defines a cost. function : 

J (v., r) = /L [ (u - g)2d:r, + [ 1Dul2 d:i: + 11lfl 
.In .ln-r 

The segmentation problem consists in minimizing the functional .J over the pair 

(u, f ). Note that if v = 0, in f J = 0. 

This is a new class of problems in the calculus of variations, introduced in 

[17]. 
It. has attract.eel a lot of interest. and some progress has been made, concerning 

existence, and approximat ion. 

It. is interesting to consider the one dimensional problem, in which n = 

(0, 1), r = {a.1 ; · · · a N, with 0 < a 1 < a2 · · · < a N < 1} and lfl = N. One has: 

2 ,., 11 N j "'+' J (11,ai, ··· , a N) = /t (u - g ) d:r+ L 11-d:i: +uN 
O i = O " ' 

and we have defined ao = 0, aN+1 = 1. 

Since we do not. impose continuity at points a;, we may write preferably : 

N /"'+' 2 12 
.J(u.1,···,uN ;ai,· ··, aN ) = JLL [(u; - g) +u ]dx+ 11N 

i= O. U j 
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There is a probabilistic interpretation of J . Consider in the segment (a;, a;+ 1) 

a process x; such that : 

x;(t) = x;(a;) + w; (t), t E [a;, a ;+1[ 

where x ;(a;) is not random, and w;(t) is a standard Wiener process. We observe 

on (a;,a;+J) the process y;(t) with: 

dy;(t) = x ;(t)dt + db; y;(a;) = 0 

where b; is Wiener process independent from w;. 

The "a priori probability" of the trajectory x;(t) to coincide with a given 

function u;(t) which is H 1 (a;, a;+ 1) is : 

11a;+1 
exp - 2 a, [(u';2 + uf)dt - 2u;dy;] 

For details see [20]. 

Considering independent processes in each interval , we obtain : 

1 N 1"•+1 exp -- L: [(u? + ur)dt - 2u;dy;J 
2 

i=O " ' 

and the maximization of this probability results in minimizing J , up to the 

correspondence dy; ----> g on (a;, a ;+J) . It would be extremely interesting to 

treat the 2 dimensional problem, which is the real one, by similar probabilistic 

methods. It is au open problem. 

2.1. 2.2 Axiomatic derivation of image processing models We describe here a 

new approach to image processing due to L. Alvarez, F . Guichard, P.L. Lions 

and J.M. Morel [4] . Consider the signal g(x) representing the image. We look 

at it at a scale t, measuring roughly speaking the size of details of the image 

(small t means fine scale, while large t means coarse scale). An analysis at scale 

t is a transformation T1g. A multiscale analysis is thus a family, parametrized 

by t ;:::: 0, of uonlinear operators (or filters). 

Of course, some conditions have to be made on the operator T1. , in order to 

fulfill physical requirements of the filter. These restrictions or axioms are such 

that t he function u( x, t) = (Ttg )( x) appears as the solution of a fully non linear , 

parabolic, possibly degenerate second order equation 

{Ju = F(Du D2·u) 
at ' 
u(x,O) = g(x). 

(4) 

In fact, the choice of the function F is equivalent to the choice of the family 

T1• Among physical requirements, one has the following main one 

F (p, A) ~ F (p, B), Tip, A ~ B 
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which is in fact the condition which suffices to give a meaning to ( 4) in viscosity 
sense. 

Examples: 

• The Gaussian pyramid. It corresponds simply to the heat equation 

• Quasilinear filters : 

1 
F(p,A) = 2trA 

F(p, A) = a(jpl)tr A+ a' ( jpl) (~~,Ip) 

where 
a 2:: 0, 

• Morphological filters : 

a( IPD + a' ( IPD IPI 2:: 0 

F(p) = inf p.q 
qES 

where S is a compact set of R2 . 

• Curvature operators 

1 Ap·p 
F(p,A) = IP IG(1Pf(trA - lPf)) 

1 
with possible G(s) = s or lsl"- 1s (in particular n = 3). 

2.1. 2.3 Mobile Robotics Consider the problem of a mobile robot which tries 
to recover its environment, during its motion (the environment is assumed to 
be static). The robot is equipped with a camera, which takes images between 
time intervals. One way of approaching the problem is to extract tokens from 
the images in the sequence, match them from image to image and recover the 
motion and the structure of the environment. 

Naturally, the tokens we compute in the images should be closely related to 
objects in the scene, if we want the matches to he meaningful. They are in 
general surface markings, shadows, depth discontinuities. 

Let us explain the general ideas in the case of a point AI, which is the object 
to be recognized by the mobile robot (see Figure 1). So M is the real point, 
C1,C2 represent the motion of the camera (installed on the robot), m 1,m 2 the 
images of .M. The motion is decomposed into a rotation R with a rotation axis 
going through C 1 , and a translation t = C 1 C2 . 

If we consider a coordinate system attached to the camera, then we can 
measure C 1m 1 and C2m 2 with the local coordinate system. The coordinates 
with respect to a common coordinate system, that related to C 1 are C 1m 1 
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M 

FIGURE 1. 

and R C1rn1. Then one expresses the planarity constraint, namely that C1m1, 

C2rn2 and t are coplanar ; it amounts to : 

C1m1 · (t A R C2m2) = 0. 

The vector t has coordinate tx, ty, tz but from the linearity, we can assume 

that ll tll = 1, hence 2 parameters are enough. The matrix R depends of 3 

parameters which characterize the unit rotation axis (2 parameters) and the 

rotation angle. 
Conceptually, what is important is to recognize that the previous relations 

amounts to: 

f(x, u) = 0 

where u is a vector of parameters E IR", and x is a vector of measurement E IR" 

and f is a nonlinear relation. 

Each successive image leads to a relation : 

However the observation is not exact and rather described by the model 

Zk = Xk + Vk 

where Vk is a white noise of covariance r. Considering that 

Uk+l = Uk = U 

we are in the framework on nonlinear filtering if we can express Xk as a function 

of Uk· It is of course natural to Iinearize around a given estimate of a , and to 
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use extended Kalman filtering. Once t, R is obtained, one can recover l\{ by 
expressing the relat ions : 

where ,\, µ are unknown scalars. In this relat ion again t, R are known random 
variables, as well as C 1 m 1, C2 m2 . Thus we are in a situation similar to the 
above and can use again a Kalman filter. 

These techniques have been extensively used in the context of mobile robotics 
by 0. FAUGERAS and his team, see for instance [11]. 

2.2 New algorithms 

2.2.1 Parallel algorithms 

The development of multiprocessors has generated a substantial interest in the 
obtaining of parallel algorithms. A thorough analysis is needed, since surprises 
can arise in comparison with the sequential approach. 

Take for instance Jacobi and Gauss Seidel iterations for obtaining a fixed 
point of: 

x = J (:r,) x E IR" 

A Jacobi iteration is the following : 

k+I f ( k) X ; = ; X , i = 1 · · ·n 

and a Gauss Seidel is : 

The advantage of Gauss Seidel iteration is that it converges more frequently 
that Jacobi , and sequentially it performs much better (the convergence rate of 
Gauss Seidel iteration is better). 

Parallel implementation will change the sit.nation com;iderably. 

Consider the case when there are n processors, and the sequence xk' such 
that.: 

denoted by xk ,.J (.Jacobi sequence) converges towards the fixed point. Suppose 
also f monotone, i.e. f (x) ::; J (y) Vx, y with x ::; y. Then take a sequence xk ,U 
defined by : 

Xk·+l.U _ f ·(xk,U) 
i - 1 ., ' 

ko+LU k.U 
:r, ; = X; ' 
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Uk is a subset of {1 , · · ·, n}. 

One can prove (T.N. TSITSIKLIS) that if one starts with the same initial 

value x0 and f( x0 ) ::::; x0 or x0 ::::; f( x0 ), then : 

x* :S xk,J ::::; xk,U, 'Vk 

where x* is the limit fixed point. Hence Jacobi iteration performs better than 

any parallel version of Gauss Seidel iteration. When they are less than n 

processors available, or the assumption of monotonicity is not satisfied, no 

general statement can be made (see [4]) 

2.2.2 Simulated Annealing and global optimization 

This type of algorithm has been developed in the recent years in order to obtain 

a global minimum for a function U(x), over x E B, B compact, in the case 

when U is smooth. It is clear that such a problem occurs in many applications. 

Simulated annealing has first been used in the context of image processing. 

The algorithm consists in a discrete version of the following stochastic dif

ferential equation: 

dxt = - DU(x1)dt + c1a(xt)dw1i x(O) = x 

where the following assumptions are made 

• U is C2 from B to [O, oo) and 

0 

M inxEBU(x) = 0, DU(x) · x > 0, 'Vx E B - B1 

where B is a ball in Ill", centered at the origin, and B 1 is an other ball, 

also centered at the origin and strictly included in B. 

• a is Lipschitz continuous from B to [O, l], with a = 1, for x E B 1 , a = 0 
0 

for x E oB, a > 0 on B 
c 

• Ct = -L , for t large, c > 0. 
ogt 

• Wt standard Wiener process in Ill" 
1 2U(x) . 

• 11'"(x) = Z" (exp -~ )nB with J 11'"(x )dx = 1 converges weakly to a 

probability 11' as c --+ 0. 

Note that 11' is a probability concentrated on the set of global minima of U (.). 

Then the following result can be proved : 

Ef(xi) --+ 11'(!) 

VJ bounded, continuous, as t --+ oo, uniformly for x (the initial value) iu B . 

(For more details see [7]) . 
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2.3 New approaches 

Let us just mention the developments related to H 00 theory and which permit 
to obtain protection of dynamic systems from disturbances via feedback control 
. We just mention some recent results concerning linear systems. 

Let us consider the linear system 

:i: Ax+ Bu+Dw, 

y Cx 

where w represents a disturbance, and u a control. We consider feedback con
trols, u = I<y. The transfer matrix TK(s) is given by 

TK(s) = C[sl - (A+ BI<)t 1 D 

and we consider those I< for which A+ BI< is stable. The H 2 norm is defined 
by: 

ll TK ll2 = ( ~ l+oo tr TK( - jw)*TK(jw)dw) ~ 
27r -oo 

and the H 00 norm is defined by : 

llTK lloo = sup( tr TK(-jw)*TK(jw)) ~ 
wE R 

which are finite since A+ BI< is stable. 

The problem of H 00 or H2 control consists in minimizing the above norms 
with respect to I<. 

Note that 

and thus this norm expresses the sensitivity of the sy.~tem with respect to ex
ternal disturbances. 

Among the important results obtained recently, it has been proven that we 
can chose a I< such that llTKll 00 :::; /, V1 given, if there exists € such that one 
can solve the Riccati equation 

1 1 1 
PA+ A*P - - PBB*P + - PDD*P+ - CC* +cl = 0 

c I I 

B*P 
In fact I< = --

2
- will serve for this purpose (for more details, see (14]). 

€ . 
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3 DISCRETE SYSTEMS 

3.1 Discrete event systems 

New applications strongly related to information technology have created the 

need to develop a theory of DEDS, discrete event dynamic systems. Such appli

cations are production or assembly lines, computer/communication networks, 

traffic systems, ... A special issue of IEEE, Jan. 1989 is devoted to dynamics 

of discrete event systems. 

Many new mathematical techniques have been developed in this context. We 

describe here one of them, the use of an algebraic structure, called dioid, in the 

modelling of timed event graphs. 

Let us just recall the basic definition of a dioid. It is a set V provided with 

two inner operations EB and 0 (addition and multiplication) such that 

- they are both associative 

- addition is commutative 

- multiplication is right distributive with respect to addition 

- there exists a null and identity elements 

3c E 'D Va E V, 

3e E 'D Va E 'D, 

- the null element is absorbing 

a ffic= a 

a 0 e=e 0 a = a 

Va E V, a 0 c = c 0 a = c 

- the addition is idem potent 

Va E V, a EB a = a. 

When addition is commutative, the dioid is called commutative. As an 

example take 'D = Z U { -oo} U { +oo} and 

EB = max, 0 = + 
c = -oo, e = 0 

(note that we impose the rule (-oo) 0 (+oo) = (-oo)). 

We can also consider 

EB = min, 

c = +oo, 

(in which case (-oo) 0 (+oo) = + oo). 
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A dioid is a structure somewhere between linear algebra and lattices. 
One can define a partial order relation 

a ~ b <=> a = a EB b 

and a pseudo left irwerse denoted a\c which is the greatest suhsolution of 

a ® :r. =c. 

Starting with these premises affine equations can he solved, as well as matrices 
defined and a matrix calculus is available. Matrix equations can also he solved. 

Let us see briefly how these concepts apply to timed event graphs. 

Times event graphs are a special kind of Petri nets. They are directed graphs 
with two types of edges, places and transitions 

y 

FIGURE 2. 

In Figure 2,, the transitions are 11.1, u2 , x 1, x 2 , :r.;1, y and the places are denoted 

by x1/u1, :c2/u2, :i::1/x1, X:1/x2, :i::1/x:1, 11/:i::i, 11/:1:2, xi/:i:2, :i:2/:i:1 . 

There is a single transition upstream and downstream, at each place. 
In places, there are tokens or not. Tokens are created or consumed when 

transitions are fired, more precisely when a transition f. is fired one token is 
consumed at each place which precedes t and one is created at each place 
which succeeds it. 

Let us assume that transitions are immediate, but a token must stay at a 
place an amount of time called the holding time, which depends on the place. 
The following symbols are used 
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0 0 G 
no token I token I token 

holding time = 3 holding time 0 holding time = 2 

FIGURE 3. 

For instance consider the places which precede x 1 , we complete the informa

tion as follows 

FIGURE 4. 

Let for a transition x, x 11 be date at which transition x has been fired for the 

nth time. We can write the relation 

(x1)11 = max[(x2)11- Ii (u1),. + 3] 

and of course similar relations for other transitions. 

If the dates take values in Z U { +oo} U { - oo}, then we can work with the 

dioid considered above 'D, with the operations EB = max, 0 = +. 
The preceding relation writes 

(xi),. = (x2)11- 1 EB 3(ui),. 

where 3(u1 )11 = 3 0 (ui) 11 to simplify the notation. 

One of the objectives of research in these directions is to obtain a theory 

similar to that of linear dynamic systems. In particular a theory of stability is 

being developed. This is important to obtaining an evaluation of performances 

for the real system which is modelled by the event graph. (See [8]) . 
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3.2 Hybrid systems 

An hybrid system is a system whose state contains continuously as well as 
finitely valued variables. When the discrete variables take a given set of values, 
the continuous variables behave as the solutions of differential equations. Tran
sitions between the possible sets of values of the discrete variables are obtained 
through the act.ion of a monitor (a controller). The action of the controller may 
be instantaneous or require some delay. The objective is in general to keep t.he 
continuous variables wit.bin a given range. Decisions are taken as feedbacks . 

An hybrid system will be characterized by a given feedback, and the problem 
is to prove that this feedback rule fulfills the goal. 

EXAMPLE 1 Suppose we want to control the temperature of a room through 
a thermostat, which can turn instantaneously a heater on and off. The ten1-
perature is the continuous variable x(t), v(t) = 1 or 0 according whether the 
heater is on or off is the discrete variable. We have : 

x - Kx if v = 0 

:i; K(h - x) if v = l 

If d(t) is the decision taken by the thermostat, d(t) = 1 or 0 and we have: 

v(t + 0) = d(t) 

We want to maintain x(t) between m and M. Then we take 

d(t) = 1 

d(t) = 0 

if 

if 

x(t) = m 

x(t) M 

and 

and 

v(t) = 0 

v(t) = 1 

and d(t) = v(t) otherwise . Such a feedback fullfills the objective. 

EXAMPLE 2 Suppose we control the water level in a tank through a monitor 
which can turn a pump on and off. The water level is x(t), and we set v(t) = 1 
if the pump is on, and v(t) = 0 if it is off. We have 

x - 2 if v(t) = 0 

:i; 1 if l/ (t) = 1 

Let d(t) be the decision taken by the monitor, d(t) = 1 or 0 and suppose 
there is a delay of 2 before the decision is executed then : 

v(t) = d(t - 2) 

We wish to keep the water level between 1 an<l 12. We then consider the 
feedback 
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d(t) = 1 

d(t) = 0 

if 

if 

x(t) 

x(t) = 

5andv(t) = O 

10 and v(t) = 1 

and d(t) = v(t) otherwise such a feedback fulfills the desired behaviour. In 

general, proving that a specific feedback satisfies a given objective of the con

tinuous variables is not easy. Results on decidability of such a problem are 

available for a particular class of Hybrid systems (cf. R. Alur et al. [I]). 

4 NEW AREAS OF INFORMATION TECHNOLOGY 

Let us m1mtion only some recent mathematical problems motivated by l.T. 

(again this is by no means exhaustive). 

4 .1 Artificial intelligence 

Since artificial intelligence needs to deal with qualitative aspects, more than 

with quantitative aspects (or in connection with them), this has motivated the 

development of qualitative simulation (or qualitative physics) in particular at 

Xerox Pare. Note that the economists needed much before similar techniques , 

in the context of the theory of comparative economics (P.A. SAMUELSON). 

Our presentation here relies on some recent work of J.P. AUBIN. 

We pose the problem of the qualitative evolution of solutions to a differential 

equation 

x = f(xt) 

and more precisely to the qualitative evolution of a set of functionals 

Vi (xt), ... , V,,. (xt) 

which are of importance (energy, entropy, indicators, ... ). 
The qualitative behavior is expressed by the evolution of the functions sign 

(:t Vj(xt)) with values in R."' = {- l,0,+1}111
• 

This is the problem of interest. But we want to obtain this evolution, without 

solving the equation, since some independence should be obtained with respect 

to the initial condition. 
d 

Since sign (dt Vj(xt)) = sign (Di'J(x1)f(xt)) it is convenient to introduce in 

the closed subspace K of IR", where lives Xt, the qualitative cells 

Ku = {a; E Kl sign (DVj(x)f(x)) = aj} 

where a E R."', and their closure (large q'ualitative cells) 

Ku = { x E Kl sign (DVj(x)f(x)) = Uj or O}. 
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Let V(f, V) be the subset of qualitative states a such that /\" is not empty. Let 
also denote by :c(t; :c0 ) the solution of the differential equation corresponding 
to an initial date ;r,0 . One is interested in the study of transitions between 
qualitative cells. 

If b E V(f , V), we say that c E V(f , V) is a sw:cessor of h, if r/x0 E R,, n /\", 
there exists T > 0, such that x(t; xo) E /\", for all t E]O, T[. 

A qualitative state a. is a qualitative equilibrium, if it. is its own successor. 
It is said to be a qualitative repellor if V:i:0 E F.:11 , there exists f. > 0 such that 
x(t;xo) </. J\11. 

The theory developed by .J.P. Aubin permits to characterize the map of 
successors, the qualitative equilibria, and the qualitative repellors. 

It has been applied to the so-called "replicator systems", a prototype of which 
is the differential system ([2]) 

4. 2 Neural networks 

11 

:i:; = :c;(o:; - L O: jXJ) 
j = l 

The basic neural network can be viewed as an undirected graph with n nodes, 
to which are attached a pair (W, 8) where 

W is an n x n symmetric matrix, W ij is the weight attached to the edge 
(i,j), W ;; = o 

8 is an n vector , 8; is the threshold attached to the node i. 
Nodes are called neurons. Each neuron has two possible states (1, - 1). Let 

v be the state of the neural network, v; being the state of neuron i . 
Let 

11 

E ;(v) = - L WijVj + 8; 
j = l 

then the following calculation is performed by the network 

where Sk is a subset of the neurons. 
For instance if 

k = hn + j j = 0 . . . n - 1 

and sk = {j + 1}' the network operates in serial mode. 
Note that in our notation 

sign (a) = { ~ l 
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A stable state is a state such that 

A basic theorem of HOPFIELD is that if the network operates in serial mode, 

then it will converge to a stable state. 

The applicability of neural networks in practice arises from the possibility of 

interpreting the stable states. For instance, in pattern recognition, the stable 

states are known patterns, and for a given input pattern, the network will 

converge to the known pattern which is the closest to the input. It is clear that 

the neural network realizes the following search problem 

minE(v) = - ~ L W ij'Ui'Vj + L O;vi v; = {- 1, +1} 
ij i 

and attains a local minimum. 

One can clearly consider many variants of the above problem. For instance 

consider the following model in continuous time 

v;(t) 

du; 

dt 

= g(u;(t)) 

= - E ;(v(t )) 

where g is an increasing function from R to [O, 1] and E;(v) = a~; E(v), E (v) 

energy function (for instance the above). It will converge towards a local min

imum of E(v). It can be realized as an analog integrated circuit. 

In the spirit of simulated annealing, considered above, one can try to attain 

a global minimum of the Energy function , by considering a stochastic version 

of the preceding model. This has been done by E. WONG. 

Consider the model 

v;(t) g(u;(t)) 

du; - E ;(v(t))tlt + 2T 
---dw; 
g'(u ;(t)) 

where T is a constant, and w ; are independent standard Wiener processes. The 

stationary probability density of the process v(t) is 

1 1 
p(v) = z exp - TE(v) 

where Z is the normalization factor. 
The simulated annealing adaptation of the preceding algorithm (for instance 

take T ( t) ---+ 0 as t ---+ oo) remains to be done. For more details, see [6] and 

(19]) . 
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4 .. '3 Analytic analysis of algorithms 

Computer science leads quite frequently to combinatorial algorithms. A quite 
interesting approach of P. Flajolct [12] has shown how generating functions and 
complex analysis provide a way to treat these problems. In particular, formal 
languages, tree enumerations, comparison based searching and sorting, digital 
structures, hashing and occupancy have been interesting applications. 

A class of combinatorial structures is a pair of a finite or denumerable set .A, 
whose elements are called the atoms. 

Each atom a E .A will have a size lul. We can perform the following opera
tions: 

The product relation C = .A x B : 

C = {'y E Cir = (a, (J ),a E .A,(3 E B} with bi = lal + lfJI 
The union relation C = .A + B 

The sequence C = .A* 
C = .A U B where .A + B are disjoint. 

c = {c} +.A+ .A x .A+ .A x .A x .A+ ... 

where lcl = 0. The set construction C = µ(.A), is the collection of all subsets 
of .A: 

a1,···,ak,··· in.A,a1,···ak··· different}. 

The multi set construction C = 1\1(.A) allows repetitions. 
The cycle construction = C(.A) is the set whose elements are (non empty) 

cycles of elements of .A. 
Let A,, be the number of elements of .A, whose elements are (non empty) 

cycles of elements of .A. Let An be the number of elements of .A, whose size 
is n, then the interesting problem is to calculate the C11 corresponding to the 
more complex structure C. This is where the generating functions are useful. 
Define 

A(z ) = L A,, z11 = L z(o) 

11 o EA 

and 

C(z ) = LCnzn = :L>(I') 
n -yEC 

It is possible to express C( z ) in function of A(z ). For instance, for C = .A x B 
one has: 

C( z) = L zl 0 l+ l~ I = A(z)B(z ) 
( n.~ ) EA x B 
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For C = A+B 

For C = A* 

C(z) = L z< a) + L zlPI = A(z) + B(z) 
a:EA PEB 

C(z) = 1 + A(z) + A(z)2 + · · · 
1 

= 
1 - A(z) 

For C = µ(A), we note that 

µ(A) = Ila:EA({c- } +{a}) 

hence 

C(z) Ila:EA(l + zl"'I) = IIn(l + z")An 

A(z2 ) A(z3 ) 
exp(A(z)- -

2
- +-

3
- + ·· ·) 

For C = M(A) we have 

hence 

C(z) 
1 

= IIaEA I I = II,.(1 - zn)A" 
1 - Z°' 

A(z2 ) A(z3 ) 
exp(A(z)- -

2
- + -

3
- + ·· ·) 

Consider further C = M 2 (A), the collection of subsets of A with cardinality 2, 

with possible repetition. Then 

C(z) = L zl<>1l+lu2I + 2::>2lal 

lail> la2I °' 

~ L zl<>il+l<>2I + L z2lal 

1011#1••2 I 0 

~ L zla:1 l+la2I + ~ L 2 210-I 
01,0~ n: 

hence 
1 1 

C( z ) = 2(A(z))2 + 2A(z2
) . 

From the previous structures, it is possible to construct further complex struc

tures, which will lead to functional equations. For instance, consider in Figure 

5 the structure of binary trees (the size of a binary tree is the number of leaves) 
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D 

FIGU RE 5. 

Let A = {leaf}, then 
B = A + B x B 

hence 
B (z) = z + (B (z))2 

which yields a unique formal power series solution 

1 
B (z) = - (1 - v'l - 4z) 

2 

Similarly consider trees with multiples branches (at least 2), each branch having 
at least. 2 leaves, one has 

hence 

which obtains 

B = A + B x B + B x B x B +··· 

B ( ) 
_ _ (B (z))2 

z - " + 1 - B (z ) 

B (z ) = ~(1 + z - Vl - 6z + z2). 

Formulas like (1) allow among other things to study the asymtotic behavior 
of B ,. . This is governed by the singularities of the generating function B (z ), 
according to a famous theorem of Darboux. 
Suppose we consider the class of mathemat ical expressions involving constants, 
the vaiable x, e"' and additions or products of similar t.ype of expressions. We 
can visualize the set of such expressions by : 

f ~ {c} U {x} u { ~ + x 

This permits to represent an element of E: as a tree, for instance the expression 
x + e'". +x is represented by Figure 6. The size of an expression will be the 
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x exp 
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exp x 

x 

FIGURE 6. 

number of nodes of the tree. The above tree has size 7. 

Let E(z) to be the generating function corresponding to E, then we have the 

functional equation 
E(z) = 2z + 2zE(z)2 + zE(z) 

Let [zn]E(z) to be the coefficient of z11 in the formal series E( z), it represents 

the number of expressions of size n. 

Among possible uses of this machinery, one can compute the complexity of 

formal differentiation. One can estimate the asymptotic average size of deriva

tives. Many more applications can be given. 

REFERENCES 

1. R. ALUR et al, The algorithmic Analysis of Hybrid Systems, Theoretical 

Computer Science, (Jan. 1995) 
2. J.P. AUBIN, Mathematical Methods of Artificial Intelligence, to be pub

lished. 

177 



3. L. ALVAREZ, F. GUICHARD, P.L. LIONS, J.M. MOREL, Axioms and 
Fundamental Equations of Image Processing, Arch. Rational Mech. Anal. 
(1993). 

4. D.P. BERTSEKAS, .J.N. TSITSIKLIS, Parallel and Distributed Computa
tion: Numerical Methods, Prentice Hall, Englewood Cliffs, N .. J. 1989. 

5. B.M. BOGHOSIAN, C.D. LEVER.MORE, Complex Systems 1 (1987). 
6 .. J. BRUCK, .J. SANZ, A study on neural networks, International .Journal of 

intelligent systems, vol. 3, 59-75, (1988). 
7. CHIANG T.S., HWANG C.R., SHEU S . .J., Diffusion for global optimization 

in IR", SIAM Control, 25, pp. 737-752, 1987. 
8. G. COHEN, P. MOLLER, .J.P. QUADRAT, M. VIOT, Algebraic tools for 

the performance evaluation of discrete event system, Proceedings IEEE, 
special issue of dynamics of discrete event systems, .Jan. 1989. 

9. I. DAUBECHIES, Orthonormal Bases of Compactly supported Wavelets, 
CPAM, 1988. 

10. E. DEAN, R. GLOWINSKI, C.H. LI: Supercomputer solutions of P.D.E. 
problems in computational fluid dynamics and in control, University of Min
nesota, Supercomputer Institute. 

11. 0. FAUGERAS, A few steps towards artificial 3D Vision, INRIA, Technical 
Report series, Fev. 88, N°790. 

12. P. FLA.JOLET, Analytic Analysis of Algorithms Lecture Notes in Computer 
Science, Vol. 623, Springer Verlag, (1992). 

13. U. FRISCH, B. HASSLACHER, Y. POMEAU, Lattice Gas Automata for 
the Navier Stokes Equation, Physical Review Letters, 1986. 

14. P.P. KHARGONEKAR, I.R. PETERSEN, M. ROTEA,Htx> Optimal Con
trol with State Feedback IEEE Trans. Automatic Control, 1988. 

15. Y.MEYER, Wavelets and Operators, Book to appear. 
16. K.C. MO and M. GHIL, Statistics and Dynamics of Persistent Anomalies, 

.Journal of the Atmospheric Sciences, March 1987, . 
17. D. MUNFORD, .J. SHAH, Optimal Approximation by piecewise smooth 

functions and associated variational problems, Communications on Pure 
and Applied Mathematics, 1988. 

18. E.S. ORAN, .J.P. BORIS,.Numerical Simulation of Reactive Flow - Elsevier 
1987. 

19. E. WONG, Stochastic neural networks, ERL, Berkeley, Feb. 89. 
20. 0. ZEITOUNI, A. DEMBO, A maximum a Posteriori Estimator for Tra

jectories of Diffusion Processes, Stochastics, 1987, Vol. 20. 

178 



A New World Underneath Standard Logic: 
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I. WORKINGATINTERFACES 
Cor Baayen's broad interests span at least mathematics, logic, computer science and 
linguistics. Our paths have crossed on many occasions, starting in the early 
seventies, when he invited me to talk at his lively mathematics colloquium at the 
Free University. Through the years, Cor has been a benevolent influential presence 
in the background, who often came to visit scientific events in our logic community 
at the University of Amsterdam. It was good to know that the Lord of that fabled 
Mathematical Centre, though far away in a mythical country, was on our side. We 
have worked together in various ways - and indeed, when our new research institute 
ILLC was created in 1991, Cor was the unanimous choice of our mathematicians, 

philosophers and computer scientists for a distinguished outside board member. It is 
a great pleasure to be able to express my gratitude for all this on this festive 
occasion. I would like to add that I have always admired Cor for his personality: 
deeply honest, compassionate, but penetrating and incisive when needed. People 

with his qualities are scarce. 
But enough by way of fan-mail confessions! My real offering here is a short story 

about some current logical research at the very interfaces where Cor has been active. 
Moreover, this story has a direct link with his own early work in mathematics, viz. 
his spell of cylindric algebra at Berkeley with the Tarski School, which resulted in 
the papers Baayen 1960, 1962. What I want to show is how current interests in so
called 'dynamic semantics' of information flow for natural and formal languages 
motivate a reappraisal of 'standard' logical semantics. And some powerful 
mathematical tools for this analysis can be taken from cylindric algebra. What we 
discover in this way is a whole landscape of dynamic logics underneath classical 
predicate logic, some of them very well-behaved (and even decidable). But to see all 
this, we have to start with the Received View in logic, and see where it can be 
challenged. 

2. DECONS1RUCTING T ARSK.I SEMANTICS 
Tarski's well-known semantics for first-order predicate logic has the following key 
clause explaining the existential quantifier: 

M, a I= 3x cjl iff for some de IMI: M, axd I= cjl • 

Intuitively, this clause calls a verification procedure: "keep shifting the value of state 

a in the register x until some verifying instance is found for cjl " • Put differently, 
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an existential quantifier calls a procedure of random assignment to its designated 
variable. This is no mere curiosity. The currently emerging program of Dynamic 
Semantics analyzes any kind of linguistic expression via dynamic 'update 
conditions', rather than Gust) static truth conditions. For natural language, this view 
is found, amongst others, in Kamp 1984, Barwise 1987, Groenendijk & Stokhof 
1991, Van Benthem 1991, Veltman 1991. Its paradigmatic examples are such 
linguistic processes as anaphora (changing bindings for pronouns across discourse), 
movement of temporal reference points in narratives, changing presuppositions 
across texts, and many other aspects of linguistic information flow from 
speakers/authors to hearers/readers. (A broad survey may be found in Muskens, Van 
Benthem & Visser 1994.) Independently, and in even greater generality, such 
dynamic views have been proposed in computer science and cognitive science. For 
instance, the influential Giirdenfors 1988 explains propositions, not as static 
assertions, but as transformations of information states. Thus, 'updating' of beliefs 
includes learning via conditionalizing probability functions, and expansion or 
revision of data bases. (Both traditions meet in the volume Van Eyck & Visser 
1994.) In this paper, we stick with the modest case of variable assignment in 
quantification. 

The above dynamic move will make the semantics of linguistic sentences very 
much like that of computer programs, viewed in the familiar Hoare-Dijkstra style as 
binary transition relations between assignments. This semantic perspective is 
powerful and suggestive, but it has one paradoxical feature. Its complexity is at least 
as high as that of standard predicate logic - whereas part of the motivation for 
dynamic semantics is precisely the desire to get at simple computational 
mechanisms in human language use. Therefore, we should reflect further, and look at 
the bare bones of state transitions. What makes first-order predicate logic tick at a 
more abstract computational level? This policy is known from Propositional 
Dynamic Logic (cf. the new textbook Harel & Kozen 1994), which employs Jabeled 
transition systems (poly-modal Kripke models), also a favourite vehicle of 
mathematical theorizing at CWI concerning computation. Thus, let us see what is 
really involved in Tarski semantics. The answer is as follows. Much Jess is needed 
than the above concrete assignment scheme to give a compositional semantics for 
first-order quantification (usually taken to be its essential achievement). 
The abstract core pattern which makes the semantic recursion work is this: 

M, a. I= 3x cj> iff for some ~ : Rx a.~ and M, ~ I= cj> • 

Assignments a., ~ are now viewed as abstract states, and the concrete relation a. =x 

~ (which holds between a. and a.xd) has become just any binary update relation 
Rx . This greater freedom reflects current developments in Dynamic Semantics, 
where states can be much more diverse than just assignments (partial assignments, 
discourse stacks, or yet other data structures) and variable-value update transitions 
between them may vary accordingly. In this light, 'standard Tarski semantics' 
amounts to insisting (without explicit argumentation) on one particular set
theoretical implementation. States must be assignment functions in IMIV AR , all 
of which are to be present in our models, and 'variable update' must be the specific 
indifference relation =x . 
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3. A MODAL PERSPECTIVE 
The above pattern has a familiar mathematical form. It treats predicate logic as a 

modal logic, with existential quantifiers 3x as existential modalities <x> . This 

system has the usual possible worlds models M = (S, {Rx lxe v AR. I) , with S 

a set of 'states', Rx a binary 'transition relation' for each variable x , and I a 

'valuation' giving a truth value to atomic formulas Px, Rxy, ... in each state ex . 

Henceforth, our language is the standard first-order one, with predicates and variables 

(but no function symbols). Some extensions will be considered at the end. Its modal 

truth definition is as follows: 

M, a I= Px 
M, a I= -, <!> 
M, ex I= <!> & 'I' 
M , a I= 3x <!> 

iff 
iff 
iff 
iff 

I (ex, Px) 
not M, a I= <!> 
M, ex I=<!> and M, a I= 'I' 
for some 13 : Rx ap and M, P I= <!> . 

The universal validities produced by this general semantics constitute the well

known minimal modal logic, whose principles are 
(i) all classical Boolean propositional laws, 
(ii) the axiom of Modal Distribution: 3x (<!> v 'If) H 3x<!> v 3x'lf , 
(iii) the rule of Modal Necessitation: if I-<!>, then I--, 3x-, <!>, 
(iv) the definition of V'x;j> as -, 3x-, <!> . 

A completeness theorem may be proved here using the standard Henkin construction. 

This poly-modal logic can be analyzed in a standard fashion (Andreka, van Benthem 

& Nemeti 1994 is a modern treatment), yielding the usual meta-properties such as 

the Craig Interpolation Theorem, and the Los-Tarski Preservation Theorem for 

submodels. Moreover, it is decidable, via any of the usual modal techniques (such as 

filtration). The model theory of this logic leads to interesting comparisons between 

'bisimulations' for its models and 'partial isomorphism' in ordinary model theory (cf. 

de Rijke 1993 ). This modal perspective uncovers a whole fine-structure of predicate

logical validity. The minimal predicate logic consists of those laws which are 'very 

valid'. But we can analyze what other standard laws say, too, by the technique of 

frame correspondence. Recall that a modal formula <!> defines a relational condition 

C on state frames if <!> holds (for all states and interpretation functions) in just 

those frames where C obtains. Effective methods exist for finding such conditions, 

given suitable modal formulas (in particular, the following examples are well

behaved 'Sahlqvist forms'). Here are three illustrations involving key principles from 

cylindric algebra (cf. Baayen 1960): 

• <!> & 3x<!> H <!> expresses that Rx is reflexive 

• 3x (<!> & 3x'lf) H 3x<!> & 3xv expresses that Rx is transitive and 

euclidean. 

These constraints make the Rx into equivalence relations, as with the modal logic 

S5. These universal conditions do not impose existence of any particular states in 

frames. By contrast, the following axiom is existential in nature: 

3x3y<!> H 3y3x<!> expresses that Rx;Ry = Ry;Rx 
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This says that sequences of state changes may be traversed in any order. Abstract 
state models need not have enough intermediate states to follow all these alternative 
routes. As a final example, consider another well-known valid quantifier shift: 

3x\iycj> ~ \iy3xcj> expresses Conflue11ce of variable update: 
whe11ever a Rx f3 Ry y, there is a state O with a Ry O Rx y . 

This is a natural Church-Rosser property of computational processes, whose 
adoption again has an existential price. Thus, the valid laws of predicate logic turn 
out to have quite different dynamic content, when analyzed in the light of this 
broader semantics. 

4. THE LANDSCAPE OF DYNAMIC ASSIGNMENT LOGICS 

Once again, we are now viewing first-order predicate logic as a dynamic logic for 
variable assignment, whose atomic computations shift values in registers x, y, z, 
... This perspective yields a whole hierarchy of fine-structure underneath standard 
predicate logic. The latter system merely becomes the (undecidable) theory of one 
particular class of 'rich assignment models'. The result is a broad semantic landscape 
of options, rather than one canonical standard. (The same plurality is known in 
many other areas of logical analysis, witness the case of Modal Logic or Categorial 
Logic. For a principled defense of this phenomenon, cf. van Benthem 1991.) We 
have already found a minimal system at the bottom, and standard logic at the top, 
while intermediate systems arise by imposing varying requirements on assignments 
and updates Rx : 

* standard predicate logic 

• minimal 'modal' predicate logic 

In this landscape, we want to find expressive logics that share important properties 
with predicate logic (Interpolation, Effective Axiomatizability) and that even 
improve on this, preferably by being decidable. The minimal predicate logic satisfies 
these demands - but what about more powerful candidates? Here Cylindric Algebra 
becomes important. Equational theories in the latter field correspond with modal 
logics in our landscape, via a well-known representation ( cf. Venema 1991, Marx 
1994). (Subdirectly irreducible algebras play a key role here. Cf. Baayen 1960, Blok 
1977, van Benthem 1985.) Natural intermediate systems have been identified in this 
way (cf. Henkin-Monk-Tarski 1985, Nemeti 1991, 1993), by a method of 
'relativization' from the algebraic literature. 

One attractive candidate is CRS, consisting of all predicate-logical validities in the 
state frames satisfying all u11iversal frame conditions true in standard assignment 
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models. These are the general logical properties of assignments, that do not make 

existential demands on their supply. (The latter would be more 'mathematical' or 

'set-theoretic'.) CRS is known to be decidable, though non-finitely axiomatizable. 

Moreover, its frame definition needs only universal Horn clauses, from which Craig 

Interpolation follows (van Benthem 1994). Another way of describing CRS may 
have independent appeal. Consider state frames where S is a family of ordinary 

assignments (but not necessarily the full function space D VAR), and the Rx are 

the standard relations =x . Such frames admit 'assignment gaps', which model 

'dependencies' between variables: i.e., changes in value for one variable x may 

induce, or be correlated with changes in value for another variable y (van 

Lambalgen l991, Fine 1985 give natural illustrations). This phenomenon cannot be 
modeled in standard Tarskian semantics, which changes values for variables 

completely independently. The latter is the 'degenerate case' where all interesting 

dependencies between variables have been suppressed. From CRS, one can move 

upward, by considering only families of assignments that satisfy natural closure 

conditions. For instance, assignment sets might be closed under local shifts in 
values to variables, or under reassignment of values for one variable to another. 
Such further structure tends to support the introduction of further operators into the 
language (e.g., permutation or substitution operators, as well as a predicate for 
identity). For the resulting logics, cf. Venema l991, Nemeti 1993, Marx I994. 

5. EXPLORING THE RICHER SEMANTICS 
The landscape of dynamic assignment logics invites obvious geographical research. 

What are its natural landmarks? Current research by algebraic logicians is bringing 

to light various interesting mathematical phenomena here. For instance, intermediate 

logics may have better properties than standard logic. (E.g., the strong Interpolation 

Theorem for CRS in van Benthem l994 fails for predicate logic.) Next, generalized 

assignment semantics throws new light on old questions in standard model theory. 
(E.g., it improves the poor behaviour of 'finite-variable fragments' of predicate logic 
that are currently used in defining complexity classes semantically via query 
languages: cf. Andreka, Nemeti & van Benthem [994.) There are also challenging 

issues of mathematical representation for abstract state frames (some sample results 
are found in Henkin-Monk-Tarski 1985, Venema l99l, van Benthem 1994). This is 

an area where modal logicians and algebraists have made common cause by now. 
Perhaps the most striking consequence of the new perspective, however, 

concerns the language of predicate logic. A generalized semantics, with its weaker 

logics, often invites re-design of the original formal language. Distinctions become 
visible which were suppressed or overlooked in the 'standard semantics'. This general 

point is well-known from earlier work on, e.g., intuitionistic logic, relevant logic or 

linear logic. (For instance, classical 'conjunction' splits into two relevant or linear 

versions, and some connectives in these weaker logics have no classical counterparts 
at all.) Again, the algebraic tradition has been aware of this issue. Weaker cylindric 
equational logics may support expanded languages with desirable items like 

'discriminator terms', which allow one to pass from algebraic quasi-equations to 
ordinary equations (Nemeti l991). Likewise, modal semantics supports an infinite 

hierarchy of ever more expressive formalisms (cf. de Rijke 1993). When analyzing 

predicate logic, two striking examples occur of such expressive enrichment. First, 

there is a case for adding substitutions. Consider the central first-order axiom of 

'Existential Generalization': [t/x]c!> ~ 3xc!> . Its computational content is this: 

'definite assignment implies random assignment'. To express this intuition, one 
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treats the substitution operator [t/x] as a new modality (metabletically, its very 
notation made this historically inevitable ... ). The earlier state frames must then be 
expanded with matching update relations Ax,t saying that the target state has its x
value replaced by the t-value of the source state. This move brings definite 
assignment as such into our models. The previous modal analysis still applies . 
Notably, standard substitution laws show dynamic content via frame correspondence. 
For instance, [t/x](cj>v 'I') H [t/x]cj> v [t/x]'I' is universally valid in the minimal 
logic, whereas [t/x]-, cj> H -, [t/x]cj> expresses that the relation Ax,t must be a 
total fimction. (Van Benthem 1994 also considers backward 'temporal' versions of 
substitution .) 

Secondly, generalized assignment models suggest a natural distinction between 
singular quantifiers and polyadic quantifiers (cf. Keenan & Westerstahl 1994 for 
extensive linguistic motivation of the latter). One can interpret a polyadic existential 
formula like 3xy • cj> as saying that there exists some state satisfying cj> with 
possibly different x- and y- values from the current one. In general, no 
intermediate states need exist allowing the stepwise singular decompositions 3x 3y 
• cj> or 3y 3x • cj> that would be equivalent in standard logic. In state frames, direct 
interpretation of polyadic quantifiers involves simultaneous updates Rx for sets or 
sequences X of individual variables. A similar move will be needed to model 
simultaneous substitutions [q/x 1 •... , tklXk] , which are known to be irreducible to 
iterations of singular substitutions. Another view of these linguistic extensions is as 
follows. From the earlier poly-modal logic with only atomic assignment programs, 
we are now passing on to a full dynamic logic with operators forming complex 
programs. In particular, an iterated singular quantifier 3x 3y • involves a 
sequential composition of update relations Rx ; Ry , whereas the polyadic 
quantifier 3xy • involves a fonn of parallel composition. Evidently, these are just 
first steps on a longer road. 

6. CONCLUSIONS 
The above re-analysis of what is arguably the basic tool of modern logic may be 
seen as an instance of a more general philosophical enterprise. What we are trying to 
do is locate the 'computational core' of a phenomenon - in this case the dynamics of 
variable-value assignment - and detach it from its 'mathematical wrappings', i.e., 
more negotiable aspects of its accidental mathematical presentation. We are after the 
fonner: the rest is imported complexity. Such a philosophical program may have 
great practical repercussions. In particular, the hallowed 'undecidability of predicate 
logic' might merely reflect an infelicity of its traditional Tarskian modeling: namely, 
the import of extraneous set-theoretic facts about full function spaces D V AR -
rather than the core facts about quantification and variable assignment. Thus, 
adopting 'dynamic semantics' and thinking it through might lead to decreased logical 
complexity - once we have the courage of our convictions. This provocative 
statement needs to be backed up, of course, by concrete analysis of predicate-logical 
reasoning found in applications. Which universal validities are really used (that is, 
under appropriate fonnalizations)? 

I am not quite sure that Cor Baayen will be overjoyed by this radical departure 
from the tenets of our Founding Fathers. But he will certainly appreciate the 
following points. At least, our case study demonstrates a commonality in key 
interests between such apparently diverse disciplines as logic, computer science and 
linguistics. In particular, it demonstrates that genuine 'application' is not a one-way 
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process, but an interaction. Standard logic has inspired an illuminating analysis of 

computational processes via 'dynamic logics' and their ilk. But what happens now is 

that, conversely, dynamic viewpoints may 'turn around' and start challenging 

received views of what standard logic is all about. This move does not invalidate the 

achievements of previous periods. On the contrary, as we have seen, it is driven by 

insights from cylindric algebra, an enterprise squarely within mathematical logic -

and it will no doubt inspire that area too. I conclude that Cor Baayen's scientific 

interests, outlined at the beginning of this paper, have proved fruitful and topical: 

both generally, and in their technical bent. 
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Introductory note to "Object-Oriented Algebraic 

Specification" 

Jan Bergstra 
Jan Heering 

Jan Willem Klop 

The following CWI report proposes a notation for OOAS (Object-Oriented 

Algebraic Specification). It is one of four related formalisms in the area of 

algebraic specification that were conceived around 1984 at CWI. The other 

ones were ACP (Algebra of Communicating Processes), ASF (Algebraic Spec

ification Formalism), and BMA (Basic Module Algebra). Whereas these have 

generated and still generate a significant volume of research, OOAS was con

sidered of minor importance and , apart from its use in [1], no further study of 

it was made by GWI researchers. 
Iu retrospect, this is unfortunate. ·when Baniitre et al. [2] independently 

introduced umltiset programming, which in turn led Berry and Boudol [3] to the 

Chemical Abstract Machine (CHAM), the underlying concepts and definitions 

turned out to be very close to OOAS. Since then the French researchers have 

made subst~ntial progress, and the CHAM has become au important theoretical 

tool. 
We respectfully dedicate thh; account of the vagaries of scientific work to Cor 

Baayen on the occasion of his retirement as scientific director from CWI. 
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1. INTRODUCTION 

This note has the following aim: to propose a notation compatible with the 

well- known no tations f o r aLgetraic data t ype specif ication which captures 

the concept o f an object . 

The reasons for doing so are many; we list some reasons in arbitrary 

order: 

(a ) There i s an increasing interest in object-oriented approaches to soft

ware design . See Cox (4), J amsa (6), Jonkers (7) for some discussions of 

object-o riented programming. 

(b) The discussion on what constitutes an object and what constitutes a 

value is not yet settled. See Cohen (3) and MacLennan (9) for two very inter

esting expositions about the nature of objects. 

(c ) From the point of vi ew of abstract data types (and their algebraic spe

cification) it is hard to unders tand what an object is. The history of the 

subject is confusing indeed. The Simula class is meant as a class of objects. 

Abstract data types in the ADJ tradition are modules of structured values. 

In the survey by Goguen & Meseguer (5) an option to augment data types with 

states is discussed, thus regaining some of the dynamic aspects that were 

somehow lost in the "initial algebra = abstract data type" stage. 

(d ) We feel that a workable distinction between objects and values can be 

made, taking algebraic abstract data type specifications as a point of de-

parture. 

2. AN ORGANISATION OF NOTIONS 

Let l: be a (many- ) sorted algebraic signature, let A E Alg ( l:) be an algebra 

o f type (signature) l:. A is called an abstract dat a t ype . For (algebraic) 

specification of abstract data types, we refer to the literature collected 

in Kutzler & Lichtenberger (8). 

The s i gnature l: is a triple$!!: ) , 1F{l:), C(l:) (sorts, functions and 

constants ) of l:. For s E $ (l: ) , As i s the interpretat i on of s ort s i n A. 

An element of A will be called a point . A itself will also be called a 
s s 

data s pace . (See Figure 1. l A point p E As may play two roles: 
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(i) p may represent a value, 

(ii) p may represent an object (with a particular state). 

A 

Figure I. 

abstract data t ype 

data spaaes correspondi ng 

points of sort si ( in space As .) 
]. 

A multi-set of objects (i.e. a multi-set of points seen as objects) is called 

a configur>ati on. Configurations exhibit dynamic behaviour. In particular, 

configurations may perform (or allow) transformat ion steps 

Transformation steps aregenerated from transformat ion ruLes. In section· 3 

we will present syntax and semantics of a notat ion for transformation rules. 

Suppose that we know what a rule is for a given signature E. Let T be 

a collection of transformation rules, A a E-algebra. Then the pair <A,T> de

termines a confi gurat ion t rans i t ion system. 

If A = TI(E,E), i.e. (E,E) is an initial algebra specification of A, 

and· T is a collection of transformation rules for E, then 

<(E,E),T> 

is an object-oriented aLgebraic specification which specifies a confi guration 

transition system. 
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3. TRANSFORMATION RULES 

Informally, a transformation rule is a notation of the following kind: 

ru Le name {paramet er 
[

configurat ion 
List ) 

confi gurat ion 

bef ore trans f ormat ion J 
aft er transformation 

Often it is convenient to divide the parameter list in three parts: one 

part associated with the rule name, the other two parts consisting of input 

values and output values respectively. This suggests the f o llowing notation: 

ru Le 

[

confi guration bef or e 

{ , . t) t rans ormat i on 
name par. ~ '!.s 

conf i gurat ion aft er 
t ransformat ion 

::: :, :::::, J 

The input values constitute a multi-set of points which are consumed during 

the transformation and the output values constitute a multi-set of points 

which are produced during the transformation. It is understood that a con

figuration may be transformed inside a context (a larger configuration). 

So if C1£; c1 Uc 2 is a sub-configuration of c
1 

uc2 (where ~ denotes inclusion 

between multi-sets and U their union), and 

is an instance of the rule with name~· then c
1

uc2 ~
ciuc2 is a 

transformation step. (For a more elaborate explanation, see Section 9.) 

Example: an instantiation R of the transformation rule 

add [ :+y I y] 

used in the example below, is:~ =+add(; j 5
]. (Here 3 is short for 

(l+l)+l, etc .) In this example p, bare empty, and c
1 

= (3), ci = (B}. 

Now we have the transformation step 

(3}~(8} 
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and also e.g. for c2 = {7,1), the step 

Such step; can be composed into transformation sequences; e.g. if R' is the 

instantiation: add [;
3

J
6

], we have 

{3,7,1) ~ {8,7,1) ~ {B,13,1). 

Here we would like to point out the relation to Plotkin [10), which 

addresses similar issues, where system behaviour is systematically descri

bed by means of transition relations. 

The following two very simple examples will help to further explain 

the notation. Consider the following specification of the initial algebra A: 

i: $: N 
ER 

lF:+:N><N+ N 
•: N >< N 

et: 0£N 
1£N 
l. £ER 

E x+O = x 

x+ (y+l) 

x•o = o 

x•(y+l) 

N 

(x + y) + 1 

x•y + x 

Now A = T1 (l:,E). We will now present two different collections T
1 

and T
2 

of transformation rules for configurations over A. 

Tl ~ [:+1 I J Tl,l 

add(x IYJ -- x+y Tl,2 

subtract [:+y IYJ Tl,3 

192 



(
x I x + y + l) 

subtract x ~ 

If one starts with the initial configuration {OJ, then T1 describes the be

haviour of a single counter with some actions (transformations) on it; part 

of this behaviour is as in I'igure 2. 

~~J 
~{2)~ 

~.-u_b_t_r_a_c t-rw--· J subtract (ft) {O}~{l} - ~ 

add(W] 

{5} 

subtract[W J 

Figure 2. 

Further comments on the rules of T
1

: 

(i) If one of the compartments of the 'matrix' is left empty, this means 

that the empty multi-set ~ of values (or objects) is meant. 

(ii) Note the difference between rule T
1

,
2 

and the rule 

add(x YI Ji -- x+y 

in T
1

,
2 

we focus on the transformation of one object, while in the displayed 

rule the fusi on of two objects is embodied. 

(iii) The rules T1 , 3 and T1 , 4 for subtraction exhibit polymorphism of types: 

in T
1

, 3 the multi-set of output values is empty, while in T
1

,
4 

an error 

message is delivered. 
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·= .. --=~.: = ~-- -

In the second example the same initial algebra A as above is used. The 

set T
2 

of transformation rules for configurations over A will describe the 

behaviour of a fixed number n
0 

of counters. The k-th counter (k £ {O, .. ,n
0

-1J) 

with content x can conveniently be represented (coded) by the natural number 

k+n
0
x. Below, k,e,m vary over {O, ••• ,n

0
-1J. 

[

k+nx, e+nyl 
add(k,e ,m) 0 0 

m + n
0 

(x + y) J 

[

k+nx, e+nyl 
mult(k,t,m) O O 

m + n
0
xy J 

[

k+n x I ~(k) q 
k + n

0
(x+1) J 

[ 

k + n (x + y) 

compare(k) O 
k + n

0 
(x + y) : J 

compare (k) [-k_+_n-"0-x-i_x_+_y_+_l_J 

k + n
0

x 1 

~ (k, e) [-k_+_n_o_x ___ _,.__J 
k + n

0
x, e + n

0
x 
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Comments: (i) The rules T
2

,
6 

and T
2

,
7 

for compare(k) compare the content a 

of counter k with some given number b; if a ;;. b the output is 0, otherwise 1. 

(ii) Note that the ~(k,t) rule can lead to confusion (in the sense that 

two indiscernible objects may arise) if it is applied while an object of 

the form t + n
0

x is present (which can be avoided by first performing skip (t) 

or read (t}). 

(iii) The empty configuration · is an adequate initial configuration for this 

system. Clearly T
211

_
9 

offer only limited facilities (subtraction is absent 

etc.). Moreover explicit naming might be a preferable alternative to the 

coding trick, which represents "counter k with content x" as k + n
0
x, if na

tural number objects are to be maintained. 

4. THE STACK 

In this section we consider object-oriented specifications of the stack. 

We formulate four different specifications of the dynamic behaviour of a 

single stack. This raises the following 

Question: is it possibie to express this rich VG.Piety of operationai ~ossi

biiities without the object-or iented approach (i . e . in terms of the originai 

aigebraic framework)? 

We will leave this question unanswered. 

r: $: A 
s 
ER 

B 

JF: push: Ax S + s 

~: al, ... ,an EA 

1 E ER 

9J ES 

TEB 

FEB 

E = 9J 

As data space we use T
1

(t,9J). 
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T3 

~[x I a J T3,l 
push(a,x) 

[ push(a,x) 

I a ] 
T3 , 2 ~ 

x 

~[: I 1 J T3,3 

The initial configuration is {~}. At each time the configuration will be a 

singleton. 

~[x I a J 
push(a,x) 

~[: I 1 ] 
T4,3 

~ [ push(a,x) 

push(a,x) a J T4,4 

t op [: I~ ] T4,5 

As in the previous case {~} should be taken as the initial configuration. 

T5 ~[~ I J T5,l 

~[ x I a J 
push(a,x l 

T5,2 
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[

push(a,x) 
~ 

x 

In the ca s~ of T
5

, ~ is destructive on~- Hence after l has been observed 

an empty s '.:ack must be created again. Care must be taken not to create two 

or more stacks at the same time, because this would lead to non-deterministic 

effects of ~-

In the next example T
6 

we replace the create facility by a test on emp

tiness of the stack. 

T6 
push [ x I a J T6,l 
~~ push(a,x) 

t ( push(a,x) 

J T6,2 ~ 
push(a,x) F 

empty[: I TJ 
T6,3 

~ [ :ush(a,x) I a J 
T6,4 

~[~ l1 J T6, 5 

In the case of T
6

, ( ~} is again an appropriate initial configuration. In or

der t o prevent loss of the stack it is useful to do ~ only after a test on 

emptiness. If the stack is not empty, ~ may be safely applied; otherwise 

it should not be applied because in that case the object would be irreversi

bly destroyed. 
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5. PROCESS A!...GEBRA WITHOUT COMMUNICATION 

Let {EPA' PA) be the f ol lowing specification. 

E 
PA 

PA 

$: PR 

1F: +: PR x PR + PR 

• • PR x PR + PR 

11 : PR x PR + PR 

[l : PR x PR + PR 

x + y = y+x 

{x + y) + z x + {y + z) 

x +x = x 

{x+y)•z = x•z + y•z 

{x"y)•z = x•(y"z) 

x ll Y = xll_y + Yll. z 

a[Lx = a•x 

{a"x) ll. y = a "{x ll Yl 

{X + y ) lL z = x IL z + Yllz 

Al 

A2 

A3 

A4 

AS 

Ml 

M2 

M3 

M4 

Here 'a' varies over A = {a
1

, ... ,an}. We will write 

TI {EPA, PA ) of this specification as Aw{+,•, II , ll_). 

the reduct of Aw{+,•, II . ll. ) after f o rgetting 11 and 

t he initial algebra 

With A {+ ,• ) we denote 
w + • IL . Let EP~ be EPA minus 

II , [Land let BPA be Al-5 . It can be shown {see Bergstra & Klop [2]) that 
+ • 

Aw{ +,•) = TI{EP~, BPA). The axiom system PA was introduced in [2] as the 

core axiomatisation of process algebra. 

When we take Aw{ +,• ) as a data space, and use the a EA as rule names , 

the f ollowing t ransfo rmation rules {without inputs and outputs) reflect the 

operational semantics of + {cho i ce , aiternative composition) and • <pr oduct , 

sequentiai compos ition): 

T7,l-4 
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Now consider the configuration 

The behaviour of this configuration corresponds to that of the process 

Thus the formation of configurations is represented by the operation II of 

PA. It can be concluded that process algebra is more denotational than object

oriented system specification by means of transformation rules. 

6. SETS OF INTEGERS 

Let i: be as rollows: 

i: $: N 
SN 
B 
ER 

1F: eq: N x N + B 

ins: N x SN + SN 

del: N x SN+ SN 

s: N + N 

cj:: TEB 

FEB 

OEN 

fi' E SN 

1 E ER 

As (conditional) equational specification of the data space we take: 

E eq(0,0) =· T 

eq(O,s(x)) F 

eq(s(x) , 0) F 

eq(s(x) , s(y)) = eq(x,y) 

ins (x, ins (x , X) ) 

ins(x ,ins(y,X )) 

del (x,j.'.!) = j.'.! 

ins(x,X) 

ins(y,ins(x,X)) 
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I 
del(x,ins(x,Y)) = del(x,Y) 

eq(x,y) = F + del(x,ins(y,X)) ins(y,del(x,X)) 

We wi ll now describe a configuration transformation system starting from {~} 

as an initial configuration. 

ins [ :ns (a,xl I a 

del [x I a 
del(a,xl 

~ [~ns (a,xl I a 

~(-:---+--,, l 

elt [ins(a,xl I: 
ins(a,X) 

elt [del (a,_xl 
del(a,X) 

a 

F 

empty (-:- -1-T _ 
t 

(

ins (a,X) 
~ 

ins(a,xl F 

] 

J 

J 

J 

J 

] 

J 

J 
Remark: note the implicit non-determinism present in T

8
,
3

. Namely, by the 

instance 

R = get [ins(a,ins(b,~)) J 
ins(b,~) a 

we have the step {ins(a,ins(b,~))} ~ {ins(b,~)}. Further, by Ewe have 
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ins(a,ins(b,~)) = ins(b,ins(a,~)), hence the configuration in the LHS of the 

displayed step can also be transformed to (ins(a,~)) by the instance of T
8

,
3

: 

R' [ins(b,ins(a,~)) 2! ins(a,~) 

7. A SIMPLE EDITOR 

'lllis exarple has l:een taken fran Bergstra & Klop [ l] . Let A = ( a
1

, ••• , an) be an 

alphabet of symbols. Consider the following signature: 

EF $: F 
Edf 
E 

lF: *: FxF .. F 

edobj: F x F .. Edf 

it: EE F 

a£F (all a£ Al 

lEE 

OK EE 

with equations 

(x*y)*z = x*(y*z) 

We use the initial algebra TI(EF,EF) as data space. With edobj(x,y) we de

note a text x*y which is being edited with the cursor between x and y. 

The following set of rules T
9 

presents an object-oriented specification 

o f an editor. Here it i s assumed that there are some means to inspect the 

object being edited: i .e. the fact that the user is watching the string 

being edited, is not explicitly modeled by these transformation rules . A 

possibility for modeling this would be to output x*_*y whenever edobj(x,y) 

is formed, where ' • is some new symbol denoting the cursor (by putting 

x*_*y in the lower-righthand corner of the appropriate rule). 
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.........., ., --"-~= - ~·:= -. 

T9 
editor [ I 

x 

J edobJ(£,x) OK 
T9,l 

quit [ edobj(x,y) 

J T9,2 
x*y 

left [edobj(£,y) 

J T9,3 
edobj(£,y) l. 

left [ edobj (x*a,y) 

J 
(a £A) T9,4,a 

edobj (x, a*y) 

right [ edobj (x, £) 

J T9,5 
edobj (x, c) .l 

right [ edobj (x,a*yl 

J 
(a£ Al T9,6,a 

edobj(x*a,y) 

delete [edobj(x,a*y) 

J 
(a£ A) T9,7,a 

edobj (x,y) 

delete [ edobj (x, £) 

J T9,8 
edobj(x,c) .1 

insert [ edobj (x,y) a ] (a£ A) 
edobj (x*a,y) 

T9,9,a 

Taking care that at most one edobj is active at any time this will work. 

Note that T
9

,
3

_
9 

constitute the heart of the matter. These rules describe 

the editing activities proper. 

The next step is to describe a storage and retrieval mechanism for files. 

Consider the following signature: 
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$: FD 

F 

FN 

p 

B 

1F: present: FN • FD + FD 

absent: FN • FD + FD 

contents: FN x F • FD + FD 

pair : FNx FD + P 

4:: 

*: FxF+ F 

*: FNxFN + FN 

eq: FN • FN + B 

Tc B 

Fe B 

jil c FD 

al, ... ,an E F 

bl r • • • rbm E FN 

cc F 

£ c FN 

Variables: x,y,z c F 

u,v,w e:: FN 

X c FD 

(Conditional) equations: 

(x * y) * z x • (y * z) 

X * E X 

E * X X 

U i (Vi W) (u * v ) * w 

u * E = u 

E * u = u 

eq(E",£) = T 

eq(bi *x , bi *yl eq(x ,y ) 

20:1 

(file directory) 

(texts/ file s) 

(file na1es) 

(pairs) 

(booleans) 

(introduction of na1e ) 

(deletion of na1e) 

(constructor of th e file directories ) 

(concatenation on files) 

(concatenation on naaes) 

(equality test on na1es) 

(true) 

(false) 

(e1pty structure) 

(alphabet f~r file) 

(alphabet for naae s) 

(i E (1 , • .. ,m}) 



eq( bi ;; x. bj;; y ) 

eq(i:, bi:;; x ) 

eq (bi* x, i:) 

F 

F 

F (i;,! j, i,j E {l, •.. ,m}) 

(i E {l, ••• ,m} ) 

(iE {l, ••• ,m}) 

contents(u,x,contents(u,y,X)) = contents(u,x,X) 

eq(u,v) = F + contents(u,x,contents(v,y,X)) 

contents(v,y,contents(u,x,X)) 

present(u,~ ) = contents(u,E,~) 
present(u,contents(u,x,XJ) = contents(u,x,X) 

eq(u,v ) = F + present(u,contents(v,x,X)) 

contents(v,x,present(u,X)) 

absent(u,~) = ~ 
absent(u,contents(u,x,x) ) = absent(u,X) 

eq(u,v) = F + absent(u,contents(v,x,X)) 

contents(v,x,absent(u,X )) 

The initial algebra T1 (tFSR' EFSR) is an appropriate data space for the per

manent environment of the editor. Working in 

we can specify the system as follows (with{~) as an initial configuration): 

TlO introduce l absent(u,X) u ] TlO,l 
contents(u,E,X) OK 

. t od [present (u,X) u 

J Tl0,2 in r uce 
present(u,X) J. 

skip [ present(u,X) u 

J Tl0,3 
absent(u,X) OK 

skip [ absent(u,X) u 

J Tl0,4 
absent(u,X) J. 

edit [contents (u,x,Xl u ] Tl0,5 
edobj(E,X) ,pair(u,X ) OK 
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edit [ absent(u,X) 

absent(u,X ) 

save [ edobj(x,y ) , pair(u,X) 

contents (u, x * y, X) 

(plus: ) T
913

_
9 

u 

J 1 

l 

8. A MULTI-USER ENVIRONMENT FOR THE SIMPLE EDITOR 

We now consider the f ollowing organisation: 

At monitor k edit sessions act on an object edobj{k,x,y ) . A user must log in 

at a terminal with a user name which should be known to the system (by having 

been introduced at the central node). Each user name is also the index of a 

file in the permanent central file directory. This file is updated after 

each edit session. 

As before we start with a signature and a specification for the data 

space. Like in example 7 we proceed in two phases. The central file directory 

is introduced in the second phase. 

First phase. 

$: F 
Edf 

MN 
AMO 

PMO 

B 
UN 
E 

(files ) 
( fi l es being edited ) 
(monitor naaes) 
( active aonitor obj ect s) 
(passive • onitor ob j ect s) 
(boolean s) 
(user na• es ) 
( s ignals ) 
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EKME 

lF: *:FxF•F 

*: UNxUN +UN 

edobj: MN x F x F + Edf 

amo: MN x UN + AMO 

pmo: MN + PMO 

eq: UN x UN + B 

~: T E B 

EE F 

al, •.• ,an E F 

£EUN 

bl, .•• ,bm E UN 

l, ... ,kEMN 

1. E E 

OKe: E 

Variables: x,y,z£ F 

u,v,we: UN 

k E MN 

( X * y ) * Z 

x * e: x 

e: * x = x 

U * (V ;- W) 

u . £ = u 

E * u = u 

eq(l:,£) = T 

X * (y * Z) 

(U ;- V ) * W 

eq(bi *x, bi *yl = eq(x,y) 

eqC bi *x, bj* y l = F 

eq(i', bi*xl 

eq(bi * x, £) 

F 

F 

(iE(l , ••• ,m }) 

(iJ! j , i,j E {l, ... ,m }) 

(i£{1 , •.. ,m}) 

(i E (1 , ..• ,m}) 

As before we work in T
1

(E KME' EKME) . As initial configuration we assume 

{ pmo ( 1 ) , ••• , pmo (kl J • 

The f i rst system description is T11 • The transition rules T11 ,
4

_10 describe 
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the actual working of the editor. The other rules will be replaced in the 

second phase. 

Tll 
login(k) [ pmo(k) 

I 
u, x ] amo(k,u), edobj(k,£,x) OK 

Tll,l 

login(k) [ amo(k,u) 
amo(k,u) 11 J 

Tll,2 

logout(k) [ amo(k,u)' edobj(k,x,y ) 

J 
Tll , 3 

pmo(k) x*y 

logout(k) ( i;tno(k) 
pmo( k ) 1 1. ] Tll,4 

left (k) [ edobj (k,x *a, y) 

J 
Tll,S,a 

edobj (k _, x,a * y ) 

left(k) t edobj (k, £ ,x ) ] Tll,6 
edobj(k,E,x) l. 

right(k) [edobj(k,x,a*y) ] Tll,7,a 
edobj (k,x * a,y) 

right(k) [edobj(k,x, £) 

11. ] Tll,8 
edobj(k,x,£) 

~(k) [edobj (k,x,a * y ) 

edobj(k,x,y) J 
Tll,9,a 

delete(k) [edobj(k,x , £) 

edobj(k,x,£) l. ] Tll,10 

~(k) [edobj{k ,x,y) a 

edobj (k,x * a,y) ) Tll,11,a 
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Notice that the monitor objects prevent two or more users from being logged 

in at the same monitor simultaneously. 

Second phase. 

In the second phase we add a central file directory for maintaining user na

mes and for the storage and retrieval of each user's own file. 

We need a new signature: 

$: F 

UN 
FD 
B 

lF: known: UN x FD ... FD 

unknown: UN x FD + FD 

active: UN x FD + FD 

silent: UN x F x FD ... FD 

eq: UN xUN + B 

cj:: TE B 

FEB 

Variables: x,y,z E F 

u,v,WEUN 

active(u, active(u,X)) active(u,X) 

active(u, active(v,X)) active(v, active(u,X)) 

active(u, silent(u,x,X)) = active(u,X) 

eq(u,v) = F + active(u, silent(v,x,X)) silent(v,x, active(v,X)) 

silent(u,x, active(u,X)) = silent(u,x,X) 

silent(u,x, silent(u,y,X)) = silent(u,x,X) 

eq(u,v) = F + silent(u,x, silent(v,y,X)) silent(v,y,silent(u,x,X)) 

known(v,~) = silent(v,E,~) 

known(u,active(u,X)) = active(u,X) 
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Now let 

and 

known(u, silent(u,x,X)) = silent(u,x,X) 

eq(u,v) F + known(u, active(v,X)) = active(v, known(u,X)) 

eq(u,v) F + known(u,silent(v,x,X)) = silent(v,x,known(u,x,X)) 

unknown(u,~) = ~ 

unknown(v, active(u,X)) unknown(u,X) 

unknown(u, silent(u,x,XJJ = unknown(u,XJ 

eq(u,v) 

FD 
l:KME 

F + unknown(u, active(v,X)J = active(v, unknown(u,XJ) 

F unknown(u, silent(v,x,XJ) = silent(v,x, unknown(u,X)J 

EFD = E U E 
KME KME FO' 

FD FD 
We will work in the data space TI (l:KME' EKMEJ · 

Comment. Some remarksabout EFD may be in order. Let Z be the "current file 

directory". If z = active(u,X), then this expresses that a user with name u 

is active on some monitor. If Z = known(u,X) this expresses that user name u 

is known to Z. Similarly if z unknown(u,X) this expresses that u is not 

known to z. Finally, Z = silent(u,x,X) expresses the fact that the user with 

name u is not active and that his (her) file is presently containing the 

text x. 

We can now present example T
12

: a multi-user environment for the simple 

editor. The system T12 contains T
11

,
4

_
10 

(the standard editing operations) 

and in addition the following transformation rules: 

Tl2 
introduce [unknown (u,X) u 

J silent(u,e:,X) 
Tl2,l 

introduce ( known(u,X) 

J 
Tl2,2 

known(u,XJ l. 
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omit 
known(u,X) u 

unknown(u,X ) 

omit 
unknown(u,X) 

unknown(u,X) .l 

[ 

pmo(k), silent(u,x,X) 
login(k) 

amo(k,u), edobj(k,t,x ) , active(u,X) 

[ 

active(u,X) 
login(k) 

active(u,X ) 

[ 

unknown(u,X) 
l ogin(k) 

unknown(u,X) 

u 

.L 

u 

J. 

login(k)[ -am~o_<_k_,_v_>~~~t~.Lu~~ 
amo(k,v) 

logout(k)ramo(k,u ) . edobj(k,x,y). x 
pmo(k ) , silent(u, x • y, X) 

logout(k) [pmo(k) I 
pmo(k) .L 

display<k> f edobj(k,x,y> 
edobj (k,x,y) x * y 

Tl2,3 

Tl2,4 

u 

OK 

Remarks. (a) Notice that a user can only be omitted when not active. An ac

tive user could logout as if nothing has happened and thereafter his or her 

name would be known to the system again. 

(b) It is entirely feasible to augment this specification with a mechanism 

for passwords or other protection mechanisms. 
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9. SEMANTICAL CONSIDERATIONS 

In Section 3 we have given an informal explanation of the semantics of trans

formation rules. In this section we will elaborate that explanation, in parti

cular, concerning the mechanism by which the transformation ruies generate 

the tT'<lnsfol"l'Tlation steps 

c--c· 
R 

where C,C' are configurations, i.e. multisets of objects. 

Let A EAlg(l:) be a given data space; then we may write a transformation 

rule, written above as 

in simplified notation as follows: 

r(~,V,W): X --Y. 

+ 
Here v vl, .•• ,vn are i:-terms and V,W,X,Y are finite multisets of i:-terms. 

These terms may contain free variables and matching works as usual in term 

rewrite rules. X,Y themselves are not yet configurations of objects in A; 

they become so after dividing out therm equality in A. Further, v,w denote 

multisets of ·input and output values - properly speaking this is again true 

after dividing out term equality. The vl, ... ,vn are parameters of the rule 

names. 

Let us introduce a ·constant ~for the empty configuration and an opera

tor U for the union of configurations. The following axioms are obviously 

valid: 

XUY 

x u ~ 

YUX 

x 
(X UY) U Z = X U (YU Z). 

Note that U is represented in process algebra [2] by II, the merge operator. 

This connection is not quite smooth: there seems to be a difference in level 

of abstraction between process algebra and behavioural specification via 

transformation rules. 

The propagation of transformations through larger configurations is as 

follows: 
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+ 
r(v,V,W): X -Y 

+ 
r(v,V,W): Xu z -Yu z 

Writing [ t) for the interpretation of the l: -term t in the data space A, and 

[XJ = ![tD I t EX} for the multiset of objects in A denoted by the multiset 

of i:-terms X, we can now state more precisely what a transformation step is: 

if R r(;,V,W): XU Z -YU Z is obtained from the instance 

r(;,V,W): X -----7>y of some transformation rule, then R allows the t rans

f ormat 1:on step of configuration C = [X U ZD to C' = [YU ZDi notation: 

c ~c·. (See Figure 4.) 

such transformation steps can be activated sequentially. In fact, the 

situation is similar to the case of term rewrit i nq modul,o some qiven con

qruence (apart from the multiset feature). 

data space A 

c• 

Figure 4. 

transforaation step R 

A , ~ata space corresponding 
SI to sort s1 

In other words, the transformation step C ~C' where C = !p1 ,p2 , ••. } is 

obtained by choosing a part icuLal' representation of c, e.g. !t1 ,t2 , ... } such 

that [ti D pi' and applying some transformation rule on it as explained, to 

transform this representation into another (of C' ) . 

In an intuitive sense, such a representation of a configuration C can be 

considered as an aspect of C. E.g. in the last example (T12 l, known(v,~) is 

the file directory X = ~ revealing as an aspect that it knows user name v 

(usually such a fact would have type boolean, here it is of type file direc

tory). And in silent(v,£,~) the same X = ~ reveals another aspect. The trans

formation rules, then, operate on such aspects. 

10. CONCLUDING REMARKS 

We feel that the object-oriented notation explained above captures at least 

a usefOl fragment of "object-oriented thinking". Clearly we have to pay a 
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price in terms c f manageability of the transformation rules. One can, in 

view of Section 9, add ~ and U, and view the transformation rules as ordi

nary rewrite rules. From the point of view of algebraic specifications, ad

d i ng~. uand, in general.a type of configurations, leads to the problem that 

configurations have no fixed type. Any object can be an element of a confi

guration. In fact, ~ and U are polymorphic operations and this explains 

their flexibility which is vital for modular and incremental systems design. 

REFERENCES 

(1) BERGSTRA, J.A. & J.W. KLOP, ALgebraisch programmeren, (in Dutch), con

tained in the lecture notes for the PAO course on software engi

neering, Centrum voor Wiskunde en Informatica, Amsterdam 1984. 

(2) BERGSTRA, J.A. & J.W. KLOP, Process aLgebra for communication and 
mutual excLus i on , Report IW21B/ 83, Mathematisch Centrum, Amsterdam 

1983. 

(3) COHEN, A.T., Data abstraction, data encapsuLation and obj ect-or iented 
programming, Sigplan Notices, Vol.19, No.l (1984). 

(4) cox, B.J., The object-or iented precompiLer, Sigplan Notices, Vol.18, 

No.l (1983). 

151 GOGUEN, J.A. & J. MESEGUER, An initiaLity primer, to appear in: 

Application of Algebra to Language Definition and Compilation 

(eds.: M. Nivat and J. Reynolds), North-Holland 1983. 

[6) JAMSA, K.A., Object-oriented design versus structured design, a stu
dents perspective, Software Engineering notes, Vol.9, No.l (1984) 

[7} JONKERS, H.B.M., On the design of an object- oriented design Language, 
paper presented at the Colloquium 'Van Specificatie tot Implemen

tatie', Centrum voor Wiskunde en Informatica, Amsterdam 1983. 

[BJ KUTZLER, B. & F. LICHTENBERGER, Bibliography on abstract data types, 
Springer Informatik-Fachberichte, No.68, 1983. 

[9) MACLENNAN, B.J., VaLues and objects in programming Languages, Sigplan 

Notices, Vol.17, No.2 (1982). 

[10) PLOTKIN, G.D., A structuraL approach to operationaL semantics, Report 

Daimi FN-19, Computer science Dept., Aarhus University, Denmark 1981. 

213 





Polling systems 

O.J . Boxma 

CW/ 

P. 0 . Box 94079, 1090 GB Amsterdam, The Netherlands 

Faculty of Economics, Ti/burg University 

P.O. Box 90153, 5000 LE Ti/burg, The Netherlands 

A polling system is a queueing system in which several queues are attended 

by a single server. Spurred by various important applications, the fie ld of 

polling systems is going through a period of feverish activity. The first part 

of this paper surveys some of the main developments. The second part 

generalizes the theory of polling systems to the case in which the customer 

arrival process depends on the position of the server, and to the case in 

which customers travel from queue to queue. 

1 I NT RODUCTION 

It has been a great pleasure to write this paper on the mathematical analysis 

of the single-server polling system in honour of a truly devoted server. In a 

sometimes almost literally painstaking way, Cor Baayen saw to it as d irector 

of SMC that both LAW and CWI, and also both its mathematics and c0111-

puter science groups, were served in an equally fair manner. He has strongly 

stimulated research at the interface of mathemat ics and computer science. His 

far-reaching vision has been crucial in realizing the INSP support for CWI in 

the eighties, which in its turn made it possible to build up a research group on 

the mathematical analysis of t he performance of computer systems. 

Consider the following situation. A director of a research institute divides 

his attention among several activit ies: scient ific, financial, personnel matters, 

representative activit ies. Suppose t hat he devotes his energy for a while (a 

'session ') to tasks of a scientific nature, t hen switches to finance, etc. During 

a session other new tasks of the same type, as well as of different type, may be 

generated; furt hermore, a task may have to be reconsidered in future sessions 

('feedback'). The director is interested in t he evolut ion of his workload , the 
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numbers of tasks of all types, etc. These quantities clearly depend 011 the way iu 
which the offered load fluctuates over time; hut the director can also influence 
the process by a judicious choice of the order of his activities and of the time 
he reserves for a session. The framework in which these matters can be studied 
is that of single-server queueing models. More precisely, it is the framework of 
polling models. 
A polling model is a queueing model in which customers (tasks) arrive at a 
set. of queues Q 1 , ... , Q N according to some stochastic arrival process, requiring 
some stochastic amount of service. A single server B visits the queues in a 
fixed order to provide service. We assume throughout the paper that it is the 
cyclic order Q1 , ... , Q N, Q 1 , ..• ( cf. Fig. 1). 

FIGURE I. Queueing model of a polling system 

When B visits Q ; aud it is not empty, then B serves customers in a session at 
Q; according to some service discipline. The most. common service disciplines 
are: 

• 1-lirnited: serve just one customer (if at least one h; present) 

• exhaustive: serve customers until the queue is empty 

• gated: serve precisely those customers that were already present at the 
start of the session 

When Q; is empty, or the session is completed, then B switches to Q;+i · This 
may require some switchover time, which is represented by a stochastic vari
able. 
The assumptions about the stochastic nature of the arrival process, service 
times and switchover times are introduced to represent the usually inherently 
random nature of customer behaviour, as well as a lack of detailed information. 
Moreover, a probability distribution for, say, service times may also represent 
an aggregate of in itself known, constant but distinct, service times of several 
types of customers. The purpose of the analysis of a polling model is to de
termine the performance of (several variants of) the underlying system, and 
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eventually to optimize system behaviour. Due to the stochasticity assumptions 

one can at most make probabilistic statements about the main performance 

measures of a polling model , like workload of the server, numbers of customers 

at the various queues, or their waiting times. 

The analysis and optimization of polling systems has in recent years received an 

enormous amount of attention, and much progress has heen made. It has also 

lwen one of the key research topics of the performance analysis group at CWI; 

cf. the PhD Theses of W.P. Groenendijk (10] and S.C. Borst (l]. Therefore it 

seems appropriate to briefly review the main developments, with some empha

sis on contributions from the latter group. This review is presented in Section 

2. In Section 3 we discuss a generalization of the standard polling model, in 

two directions that so far have receiv1!d hardly any attention: 

(i) The arrival rate of customers at the various queues may depend on the po

sition of the server: information on which queue the server is presently visiting, 

and hence on which queue it will visit next, may influence the generation of 

new tasks. 
(ii) Instead of leaving the system, customers may be routed to another (or t he 

same) queue after having received a service. A customer's required service time 

at a queue may depend both on t hat queue and on the number of services it 

has already received. 
We show how, for an important class of service disciplines, these generalizations 

can be analyzed in full detail. Crucial in this analysis is the application of the 

theory of multitype branching processes. 

The above-mentioned features of feedback and customer information arise quite 

naturally in our director example; in the remainder of this section we ment ion 

several other applications of polling models. 

Applications of polling models 

Polling models arise in situations in which there are multiple customer classes 

sharing a common resource which is available to only one customer class at a 

time. The oldest polling model in the <1ueueing literature concerns a patrolling 

repairman, who consecutively inspects a number of machines to check whether 

a breakdown has occurred and to restore such breakdowns [12]. In this example 

the server is the repairman, the queues are the machines , and the customers 

represent the breakdowns. 

The application that gave polling models their name is a time-sharing com

puter system consisting of a number of terminals connected by multidrop lines 

to a central computer. The data transfer from the terminals to the computer 

(and back) is controlled via a 'polling scheme' in which the computer 'polls' 

the terminals, requesting their data, one terminal at a time. In this example 

the server represents the central computer, the queues are the terminals and 

the customers are the data. 

The interest in polling models was strongly revived by the study of message 

transmission protocols in local area networks. Many communication systems 

provide a broadcast channel which is shared by all connected stations. When 
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two or more stations wish to transmit. simult.aneonsly, a conflict. arises. The 
rules for either resolving or preventing such couflict.s are referred to as 'mult.i
access protocols'. An important conflict-free protocol is the token ring proto
col. In a token ring local area network, several stations (terminals, file servers, 
hosts, gateways, etc.) are connected to a common t.ramnnission medium in a 
ring topology. A special hit sequence called the token is pa.<>sed from one station 
to the next; a station that 'possesses the token' is allowed to transmit a mes
sage. After completion of its transmission the st.ation releases the t.oken, giving 
the next station iu turn an opport.1mit.y to transmit. This situation can be 
represented by a polling model with 1-limit.ecl service at each queue; the server 
is the token, the queues are the stations and the customers are the messages. 
Variants of the above-described token-passing mechanism give rise to related 
polling models , with e.g. exhaustive service at the queues. A queueing analysis 
of these polling models yields insight into the ( clis )advantages of the various 
acce8s protocol8, and allows system deRigners to make performance precliction8. 
We refer the reader to Takagi [18] and Grillo [!J] for surveys on polling appli
cations in respectively computer- and communication net.works. 
Other application areas of polling models include: 

• robotics in manufacturing (a single machine processes several types of 
parts, incurring switchover times for changing tools) 

• traffic signal control (the green light represents the availability of the 
server for a queue of vehicles) 

• the operation of elevators (multiple servers are interesting here: is it better 
to have a concentrat ion of elevators in a central area, or should the~· he 
disperse<{ over the buikling?) 

• packet. transfer protocols in B-ISDN (in such Broadband Integrated Ser
vice8 Digital Net.works , channel access will he alternately granted to voice, 
video and data messages, all digitized into .53-byt.e packet.8) 

The characteristic feature of all these applications is that. the server iR 'moving' 
between queues, implying that the priorities of t.he queues are dynamically 
(e.g. , cyclically) changing. This sharply contrasts with classic static priority 
queueing models, where one type of customers always has priority over other 
customer types. 

2 ANALYSIS OF POLLING SYSTEMS 

In this section we briefly review the exact analysis of the standard cyclic polling 
system. After a detailed model description we consecutively consider work
loads, waiting times and queue lengths. 

Model description 
We here describe the standard cyclic polling model: in Sect.ion :~ we extend this 
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model in several ways. Customers arrive at N queues Q 1, ... , Q N with infi

nite waiting rooms according to N independent Poisson processes, with rates 

,\ 1 , ... , AN. Customers who arrive at Q ; are called type-·i customers. Server 

B visits the queues in the cyclic order Q1, .. . , Q N, Q1, . . .. Upon his visit to a 

queue, he serves one or more customers (if present) according to some service 

discipline like 1-limited, gated or exhaustive service (cf. Section 1). The service 

times of type-i customers are independent, identically distributed stochastic 

variables; their distribution is B ; ( ·), with first moment (3;, second moment f3f 2> 

and Laplace-Stieltjes Transform (LST) {3;( ·). The switchover times of B be

tween Q; and Q;+J are independent, identically distributed stochastic variables, 

with first moments;, second moment .s ~ 2 ) and LST a;(·). The total switchover 

time of B in one cycle has first and second moment s respectively s<2>. We 

assume t hat the interarrival , service and switchover processes are mutually in

dependent. 
The offered traffic p; at Q; is definecl as p; := .-\;{3;, and the total offered 

N 

traffic load is p := I:: p;. Obviously p < 1 is a necessary condition for steady-
i = I 

state distributions of workloads, waiting times and queue lengths etc. to exist. 

\Vhen all switchover times are zero, this condition is also sufficient; otherwise 

the situation may he nmch more complicated , aucl in part icular the service 

disciplines may influence the stability condition (e.g., in 1-limited service B is 

forced to spend time switching after each service). See Fricker and Jalhi [8] for 

au extensive discussion of these stability issues. \Ve assume in the sequel that 

steady-state distributions of all quantities under consideration exist . 

The workload process 

Consider first the case that all switchover times are zero. Then B is always 

working as long as there is at least one customer anywhere in the system. 

The amount of work in the system evolves in a way that does not depend on 

the order of service of the queues and within the queues, or on t he service 

disciplines at the queues; this is the principle of work conseroation ( cf. Heyman 

and Sobel [13], p. 418). Hence, for any service discipline at the queues of 

the cyclic polling system, the amount of work is distributed as the amount of 

work in the 'corresponding single server queue' with FCFS (First Come First 

Served) order of service. Since the superposition of N independent Poissou 

processes is again a Poisson process, that 'corresponding single server queue' is 
N 

an l'vl / G/ 1 queue with arrival rate A := I:: .A; and with service time distribution 
i = l 

N 

B (·) := 'L::(.A;/A)B;(·) . 
i = l 

Now consider the case that not all switchover times are zero. The principle 

of work conservation is clearly violated. However, it has been shown in [4] 

that a principle of work decomposition holds: the steady-state amount of work 

V with in the polling system with switchover times is related to the steady-
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state amount of work V.,, ;11wut in the 'corresponding polling system' wif.hout 
switchover times (hence in the above-mentioned 'corresponding M/ G/ 1 queue' ) 
via 

d y 
V,,, ; 1.h = Vw i t.l1011I + ' (1) 

where Y is the steady-state amount of work present in the system at an epoch in 

which B is not serving; !!::. denotes equality in distribution. Moreover, V .,,;11"'"' 
and Y are independent. The distribution of V,,, ;u"'"' is known from 'M/ G/ 1 
theory. The distribution of Y can he determined in a number of cases, but with 
considerable effort. The mean EY, on the other hand, is very easily determined 
for virtually any set of service disciplines at the various queues - which turns 
out to be most useful for deriving mean waiting times, as we'll see in formula 
(4) below. 

REMARK 2.1 
The proof of (1) as presented in [4] is based on three concepts which are sketchily 
indicated below. 
(i) As long as B is serving, the amount. of work evolves in exactly the same 
way as if B would be serving according to the LCFS (Last Come Firnt Served) 
rule. 
(ii ) Characteristically for LCFS, an amount of work Y found by a customer C 
upon his arrival in a switchover period is not served until G has been served, 
plus all customers who arrive during G's service (C's offspring), plus all cus
tomers who arrive during those services, etc. (together - including himself -
forming G's 'ancestral line' ). 
(iii ) The time period required to serve the ancestral line of G is distributed as 
the busy period in the above-mentioned 'corresponding .. M/ G/ 1 queue'. 
Since the principle of work conservation implies that during such a busy pe
riod the amount of work evolves in the same way, regardless whether service 
is FCFS or LCFS, combination of (i) , (ii) and (iii) shows that the workload 
V ,,, ;11i is distributed as the superposition of Y and V 111 ;11wul· 

Another proof of (1), communicated to the author by B.T. Doshi, proceeds as 
follows. Assume for simplicity that the densities of the distributions of V ,,,;11i 

and Y exist; denote them by v( ·) and y( ·) , and denote their Laplace transforms 
by </>( ·) and 11( ·). Equating the down crossing and up crossing rates of level ;r, > 0 
gives: 

x 

v(x) - (1 - p)y(x) = A ./(1 -B(x - z))v(z)dz. 
0 -

Combining this relation with v(O) = (1 - p)y(O) and taking Laplace transforms 
leads (with (3 ( ·) the LST of B( ·)) to: 

l - (3 (w) 
<f> (w) - (1 - p)17(w) = A <f>(w) . 

w 
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Hence 
(1 - p)w 

</>(w) = w - A+ A(3(w) r1(w), (2) 

which proves the decomposition into two independent components: </>(w) is the 

product of the transform of the distribution of V witlwut (a well-known M/ G/ l 
expression) and the transform 77(w) of the distribution of Y. See [3] for a 

g• !neralization of this principle of work decomposition, and for applications to 

various polling models with a non-cyclic visit pattern. 

Waiting times 
We restric1 ourself here to m ean waiting times. Denote the mean waiting time 

of type-i c1 istomers by EW;, and the mean number of waiting type-i customers 

by EX;. These quantities are related via Little's formula: EX; = A;EW;. It 

is easy to relate the mean workload in queueing models with Poisson arrivals 

to mean queue lengths, and hence to mean waiting times. Indeed, under mild 

restrictions that are fulfilled in the standard polling model described earlier in 

this section, we can write ( cf. [3]): 

N N (3~ 2 ) 

EV,,,;u, = ~ (3; EX; + ~ p; 2(3; . (3) 

Now take means in (1 ) and combine the resulting formula with (3). Appli
N 

I: A ;{:J ~ 2) 

cation of Little's formula and EV..,wwut 

conHervation law [4]: 

i = l = 2( 1- /J) t hen yields the pseudo-

N f, A ;(3~2 ) 
~ p;EW; = p i=t ) + EY. 
~ 21 - p 
i= l 

(4) 

Here (cf. the notation introduced in the model description) 

s(2) s N N 

EY = p~ + 2(1 - )[p
2 

- LPT] + L:EZ;; , 
p i=l i= l 

(5) 

with Z;; the amount of work left behind at Q ; by the departing server. EZ;;, 

and hence EY, can be explicitly determined for polling models with standard 

service disciplines like I-limited, gated, or exhaustive. EY = 0 for the case 

of zero switch over times, and then ( 4) reduces to the well-known conserva

tion law [11]. The origin of the term conservation law is that the weighted 
N 

sum I: p;EW; of the mean waiting times remains the same, regardless of any 
i= l 

changes in the service disciplines at the various queues. In the case of switchover 

times this weighted sum does change when a service discipline is changed, hut 
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only via a - usually simple - change in EY. 
N 

The remarkably simple exact expression for I: p;EW; ha.<> in the pa.<>t few years 
i= l 

t.urned out. to be extremely useful for a variety of purposes: testing simulation 

results, the development of approximations for mean waiting times, and t.he 

optimization of server routing and server visit times. 

Queue lengths 
For the above-described N-queue cyclic polling model, with exhaustive service 

at all queues, Eisenberg [7] obtains the joint queue length PGF (Probability 

Generating Funct.ion) at epochs in which B reaches one of the queues. His solu

tion method may also be used to handle the case of gated service at all queues. 

Furthermore, he also allows a fixed non-cyclic visit pattern. In a series of pnb

licat.ions following Eisenberg's paper, an exact queue length analysis has been 

performed for several other N-queue polling models, with exhaustive or gated 

service, or mixtures and variants of these service disciplines; for an overview 

we refer to the survey of Takagi [I9]. Iu contrast, polling models with limit.s 

on the number of customers to he served dnring a session, or on the session 

time, have mostly defied an exact analysis. The joint queue length distribution 

for t.he 2-queue model with I-limited service at both queues can he obtained 

by transforming the prohlem iuto a Riemann- or Riemann-Hilbert boundary 

value problem (see, e.g., [u]), but for N > 2 it is not clear at all how t.he queue 

length problem can be attacked. 
In an important. paper, writ.ten at CWI, Resing [I5] clarifies this sharp separa

tion between 'easy' and 'hard ' polling models. He considers a class of service 

disciplines \vit.h t.he following property: 

Bmnchir1g 7wo71crty 
If there are I.: ; customers present. at. Q; at the start of a visit., then dnring the 

course of the visit each of these I.:; customers will effectively he replaced in an 

i.i.d. manner by a random population having some PGF h; (z1, . .. , ZN) which 

may be any N-<limensional PGF. 

Resing <lemonstrates that , if the branching property holds at all queues, then 

t.he joint queue length process at. successive moments that B reaches a fixed 

queue, say Q1, is a !l'folti-T.11pe Branching Process (MTBP) 'with immigration ' . 
The theory of MTBP now yields stability conditions as well as an exact. ex

pression for the joint queue length PGF. 
The I-limited service discipline does not. have t.he branching property. The 

gated and exhaustive disciplines, on the other hand, do possess this property, 
with respectively 

N 

h;(z1, ... , ZN) = (3;(2: >.J( l - ZJ)), (6) 
J= I 
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(note that this is the PGF of the joint distribution of the numbers of arrivals 

at the various queues during one service at Q;), and 

h;(z1, ..• , zN) = O;(LAj (l - zj)), 
N i 

(7) 

where O;(·) denotes the LST of a busy period in au M/G/1 queue with arrival 

rate A; and service time distribution B;(·). 
In the next section we shall extend the queue length results for the polling 

model of the present section, with the branching property at all queues, to 

some more general polling models. Therefore we now go into more detail con

ceruiug the theory of MTBP with immigration and the results of Resing [15]. 

Consider a system with N particle types. Let p (iJ (j1, .•. , jN) denote the prob

ability that a type-i particle 'produces' as offspring jk particles of type k, k = 

1, ... , N. The offspring PGF of 1Pl(j1 , ... ,jN) is denoted by j< il(z1 , ... , ZN ), 

and the mean uumber of particles of type j produced by one type-i particle is 

denoted hy m iJ . The matrix ~M = (m;j ) plays an essential role in the theory 

of MTBP. M is called primitive if there is an n such that all entries of the 

matrix A1 11 are strictly positive. The well-known Perron-Frobeuius theorem 

implies that a nonnegative primitive matrix Al has a positive real eigenvalue 

ll111" x such that I v I< v"""' for all other eigenvalues v of A1. 
Not only are particles produced by other particles; uew particles can also en

ter the system via immigration (this corresponds to the arrival of customers 

during a period in which B is not serving). Let q(j1 , ... ,jN) denote the 

probability that a group of immigrants consists of jk particles of type k, 

k = 1, ... ,N. Denote its PGF by g(z1 , ... , ZN ), and iuductively define the 

functions f 11 (z1, ... , ZN) by 

fo( z1, ... , zN) := (z1, ... , z,v), 

! 11 ( z1, ... , z,v) := (! ( I) U 11- 1 ( z1, ... , z,v) ), ... , J< Nl U 11 - 1 (z1, ... , ZN) ) ). 

Resing cites the following theorem, due to Quine [14]: 

THEOREM 2.1 
Let Z11 = (Z~,1 >, ... , Z~,N) ) be an MTBP with immigration in each state, with 

offspring PGF J (il (z1 , •.• , ZN ), i = 1, ... , N, and immigration PGF g( z1, ... , z ,v ). 

Let the mean matrix NI correspondiug to the branching process be primitive 

and its maximal eigenvalue v"'""' < 1. Assume the Markov chain Z,, is irre

ducible and aperiodic. The stationary distributiou 7r(j1, ... , j N) of the process 

Z,. exists iff 

q(J1,. · · ,j,v) log(jl + · ·. + jN) < 00. (8) 

When this condition is satisfied, the PGF P( z1, ... , z N) of the distribution 
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7r(j1, ... , j N) is given by 

00 

P( zy, ... ,ZN) = ITYUn(Zy, ... , ZN)). (9) 
r1 = 0 

Resing proves t.he following theorem ([15], Theorem 3): 

THEOREM 2.2 
Assume t.hat. the service discipline at each queue Q; of the cyclic polling model 
satisfies the branching property with PGF h;(z1, ... , zN), i = 1, ... ,N. Then 
the numbers of customers in the queues at successive time points that B reaches 
Q1 constitute an MTBP with immigration in each state, where the offspring 
PGF's JUl(z1, ... , ZN) arc given by 

f (i)(" - ) _ Ii (- - j U+ Il( - - ) J<N l (- _ )) - 1, ... , "- N - ·i "- 1,···, "-i ~ "' l,···, "- N , ... , "' 11···, "'N , 

(rn) 
and the immigration PGF g( z 1 , ••• , ZN) is given by 

REMARK 2.2 
The proof of Theorem 2.2 is established by considering the evolution of the 
joint queue length process between two successive time points, say t 11 and t 11 +1 , 

that B reaches Q1 . Let CA be a customer in the system at t 11 • Define the an
cestral line of CA as CA plus the set of all g1 customers who have arrived during 
the service of c:1, plus the set of all g2 customers who have arrived during the 
service of those g1 customers, plus .... Define the effective replacements of CA 

as those customers from the ancestral line of CA who are still present at t 11 +1 • 

If CA is not served in this cycle, the effective replacements of CA consist of only 
c11 itself. 
In a similar way t.he effective replacements of a customer CB who arrives during 
a switchover interval between t 11 and t11 +1 are defined. 
The total collection of customers in the various queues at f. 11 + 1 consists of 
the effective replacements of all customers present at t 11 plus the effective 
replacements of all customers who have arrived during a switchover interval 
between f. 11 and t11 +1 • The fact that all arrival processes are Poisson pro
cesses, combined with the fact that all service disciplines satisfy the branch
ing property, implies that the joint queue length process at successive epochs 
when B reaches Q1 constitutes an MTBP with immigration. The offspring, 
in the sense of the MTBP, of one type-j customer is the set of effective re
placements of that customer, and the immigration corresponds to the effec
tive replacements of all arrivals during the switchover periods in one cycle. 
In particular, J<Nl (z1, ... , zN) = hN(z1, ... , zN ), but J(N- l l (z1, ... ,zN ) = 
hN- I (z1 , ••• , ZN - t, J(N) ( z1, ... , ZN ) ). The latter formula reflects the fact that 
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type-N arrivals during a type-(N - 1) service may still generate their own off

spring during the cycle. To arrive at the nested structure of the last PGF, the 

following property is used: The PGF of A1 + ... +AK, with A1, A2, ... and 

K independent nonnegative integer-valued stochastic variables with PGF A(·) 

respectively K (·), is given by 

CX> CX> 

L L Pr(K = j)Pr(A1 + ... + A J = n) z" 
u = Uj = U 

CX> 

= LPr(K = j)A(z)J = I< (A(z)) . 
J = U 

REMARK 2.3 
It follows from the above two theorems that the PGF of the joint queue length 

process at moments that B reaches Q1 is given by the infinite-product expres

sion (9). Let us explain an<l illustrate this result by considering the 2-queue 

case. Denote by P;(z1, z2 ) (G;(z1, z2)) the PGF of the joint queue length dis

tribution when Breaches (leaves) Q;; so P1 (z1, z2) is the PGF we are looking 

for. Then we have the following four relations. 

G:i( z1, z2) = P2 (z1, h2(z1, z2)), 

P2 (z 1, z2) = cr1(>.1(l - zi) + >.2 (1 - z2))G1(z1, z2), 

G1(z1, z2) = P1(h1 (z1,z2), z2). 

(12) 

Here we have use<l the memoryless property of the Poisson arrival processes, 

and the nested structure outlined above for the sum of a random number of 

stochastic variables, as well as the following property of PGF's: 

The PGF of t.he sum of two independent stochastic variables is the product of 

their PGF's. 
Combination of the four relations in (12) yields: 

Remembering the <lefiu i tions of the immigration PG F g( z1, z2 ) and the offspring 

PGF's f (i)(z1, z2), we can rewrite this into 

(13) 

Iterat ion of this functional equation leads to the infinite-product expression 

(9), with N = 2. 

REMARK 2.4 
Polling models with and withont switchover times are usually treated separately 
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in t.he literature, often via different. approaches: t.he difficulty with simply let
ting the switchover times tend to zero in a polling model with switchover time;; 
is that the number of visits in an idle period tends to infinity, leading to de
generate distribut.ions at such visit. epochs. However, t.he following way out. is 
possible. Let. us assume that B in an empty syst.em rests at, say, Q1• For this 
situat.ion Resing [15] shows, for the class of polling models with the branching 
propert.y, t.hat. the joint queue length process at successive moments that B vis
its Q 1 is again an MTBP - but now with immigration only in state zero. In [2] 
it is subsequently shown how the identical offspring PGF's of the IvITBP's cor
responding to the polling model with respect.ively witho'llt swit.chover times give 
rise to a strong relation between their respective joint. queue length processes 
(see also [17]) . 

3 POLLING SYSTEMS WITH SMA RT OR PERSISTENT CIJSTO!\IERS 

In t.his section we shall generalize the polling model of Sect.ion 2 in two di
rections: polling models with arrival rates that depend on t.he server posit.ion 
('smart c11st.01ners') and polling models with feedback and customer routing 
(' persistent customers'). For each of these direct.ions we outline (because of 
space restrict.ions without detailed proofs) how tlw model can be analyzed 
completely when the service discipline a t. each q11e11e satisfies the hra11chi11g 
property . 

.'J. J Smart c'llsfome1·s 

In some polling applications, knowledge about. t.he server position may influ

ence t.he a rrival rates of the customer types. Iu the director 's example, the 
knowledge that. the director will next turn to personnel matters may generate 
some new persounel tasks, while there is less hurry in creating tasks of an
other nature. Let us model t.his as follows, making a few adaptations i11 the 
model described in the previous sect.ion. The arrival process of customers at. 
Q;, when Bis at. Qj, is Poisson wit.h rat.e A;j; t he arrival process of customers 

at Q ;, when Bis swit.ching from Qi to Q.i+J, is Poisson with rate /li.i· When 
the service discipline at each queue satisfies t.11e branching property, with PGF 
h; ( ;:; 1 , •.. , ;:;N) at Q;, then it is easy to check t.hat the joint queue length process 
at successive moments that. B visits, say, Q1 is an MTBP with immigratio11. 
The immigration PGF is given hy (cf. (11)): 

In the case of gated service at Q; the offspring PGF is (cf. (G)) : 

N 

h ;(z1, ... , Z N) = /J;(:L:>Ji(l - Zj )), (15) 
J= l 

226 



and in the case of exhaustive service at Qi the offspring PGF is (cf. (7)) : 

h;(z1, .•. , ZN) = O;(L Aj;( l - Zj) ). 
#i 

(16) 

The reasoning presented in Remark 2.3 should make it clear that the present 

model again gives rise to a functional equation of the type (13), iteration of 

which leads to an infinite-product expression for P1 (z1 , •.• , ZN) like (9). The 

PGF of the joint queue length distribution at the end of a switchover from Q; 

to Q;+ 1 is simply expressed in the PGF at the beginning of that switchover 

(the end of a visit to Q;), and the latter PGF can be expressed in the PGF 

of the joint queue length distribution at the beginning of that visit to Q ; by 

substitution of the offspring PGF h;(.) at the i-th position in the PGF. 

Several iuteresting special cases deserve further attention. E.g., A;j = Ap;j and 
N N 

µ ;j = Aq;j with PiJ, lJiJ 2: 0 and I: ]J ij = I: lJ ij = 1 for all j corresponds to a 
i = l i= l 

fixed total arrival rate A. If the service discipline at each queue is gated (hence 

when B visits Q;, he will only serve customers that were already present at the 

start of the session), the smartest thiug for an arriving customer to do is to go 

to the next queue: .A;+1,i = /L i+ l, i = A, and ,\ ij = µ ;j = 0 for all i =/= j + 1. The 

most foolish behaviour, on the other hand, is represented by .A ;,; = µ ;,; = A, 

and A iJ = µ ;j = 0 for all j =!= i. The former choice clearly minimizes the waiting 

time of each individual arriving customer. Let us now moreover assume that 

B; ( ·) = B ( ·). Then the above choice also minimizes, in the sense of stochastic 

ordering, the workload of the server. This may be proven using coupling meth

ods; see [5] for the more restricted fully symmetric case. 

In the case of identical service time distributions aud fixed total arrival rate 

A, the work decomposition (1) still holds (check the level crossing argument 

presented in Remark 2.1 ), and EY can easily be cak:ulated. But if not all ser

vice time distributions are the same, or the total arrival rate is not constant, 

theu the whole work decomposition concept breaks dowu. Some reflection will 

make it clear that when swit<:hover times are zero, even the concept of work 

consenJation is dest royed. 

3. 2 Feedback and c'Ustomer routing 

In the director 's example, a completed task may have to he recousidered in 

future sessions. This feature cau be incorporated in the model of Section 2 in 

the following way. A newly arriving customer at Q; (Poisson with arrival rate 

.A ;) is called a type-(i, 1) customer. After completiou of its service, it moves 

to Q k with probability p~2, becoming a type-(k, 2) customer, and it leaves the 

system with probability p~~) . More generally, a type-( i, j) customer denotes a 

customer at Q; who has to be served for the j-th time; after having received 

service, it moves to Q k with probability P'.{l, and it leaves the system with 
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probability p)j~ ) . A type-( i, j) customer requires a service time at Q; with dis

tribution B;.i( ·), with LST {3;,;( ·). We assume that Pli~ ) = 1 for all i, i.e., each 
customer requires at most L services. 
Customer rout ing has hardly been studied in the context of polling, although 
several applications in token ring networks, robotics and computer systems ex
ist ; cf. Sidi et al. [16j. The latter paper analyzes the case of fixed transition 
prohahilit.ies Pi,i of customers from Q ; to Q,; , wi th fixed service time dist.ribu
tion B ;(-) at. Q ; and exhaustive or gated service at all queues. 
In this section we st u<ly the N £-dimensional queue length process X = 
(X11 , ... ' x, L; ... ; X N1' .. . , X NL), where X u denotes the number of customers 
of type-( i , j ) at a moment at which Breaches Q 1 . 

The branching property of Section 2 has to be adapted in the sense that one 
has to distinguish L PGF 's h i;i (z1, ••• , Z N ) , .i = 1, ... , L , in Q ;. 
It is eas ily seen that X is an MTBP with immigration in each state. For the 
general case, determination of t he offspring PGF's and t he immigration PGF is 
somewhat. involved. For example, one has to take the possibility into account 
t.lmt a customer is fed back to the same queue; and in the case of exhaustive 
service, such a customer may then receive more than one service during the 
same session. We shall refrain from formulating and proving the generalization 
of Theorem 2.2 here in its fnll generality. Instead , we illustrate the st.ruct.ure 
of the MTBP by considering a two-queue example with gated service at. bot.h 
queues. Similar to Remark 2.3, we denote by P; ( z11 , . .. , Z2L) ( G; ( z11, ... , Z2L)) 

the PGF of the joint queue length distribution when Breaches (leaves) Q;. We 
have the following four relations: 

P2(z11 , ... , z2L) = 0-1 (,\1 (1 - zll ) + ,\2(1 - z2i))G1 (z11 , ... , zn) , 

G 1 (zll , .. . , z2L) = Pi (Yll , ... , Yt L; Z21, ... , Z2L ) . 

Here, for i = 1, 2, j = 1, ... , L , 

YiJ := !3i.i (,\1 (1 - z11 ) + A2 (l - z21 )) [71)(,l + vW z1..H 1 +PW z2.,;+ il . 

Note that /3;,; (,\1 (1-zll )+ ,\2(1- z21 )) is the PGF of the numbers of new arrivals 

at the various queues during a type- (i, j ) service, and that P~i~ ) + pi{lz l.J+ J + 
pg> z2 ,J+ 1 is the PGF of the numbers of t.ype-(k,j + 1) customers, /.: = 1, 2, 
generated by the feedback of one t.ype-(i , j ) customer. 
Combination of the four relations in ( 17) leads to a recursion for P1 ( zll , ... , z2L) , 
of similar form as (13), which can be solved iteratively. 

REMARK 3.1 
We thus obtain the PGF of the joint queue length distribution at time points in 
which B reaches Q 1 . But the four relations in (17) then also yield the PGF's 
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of the joint queue length distributions at time points in which B leaves Q1 , 

reaches Q2 and leaves Q2 • The PGF of the joint steady-state queue length 

distribution may also be determined from these results, once the service order 

at the queues is specified (e.g. , serve type-(i, j + 1) before type-(i,j) customers). 

REMARK 3.2 
T he case of a single queue with feedback , contained in the present model , is 

also interesting in itself. We can obtain the joint queue length distribution of 

the numbers of customers that are present for the first, ... , L-th time, at the 

time points at which B starts a new session. 

REMARK :-\ .3 
Several variants and generalizations can also be handled in the framework of 

au MTBP. For example, one can allow zero switchover times between sessions, 

obtaining an MTBP with immigration only in state zero. Furthermore, instead 

of assuming p~t > = 1, we may also assume that Pll) = P ik and B;j( ·) = B ;( ·) 
for all j ~ L , k = 0, 1, . .. , L. The resulting MTBP still has a finite number of 

NL variables. This generalizes the model of Sidi et al. [16] in various ways. 

We may generalize our model even further, while retaining the MTBP structure. 

For example, we can allow 'smart customers' in combination with feedback and 
routing; and we can also allow the possibility that a served customer not just 

feeds back, but branches into several customers: a task of type-(i,j) that has 

been handled by the director may simultaneously give rise to tasks ( k1 , j + 1) 

and (k2 ,j + 1). While these possibilities may make the job of a director rather 

complicated , they do not fundamentally complicate the analysis of his work

load. 
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Finite graphs m which the point neighbourhoods are the 

maximal independent sets 

A.E. Brouwer 

We determine all graphs as in the title. 

In [vdH] certaiu graphs Lk occur. Noticing that they have the property 

meutioned in the title, I wondered whether they are the only such graphs. This 

note shows that, essentially, this is indeed the case. 

For k $ 1, let Lk be the graph with vertex set Zak - l (the integers mod 

31.: - 1) and adjacencies x "' 'Y iffy - :i; E {1, 4, 7, ... , 3k - 2}. (Thus, £ 1 is the 

complete graph on two vertices, and £ 2 is the pentagon. ) The neighbourhood 

of a vertex x is the set N(x) = {YIY "' x}. A graph G is called reduced when 

distinct vertices have distinct neighbourhoods. 

THEOREM 0.1 The finite reduced triangle-free graphs in which each indepen

dent set is contained in a point neighbourhood are precisely the graphs Lk 

(k 2 1). 

PROOF: First we show that the graphs Lk have the stated property. That 

they are finite , reduced and t riangle-free is clear. Now it suffices to show that if 

S is an independent set contained iu N ( x), and S U { y} is independent for some 

y, y f x , then S U {y} ~ N( z) for some z . But y = :i; + 3i- 1 or y = x+ 3i 

for some i (1 $ i $ k - 1), and we can take z = :i; + 3i or z = x + 3i - 1, 

respectively. 
Conversely, let the graph G have the stated property. We show that G ~ Lk 

for some k $ l. Since 0 is indepeudent, G has a vertex, and since a singleton is 

independent, each vertex has a neighbour, and since two nouadjacent vertices 

have a common neighbour, G has diameter at most 2. Clearly, if G is complete, 

then G ~ L 1, so we may assume that G has diameter 2. 

Step l. Given two nonadjacent vertices x , y , there is a unique vert ex z = 
cr(:i:; y) such that y "' z and N(:i:) n N( z) = N(:i:) \ (N(:i;) n N(y)). 
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· ~--- "~: : 

PROOF: The set {y}UN(:i:) \ (N(:i:)n N(y)) is independent and hence contained 
in N(z) for some z . If it i8 also contained in N(z'), then, since G is reduced, 
the vertices z and z' have distinct neighbourhoods, and we may cu;sume that 
z ""' u, z' f u for some vertex u. But now { x, u, z'} is independent and not 
contained in a point neighbourhood. Contradiction. 

Step 2. G is regular of valency k, say. If h~ > 1, then there is a pair of 
nonadjacent vertices with k - 1 common neighbours. 
PROOF: Let :r, y be nonadjacent. If IN(y) \ N(:i:)I > 1, then choose /1 E 
N(y) \ N(x), u -f. a(:r:; y). By the uniqueness part of the previous step, there 
is a vertex v E N(:i:) \ (N(y) U N(u)), so that also IN(:r) \ N(y) I > 1. Now 
( N (:r) n N (y)) U {11, v} is independent, and hence contained in N ( z) for some z . 
By downward induction on IN(:r:)n N(y) I it follows that IN(:r:) I = IN(y) I (since 
we have either IN(:r:) I = IN(:r:) n N(y) I +1 = IN(y) I, or, by induction, IN(:i:) I = 
IN (z) I = IN(y) I) . Now regularity of G follows since its complementary graph 
G is connected. 

Step 3. G '.:::'. Lk. 
PROOF: Let :i:o f Yo and IN(:r:o) n N(yo) I = k - 1. Define vertices :1:;, !Ii 
(i E Z ) by !J;+ 1 = 11(:1:; ; !J; ) and :r:; = a(y;; :i:; _ i). Then IN(:i:;) n N(y; )I = k - 1 
and N(:r:;) n N(Y;+i) = {:i:; _ i} = {l/;+2 } for all i. By induct.ion 011 j (1 ::::; j ::::; 
k - 1) we see that IN(:r:o) n N(:r::l.J )I = k - .i, and that :1:0 rv :1:1, :1:4, ••• , :1::1j - 2 and 
:r::1j rv :1:2, :1;5, ... , :r:1j - I· Indeed, for j = 1 this is clear, since :1:0 = Y:I· But :1:3 j 

and :i:3j +:1 have the same neighbours except for :1::1.J+J, :1::1.;+2, and :i:o and :1::1.J 
have the same neighbours except for the vertices :1::1;+J, :1::1;+2 (0 ::::; i ::::; j - 1), 
so :i:0 ""' :1::1.J+ 1 and similarly :1:2 ""' :1::1.J+:1. As long cu; :i:11 and :i::1.J have common 
neighbours, it follows that :i;0 -f. :r:3.J±I· However, :i:0 and :i::ik - l have the same 
neighbours, so :i:0 = :i::i~· - I· If there is a vertex z distinct from all x;, then z is 
adjacent to either all or none of the :r:;, contradiction, since G is triangle-free 
and connected. D 

This theorem can be generalized by deleting the hypothesis that G is reduced. 
Now the conclusion becomes that G is a coclique extension of one of the Lk· (In 
particular, if G is regular, that G is a lexicographic product L~., 111 := Lk[K ,,, ].) 
Probably the finiteness hypothesis can be dropped cu; well, but the conclusion 
becomes more complicated, and I have not investigated this further. 

The reason that the graphs Lk.m occur in [vdH] is that (for 111 2". 3) they 
have the maximal possible toughness t = n/k - 1 for triangle-free regular 
graphs. (The toughness t( G) of a connected non-complete graph G with vertex 
set V is by definition min IV \ X l/w(X) taken over all subsets X of V such 
that the number of connected components w(X) of X is at least two. Clearly, 
t(G) ::::; (IVI - 2) / 2.) 

LEMMA 0.2 Let G be a connected non-complete graph. The toughness of the 
lexicographic product G [J\111 ] equals min IV\Xl/w(X), where w(X) is the num
ber of singleton components of X plus 1/ m.-th of the number of other compo
nents of X, and X runs through the subsets of V with w(X) > 1. D 
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PROPOSITION 0.3 The toughness of Lk,m equals min(2 - !, 2 - m(k~l)+l) (k ;::: 

1, m ;::: 1). 

PROOF: By the above lemma, we only have to investigate G = L k. Taking 

X = N(O) shows that t(G) :::; (3k - 1 - k) /k = 2 - 1/k. Taking X = N(O) U {2} 

shows that t(G) :::; ((3k - 1) - (k - 1))/(k - 1 + 1/m) = 2 - 2/(m(k - 1) + 1). 

Conversely, if {x , y} is an edge of G, then V\ (N(x)UN(y)) is complete bipartite 

or a coclique. Thus, if some subgraph X of G has at least two non-singleton 

components, then w(X) = 2/ m and IV\ X l/w(X) ~ 4/(2/m) = 2m ;::: 2 so 
that X does not determine the toughness. If X has precisely one non-singleton 

component, say containing the edge { 0, 3t + 1}, then the set S of all vertices s 

such that { s} is a component of X is contained in one part of the bipartition 

on the vertices nonadjacent to both 0 and 3t + 1; say, S ~ {3t + 3, ... , 3k - 3}. 

Now IV\ Xl/w(X) ;::: IN(S)l/(ISI + 1/m) . But when ISI is given, IN(S)I 
is minimal when S is 'consecutive': S = {3a, 3a + 3, ... , 3a + 3r}, and then 

IN(S)l/(ISI + 1/m) = (k + r)/(r + 1+1/m). This again is minimal when ISI 
is maximal, i.e., for t = 0 and r = k - 2, and then IN(S)l/(ISI + 1/rn) = 
2 - 2/(m(k - 1) + 1). Finally, if X has only singleton components, a similar 

but easier argument again shows that we get the smallest quotient by taking 

X a maximal coclique, and then this quotient equals 2 - 1/k. D 
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Accessing multimedia information in a networked environment 
introduces problems that don't exist when the same information is 
ac~essed locally. These problems include: competing for network 
resources within and across applications, synchronizing data arrivals 
from various sources within an application, and supporting multiple 
data representations across heterogeneous hosts. Often, special
purpose algorithms can be defined to deal with these problems, but 
these solutions usually are restricted to the context of a single 
application. A more general approach is to define an adaptable 
infrastructure that can be used to manage resources flexibly for all 
currently active applications. This paper describes aspects of a 
research program into adaptive, networked multimedia that started 
at CWI in 1991. 

I . Problem Overview 
Networked multimedia is a generic tenn that describes a model of information distri

bution in which data sources are located separately from data sinks. Networked mul

timedia offers a number of advantages to applications: the network provides a 

convenient means of distributing information to other sites, it provides access to 

compute servers where special-purpose processing of multimedia data can take place, 

and it provides access to central servers that can be used to store the often vast 

amounts of data required to represent multimedia infonnation fragments. At the same 

time, however, networked multimedia presents an application with a number of dis

advantages when compared to accessing and manipulating multimedia data locally: 

the data delivery characteristics of the network are difficult to predict and control, the 

contention for critical system and data resources across the network makes balanced 

data access difficult to achieve, and differences among network hosts may make data 

objects difficult to share. 
In order to make networked multimedia more useful to application designers and 

users, considerable effort needs to be devoted to studying the way that data servers, 

operating systems and network infrastructures provide access to time-sensitive data. 

Most current approaches define extensions to "conventional" means of accessing 

remote data to provide predictable network service and performance. For example, 

predictability is provided in data object servers (either file servers or database sys

tems) by supporting efficient object storage and retrieval/delivery [DBL92,RV91] and 

in operating systems by supporting quality of service guarantees for delivery of (pos-
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sibly) complex data types [ABL92.D91,GA91.HKN91.LMM92.TNP90]. At the network 

level, support for predictable multimedia is provided by. among others, admission 

control techniques that regulate use of resources and by technologies that provide 

deterministic network/data access [cszn. HM91.JST92.LG91 .VF90.T90]. The basic 

premise of this work is that an application will request a data o~ject (or a collection 

of objects) requiring a specific amount of resources during a specified time. If these 

resources are available, the application can execute; if not. the application is either 

delayed or it is denied access to the resources. 
An implicit assumption in current approaches is that the application program bears 

a significant control burden in requesting and coordinating multimedia information. 

Consider, for example, the application environment shown in Fig. I. Here, an appli

cation running on node a requests multimedia data from four sources located on three 

separate servers. The application must know the resource requirements of each 

stream of data it uses (where we use the term "stream" to mean either a single object 

or a collection of similarly-typed objects from a single server). it must coordinate the 

arrival and manipulation of multiple independent streams, and it must take any 

actions necessary if a given stream cannot be provided by the infrastructure. In gen

eral. the application software must control all content-based actions in or among the 

streams in the context of the application, while the infrastructure will control repre

sentation-based actions within a single stream in the context of service guarantees or 

network/server activity. 
The content/representation division of control works well in environments where 

sufficient resources exist to handle an application's request fully or where insufficient 

resources exist to handle the requests at all. It is less effective when an application 

can receive only partial support of its requests. In Fig. I. suppose that one of the 

requested data streams could not be made available at the required level of service. 

An application may decide to skip this data object (or the collection of objects associ 

ated with that stream), or it may decide to substitute another data object or object 

server. In effect. the application program is engaged in a process of resource alloca

tion: it is attempting to match its data needs to the resources available at various loca

tions in the support infrastructure. Unfortunately, to do efficient resource allocation

even if this means only selecting from a set of available data streams- the applica-

I - ,. ., '"' ., ., ., "' '" ., 

~
. 

- . . -

: _ - - - - - - ! ''! - -
. ---©------. 

(c) 

(a ) ' 

236 

Key: 
111aclli11e 

' bo1111dm:v 

data pat/ls 

Q "user"node 

i I audio 



tion needs to know how to best make use of the available infrastructure. This involves 

issues that most applications programs are ill-equipped to resolve. (It also requires 

applications to be rewritten when they are moved to new environments.) Alternatively, 

the operating system or the data servers could handle all resource allocation, but the 

(local) operating system will have only limited knowledge of the state of each of the 

servers and other applications active within the networked environment, and the data 

servers will be able to manage only their own streams, not other streams in the infra

structure. 
This paper presents an alternative approach to supporting networked multimedia that 

is being studied within the Multimedia Kernel Systems group at CWI. Our work is 

aimed at studying coordinated application and infrastructure-based support for adapt

able applications. Here, adaptable means that an infrastructure can be defined so that 

an application can adapt to the resources available at the time the application is run. 

The types of adaptability we consider include responding to (possibly transient) varia

tions in the number and composition of network and remote resources that are avail

able during application execution, as well as application and server support for 

heterogeneous collections of input/output devices. Our approach is based on two mech

anisms. First, we define an application specification that explicitly describes the data 

objects used by an application, the manner in which the objects interact, and the avail

able ranges of alternatives that are acceptable to the application at run-time. Second, 

we define an interface to the data objects that allows alternative representations to be 

selected at run-time by a process of application-transparent negotiation at run-time. 

This approach is specifically geared to applications that have a doc11111ent or presenta

tion structure. An authoring system (such as [RJM93]) can be used to generate a specifi

cation that can be accessed/executed at some later time. By allowing the execution to 

be adaptable, one specification can potentially allow an application to be available 

within a heterogeneous environment under a range of resource availability conditions. 

As will be discussed, this can help to reduce the high cost of authoring multimedia 

applications and it can lead to more efficient use of multimedia infrastructures. 

In the sections below, we describe the framework for partitioning control responsi

bility within the system infrastructure to support adaptable applications. This frame

work, the Amsterdam Multimedia Framework, distinguishes itself from other 

approaches because of the cooperative and distributed nature of resource allocation and 

control among a collection of independent multimedia applications. 

2. Requirements for Adaptable Networked Multimedia 
In order to support adaptable networked multimedia, an underlying framework is nec

essary that defines how information is structured, composed, accessed, and manipu

lated, as well as how it is stored and transmitted among sources and sinks . In this 

section, AMF: the Amsterdam Multimedia Framework is presented. To put AMF in 

context, its description is prefaced with a discussion of the type of multimedia applica

tions it was intended to support and a review of the control issues that the framework 

must address. 
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2.1. Multimedia Application Descriptions: The Document 

Our abstraction for organizing multimedia information is the document. A document 

defines a collection of data objects and a description of how these objects interact. 

Each object may consist of previously-stored information or information that is gen

erated dynamically. Such information can be of either a single data type (such as pure 

audio or video) or of a composite data type (such as video with embedded audio). An 

active document is called a presentation. 
Fig. 2 provides an example of a document-based multimedia application- in this 

case, a fragment of a walking tour of Amsterdam. This fragment contains a title bar 

using text data. a description of typical shopping street using video data, several "but

tons" using text data that control navigation through the document, a CWI logo using 

still-image data. and two sets of captions (one in English, one in Dutch) using text 

data. The document from which this example is taken also has two sound tracks (one 

in Dutch, one in English) that provide audio commentary during the tour. The data 

objects can be stored on various servers located throughout the environment. When 

the document is accessed. each of the individual object streams is sent to a document 

player, which implements any high-level (non-embedded) synchronization con

straints among the streams (such as matching the subtitle text with the audio data). 

Each document, such as the tour of Amsterdam in our example, is specific to a partic

ular application; the player is a general-purpose program that must be able to play 

many different documents. 
The primary advantage of using a document model is that it provides an explicit 

behavioral specification. This behavioral description can be used to fetch individual 

data objects by a player. but it can also be used prior to execution to analyze expected 

application resource use and feasibility for a given environment [BZ92a]. Assuming 

Shopping in Amsterdam 

The chann of shopping in Amsterdam is in discovering the speciality ... 

De charme nm winkelen in Amsterdam ligt in het ontdekken van leuke ... 

I contents I I begin route over I I next I 
Figure 2. An example multimedia application. 

The rectangles along the bottom are navigation controls; the square in the picture 

is a hyperbutton. The lines o.f text are captions that accompany multi-ling11al audio. 
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the specification was defined to run in a general-purpose environment (that is, it was 

not designed for use on one particular platform), the specification can also be used to 

determine how (and if) the synchronization needs of the application can be supported 

at run-time [BRL91 ]. 

Creating documents using authoring systems or program-based toolkits is typically 

an arduous task. One motivation for investigating adaptable networked multimedia was 

to provide reduce the overall effort of producing multimedia presentations by a means 

of reusing document structures in multiple environments once they were authored 

[BRL9 1,HBR93b). 

2.2. Supporting Adaptable Documents: 
Data-F epresentation and Document-Content Issues 

During ana.ysis of a document, it is typically assumed that the specification provides a 

precise description of the needs and characteristics of the application. Our work inves

tigates the use of a specification as a guide to possible resource and data use, depending 

on the resources available at execution time of the document. While pre-execution 

analysis can provide a useful first step in determining specification feasibility, it cannot 

resolve all of the issues that may influence the run-time needs or run-time behavior of 

an application. In defining a basis for adaptable documents, two classes of issues can 

be identified that influence document analysis and support: issues associated with the 

physical representations of multimedia data and issues associated with the content

based interactions of users with multimedia data. 

2.2. I . Representation-based issues. 
One major difference between multimedia data and "conventional" electronic data is 

that multimedia information can require specific service guarantees to preserve syn

chronization properties of the data. These properties are the consequence of how multi

media data is represented, not the meaning of the data itself. While the representations 

of each data type vary, there are several common issues that are relevant for all time

sensitive multimedia data: 

• i11tra-object synchronization: each component can have synchronization con

straints that are related to the type of data being retrieved. For example, the video, 

audio and caption-text data in Fig. 2 each have their own synchronization con

straints. These constraints must be supported by the source environment, the net

work infrastructure being traversed and the destination environment. These 

constraints can usually be managed on an end-to-end basis [090,091); 

• inter-object synchronization: in general documents, data will be encoded in sepa

rate streams of objects, each of which may be located at different hosts. While 

inter-object synchronization is often controlled in the context an of application, 

the composite transfer of data may need to be coordinated to improve system effi

ciency. For example, synchronization of audio data and caption-text can be done 

by the application, but it can be done more efficiently using markers placed in the 

data objects and evaluated by the support software; 

• heterogeneity: in general environments, all of the presentation workstations will 

not be identical. Information may need to be adapted at either the source or the 
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sink to meet the needs of a presentation environment, where the adaptation pro

cess may itself have an influence over which parts of a document are available to 

a user- a process that may also impact scheduling, resource allocation and syn

chronization with the network. 
Bandwidth management can also be included among the representation-related 

issues. In spite of the trend toward faster networks and more highly-encoded infor

mation, the transfer capacity of the various interconnects will remain a critical 

resource that must be managed- either because application demands will grow or 

because multiple types of networks will coexist at a site. requiring a degree of coordi

nation and management when allocating local and global resources efficiently. 

2.2.2. Content-based issues. 
The reason for isolating representation-based issues is to consider ways of providing 

other than worst-case resource allocation in an adaptable environment. In a similar 

manner, the actions that occur based on the content of a document will also affect the 

way that documents are fetched, composed and delivered. These include: 

• user selectivity: not all of the information available in a document may be used 

each time the document is accessed; for example, although the document in Fig. 

2 supports multilingual audio and/or captions, users usually don't want to hear 

or read all of the available languages simultaneously. (Note that the selection of 

desired information is made at run-time- not author-time-and that the selec

tion may be influenced by the facilities available on a given playback platform.) 

• presentation non-linearity: the order in which objects are accessed and presented 

depends on the document structure and the result of user interaction at run-time. 

For example, users may want to jump around in a document by scrolling forward 

or backward or by following hyper/inks that have been defined statically or 

dynamically in the document; in Fig. 2, a small rectangle is visible over a traffic 

sign in the mid-right portion of the street- selecting this button will transfer the 

user to a section discussing the merits of getting around by bicycle, car and tram 

in the city. 

• userflexibility: in general, documents are activated because a user wishes to 

obtain information. Given a choice, it is our experience that users will tolerate a 

lower quality presentation instead of being denied access to a presentation 

totally. Such lower quality may manifest itself as (slight) delays in the presenta

tion of parts of a document or in the substitution of a lower-resolution form of 

information for a higher-resolution one. (The term "resolution" is used broadly: 

it could mean substituting a piece of text for a picture or an audio fragment for a 

piece of video.) 
Each of these factors affects the support mechanisms required to provide adaptability 

in a document. The notion of user selectivity means that static analysis of a document 

before it is executed may not provide an insight into how a document will actually be 

used. Similarly, presentation non-linearity could result in "jumping" to various parts 

of a document, each with its own quality of service requirements. As a result, effi 

cient use of an infrastructure will require dynamic rather than static assignment of 

resources across the network. User .flexibility means that some degree of run-time 
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GOS I global operating system 

Figure 3. AMF "active" components. 

negotiation may need to be supported so that the information presented to the user can 

be matched to the resources available at the time individual data access requests are 

made. 

3. AMF: The Amsterdam Multimedia Framework 
Although many of the techniques required to support representation-based control and, 

to a lesser extent, content-based control can be taken from existing research results, it 

is important that these results be applied within a framework that provides an explicit 

partitioning of control concerns across components in a network infrastructure. This 

provides a definition of the scope of each technique and can result in better interaction 

among components. The AMF provides this partitioning for our work. 

Fig. 3 illustrates AMF. Here, many applications (AP) communicate with adaptive 

information objects (AIOs) via an infrastructure that is managed by a set of local oper

ating systems and a global operating system. The LOSs and GOS coordinate resource 

allocation, while the APs and AIOs request and deliver information, respectively. Note 

that the AMF does not solve the multimedia data transfer problem, it only characterizes 

the components in an environment and it indicates their interactions. Individual models 

still need to be developed that implement the general functionality of the framework. 

The general structure of AMF is similar to client/server models of networked com

puting. The difference is that within AMF, the control of multimedia is a cooperative 

process that requires content-based coordination among all components. For example, 

assume that one of the APs requests two object streams, each from separate AIOs on 

two separate hosts. Assume further that one of the AIO is able to meet the service qual

ity request of the application directly, while the other one is not. In this case, both could 

inform the application of their available degree of service (leaving the application to 

select an appropriate recovery action) or the two AIOs could communicate with each 

other to determine if there was a common level of service that both could provide that 

was acceptable for that application. This could be possible if: 

• each of the AIOs was aware of the other's presence, 

• each AIO was aware of other's service constraints, either directly from copies of 

the application specification or by intervention of the GOS and/or each LOS, and 
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• both AIOs were aware of the range of options acceptable to the application and 
supportable by the LOS/GOS. 

Standard client/server architectures do not provide a basis for this type interaction. 
As we will show, AMF was specifically designed to provide it. 

The underlying assumption of the AMF is that none of the individual components 
in a transfer has sufficient information to efficiently control resource allocation and 

inter-object synchronization. A pair of components, such as an AP and a single AIO, 

is also insufficient, since both end-points could think they could provide a degree of 

service without realizing that the network interconnect was overloaded or that other 

applications were about to request service. Instead, by using the information in a doc

ument specification to be able to look ahead into an application's future behavior, 

new techniques for resource allocation in its broadest form can be studied for each 

component. Unlike typical client/server models, these techniques are not based on a 

notion of lower-level protocol data independence, but rather, on distributing control 
so that support decisions can be made in light of the needs of applications throughout 

the network. The scope of AMF control activity is discussed in the following para

graphs. 

3.1. The application process (AP). 
The role of the AP is to supply the other components within the AMF with a specifi

cation of the object streams used by an application, as well as a definition of any 

inter-object-stream synchronization requirements and a set of options that can be 

used in providing adaptable control (see section 3. I for an example). The AP itself 
functions like the player described in section 2.1: it provides a control interface to the 

user to provide high-level interaction with the network. ("High-level" means opera

tions like start, stop. pa11se.fast101w ard. seek. etc.) 
In terms of the issues defined in section 2.2, the player provides a user interface to 

the execution environment, allowing the user to select the parts of a document that 

need to be played, to navigate through the document and to define the degree to 

which a document can be adapted. (For example, if a user plays a document on a di s

connected portable machine, more tolerance for missing data object may be speci

fied). The player has only a limited role in i111ple111e11ti11g any representation or 

content-based control operations other than possibly supporting heterogeneous 

data- this is because the player is a general-purpose interface, while the specification 

provides the other AMF components with the information necessary to adapt to the 

needs of the multimedia application. 

3.2. The local operating system (LOS). 
The LOS serves as a scheduling authority that controls access to I/O devices attached 
to the local workstation. The LOS would typically allocate resources based on its 

architecture-specific knowledge of the local operating environment and the document 

specification provided by the application. While the LOS has the responsibility for 
controlJing the flow of information in and out of the local environment- including 

presenting information to and receiving information from the network controller(s)

it cannot control activity outside of its environment because it has only a limited view 
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of what is happening across the network: individual sources may need to sub-sample or 

pre-synchronize streams within a document or there may be other active documents 

generating competing requests for resources that are totally outside the scope of a local 

operating system. 
The LOS can participate in managing various data streams for an application by 

implementing a negotiation process among data providers within the network. The 

LOS (together with the LOS of an information provider) can also be used to implement 

the end-to-end protocols associated with intra-object synchronization. Both of these 

types of service can be provided directly or in conjunction with a GOS. In general, 

local resource control should be as light-weight as possible; this provides the user with 

a responsive environment and the rest of the network with a non-intrusive element. 

3.3. The g1 ·Jbal operating system (GOS). 
The role of the GOS is to allocate resources on a network-wide basis. It has a view of 

network activity that is more comprehensive than the APs, the AIOs or the LOS, since 

it can coordinate activity among independent applications that use the central network 

but which originate from different workstations. The GOS can provide support that is 

independent of any particular workstation architecture, acting as moderator or mediator 

if conflicts arise. (Such a role may be more appropriate in wide-area implementation 

than in local area networks.) Note that it would be possible for a given implementation 

model to combine the functions of the LOS and the GOS, although from the point of 

view of the framework, it is important to recognize that the functions served by both 

abstractions are different. The primary practical motivation for keeping the LOS and 

GOS separate is that workstations in a heterogeneous environment cannot be assumed 

to have similar local operating systems. (They will also most likely have local systems 

that cannot be altered or adapted to provide extended multimedia support.) The archi

tecture of the GOS allows global concerns to be factored out of the local environment, 

even to the point that it is possible to design attached-processor implementations sup

porting GOS functions [BL9t]. 

3.4. Adaptive i11formatio11 objects (AIO ). 

The AIO provides applications with an interface to stored, synthesized or interactive 

information. In supporting access requests, the AIO separates the notions of multime

dia information and multimedia information representation . In this way, AIO presents 

an abstract interface that is used to control access to one of several representations of a 

block of 'information.' For example, it can be used to substitute an audio description of 

a video if the user, the user's workstation, the network or the server's host cannot sup

port video delivery. By providing alternative representations of information, the AIO 

provides quality of information support rather than quality of service support. (The lat

ter term is more appropriate for representation-dependent manipulations, while the 

former is more appropriate for content-based selection.) Note that the AIO does not 

give you something for nothing: it simply provides a general framework that needs to 

be filled in by data-dependent code and, if appropriate, alternative representations. 

Based on the contents of an application specification, the AIO can enter a process of 

negotiation to provide an application with an appropriate representation of information 
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that meets the constraints of conditions in the AP, LOS and GOS. The goal of the 

AMF is that individual implementation models do this negotiation transparently; the 

motivation for this is that by the time a user goes through the operations necessary to 

interacti vely select an alternative representation, the resource constraints that 

prompted the original negotiation request could have changed. We also assume that 

most authors would prefer to select the alternative representations which should be 

used, based on the author's insight into the application domain. (Note that individual 

AP implementation models may provide both types of control. ) 

4. Current Status and Summary 
The AMF is based on the assumption that resource control in a multimedia net

work should be adaptable, and that the adaptive process should be distributed over 

the application. the local operating system, the global (distributed) operation system 

and the AIOs involved in a transfer. Each of these layers has a specific insight that is 

important in controlling multimedia transfers. Although each of these insights are 

necessary, AMF also attempts to limit the scope of any one layer by giving each layer 

a specific set of concerns to process. 
Support for AMF is an on-going research activity. At present. an authoring system 

has been developed to capture document models in a form that are suited to imple

mentation within the AMF. We have also defined a hyper-information architecture 

that can be used to describe application-level interactions at runtime within an AMF 

context. Of the implementation projects, the CMIF authoring environment and its 

run-time player is the most advanced, while support for general AIO manipulations is 

at an early stage. Work on the AIO is tied to the development of an LOS/GOS infra

structure and the development of semantic facilities that can be provided to support a 

wide range of resource. synchronization. and representation control operations. We 

have performed initial presentation mapping experiments fBW93] , but it is too early to 

draw any conclusions on the utility of this approach. 
All of our activity in the Multimedi a Kernel Systems project is aimed at under

standing the basic relationships that exist in supporting multiple multimedia applica

tions in a heterogeneous network environment. In the current version of our work, 

this global function is replaced by a separate client and server pair that transparently 

negotiate the format of the information to be used to satisfy a particular object refer

ence based on the characteristics of the target system. the load on the network. the 

types of alternative representations that the client will accept, etc. This transparent 

interaction is important because it offers an opportunity for the system to respond 

quickly to transient conditions in the environment, but it is difficult to achieve in the 

light of closed operating systems and multimedia devices. It is our long-term inten

tion to investigate the support of distributed operating systems technology that will 

allow CMIF specifications (or its successor) to get passed among all of the compo

nents of the AMF, each of which will pick out the information it needs to support the 

synchronization and resource requirements of the application [B92]. 
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Yet Another Lecture on the lcosahedront 

Arjeh M. Cohen* 

1 Introduction 

In the peri( Jcl 1984- 1992, one of my research goals was to establish the existence 
of certain lJIOU-aheliau) finite subgroups of exceptional Lie gi'oups. My main 
collaborators on this topic were R.L. Griess, Jr. and D.B. Wales. 

Some of these embeddings could be done entirely by theoretic arguments 
and hand calculations. For the others, the best we could do was to reduce the 
problem to a form suitable for the computer to finish off the computations. 
I would like to sketch the nature of such computations using a few simple 
examples, thereby illustrating the improved possibilities of polynomial system 

solving. 
Also, I will sketch roughly how, very recently, Serre has shown that the 

reduction techniques we developed can be pushed so far that at least the most 
spectacular of the existence proofs can also he clone without recourse to a 
computer. 

I will write about one more issue, as it represents some of the interactions 
between mathematics and computer science that Cor Baayen enjoys seeing. 
It is the use of rewriting techniques in group theory, in much the same way 
they are used in Buchberger's Grobuer basis approach to polynomials- the 
technique that lies at the heart of the present polynomial system solvers. 

Before going into some of these details, I will present au elementary intro
d uctiou into group representations. The quaternion group (of order 8) and 
the icosahedral group (of order 120) will be used to illustrate the ideas. The 
rotation group of the latter is the nonabelian finite simple group of smallest or
der. This may explain a bit why it is a gateway to understanding finite simple 
groups. 

2 The quaternion grou p 

Let G be a finite group. A classical group theoretic question is to determine all 
possible realisations of Gas a group of matrices. To be more precise, one would 
like to know all possible morphisms p : G --+ GL(V) from G into the group 
G L (V) of all linear transformations of a vector space V over a fixed field k. 

•written for Cor Baayen in gratitude for his role in my professional life. 
t1nspired by the 100 year old [K) and the introduction to [BCN). 
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Such a morphiim1 is called a linear represent.at.ion of G (over k ). If n = dim \I, 

t.hen p is said t.o he 11-climensional. 
In fact , we are only interested in represent.at.ions up to equivalence; we recall 

that a representation p' : G --+ G L(\I') over k equivalent. top if there is a linear 

invertible map A : \I --+ \!' such that p(g) = A - 1 p' (g )A for all g E G. 
Another restriction we make here is the field: we shall only look at represen

tations in characteristic 0 here. In fact , we shall take ~: = C for the time being, 

in which case we speak of- complex representations. Consider representations 

of the quaternion group 
Q = {±I, ±i, ±j, ± k} 

with multiplication determined by 

i2 = j2 = k 2 = - I and ij = - ji = k 

(and the fact. t.hat - 1 is a central element; of order 2). 
It makes sense to restrict. to irreducible representations, i.e., those that have 

no "suhrepresent.at.ions" hut. for t.he zero-dimensional aml the full vector space 

\!. Every complex represent.at.ion can he decomposed as a sum of irreducible 
represent.at.ions. 

There always is t.he trivial repre:.;ent.ation, sending every element to the I x 1 

matrix (1). But Q can also he represented as a group of 1 x 1 mat.rices by the 

morphism 
±If-+ I , ± i f-+ 1, ±j f-+ - I, ± k f-+ - 1. 

The trivial representation and this one are not the only I-dimensional repre

sent.at.ions. There are two more I-dimensional representations. (one sending 

±j to I, the other sending ± k to I, instead of ±i). None of these provides 

a faithful (that is, injective) representation. But the following 2-dimensional 

representation is faithful: 

± 1 f-+ ± ( ~ ~) , ± i f-+ ± ( ~ ~i) 

±j f-+ ± (~I ~) ' ± k f-+ ± ( ~ ~). 
How do we find such a representation? Suppose Q has a 2-dimensional 

faithful representation p. Then, from t.he fact. that p must be irreducible (sums 

of I-dimensional representations are not faithful! ), we know that. p(l) is the 

identity matrix J.2 , aud, similarly, that. p( - 1) = - h. Furthermore, p(j), beiug 

an element squaring to - 1'2, can he chosen, up to conjugacy, t.o he 

p(j) = (~I ~) . 
Now all we need to find is p(i), because the morphism law p(xy) = p(:i:)p(y) 
will then determine the images of all remaining elements. Write 

p(i) = (n b) 
c d ' 
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for certain a,b,c,d E C. Working out that p(i)2 = - J.2 and that (p(i)p(j ))2 = 

- 12 yields a set of equations in these four variables. Solving these equations 

readily leads to the conclusion that, for any a, b E C with a2 + b2 = - 1, the 

morphism Pu,b given by 

± 1 r-+ ± ( ~ ~) , ± i r-. ± ( ~ ~a) 

± j r-+ ± ( ~ 1 ~ ) ' ± k r-+ ± ( ~b ~ ) 
is a 2-dimensional representation of Q. 

The choice rL = i, b = 0 gives the representation p mentioned before. Any 

representation p,,,b is conjugate to p; if b =f. 0, then the matrix 

A = (i-t .-s) 
s ·1 - t ' 

where f, = i - s(a + i)/b, conjugates p to fJa,b· 

The four 1-dimensional representations and the 2-dimensioual one are all we 

need to build up the full set of linear representations of Q over the field C. 

Up to coujugacy, t hese a re the only irreducible representations. The theory 

011 which this assertion is based is known as character theory. A consequence 

of this beautiful theory is that the sum of a ll squares of the 1limensions of 

the dist inct (non-conjugate) irreducible representations equals t he order of t he 

group. Here, this amounts to 

It is of interest for the study of representatious over finite fields to know 

minimal extension fields k over the rationals such that the represented group 

embeds in a version of GL(V) defined over k. A look at p for the quaternion 

group shows that the 2-dimensional representation is realised over Q (i). But if 

we take a = :~ , b = 2N, then Pa,1,(Q) is realised over the field Q ( N) and 

clearly no conjugate of p can be realised over Q. This indicates that there is no 

minimal extension field of Q attached to the class of representations in G L ( V) 

containing p. Later we shall see that this seeming lack of a unique minimal 

"splitting field" for Q is due to the restricted notion of representation handled 

here. 

3 The group of the icosahedron 

The isometry group of the icosahedron (the usual Platonic solid in 3-dimensional 

Euclidean space) can be abstractly defined as the group W generated by the 3 

elements :i; , y and z subject to the relations 

x2 = y2 = z2 = 1, 
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(xy) ;i = (y z )" = (xz)2 = 1. 

Such a definition by means of generators X = {:r:, y, z} aud relators Y 

{ :i;
2

' y2
' z2

' (:1;y f 1
' (y z )'\ (:i:z )2

}' often succinctly writ.ten as 

w = (X I Y) , 

is called a presentation by generators and relations. 
The abstract presentation of the icosahedral group can be understood by 

looking at the classical icosahedron. Cut the surface of the icosahedron into 
domains by means of the hyperplanes that. are the mirrors of reflections pre
serving the icosahedron. By doing so, and selecting one of the 120 domains , 
we can identify the three generators :i: , y, z with the reflections whose mirror 
hyperplanes bound the selected domain of the icosahedron. . 

Surprisingly enough, we can go the other way around: by const.rncting the 
most general graph whose vertices are (transitively) permuted by the elements 
of the group lV, we find the icosahedral graph. Let. us perform this construc
tion in some more detail. Start with a vertex, and label it with the trivial 
element of the group. \Ve make three neighbours of 1, labeled :z;, y, z (the three 
generators of the group W ). We also label the edges {1, :1;}, {1, y}, {1, z} with 
the respective labels :1:, y, z . The graph nuder construction mnst allow for an 
act.ion ( 011 the left. ) of the generators as a group of automorphisms. It. will be 
most convenient to think of the graph under construct.ion a.'i one whose edges 
are labeled with :i: , y, z . 

Since the t.hree generators are elements of order 2 (see the first line of relations 
for W ), we can think of view each of them as a permutation interchanging the 
vertices of an edge on 1 whose label coincides with its name. The vertex of 
that edge distinct from 1 will then be labelled with that name as well. But. the 
picture is still far from being complete: it. has not yet. been described to which 
node y maps the vertex :i:. Left multiplication by y, being an automorphism 
of the graph, must send the edge { 1, x} hibeled :1: to the edge {JJ , y:1;}, labeled 
:i: . Tims, we find a new vertex y:1:, connected to y with an edge labeled :1:. 

Leaving alone z for a while, we continue this way, joining y:i.:y to y:i: with and 
edge labeled y, joining yx y:1: to y:z;y with an edge laheled :r . Then we reach 
y:i:y:i: y, which is joined to y:cyx with an edge labeled y. The relation (:cyf1 = 1 
(on the second line of relat,ions for lV) and the fact that :i: and y are their own 
inverses (being of order 2), tell us that. the element y:i:y:cy coincides with :1:. 

Moreover, the edge {y:i:yxy,y:1:y:1;} can be rewritten as {:1:,:1:11}. Tims, we have 
found a circuit. of leugth 6, with nodes 1, y, yx, y:i.;y = :1:y:1:, :i.:y, :i.: whose edges 
are alt.ernatingly labeled y and :i: . This circuit iH, all hy itself, a graph on \Vhich 
the group with presentation (:i:, y I x2 = y2 = (:ry):i = 1) acts (regularly) as 
a group of automorphisms. Tims, we have found a realisation for this group. 
Apparently it. has order 6 (the number of vertices) and is isomorphic to the 
symmetric group on 3 letters (which can he seen hy verifying that, the group is 
fully deteruiined hy its permutation behaviour on the three edges labeled :i.:) . 

Returning to ~V, we can throw in z and continue in mnch the same way. 
Cor Baayen is encouraged to try this. If the edges labeled x, y , z are drawn as 
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dotted lines, ordinary liues, fattened lines, respectively, the result is as depicted 

in Figure 1. 

Figure 1. The Cayley graph of the icosahedral group 

The number of vertices is 120, which is the order of the group \>V. In fact, 

the vertices of the graph can he identified with the elements of the group. In 

order to do so, select a vertex (which may he taken to be the starting point 

of the construction procedure that we just described) and identify it with the 

trivial element 1 of W. Next, associate any other vertex v with the element of 

W that can he found as follows: select a path from v to 1, and write down the 

consecutive labels of the edges of a path from 1 to v . This produces a word 

expressing v as a product of the generators x, y, z of l1'. 

So far , we have obtained a very geometric description of the abstractly de

fined icosahedral group. The reader may wonder how much of a miracle just 

happened. lu general, that is, for arbitrary presentations by generators and 

relations, the technique we have carried out a special "icosahedral" case of, 

is known as the Todd-Coxeter coset enumeration method. The construction 

of the graph will not always he as straightforward as in the above example. 

The reason is that collapses of a more drastic nature than the identification of 

yxy:i:y with x above may occur. It usually happens that a whole collection of 
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new vertices has to be created before a collapse is found to occur. In fact., pre
sentations by generators and relations of the trivial group are known which only 
produce the graph on a single vertex after an enormous intenuecliate growth 
of (temporary) vertices. 

An even bigger problem is that., especially when nothing is known a priori 
about the presentation of the group, termination is not even guaranteed. The 
single positive (but very powerful) result regarding coset enumeration is that, 
due to a result of Mendelssohn, cf. [Suz], it terminates if the resulting group 
is finite. (There is no a priori indicator known though as to how long it might 
take before termination takes place.) 

The more general coset enumeration takes as input not only a group specified 
by generators and relations, but also a subgroup. The resulting vertices of 
the graph will then correspond to the cosets of the subgroup. Once a coset 
enumeration has been completed, a permutation representation for the group 
results. The upshot, for finite groups G, is great in that many good algorit.hms 
exist for determination of the structure of a permutation group (certainly when 
compared to the algorithms available for groups presented by generators and 
relations). 

4 How to find 3-dimensional representations 

In this section, we show how m;ing Grabner basis methods, one can find ;3_ 
dimensional real (or corn plex) representations for the icosahedral group lV. 
The construction will he similar to the one for the 2-climensional quaternion 
group. Only this time the comput.at.ions are clone by use of a computer algebra 
package (for finding a Grabner basis). 

Thus, suppose <P : W --+ GL(R:1) is a 3-dimensional representation of W. 
We assume that :r, and z are mapped to distinct elements in GL(R:i). Observe 
that., without loss of generality, we are in one of the following cases: 

rl 0 0) c 0 ~ }°' I. <P(x) = 0 1 0 and </>( z) = 0 1 
() 0 1 0 0 - 1 

(-1 0 n G 
() 

~) II. </J(x) = () - 1 and efJ(z) = - 1 
() 0 0 - 1 

Since, for every representation </>, there is also a representation 1/; of W with 
1/{ u) = -</J(u) for u equal to x, y and z , we only have to consider representations 
<P as in I. Let us do so. Then efJ(u) is a reflect.ion for 11 equal to :r., y or z. 

In order to extend <P we need to find a matrix </J(y) = (1/i.J h :<S i.J :<S :J· 
Since </J(y) is a reflect.ion, its trace is 1. This gives us the following linear 

equation for the entries of y: 

Yu + Y2 .2 + Y:u = 1. 
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Similarly, as </J(xy) is a real element of order 3 (it cannot be of order 1 

because </J(x) and </J(z) are distinct), its t race must be 1. This gives another 

linear equation for the ent ries of y , namely 

- y1 ,1 + Y2,2 + Y 3,3 = 0. 

The following is a Maple programme that creates the equat ions for the coeffi

cients of </J(y) that follow from the relat ions between the elements x, y and z 

ofW: 

with(linalg): 

#The three matrices we start out with: 

x := matri x(3,3,[[- 1,0,0],[0,1,0], [0,0,1]]); 

z := matrix(3,3,[[1,0,0],[0,1,0],[0,0,-1]]); 

y := matrix(3,3,[[y11,y12,y13],[y21,y22 , y23],[y31,y32,y33)]); 

#putting the unknown in a list: 

vars := [y11,y12,y21,y13,y31,y22,y23,y32,y33]; 

# Create the identity matrix of dimension n: 

idmat := proc(n) 
l ocal ans,i,j; 
ans := matrix(n,n); 
for i to n do for j to n do ans [i,j] := O; 

if i =j then ans[i,j] : = 1 fi od od: 
evalm(ans ) 
end; 

#use it to construct the 3- dimensional identity matrix: 

idm := idmat(3); 

# Given a matrix, derive t he equat i ons 
# for its coefficients to be zero. 

mkeq := proc(a) 
local i,j , answ; 

answ := {}; 
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end; 

for i to rowdim(a) 
do 

od; 
answ 

for j to coldim(a) 
do 
answ ·= answ union {a[i,j]} 
od 

# The relations for x, y and z imply the following equations: 

y2 := evalm(evalm(y-2) - idm); 
eqy := mkeq(y2); 

xyx := evalm( x y x); 
yxy:= evalm( y x y); 
eqxy := mkeq(evalm(xyx - yxy)); 

yzyzy := evalm( y z y z y); 
zyzyz := evalm( z y z y z); 
eqyz := mkeq (evalm(yzyzy -zyzyz)); 

#loading the Groebner basis package: 

with(grobner); 

# the linear equations coming from the traces are 

lineqs := {trace(evalm(y ) ) -1, trace(evalm(x y ) )}; 

#We do the Groebner basis computation in 3 steps. 
# After each step one can simplify the equations by hand! 

gby ·= 
gbxy ·= 
gbxyz := 

gbasis(eqy 
gbasis(eqxy 
gbasis(eqyz 

union lineqs ,vars,plex); 
union convert(gby, set),vars,plex); 
union convert(gbxy,set),vars,plex); 

The Grabner basis found by the computer algebra package has the following 
form: 
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{2y11 - 1, Y12 + 4y32Y13y33 + 2y13Y32, 

2y23Y31 + Y21 + 4y31Y23y33, 2y13Y31 + y33 - 1, 

2 
2y22 + 2y33 - 1, 4y23y32 - 1, - 1 +4y33 - 2y33} 

From the "upper-triangular" structure of the Grobner basis, the general 

shape of a solution up to algebraic conjugacy is readily seen to be 

~(y) ~ I 1 - 1/32 

-~ 1 2 2y31 8y31 

Y3t ( J5+3) I- J5 
41::12 4 y3~ 4 

Y31 !132 
J5+1 

4 

with y:11 , y32 both nonzero. In fact conjugation by suitable diagonal matrices 

shows that all solutions lead to equivalent representations (up to algebraic 

conjugacy, so in fact to two classes of representations). 

By the way, using the same computer algebra package, checks can be easily 

carried out to verify that the sol tion </J(y) indeed gives a linear representation. 

In a subsequent section, we shall show that a 3-dimensional representation 

can easily be written down directly by applying the theory of Coxeter groups 

to W. 

5 Representations in algebraic groups 

As we have seen, faithful representations for a finite group G are embeddings 

of G in a group of the form GL(n, k). This point of view raises the question 

whether we can determine all embeddings of such a group G in other linear 

algebraic groups. Algebraic groups can be viewed as subgroups of G L(n, k) 

stabilizing certain forms. For instance, the so-called symplectic groups are 

subgroups of even-dimensional linear groups stabilizing a non-degenerate bilin

ear alternating form. The crucial point is that such subgroups are algebraic 

subvarieties of GL(n, k) as they are zeros of the polynomial equations obtained 

by writing out for the entries of a matrix in GL(n, k) what it means to stabilize 

such a form (or more forms). 
For the classical (infinite) series of algebraic groups, this viewpoint gives 

little news with respect to the usual representation theory, so naturally the 

attention is led to the exceptional types E(j ,E1 , E8 ,F4 ,G2 . By use of the 

normal subgroup structure of a finite group, the problem can he reduced to 

three problems, the most salient of which concerns the study of embeddings 

of finite nonabelian simple groups in complex algebraic groups. Systematic 

searches for such embeddings received au impetus by Kosta11t's conjecture, 

formulated in 1983. It asserts t hat every simple complex algebraic group G(C) 

with a Coxeter number h such that 2h + 1 is a prime power, has a subgroup 

isomorphic to L(2, 2h + 1). Here, L(2, q), for q a prime power, stands for 
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the group of functions (so-called fractional linear transformations) of the form 
z f-+ az + b/(cz + d) defined on the projective line of order q. 

For G(C) of classical type, Kost.ant's conjectnre is readily checked using 
ordinary representation theory and the Froheuius-Schur index. For G( C ) of 
exceptional type the table below and the knowledge that h = 6, 12, 12, 18, :30 
for the five respective exceptional types give au affirmative ca."ie-by-case answer. 

A quick overview of the state of the art is supplied by Table 1. 

Table 1. 
Nouaheli~u simple ~rot(,j8 L a central exte!J.Sion of which embeds 

m a comp ex 1e group of except.1oual type X 11 

X" L 

G2 Altr., Altr;, £(2, 7), £(2, 8), £ (2, 1:3), U( :3, :3) 
F4 Alt7 , Alts, Altn, £(2, 25), £ (2, 27), 

£ (3,3), :1D 4 (2), U(4,2), 0(7, 2) , o+ (8, 2) 
Er; Alt10 , Alt 11 , £(2, 11 ), £(2, 17), £ (2, 19), 

£ (3, 4) , U(4,3), 2 F4(2)', Af11, .12 

E1 
? 

Alf12, AltJ:J, £(2 , 29) · , £(2, 37) , U(3, 8), M12 

Es Alt14, Alt1:., Altw, Alt17 , £(2, Hi) , £(2, 31), £(2, 41)?, 

£(2,32) 7, £ (2,49)?, £(2,61) , £ (3,5), Sp(4,5), G2(3), S z(8)? 

There are two meanings to he attached to this table: 

Theorem. Let L be a finite simple group ;u](I let G be 11 simple algelmiic 
group of exceptional type X 11 • 

(i) If L occurs on a line corresponding to X 11 in T11ble 1, tl1en a central 
extension of it em/Jeds in G(C) , witli a possi/Jle exception for tlie five 
groups marked witli a "?". 

(ii) If X,. is as in some line of Table 1 ;md L appears neither in the line 
corresponding to X,, nor in a line a/Jove it, tlien no central extension of 
L embeds in G(C ). 

Here, to simplify the presentation, 

a. we have deliberately neglected questions of conjugacy classes of embed
dings , and 

b. we have not specified the particular nonsplit central extensions of the 
simple groups involved. 

During my years at. CWI, I spent. considerable time and effort realising some 
of the embeddings appearing in this table. 

Ad a. An example where the conjugacy class question is more subtle than 
suggested by the table is provided by £(2, 13) . By [CW93], it is isomorphic to 
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a subgroup of F4 (C) whose normalizer is a finite maximal closed Lie subgroup 

of F4 (C ), whereas Table 1 only hints at the existence of embeddings via a 

closed Lie subgroup of F4 (C ) of type G2 . 

Ad b. For instance, the simple group £ (2, 37) listed embeds into a group of 

type E7 but not in a group of type Es because each embedding in an adjoint 

group of type E7 lifts to an embedding of S£(2, 37) into the universal covering 

group 2 · E 7 (C). Of cours~, the double cover SL(2, 37) of £ (2, 37) embeds in 

t he universal Lie group of type E7 , whence in a Lie group of type Es. 

Another warning concerning Table 1 is perhaps in order: The main t heorems 

in [CW92] and [CoG] only concern subgroups not contained in closed Lie sub

groups of positive dimension whereas Table 1 lists all finite simple subgroups 

(whether in a closed Lie subgroup of positive dimension or not ). 

i. The choice of central extensions of simple groups rather than just simple 

groups is important because they are the ones needed for t he generalized 

Fit ting subgroup. 

ii. The table does not account for all groups that are involved in Es(C ). For 
instance, no central extension of £ (5, 2) is embeddable in E 8 (C ), but a 
nonsplit extension 2ls+ IO} · £ (5, 2) does embed (cf. [A]) . 

iii. The group £ (2, 29) appears in a Lie group of type B7 , whence in one of 
type E8 . So, if the question whether a central cover of £ (2, 29) embeds 

in E 7 (C ) has a negative answer, t he group should appear at the bottom 

line of Table 1. 

iv. Unlike the GL(n, ·) case, knowledge of t he classes of the individual ele
ments of an embedded group L does not suffice to determine the conju

gacy class of L in G. This has been observed by Borovik for the alternat
ing group Alt6 in E 8 (C ). T he problem of how many conjugacy classes 

of embeddings of L exist only has a part ial solution. See [Gr] for the full 
solution concerning G2 . 

v. The groups £ (2, 41), £ (2, 49) and Sz(8) do not appear as possible sub

groups of E8 (C ) in [CoG]; the arguments ruling them out given t here are 
erroneous. 

v1. Another error in [loc. cit.] concerns the character given for £ (2, 31). The 

restriction of the adjoint character for Ei;(C ) to the subgroup isomorphic 
to £ (2, 31) constructed by Serre (see below) has a different character. 

One of the more spectacular results is t he embedding of £ (2, CH ) in E 8 (C ), 
the biggest of a ll five exceptional Lie groups. Using more refined versions of 

the techniques described in §§2, 3, Griess, Lisser and I have been able to prove 

that t he suggested embedding exists and is unique up to conjugacy. In t his 

case, the algebraic group can be seen as the subgroup of G£(248, C ) stabilizing 
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a particular alternating trilinear form. Because our computations ran out of 
hand, we did all computations over a finite field (Z/ 1831) and argued that, if 
G embeds in a modular form of E8 over Z/ 1831, it would also emhed in Es(C ). 
A key point in this argument was that G has order prime to 1831. This made 
it possible to deduce that any extension of G by a normal (profinite) subgroup 
of order a power of 1831 , would split, that is, actually contain a subgroup 
isomorphic to G. 

Very recently, Serre ([Se]) realised that, this condition is not always needed. 
He started from a reasonahle well-known embedding of £ (2, CH) in E8 (61). 
Then, the lifting technique gives a subgroup L of E8 (C) that has a normal 
profinite 61-subgroup N with quotient isomorphic to £ (2, 61). The important 
step is to show that, as an extension of £(2, 61) by N, the group L splits. For 
the £ (2, 61) case, Serre needed a rather intricate argument; iri"the same sweep 
he also dealt wit h some other cases, like the emhedding of £ (2, 31 ) in Es(C), 
where the argument is rather succinct. 

The algebraic group setting is also the right one for reconsidering the minimal 
splitting field question raised at the end of §3. Recall that, for the quaternion 
group, there is uo unique minimal field realising an embedding in GL(2, k). 
However, if we look at representations somewhat differently, it turns out that. 
there does exist. a minimal field for each conjugacy class of representations. To 
this end, we need to allow for all h~-forms of G L ( V), t hat is all algebraic groups 
whose complex points form the group GL(2, C ). 

In the ahove quaternion case, we have the following Q-form of GL(2, C ): 

H (k) = {n + (:Ii+ 1j +bk I 0, (3 , 1 ,8 E k, o 2 + (32 + 12 + b2 i= O}. 

This set forms a group, the bas is elements of which multiply as the elements 
in Q. In particular, Q is a subgroup of H (Q ). To see that it is a Q-form of 
GL(2, C ), consider the injective morphism H (Q) ~ GL(2, Q (i)): 

r~ · • 'k ( o + (3i 1' + bi ) 
O' + µ I + / J + II I-? <:. fJ" • 

- 1 + u1. O' - p l. 

When extended to Q (i), and so certainly, when extended to C, this maps 
becomes an isomorphism. 

Thus, we have obtained a unique minimal field k, namely Q , for which there 
exists a k-form of GL(V) containing Q. This illustrates a result. due to Springer 
[Spr] that for each group morphism p: G ~ H (C ) from G to an algebraic group 
H ( · ), there is a minimal field extension k of Q such that. G embeds into a k-form 
of H . 

Coming back to this problem for the subgroup £ (2, en), the minimal splitting 
field is probably Q( Jfil); but , to the best of my knowledge, this has not yet 
been established. The next. question is then, if k is the minimal splitting field , 
which k-form is it that the subgroup embeds in? The various Q ( Jfil)-forms of 
E8 (C ) are known by Cernousov's work (there are 9). 
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Together with Tiep ([CT]), I have found the minimal splitting fields for 
some other remarkable subgroups of the exceptional algebraic groups, namely 
the Jordan subgroups. 

6 The reflection representation 

As promised earlier, we now come to another way of constructing a 3-dimensional 
representation for the icosahedral group W. Tits has shown that, for the so
called Coxeter groups, one can always find a faithful "reflection representation." 
The icosahedral group is a Coxeter group, whose reflection representation is 
equivalent to the one found above. 

We shall describe the construction of the reflection representation of the 
icosahedral group, thereby following the general construction fm; Coxeter groups. 
Put a = ( '..!+ ( 3 and T = ( + (4 , where ( = e27r i/5 • 

Starting point is a 3-dimensional space V (one dimension for each generator 
of W ), supplied with the symmetric bilinear form given by the following matrix: 

- 1 
2 

Note that, if the rows and columns are labeled with x , y and z , respectively, 
the off-diagonal entries are - 2cos(7r/ m ), where m is the order of the product 
of the generators corresponding to row and to column. (This hints toward the 
general case for those who know what a Coxeter group is.) Denote the bilinear 
form by ( ·, ·). It is positive-definite, so the 3-dimensional space, supplied with 
this form is Euclidean. Now, for a E V with (a:, a:) = 2, the reflection with 
"root" a is given by 

So:: W 1-+ W - (w,o:)o:. 

The reflection representation is determined by the images of x , y, z . These im
ages will be the reflections s0 for a the standard basis vectors: a = ei, e2 , e3 • 

These roots are called the fundamental roots of W. Thus, we obtain the fol-
lowing matrices: 

By what we have seen above, this representation must be equivalent to one 
of the two (algebraically conjugate ones) constructed using Gri:ibner bases in 
§5. 
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Using the faithfulness of t he reflection representation , it is easy to derive that 

the icosahedral group W is finite and to find a permutation representation. For 

instance, consider the set <I> of all roots of reflections in W. This set can be 

built up from the fundamental roots. Up to signs, they are: 

(1,0,0) 
(1, 1, 0) 

(1, 1, - a ) 
(1, -T - 2a, - a) 

(- a, - T - 2a, - a ) 

(0, 1, 0) 
(0, 1, - a ) 

(0, - a, - a ) 
(- a, - a, - a) 

(- a, - T - 2a, - T - 2a) 

(0,0, 1) 
(0, - a , l ) 

(- a , - a, 1) 
(1, - T - 2a, - T - 2a) 
(- a, - 2a , - T - 2a) 

Thus, we have a set <I> of 2 x 15 = 30 roots. Clearly, if o· E <I> , then also 

-a= s 0 a E <I>. If the 15 pairs ±n are numbered according to their occurrence, 

the generators x, y and z induce the following permutations: 

x = (2, 4)(5, 7)(6, 9)(8, 11 )( 10, 13)( 12, 14), 

y = (1, 4)(3, 6)(5, 8)(7, 10)(11, 13)(14, 15), 

z = (2, 5)(4, 7)(6, 8)(9, 11 )(10, 12)( 13, 14). 

The kernel of this permutation representation is readily seen to he { ± / 2 } . 

Since only a finite number of roots are being permuted, and the reflection 

representation of W is faithful , we see again that W is finite. 

A remarkable property, true of arbi t rary Coxeter groups, is that one of ±n 

has all coefficients with respect to the fundamental root basis non-negat ive. 

These roots are called the positive roots. The set of all positive roots is denoted 

by <J>+, so that <I> = <J>+ U <I> - , where <I> - = - <J>+ . In Figure 2 we have pictured 

<J> + and the way it is built up using the generators :i:, y, z , with the same 

conventions as for Figure 1 regarding the edges. The dashed line at the bottom 

indicates where the action of the generators crosses over to negat ive roots. 

7 Presentation by generators and relations 

We now go hack to presentations of groups by means of generators and relat ions. 

For the icosahedral group ltf! we have already given such a presentation: IV = 

(X I Y), with X = {x ,y, z } and 

Of course, for a given group, such a presentation is far from unique. 

Computations using the presentation of a group by generators and relations 

are based on the idea that it is easy to present a free group over a given alphabet 

X. Or maybe, even simpler , start. with the free monoid X * over X. This is t he 

set of all strings (also called words) we can form with the symbols (also called 

letters) from X . Such a monoid has the great advantage that every element 

corresponds to a unique expression for it. 
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\0,-o,IJ 

/ ...... . .... 
: 

-- ----- ----- -- ------- ---

Figure 2. The positive roots with action of vV 

This phenomenon is no longer true of the free group on X. We can define it 
as a quotient of the free monoid on 

A = X u x - 1 = {x,x- 1,y,y- 1, z , z- 1} 

with respect to the relations 

yy- 1 = y - 1y = 1 

zz- 1 = z- 1z = l. 
Although now it is no longer true that every element of the free group on X 

corresponds to a unique word in A* , we still have a very good way of handling 
this: the group elements correspond bijectively to the reduced words in the 
monoid, i.e., those with no occurrences of 
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The icosahedral group W is obtained as a quotient by dividing out. with 
respect to the normal subgroup generated by the relators 

x 2, y 2, z2, (xy)3, (yz )5, (xz)2. 

The question now arises how to find a set of words W in A* such that every 
element of W corresponds to a unique element of W. Another way of saying 
this is that we want to find a section a of the natural map <P : A* __... W. The 
set H' is then the image of a. Yet another way of expressing the wish for 
unique representat ives in A• of elements of W is more algorithmic: for each 
element. w E A*, we want to be able to find a "canonical" element in the fibre 
<P - 1( </J(w)) . 

A very successful approach is based on rewriting techniques. It uses a total 
well-ordering on A ... More precisely, a well-founded total ordering < is called 
a reduction ordering if 

V l ,r, m.1 , m.2 E A* 

m 1 < m2 :::::} lm1 r < lm2r 

and 1 = min A• . We need a reduction ordering < on A*. There are plenty such 
orderings, but we will content ourselves with the total degree lexicographic one, 
that is the one where v < w if either the length of v (as a string of symbols from 
A) is less than the length of w, or these lengths are equal and 1J comes prior to 
w in the usual lexicographic ordering (where x < y < z < x - 1 < y - 1 < z- 1 

) . 

Tims, 
1 < :r: < y < z < :r::r < xy < x z < y :r < yy < ... 

The canonical element. for an arbitrary m. E A* can then be taken to be 

min <P- 1 <P( m). 

Now the purpose is to rewrite an arbitrary word m E A* to the canonical word 
min </J- 1</J( m) by stepwise finding smaller representatives of <P(m ). First. of all, 
for involutions such as t he generators in X for W, we may rid ourselves of 
inverses by use of the rewriting rules 

:r - 1 :::::} x, y - 1 :::::} y, z- 1 :::::} z . 

For lV with the above presentation, the obvious rewrit ing rules 

x:i; :::::} 1, yy => 1, zz :::::} 1, 

z:r:::::} x z , 

yxy :::::} xy:r, 

zy zy z :::::} y zyzy. 

do not suffice. For instance, (xyz ) 10 cannot be reduced to the trivial element; 
but, for instance, writing out the permutation of the roots corresponding to xyz 

(by use of the permutations given for x, y and z in §6), we find cycles of length 
5 only, so the fifth power is in the kernel of the permutation representation, 
whence (xyz ) 10 = 1. 
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8 A rewriting system for the icosahedral group 

Recent techniques for Coxeter groups have given insight in how to produce 
a proper set of rewriting rules. By "proper" we mean what is usually called 
"confluent"; it has the effect that each input word can be successfully rewritten 
to the corresponding canonical word by use of the rewriting rules. Rather than 
presenting the rewriting rules explicitly, we give an algorithm for rewriting 
au input word w E X *, where X = {:i:, y, z} to the corresponding canonical 

element in W. The present treatment comes from [BH], with a variation due 
to DuCloux and Casselman. 

Consider the set <J>+ of 15 positive roots of W again. The algorithm works 
with indur t ion. Let us assume that, for w = r 1 · · · Tk - I'T°k · · · rq, where r; E X 
for i = 1, . .. , q, we have already eHtablished that r 1 · · · rk - l. is in canonical 
form. 

Then, for i = k - 1, k - 2, ... we consider the action of r; · · · rk - l on the 
fundamental root a E II = { e1 , e2 , ea} corresponding to rk. That is, we subse
quently compute rk _ 1a, r~,_2rk_ 1 a, and so on, until we reach a fundamental 
root again. 

Say this happens the first time for i E { 1, ... , k - 1} and fundamental root 
{3: 

r;r;+ 1 · · · rk - 1n = (:). 
Writes = Sf-J· Then, since s!l'Y = gs'Yg - 1 for any / E <I> and g E GL(Ra), we 
have 

If the right hand side represents a (lexicographically) smaller word, we substi
tute it for r;r;+I · · · 1°k- l1°k and continue determining the canonical word for 
the first part r 1 · • · r; _ 1s of w. Otherwise, we leave things as they are ... ex
cept that we do not want to move to negative roots. This can only happen, if 
a fundamental root eJ occurs to which the corresponding reflection is applied 
(sending it to - eJ ). This remarkable property is clearly visible from Figure 2, 
where only three edges make a root sink through the bottom line. 

For further details, it is useful to write O'.r for t he positive root corresponding 
to a reflection r of W. Recall II = { ei, e2 , ea} . Here is a full description of the 
canonical word algorithm: 

At initialization: w = [r1 , ... , rq] EX*, representing w = r 1 · · · rq E l-V; and 
an index k := 1. 

At termination: w is the canonical word for w. 

Invariants: w E W will be fixed throughout, and w will always be an expres
sion for w. The first part of length k - 1 of w is in canonical form. 

while k ::; e(w) do 
i := k - 1; O'. := O'.rk i 
while i > 0 do 

a := r;a; 
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case o: E <I> - : 
w := [r1, ... , r ;- i, r ;+2, ... , r,,]; 
k := k - l; i := i - l ; 

case o: E II: 
if[r;, r ;+i, ... , r k] > [su,r;, ... ,rk - 1] 
then w := [s,. ,rj, ... ,r~,- iJ ; 

fi; 
k := i; i := k - l; 

otherwise: i := i - l ; 
od; 
k := k + l; 

od 
For given i and k , the root a = r; · · · r~- - 1 a,.k is being considered. In case a E 

<I>- , we must have i = k - l ; a fundamental root is reached by its corresponding 
reflection , we haver; = r ;+i = rk and we can reduce length. 

If a positive fundamental root a = r ;r;+ i · · · rk _ 1a,.k is hit., t hen we have 
seen above t hat. the new expression generat.e<l by the algorithm represents the 
same element of lV. 

It may seem to be a computat ional difficulty that the root syst em is needed. 
But, in fact, the full action, in terms of images of roots under fundamental 
reflections, has already been stored in Figure 2. The roots there are pictured 
with respect t.o "depth" : t he number of fundamental reflections needed to turn 
t.hem into negative roots: t he fundamental roots have depth 1, the next layer 
up consists of (1, 1, 0), 0, 1, - a) and (0, - a , 1) (of depth 2), and so on, unt il we 
reach the unique one of depth 7: (- a, - 2a, - T - 2a). 

A new rewriting rule that. we obtain by applying the algori thm to the left 
hand side is zyzyx z ~ yz11zy'J;. Cor Baayen is encouraged to t ry and prove that 
(x yz)10 = 1 using the algorithm. (Hint : t.he rewriting rule (y:1:z )" ~ ('J:zy)" is 
crucial. ) 

We have seen that the posit ive root syst em, with its "depth" structure, and, 
above all, its lV-action, is an excellent a.utonmt.on for the "icosahedral" word 
problem. For a finite group like W, it may not be much of a surprise that 
we can find a solution to the word problem. The surprise however is that the 
technique described works for all Coxeter groups, including the infinite ones, 
once a litt le variation has been made that we shall now describe. 

If we take W to be an arbit.rary Coxeter group, the same algorithm may work 
again, but then the set of all posit ive roots may be infinite and so cannot be fully 
constructed in advance. The merit of Brink and Howlett is that they showed 
that in that case one can "truncate" the root system, and work with a fini te part 
only. It runs as follows: define, for a and f3 positive roots, rx >- (3 if (a , {J ) ;:::: 1 
and a - f3 has non-negative coefficients (when written as a linear combination 
of fundamental roots) . We then say that a dominates (3 . The domination 
relation is a partial ordering with (and this is the non-trivial result: ) finitely 
many minimal roots. The "automaton" can then he restricted to the minimal 
roots, and a single additional element, denoted by *, replacing all non-minimal 
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elements. Whenever a minimal root is mapped onto a non-minimal root, the 
acceptance state * is reached: this means that the word that is being rewritten 
is canonical (in the inner loop of the above algorithm), so that one can move 
up to the next value of k, without having to process the word any further to 
the left, lowering the parameter i). 

9 Synthesis of Todd-Coxeter and Buchberger 

It is well known that Buchberger's Grabner basis algorithm can be seen as a 
particular case of the Knuth-Bendix procedure, in which confluent rewriting 
is guaranteed due to the successful completion in the context of polynomial 
algebras. More and more, I am convinced that the classical Todd-Coxeter coset 
enumeration procedure can also be seen as such. In particular, the success here 
is guaranteed by Mendelssohn's result described in §3. This is a line of research 
that I have only recently started to pursue, and I will only vaguely indicate 
what I have in mind. 

Given a monoid M and a field k, we can define the monoid algebra k(.M) (if 
.M is a group, this comes down to the group algebra). 

We study quotients of k(M ) with repect to ideals /. Again a reduction 
ordering < on M is useful. Not every monoid affords a reduction ordering, but 
the most important examples, the free monoid and the free abelian monoid (in 
which case M is a polynomial algebra!) on a finite alphabet do. 

For 
J = L fmm E k(M ), 

mE Nf 

with fm E k (finitely many nonzero), we set 

lt(f) = max{m E .MI fm =fa O}. 

Moreover, for any subset X of k (M ), set: 

M(X) = {lt(f ) I J E X} and O(X) = M \ M(X ). 

Theorem. Let M be a monoid witl1 a reduction ordering < , and suppose I is 
an ideal in k(M). Then the following statements lwld. 

(i) k(M) = I EB k · 0(/). 

(ii) k(.M) /I ~ k · 0(/) as vector spaces over k. 

(iii) V f E k(M) 3!g E k · 0(/) : f - g E /. 

In this setting, we write g := Can(!, I), and refer to it as the canonical 
element corresponding to f. Observe that 

Can(!, I) = Can(g, I ) {:::} I - g E /; 

A subset G of I is called a Grobner basis if (M(G)) = M(I), where (N), for a 
subset of !vl, denotes the semigroup ideal generated by N in 1\1. 

This approach can be found in [M]. 
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Proposition. Let M be finitely generated (Noetherian) and supplied witl1 a 
reduction ordering. For each ideal I of k(M), there is a unique subset B of I 
satisfying: 

(i) M(B) is a minimal generating set of M(I); 

(ii) tl1e coefficient oflt(b) in bis 1 for each b E B; 

(iii) b = lt(b) - Can(lt(b),I) for each b E B. 

This set G is the so-called reduced Grobner basis of I. The polynomial case 
occurs for M = N". Then the already classical Buchberger algorithm finds a 
Grobner basis for M = N". 

Thus, quotients of polynomial rings can be determined algorithmically. But 
this is inconceivable for the general case, since the word problem for groups is 
known to be unsolvable. 

To see the connection with group presentations, start with a finitely presented 
group G = (X I Y). Take M to he the free monoid generated by A = x u x - 1 

and total degree lexicographic ordering < such that x < y - 1 for all x, y E X. 
Now let I he the ideal of all v - w E k(M) with v, w EM such that vw- 1 E Y. 
Here, we assume that xx - 1 and x - 1x are relators (i.e., belong to Y). Then 
k(M) / I is the group algebra of G over k. The set O(J) of the above theorem 
coincides with the collection G of words in A* which are minimal in the inverse 
image under A* ___., G of an element in G. 

It. is a very useful fact that binomials are transformed into binomials under 
all operations involved in the Knuth-Bendix procedure, and also under the 
transformations obtained from a translation of the Todd-Coxeter enumeration 
to this setting. If a Grobner basis is found for the ideal I, then, by the above 
proposition, and the "binomial invariance," a solution to the word problem for 
G has been found. 

Let us return once more to the icosahedral group W. The algorithm of 
§8 uses only finitely many rewriting rules; they can be read off from Figure 
2. A simple example is [y, x, y] => [x, y, x], which corresponds to the element 
yxy - xyx E k(A). The collection of all rules thus obtained, together with 
x-x- 1 , xx - 1, y - y - 1 , yy - 1, z - z- 1 , zz - 1 will lead to a Grobner basis for 
the ideal I, thus presenting a model to compute with the group algebra k[W] 
in terms of kO(I). 

As remarked at the end of §8, such results are (at least theoretically) no 
surprise for finite groups like W (although the automaton is efficient). But, 
due to the results of Brink and Howlett , we have similar Grobner bases for 
arbitrary (infinite) Coxeter groups. 
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Part of §4 is from joint preparations of a course with Hans Cuypers and 
Remko Riebeek. The bulk of §5 is from [CW94). 
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During the last six years, by his spoken and written words in support of ERCIM 
1 2 3 4 , Prof. Baayen has stimulated cooperation between fellow researchers at 

European sister institutes. Baayen 's words were not just pie iu the sky. Already 

in 1988, financial and logistic support became available for mutual working vis

its of ERCIM researchers. Based on earlier contacts, the authors could soon 

take advantage of these newly created ERCIM opportunities. Without encoun

tering any red-tape, the authors could start joint ERCIM work in the field of 

computational fluid dynamics. This led to several papers in the international 

scientific literature. This contribution gives a survey of some of this research, 

which is described in more detail in two SIAM articles5 6 . It is our tribute to 

Prof. Baayen's inspiring role as the first ERCIM president. 

1 P.C. Baayen, A. Bensoussan, G. Seegmiiller, European computer science market, CW! 

GMD INRIA Newsletter, 1 , p. 1, 1989. 
2 P.C. Baayen, ERCIM's joint action programme is taking shape, C W! GMD INRIA 

Newsletter, 3 , p. 1, 1990. 
3 P.C. Baayen, Strengthening ERCIM, ERCIM News, 11, p. 2, 1992. 
4 P.C. Baayen, Editorial, ERCIM News, 15, p . 1, 1993. 
5 M.-H. Lallemand and B. Koren, Iterative defect correction and multigrid accelerated 

explicit time s tepping schemes for the steady Euler equations, SIAM Journal on Scientific 

Computing, 14, p. 953-970, 1993. 
6 J.-A . Desideri and P.W. Hemker, Analysis of the convergence of iterative impl icit and 

defect correction algorithms for hyperbolic problems, SIAM Jounial on Scientific Computing 

(to appear, Jan. 1995). 
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2 ITERATIVE DEFECT CORRECTION AND MULTIGRID ACCELERATED EX-

PLICIT TIME STEPPING FOR THE STEADY EULER EQUATIONS 

Convergence results are presented for a new pseudo-unsteady solution met,hocl 
for higher-order accurate upwind discretisations of the steady Euler equations. 
Comparisons are made with an existing pseudo-unsteady solution method. 
Both methods make use of nonlinear multigrid for acceleration and nested 
iteration for the fine-grid initialisation. The new method uses iterative defect 
correction (ItDeC). This section is based on the paper [9]. 

2.1 Equations 

The equations considered are the steady, two-dimensional, compressible Euler 
equations 

8F(W) + 8G(W) = O, 
eh: ay (2.1) 

where 

W = ( ~:;), 
pe 

(2.2a) 

F(W) = ( :~2 
+ P ) 

puv ' 

pu.(e+~D 

(2.2b) 

Assuming a perfect gas, the total energy e satisfies: c = 1~ 1 7, + ~(u.2 + v2 ) . 

The ratio of specific heats 'Y is assumed to be constant. 

2.2 Spatial discretisation 

The computational grid is obtained by a hybrid finite element - finite volume 
partition. A (possibly unstructured) finite-element triangularisation is used 
as the basic partition. A cell-centered finite-volume partition is derived from 
the finite-element partition by connecting the centers of the triangle sides in 
the manner illustrated in Figure 1.1. The finite-volume grid gives us the easy 
possibility of grouping together the nodes associated with contiguous finite 
volumes. If we take unions of control volumes this results in a new coarser 
mesh. Repetition of this operation gives coarser and coarser meshes. For 
details about the coarsening process (multilevel gridding) we refer to [8]. 

On the finest grid, for all finite volumes C;, i = 1, 2, ... , N , we consider the 
integral form 

.le; (F(W)nx + G(W)ny) ds = 0, i = 1, 2, ... , N, (2.3) 
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FIGURE 2.1. Finite volume C; 

with n,, and ny the x- and y-component of the outward unit normal on the 
volume boundary 8C; . For the Euler equations, because of their rotational 
invariance, (1.3) may be rewritten as 

J r - 1 (nx, ny)F(T(nx, ny )W)ds = 0, i = 1, 2, ... , N, (2.4) 
lac; 

where T(nx, ny) is the rotation matrix 

0 0 0) ny 0 
n,, 0 · 

0 1 

(2.5) 

For simplicity, we assume the ftux to be constant across each bi-segment 8Cii of 
the boundary 8C;, where oCii = DC; n aci is the common boundary between 
the neighbouring volumes C; and Ci (Figure l.2a). Hence, 8C; = u acij , j = 
1, 2, ... , n;, with n; the number of neighbouring volumes Cj. (In the example 
of Figure 1.1: n; = 5. ) Since we have assumed that the ftux is constant along 
i:JCiJ, it is equal to the ftux across the straight segment 8CiJ connecting the two 
extreme points of 8CiJ (Figure l.2h). If we introduce the outward unit normal 

fi;j = ((nJ.)ij,(fiy)ijf along each 8C;j, j = 1,2, ... ,n;, with the assumption 
of a constant ftux , the contour integral (1.4) can he rewritten as the sum 

1L i 

L T;j 1 F (Tij W;j)lij = 0, i = 1, 2, ... , N, 
j= l 
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~ · ~ - - ='~ : : ___ · __ -

a. Bi-segment 8Ci; 

acij , acij 
---~'f----J 

b. Straight segment 8Ci; 

FIG URE 2.2. Segments in between finite volumes C; and CJ 

where f';1 = T ((fi,,);1, (ii 11 )u), where lV;.i is some value of lV depending on for 
instance l li; and W1, and where l i:i is the length of the segment 8Ci.i. 

Crucial in (1.G) is the way in which the cell-face flux F (f iJ l-V;.i) is evaluated. 
For this we use an upwind scheme which follows the Godnnov principle [3], 

which assumes that the constant flux vector along each segment DC;J is de
termined only by a uniformly constant left. and right cell-face state (lV/J and 
l'f!;j) . The lD Riemann problem which then arises at each cell face is solved in 
an approximate way. With this, (1.fi) cau he fur ther rewritten as 

11 i 

'L, Tij 1<p(fu lVf1, tiJ lV/j) lu = o, i = 1, 2, . . . , N, (2.7) 

.i= I 

where <p denotes the approximate Riemann solver. Several approximate Rie
mann solvers exist. In the present. paper we apply that of Osher and Solomon 
[11]. 

The flux evaluation, and so the space discretisat. ion, may be either first.

or higher-order accurate. First-order accuracy is obtained in the standard 
way; at each finite-volume wall , the left and right cell-face state which have 
to be inserted in t he numerical flux function are taken equal to those in the 
corresponding adjacent volumes: 

(2.8) 

Whereas the first -order accurate discretisation is applied at all levels, t he 
higher-order discretisat ion is applied at the finest grid only,· using the finite
element. partition existing there. Higher-order accuracy is obtained with a 
MUSCL-approach [10]. Here, W/J and Wlj are derived from linear interpola
tions. On each volume C; around the triangle-vertex i an approximate gradient , 

denoted by (9W);, is derived by integrat ing the gradient of the linear inter-
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polant of W over all the triangles which have ·i as a vertex: 

(VW); = ( ( ~~) i, ( ~~) J T, with (2.9a) 

(aw) = f supp(i) ~dxdy (~w) J~upp( i ) ~dxdy (2.9b) 

ox i f supp( i ) dx dy ' ay i J~upp(i) dx dy . 

In here, supp( i) denotes the union of triangles which have i as a vertex. Then 

for each pair of neighbouring vertices ( i, j) we compute the extrapolated values 

I 1 - :-. 
Wii = W; + 2'(\i'W); · tJ, W I' w 1 (r-,W) ;-. 

ij = j - 2 v j . lJ. (2.10) 

On equidistant grids, this higher-order accurate discretisation can be formally 

proved to be second-order accurate. The proof is still valid for nearly equidis

tant grids. 
In order to ensure monotonicity, while preserving the higher-order accuracy in 

smooth flow regions, the higher-order values Wf1 and W[j according to (1.10) 

can be replaced by limited values which do not affect the order of accuracy. 

2.3 Existing solution method 

To solve the steady discretised system ( 1. 7), we consider the unsteady, semi

discrete system of ordinary differential equations 

dW; - R- 1 2 N 
dt - " i = ', ... , . (2. 11 ) 

The natural choice for R; is 

(2.12) 

where A; is the area of finite volume C; . 
As an upwind analogue to Jameson's central method (Jameson 1983) , in [8] 

an explicit four-stage Runge-Kutta (RK4-) scheme is applied for the temporal 

integration of (1.11)-(1.12). The benefits of the upwind analogue are evident: 

better shock capturing, greater robustness and no tuning of explicitly added 

artificial viscosity. Similarly, just as in [Ci], in [8] multigrid is applied for accel

erating the solution process. Furthermore, just as in [6], time accuracy is not 

pursued and optimal Runge-Kutta coefficients are applied to get good stabil

ity as well as good smoothing properties. It seems that the solution method 

presented in [8] is already competitive with .Jameson's method, without the 

introduction of a further acceleration technique such as for example residual 

averaging. 
It is of interest that the upwind analogue allows a further efficiency improve

ment by exploitation of the direct availabili ty of the corresponding first-order 
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upwind discretisation, with its better stability and smoothing properties. Since 

a first-order central discretisation is not readily available, a standard central 

method does not easily allow this improvement. 

2.4 Improved solution method 

Compared with the existing solution method, the new solution method only 

uses a more extensive right-hand side in the explicit time-stepping scheme. The 

extension consists of two first-order upwind defects, one which is evaluated at 

each stage of the multistage scheme, and another which is kept frozen during 

a fixed number of l/t RK4-time-steps (v, 2: 1) and which compensates for the 

other first-order defect by its opposite sign. Further - which is important - the 

higher-order defect is kept frozen as well during 111 RK4-steps .. The four-stage 

time-stepping scheme is given in Table 1. In here, 11 is the time-step unmber, 

~~ the stage number, 6.t ; the local time step and a1.: the k-t.h Runge-Kut.ta 
coefficient. In the existing higher-order method the right-hand side R~.k- I is 

R''·k- 1 = - 1 ~ t .-: 1<I>(t· (W1 ·)''· k- 1 f,. ·(W!')"·" - 1)l 
·1. A . ~ 11 •1 11 , 13 11 11 , 

1 :i= I 

(2. 13) 

with (W/J)'' ·k- I and (W,j)"·~:- I higher-order accurate. So nothing is kept frozen 

in the existing method's right-hand side. For the improved method we take 

R'.' ·1.: - 1 = - 1 ~t.-: 1[<I>(t· · W''·" - 1 f ·· ll''' ·"- 1) -, A . ~ 11 11 , , 11 1 
'j= l 

<I>(f'ij w;°'o' f'ij wy-o) + 

<I>(1'i1(IV;j)n.o, T;j(W;'j)n.o)) l ;j , (2. 14) 

where only (W/1)0
•
0 and (Wfj) 0

·
0 are higher-order accurate. The frozen first.

order cell-face states (W;0 •
0 and 111;>·0 ) and the frozen higher-order cell-face 

states ((W/1)0
·
0 and (W;'j)0 •

0
) are updated in an additional outer iteration, a 

TABLE 1. Explicit RK4-scheme 

W o,-i ·- Wo.o . - 1 2 N 
i .- ; ' i - ' , ... , 

for v from 1 to v1 do 
W ,,,o ·- W"- 1•4 . - 1 2 N 

i .- i ' 7, - ' , ••• , 

for k from 1 to 4 do 
l;rr'"" ·= rv''•o + At · . R''·k - 1 ·v 1 • • 1. u 1 O'k ., ' 

end do 
enddo 
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defect correction iteration. For general information ou defect correction pro
cesses we refer to [l]. For explanation and analysis of the present defect cor
rection iteration we refer to [9]. Here, we directly proceed with an illustration 
of the performance of the present new method. 

2. 5 Numerical results 

lu [9], by analysis we found that the new higher-order method has better stabil
ity aud smoothing properties than the existing higher-order method. In order to 
verify these predicted better stability and convergence properties, we compute 
the standard transonic channel flow from [12] with the two-dimensional Eu
ler equati us. Three finest grids are considered: a 161-vertices grid, au about 
twice as fi .1e 585-vertices grid and au about four times as fine 2225-vertices 
grid. (See [8] for more grid details.) The corresponding soiution schedules 
applied are a 4-, 5- and 6-levels schedule (L = 4, 5, 6), respectively, all with 
Vpre = Vpost = 1, 'Vl. (For the definition of symbols we refer to [9].) 

Iu Figure 1.3a we present various convergence histories as obtained for L = 

4, 5, u, respectively. The convergence results presented are: 

• those of the first-order discretised Euler equations solved by means of the 
nonlinear mnltigrid iteratitm (dotted lines), 

• those of higher-order discretised Euler equations solved by means of the 
existing higher-order method (dashed lines), aud 

• those of higher-order discretised Euler equations solved by means of the 
improved higher-order method (solid lines). 

In all three graphs in Figure 1.3a, the residual considered is the L2-norm of the 
error in the conservation of mass over all the finest-grid cells. Further, in all 
three graphs, the number of cycles indicated along the horizontal axis is: 

• the uumber of FAS-cycles in case of both the firs t-order method aud the 
existing higher-order method, and 

• the number of ltDeC-cycles in case of the new higher-order method. 

Note that with the new higher-order method, for VFAS = 2, 5, 10 the number 
of inner FAS-cycles is respectively 2, 5 and 10 times larger than the number of 
iudicated ItDeC-cycl!'s. (Only for VFAS = 1, the number of FAS-cycles equals 
the number of ltDeC-cycles.) All convergence histories start at the end of the 
FMG-stage ([9]). In agreement with the theoretical results presented in [9], for 
all four values of VFAS (so also for VFAS = 1), the new method does indeed give a 
better couvergeuce than the existing higher-order method. For decreasing mesh 
width, the convergence of the new higher-order method becomes even relatively 
better than that of the first-order method. (For all four values of VFAS under 
consideration, the corresponding convergence histories in Figure 1.3a show a 
better grid-independency than those of the multigrid method applied to the 
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first-order discretised equations.) This better performance is probably due to 
the predicted better smoothing in the new method. 

As for the actual order of accuracy, if we took the converged higher-order 
accurate solution obtained on the 2225-vertices grid as the reference solution, 
we measured local orders of accuracy in the range [O(hl.4

), O(h2·3 )] for the 
solutions on the coarser grids (the 585-vertices grid and the 161-vertices grid). 
The global order of accuracy appears to be almost O(h2 ) . 

Finally, the important question still remains which of the various higher-order 
methods is the most efficient. To answer this question, we give the higher-order 
efficiency histories in Figure l.3b. (The indicated computing times have been 
obtained on a Sequent.) Since the sizes of the three grids considered are related 
to each other by approximately a factor 4, we have related the scales along the 
horizontal a..xes acconlingly. Concerning the relative efficiency of the improved 
higher-order method, for the four values of VFAS considered, it appears that for 
all three grids the best efficiency is obtained with I/FAS = 1 (just as in [7], for 
the schedule with only a single FAS-cycle per ltDeC-cycle.) Further it appears 
- and this is important - that the improved method with VFAS = 1 is also 
more efficient than the existing higher-order method. Due to the better grid
independency of the improved method, this relatively better effi ciency becomes 
even increasingly better with decreasing mesh width. 

2.6 Conclusions 

Fully implicit solution methods for higher-order discretised equations may 
strongly benefit from iterative defect correction when these systems of dis
cretised equations are not easily invertible, which often is the case with higher
order accurate discretisations. Fully explicit solution methods may also profit 
from iterative defect correction. Here the profits are faster convergence and 
higher efficiency. The defect correction method appears to lead to greater sta
bility (and hence to greater robustness) than the existing (standard) explicit 
method. Compared to the existing explicit method it possesses remarkably 
good smoothing properties, in fact even better than the first-order method. 
Last but not least its convergence rate appears to be grid-iudependeut. For 
upwind discretisations, the 'price' which has to be paid for using defect cor
rection iteration - a slightly more complex algorithm - is negligible, because of 
the direct availability of an appropriate approximate operator: the first-order 
upwind operator. 

3 CONVERGENCE BEHAVIOUR OF DEFECT CORRECTION FOR HYPERBOLIC 

EQUATIONS 

This section is based on the paper [2]. The nonlinear nmltigrid method is effi
cient for the solution of the compressible Navier-Stokes equations with a large 
Reynolds number, or for the Euler equations [5, 7]. The relaxation procedure 
being the workhorse of the multigrid method, the existence of a relaxation rou
tiue suited for fast reduction of the high frequency error components in the 
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solution of the discrete equations is ei;sential for this success [5). A good relax
ation routine is found in point- or line-wise nonlinear (collective) Gauss-Seidel 
relaxation, a:;i;umed that we solve the first order accurate discrete equations. 

For the second order dii;cretisation the relaxation procedures are significantly 
less efficient. This is the reason why an additional iteration procedure is in
troduced as an outer loop: iterative defect correction (ItDeC [1)) . The second 
order accurate approximation is now computed by the iteration 

NI( ( I )) h qh = 0, 

NI( (i+I)) - NI( (i)) N2( (i) ) 
h <J1i - h <J1i - h <J1i ' i = 1, 2, .... 

(3.1 ) 

(3.2) 

Here N,! and Nl denote the first and second order ( nonlinear) discrete op
erators. Only systems for first order accurate discrete equations are solved, 
but the fixed point of the iteration is the solution of the second order discrete 
system 

2 N1, ( <Jh ) = 0. (3.3) 

For the approximate solution of each iterate q)/+ 1>, i = 0, 1, ··· , a small number 
of mult igrid iteration i;tep8 (and in many cases only a i;iugle step) is sufficient. 

It is a classical result that, under easily satisfied conditions, the second iterate 

q),2 l is already second order accurate [4, Sect.14.2.2). This result describes 
the convergence behaviour for the low-frequency difference between the first. 
and second order discrete approximations. It explain:; why the convergence 
is fast for smooth solutions and fine grids. However, for the Navier-Stokes 
equations with high Reynolds number and for the Euler equations, sharp layers 
or discontinuitiei; may exist in the solution. Therefore, it is of interest to i;tndy 
the total convergence behaviour for defect correction. 

3.1 Linear model problem 

lu this contribution we restrict ourselves to the Euler equations. Thei;e equa
tions form a hyperbolic system of conservat ion laws. To analyze the conver
gence for these equations, we first study the linear model problem in two di-
mensions 

8 {}q {)q 
-
0 

q + a-
0 

+ bJ'.l = 0. 
t x uy 

(3.4) 

Although we are mainly interested in the steady state, we consider here the 
time-dependent problem in order to introduce a ' flow direction ' so that inflow 
and outflow houn<laries can be identified. The vector (a, b)T determines the 
flow direction, and with a > 0 the flow is in the positive :r-direction. 

For the first order dii;cretisatiou, the simple upwind scheme is used. This 
scheme is described by its stencil 

Ll - [-a () 

a+b 
- b 
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For the second order discretisation, various alternatives are available. Obvious 
possibilities are the second order upwind scheme and the central scheme, with 
the stencils 

0 

0] ·· 
0 

[ 
b 

] - 2 
Lw ,..., a - 2a 3(a+b) 0 and £ 2C a 0 a 

h 2 - 2- h ,..., - 2 2 
- 2b b 

- 2 
b 
2 

(3.6) 
The corresponding linear operators are denoted by LJ,, L'f.c and L'f.u, for the 
firs t order and t he second order central and upwind scheme respectively. By 
linear cmn!Jination of L'f.c and L'f,u a scale of second order schemes is obtained, 
the so-called n:-schemes 

1 + n, £2C 1 - n, £2U 
- 2- h + - 2- ,, . (3.7) 

Here n:E[- 1, 1] is a free parameter that determines the particular scheme; n, = 0 
corresponds with Fronuu's scheme. Being interested in the convergence of 
ltDeC, we study the amplification operator of the error, 

lv.f" (LI ) - 1 ( I £2") 1i = 1t L,, - /i • (3.8) 

3.2 One-dimensional analysis 

We firs t study the operator M 17 in the one-dimensional case. Then, without 
loss of generality, we have 

Li ,...,[- 1, 1, 0], and (3.9) 

2t< 1 + n, [ l 1 - Ii [ • l L 1i ,..., -
4
- - 1, 0, 1 + -

4
- 1, - 4,3,0,0. (3.10) 

For an infinite, regular grid with mesh width h, eigenfunctions for these opera
tors are 'Uw, wE[- 11' / h,11'/h], where 'Uw(jh) = eiwhj . Corresponding eigenvalues 
of the operator lvl17 are 

M,7(w) = i sin(wh/ 2) cos(wh/ 2) + n:sin2 (wh/ 2). (3.11) 

This shows that the eigenvalues are located in the complex plane on an ellipse 
with axes xE[O, n:], yE[-1/ 2, 1/ 2]. From (3.11) we see that t he upper bound for 
the convergence factor is 

sup IM/.'(w)I = sup Jn,2t2 +t( l - t). 
wE[- ,,- / h;rr/ h] tE [O,l )] 

Thus, as upper bounds we find 

- 1 1 
sup IM17(w) I = for n,

2 ~ 1/ 2, 
wE[- 7r/ h;rr / h] 2 Vl - n,2 

(3.12) 
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·· .-::!._:_· · 

and 
sup IM1~(w)I = ln~ I for 1/ 2 ~ n.2 ~ 1. (3.13) 

wE [- '11" / h.'11" / li ] 

These expressions describe the convergence if no boundaries are present. in 

the domain. To obtain an impression of the influence of the inflow Dirichlet 

boundary, we consider grid functions on a uniform partition {:r.; = ih; i = 

0, 1, 2, ... } of the half-line [O, oo) and we restrict ourselves to error components 

that vanish for large x;. The operators LJ, am! Ll,h' are again described by (3.0), 

(3.10), except for the first two equat.ious in the system, that are determined by 

the boundary discretisation. 
The eigenfunctions 11,1. of AI[, and the corresponding eigenvalues ,\ ::mtis(y the 

relation L~" 11,1. = (1- ,\) LJ, 11,1., and from (3.10) it follows that 11,1. has the form 

u,1.(.ih) = Ao+ A 111.{ + A2µ~, where 111 and 11 2 are roots of t he equation 

1 + fl, 2 
-

2
- JL + (2,\ - ii) /I 

1 - ,.,., 
2 = 0. 

A straightforward computation [2] shows 

,\ = fl, ± i ~cos() 
2 ' 

() 'f. 0 mod( 7r). (3.14) 

This shows that all eigenvalnes are located on a line segment. in the complex 

plane at a distance n-./2 from the imaginary axis and that all eigenvalues satisfy 

1,\1 ~ 4. 
In the case "· = ±1, we still have p = max 1,\1 = 1/ 2, but the eigenvalues 

coalesce and the eigenvectors are no longer independent.. Conseqnently, in the 

operator decomposition .Jordan hlocks .J arise. In the one-dimensional case, on 

a finite interval, the size of these blocks is N - 1, where N is the number of 

mesh points. Then the convergence behaviour after 11 iterations of ItDeC is 

described by r11 = llJ" 11 00 , where 

~11 p" 

( 

p" 

J" = ; 

c11 

" 1 

. I C" ( 1)1.. ) 11 - j 
Wit l \i = (J • 

It, follows that r,. ~ maxj=0.1,2 .. .. . N l{j'I, and hence 

• it is possible that T ~ 1 if n < N; 

• r 11 ~ nN- 1p11 for n _, oo, and hence the asymptotic convergence rate of 

the iteration is p log lnl; 

• the sequence { T,, }v::=; n is guaranteed to be decreasing only for 11 > N / (l -

p). In our case p = 0.5. This implies that the iteration may show no 

convergence for the first. 2N iteration steps. 
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These phenomena are seen in practice indeed, as is shown in Figure 3.2.a-d. 
If K =/:- ±1 but 1 S IKI S 4 v'2, the convergence during the first 2N iteration 

steps is dominated by the behaviour as described by the Fourier analysis (3.13}, 
i.e. a convergence rate of 1,..1 is seen. For all t;;E[- 1, + 1] the convergence rate 
has the lower bound p = 1 /2. 

In summary, for the one-dimensional problem we distinguish different phases 
in the convergence of the iterated defect correction. In most cases we first 
observe an impulsive start, where all components corresponding with small 
eigenvalues are damped. For the regular schemes (i.e. 1,..1 different from 1) 
soon an asymptotic rate of 1/2 is obtained. For the (near) pathological cases 
(i.e. 1,..1 close to 1) , after the impulsive start, we distinguish first a Fourier (or 
pseudo-convection) phase for about 2N iterations, in which the convergence is 
described by the Fourier analysis. After 2N iterations the asymptotic rate 1/ 2 
is found. In the truly degenerate cases (1,..1 = 1} we recognise a Fourier (pseudo
convection} phase, where the error does not decrease for 2N iterations, and a 
logarithmic asymptotic rate due to the large Jordan block in the eigenvalue 
decomposition. 

3. 3 Two-dimensional analysis 

In principle, the Fourier analysis for the two-dimensional difference operators 
(3.5 ,3.6} is completely analogous to the one-dimensional case. With the Fourier 
modes defined by uw(hj) = ei(wihi)i +w2 h 2hl, where the subscripts refer to the 
x - and the y-directions respectively, we find 

and 

L'f,"(w) = 2ia e- iwi1t i/2 S1(Cr + iS1C1 + (1 - ,..)Sf}+ 
2ib e- iw2 h2 /

2 S2( c~ + iS2C2 + (1 - K)S~ ) ' 

(3.15} 

(3.16} 

where S1 = sin (w1hi/2} , S2 = sin(w2h2/ 2}, C1 = cos(w1hi/2} and C2 = 
cos(w2h2/2). 

As the amplification factor we find 

(a1 s; ( 1- ( I - 1<)Sf )+a 2S; (1 - ( 1- "is;w+ ( l - 1<)2(a1 s~C1 +"2S~C2)2 

(a1 Sr +u2S~) 2 +(a1 S1 C 1 +a2S2C2)2 

(3.17} 
This expression can be used to determine the convergence rate for the separate 
modes on an infinite domain. It shows that, for a given ,.., we can never expect a 
better convergence rate in the two-dimensional case than in the one-dimensional 
case. 

For the analysis of the two-dimensional case on a finite domain, we refer to [2]. 
Essentially, the results for two space dimensions can be seen as a perturbation 

281 



of the results for one dimension. Analogous to the one-dimensional domain, the 

location of the eigenvalues is shown in Figure 3.1. We now find the eigenvalues 

not on a line segment in the complex plane, but in a cloud near that line 

segment . The real part of the eigenvalues is generally larger than is the case 

in one dimension (for t he same n.). This means that the cloud is shifted to the 

right. of the corresponding line segment. For the case of large n. ( n, ~ + 1), the 

cloud is larger t han for small f\, ( " · ~ - 1). 

For different values of ,., .. and for different values of N t.he location of the 

eigenvalues in the complex plane is shown in Figure 3.1. In this figure the ratio 

a/ bis 2/ 3. 
In Figure 3.2 t he convergence behaviour is shown for the model problem on 

a 40 x 40-mesh. For "· ~ 0 the cloud of eigenvalues is st ill contained in the 

circle lzl ~ 0.5, so p(l\,f g) ~ 0.5 if n. ~ 0. However , for 0 < "· ~ 1 we find 

possibly p(M,7" ) > 0.5, and for large n. we have lim,._+1 lim,, _ 0 p(l\11~) = 1. 

This explains why a convergence rate p(M1~) > 0.5 is found for " = 1/ 3 in 

Figure 3.2.e whereas p(l\11~) = 0.5 for n. = 0 (Figure 3.2.e) . For more details 

we refer to [2]. 

3.4 Euler equations 

A similar behaviour, depending on n., as for the linear model problem, is 

found for the nonlinear Euler equations. In Figure 3.3 we show the conver

gence behaviour for a problem that describes subsonic flow around a standard 

NACA0012 airfoil. This is a smooth flow where the problem is described hy a 

complex nonlinear system of equations and the domain is not simply connected. 

The mesh is 20 x 32 and results are shown for different values of H . We see t hat 

the iteration doesn't converge for f\, = 1, as it doesn 't for,., .. = - 1 (not shown). 

We obtain slow convergence for ,., .. = 0.8 and ,.,-. = - 0.8. Good convergence 

with a rat.e of approximately 0.5 per iterat ion step is obtained for ,.,~ = 1/ 3, 0 

and - 1/ 3. Probably the asymptotic rate cannot be observed because rounding 

error accuracy is obtained after approximately 40 iterations. For n. = 1/ 3 and 

H. = - 1/ 3 we see that. after an initial phase with p ~ 0.5, we obtain another 

phase with a slightly slower convergence rate. Such effect is not (ye t. ) seen for 

,.,., = 0. 
The first order discrete equations are solved by a nonlinear multigrid method 

[5]. It employs a nonlinear symmetric point-Gauss-Seidel relaxation ai; a 

smoother and a nested sequence of Galerkin discretisations for the coarse grid 

corrections. Experience has shown that a small number of iteration cycles of 

this multigrid method solves the discrete system to a high degree of accuracy. 

In the experiments shown, 3 FAS V-cycles were applied for each single de

fect correction step. It was shown by experiments that the same results were 

obtained for mult.igrid iteration with 2 through 5 FAS V-cycles. All init ial es

timates were obtained by interpolation from a first order accurate solution on 

a coarser grid. 
For this flow subsonic flow around the airfoil ,.,~ = 1 gives an almost diverging 
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Im 

One-dimensional Two-dimensional , /'i, = - 1 

Two-dimensional , /'i, = - 0.9 Two-dimensional, /'i, = - 2/ 3 

Two-dimensional , /'i, = - 1/ 3 Two-dimensional , "' = 0 

Two-dimensional , /'i, = 1/ 3 Two-dimensional ,"'= 2/3 

1--

Two-dimensional , n, = 0.9 Two-dimensional , n, = 0.99 

FIG URE 3.1. Location of the eigenvalues of the amplification matrix M1~ in 
the complex plane, relatively to the. circle of radius 1/2, for the one and the 
two-dimensional model problem. Except for the first 1-dim. figure, the mesh is 
10 x 10 and the ratio a/b = 2/3. 

283 



Figure 2.a, 1-dim 
N = 50; i;, = 1 

Figure 2.d, 1-dim 
N = 100; i;, = - 0.!J 

Figure 2.b, 1-dim 
N = 100; n, = 1 

\ 

Figure 2.e, 2-dim 
40 x 40 mesh; ,.,. = 1/:3 

\ 
\ 
\ 

\ 

\ 

' \ 
\ 

Figure 2.c, 1-dim 
N = 100; ,.,. = 0.8 

'""' " .. \ 

'. ·. 

\ 
"~·. 

Fignre 2.f, 2-dim 
40 x 40 mesh; ,.,., = 0 

The sup-norm of the error is plotted against. the number of iterations. 
The dashed line corresponds with a convergence rate p = 1/2. 

FIGURE 3.2. Convergence of ltDeC for the one- or two-dimensional linear test 
problem. 
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/'\, = +1 /'\, = 0.8 /'\, = 1/3 
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\ 
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·~ 
~ . .. 
~\~,..;~ 

/i, = - 1/ 3 /'\, = - 0.8 

FIGURE 3.3. Subsonic Flow over a NACA0012 Airfoil 
Convergence of the defect-correction method, on a 20 x 32 mesh. 

Mach number at infinity, M 00 = 0.63, and the angle of attack a = 2.0°. 
The dashed line corresponds to a convergence rate 1/ 2. 
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process and n. = 0.8 and n. = - 0.8 shows bad convergence. The asymmetry 
in the convergence behaviour with respect to n. > 0 (worse) and h-, < 0 (better 
convergence) might he understood by the location of the eigenvalues in the 
complex plane (as shown in Figure 3.1). There we see that more eigenvalues are 
located in the neighbourhood of the origin for n < 0 than for h-, > 0. This may 
be of greater importance for the nonlinear equations, where the corresponding 
eigenvectors are excited again and again, than for the linear problems, where 
the effect of these eigenvalues is no longer seen after a sufficient number of 
iterations. 

REFERENCES 

1. K. Bohmer, P.W. Hemker and H . .J. Stetter, The defect correction approach, 
Computing Suppl., 5, 1-32, 1984. 

2 .. J.-A. Desideri and P.W. Hemker, Analysis of the convergence of iterative 
implicit and defect correction algorithms for hyperbolic problems, SIAM J. 
Sci. Comput., (to appear, Jan. 1995). 

3. S.K. Godunov, Finite difference method for numerical computation of dis
continuous solutions of the equations of fluid dynamics (Cornell Aeronautical 
Lah. Transl. from Russian), Mat. Sbornik, 47, 271-306, 1959. 

4. W. Hackbusch, Multi-Grid Methods and Application.~, Springer, Berlin, 1985. 
5. P.W. Hemker and S.P. Spekreijse, Multiple grid and Osher's scheme for the 

efficient solution of the steady Euler equations, Appl. Numer. Math., 2, 475-
493, 1986. 

6. A .. Jameson, Solution of the Euler equations for two dimensional transonic 
flow by a multigrid method, Appl. Math. Comput., 13, 327-355, 1983. 

7. B. Koren, Defect correction and multigrid for an efficient and accurate com
putation of airfoil flows, J. Comput. Phys., 77, 183-206, 1988. 

8. M.-H. Lallemand and A. Dervieux, A multigrid finite element method for 
solving the two-dimensional Euler equations, Lecture Notes in Pure and Ap
plied Mathematics, 110, 337-363 (S.F. McCormick, ed.), Marcel Dekker, New 
York, 1988. 

9. M.-H. Lallemand and B. Koren, Iterative defect correction and multigrid 
accelerated explicit time stepping schemes for the steady Euler equations, 
SIAM .!. Sci. Comput., 14, 953-970, 1993. 

10. B. van Leer, Towards the ultimate conservative difference scheme V. A 
second-order sequel to Godunov's method, J. Comput. Phys., 32, 101-136, 
1979. 

11. S. Osher and F. Solomon, Upwind-difference schemes for hyperbolic systems 
of conservation laws, Math. Comput., 38, 339-374, 1982. 

12. A. Rizzi and H. Viviand (eds.), Numerical Methods for the Computation 
of Inviscid Transonic Flows with Shock Waves, Notes on Numerical Fluid 
Mechanics, 3. Vieweg, Braunschweig, 1981. 

286 



A Natural Term Language 

Jan van Eijck 

This paper proposes a natural term language, investigates some of its prop

erties, and discusses some of the advantages of natural term logic (NTL) as 
a medium for natural language semantics over its rivals and ancestors. 

1 INTRODUCTION 

In 1989 Cor Baayen was the prime mover behind the decision to start long-term 

work on the logic of natural language at CWI. Work in this area had found 
an occasional refuge at the centre hefore , witness Janssen [13], hut the seed of 

a full scale research group in 'Logic and Language' was sown in the Autumn 

of 1989. Right now, five years later, the group consists of five researchers (six 

if we count a distinguished lougtime guest), all but one supported by external 

funds. Fortunately for the rest of CWI we anticipate that this rate of growth 

will not be sustained in the future. 
The main focus of current CWI research in 'Logic and Language' is on con

nections between programming language semantics and natural language se

mantics and on the design and analysis of suitable representation languages for 

natural language meaning. The connection with programming is explained by 

the fact that natural language representation should account for iucrementality 

of processing, i.e., for the fact that we tend to understand each natural language 
utterance in the context of our understanding of what we have heard before. 

The semantics of a natural language text T consisting of T1 followed by T2 will 

specify that T1 sets up a context which is passed on as input to T2 , and that 

the meaning of T can he described as au increment of the meaning of T1 . This 

has a straightforward parallel in the analysis of computation: the semantics of 

a computer program P consisting of two parts P 1 and P 2 , in that order, will 

specify that the result of t he computation to which P 1 refers is passed on as 

input to P2 , and that the output of P2 for this input is the final output of P. 

The paper starts with listing some desiderata for natural language represen

tation, and then makes a new proposal for au incremental language for meaning 
representation. 
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2 WHAT l'vlAKES AN NL REPRESENTAT ION LA NGUAGE ' NATURAL'? 

If we assume that the meaning of (descriptive uses of) language should re

veal itself in the conclusions we can draw from the truth of natural language 

utterances, the following requirement. is possibly the mo8t important: 

Suitability of Representation for Reasoning The represent.at.ion language 

should come with a sound and complete calcuh18 for reasoning, and prefer

ably with decidable and efficient 8ound reasoning sy8tems for useful frag

ment.s of it.. 

First order logic meet8 this requirement quite welL as we know. l\fore esoteric 

higher order representation languages 8Uch a8 Mont.ague's [18] Inten8ional Logic 

and its derivative8 score lower in this dimen8ion, as it is not. always obvious 

how such logics 8hould he axiomatized in the fir8t place. 

Another natural requirement on NL repres<mt.ation is the following: 

Structural Similarity of Representation The 8tructure of the logical rep

resentation language should hear a reasonable amount of similarity t.o 

that of the 'source' natural language. 

At fir8t sight., fin;t order predicate logic does not. meet this requirement. at. 

all. Consider (1), with its first order representation (2) (disregarding tense for 

simplicity). In the logical translation the subject- predicate structure of the 

natural language source seems to have got lost. 

1 A man walked in. 

2 3:i:( M :i: /\ W:1:) . 

But here the appearance of the represent.at.ion is misleading. If one thinks of 

the representation a." the result of combining, by functional application, the 

meaning of the subject., >..P · 3:1:(.M :i: /\ P:i:), with that. of the predicate, >..y · Hl y, 

then the structure of the source text reveals itself in the meaning representation 

of (1) before lambda reduction: 

3 (>..P · 3:1:(M:1: A Px))(>..y · Wy). 

Still, the encl result (2) of normalizing (3) does not have the same subject.

predicate structure a.c;; the original. A representation where noun phrases reveal 

t hemselves in normal form as terms would satisfy the requirement better. 

In the representation of the meaning of a very simple natural language ex

ample like (4), au extension of (1), we want to capture the fact that the first 

8enteuce of the example makes an indefinite reference to a man, while the 

second sentence picks up the reference t.o that same individual. 

4 A man walked in. He looked happy. 

The reason why ordinary first. order predicate logic i8 letting us clown here is 

that we also want our representation language to satisfy the following principle 

of incremental repre8ent.at.ion (already hinted at. in the int.roduct.ion above): 
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Incrementality of Representation The representation of a text T consist

ing of a subtext T1 followed by a subtext T2 should be au increment of 

the representation of T1 . 

This principle is closely connected to, although not identical with, the principle 

of compositional interpretation which is the main preoccupation of Janssen's 

[13] investigations in Montague grammar. 
In ordinary predicate logic, the natural representation of the first sentence of 

(4) is (2). This is not a suitable basis to construct a representation of the whole 

text ( 4). A natural representation of the pronoun he would use the variable 

x, but this choice runs into the problem that the scope of 3x in (2) has been 

closed off. 
The theory of discourse representation proposed in Kamp [14] tried to rem

edy this problem by assuming that every indefinite description gives rise to a 

so-called disco"Urse marker, which can be picked up later 011 by an anaphoric 

link ( anaphom is the standard linguistic name for the connection between the 

pronoun he and its antecedent a man in example ( 4) ). Discourse representa

tions a la Kamp essentially consist of sets or lists of discourse markers followed 

by lists of conditions. A discourse representation for the first sentence of ( 4) is 

given in (5) 

5 {x},{Mx,Wx}. 

In an analysis a la Kamp, the representation for the second sentence of the 

example can introduce a new marker y for he, and specify that the markers are 

to be linked: 

6 {y},{y =:1:,Hy}. 

The representation of the complete example text ( 4) is the result of au obvious 

process of 'merging' the two representations: 

7 {:i:,y},{A1x,W:1:,y = x, Hy}. 

Later on, Groenendijk and Stokhof [8] observed that the essence of Kamp's 

proposal is already captured by a very simple modification of orrliuary predicate 

logic. Replace Tarski 's truth definition for first order logic by a dynamic variant 

which interprets a first order formula as a two-place relation on the set of 

variable assignments. The meaning of <p is theu given as s[cp]s', where s denotes 

the input assignment and .'1
1 the output assignment. All semantic clauses are 

tests, in the sense of imperative programming (where a test which gets memory 

state s as input indicates success by returning s as output and failure by giving 

no output at all), with the exception of :fa:, which has the clause s[3:i:Js' iff s' = 

s(x /d), for some arbit rary din the domain of the model under consideratiou. 

If the predicate logical meaning of the first part of ( 1) is read dynamically in 

the manner indicated, and the pronoun in the second part of ( 1) is translated 

with the same variable, then in the end result this 'dangling' variable turns out 

to be bound after all, due to the continuing dynamic effect of the 'existential 

switch': 
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8 3:c( M x /\ l'F :i;) /\ H :r. . 

It is clear that the requirement of incremental representation leads in a nat
ural way to a representation language with a dynamic semantics, and we can 
expect such representation languages to be similar to programming languages 
in interesting ways. For instance, it turned out that the dynamic version of 
predicate logic can be analysed with the standard tools from the stucly of im
perative programming, such as Hoare logic (Van Eijck and De Vries [4]) . Also, 

it became clear that dynamic predicate logic and its derivatives suffer from the 
problem of destructive assignment (see Dekker [1], Vermeulen [24] and Visser 
[25] for cliscussion and for possible remedies) : because 3:J: has been effectively 
replaced by the assignment statement :i: := ?, an existential quantification de
stroys the oi<l value of its variable, with the result that anaphoric reference to 
t.lrnt value by means of the variable (or a pronoun which has that variable as 
its translation) becomes impossible. The present proposal adds one more item 

to the long list of possible solutimis for this problem. 

3 THE BASIC IDEA 

The basic idea of this paper is to design a language with complex ' indefinite' 
terms, with a dynamic semantics based on term valuations rather than variable 
assignments. This representation language is structurally more similar to natu
ral language than languages which adopt t.he term structure of predicate logic, 
it caters for the needs of incremental representation by its dynamic nature, 
and it also looks like a promising tool for reasoning, due to its link to Hilberfs 
epsilon calculus [!J]. An earlier application of epsilon logic to the concerns of 
natural language representation is Meyer Viol [16]. 

The Natural Term Logic (NTL) to be defined in the next section is intended 
to achieve several goals at once: 

• to give an account of the clynamics of left to right processing by means of 
a relational semautics (an idea from dynamic predicate logic [8], update 
logic [23], and similar proposals) 

• to use iutensional choice functions from epsilon logic [!J] and instantial 
logic [6, 17] for the representation of indefinites, 

• to account, for the existential an<l universal quantifier in term of choices 
(friendly for existentials, unfriendly for universals), thus incorporating a 
key idea from Game Theoretical Semantics [11], 

• to link pronouns to descriptions of their antecedents (the key idea of the 
so-called e-type analysis of pronouns proposed by Evans [5]), 

• to treat universal and existential NPs as terms (one half of this idea 
incorporated in file change semantics and DRT; the full idea plays a 
role in traditional syllogistics and natural logic (Purdy [l!J], Sanchez [21], 
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Sommers [22]) and was all but killed off by Frege's Begriffsschrift analysis 
of quantification [7]). 

4 SEMANTICS OF NATURAL TERM LOGIC 

We start with the non-logical vocabulary of a predicate logical language L. 
This consists of a set 

C = {co,c1,c2, ... } 

of names (or individual constants), for each n > 0 a set 

P TI {P.11 P" P" } = 0' I' 2 '· · · 

of n-place predicate constants and for each n > 0 a set 

f TI { fTI !" !" } = JO' I' 2 '· · · 

of n-place function constants. 
It is also useful to have ..l for absurdity, = for identity, and - for predicate 

negation. The further logical vocabulary we add to this consists of parentheses, 
the f. term operator (borrowed from Hilbert and Bernays [9]), the colon :, an 
infinitely denumerable set V of individual variables, the sequential composition 
connective ; and the connective => for dynamic implication. 

Terms and formulas are defined by mutual recursion, as follows (assume 
c E C, v E V, f E f ", P E P" ): 

terms t ::= c Iv I ft1 ···t11 I (rn: cp) . 

formulas cp ::= ..l I Pt1 · ··t11 I Pt1 ···t11 I t1 = t2 1 (cp1;cp2) I (cp1 => 'P2). 

The translation in this language of Example ( 4) becomes: 

9 W(Ex: M x); H(Ex : Mx). 

Note that in this translation the reference to the previously mentioned individ
ual a man gets picked up by just repeating the term which was used to refer 
to that individual in the first place: the translation of he is the same as that 
of its antecedent. 

An occurrence of v is bound in cp if v occurs inside a subformula ·if; of the 
form (rn : '1/J) , otherwise it is free in cp . I will write cp(u1, ... , v,,) to indicate that 
the free variables of cp are among v1 , ... , v11 . Just as in standard predicate logic 
one has to take some care with substitution. If one wants to substitute t for 
free occurrences of v in cp , one should check that t is free for v in cp , i.e., that no 
free variable inside t is in danger of becoming bound in the result. Substituting 
(E:i; : Pxy) for x in R(Ey : Sxy):i;, would run into this problem, for instance. 
The problem can always be remedied by switching to an alphabetic variant. 
Iu the example case, the result would be R( f.Z : S( f.X : P x y )z )( f.X : Pxy ). 
I will use cp( t j v) for the result of substituting t for all free occurrences of v 
in cp, with a switch to an alphabetic variant if the need arises. The result 
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of simultaneous substitut ion of t 1 , . • • , t,, for free occurrences of v1, • •• , , u,,, 

respectively, in cp, with renaming of bound variables as the need arises, will be 

writ.ten as cp(tifv 1 , • • • , f.,, / v,, ). 
Let. M = (dom(.M ), int.(11'1)) be a first order model for the vocabulary of£. 

I will use cl\I, J M, pM as short.baud for int. (M )(c), int.( M )(f) aud int (M )(P ), 

respectively. 
Let. A be the set. of variable assignmeut.s for L in 1\f , i.e., Jet. A he the set. 

of fuuctious dom(M ) 1' . We will use. a, n' for members of A, and a( v ld) for t.he 

assignment a' wit h a'(t) = t fort f= v and n' (t) = d for f. = v. 
Let T be t he set of terms of L. We consider the set of partial functions 

<iom(M )lAxT] 

as tot.al functions in 
B = (dom(M ) U {l})'l xT. 

For T' i;;; T and s E B , let s [ T' be t.he function s' E B given by: 

s' (a,t) = s(a , t ) if f. E T', and s' (a, t ) =T otherwise. 

Define dom( s) as: 
{(a , t) E A x T I s(a, t) f=I}. 

The relation ::::; on B is defined as s ::::; s' iff s' [ dom( s) = .~ [ dom( s) . 

The set S i;;; B of states for L in M is t.he set. of those s E B satisfying t he 

following: 

• s(a , v) = a(v), 

• 8(a,c) = cM, 

{ 

J Ar(s(a,ti), . .. ,s(a, t,,)) 

• s(a, ft 1 ···f.,,) = if s(a, t i) f=T, ... , s(a,t ,,) f=T, 
T ot herwise. 

• s (a , fV : cp) = { ~ 
where [cp]~." is 

for some d E [cp~·~·" 
otherwise. 

if [cp]~.(/ f= 0, 

{d E dom (M ) I s, a(v ld)[cp]}, 

wi th s,a(v jd)[cp] given by the following clauses (where we assume .~,s' , s" E S 

and a E A ): 

s, a [cp] iff 
s, a[l.Js' iff 
s, a[Pt1 · · · t11 Js' iff 

s, a[Pt1 · · · t11 ]s' iff 

s, a[t1 = t2] s' iff 
s , a [cp1; cp2]s' iff 
s, a [cp 1 => cp2]s' iff 

3s' with s ::::; s' and s, a[cp]s' , 
never, 
s :::; s' ,s' (a,ti) f= l, .. . , s' (a,t,,) f= l, 
(s' (a , t i), ... , s' (a , t 11 )) E p M, 

s ::=:; s1
,.<i

1(a, t i) f=l, .. . , s' (a, f.,,) f= 1, 
(s'(a, ti) , . .. , s' (a, t11 )) rt p M, 

s ::::; s' , s' (n, t i) f=T, s' (a, t 2 ) f=T, s' (a, t i) = s' (a, t 2 ) , 

3811 wit h s, a [cp i]s" and s" , a [cp2]s' , 
H = s' and ';/.<;" with s , a [cp i] s" it. holds that. .'1

11 , a [cp2]. 
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5 ADEQUACY OF THE SEMANTIC DEFINITION 

Note that the definition of the state set S for L in Iv/ is phrased in terms of S 
itself, a potentially dangerous situation. The next proposition shows that for 
every M for L, the set of states for L in Iv/ is non-empty. 

PROPOSITION 1 If S is the .~et of states for L in M, then S =f. 0. 

Proof: The proof uses a variation on a standard Skolem expansion argument 
(see e.g. Hodges (12]). 

Start out with the following language L 0 : 

terms t ::= c Iv I ft1 ···tit. 

formulas cp ::= 1- J Pt1 · · · t,. J Pt1 · · · t,. I t1 = t2 I (cp1; <p2) I (cp1 => <p2). 

Let T0 be the set of terms of L0 • Surely, states for Lo exist, for a state for Lo 
is just a mapping from assignments to classical first order term valuations. Let 
S0 be the set of states for L0. Note that [cp]~ , u is well-defined for cp E L0. 

Next, expand the language in layers. Assume Tk, the set of terms for layer 
k, and Lk , the set of formulas for layer k, are given. Then Tk+I and L k+I are 
given by the following clauses: 

terms t ::= c I v J ft1 · · · t,. J (w: cp ) with cp E L k, 

formulas cp ::= 1- I Pt1 ·· ·t,. I Pt1 · · ·t it I t1 = t:1 I (cp 1; cp2) I (cp 1 => cp2) 
with t E Tk+I · 

We may assume that Sk, the set of states for Lk,, is non-empty. Also, we may 
assume that [cp].~,u is well-defined for cp E Lk , s E Sk. 

Take some member -"k E Sk and use it to construct a member s of Sk+i as 
follows. 

• if t E Tk, then s(a, t) := sk(a, t), 

• if t E Tk+I - T k, then t has the form (w: cp ), with cp E L k., and we set 

s(a f!J : cp ) := { <1 for som~ d E [cp]~k • " if [cpt k," =f. 0 
' l otherwise. 

Obviously, this can always be done, so we have shown that Sk+I =f. 0, and 
moroever, that every Sk E Sk can he extended to an sk+I E Sk+I · Also, if 
s E Sk+1, [cp]~,u will he well-defined for cp E Lk+I · 

The full language L is LJr:o Lk, the full set of terms T is LJr:o n .. The set 
of states S for L in M is given by: 

{s E B J sf n, E Sk,O ~ k < oo}. 

As each sk is non-empty and each Sk E sk has an extension .'ik+J E Sk+ J, this 
proves that S =f. 0. • 
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G TRUTH , VALIDITY AND ENTA ILMENT 

The following definitions of truth, validity and entailment round off the pre
sentation of the semantics of L. 

DEFINITION 1 (TRUTH) <p is trne in £-model Al if3s E S, 3a E A with s, a [<p], 
where S is the set of states for L in M and A = dom(.M) 1' . 

Here are some examples of first order equivalents of NTL formulas to illustrate 
the definition (where F denotes NTL t.rut.11 , and Fe the classical first order 
not ion of truth). 

• MF B (e1; : Ax) iff M Fe 3:r:(A:i: /\ 8:1;) 

• M F R(f:r: : A.r.)(Ex: B x) iff M Fe 3:r:3y(A:1; /\ By /\ R:r:y). 

• MF R(E:r:: Ax)(f:r; : Ax) iff Af Fe 3:c(A:r: /\ R :r.:1:) . 

• MF R (e1: : Ax)(Ex: A:r:) iff M Fe 3:r:( A:c /\ -.R.?::1:). 

• M F A(e1; : A:r:) =? B (f.x: A:c) iff M Fe 'v':c(Ax -+ B :r:) . 

D EFINITION 2 (VALIDITY ) <p i8 valid if <p is true in every £ -model M. 

Here is an example validity (with F <p for '<p is valid'): 

F A(f.x: B :r:) =? B (f.x : A:c). 

DEFINITION 3 ( ENTAILM ENT) <p entails 1/J if the truth of <p in £ -model M en

tails the truth of <p; 1/1 in £ -model M. 

This may sound slightly non-st.anclanl. The reason for looking at the conclusion 
' in the context. of the premise' is of course that the conclusion may contain 
translations of pronouns that. find an antecedent in the premise. 

Here is an example entailment (with F for the entailment. relat ion): 

(P (F.x : Ax)=> P (E:c: B :c)); (P (Ex : B:r:) => P (F.:i:: C:r:)) 
F P (e1: : A:r:) => P(E:c : Cx). 

The term language L is a dynamic variant. of Hilhert and Bernays' epsilon logic 
(see [9]) . The dynamic epsilon terms are meant. to represent. the process of 
referring indefinitely to individual entities (by means of indefinite descriptions) 
in natural language. 

Moreover, it is an int.ensional version, for two formulas <p and 1/1 which are 
logically equivalent (i.e., which entail one another) can give rise to <lifferent. 
'epsilon choices' in the sense that for some state s, s(w : <p) i= s(w : 1/J ). In 
extensional epsilon logic (cf. Leisenring [15]) this situation cannot occur. For 
our purposes the intensionalit.y of choice is indispensable, for we want. to he 
able to use logically equivalent. indefinite descriptions for indefinite reference to 
different. individuals. 
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Some extra notation is useful for that. Note that according to the semantic 
clauses, ( ..l =? ..l) is valid. Let ( rn : <p ),. abbreviate the following: 

(rn: (<p; ((..l =? ..l); ((..l =? ..l) ; ... )))) 

n times 

Then we can use (t:x : Ax)0 , (t: x : Aa:)i, (t:x : Ax)2, and so on, to translate 
different occurrences of au indefinite description in a text. 

10 A beer for her, a beer for him, and an orange juice for m e. 

In ordering a round of drinks for three, as in (10), a repetetion of the same 
indefinite description should not entail that the same glass is to be shared by 
two of your friends, so the translation should use ( 1::1; : B x )0 and (EX : B x h, 
for the two different glasses of beer. 

7 AN UPDATE FORM U LATION OF THE SEMANTICS 

If I ~ S, where Sis the state set for Lin some given M, let J[<p] be the set of 
states given by: 

{s E S I 381 E Ba E A: s',a [<p]s}. 

We can use this notion to define a global index elimination procedure for NTL. 
An index for L is a pair (M, J}, where M is a model for L and I ~ S, I =f. 0, 
with S the state set for L in M. 

If U is a set of indices, then define: 

Ul<pl = { (M, J[<p]} I (M, I } E U and J[<p] =f. 0}. 

Let l-V be the class of all pairs (M , S}, with M a model for L and S the full 
state set for L in M. Then <p is valid iff (WI <p 1)0 equals the class of all models 
for L; here ( )0 denotes the operation of taking the first projection. 

Let U be the power set of the class of all indices for L. A natural information 
ordering on U can now be given in terms of the local ordering :::; on states for 
a given model, which we first extend to state sets, as follows: 

I :::; J iff for all .~ E J there is an s' E I with s' :::; s. 

Next , we set , for U1 , U'2 E U: 

U1 :::; U'2 iff for all (M, J } E U'2 there is a I :::; J with (M, J} E U1. 

This distinction between a global and a local perspective on the semantics 
should be compared to a similar distinction made for dynamic modal predicate 
logic, in Van Eijck and Cepparello [3]. The distinction is the key to extending 
the present proposal with epistemic operators such as maybe, au extension 
which is beyond the scope of the present paper, however. 
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8 SOl\1E EXAMPLE MEANING REPRESENTATIONS 

We will now illustrate the pot.ent.ial of the language by a brief discussion of 

examples, some of them famous from the literature. 

11 Some fn.rrner owns a donkey. He beats it. 

Natural translation: 

12 O(E:i:: F:i:)(f.y : Dy ); B(E:i: : F:1:)(t!J: Dy). 

This does have the expected meaning, for it is equivalent to the following first 

order sentence: 

13 3x3y(Fx /\ Dy /\ O:i:y /\ B:i:y). 

The advantage of the NTL version is the fact, that the translation of the second 

part is an increment. of that of the first. 

14 If a farm er owns a donkey, he beats it. 

The translation of this key motivating example for Discourse Representation 

Theory: 

15 O(Ex: Fx)(ty : Dy) => B (F.:1: : F:i:)(Ey : Dy ). 

The first order equivalent of this: 

16 'Vx'Vy((F:i: /\ Dy /\ 0 :1;y) ----> B:1:y). 

This example derives its fame from the fact that its first order translation is 

so hard to get in a compositional way. The NTL version does not. face such a 

problem. 

1 7 Every farm er who owns a donkey beats it. 

To treat the example it is useful to have a notation of universal terms. Let 

P ( . .. (TV : cp) ... ) be shorthand for: 

( t11 : cp = n 1 : cp) => P ( . .. ( rn : <p) •.. ) . 

Then (17) gets as natural translation: 

18 B(Tx : F :i:; Ox (Ey: Dy))(ty : Dy). 

This is short.hand for: 

19 
(er,: Fx; Ox(ty: Dy)) = (Ex: F:i:; Ox(ty: Dy)) 
=> B(t:i:: F:i:; Ox(Ey : Dy))(Ey: Dy), 

which has the same first order equivalent as (15). 

20 Every fa11n er owns a donkey. He beats if. (regularly}. 
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The discourse representation literature [14] claims that the example is ill
formed, a nice illustration of the fact that linguistic observation, like all obser
vation in science, is biased by theory. Unlike discourse representation theory, 
which cannot handle it, we can afford to assume that this example is linguisti
cally acceptable. Here is the translation: 

21 O(Tx: Fx)(ty: Dy); B(Tx : F x)(qJ: Dy). 

Its first order equivalent: 

22 Vx(Fx __, 3y(Dy /\ 0:1:y)) /\ Vx(F:1: __, 3y(Dy /\ B xy)) . 

If this isn't close enough, we can relax our regime of pronoun translation which 
says that pronouns are to be translated by repetition of the term translation 
of their antecedent. 

23 O(T:1: : Fx)(ty: Dy). 

In fact, from the truth of (23) we get that in every setting the term (n; : Fx) 
can be replaced salva veritatis hy (Tx: Fx; Ox(f.y: Dy) ). Using this as pronoun 
translation we get: 

24 O(Tx: Fx)(ty: Dy); B(Tx: F:i:; O:i:(Ey: Dy ))(ty: Dy). 

The first order equivalent of (24) : 

25 Vx(Fx __, 3y( Dy /\ Oxy)) /\ V:1:(F:i: __, Vy((Dy /\ Oxy) ---+ B xy)) . 

26 Every farmer owns a donkey. Some fa77ner beats it. 

Like the previous example, this one is beyond the scope of most current seman
tic theories. Outside of the mainstream of natural language semantics, Game 
Theoretical Semantics [10] does sketch an account , however. NTL now incor
porates this treatment in standard dynamic semantics. Here is a translation: 

27 O(Tx: F :1:)(ty : Dy ); B (t.:1: : F:1:)(f.y : Dy ). 

Its first order equivalent: 

28 Vx (Fx ---+ 3y(Dy /\ Oxy)) /\ 3x(F x /\ 3y( Dy /\ B xy)). 

Again, if this isn 't close enough, we can relax the pronoun translation regime 
and observe that the truth of the first half of (27) guarantees that we can 
replace the term ( tx : F x) hy ( tx : Fx /\ Ox( f.Y : Dy)) without changing truth 
conditions. This gives the following alternative translation: 

29 O(Tx: F x)(ty: Dy); B (f.X : Fx; Ox(ty : Dy))(ty: Dy ), 

with first order equivalent: 

30 Vx(F:1: __, 3y(Dy /\ Oxy)) /\ 3:1:(Fx /\ 3y( Dy /\ O:cy /\ B :1:y)). 

Of course, all first order equivalents in this section were given ad hoe. In the 
next section the issue of reasoning about and in NTL will be addressed in a 
more systematic way. 
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9 ASSERTION REASONING FOR NAT URAL TERM LOGIC 

One approach to developing a calculus for a dynamic logic is by using assertions, 
in t he style of Hoare logic or quantified dynamic logic. The statements from 
the dynamic language to be analyze<l then become modalities, and we interpret 
(ip)X aR: there is some states' reachable from the current states with s, a [cp]s' 
and X holds at s', ancl its dual [ip]X as: for all states s' reachable from the 
cmrent states with s,a[cp]s', X holds at s'. 

Here are some axioms for an assertion calculus along these lines (we use X as 
metavariable over assertion statements, and T as abbreviation of some abitrnry 
tautology). 

A 1 (ip1;1P2)X +-> (1P1)(1P2)X. 

A 2 (1P1 => 1P2)X +-> (X /\ [1P1J<'P2) T) . 

A 3 (P( ... (rn: ip) ... ))X +-> 3x((ip)T /\ (P( ... x .. . ))X(v/ (rn: ip))) . 

A 4 [P ( ... (ev: ip) ... )]X +-> 'v'x( (ip)T --. [P ( ... x •• • )]X(v/(rn: cp))) . 

A 5 (Pt,·· ·t,,)X +-> (Pt1 ... f,, /\ X ). 

Condit.ion on A-5: none of the t ; is of the form (rn: ip) . 

A G [Pt,··· t ,,]X +-> (Pt1 · · · t 11 --. X). 

Condition on A-6: none of the t; is of the form ( rn : <p). 
Further discussion of these axioms is beyond the present. scope (see Van Eijck 

[2] for a similar calculus for dynamic predicate logic). 
Instead, we confine ourselves to illustrating their use by means of the follow

ing example. 

(O(ex: Fx )(ey: Dy)=> B (ex : Fx )(ey : Dy))T 
+-> [O (ex: Fx)(ey: Dy )](B (ex: Fx )(ey: Dy ))T 
+-> V:i:((Fx) T--. [Ox(ey: Dy)J(Bx(ey: Dy ))T) 
+-> 'v':r:(Fx --. [Ox(ey: Dy)](Bx(ey: Dy ))T) 
+-> V:r:( Fx --. 'v'y((Dy)T --. [Oxx](Bxy) T)) 
+-> 'v'x(Fx --. 'v'y(Dy--. [Oxy](Bxy) T)) 
+-> 'v'x(Fx --. 'v'y(Dy --. (Ox11--. B xy))). 

10 NATURAL DEDUCTION FOR NATURAL T ERM LOGIC 

A different approach to reasoning with term logic is given by the following 
example rules from a natural deduction calculus with ordered premises. 

A 1 cp ; l/J 
<p 

A2 
<p; lf;(w : x/v) 

v1 (rn: (x /\ cp )/ v) 
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Condition on A-2: cp should not contain occurrences of epsilon terms. An 
example application of the second rule is: 

W(fx: Mx);H(fx: Mx) 

H(€x: Mx /\ Wx) 

These rules are for purposes of illustration only. Axiom A-2 needs a more cmn
plex formulation to deal with cases where the first member cp of the sequence 
cp; if; contains more than one epsilon term. 

Further work on natural deduction for NTL should establish a connection 
with natural deduction for standard epsilon logic (see Meyer Viol [17] for a 
treatment). 

11 CONCLUSION AND FURTHER DIRECTIONS 

We have sketched a representation for natural language meaning which treats 
indefinite descriptions as terms. An obvious first extension is definite descrip
tions, for which standard logic has a term treatment using the 1, term operator 
(see e.g. Reichenbach [20] for au illuminating discussion). Further extensions 
of the representation language 1 hat seem interesting are epistemic modalities 
and, in a different direction, plural terms. 
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The naming theorem, one of the classical results in Abstract Complexity 
Theory states that the entire hierarchy of complexity classes under an ar
bitrary complexity measure can be renamed using an effective measured 
transformation by a honest collection of names preserving the extension of 
the classes. The non-renameab-ility result which was proven by the author 
two decades ago states the opposite to be the case for the hierarchy of 
honesty classes: every attempted measured transformation must destroy the 
extension of at least one honesty class. However, the published version of 
the theorem uses the fact that in the theory partial functions are first class 
citizens; a version involving total functions only is proven under restrictions 
on the names of the classes. In this note we present the full version of the 
theorem; this result was obtained and announced twenty years ago but has 
remained unpublished since. 

1 INTRODUCTION 

AhHtrnct Complexity Theory is a research subject which connects Recursion 
theory and Theoretical Computer Science. It finds its origin in the seminal 
paper by Manuel Blum [2], was intensively studied during the early seventies, 
but it has become obsolete an<l forgotten by 1980. The subject can be found in 
several textbooks from that period, but an almost complete survey will also be 
included in the second volume of Odifre<ldi:; textbook 011 recursion theory [u]. 

At the time I was completing my thesis on this subject [8] under Hnpervi
sion of A. van Wijngaarden and Cor Baayen with Juris Hartmanis serving as 
referee, interest in complexity theory already had Hhifted to the study of the 
fundamental complexity classes based on standard computational devices and 
to the study of the fundamental questions about the power of noudeterminiHm 
and the relation between time and space which are unsolved until today. Actu
ally I know only of two ph.d. projects which have been completed on Abstract 
Complexity Theory since 1974 [1, 3]. So by the en<l of the Heventies the :;ubject 
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had quite well become stahle. It was my intent to t.ransform my thesis into a 

two-volume textbook on Abstract Complexity Theory which has in fact been 

announced for many years and which has been consuming an open slot in the 

Mathematical Centre Tract series until this series was replaced by the CWI 

tracts series. This hook however was never completed. 
Some central results from my thesis have been published in two papers [9, 10]. 

Other results from the research only have appeared in the thesis it.self or were 

never published at all. The oldest of these two papers presents the so-called 

non-renameability result. This theorem establishes the most visible distinction 

between the structure of the hierarchy of complexity classes and the hierarchy 
of honesty classes: whereas according to the naming theorem of Mc Creight. 

and Meyer [5] the entire collection of complexit.y classes can be renamed by 

means of a measured transformation preserving the extension of all classes, it 

is shown that. every au.empt. to rename honei:;ty clai:;sei:; in a similar way must 

destroy the extension of at least one class. 
The result. in the present note is an improvement of the results in [9]; it was 

obtained during my residence at Cornell aft.er my ph.d. defense. When t.he 

galley proofs of this paper where send t.o the printer I inserted a note added 

in proof announcing the full version of theorem 7 in that paper. Since the 

commercial edition of the thesis (where the promised improvement was stated 

to be appearing) was never completed the result. only exist.s as a manuscript. 

Evidently after these many years the result might legally have been claimed 

by an independent. researcher but this has not happened either. I am therefore 

grateful to be offered the opportunity to use the invitation to contribute to 

this volume dedicated to Cor Baayen to retrieve it from my archives in order 

to preserve it. for prosperity. 

2 PRELIMINARIES 

By a function in this paper we mean a partial recursive function from the set 

of integers N into itself. Functions which are defined for all arguments are 

called total. The symbol P ('R) denotes the i:;et of all partial (total ) functions. 

The set of arguments ;i; for which f (x) is defined is denoted VJ. We write 

J (x) ::; oo(J(x) = oo) for :r: E V f( x ff. V !). 
The inequality f ::; g means that VJ ~ Vg and g(x) ;:=: J (x) for x E Vy. 

Strict inequality f < g means that VJ ~ Vg and g(:c) > J (:i:) for :r: E Vg. If 
VJ ~ Vg and g(x) = f( :r:) for x E Vg the we write g ~ f. The range off is 

denoted 'FRJ. 
For finite k the inequalities k ::; oo and oo ::; oo are taken to be true whereas 

oo ::; k is false. Beside inequalities on all arguments we also have inequalit.ies 
00 

holding almost everywhere. If P(x) is some predicate we write Vx [P(:r)] for 
00 

"P(x) holds for all x except finitely many" and 3x [P(x)] for "there exist. 
infinitely many x such that P(x)" . Using these notations we let J( x) :::$ g(x) 

00 

denote Vx [f (:r) ::; g(:c)]. This later notation can he relativized moreover to a 
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00 

subset A ~ N: we let f(x) ::S g(x)(A) denote\f ,, [x E A ____. f( x ) :S g(x)J. We 

let µ z[P( z )] denote "the least z such that P( z )" . 
We use a fixed recursive pairing function < x , y > with coordinate projec

tion functions 7r1 and 7r2. We have 7r1(< x ,y > ) = x,7r2( < x, y > ) = y and 

< 7r1z, 7r2z >= z . Moreover < x, y > is increasing in both arguments and 

consequently < 0,0 >= 0. We let f. (zero) denote the function which is ev

erywhere undefined (zero). According to our convention f.
2 (zero2 ) denote the 

two argument function which is everywhere undefined (zero). Using this pair

ing function we can interpret one-variable functions as being many-variable 

functions; an occasional superindex like for example in cp f(x, y) = cp;( < x , y > ) 
indicates the use of this interpretation. 

By ( cp; ); we denote a fixed Godel numbering of partial recursive functions [7]. 

The universal function u(i, x ) = cp; (x) is recursive and there exists a total 

function s , called the s-n-rn function satisfying cp f (:i:, y) = cp,, (i,x) (y ). Using the 

interpretation cpf (:i;, y) = cp; ( < :i;, y > ) many variable functions are included in 

our enumeration. The functions cp; are also called programs. 

We extend the enumeration ( cp; ); to a Complexity measure by means of a 

sequence of step counting fun ctions (<I>;) ;; this sequence satisfies the two Blum 

axioms: for each i , 'Dcp; = 'D<I>; and the relation <I> ;(x ) = y is decidable. Again 

we write <I>y (x ,y) for <I>;(< x, y > ). 
A transfonnation of programs a is a total recursive function operating on the 

indices of programs. In general these transformations are defined intensionally 

by implicit invocation of the s-n-m axiom and the universal machine axiom 

(possibly in combination with the recursion theorem) by writing a formula like 

'Ps( i) (x ) ~ P('i,:r) 

where P(i , x) denotes some expression recursive in i and x . 
A m easured set is a sequence of functions (/;); such that the predicate 

')'; (:i:) = y is decidable. The sequence of run-times (<I>;) ; is an example. A 

transformation T such that ( 'P r (ii)i is measured is called a m easured transfor

mation of programs. 
For a (partial) function t we define: 

00 

F1 = {cp;j \f :r. [x E 'Dt ~ <I>;(x) :S t( x )]} 

Ct = {f\3;[f = cp; /\ cp; E Ft]} 

The complexity class of functions C1 contains all functions computed by 

programs in the complexity class of pmgrams F1• Note that in our definition 

both F1 and 0 1 contain partial functions even if the name of the class t is total. 

In this definition complexity is measured in terms of the running time of the 

machines only. If we take into consideration that larger function values may 

require longer running times for being evaluated we arrive at the concept of 

honesty. Honesty classes have two-argument functions as names: 
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00 

Gn = {<p;\ "ix [<p;(x) ::::; oo/\ < x,<p;(:r.) > E DR <=== <l>;(:c) ::::; R(x,<p;(:i:))]} 

Hn = {f l3;[f = <p; /\ <p; E Gn]} 

G n(H n) is called a Hone!ity cla88 of programs (functions}. Note that. t.he 
condition enforced in t.he definition of G n holds vacuously if <p; (:c ) diverges; 
consequently each honesty cla.'ls contains all functions with a finite domain, 

wherea.'> it can be shown t hat no complexity clm;s except for the trivial class 

C, = P contains any such fnnct.ion. 
Special honesty cla.<>ses with single variable na mes are obtained by considering 

honesty hounds R oft.he form R(:i:, y) = t(:i:); the resul ting classes are called 

weal.: complexity clas.~es : Fi"'' = GR and c,11' = H R· Note that c,w and 
C1 contain the same total functions. An alternative special type of honesty 

classes with single variable names is obtained by taking names R of t he form 

R(:1:, y) = t (max(:1:, y)); these classes a.re called modified honesty classes in [!Jj. 
There exists a close connect.ion between t he notions of a mea.<1nred set and 

a honesty class. By a well known theorem Mc Creight [4] every measured set. 

is included in some honesty class wit.h a tot.al name; conversely every honesty 
class wit.h a total name can he enumerated in such a way that. the enumerating 
sequence represents a measured set. More formally : 

THEOREM 1 (rvlc C REIGHT & MEYER) If (T;); is a m easured set th e th ere e:t:

isfs a total function R, such that as a set of fnnctions b; ); ~ H n; moreover m1 
indc:c for R can be obtained uniformly from an inde:i: for the decision predicate 

for /; (x) = y . Conversely, if R is o tot.al function tllfm H n is en'/l.111erat.ed by 
.~ome measured set ("y; ); and indices for both the en'/l.m emtin.q seque11 cc mu/ the 

decision predicate for ')'; ( :1:) = lJ are ohtained uniformly in th e inde:r. of R. 

The above theorem has led t.o t.he feeling that. t.he two concepts are more or 

less equivalent. Thb is cert.a.inly not. the whole truth. The above equivalence 
is lost as soon as the name of the honesty class is partial. l'vloreover, it. is not. 
har<l t.o construct. a present.at.ion of a honesty class with a tot.al name such that. 
this present.at. ion as a sequence is not. a niea,-;ured set. 

We now fornmlat.e the naming theorem of l\k Creight. am! !\foyer [5] and our 
full non-rennmeability re8ult: 

TH EOREM 2 (NAMING THEOREM) There e:1:ists a measured fmnsf01m.ation of 

programs CT such that fo r each i the classes F..,; and F..,,,
10 

are equal (an d con

sequently c..,; = c..,,,(0 as well) . 

THEOREM 3 (NoN-RENAMEABILITY THEOREM) For every mea.mred transfor
mation CT there exists an inde:1: i of a total funct ion .~uch that H..,2 n R i= 
H..,2 nn. · 

a ( i) 

This result. resembles t.he results proven in [9]; however if inspected in more 
details all t he results published in this paper are weaker: in theorem 6 the result. 
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claimed reads H'P' i= H'P2 . , i.e., the classes may turn out to be different due 
1 a( i) 

to the presence of partial functions in the classes; in theorem 7 there is shown 

a difference on the subclasses of total functions within the honesty classes, but 

the result is proven for the modified honesty classes only, i.e. the names are of 

a special form. 
Expressions describing functions and/ or transformations of programs in this 

paper are defined in terms of the hybrid language introduced in my thesis 

which combines elements from standard recursion theory and the (by now ar

chaic) programming language ALGOL68. The resulting expressions may have 

in general several plausible computat ional interpretations which may differ with 

respect to convergence; the intended computational meaning is uniquely deter

mined according to the guidelines as indicated in [8], section 1. The reader 

should keep in mind that according to this intended interpretation inequali ties 

involving either a step-count ing function or an element of some other mea

sured set are evaluated using the decision predicate instead of a brute-force 

evaluation. 

3 PROOF OF T HE NON-RENAMEABILITY RESULT 

The proof of t he improved result uses the same technique used in t he earlier 

results: we ohtain a suitable version of the mi11-or lemma, which shows that a 

measured transformation a eventually will "reflect" some name <p~(:1: , y) with 

respect to some suitably large function R( x , y) in the sense t hat <p~ ( x, y) is large 

compared to R(:i:, y) if and only if <p~ c) (x, y) is small ; subsequently we show 

that the set of arguments where the re~ected name is small supports the graph 

of a total diagonal function which is included in the honesty class with the 

original name but not in the transformed class. This diagonal then separates 

t he original class from its renamed version. 
We start with a function R which is sufficiently large in order that there 

exists an R-honest odd-valued function which is not zero2-honest. We define 

the t ransformation a by: 

'P~ ( i,J)(:1: , y) ~ if even y then 'P](x, y) + R(x, y) + 1 

elif 'P;(i/x, y) :S R(x, y) then 'PJ(:i;, y) + R(:i:, y) + 1 
else Ofi 

By the recursion theorem there exists a transformation p satisfying 

CLAIM 1 ( MIRROR LEMMA ) 

'P~(J ) (x, y) = if even y then 'P](x, y) + R(:i:, y) + 1 

elif 'P;(p(j))(:1;, y) :S R(x, y) then 'P](:1:, y) + R(x, y) + 1 
else Ofi 
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We next define (implicitly using the recursion theorem once again) the trans
formation n.: 

cp,,(j)(n) = if11 = OthenJ1m [cp~(ri(j))(7r1 m,7r2m) :S R (7r1m,7r2m) 
and odd 7r2m] 
else1Lm[odd7r2mand7r1m > 7r1cp,,(j)(n - l ) and 
cp~ ( p(j )) (7r1m, 7rzm) :S R (7r1m, 7r2m)] fi 

Hence cp,,(J ) enumerates pairs < :r, y > with :r increasing and y odd such that 
'P<T(ri(J))(:S) R (:i:, y). A "partial inverse" of 'Ph·. (:i ) is obtained by the t ransforma
tion: 

'Pfi(:i) (:r) "*= if 7r1tp,,(j ){ J1n [7r1cp,,(.j)(n) :'.:'. :i:]) = :r, 

then Jl.n[7r1 cp,,(.i) (n )] else false fi 

The function 'Pfi(j) computes in fact a partial inverse to 7r1 cp,,.(j) . If for some 
input :i: some pair < :r, y > is enumerated then cp11(j ) (:1:) yields the index of t his 
pair in this enumeration; if no such pair is enumerated but if eventually some 
pair < :1:1, y' > is enumerated with :i:' > :i: the the value is false . Otherwise 
'Pfi (J) is undefined. 

Finally we define a diagonal transformation 'Pl>(j ) by: 

'P1> (.i)(:i:) "*= if 'Pfl (.n (:1:) = false then 2<I>r1ul(:1:) 
elif <I> 71" 1 'Pflui( ")(:1:) :S R (:1:, 7r2cp,, ul('Pp1(.i)(:r))) 
and cp71" 1'P,,u 1(,·)(:1:) = 7r2'P,,(J)('P11cn (:i:)) 
then 7r2'P,,(.i)('P11ui(:r)) - 1else7r2'P,,(J)('Pfi(.i) (:i:)) fi 

Informally, in order to evaluate 'Ph(.i) (:i:) one first muHt evaluate 'Pfi (.i) (:1: ). If this 
computation diverges then 'Po(J )(x) is undefined. If the computation converges 
but yields the value false then output twice the time it haR taken to compute 
this value false . Otherwise we diagonalize: we know that for some value JI a 
pair < :i: ,y > is enumerated by cp,,(J)' say cp,,ul(m) =< :1:,y > . Test whether 
<I> 71" 1 111 (:1:) :S R (:i:,y) and if so whether cp71" 1111 (:r) = y; if both conditions are 
satisfied then output y - 1 and output y otherwise. 

Note that thiH computation diverges when 'Pfi(j) (x) diverges, and this will 
only happen if no pair < :r',y' > with :r' > :1: is enumerated by cp,,(j )' i.e., when 
'Ph·.(.i) is partial. Hence in case cp,,.(j) is total then so is 'Pli(j ) 

CLAIM 2 The sequence ('Pli(i))j is a measured set. 

This can be Heen as follows. 
For a given pair < x, y > it can be decided whether < :1:, y >E ~'P,, (J ) : 

if y is even or if cp~(p(j))(x, y) > R (x,y) then < :r:,y > is no candidate for 
being enumerated so we can answer "no". Otherwise we know that some pair 
< x', y' > with x ' :'.:'. x will eventually be enumerated and we can wait and see 
whether < :1:, y > is enumerated by that time. 

306 



Using this observation we can describe the following decision procedure for 
'Pli(J )(x) = y? 

If y is even then test whether cI>f:l(j)(x) = y/ 2 and 'P f:J(j)(x) = false ; if so the 
answer is "yes". Otherwise test whether < ;i;, y + 1 > E Rcp,.(J) i if not then the 
answer is "no". If < x,y+ 1 >= cp,.(j)(rn) test whether cI> .,.. 1 ,,.(x) ::; R (x,y+ 1) 
and cp.,..

1
,,.(x) = y + 1; if so the answer is "yes" and otherwise t he answer is 

"110 ". 

If y is odd then test directly whether < :r, y > E ~'P .. (j) · If not the answer 
is "no". Otherwise let m. be the argument such that < ;i;,y >= 'Pt<(J)(m), and 
test whether cI> .,.. 1111 (x) ::; R (a:,y) and cp.,.. 1 ,,,(x) = y; if so the answer is "no" and 
otherwise the answer is "yes" . 

The cow ·ctness proof for this decision procedure is left to t he reader. 
Our next claim holds only in the case that cp,.(j) is a total functions, i.e., 

3' x3y[cp!(,,(J )) (:1:,y) ::; R (a:,y)]: 

CLAIM 3 If cp,.(J) is total then 'Pli(J) ff, H'P2 . . 
a(p( J)) 

Consider an index i for 'Pli(j) and a value m with 7r1m = i. Let cp,..(j)(m) =< 
:r, y > then we have for this particular argument x : 

cp;(x) = 'Pli(J )(a:) = if m = false then 2cl>r:1(j)(x) 
elif cI>;(x) ::; R (x, y) and cp;(x) = y then y - 1 
else yfi 

The first condition is evidently false; since the then-part for the second condi
tion is contradictory we conclude that cp;(x) = y and cI> ;(x) > R (a:,y); since 
also for t his pair < :r,y > it holds that cp;(,,(j ))(x, y) ::; R (x,y) this shows that 
cp; violates the honesty condition at < x, y > . From the fact that cp,.._(J) is total 
we infer that t here exist infinitely many violations of this type; since also i was 
an arbitrary index for 'Ph(J) t his proves our claim. 

CLAIM 4 For every pair < x,y > such that 'Po(J )(;i;) = y one has cp;,(J)(x, y ) 2:: 
cp](x, y). 

For even y this claim is a direct consequence of the definition of p, whereas 
for odd y the definition of 8 implies that < x, y > is a pair enumerated by 
cp"(j) and therefore the condition cp;!(,,(J))(x, y) ::; R (x, y) is satisfied. However, 

according to our use of the mirror lemma this means that cp~(j) ( :r, y) = R( x, y) + 
cpj(:1;, y) + 1 2:: cp](x , y). 

The theorem now can be derived using the above claims. 
Since (cp6u))j is a measured set there exists an indexj0 of some total function 

cpj0 such that ('P1>(j))j ~ H'PJo . 

If for this index j 0 the function cp~( . ) is total then cp:( . ) is a total function 
"Jo "Jo 

in H 2 \ H 2 • 
tp 1>Uo ) tp a ( PUo )) 
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In the alternat ive ca.i;e that <p~Uol is a partial function then for almost. all :1: it 

holds that <p~Unl(x, y ) = 0 for all odd values of y. So the odd-valued functions 

in Hcp2 . are zero2-honest functions. By the mirror lemma it. follows that. for 
p(Jo l 

almost all x one has <p~(p(jo)l( :i;, y) ~ R (x, JJ) for all odd values of y. Since 

there exists by assumption an odd-valued R-honest function f which is not 

zero2-honest , one concludes that f E Hep" \ Hcp2 . 
(T < l'Uo )) 11U11 > 

Having shown that in both cases the honesty classes are different, the proof 

is complete. 

4 LOOKING BACK WARDS 

With hindsight one may ask why this result is not included in the earlier pre

sentations of the non-renameahility theorem. There is just one additional tech

nique involved in the proof which was not present. in the proofs in [9]: the use 

of parity. The problem in the earlier proofs is how to obtain "escape values" for 

the diagonalizat ion , in such a way that. the choice for this escape value won't 

lead to a violation against. the original honesty bound. The earliest. proof of the 

non-renameability uses the undefined escape value, since this choice will never 

violate any honesty condition. The consequence is that the diagonal function 

becomes partial. 
The question whet.her the non-renameability result extends t.o t he case that 

only the total functions in a honesty clctss are considered originates with Albert 

Meyer. Evidently, considering the simple case of the weak complexity classes 

(which are non-renameablc if partial functions are considered; see theorem 4 

in [9]) , will yield no answer since the weak and the strong complexity classes 

cont.ain the same total functions, and the strong classes can be renam ed. Thus 

the need for finite escape values arose. 
In order that the choice of the escape value · 1J does not. lead to a violation 

of a honesty condition at argument :1:, t he pair < x, y > should he located at. 

a place where t.he original bound S is large. If the transformed bound S' is 

obtained using the mirror lemma, then these places can be detected by deciding 

whether S'(x, y) is small; however, since existence of such a value y is in general 

undecidable finding one may be too hard. Only because of the special structure 

of the names for the modified complexity cla.i;ses this hurdle could be overcome. 

Using the parit.y of the y value a.i; a dividing condition our new proof in fact. 

constructs bounds S and S' where the mirror effect. only is enforced on half of 

the plane (i.e. , for odd values of y only). The diagonal tries to produce viola

tions against the honesty bound S' (:z:, y) for odd values of 11 for which S(:c, y) 

is large and S'(x, 11) is consequently small. The escape value is chosen to be 

even. By a standard combining lemma argument the complexity of this diago

nalization can be estimated, an<l it suffices to choose S(i:, y) being sufficiently 

large for even y and pairs < x, y > where S should be large. 

Ultimately there are two ca.i;es; either the diagonalization succeeds and a 

member of Hs \ Hs' is obtained or S' becomes so small that some odd-valued 
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member of H s gets excluded. Evidently this idea does not reach far beyond 

the original techniques, so the result could have been obtained already in 1973 

with the others. 
A more interesting question is whether the whole field of Abstract Com

plexity Theory should be looked at at all at this stage in the development of 

theoretical computer science. The subject disappeared from the battlefields of 

t heoretical compnter science since the axioms of the theory failed to put any 

constraint of naturalness on the models; all sort of pathologies were possible, 

and any attempt to further constrain the theory by enforcing naturalness con

ditions was doomed to failure (3]. Also the theory fail ed to provide any insight 

in the core problems of the field: t he relation between time and space and the 

power of noudeterminism. 
I claim however that some sort of a positive revival today is possible; the gap 

between recursion theory and complexity t.heory is being narrowed these years, 

both becam;e of the nowadays frequent use of recursion theoretical techniques 

iu structural complexity theory, but also since researchers iu recursion theory 

once more become interested iu complexity issues. So t here still might be a 

market for the lost textbook ou Abstract Complexity Theory. 
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Mathematics as the Paradigm for Metaphysics 
Louk Fleischhacker1 

Twente University Enschede The Netherlands 

Dedicated to Prof. CorBaayen, who retires as the scientific director ofCWI, and who can therefore 

revive his interest in philosophy. 

The ideal of mathematical exactness is strongly paradigmatic for modem 

science, for which mathematics practically functions as a metaphysical 
foundation. This strongly influenced philosophy. In our century, however, 

critical voices arise, even from the ranks of scientists. Reflection on the 

foundations of mathematics has produced a deeper insight into its nature. 

As a result the tendency to judge content by structure has become less 
pre iominant. Metaphysics, however, is still often rejected as only producing 

constructions with unjustified claims to necessity. Clear recognition of the role 
of the mathematical paradigm shows that this rejection is unnecessary. 

MATHEMATICS AND METAPHYSICS 

It is sometimes claimed as an advan1 age, and sometimes regretted, that modem natural 

science has no metaphysical foundation. The unconventional thesis might, however, 

be defended that mathematics has effectively functioned as the metaphysical foundation 

of the modem scientific tradition. The still living fundamental principle of science, 

from Galileo onward, is the reduction of qualitative phenomena to measurable 

quantities and structures. Many underlying forms of thought in which this principle 

has been active apart from actual mathematisation, such as the mechanistic view, 

determinism, and positivism, have been superseded by others such as complementarity, 

probabilism, and chaos-theory in science itself, and critical rationalism and even 

sociologism in the philosophy of science. But the idea that knowledge is scientific 

in the complete sense of the word only if it is expressible in mathematical structures 

and equations seems to be unchallenged. Seemingly extreme reactions to the 

mathematical perspective, such as holism, implicitly presuppose the same mathematical 

models as their more positivistic counterparts. This probably accounts for their 

apparent extremeness. Even if real mathematisation lies far behind the horizon, as it 

does in the cognitive sciences, it is nevertheless taken as a standard, e.g. in the form 

of computational models. In logic and linguistics, and even in ethics, the mathematical 

perspective is prevailing now. What is often called 'formalisation' or 'formal methods' 

by analogy to mathematical logic, is in fact the construction of mathematical models, 

as it originally was in mathematical logic too.2 

I) This article contains parts of the introduction and Chapter S from: L.E.Fleischhacker, Beyond 

Structure, Peter Lang, Frankfurt 1995 

2) For a coherent and convincing criticism of this trend, see: Soren Stenlund, Language and 

Philosophical Problems, Routledge London, 1990. 
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The paradigm of mathematical thought has also thoroughly invaded philosophy. Not 

only by attempts to systemize the discipline more geometrico, such as Spinoza's 

Ethica, but also by the ideal of demarcating a domain of pure rationality frorri the 

ambiguities and prejudices of common sense. From Descartes to Wittgenstein this ideal 

has exerted a strong influence on philosophy, and the consequence has been an 

estrangement of philosophy from its most fundamental discipline: metaphysics. 

THE PROBLEM OF MATHEMATICAL THOUGHT 

From the perspective of the philosophy of mathematical thought, the relationship of 

mathematical structure to observable reality has remained extremely problematic. Plato 

fonnulated the question where in the world to look for numbers and geometrical 

figures,3 and he concluded that the visible world is not the only possible mode of 

being. Mathematics cannot be about the world of human experience, for example, 

because this world resists reduction to purely mathematical structure. The reality of 

change especially is a hard nut to crack, as was noticed already by Aristotle. But he 

found a way different from Plato's for dealing with mathematical objects. He regarded 

them as the results of abstraction, the actualization in thought of a principle we find 

in the world of experience. He called this principle 'uA.TJ VOTJtTJ: intelligible matter. 

In antiquity the main philosophical problem with mathematical objectivity 

was to separate it from experience, without making the applicability of mathematics 

impossible to understand. Modem times, however, begin with the idea of the identity 

of mathematics and physics. Nature herself is thought to be structural, and thus acces

sible to mathematical investigation, not only by her external geometrical shapes - as 

Archimedes had already discovered - but also in her inner laws. 

In philosophy this had a very strong impact. Descartes characterises the world 

of experience as res extensa, taking what in Aristotelianism had only been an outer 

property of material things to be their essence. The extemality of nature becomes its 

inner principle. In the nineteenth century Hegel fonnulated the essence of nature as 

'the Idea in the fonn of extemality to itself. 
For philosophy this meant that the problem was no longer one of the relation 

of the mathematical to the physical, but of the relationship of a knowing subject, 

Descartes' res cogitans, to an objective world which is mathematical and physical at 

the same time. This produced strongly mathematically coloured, but never really 

mathematical, metaphysics. 
Spinoza's attempt to construct metaphysics 'more geometrico' has led to 

points of view which actually went beyond mathematical reasoning, but remained 

strongly influenced by it. Even when in modem philosophy the paradigm of geometry, 

or mathematics in general, is explicitly rejected, as in the case ofHegel's system, the 

lure of structural rigour is still present as can be seen in his rigorously systematic 

approach. 
In the nineteenth century the identification of mathematical and physical 

objectivity became less and less obvious. Mathematics, liberated from its close connec-

3) Plato, Republic 526a 
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tion to physics and technology, began to develop highly speculative theories such as 

complex number theory, abstract algebra, Fourier analysis, non-Euclidean geometry 

and projective geometry. It started looking for a foundation of its own, independently 

of physics, and thereby more and more overtly showed its ideal character. 

In philosophy, on the eve of the twentieth century, two - apparently opposite 

- impulses emerge, which may eventually undermine the ideal of mathematical rigour: 

Husserl's phenomenology, which introduces another ideal of philosophical rigour, and 

Frege's mathematical logic, which objectifies mathematical reasoning. 

Godel's results teach us that, as a consequence of this objectification,4 the 

foundation of mathematics cannot be formulated explicitly as a mathematical theory. 

Mathematical thought as such cannot be free from intuitive presuppositions demanding 

investigation by a discipline other than mathematics itself. 

For a 'working mathematician' this is no problem at all. She or he is perfectly 

happy with Hilary Putnam's 'Yes, we have no foundations'; but the philosopher 

experiences a change of problem-field again. Now both the subject-object relationship 

and the relationship of structure and reality have become problematic. The 

mathematical point of view appears to be based on an intuitive insight, constituting 

a certain perspective - which I call structural - on the world of experience. 

But ifthat is true, mathematical structure is not necessarily the only or even 

the most adequate form in which scientific knowledge can be expressed. Perhaps the 

success of measuring-science has blinded us to metaphysical perspectives, whether 

or not they justify or radicalise the mathematical approach. Even philosophies which 

are generally considered to be anti-mathematical, such as Hegel's speculative dialectics 

or Heidegger's existential philosophy, when inspected more closely, appear to share 

certain essential presuppositions with the mathematical approach, e.g. the denial of 

real potentialities. In fact the ideal of 'exactitude' - the possibility of making all 

presuppositions explicit and developing a body of thought consistently from them 

- seems to be all-pervading in our culture. Wittgenstein's Philosophical Investigations, 

because of its anti-systematic tendency, may be regarded as an outstanding exception; 

but this work also shows clearly the kind of trouble that arises if one tries to leave 

the mathematical paradigm behind. For what other method than allusion remains, if 

an explicit development of ideas is forbidden? The very different ways in which 

4) The words 'subject' and 'object' are used in different senses, but the tendency always is that 

they are correlatives in the performance of some (theoretical or practical) action - as the 

linguistic use suggests. The subject is the active pole, the object not necessarily passive, but 

the action is always directed towards it. Subjective is what belongs to the subject as such (i.e. 

in its function of being the active pole), objective what belongs to the object as such (i.e . in 

its function of being the 'aim' of the activity), which does not necessarily mean that it exists 

independently of the subject. Mathematical objects for instance, need not be conceived of as 

existing independently of mathematical thought. Subjectivity and objectivity are the properties 

ofbeing subjective, respectively objective. Objectification is the act of giving objectivity to some 

content, either by theory - conceiving of it in the form of objectivity - or by practice - bringing 

about a state of affairs which may be understood as representing the said content in an objective 

form . 
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Wittgenstein' s philosophy has been interpreted make this clear, for if one cannot 
express one's ideas explicitly, there is no limit to interpretation. 

Also in structuralism, in spite of its name, a tendency to leave mathematical 

grounds is present. It is real structure the structuralists are after, not ideal, 
mathematical structure. But as Jong as nothing but structure is seen, it is already 
surreptitiously being idealised. Therefore, in structural ism there is always an essentially 
non-structural principle - such as power, force or spontaneity - lurking in the back
ground. Critics of the mathematical point of view usually underestimate its power. 
Either it eventually turns out that they have remained within it or they adopt its 
abstract opposite and in this way remain indebted to it. 

THE AGE OF MA THEMATISM 

Dijksterhuis concludes his Mechanisation of the World Picture with the remark: 

The mechanisation, which the world-picture underwent in the 
transition from antique to modem natural science, consisted in the 
introduction of a description ofnature by means of the mathematical 
concepts of classical mechanics; it indicates the beginning of the 
mathematisation of natural science, which obtains its completion in 
twentieth century physics. 

But this is only seen from the direction of the ultimate effect. In my view, 
the technical as well as the philosophical sources of the rise of modem science already 
introduced very strong tendencies towards mathematisation. It is in accordance with 
the natural development of technology that technical concepts are made more and more 
explicit. Of course this does not explain that this development took place in this 
particular historical period. But one thing is clear: in order to make technical concepts 
explicit, one must measure and calculate. Moreover, on the philosophical side, 
medieval Aristotelian ism hardly left room5 for another basis to be criticised on than 
precisely the mathematical Platonism that arose in the Renaissance. The breakthrough 
of both tendencies - the technological development and mathematical Platonism - and 
their fruitful meeting in a particular place and time can probably be explained by fun
damental changes in society.6 What is important here, however, is the result of the 
breakthrough: the firm belief that measurement and mathematical calculation, and 
nothing else, will lead to insight into the phenomena of nature. For Galileo the book 
of nature was written in mathematical signs, and for Newton mathematical space and 
time were absolute, whereas experienced space and time were considered to be only 

5) Especially for those who • like Cusanus and the humanists, and unlike most of the modem 
philosophers - knew perfectly well what it was all about, and where the strength and weakness 

of this world-picture was to be located. 

6) Scheler Max, Die Wissensformen und die Gese//schaft, Bern 1969. 
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relative. Nature came to be seen as mathematical in itself, and the distinction between 
mathematics and physics became obsolete. In the eighteenth century 'mathematics' 
still encompassed a whole range of disciplines, from arithmetic to machine
construction. Only in the nineteenth century did a new form of 'pure' mathematics 
emancipate itself from natural science and technology. But by then the mathematical 
style of thinking had been thoroughly spread among scientists and technicians. 

WHAT IS MA THEMATISM? 

But the prevalence of a particular style does not itself constitute mathematism, which 
is rather a - usually implicit - metaphysical position connected to the feeling that the 
'mathematical' style is so self-evident that it does not need any foundation. In this 
way this st: le is itself taken as the foundation of science and philosophy. As a conse
quence, the objectivity and generality of the style have to be regarded as objectivity 
and generality without qualification. The object of mathematical thought can be charac
terised as structure, which is more general than what is usually understood by quantity, 
but is by no means identical to metaphysical universality or being. If unqualified 
objectivity is identified with mathematical objectivity, the fundamental nature ofreal ity 
becomes structure, which is diff.~rentiated only by higher or lower degrees of 
complexity. This is exactly in line with the philosophy, ascribed to Pythagoras, 
according to which the essence of the universe is number. Number for the ancients 
was the principle of what is mathematical, and it is still often regarded as a fundamen
tal paradigm of structure.7 The Pythagorean world view is a fundamental and ever 
recurring metaphysical perspective. In Plato's Academy, Speusippos and Xenocrates 
took up this line of thought and in the Renaissance it was popular with humanists such 
as Pico delta Mirandola. Even today it is explicitly adhered to by some theoretical 
physicists, who doubt whether 'matter' is to be regarded as a useful concept in physics. 

On the other hand we all know that structure is not something immediately 
given. We can see different structures in one and the same phenomenon and we can 
technically give different structures to our surroundings. And in pure mathematics, 
structure is the result of postulation or thought-construction. So structure is in a certain 
sense our product. It is the structurability of the world, which is fundamental. 

So mathematism has two sides to it, expressible in two ideal-typical theses: 

l. Structurability is the essence of everything. 
2. To know something is the same as to give it structure. 

This is a completely coherent metaphysical position, in which being is iden
tified with mathematical intelligibility, instead ofintelligibility without qualifications. 
But the question is, whether or not this world view is unduly restrictive. Does it rule 

7) In this connection Kronecker's saying: 'The natural numbers are made by the Lord, the rest 
[of mathematics] is human work' is usually quoted. 
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out any other perspectives which we find particularly plausible? One could ask whether 

anything exists which is not - in a certain sense - structurable, and it would be difficult 

to find an example. On the other hand, one could ask whether in fact there exists 

anything the essence of which is its structurability. Perhaps one could think that the 

essence of space is its structurability. But once one imagines something in it, a non

structural quality is introduced, which distinguishes the space occupied by the 

'something ' from empty space. Trying to reduce this quality to structure again, could 

very well lead to an infinite regress. If indeed it is felt as absurd from the point of 

view of common sense to express mathematism as an expl icit philosophy- in the same 

way as it is felt as absurd to express scepticism8 as an explicit position - what then 

are the grounds for this feeling of absurdity? 

Let me compare this situation with the current aporia in debates about the scope of 

artificial intelligence. If one mentions a human skill, not yet simulable by computer 

programs, the AI defender will say: if you describe it exactly and clearly (i .e. 

mathematically) to me, I shall find a way to simulate it, and if you cannot describe 

it in this way, then it is nothing at all. But then, if it is so described, it is probably 

not the same as it was before. What, however, is the difference? We have the feeling 

that, as soon as we describe this difference, a corresponding correction of the program 

will eliminate it. 
We are so immersed in mathematism that we simply cannot imagine a kind of 

exactness surpassing mathematical exactness. For how could we prove that e.g. 

intelligence is not reconstructible in mathematical terms, if not by using a description 

of mathematical reconstructability itself, showing its restrictions. But such a description 

should evidently be clearer and more self-evident than any mathematical construction. 

In a traditional philosophical framework metaphysics could perform this task, and that 

is why mathematics and metaphysics must be rivals in a mathematistic world. 

On the other hand, it seems to be precisely the development of information-technology 

that tends to change this situation. In this field structures are of course important, but 

they can no longer be considered as purely mathematical. They are not invented for 

the sake of clarifying the domain of the ideally structural or the inner laws of nature, 

but for the sake of their use in a context of human practice. In the perspective of pure 

mathematics they are clumsy and opportunistic. They have nothing of the proverbial 

mathematical elegance, their adequacy cannot be rigorously proven and their 

functioning cannot be completely tested. 

Mathematicians as well as metaphysicians stand here awkwardly looking at something 

of which they claim to know the principles, but to which they cannot apply them. The 

two may become brothers again. But before this new brotherhood is celebrated, it is 

8) Scepticism disregards its own claim for truth. Therefore it is immediately refutable by showing 

its 'pragmatic' self-contradiction. But even then it is not refuted as a general altitude in life. 

Hegel saw this clearly in the chapter on scepticism in the Phenomenology of Spirit.(Hegel 

G.W.F, Phaenomenologie des Geistes, ed. Hoffineister, Felix Meiner, Hamburg 1952 p.52; Miller 

A.V. (Transl.), Hege/'s Phenomenology of Spirit, Oxford 1977.) Cf. also Michael N. Foster, 

Hegel and Scepticism, Harvard 1989 
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advisable to analyze the past period of rivalry, in which victory seemed to dwell on 

the mathematical side. 

METAPHYSICS IN A MATHEMATICAL STYLE, AND ITS FATE 

Mathematical abstraction results in a certain structure, which is essentially one of the 

specific realizations of the structurability of a field of experience, and therefore. it is 

contingent. Mathematical structure is grasped by - ideal or real - actualization of the 

potency of all things of our experience to be divided in thought into interrelated parts. 

This actualization essentially includes arbitrariness, and can in that sense be called 

a construction, although it may very well be a reconstruction of a known phenomenon. 

Philosophical reflection on the other hand aims at necessity, for the coherence of its 

objects - which I shall call principles - cannot depend upon tradition, convention or 

postulation. Any blending of mathematical and philosophical reflection bears the 

suggestion that there exist necessary constructions, which is a contradictio in adjecto. 

So if metaphysics is implicitly contaminated with such a blending, it is an easy prey 

to criticism depicting it as either absurd or obscure. A construction has definite inner 

relationships, definite elements and definite properties. All these are definite, because 

they have been defined to be such as they are, and this means that there is arbitrariness 

in them. Principles nor their relationships, on the other hand, can be understood as 

the result of definition, they must on the contrary be presupposed in definitions. They 

constitute the perspectives in which we can try to conceptualize or reconstruct 

experience. Their relationships are beyond definition, because they are constitutive 

for the meaning of a definition.9 Nevertheless, in their implicit form, these 

relationships are better known than explicitly defined structures. They are implicitly 

but effectively known to us, and attempts to express them explicitly are experienced 

as highly artificial. They are not axioms, nor 'necessary truths,' nor expressible in 

a judgement or theorem without already presupposing them. We can investigate them, 

but we can never use them, apply them or draw conclusions from them outside the 

perspective they constitute. Yet, if we want to investigate principles, we must 

somehow express the results of this investigation. This is where the difficulties begin, 

for how to express such results in a form which must necessarily be determined either 

by tradition or by construction? Philosophy seems to hesitate continuously in its form 

of expression between mathematics and literature. 
Literature is suggestive to us on the basis of culture and tradition. It can 

express truth, it can make one think, and it can point towards insights into necessary 

connections. But it lacks liability to critical investigation of its evidence. It either 

convinces or does not, but in the latter case one can rarely lay ones finger on the spot. 

9) If an axiomatic theory is e.g. understood as a definition of a particular kind of structure (not of a definite 

structure, for all interesting theories are non-categorical), this presupposes the consistency of the theory. 

But it follows from Gode I's well known results that this consistency requires a stronger theory to be proven. 

The real reason why we believe in the consistency of the theory is, that we believe we already understand 

nature of the kind of structure it is meant to deal with. And we believe this, because we are thoroughly 

convinced of the applicability of the principle ofstructurability to a certain field of experience. Therefore, 

the principle of structurability is a presupposition of any mathematical theory. 
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Reducing philosophical prose to 'literary text' means depriving it of its real ambition: 

expressing intelligible necessity as such. 
Mathematics, on the other hand, owes its intellectual force and its certainty 

to the systematic representation of its objects. In its various forms of representation 

there exists a structural relationship between the intended mathematical objects and 

the way they are expressed. This specifically mathematical relationship of sign and 

meaning is not necessary in a strict sense, but it characterizes a mathematical discipline 

so strongly, that within the discipline it appears as necessary. Geometry without figures 

and algebra without formulas is not impossible, and in some periods of the 

development of these disciplines purely linguistic expression was even normal , but, 

as Leibnitz observes, it is very hard in this way to travel a long distance without 

getting exhausted.10 

Philosophical systematization, however, cannot aim at representing certain 

structures in such a rigorous way. It has to transcend its own particular structure, not 

into a literary expressive imagination, but into the intellectual challenge of its proper 

aim: establishing real insight. Such systematization has the function to prevent thought 

from stopping at too low a level of understanding, it provides the formulations of the 

problems, but it is never itself a solution. Philosophy is the encouragement of the 

intellect to recognize that it knows more than it thinks it knows. Participating in 

philosophical thought always requires that we give up some prejudice concerning what 

we imagine to be the definition of 'knowing.' This distinguishes the intellectual 

challenge in philosophy from its mathematical counterpart. In mathematics the 

challenge is directed towards the faculty of imagining of and reasoning about new 

and unheard-of structures. The principle of 'knowing' in mathematical reflection, 

however, always remains the same: structurability. In philosophy there is no fixed 

principle of knowing, only the attempt at explicitly knowing the principles guiding 

all of our knowledge. The 'exactness' ofphilosophical expression, therefore, is ofa 

negative nature. Its function is to prevent a premature feeling of understanding. All 

beginning students of philosophy complain about this. They justly feel that 

philosophical language aims at making things more difficult instead of easier. Why 

cannot this be said in a more simple way? In a certain sense this resembles the 

situation in mathematics. There too things are said in a complicated form. But one 

feels that the reason for it is, that they are really complicated. In philosophy, however, 

anyone who has feeling for what it is all about, becomes convinced that understanding 

the complicated cannot be the ultimate aim here. Principles must be simple, and it 

is because of their simplicity that it is difficult to grasp them. So why cannot simple 

things be expressed in a simple way? The answer of course is, that simple expressions 

suggest to the untrained the wrong kind of simplicity of the content. In 'o~cult 

disciplines' of certain religious societies this is no problem, because the expressions 

10) "Sans i;:ela nostre esprit ne si;:auroit faire un long chemin sans s'egarer" [Without that the mind 

could not go a long way without getting exhausted] G.W. Leibnitz in a letter to Galloys from 

1677. In: G.W. Leibnitz, Die philosophischen Schriften, hrsg. von C.I. Gerhardt, Hildesheim, 

1965. 
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are only meant for the initiated, who are supposed to understand them properly. 

Philosophy, being a rational discipline, must necessarily provide its own initiation. 

It cannot separate a cult of initiation from the expression of its actual contents. · In a 
rational discipline one becomes initiated because one takes up the intellectual 
challenge, one understands what is interesting about it, whereas in initiation rites one 
participates not in the first place because one understands what they are good for, but 
b cause someone with authority says they must be undergone in order to understand 
what they were good for afterwards. 

Mathematical and philosophical expression have, as we now understand, 
diametrically opposed criteria of adequacy. Mathematical expression is better, in the 
measure in which it allows us to connect mathematically the structure of our language 
with the structures expressed in that language. The more rigorous this connection 
becomes, t11e more our way of expression gains the character of a formalism useful 
for accurate proof and computation. Philosophical expression, on the other hand, is 
better in the measure in which it prevents the intellect from clinging to certain definite 

structures of knowledge and self-expression. Mathematical language should enable 
us to concentrate on definite structures, philosophical language should prevent such 
concentration with the aim of opening up our minds for the origin of our perspectives 
without presupposing any initiation into extraordinary realms of experience. 

For this reason any attempt to develop metaphysics following the 
mathematical paradigm must necessarily end in the fundamental rejection of all forms 
of metaphysics. If both disciplines start to claim a common domain, they become 
rivals, and if this common domain is structurability, mathematics is in for a glorious 
victory. The dilemma between the mathematical and the philosophical criterion of 
adequacy of expression is unsolvable. There is no dialectical solution either, bec.ause 
to choose for dialectics is already to choose for the philosophical criterion. As soon 
as it is tried to understand dialectics as a formalism in the sense of mathematical logic, 

complete rejection of it is not far behind. 
On the one hand to choose the mathematical criterion for philosophy, leads 

to nihilism. If, on the other hand, mathematical reflection acquires metaphysical 
pretensions, it cannot very long remain content to be pure mathematics. It has to 
incorporate some philosophical reflection, and in the measure in which it succeeds 
in expressing this incorporation explicitly, it disqualifies itself as mathematics. In the 
measure, however, in which it succeeds in satisfying the requirements of mathematical 
expression, it becomes philosophically irrelevant. In its naive form it becomes 

dogmatic because it postulates some more or less arbitrary constraining framework, 
which nevertheless is infected by the metaphysical claim that it expresses necessity. 
In reaction to this dogmatism it then becomes nihilistic, for the arbitrary character 
of the construction is brought to the foreground. It will be insisted then that 'anything 

goes.' In this case, 'anything' is not really anything of course, but any construction, 11 

and that is not what we are looking for in metaphysics. Therefore this trail leads us 
into nothingness. 

11) Cf. B. Taureck, Das Schicksal der philosophischen Konstruktion, Wien, 1975. 
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In fact such a development has taken place in contemporary philosophy. The period 
in the history of philosophy which is currently labelled 'modem philosophy' ends with 
Hegel's famous system. The tension between systematic rigour on the one hand, and 
the aim of expressing the openness of the human mind and the dynamical character 
of thought on the other, is still reconciled here. The dogmatic and nihilistic side are 
still held together in the truly philosophical conception of the absolute idea. But the 
suggestion is very strong that the absolute idea, binding together all principles like 
a 'one ring12

' is not only meant to be completely intelligible to us, but also to justify 
the specific structure ofHegel's system. Yet this suggestion is somewhat misleading, 
because Hegel himselfnever hesitated to make additions and corrections. The problem 
is, that in its systematic structure, there is no place for expressing this openness with 
respect to the structure itself. This is a curious paradox: the system aims at the 
expression of the transcendental openness of the human mind, that is its ability to 
grasp transcendental principles by intellectual perception; yet it is not able to express 

this openness with respect to the philosophical method by which it is composed! The 
system, therefore, still has some traits of the 'necessary constructions' of modem 
philosophy. This is precisely the impossible contamination of mathematics and 
metaphysics which tends to discredit all modem metaphysical positions, 13 and which 
seems to be the basis of the widespread present consensus on the impossibility of 
philosophical systems. 

But the 'faute hypercorrecte' is as usual in philosophy as it is in practice. 
Because it has not become clear that it is the mathematical paradigm which still 
constituted the trap of Hegel's system, philosophical positions opposing to German 
idealism or to modem philosophy in general, such as Marxism, vitalism, existentialism, 
positivism and structuralism, however critical they are with respect to the modem 
tradition, are by no means free from this same paradigm. Essentially they all switch 
to and fro between the dogmatic form, which suggests a necessary construction, and 
the voluntaristic form, which essentially expresses the abstract notion of a freedom 
which is only limited by the consequences of its own decisions, such as only the 

12) See J.R.R. Tolkien, The Fellowship of the Ring. 

13) Heidegger's notion of 'Seinsvergessenheit' can be interpreted as a philosophical expression of 

this confusion. It is coined to criticise ontological fixation of the opposition of subject and object. 

Such a fixation is a characteristic of mathematical reflection. It seems to be this mathematical 

element in modem metaphysics, which falls under Heidegger's criticism, and that makes it also 

clear why he understands modem technology as the realization of such metaphysics. The 

'Verdinglichung des Se ins,' the blurring of the ontological difference, reminds us of what is 

done in mathematical reflection: creating ideal entities as actualizations of a potency. This 

potency - structurability - is of another order than its ideal actualizations - the mathematical 

objects -, and it is indeed 'forgotten' and inexpressible in mathematical thought. In the 
mathematical degree of reflection mathematical being as such is indeed in a certain sense absent, 

but absence cannot be written on the account of ancient and scholastic metaphysics: as a 

metaphysical trend it is thoroughly modem. Heidegger understood rightly that the confusion 

of the mathematical and the philosophical degree of reflection, which he did not interpret as 

a confusion but as a fate - Seinsgeschick -, must necessarily lead to nihilism. 
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mathematician really possesses in relation to the sphere of ideal structures. Those 

philosophies all present themselves as absolutely valid insights on the one hand, but 

reject any claim to knowledge of the absolute on the other. To such philosophical 

currents, metaphysics counts as an ideological claim to authority which hampers human 

freedom. The 'necessary construction' is deconstructed and shown to be only one of 

infinitely many possible ones. Dogmatic systematics has passed into dogmatic nihilism 

and the project of metaphysics as such has become suspect. 14 Only a clear recognition 

of the role of the mathematical paradigm in the process leading to this conclusion can 

still save it. 

14) Th. Adorno expressed the suspicion that this anti-metaphysical trend has been a process of flight 

from something which could not be left behind. "The process by which metaphysics continuously 

ended up where it was conceived to lead away from, has reached its vanishing point" [Th.W. 

Adorno, Negative Dialektik, Suhrkamp, Frankfurt a/M, 1966 p.356.] 
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The Wouthuysen Equation 

Michiel Hazewinkel 
CW/, Department Algebra & Geometry. 

Kruislaan 413, 1098 SJ Amsterdam, 

The Netherlands 

Dedication. I dedicate this paper to Prof. P.C. Baayen , at the occasion of 

his retirement on 20 December 1994. The beautiful equation which forms 

the subject matter of this paper was invented by Wouthuysen after he retired . 

Abstract . 
The four complex variable Wouthuysen equation arises from an original 

space-time lattice approach to spinor waves and elementary particles. Here 

the complete space of solutions is described . It consists of one isolated point 

and one branched 8 4-covering-space over the circle with 8 branching points 

of order 6, 24 branching points of order 4 and 12 "turning points" . The 

24 branching points of order 4 are also turning points for two of the four 

branches. 

l. THE EQUATIONS 

The equations arc for four complex variables of unit norm 

with in addition a stationary phase condition 

{l.l) 

{1.2) 

(1.3) 

In terms of real parameters. There are 8 parameters and (1.1), (1.2) together 

give 6 condit ions (2 from (1.1) and 1 each from llzd l = 1, i = 1, .. . 4). Given 

(1.2), (1.3) only gives one extra condition. So by equation counting one could 

expect 1-dimensional families of solutions. This does indeed turn out to be the 

case. 

323 



-- ~ :=-: . : ·:· -

Note that the equations (1.1) - (1.3) are symmetric in z1 , z2, z3, z4. So there 

is a natural action of the symmetric group on 4 letters, S4 , and the solutions 

fall into S4- orbits. 

2 . A NUMBER OF SPECIAL SOLUTIONS 

2.1 Solutions with at least one z; equal to 1. These are 

(1, 1, 1, 1), a single solution invariant under S4 

( 1, (j, d, (j}, ( (j, 1, (j, (j), ( (j, (;~' 1, (j) ( (:~, (j, (j, 1) 

(2.2) 

(2.3) 

(2.4) 

Here (3 = - ! + !i J3 is a primitive 3-rd root of unity. These form two S4-orbits 
of size 4 each. 

(1, 1, (3, (j), (1, 1, (;~,(a), (1, (:1, 1, (j), (1, (j, 1, (3) 

(1, (3, (j, 1), (1, (j,(3, 1), ((3, 1, 1,(j), ((j, 1, 1, (:1) 

((3,l,(j,1), ((j,l,(3 , l), ((3,(j,l,l), ((j,(3,l,l) 

(2.5) 

This set of solutions forms a single S4 orbit of size 12. As it turns out (2.2) 

- (2.5) are the only solutions with at least one z; = 1; see section 3 below for 

details. 

2. 6 Solutions with additional symmetry (besides those in 2.1) 

Z; = ±~v'3 ± ~JJ6, j = R (2.7) 

This solution satisfies (up to permutations) , z2 = -z1, z4 = -z3 and is in 

fact the only solution with the property. It also satisfies (np to permutations), 

z2 = z1, z4 = z3. 

(2.8) 

(up to permutation). This solution also has Z-2 - -. 11 Z4 = z3 and there is 

in fact, besides (2.2), (up to permutation) one one-dimensional family of such 

solutions on which both (2.7) and (2.8) are located. 

2.9 Solutions with z 1 + z2 + Z3 + Z4 = 0 
Under this additional condition (z1 + ... + Z4 )2 = 0, so zr + ... + ZJ 

- 2(z1z2 + ... + Z3Z4), so 
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(2.10) 

Al . 1 - 1 - 1 - 1 
so, usmg Z 1Z2 Z3 Z4 = ' Z1Z2 Z:i + z1Z3Z,1 + z1z2Z4 + z 2 Z3 Z4 = Z4 + z 2 + z3 + 

z1 1 = Z4 + z2 + .?3 + z1 = 0 because ll z; ll = z;z; = 1. Hence z1z2z3 + z1z2z4 + 

z1z3z4 + z2 z3z4 = 0. Thus the z1, ... Z4 are solutions of the equation 

z4 
- ~ z2 +1 = 0 

3 

The solutions of this are 

1 2 - ± - J2 
3 3 

and so the z1 , z2, z3 , z 4 are equal to 

± - ± - J2 = ±-v'3 ± - iv'6 vl 2 1 1 . 
3 3 3 3 

which is again the special solution (2.7). 

2. 14 Solutions with at least one z; equal to - 1. 

(2.11) 

(2.12) 

(2.13) 

There are (up to permutations) three solutions with at least one Z i = - 1. 

These are 

(2.15) 

making up one S4-orbit of size 12, and 

1 
5 1 l .r.;-3 l c.3 1. lr.;- 1 . 

- i . = - - - J v J - v J + - 1 - - v 3 - - J 
, '>(j 2 2 , 2 2 , 2 2 (2.16) 

1 1 . 1 1 1 1 
- 1 i (j = - + - JJ3 - J3 - - J· - - v'3 + - J· , .,, 2 2 , 2 2 ' 2 2 (2.17) 

and all permutations (making up two complex conjugate S4 orbits of size 24 

each). 

3. SOLUTIONS WITH AT LEAST ONE Z; EQUAL TO 1. 

Permuting the z; if necessary, assume z1 = 1. Then (1.1) reduces to 

(3.1 ) 

This scales. So take z = z2 and consider 

(3.2) 

Let. wa = z3 - 1, W4 = z4 - 1. Then (3.2) turns into 
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(3.3) 

This scales again. So consider 

(3.4) 

which has the solutions 

(3.5) 

where (n = ! + 4iv'3 is a 6-th root of unity. Thus the solutions of (3.2) are of 
the form 

Z3 = 1 + W, Z4 = 1 + 1ll(6 , W E C (3.6) 

(including w = 0). And those of (3.3) are 

(3.7) 

From (3.7) it follows that w4 and w3 make an angle of 60° with one another, 
and that they are of equal length. For z:i = 1 + w3 , z4 = 1 + W4 to be on 
the unit circle, w3 and w4 must be on the circle of radius 1 with centre at - 1. 
Hence they must be conjugate and if readily (see Figure 1) follows that the 

0 

FIGURE 1. 

only possibilities are 

W3,W4 = -~ ±jJ3 OT W3,W4 = 0 

(e.g. because the triangle formed by 0, w3 , w4 must have all sides equal) and 
hence there are only the three possibilities 

(1 = (:1, Z.J = d; 
Thns the possible solutions of (3.1) are 
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(z2,z3, z4) = (z,z, z ), (z,(3z ,(az ), (z ,dz,(3z ) 

and the solutions of (1.1) - (1.2) with at least one z; equal to 1 are (up to 

permutations): 

(l, z , z , z ), z E C; (l, z,(3z,dz), z E C; (1, z,(jz,(az), z E C 

The requirement (1.3), z1z2z3z4 = 1, translates in all these cases to z = 1, ( 3 , (j 
and putting this in gives the 4 solution orbits (2.2) - (2.5) listed above. 

4. SOLUTIONS WITH NO z; EQUAL TO 1. 
To study the solutions of (1.1) - (1.3) for which no z ; is equal to 1, first use the 

transformation 

W ; = Z; - 1, i = 1,2, 3,4 (4.1) 

(which has already proved to be useful above). This turns equation (1.1) into 

The second tool is the Cayley transform</>: lR-> S1 = {z EC : llzll = l} given 
by (see Figure 2) 

</>(r) = r - ~, j = H 
7' + J 

This mapping is 1-1 and onto S 1 \{1}. 
Let 

Then 

Set 

7'; - j 
"' - - i = 1, ... 4 
-• - r ; + j' 

- 2j 
W ; = --., ·i = 1, ... ,4 

7'; + J 

W; = 7' ; + j, i = 1, ... ,4 

Then the equation ( 4.2) becomes 

Multiply this with vrviv5·ui, to obtain 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Let e1, e2, e3, e.i be the elementary symmetric functions in the u1, ... , v4; i.e. 
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- 1 = ef>(O) 

Then (4.8) becomes 

e5 = 3e2e4 

<f>( - 1) = j 

ef>(l) = - j 

FIG URE 2. 

+ 1 = ef>(oo) = ef>( - oo) 

( 4.9) 

(4.10) 

Now let Ji , /2, h, f4 be the elementary symmetric functions in the r 1 , r2, r ;1, r4, 

i.e. Ji = r1 + r2 + r3 + r4, etc. Then 

e1 = Ji+4j, e2 = h + 3jfi - 6 (4.11 ) 

e3 = f3 + 2j/2 - 3/1 - 4j, e4 = f4 + jf3 - h - jfi + 1. 

Putting this into ( 4.10) gives the following equations for the Ji , h, /3, f 4 
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2 ' 2 /3 + 3fih - !2 - 5/2 + 2 - 3hf4 + 18/4 = 0 
(4.12) 

hh + lOh - 3/i - 9fif4 = 0 

Now 

(4. 13) 

Let 

w = (r1 - j)(r2 - j)(r3 - j)(r4 - j) = /4 - jf:i - h + jfi + 1 (4.14) 

By (4.13), equation (1.3) means w = wand by (4.14) this means 

Ji = h 

Putting this in (4.12) we see that there are two possibilities 

!i = h = O 

h = 9/4 - 7 

In case A, the first equation of ( 4.12) becomes 

Ji + (5 + 3/4)h - (18/4 + 2) = 0 

and in case B, the first equation of (4.12) becomes 

! l = 27 ft - 30/4 + 3 = 3(9/4 - l )(/4 - 1) 

(4. 15) 

(4.16A) 

(4 .16B) 

(4 .17A) 

(4 .17B) 

So, to find all solutions of (1.1) - (1.3) for which no z ; is equal to 1 it is necessary 

and sufficient to consider the equation 

r4 + Ji r3 + hr2 + hr + f 4 = 0 (4.18) 

under the conditions 

Family A : Ji = h = 0 and Ji + (5 + 3f4)f2 - (18/4 + 2) = 0 

Family B: Ji = h, h = 9/4 - 7, ff = 27f1 - 30/4 + 3 = 3(9/4 - 1)(/.J - 1) 

and to find out for which cases all four roots of ( 4.18) are real. 
To conclude this section let's find out whether the families A and B can 

intersect. For an intersection we have Ji = 0 = h and, hence from (4. 17B), 

f.1 = 1/ 9, h = - 6; f 4 = 1, h = 2 Then and only then are all four of (4 .16) -
( 4.17) satisfied. 

If /4 = 1, h = 2, Ji = h = 0, The solutions of (4. 18) are 
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j, j, - j, - j ( 4.19) 

i.e. two pairs of coinciding non real solutions. This gives no solution to the 
Wouthuysen equation, but will still be usefull later. 

If J4 = 1/9, h = -6, Ji = h = 0, the solutions of (4.18) are 

±(~v'15 + ~v3), ±(~v'15 - ~v3) ( 4.20) 

which are all four real and which give the special solution (2.8): 

1 3 . 1 1 
z1,2 = (- -g + -gv'15) ± J( -gv'f5 + -gv'3), 

1 3 1 3 
Z3 4 = (-- - -v'15) ± j( - - - v'l5) 

' 8 8 8 8 

(4.21) 

5. THE FAMILY A 
In this case the equation becomes 

r4 + hr2 + J 4 = 0. 

with 

Ji+ (5 + 3f4)h - (l8J4 + 2) = 0 (5.2) 

We shall use J4 as the main parameter. This will turn out to be the right 
choice, even though (5.2) suggests that h might be easier to work with. 

For (5.1) to have four real roots, it is necessary and sufficient that J4 2': 
0, h :::; 0, Ji 2': 4J4 (besides h real). The conditions J4 2:'. 0 and h :::; 0 imply 
that only the solution 

5 3 lv 2 h = -- - - J4 - - 9J4 + 132J4 + 33 
2 2 2 

of (5.2) qualifies. If h is given hy (5.3) then 

2 1 2 J2 :::=: 4(9J4 + 132J4 + 33) > 4J4 

(5.3) 

So, the family A consists of precisely one family of solutions parametrized 

by J 4 :::=: 0. Because Ji > J4, the two solutions of 

Y
2 + hY + J4 = 0 (5.4) 

are unequal. So the only case in which the four solutions of (5.1) can have two 
or more equal is when J 4 = 0. Then 

(5.5) 
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corresponding to the special solution (2.10) of the Wouthuysen equations. 

6. THE FAMILY B 
In this case the equation becomes 

(6.1) 

subject to following conditions on the coefficients 

h = 9/4 - 7, ff = 3(/4 - 1)(9/4 - 1) (6.2) 

and the question is when (6.1) will have all solutions real. This certainly 
requires / 1 to be real, which by (6.2) implies that /4 :::;; 1/9, or /4 ::'.: 1. Thus 
there are four subfamilies to be considered 

f 4 :::: 1, Ji = J21fl - 30f4 + 3 (Bl ) 

f4 :::: 1, !1 = - J21J1 - 30/4 + 3 (B2) 

1 
f4 :::;; g' Ji = J21f1 - 30/4 + 3 (B3) 

1 
f4 :::;; 9' Ji = - J21J1 - 30/4 +3 (B4 ) 

Under (r1,r2,r3,r4) 1-+ (-r1,-r2, - r3, - r4),h and /4 remain the same and 
Ji and h change sign. Hence (Bl ) (for a given value of / 4 ) gives four real 
solutions iff (B2) does so (for the same value of / 4 ). Similarly for (B3) and 
(B4) . Thus it suffices to examine (B3) and (Bl ). 

The discriminant of ( 6.1) is equal to 

II 2 D = (r; - rk) (6.3) 

i< k 

where r 1,r2,r3,r4 are the four roots of (6.1). It turns out that under (6.2) 

(6.4) 

This is a substantial calculation but it is less surprising than it maybe looks. 
First, D is of course a polynomial ill the Ji , h, h, f.i and it is homogeneous of 
degree 12 where f ; has weight i, i = 1, ... , 4. Under r ; 1-+ - r ;, i = 1, ... , 4, D 
remains invariant. As Ji, f:i change sign under r; 1-+ - r; and h, f 4 remain 
invariant , Ji and h can only occur in the monomials in D in the forms 
ff, fih, J1. However, the substitutions (6.2) are not homogeneous so that 
the degree could become as high as 12. The monomials in the discriminant of 
a fourth degree polynomial are of maximal degree 6 in Ji , h combined. Thus 
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a polynomial of degree 6 in / 4 could occur. A final drop in degree of 3 occurs 
because there are three coinciding roots at f 4 = oo. Finally because there are 
coinciding roots of (6.1) at / 4 = 1 one of the roots of D must he 1. 

For the subfamily (B3) (and (B4)) we have that at / 4 = 1/9 there are four 
different real solutions, see (4.20). Because D =f. 0 for -oo < /4 < 1/9, this 
must remain so for the whole family. Thus (B3) and (B4) represent two one 
dimensional families of solutions to the Wouthuysen equations parametrized by 

/4 ::; !· 
For / 4 :'.:'.: 1, i.e. the families (Bl) and (B2), D = 0 at / 4 = 3/2. For this 

value of /4 (6.1) becomes (for (Bl)) 

r 4 + ~J3 r 3 + 61/2 r 2 + ~ J3 r + ~ = 0 (6.5) 

with the solutions 

- J3 - J3 -~J3 + ~1· J5 - ~J3 - ~1·J5 , , 4 4 , 4 4 (6.6) 

At / 4 = 1, equation (6.1) has four non real solutions, viz. j,j, - j, - j. So 
for 1 < / 4 < 3/2, it remains the case that (6.1) has four non real solutions 
(because for this to change D must assume the value zero). As D =f. 0 for 
3/2 < /4 < oo, the family (Bl) and (B2) have for these values of /4 either four 
non real solutions or two real and two non real (complex conjugate) solutions. 
As it turns out the latter is the case. A numerical check shows e.g. that at 
/ 4 = 10 the four solutions are approximately 

- 47.287, -0.606, - 0.564 ± 0.177j 

In both cases (Bl) and (B2) do not contribute to solutions of the Wouthuysen 
equation. 

For later use we also need the solutions of the (B3) and (B4) families at / 4 = 0. 
The equation for the (B3) case then becomes 

r 4 + v'3r3 
- 7r2 + J3r = 0 (6.7) 

with solutions 

0, J3, 2 - J3, - 2 - J3 (6.8) 

7. MATCHING THE SOLUTIONS WITH A z; EQUAL TO 1 TO THE A, B3, B4 
FAMILIES 

Under </J : lR --+ S 1, +oo goes to 1, and so does -oo. (So the true parameters 
space is the circle </J(IR) = </J( {!4 } )). To see how the solutions with a z; equal to 
1 fit with the A, B3 and B4 families, it therefore suffices to study what happens 
to the corresponding solutions a.<; / 4 --+ oo (for the A-family) and as /,1 --+ -oo 
(for the B3 and B4 families). 
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7.1 The A-family for f4 --+ oo . 
First consider an A-family of solutions 

(7.2) 

As f4 --+ oo, f 4-
1 h goes to - 3. Let s = r - 1. Then the equation for s is 

(7.3) 

which in the limit f4 --+ oo, goes to 

s4 
- 3s2 = 0 (7.4) 

It follows that as f 4 --+ oo, two solutions of (7.2) go each to -oo or +oo and 

the other two go to - 1 J3, 1 J3. However, the four solutions of (7 .2) cannot 

cross as f 4 --+ oo(J4 > 0), therefore the only possibility is that one goes to - oo 
and the ot her to +oo. 

So up to permutations the limit solutions are 

(7.5) 

which under <P : lR --+ 8 1 corresponds to the solutions (2 .5) 

(7.6) 

where ( = ( 3 . 

Aud indeed a small numerical check shows that for f 4 = 103 , 10~ , respectively, 

the solutions of (7.2) are, respectively, approximately equal to 

- 54.890, - 0.576, 0.576, 54.890 

- 547.735, - 0.577, 0.577, 547.735 

while kJ3 is about 0.577. 

7. 7 The B3-farnily for f 4 --+ oo. 
Now let's consider a B3-family of solutions 

r 4 + Ji r 3 + h.r2 + Ji r + f4 = 0, 

h = 9f4 - 7, Ji = J21 Jl - 30f1 + 3 

(7.8) 

as f4 --+ 00(!4 :S 1/9). As f 4--+ oo, because Ji ex 3J3if4I, 
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t42 h ---> 9, /4 1 Ji ---> - 3J3 (7.9) 

Let s = r - 1 . Then the equation for s is 

4 1- 11 3 1- 11 2 1- 11 1- 1 0 S + 4 ls + 4 2S + 4 JS+ 4 = (7.10) 

which in the limit, f 4 ---> oo, goes to 

s4 
- 3J3s3 + 9s2 

- 3J3s = s(s - J3)3 = 0 (7.11 ) 

with solutions 

0, J3, J3, J3 (7.12) 

It follows that as f4 ---> oo one of the solutions of (7.8) goes to oo or - oo and 
the others to ! \1'3. 

Now at /4 = 0 the solutions of (7.8) are 

- 2 - J3, 0, 2 - J3, J3 (7.13) 

The roots cannot cross as / 4 ---> - oo, and the smallest one, - (2 + \1'3), cannot 
cross 0 again (because there are no zero solutions of (7.8) for / 4 < 0). It follows 
that (7.13) must go to 

1 1 1 
(- oo, 3v'3, 3v'3, 3v'3) (7.14) 

which corresponds to the solution 

(7.15) 

of the Wouthuysen equation. 
A numerical check gives that for / 4 = - 104 , the four solutions are approxi

mately equal to 

- 51966.143, 0.572, 0.577, 0.583 

while ! J3 is about 0.577. 

8. THE TOPOLOGICAL STRUCTURE OF THE SPACE OF SOLUTIONS 

Apart from the identifications at r = oo, - oo, i.e. at z = 1, the picture of the 
solution space is made up of 12 pieces as depicted in Figure 3. 

Here all special (intersection) points have been made fat dots and given their 
r-coordinates. For the points with an r = ±oo the corresponding z-coordinates 
have also been given. A crossing point of families that has not been made fat. 
is not an existing crossing point but an artifact of the drawing. In particular 
there is no intersect.ion of a B4-family with a B3-family for - oo ::; / 4 < 1/ 9. 

There are twelve such pieces. The other eleven are obtained by applying 
appropriate elements of S4 to the picture shown above. To get the complete 
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I I 
(-oo. -3v'3. 3v'3• oo) 

(- 2. - v'J.o. 2, - v'J. v'JJ 
( I .(,('. I ) 

(! ,('.('.(') 

(-iv'J.+/3,-iv'l,oo) 

((,(,(, I ) 

' (-v'J. 0.-2+ v'J.2+ v'JJ 
I I 

_____ ,_-_"°_· 3:!..v'J, - 3· oo) 

( I . (' ,(, I ) 

FIGURE 3. 

global picture it suffices to identify the points above / 4 = ±oo according to 

the coordinates attached to them. The complete topological picture is given in 

Figure 4. 
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As above let ( = (:i 

Ci = (l ,(2,(2,(2) 

D4 = ((, (,(, 1) 

C4 = ( (2' (2, ( 2' 1) 
Di = (1,(,(,() 

Ci = (1,(2,(2,(2) 

D3 = ((, (, 1, () 

C:i = ((2,(2, l ,(2) 

Di = (1,(,(,() 

c3 = ((2 , (2, l ,(2) 

D4 = ((,(,(, 1) 

C4 = ((2,(2,(2, 1) 

D3 = ((, (, 1, () 

C4 = ((2,(2,(2, 1) 

D2 = ((, 1,(,() 

C2 = ((2, 1,(2,(2) 

D4=((,(, (,1) 

C:i = ((2,(2,1,(2) 
D 2 = ((, 1,(,() 

C2 = ((2, 1, ( 2,(2) 

D3 = ((,(, 1,() 

C2 = ((2 , 1,(2,(2) 

Di = (1,(,(,() 

c = (1 (2 (2 ;-2) 
1 ' ' ' ' ' ~ 

D 2 = (( ,1,(,() 

' ' , 
: ' 
' ' 

' ' 

I', Q, 

Q,, 

' ,\: c-:::=;:i...;:.Q'.!!" _ _.1 

f4 : 

(1, (' ( 2
' 1) 

(1,(2,(, 1) 

(1,(,(2 , 1) 
(1, ( 2

' (' 1) 

(1, ( , 1,(2 ) 

2 ) (1,(, 1,( 

(1, (, 1, ( 2 ) 

(1,(2 , 1,() 

((, ( 2 , 1, 1) 
( (

2
' () 1, 1) 

{(, ( 2 ) 1, 1) 

((
2

' (, 1, 1) 

((, 1,(2 , 1) 
{(2 , 1, ( , 1) 

( (, 1, ( 2
' 1) 

((2 , 1, ( , 1) 

((, 1, 1,(2
) 

((
2

' 1, 1, () 

((, 1, 1, ( 2 ) 

((2 , 1, 1, () 

(1, 1, (, ( 2 ) 

(1,1,(2 ,() 

(1, 1, (, ( 2 ) 

(1, 1, ( 2 ,() 

-oo +-- 0 1/9 ---+ +oo 

FIGURE 4. 
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The solution (1, 1, 1, 1) is completely isolated, and all others are connected 

by the scheme drawn above, where the dotted lines indicate identifications. 

In the above (see also Figure 5) 

FIG URE 5. 

Q1 = </>( - t2, - t3 , t3, t2) = ( -! + ~J5 + i(kJ3, - k - ~J5 + j(!v'I5 - !V3), 

1 3/r 111r l/<l I 3/r I /<l 
-8 - gv5 - j(8v 15 - 8v3), - 8 + 8v5 - j(8 v3) 

where t2 = 1JI5 +~Ja, t3 = 1JI5 - ~Ja 
And further, using the notation a(81, 82, 83, 84) = (sa( I )> 8rr (2}> 8rr (3)> Su(4 j) , 

Q2 = 
Q3 
Q4 
Qs 
Q6 
Q1 
Qg = 
Qg = 
Q10 = 
Qu 
Q12 
Q13 
Q14 

(23)Q1 
(14)Q1 

(23)(14)Q1 
(34)Q1 

(234)Q1 
(143)Q1 

(1423)Q1 
(123)Q1 
{13)Q1 

(1234)Q1 
(134)Q1 
(124)Q1 
(1324Q1 

= </> (- t2, t3, - t3, t2) 
= </>(t2, - t3, +t3, - t2) 
= </>(t2, +t3, - t3, - t2) 
= </>(-t2, - t3, t2, t3) 
= </>(-t2, t3, t2, - t3) 
= </>(t2, - t3, - t2, t3) 
= </>(t2, +t3, - t2, - t3) 
= </>(-t3, t3, - t2, h) 
= </>(t3, - t3, - t2, t2) 
= </>(-t3, t3, t2, - t2) 
= <f>(t3, - t3, t2, - t2) 
= </> (- t3, t2, t3, - t2) 
= </>(t3, t2, - t3, - t2) 
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Q15 (12)Q1 </>(-t:1, -t2, t3, t2) 
Ql6 (132)Q1 </>( t3, - t2, - t3, t2) 
Q17 (1243)Q1 </>( - t3, t2, -t2, t3) 
Ql8 (13)(24)Q1 </>(t3, t2, - t2, - t3) 
Q19 (12)(34)Q1 </>( - t3, - t2, h, t3) 
Q20 (1342)Q1 </>(t3, - t2, t2, - t3) 

Q 21 (1432)Q1 = </>(t2, - t2, - t3, t3) 
Q 22 (142)Q1 </>(t2, - t2, t3, - t3) 
Q 2:l (243)Q1 </>( - t2, t2 , - t;i, t3) 
Q24 (24)Q2 </>( - t2, t2, t3, - t:1) 

In words, the space of solutions of the Wouthuysen equation consists of one 
isolated point, (1, 1, 1, 1) , and a branched curve. This branched curve, and the 
isolated point, come with a natural projection to the circle. The group S4 acts 
on the space of solutions, leaving the isolated point invariant. The project.ion 
to the circle is invariant under this action. Let S denote the solution space and 
7r : S --+ S 1 = JR. U { oo} this invariant projection. 

In terms of the r-coordinates, JR. U { oo}, - oo = +oo, the picture is as follows 

(i) Above all 1/9 < y < oo, there are 24 points which form one S4-orbit. The 
inverse under 7r of a small enough neighborhood of such a points consists 
of 24 disjoint intervals. 

( symbolic picture) 

!~ 

-1·c=>1 
(ii) Above y = oo (corresponding to 1 under the Cayley transform) there are 

21 points: the isolated solution point (1, 1, 1, 1), which is an invariant 
point of the S4-action, an S 4-orbit of size 12, and two complex conjugate 
S4-orbits of size 4. These are branching points of order 6. Locally around 
one of the points of the orbit of size 12, the branched solution curve looks 
like an interval turning back. Locally around a point of the two S4-orbits 
of size 4 the picture is a six branched star as depicted below. Thus the 
inverse image of a small interval around the point oo of the circle lRU { oo} 
looks like the disjoint union of 12 intervals, 8 six branched stars and one 

isolated point. 
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~ (8) 

) (12) 

• (1) 

(iii) Above y = ~ there are 24 points which form a single 8 4-orbit. They are 
all branching points of order 4. The inverse of a small interval around 
y = 1/9 looks like the disjoint union of 24 4-branched stars like depicted 
below. 

7- (24) 

(iv) Above all 0 < y < 1/9 there are 72 points, which from three 84-orbits; 
two of these are complex conjugate, the third is invariant under complex 
conjugation. The inverse image of a small enough interval around these 
y looks like 72 disjoint copies of that interval 

(72) 

(v) Above y = 0 there are 60 points. They form one orbit of size 12 and two 
complex conjugate orbits of size 24. The points from the orbit of size 12 
are "turning points" in a sense which should be clear from the picture 
below. The inverse image of a small interval around such a point consists 
of 60 disjoint intervals of which 12 are "turn back" intervals. 

(48) 

( (12) 
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· ~ :.:t:. -

(vi) Above -oo < y < 0 there are 48 points which form two complex conjugate 
orbits of size 24 each. The inverse image of a small interval around these 
y looks like the disjoint union of 48 copies of that interval 

(48) 

So, in fact, the group Z/(2) x S4 acts on the space of solutions and 7r: S --+ S1 

is invariant under this action (of a group of order 48). 
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Prehistory of the ASF+SDF System (1980-1984) 

Dedicated to Cor Baayen 

Jan Heering and Paul Klint 

1 MONOLINGUAL BEGINNING 

Our work on programming environments started in 1980 with the design of a 
dedicated environment for the Summer programming language [1], an object
oriented language with class definitions. Rather than a dedicated Summer en
vironment, the general concept of a monolingual environment emerged [2]. In 
such an environment, a single language is used in different modes. More specifi
cally, we investigated t he requirements an integrated command/ programming/ 
debugging language would have to satisfy. Since Summer had not been designed 
with t his particular purpose in mind, it is not surprising that. a monolingual 
environment for Summer would have involved a revision of the language. This 
may have been one of t he reasons we never "instantiated" t he monolingual 
concept for Summer, but there were other, more important, ones: 

• At that time Leo Geurts, Lambert Meertens, and other members of t he 
Afdeling lnfonnatica were developing the B language system (later re
named to ABC), which had a monolingual character in the sense that the 
command and programming modes of the system were integrated. The 
development of a monolingual environment for a suitably revised version 
of Summer would have been a major effor t without obvious additional 
benefits. 

• We started to realize that a monolingual environment would be a closed 
world whose facilities could not be easily borrowed or reused by other lan
guages. Since every application has its own language (however small) , we 
decided it would he much more efficient to develop a generic multilingual 
environment. Its design was started in 1982. 

2 A PROGRAMMING ENVIRONMENT BASED ON LANGUAGE DEFINITIONS 

The idea was to base the generic environment on language definitions. These 
would consist of a combined syntax/prettyprinting section and two additional 
sections for s tatic and dynamic semantics. The generic environment would sup
port t he interactive development of language definitions aud their compilation 
to language specific suhenvironments. It would view language defini t ions as 
libraries of language constructs from which individual constructs could be bor
rowed or reused to facilitate the construction of new definitions. A language 
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... - ~ --- - -

needing an if-statement., for instance, would prohahly he able to horrow a snit.

able one from another langnage for which a definition already existed in the 

system. 
\Ve had some experience with langnage definitions. Part. of the semantics of 

Summer had heeu described in a formalism consisting of BNF-like rules with 

embedded variables t.o which semantic act.ions written in Summer it.self were 

attached [3]. Furthermore, Gert. Florijn and Geert Rolf had writ.ten PGEN, 

an LL(l ) parser generator [4]. One of the things PGEN taught. us was that. 

mokling grammars t.o fit. the LL(l ) restrict.ion was no fun. This influencerl 

om early decision to allow general context-free syntax in language definitions. 

Aloysius Tan designed a VLSl-algorit.Juu t.o reduce the parsing time in the 

general context-free case to au acceptable value [5]. This was long before the 

syntax definition formalism SDF and lazy / incremental parser generation. 

In the meantime, Henk Kroeze had experimented with a combined syu

t.ax/ prett.yprinting language for nse in the first. sect.ion of language definitions 

[6]. It turned out., however, that. BNF rules with integrated pret.t.yprint. inst.ruc

tions were unreadable, and this remained a problem. 
Alt.hough the generic environment. we had in mind obviously needed a built.

in semantics definition formalism (we <lid not. yet. know which one), it. would 

be possible to use any language for which a definition had been coustruct.ed 

as a semantics definition formalism in the system. The corresponding towers 

of language interpreters would he very inefficient. , so they would have to he 

flattened by the removal of int.ermediat.e layers. This we planned t.o do by 

partial e11aluaf.io11. 

This system concept. was discussed with \Vim B(;luu, Marleen Sint., au<l 

Arthur Veen at several Data Flow Club meetings in l!l82. It was snbsequent.ly 

presented at the Colloqnium Programmeeromgevingen in the fall of that year 

[7, 8] and at. the NGI-SION Symposium in Amst.er<lam in :tvlarch 1983. 

:~ ALGEBRAIC SPECIFICATION 

The main decision facing us was what semantics definit.ion met.hod t.o use. The 

importance of partial evahmt.ion in the system suggested a funct.ional met.hod 

without. side-effects. Although denotational semant.ics would have been a natu

ral choice, the closest we came t.o it was when we considered a statically scoped 

version of Lisp as a semantics definition formalism. 
Among the papers on partial evahmt.iou we st.u<lied were several by Valent.in 

Turchin, which used the (string) rewrite rule lauguage R.efal , and we st.art.ed 

discussing rewrite rules with .Tan Bergstra. He taught us t.he relation het.ween 

(term) rewrite rules and algebraic specifications. The fact. t.hat modularization 

was an import.ant topic in t.he algebraic specificat.ion conuuunit.y was at.tractive 

to us in view of the modular construction of language definit.ions the generic 

environment had to support.. 
Although the algebraic semantics of programming languages was not a well 

developed subject, Jan Bergstra and .Tan Willem Klop were working on proccs8 
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algebra (the algebraic semantics of processes) and we somehow suspected that 

algebraic specifications would be suitable for describing the static and dynamic 

semantics of languages in the generic environment. We never considered using 

different formalisms for static and dynamic semantics since we did not see a 

clear distinction between them. In this we were perhaps influenced by the 

monolingual concept discussed in Section 1. At a later stage, we started by not 

making a distinction between lexical and context-free syntax description in the 

syntax definition formalism SDF, but this proved untenable. 

After a joint excursion into object-oriented algebraic specification [9], we set 

out to give au algebraic definition of the toy language PICO. Since we did not 

yet have a well-developed algebraic specification formalism , it was designed 

simultaneously. This became ASF. The syntax definition formalism SDF did 

not yet exist either, so the PICO definition included au algebraically specified 

syntax of PICO and a parser. 
The proper modularization of the PICO definition turned out to he a major 

problem whose solution involved the repeated redesign of the module construc

tion operators of ASF. The modularizat ion finally adopted was very reasonable, 

but it did not permit the reuse of individual PICO constructs in other language 

definitions. In this respect we did not achieve one of our original goals and this 

is still au open problem. 
In the meantime, partial evaluation had not been forgotten. Although its 

a lgebraic semantics had not been studied iu detail, it had been clear from the 

outset that algebraic specification and term rewriting were excellent frame

works for partial evaluation. As it turned out, partial evaluation involves the 

not ion of w-completeuess of algebraic specifications. Somewhat ironically, the 

idea to allow any language for which a definition had been constructed as a 

semantics definition formalism in the system, which had been the main reason 

for studying partial evaluation, was gradually abandoned with the advent of 

algebraic specifications. Anyway, we finished both the PICO definition [10] 

and the partial evaluat ion paper [ll] virtually at, the time the GIPE project 

started in January 1!)85. At that ~ime the implementation of ASF consisted 

of a parser , a type checker , and a Strncture Diagram generator, all of them 

written in Summer using the PGEN parser generator mentioned before. Term 

rewriting had not yet been implemented. 

4 TOWARDS THE ESPRIT/ GIPE PROJECT 

In July 1983 Paul Klint had visited INRIA Rocquencourt where he had fa

miliarized himself with several generic environments [12]. One of them was 

t he Mentor system which had been developed in the seventies by Veronique 

Do11zeau-Gouge, Gerard Huet , Gilles Kahn, Bernard Lang, and others at IN

RIA [13]. In fact, Mentor wa:; rather similar to what we had in mind for the 

syntactic part of the generic environment. Furthermore, its extension towards 

semantics had just begun with the development of the Typol lauguage [14, 15], 

bringing INRIA's work even closer to ours. 
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Typol was based 011 Plotkin's Structural Operational Semantics, but it. may 
be interesting to note that earlier experiments had been done with Formol, 
an Ada-like specification language specially designed for writing denotational 
semantics definitions of programming languages. Formol specifications were 
considered too low-level, however, and denotational semantics was abandoner!. 

Paul's visit did not immediately lead to further co-operation with INR.IA, 
but iu the spring of 1984 Gilles I..:ahn proposed to submit a joint ESPRIT 
proposal on the Generation of lnteract.ive Programming Environments. For 
INRIA, it would he basically an extension of Mentor with semautics facili
ties. For us , it would be a contimmt.iou of our work on a generic enviroumeut 
based on algebraic language definitious. The ensuiug proposal (part of which 
was later published [16]) was accepted by the European Communities and the 
GIPE project started in .January 1!)85 with the software companies BSO (The 
Netherlands) and SEMA-METRA (France) as industrial partners. When it 
ended 5 years later, GIPE II took over for another 4 years [17]. 
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PREMO is a major new ISO / IEC standard for graphics and multimedia, 
which addresses many of the concerns that have been expressed about exist
ing graphics standards. In particular, it addresses the issues of configuration, 
extension, and interoperation of and between PREMO implementations. This 
paper gives an overview of PREMO and highlights its most significant fea
tures. 

1 INTRODUCTION 

The Graphical Kernel System GKS[l] was the first standard for computer 
graphics published by the International Organisation for Standardisation (IS 0). 
It was followed by a series of complimentary standards, addressing different ar
eas of computer graphics. Perhaps the best known of these are PHIGS [2], 

PHIGS PLUS [3], and C GM [4]. More recently, GKS[5] has been revised. 
These standardised functional specifications have had reasonable success either 

via direct implementations or through the influence they have had on the spec

ification and development of other graphics packages (the most notable of this 

second category being the 3D extension of the X Window System, PEX [fi, 7], 
which is largely based on PHIGS PLUS). 

In spite of important differences in their functionality, these standards share 

a common architectural approach, which, although not a requirement defined 

within the documents, has resulted in implementations that are large mono
lithic libraries of a set of functions with precisely defined semantics. They 
reflect an approach towards graphical software libraries predominant in the 
seventies aud the eighties. However, these standards have little chance of pro

viding appropriate responses to the rapid changes in today's technology, and in 
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particular, they fail to fit into the software and hardware system architectures 

prevailing on today's systems. 
The subcommittee responsible for the rlevelopment and maintenance of graph

ics standards (ISO / IEC .JTC 1/ SC 24) recognised the need to develop a new 

line of graphics standards, along rnclically different lines from previous meth

ods. To this end, a new project was started at an SC24 meeting at Chiemsee, 

Germany, in October 1992. Subsequent. meetings (New Orleans, USA, .January 

199:3; Steamhoat Springs, USA, .June 1993; Manchester, UK, November 1993; 

Amsterdam, The Netherlands, March 1994; Bordeaux, France, June 1994) re

sul ted in a Draft for a new standard called PREMO (Presentation Environ

ment for Multimedia Objects)[8]. This new work was approved by ISO / IEC 

.JTC l in February 1!)94, and is now a major ongoing activity in ISO / IEC 

.TTC 1/ SC 24/ WG6. 
The term "Prese11tation Environment" is of utmost importance in the spec:

ification of the scope of PHEMO. PREMO, as well as the SC24 standards cited 

above, aims at providing a standarcl 71rogmrnming environment in a very gen

eral sense. The aim is t.o offer a stanclardised, hence conceptually portable, 

development environment. that helps to promote portable graphics and mul

timedia applications. PREMO concentrates on pre8entation techniques; this is 

what primarily differentiates it from other multimedia standardisation projects. 

One of the main clifferences bet.ween PREMO and previous standards within 

SC24 is the inclusion of multimedia aspects; hence this activity is of importance 

for both the multimedia and graphics communities. The pnrpose of this paper 

is to present the motivation behind the development. of PREMO, its major 

goals, and its relationship to other multimeclia standards. An overview of the 

architecture of PREMO is given, although much of the detail is still subject to 

changes that result from the technical review process wit.bin ISO. 

2 MOTIVATION 

Three requirements have shaped the architecture of PREMO: 

• the appearance of new media; 

• t he need for configurable and extensible graphics packa.ges; 

• the requirements of distributecl environments. 

2.1 Incorpomtion of Various Media 

Traditional computer graphics systems and graphics applications have primar

ily been concerned with what might be called the presentation of synthetic 

graphics, i.e., displaying pictorial information, typically on a screen or paper. 

The aims of any two presentations may be very different. Two charact.erist.ic 
examples are: 
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• produce photorealistic images (e.g., in commercial film production, or 
high quality animation) using very complex models describing the sur
rounding reality; 

• produce ergonomically sound aud easy- to- grasp images of complex com
puted or measured data (e.g., iu scientific visualisation, or medical imag
ing). 

These aims determine different fields of interest within computer science, which 
are all referred to under the heading of "computer graphics" and which are all 
to be addressed by PREl\10. 

Developments over recent years have, however, resulted in new applications 
where synthetic graphics in i8olation cannot cope with the requirements. Tech
nology has made it possible to create systems which use, within the same ap
plication, different presentation techniques that are not necessarily related to 
synthetic graphics, e.g., video, still images, and sound. Examples of applica
tions where video output, sound, etc., and synthetic graphics (e.g., animation) 
coexist are numerous awl well- known. It is therefore a natural consequence to 
have development environments that are enriched with techniques supporting 
the display of different media iu a consistent way, aud which allow for the var
ious media- specific presentation t.edmiques to coexist within the same system. 

"Coexistence" is not enough, though; inte.qmtion is also necessary. For ex
ample, au audio display is uot necessarily independent from the (synthetically 
generated) image being displayed: the viewer's position in the model, or indeed 
the model itself wheu displayed, may influence the attributes of audio presen
tation. This infiueuce may be very simple (e.g., the volume may depend 011 

the distauce from the viewer), but it may also require very complicated sound 
processing techniques (e.g., to take the acoustic properties of the room model 
into account for sound reflection and absorption). lu other words, it should 
be possible to describe media objects integmted with geometry and with one 
another, and also to describe aud control their mutual influence. The complete 
integration of various media and their presentation techniques within the same 
consistent framework is oue of the major goals ( aud challenges) of PREM o , aud 
one of the features which will make it very different from earlier SC24 stan
dards, and indeed, other multimedia standards that are either already available 
or under development (such as HyTime[9], HyperODA[lO], and MHEG [ll]). 

The introduction of 11ew media brings new problems for PREMO that, hith
erto, have been unknown in earlier SC24 standards. One of the most intricate 
issues of some importance is that of synchronisation, e.g., synchronisation of 
video and sound presentation. This problem is well- known in the multimedia 
conmmnity; its integration with the more general demands of a presentation 
system will obviously be a challenge. 

2.2 Configurable and Extensible Graphics Packages 

As mentioned in 31, most traditional ISO graphics packages, as well as the 
majority of graphics systems available on the market-place, are defined as 

349 



• o .- =~ - = --· 

monolithic libraries containing large sets of functions with precisely defined 
semantics. These libraries are frequently referred to as ke171.els. The choice of 
functionality for a specific kernel reflects t he particular application areas which 
the kernel tries to address. 

Modifying and extending the existing f1111ctiona.lit.y of a kernel requires the 
definition of additional sets of funct.ions. Thei;e functions may either add to 
or modify existing behaviour. However, modification of the standard interface 

is not allowed, which oft.en means that these new defini t ions form completely 
separate packages on top of the standard with their own sets of well- rlefined 
f1111ct.ions. 

ThiH rigidi ty of current. ISO graphics standards is in a Hharp contrast. with 
the extraordinary diversity of the algorit.hms used in computer graphics, in vi
sualisation, and in other related application areas. Radically new visualisation 
techniques are developed , old and apparently well- established algorithms are 
constantly re- visited. This diversity and fervent activity is very well reflected 
in the proceedings of the major computer graphics and visualisation confer
ences worldwide (such as, for example, the ACM SIGGRAPH, Eurographics, 
and Nicograph annual conferences and workshops, IEEE 's Visualisation con
ferences, etc.). 

As a consequence, major rendering techniques, which are almost. common
place in advanced graphics applications, cannot. be int.egrnt.ed into SC24 stau
dards; the most start.ling examples being ray- tracing and ra<liosity. Alt.hough 
these graphics st.andards include a rudimentary mechanism t.o add new graphics 
primitives, for example in the form of the GDP, (Generalised Drawing Prim
itives), this mechanism doe8 not give the full power needed by a number of 
applications to add new display algorit.lnns and/ or to modify some aspects of 
the ones included in the package in use 1. 

Note that t.he inclusion of different. media into a new standard makes this 
type of problem more acute. The techniques to achieve integration of media 
are extremely rlisparat.e, and t.hey use t.he rei·nilts of various fields of computing 
technology, like, for example, high quali ty synthetic graphics, image processing, 
speech synthesis, et.c. Some of the tedrniques are also application dependent.. It. 
is almost impossible to define a closed programming environment. which would 
satisfactorily encompass all t hese needs; even if a specification could be finished, 
complete implementations would be so complex that the entire product. would 
lag behind current. technology. 

The usual approach t.o solve such problems is to use object- oriented tech
niques. This is also the approach that has been adopted by PREMO. Object.
oriented techniques have already been used for graphics and for multimedia, 

and they have proven their values in using inheritance as a tool for extensihil
it.y and user configurahili t.y (see, e. g. , [12, 13, 14, 15, 16)) . Using inheritance, 
addit.ional information may he integrated into an existing object. of a graph
ics system, allowing extensive reuse of inherited methods. Referring t.o the 

1 Escapes also offer some possibilities for modifying a lgorit hms in a restrict er! way. but 

such extensions lead away from portability. 
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example above, in a carefully designed object- orieute<l system it wonld be pos

sible to redefine the reflection equations of a "shader object" only, and thereby 

make full use of the power of the surrounding system with the shading metho<l 

adapted for a particular use. 

2.3 Distribution 

It is no longer necessary to argue in favour of distributed environments; their 

widespread availability has ma.de their use very natural in both academia and 

industry. Some graphics and multimedia applications and tools are notoriously 

computationally intensive, and as such are prime candidates to exploit the 

advantages offered by a distributed environment. 
There have been numerous projects in the past which have tried to use, e.g., 

GKS or PHIGS in a distributed setting; it was never easy. Iu<leed, the SC24 

graphics standards were not particularly well prepared for distribut ion (see, for 

example, [17, 18, 19]) . In contrast , awl using t he tenninology which has become 

widespread in t he past years, particular PREM O implementations may offer 

mul timedia or graphics "services" on a network; hence, the PREMO specification 

should allow for the straightforwanl implementation of such services. 
Object- oriented tedmology also provides a framework to describe distribu

t ion in a consistent manner. Objects can be considered as closed entities which 

provide "services" via their methods; from the point of view of t he objed. spec

ification it is immaterial how au object m<~thod is realised: within the same 

program , or via calls across a network. 
Defining complex object- oriented systems to he used in a distributed envi

ronment leads to software engineering issues, whose complete solution would 

go far beyond the charter (and the experiences) of the PREMO working group. 

Instead , the PREMO sp<~c:ification will make use of techniques developed else

where, both within and outside ISO. Currently, another ISO working group 

(ISO / IEC JTC 1/ SC 21 WG7) is working on what is called the "Open Dis

tributed Processing Initiative" (ODP); PREMO inten<ls to rely on the experi

ences of this working group, and inclu<le their results into the PREMO document 

proper. The goal is to develop a specification which would be compliant with 

ODP. A liaison agreement has also been set up with the Object Management. 

Group2 (OMG ), whose CORBA specification [20] has already inffuenced the 

current design of PREMO. 

3 GENERAL ARCHITECTUH.E 

Underlying all of PREMO is a concise conceptual framework, comprising a de
scription technique (not detailed here), an abstract object model used for t he 

definition of data types and the operations upon them, and the notion of com

ponents which contain and organise the PREMO functionality needed to address 

specific problem areas. 

2 The Object Management Group is primarily au industrial consortium establ ished to 

define a unifying model amongst / from a number of emerging object technologies. 
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3. 1 The Conceptual Fmmewor~: 

The conceptual framework addresses three fundamental area.<;: an object model, 

the activity of objects, and events and event handling. 

3.1. 1 Object Model 

At the earliest stages of the PREMO project specification it became clear that a 

concise framework , i.e., a precise objt~d. model, would be needed to ensure 

the smooth cooperation among objects wit.bin PREMO and also to provide 

a consistent approach to some of the technical issues raised by multimedia 

programming in general. Such an object morlel was arlopted at an early stage of 
the PREMO project .. This object model is traditional, being hased on subt.yping 

and inherit.a.nee. The PREMO object model supports hoth multiple supertypes 

and multiple inheritance. 
As said earlier ( c. f. §2.2) , sub typing and inheritance provide the ha.<>ic mech

anism in PREMO for extensibility and configurahilit.y. 
In PREMO, a strong emphasis is placed on the ability of objects to be active. 

This feature of PREMO stems from the need for synchronisation in nmltimedia 

e11virom11ents {§2. l). Conceptually, different media (e.g., a video sequence and 

a corresponding sound track) may be considered as parallel activities that have 

to reach specific milestones at distinct and possibly user definable synchronisa

tion points. In many ca.-;es, specific media types may he directly supported in 

hardware. In sonie cases, using strictly specified synchronisation schemes, the 

underlying hardware can take care of synchronisation. However, a general ob

ject morlel should offer the capability of describing synchronisation in general 

terms as well (see also [14, 15, Hi] for similar approaches taken in multimedia 

programming systems). 
Allowing objects to he active does not contradict the OMG object. 11101lel. 

However, some details of object requests have to he specified in more precise 

terms for PREMO, in contrast with the OMG object model. In PREMO, objects 

may define their operations as being synchronons, a8ynchronons, or .rnmpled. 

The intuitive meaning of these notions is: 

• If the operation is defined to be synchronous, the caller is suspended until 

the callee has serviced the request. 

• If the operation is defined to be a .. ~ynchronou8, the caller is not. suspended , 

and t.he service requests are queued on the callee's side. No return value 

is allowed in this case. 

• If the operation is defiuecl to be sam11led, the caller is not suspended , 

but the service requests are not queued on the callee's side. Instead, the 

respective requests will overwrite one another as long as the callee lrns 

not. serviced the request. 

The unusual feature of this model, compared to traditional message pa.<>sing 

protocols, is the introduction of sampled messages. Yet., this feature is not 
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unusual in computer graphics. Consider the well- known idea of sampling a 
logical input device, e.g. , locator position values. A separate object modelling 
(or directly interfacing) a locator can send thousands of motion notification 
messages to a receiver object, and this latter can just "sample" these messages 
using the sampled message facility. 

Using active objects, synchronisation appears to be no more and no less 
than synchronisation of concurrent processes, i.e., concurrent active objects in 
PREMO. This does not mean that synchronisation becomes easy. What it does 
mean is that the terminology, the results, the machinery, etc, of the theory and 
the practice of concurrent programming can be reused in PREMO. There are 
other issues of synchronisation that can be considered quality of sern'ice issues, 
which go beyond this basic synchronisation model. Nevertheless, the model 
provides a clean and straightforward framework on which other such facilities 
can be built. 

3.1.2 Events, Event Model 

The PREMO framework includes the notion of non- objects, primarily for effi
ciency reasons. Non- objects have no requests defined on them, they cannot 
take part in subtyping and inheritance hierarchies. 

Events form a special category of PREMO non- object types, and are the 
basic building block for the PREMO event model. Events and their propagation 
(described by the event model) play a fundamental role in the synchronisation 
mechanism. 

The event model is based on three concepts: events, event registration, and 
event handling. An event can model any action that occurs at a definite time. 
Events are created by event sources, and are commmed hy event clients, both of 
which are objects. A basic characteristic of an event is its distinct type, which 
is one of the characteristics t.hat a client uses to identify the events in which it 
is interested. 

\Vhereas in object conununication , the caller specifies the recipient of each 
operation request, in event couunuuication, events are not addressed to specific 
recipients. Instead , it is the recipient that determines which events it wishes 
to receive. An object can register interest in receiving specific events produced 
by the various objects. As part of the registration process, a client can specify 
one of its (asynchronous or sampled ) methods to receive events forwarded by 
au Event Handler object (defined by the so- called Fundamental Component, 
see §4.1). Prospective ovent recipients specify which events they are interested 
iu by registering constraint lists with au Event Handler. Each constraint list 
defines the event names and parameter values which the event recipient wishes 
to receive. In the most common case, the constraint list specifies the name of 
au event in which the object is interested. Issuing an event by the event source 
means sending a message to an Event Handler object which dispatches the 
event to the interested event clients. 
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.'l. 2 Components 

The ohject. model, the event model, the concept of non- objects, etc., described 

in §3.1, give a conceptual framework for all the hasic notions in PREMO. Com

ponents allow for a structuring of the PREMO standard in terms of the services 

provided. 
A component. in PREMO is a collect.ion of object. types and no11- object. dat.a 

types, from which objects and non- objecb; can he instantiated. Objects within 

one component. are designed for a close cooperation and offer a well- defined set. 

of functional capabilities for use hy other objects external to the component.. 

A component. can offer services as in OMG (see !{2.3), i.e., services usable in 

a distributed enviromnent., or it. may he used as a set. of objects rlirectly linked 

t.o an application. 
Components may he organii;ed in component. inheritance hierarchies. For 

example, in Figure 1, both components B and C inherit. from component. A. 

This means that object. types in B and C are i;uhtypes of types defined in A 

(see §3.1.1 ). All PREMO ohject.i; are subtypes of a common PREMO supertype, 

so this rule enables new types of objects to be defined. As far as subtyping 

and / or inheritance are concerned, objects within components B and C are all 

distinct typei;: 110 type in B may he a subtype of a type in C am! vice versa. 

The rule on component. inheritance does not imply that objects in different. 

components have to have a suht.yping relationship in order to he able to com

municate with one another. Again referring to Figure 1, B can of course make 

use of the services offered by component C. Compommts may also specify how 

they exploit functionality from other components, wi th the option of hiding t his 

from the client .. Hence components may hecome clienti; of other components' 

services. 
Underlying all PREMO components is a Fomulaf.ion Compou ent providing 

functionality which is necessary for all PREMO components. It. is mandatory 

that. all other PREl\·10 component.s inherit. from this Foun<iat.ion Component. 

(described in more details in §4 .1 ). 
The rules for components are part of the st.andar<l. These rules form the 

ha.<>is , in conjunct.ion with the object model , for the properties of configuration, 

customisation, extension, and interoperation. 

4 COMPONENT STRUCTU RE 

With the ahove description of the conceptual framework and the component. 

model, we now describe the structure of the PREMO standard in more detail. 

The initial PREMO standard will: 

• define the exact conceptual frame\vork for multimedia presentation, along 

the lines descrihed in §3.1, i.e., the object model, the event model , etc.; 

• define rules for components, their interrelationships, inheritance, confor

mance rules, etc.; 
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FIGURE 1. Component inheritance. 

• include the specification of the Foundation Component; 

• include t he specification of some other components, namely: 

a component for Multimedia System Services (see 34.2); 

a Modelling, Presentation, and Interaction Component, which will 
provide for the basis of components inherently related to modelling, 
geometry, tradit ional computer graphics, etc. 

PREMO should, however, he thought of as au evolving staudanl; new compo
nents will be added in the future. On the basis of the Modelling, Presentation, 
and Interaction Component, components may also he added to ensure appli
cations using current SC24 standards will contim1e to work, and be upwards 
compatible. Two types of components are planned: expression of existing SC24 
standards as PREMO components, e.g., PRIGS or GKS, or new components, 
e.g., a pure audio component, or a component for virtual reality. Although tlw 
exact component hierarchy is not yet fiualis<='.cl (.June 1!)!)4 ), Figure 2 gives a 
view of the expected hierarchy of standardised components. 

In the following sections, highlights of some of t he compoueuts referred to 
above are given . The reader should rememher , however, that t he specification 
of t hese cmnponents is still au ongoing activity. 
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FIGURE 2. Component. hierarchy. 

4 .1 Foundation Compo11 ent 

The foundation component. is a collect.ion of foundation objects. Foundation 
objects are those which support. a funclament.al set of services suit.able for use 
by a wide variety of other components. 

It is beyond t.he scope of this paper t.o give au exhaustive specification of all 
foundation objects defined in t.he foundation component.; only some highlight.s 
are given here. The list. of foundation objects includes the following object. 
types: 

• The PR EMO Life-cycle Manager object. provides object life cycle ser
vices for PREMO objects. This includes t.he creation of new objects, de
struction of object and object. references, keeping t.rack of object ref
erences. The separate management of object life- cycles and associated 
object. references is essential if a component. intends to offer services in a 
distributed environment.. 

In fact, PREMO defines two such life cycle manager object:; , whose fum:
tionalities are identical, but they manage remote, service objects and local 
object. respectively. This distinct.ion is necessary t.o control objects which 
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offer services over, e.g, a distributed environment and, alternatively, to 
have objects which are to be used in a local setting only. 

• Data objects. The semantics associated with a data object define the 
construction and modification interface of a particular data object. Ex
amples are geometric 2D or 3D points, colour, matrices, with related 
operations and other attributes, video frames, frequency spectra, etc. 

• Producer objects provide an encapsulation for defining the processing of 
Data objects and the production of refined or transmuted Data objects. 
Producer objects may receive Data objects from any number of sources 
and deliver Data objects to any number of destinations. Specific subtypes 
of ty] •e Producer may place restrictions on the number of sources and des
tinations of Data objects if necessary. Specific types of Producer object 
are characterised by the behaviour made visible through their associated 
sets of operations. 

• A Porter object is the PREMO foundation object which interconnects to 
systems and enviroumeuts defined outside of PREMO, e.g., files, physical 
devices. 

• The role of a Controller is to coordinate cooperation among objects. A 
Controller object is an autonomous and programmable finite state ma
chine (FSM). Transitions are triggered hy messages sent by other objects. 
Actions of the FSM correspond to messages sent to other objects. The 
actions of a Controller object may cause messages to be sent to other 
Controller objects, thus a hierarchy of Controllers can be defined. 

• Event Handler objects provide methods to register interest in certain 
events, for dispatching events to the interested objects, manage constraint 
lists for events, etc. These objects also play a fundamental role in syn
chronisation mechanisms. 

As an example of how these notions can be used, let us see · how basic, event
based, synchronisation can be expressed with these objects. Syuchronisation 
is handled by using synchronisation events that are sent by synchronisation 
sources to event handlers. An Event Handler then forwards the event to ob
jects that have registered their interest in these events. The interested objects 
could be either objects that are the immediate target in the synchronisation, 
or controller objects for more elaborate synchronisation. Figure 3 illustrates a 
more complex case: two Event Handlers take care of two independent clock 
events, but, for one of them, the same event may also he "simulated" by an
other object. A separate controller receives these events and, based on its own 
internal state, may then dispatch a synchronisation call to two other PREMO 

objects. 
The combination of Event Handlers and Controllers can also be used for 

schemes where actions are scheduled to take place at a certain time. In this 
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FIG URE 3. Synchronisation. 

case, a clock object (to be provided by a higher- level component) can be nsed 

to t rigger the action at the right time. This allows for the more general notion 

of temporal synchronisation. 

4. 2 Multimedia System Service8 

The primary goal of the Multimedia System Services (MSS), defined as a rec

onuuende<l practice by the IMA (Int.eract.ive Mnlt.imedia Associat.ion), is to 
provide an infrast.rnct.ure for building multimedia computing plat.forms that. 

support. interactive multimedia applications dealing with synchronised, tim e 

based, media in a heterogeneous distributed enYiromnent. The emphasis is very 

much on dist.rilmted services for "low level" media processing; MSS does not. 

include any concepts for geometry, modelling, et.c. Instead , it. is concerned 

with problems like the definition of abstract. merlia devices, resource control , 

connect.ions among virtual devices (in the form of so- called st reams), et.c. 

Active r:ooperation between the ISO PREMO group and Il\'IA and resulted 

in the decision encapsulate l\tlSS within PREMO. Figure 2 shows how MSS 

will he integrated into PREMO: it will form a separate component., rely ing on 

the objects defined in the Foundation Component .. The design of these object.s 

already reflects t he requirements of MSS. A first implementation of IvISS will 

be availahle (independently of PREM O) in the course of 19!)5, and t lrn first draft 

for an integration with PREI'vlO will be available in 1!.J96. 

4 . .9 Presentation, Modelling, nnd Interaction Comporwnt 

T he Present.at.ion, Modelling, and Interact.ion Component (Pl\H) of PREMO 

combines media control with modelling aud geometry. This is an abstract 

component from which concrete modelling awl present.at.ion components are 
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expected to be derived. Thus, for example, a virtual reality component that 

is derived, at least in part, from the Presentation, Modelling, and Interaction 

Component, might refine the renderer objects of the PMI component to objects 

most appropriate in the virtual reality domain. This component introduces ab

stractions for such things as modellers, modelling objects and their properties, 

scenes, renderers, etc. Objects with geometry may be placed into scenes, and 

may subsequently be transformed and visualised. This notion is a general one 

and applies equally well to objects that do not have a clear graphical repre

sentation. For example, an audio object with spatial properties can be located 

within a scene and appropriate rendering algorithms can take this into account 

to achieve a stereo audio effect. The abstractions defined in this component 

will also allow for the inclusion of objects with time properties. 

The Presentation, Modelling, and Interaction Component of PREMO heavily 

relies on an existing reference model, called the Computer Graphics Refer

ence Model (CG RM)[21], developed within the same ISO group (ISO / IEC 

JTC 1/ SC24) some years ago. In fact, the PMI could be viewed as the adap

tation of CGRM (which is an abstract framework ) to the object oriented en

viromnent defined by PREMO 
Based on the Presentation, Modelling, and Interaction Component, more 

"concrete" components will be developed. Activities have already started on 

the development of a Virtual Reality component, a11d other possibilities (e. g. ,, 

pure audio component, solid modelling compone11t) are currently explored. 

5 A FORMAL APPROACH TO DEVELOPING THE PREMO STANDARD 

The graphics standards community have in the past employed formal meth

ods in only a very limited sense. The semantics of first generation graphics 

standards, such as GKS and PHIGS, were described using natural language, 

and in some cases this has meant that ambiguities have crept into the specifi

cations. The PREMO RG plans to address this problem by employing formal 

methods at an early stage am! to continue this activity throughout PREMO's 

development. This task started after the .July l!J!)3 PREMO meeting and some 

early results are documented in [22, 23]. The intention is to provide a formal 

specification of the PREMO object model am! some of its components, where 

the main emphasis is placed on feeding results back into the standanl 's devel

opment. This is essentially a complimentary activity and it is not currently 
plan11ed that this should replace the usual 11atural language descriptio11. The 

formalism used is based on Z[24] and Object-Z[25]. 

6 TIMETABLE 

The current t imetable for the work progress in PRE!vIO is as follows: 

Draft International Standard: 
International Standard final text: 

.June 199() 
June 1997 
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7 EXPERIMENTAL IMPLEMENTATIONS 

In the near future, work will also begin on an experimental implementation 
of the PREMO standard. The major emphasis of this work will be to provide 
a proof of concepts for the main paradigms and the models advocated by the 
PREMO document.. The implementation of the object model will require a 
major effort; indeed, the requirements of this model go far beyond what is 
offered "by default" hy languages like C++[26]. Fortunately, tools already exist 
which will make this activity easier. The environment. developed within the 
ESPRIT MADE project.[27], primarily its object. model implementat.ion[l6], 
will be used as the basic tools to develop a first, experiment.al implementation 
of PREMO. :i 
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On the History of Runge-Kutta Methods 

To Cor Baayen at the occasion of his retirement 

P .J. van der Houwen 

Runge-Kutta methods are widely-used methods for the integration of 
initial-value problems for ordinary differential equations. They can also 
be used for the time integration of initial-value problems for time
dependent partial differential equations by applying the so-called 
Method of Lines. The method of lines transforms the partial differential 
equation into a system of ordinary differential equations by 
discretization of the space variables, so that formally any ordinary 
differential equation solver can be employed for the time integration of 
the resulting initial-value problem. However, since ordinary differential 
equations originating from space-discretized partial differential 
equations have a special structure, not every ordinary differential 
equation solver is appropriate. For example, the well-known fourth
order Runge-Kutta method is highly inefficient if the partial differential 
equation is parabolic, but it performs often quite satisfactory if the 
partial differential equation is hyperbolic. In this contribution, we 
concentrate on the role played by Runge-Kutta methods in the 
numerical integration of time-dependent partial differential equations. 
In particular, we shall describe the research c 
arried out at CWI. 

I. THE METHOD OF LINE.5 
The method of lines transforms initial-boundary value problems for time-dependent 
partial differential equations (PDEs) into initial-value problems (IVPs) for systems 
of ordinary differential equations (ODEs). This is achieved by discretization of the 
space variables using finite difference, finite element or finite volume 
approximations. The connection of PDEs with systems of ODEs was already known 
to Lagrange (see the historical notes in the book of Hairer-Njllrsett-Wanner 
[JO, p. 25]). In I 759 Lagrange already observed that his mathematical model for the 
propagation of sound in terms of a system of second-order ODEs is related to 
d'Alembert's equation Utt= Uxx for the vibrating string. However, the actual use of 
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the space-discretized approximation in numerically solving initial-boundary value 
problems for PDEs seems to start with Rothe in 1930 [32], and is therefore also 
called Rothe's method (see [10, p. 3]). 
In this paper, we shall restrict our considerations to the case where the spatial 
discretization of the PDE leads to an IVP of the form 

( I.I) 
Qy{Q 

eh = f(t,y(t)), y(to) =YO· 

where t is the time variable and YO contains the given initial values. Notice that the 
boundary conditions are Jumped into the righthand side function f. 
The IVP (I, I) has a number of specific characteristics that play a crucial role in 
selecting a suitable integrator. Firstly, the system (I. I) can be extremely large, 
particularly, if it originates from a problem with 2 or 3 spatial dimensions. 
Secondly, the system is usually extremely stiff (here, (I. I) is considered to be stiff if 
the solution components corresponding to eigenvalues of the Jacobian ar /{)y that 
are close to the origin are dominating). Thirdly, the required order of accuracy in time 
is rather modest (usually not exceeding the order of the spatial discretization, that is, 
at most order three). Hence, we are Jed to look for low-order, stiff ODEIVP solvers 
that are storage economic. 
One approach is to look for conventional, general purpose ODEIVP methods that 
meet these requirements. There are two often used integrators, the second-order 
trapezoidal rule and the first-order backward Euler method, that belong both to the 
class of Runge-Kutta methods. They were respectively used by Crank and Nicolson 
[4] and by Laasonen [24] in their papers of 1947 and 1949 for solving heat flow 
problems. In the PDE literature, these methods also known as the Crank-Nicolson 
and Laasonen methods. An integration method that combines the second-order 
accuracy of the Crank-Nicolson method and the high stability of the Laasonen 
method is offered by the two-step method based on backward differentiation (known 
as the BDF2 method). BDF methods were proposed in 1952 by Curtiss and 
Hirschfelder [3] for solving stiff ODEs and became popular by the papers of Gear in 
1967- 1968, and in particular by his book [7] of 1971. The Crank-Nicolson, 
Laasonen and BDF2 methods are applicable to a wide class of space-discretized PDEs 
(not only heat flow problems) and have comparable computational complexity. In 
order to solve the implicit relations, one usually applies Newton iteration which 
leads to a large linear system in each iteration. For one-dimensional problems, these 
linear systems can be solved by direct methods that are in general highly efficient 
because the band structure of the system can be fully exploited. However, in more 
than one spatial dimension, direct solution methods usually are out of the question 
and we have to resort to an iterative method. If LN denotes the number of Newton 
iterations, Ls the number of linear system iterations, d the spatial dimension, and /;J,. 

the spatial grid size, then the computational complexity of these methods is 
O(LNLsl;J,.-d). Often used linear-system-iteration methods are conjugate gradient type 
methods that require at least O(tJ,.- 112) iterations. Hence, the total computational 
work involved for integrating the unit time interval with stepsize h is at least W = 
O(Lsh- ltJ,.-cl- 1n ). 
In order to reduce the huge amount of work when integrating higher-dimensional 
problems, new mathods have been developed. The remainder of this paper will be 
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devoted to such methods. Since it is not feasible to present a complete survey, we 
shall confine ourselves to Runge-Kutta type methods that are tuned to PDEs in two 
or more spatial dimensions. We shall discuss explicit RK methods for parabolic and 
hyperbolic problems (spectrum of the Jacobian ar /ey along the negative axis and 
imaginary axis, respectively), and splitting methods represented as RK methods with 
fractional stages. 

2. EXPLICIT RUNGE-KUTT A METHODS 
Consider the s-stage RK method 

(2.1) 
Y = e ® Yn + h (A® I) F(tne + ch,Y) , 

Yn+I = Yn + h (bT ®I) F(tne + ch,Y), 

where his the integration step, Yn and Yn+I represent approximations to the exact 
solution vector y(t) at t = tn and t = tn+ J, ® denotes the Kronecker product, the s
dimensional vector e is the vector with unit entries, I is the identity matrix whose 
dimension equals that of the IVP, and the s-by-s matrix A and the s-dimensional 
vectors b and c := Ae contain the RK parameters. The s components Yi of Y 
represent intermediate approximat ions to the exact solution values y(tn + Cjh) and 
F(tne + ch,Y) contains the derivative values (f(t0 + Cjh,Yi>). In the following, the 
dimensions of e and I may vary, but will always be clear from the context in which 
they appear. 
If A is strictly lower triangular, then (2. l) defines an explicit RK method (the first 
method of this type was proposed by Runge [33] about 100 years ago). Explicit RK 
methods are relatively cheap, provided that the integration step h can be chosen 
sufficiently large. For stiff ODEs, the step is restricted by a stability condition of 
the form 

(2.2) _lL J ·- of(tn,Yn) 
h < p(Jn) • n .- oy • 

where p(Jn) is the spectral radius of Jn and p is the so-called stability boundary. In 
the case of parabolic and hyperbolic problems, where the Jacobian of the righthand 
side function respectively has (more or less) negative and imaginary eigenvalues, p 
denotes the real stability boundary Preal or the imaginary stability boundary Pimag of 
the RK method. The real stability boundary is defined by the maximum length of 
the negative interval (-p,~ that is contained in the region where the stability 
polynomial R8(z) := I + b (I - zA)-le assumes values within the unit circle. 
Similarly, the imaginary stability boundary is defined by the maximum length of 
the interval (O,ip) where Rs is bounded by l. 

2.1. Conventional RK methods 
For conventional RK methods, R8(z) is given by the Taylor polynomial of degrees 
in z, that is, the polynomial that coincides with the truncated Taylor expansion of 
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exp(z) at z = 0. Let us first consider the parabolic case. The real stability boundary of 

Taylor polynomials is (approximately) given by (cf. [15, p.236] and [20,21]) 

2(s+I) .-----

(2.3) Prea1=0.368(s+l) ':..:J 19(s+l) 

This approximation is already quite close for s ~ 4. We conclude from (2.2) and 

(2.3) that we can take any step we want by choosing s sufficiently large, but these 

formulas also show that for large s the total number of function calls needed for 

integrating the unit interval with maximum step h = Preal p- 1 (10 ) = 0.368 s p- 1(10 ) 

is given by Nr = 2.7p(J0 ), that is, independent of s. Hence, conventional RK 

methods are as costly as the explicit Euler method (but of course highly accurate as s 

increases). Since f has O(A- d) components and since for parabolic f-roblems 

p(J0 ) = O(A- 2), the computational work can be estimated by W = O(A- - 2). This 

differs by a factor of order O(hA- 312) from the estimate derived for the Crank

Nicolson, Laasonen and BDF2 methods (when applied to higher-dimensional 

problems). Usually, this factor is quite large (e.g. if h =O(A)), so that conventional 

RK methods are not the way to solve space-discretized PDEs of parabolic type. They 

are "too costly and too accurate". 
Next we consider the hyperbolic case. It happens that for the imaginary stability 

boundary Pimag we do not always obtain nonzero values. If z-(p+l)[Rs(z) - exp(z)] 

~ Cp+ I as z ~ 0, where p denotes the order of accuracy of the RK method, then it 

can straightforwardly been shown that Pimag is only nonzero if either Cp+ 1 iP < 0 

for p even or Cp+I iP+I < 0 for p odd. For the Taylor polynomials this implies that 

the imaginary stability interval is empty for p = 1, 2, 5, 6, 9, 10, .... For the other 

orders, quite reasonable values are obtained. For example, for p = 3, 4, 7, 8, we have 

Pimag = 1.7, 2.8, 1.7, 3.4. Taking one of these latter methods and assuming that 

p(J0 ) = O(A-1 ), the total computational work associated with the unit interval can 

be estimated by W = O(A- d- ). This is a factor of order O(hA- 112) better than the 

estimate derived for the Crank-Nicolson, Laasonen and BDF2 methods. Hence, 

unlike the situation for parabolic problems, conventional RK methods seem to be 

preferrable for hyperbolic problems. 

2.2. Parabolic RK methods 
Our conclusion that for parabolic problems explicit RK methods are "too costly and 

too accurate" suggests sacrifycing accuracy in order to reduce computational costs. 

By observing that an s-stage RK method of order p possesses a stability polynomial 

R5 of the form 

where the coefficients Pj. j = p+ I, ... , s, are free parameters, it is natural to use 

these free parameters for obtaining larger stability boundaries. For parabolic 

problems, where the eigenvalues of th1 ~acobian often are along the negative axis, 

we are led to construct polynomials Rf (z) with incrfiffed real stability boundary. 

Having found an appropriate stability polynomial R f , it is always possible to 
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construct an RK method with R(;) as its stability polynomial (see e.g. [15]). Such 

methods will be called parabolic RK methods. 
Until now, closed form solutions for the polynomials with maximal real stability 
boundaries (to be called optimal polynomials) are only known for p = 1. They are 
given by the shifted Chebyshev polynomials 

where T5(z) := cos(s arccos(z)) denotes the first kind Chebyshev poynomial of degree 
s. They have been rediscovered in the literature again and again (even in recent years, 
see e.g. [2]). As far as I know, they were first mentioned for integrating parabolic 
equations: in 1958 by Yuan' Chzao-Din in his thesis [41], in 1959 by Franklin in 

his paper [6] that appeared in the Journal for Mathematical Physics, and in 1960 by 

Guillou and Lago in the Proceedings [9] of the first conference of AFCAL (the 
French Association for Computing). These authors were not aware of each others 

work. 
For p ~ 2, only approximate solutions have been constructed. In the thesis of 
Metzger [28] in 1967, we find numerical approximations for p ~ 4, s ~ 5, and in a 
NASA report of Lomax [27] of 1968, a general approach for computing the 
coefficients was indicated. Lomax conjectured that the optimal polynomials satisfy 
the so-called equal ripple property, that is, the optimal polynomial has s-p local 
extrema +I or - I (this property was actually proved by Riha [31] in 1972 who also 
showed the unique existence of the optimal polynomials for all p and all s > p). 
Using the equal ripple property, an iterative method can be constructed for the 
numerical computation of the coefficients. However, this equal-ripple-iteration 
method needs rather accurate initial iterates in order to converge. Presumably for this 
reason, Lomax did not use the equal-ripple-property approach, and instead, computed 
least squares approximations for p = 2 and s $ 10. Again, Metzger, Lomax and Riha 
found their results independently. 
At CWI we used the least squares approach of Lomax for generating initial iterates 
to start the equal-ripple-iteration method. In this way, we computed the optimal 
stability polynomials, together with their real stability boundaries, for p $ 4 and 
s $ l O+p (tables for the coefficients can be found in [ 13, 14 ]). These computations 

indicated that ~real increases quadratically with s as s increases. In fact, we found 

(2.6) ~real= Yps2 ass~ 00, Y2 = 0.814, Y3 = 0.489, Y4 = 0.341. 

The quadratic behaviour is important. It implies that the total number of function 
calls needed for integratinf the unit interval with maximum step h"" Yps2p- l(Jn) is 

now given by Nr = (YpS)- p(J0 ), which is a factor 2.7 Yp s less than the number of 
function calls needed for conventional RK methods. Hence, for large values of s, RK 
methods generated by (2.5) are much cheaper than conventional RK methods, 
provided that they are available for large values of s. Unfortunately, the numerical 
computation of the optimal polynomials becomes increasingly more difficult as s 
increases. This motivated us to look for analytical expressions for nearly optimal 
polynomials that are valid for arbitrary high values of s. In 1971, Bakker [l] derived 
in his Master thesis for p = 2 and p = 3 analytically given polynomials which are 
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quite close approximations to the optimal stability polynomials, in the sense that 
the stability boundaries are close to the maximal attainable values. These 
polynomials, to be called the Bakker polynomials, are given by 

(2) 2s2 + 1 ~ ( _k_ ) _ ~ 2 
(2.7) B (z) = 3 

2 + 3 2 Ts I + 2 , Preal - 3 (s - I), s > 2, 
s s s s - I 

(2.8) 
(3) 3132 - 2(40k2 - 1)13 3132 - 2(36k2 - 1)13 ( 2z) 

B s (z) = I + 576k4 - 5 I 2k4 T2k I + 13 

3132 - 2(4k2 - 1)13 2z s 
+ 4608k4 Ts(I+ 13 ),k:=6 ·s = 6,12,18, ... , 

R I - A ·- ~ s2 - I + l ... (ss4 - 60s2 + 297 
t-'Tea - I-' .- 9 9 . \J 5 

= ~ s2( I + ~ = 0.363 s2 as s ~ oo, 

where again T s denotes the first kind Chebyshev poynomial of degree s (in addition, 
Bakker actually proved the quadratic behaviour of the real stability boundaries of the 
optimal polynomials and obtained lower and upper bounds for Yp up to p = 15). A 
comparison of (2.6) with (2.7) and (2.8) reveals that the Bakker polynomials 
respectively possess 80% and 75% of the maximal attainable, asymptotic stability 
boundary. Later on in 1982, we found for p = 2 an even better approximation given 
by (cf. [17]) 

A (Z)(z) = - 2 - - _ z - T ( cos(n/s) + 
s 2 - z 2 - z 5 

1 - cos(7t/s)) 
2 ' 

(2.9) 
2 s2 

Preal = [tan(7t/2s)]2 = 8 7t2 = 0.810 s2 as s~oo. 

These polynomials are not the optimal ones, but yield 99.5 % of the maximal 

attainable, asymptotic stability boundary! 
The parabolic RK methods generated by the analytically given polynomials (2.5), 

(2.7) and (2.9) enable us to select an integration step h on the basis of accuracy 

considerations and to adapt the number of stages according to the stability condition 
s = (yp- 1 hp(Jn))112. Hence, effectively, we have an unconditionally stable method. 
As we remarked earlier, given the stability polynomial, many RK methods 
possessing this stability polynomial are possible. One of the most simple 
implementations of first-order or second-order RK methods with stability 
polynomial (2.4) reads 
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Y h '( h y ) a1· ·.= ~s-i+2 . 1 i = Yn + ai •' tn + Ci-1 • i-1 • • I = ' ... • s, 
~s-i+I 

(2.10) 
Yn+l = Yn + h f(tn + h,Y 8 ), 

where a 1 is assumed to vanish. This implementation is of the form (2.1) with b = 
e8 and a matrix A with zero entries except for the lower off-diagonal entries. We 
shall call (2.10) the diagonal implementation. Unfortunately, when we actually 
applied the diagonal implementation with s = (yp- 1hp(Jn)) 112, it turned out that the 
numerical solution lost accuracy for larger values of s. On a computer with 14 digits 
arithmetic, s should not be greater than 12. This is caused by the development of 
illfemal instabilities within a single step. Just as the step values Yn are required to 
be stable b: imposing the (external) stability condition h < ~real I p(Jn), we also 
have to require that the internal values Yi are stable. In the implementation (2.10), 
the internal perturbations satisfy the recursion A Yi = ai hJ n A Y i-1 = Ri-1 (hJ n)A Y J, 
where the so-called internal stability polynomials Rj(Z) are of degree i in z. This 
leads to the internal stability conditions h < <Xi I p(Jn). i = l, ... , s, where <lj 
denotes the stability boundary associated with Rj . For large values of s, these 
conditions are much more restrictive than the external stability condition h <~real I 
p(Jn). As a consequence, the main advantage of the polynomials (2.5), (2.7) and 
(2.9), viz. that they are available for arbitrarily large values of s, cannot be 
exploited. 
Fortunately, it is possible to avoid, or at least to suppress the internal instabilities, 
just by choosing another implementation than (2. l 0). The first attempt to internal 
stabilization of RK methods with many stages is due to Gentzsch and Schluter [8] in 
1978, who 'rediscovered' the shifted Chebyshev polynomials (2.5) and exploited the 
fact that these polynomials possess s real zeroes Zi on the negative axis. Although 
their approach was restricted to linear IVPs, it can directly be extended to nonlinear 
problems to obtain an RK method of the form 

(2.11) 

l 
Y1 = Yn· Yi+! = Yi - - h f(tn + Cjh,Yj), i = l, ... , s-1, 

Zj 

1 
Yn+I = Y s - - h f(tn + c8h,Y 8). 

Zs 

This implementation may be interpreted as an RK method that is factorized in a 
sequence of Euler steps and will be called the factorized implementation. If the zeroes 
Zi are ordered such that Zi < Zi+ 1 or Zi > Zi+ 1. then the performance the factorized 
implementation is hardly better than that of the diagonal implementation as s 
increases. However, Gentzsch and Schltiter reported satisfactory results for extremely 
large values of s (up to 997) if special orderings of the Zi are used. A disadvantage in 
actual applications is that a suitable ordering depends on s. 
When reading the paper of Gentzsch and Schltiter, we suddenly realized, that the 
problem of internal stabilization was already solved a long time ago by numerical 
analysts working in elliptic PDEs! The spatial discretization of elliptic PDEs leads 
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to the problem of solving linear systems Ay = b, where A is known to have a 
negative spectrum in the negative interval (-p{A),O) with p(A) large positive. A 
well-known iterative method for solving such problems is due to Richardson, who 
proposed in his paper [30] of 1910 the recursion Yi = Yi- I + CXj{AYi-1 - b ), where 
the parameters CXj are chosen such that after s iterations, the polynomial P5 

occurring in the error formula Ys - y = Pj{A)(yo - y) has a small norm in the 
eigenvalue interval (a,b) of A. Various approaches to achieve this have been 
proposed. Richardson suggested choosing P5 such that it has uniformly distributed 
zeros in {a,b), Stiefel proposed to minimize an integral measure of Ps (cf. [36]), but 
most numerical analysts prefer to minimize the maximum norm of Ps. The latter 
approach leads to shifted Chebyshev polynomials that are very similar to (2.5) . This 
process is now known as Richardson's method of first degree. However, application 
of this method for large values of s suffers the same internal instability as the 
method (2.11 ). Just as Gentzsch and Schluter, one has tried to improve the stability 
by special choices of the ordering of the parameters CXj (see e.g. the experiments of 
Young [ 40] in 1954 ), but a real break-through was due to Stiefel [36] in 1958. He 
observed that Chebyshev polynomials satisfy a stable three-terms recursion, so that 
using a three-terms recursion for the iterates Yh rather than the two-terms recursion 
of Richardson, would avoid the instability problem. This two-step iteration method 
is known as Richardson's method of second degree or, in the more recent literature, 
the Chebyshev semi-iterative method. Realizing that the stability polynomials (2.5), 
(2.7) and (2.9) are also expressions in terms of shifted Chebyshev polynomials, 
brought us to construct internally stable implementations of the corresponding 
p~bolic ~methods (cf. [15,16]). For the second-order consistent polynomials 
As and B s , it was pointed out by Sommeijer (see [15]), that it is even possible 
to make the Yi not only stable, but also second-order accurate approximations to the 
exact solution at the intermediate points tn+Cjh, i = l, ... , s. 

2 
The internally stable Runge-Kutta method generated by the M~kker polynomials s\) 
performs slightly better than the method generated by As (its smaller stability 
boundary is compensated by its smaller error constants). It is a highly efficient 
integrator for general heat flow problems, particularly for 2D and 3D problems. We 
called it the Runge-Kulla-Chebyshev method, but it could equally well have been 
called the Runge-Kulla-Bakker method. A detailed study of its convergence is 
presented in [37] and an extensive performance evaluation can be found in [12] . The 
Runge-Kutta-Chebyshev method has been implemented by Sommeijer as the code 
RKC and is available through netlib [34]. 
Another code that is based on stabilized RK methods is the code DUMKA developed 
by Lebedev and his coworkers of the Institute for Numerical Mathematics of the 
Russian Academy of Science. They approximate the optimal stability polynomials 
by so-called Zolotarev polynomials. Like Gentzsch and Schluter, internal stability is 
achieved by a special ordering of the stages rather than using recurrence relations. 
More details can be found in the references [25, 26]. 
Finally, we compare the total computational work of conventional and parabolic RK 
methods needed for integrating the unit interval with a given step h. Assuming that 
s is defined by s = (yr- I hp{J 0 )) I /2, we find for the stabilized RK 'r.'etho~s 
W = h- ls O(A- d) = h- (yp- lhp(Jn))l/2 O(A- d) = O(h- 112,:i- d- I). Comparing this 
estimate with that derived for conventional RK methods, we see that the 
computational complexity of the stabilized RK methods differ by a factor of order 
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O(h 112~- 1 ). With respect to the Crank-Nicolson, Laasonen and BDF2 methods using 
conjugate gradient type iteration methods, the stabilized RK methods are at least 
competitive. 

2.3. Hyperbolic RK methods 
Instead of maximizing the real stability boundary of stability polynomials of the 
form (2.4), we may also maximize the imaginary stability boundary, to obtain a 
hyperbolic RK method that should be suitable for integrating hyperbolic problems 
that have Jacobians with imaginary eigenvalues. 
For p = I, the optimal polynomials are given by 

(2.12) 

where s ~ 2 and U5(z) := sin((s+l) arccos(z)) I sin(arccos(z)) denotes the second kind 
Chebyshev poynomial of degree s. For odd values of s, these polynomials were 
given in 1972 in [13] (a proof can be found in [14]). At the time, it was not realizfi1 
that (2.12) is also valid for even values of s, because in [13] the polynomials I~ 
were represented in the fonn 

(2.13) 

with s = 2k+ l, k ~ I, which cannot directly be extended to even values of s. It 
turns out that the odd-degre~~olyno?}~als are identical to the optimal polynomials 
corresponding to p = 2, i.e. I (z) =Is (z) for s odd. 
In 1984 Kinnmark and Gray t22] derived the representation (2.12) which is valid for 
all values of s. This result was also obtained, independently, by Sonneveld and van 
Leer [35] in 1985. 
Kinnmark an~3 pray [23] have also de,r~ved approximations to the optimal 
polynomials Is for s odd and to I( s for seven. These Kinnmark-Gray 
polynomials are given by 

K(3)(z)= _I - [1 + z + jS-1 ~2T 1(g) + !is+2A {(s-2)T (g) 
s p 2 + I s- p 2 I-' s p 

(2.14) - sT5_z(~)} ], 
~imag = ~ := ..J (s-1 )2 - l , odd s ~ 3 

and 

(2.15) 

~imag = ~ := ..J (s-1 )2 - 1 , even s ~ 4. 
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Earlier, in 1983, Vichnevetsky [38] had already proved that l3imag ~ s - l for all p 
and s. Hence, this result of Vichnevetsky indicates that the Kinnmark-Gray 
polynomials are extremely close approximations to the optimal ones. However, it 
also indicates that, unlike the situation for parabolic problems, hyperbolic RK 
methods are hardly more effective than conventional RK methods with nonempty 
imaginary stability intervals. 

3. SPLITIING METHODS 
Just as RK methods, splitting methods compute in each step two or more 
intermediate stages. However, unlike RK methods, these stages are not expressed in 
the full righthand side of the PDE, but infractions of the righthand side. Almost all 
splitting methods proposed in the literature can be represented in RK format. This 
approach was followed in [ 19] to develop a unified treatment of splitting methods 
and allows a straightforward derivation of the order conditions and stability 
functions. 
Let the righthand side function in (l.l) is reduced to autonomous form and split 
according to 

cr 
(3 . t > r<y<t>> = I. ri<Y<t> >. 

i= I 

and consider the RK type method 

cr 
Y = e ® Yn + h L (A(k) ®I) Fk(Y), 

k=I 
(3.2) 

Yn+I = (esT ®I) Y, 

where Fk(Y) contains the derivative values (fk(Yj)). If cr = l , then (3.2) reduces to 
the RK method (2. l) with b T = e8 TA. The methoa { (3. l ),(3.2)} will be called a a
terms RKS method with s fractional stages. RKS methods consist of two 
components, the righthand side splitting (3.1) and the splitting scheme (3.2). 
Restricting our discussion to first-order and second-order methods and using the 
compact notation in terms of the matrices A<k), we have first-order accuracy if 

(3.3) e8TAU>e = l, j = l, ... , cr, 

and second-order accuracy if, in addition, 
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In actual computations, the time-dependent parts originating from time-dependent 
boundary conditions, cannot be dealt with by simply writing (1.1) in autonomous 
form and need a more careful treatment. In this overview, we shall not elaborate on 
this aspect of splitting methods (see e.g. [5]). 
The linear stability ofRKS methods can be analysed by means of the test equation 

cr 
(3.5) y'(t) = I. hy(t), 

k=I 

where h is the Jacobian matrix ()fk(Yn) I oy. It will be assumed that Jk has its 
eigenvalues in the left halfplane. Defining Zk = hh, k = 1, ... , cr, we deduce 

Hence, 

cr 
y = e@ Yn + L (A(k)@ Zk) y =(I - s)-1 (e@ Yn). 

k=I 
cr 

s := I. (A <k>@zk). 
k=I 

Yn+I = (esT@ I) Y = (esT@ I) (I - S)-I (e@ Yn) 

= (esT@ I) (I - s)-I (e@ I) Yn· 

Thus, the stability function is given by 

cr 
(3.6) R=(esT®I)((l®I)- I, (A<k>@zk)r

1
(e®I). 

k=I 

3.2. Splitting methods as RKS methods 
This survey paper is concluded with an example of a family of splitting methods 
that can be represented as an RKS method. For a more detailed analysis of RKS 
methods we refer to [18]. 
Consider the two-terms, three-stage splitting scheme defined by 

(
0 0 OJ (0 0 OJ (3.7) A(I) = 1/2 0 0 , A(2) = 0 1/2 0 . 

1/2 0 1/2 0 1 0 

This scheme is second-order accurate whatever we choose for f1 and f2. Presumably, 
the first splitting method proposed in the literature generated by the splitting scheme 
(3.7) is the Peaceman-Rachford method [29) of 1955. If (3.7) is applied to a space
discretized, two-dimensional PDE in which the righthand side f can be split into an 
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x-dependent part f1 and a y-dependent part f2, then the so-called ADI (Alternating 
Direction Implicit) method of Peaceman and Rachford is obtained. Other well-known 
splitting methods generated by (3.7) are the Hopscotch methods proposed by 
Gourlay in 1970. These methods are obtained by dividing the grid points on which 
the PDE is discretized in two groups G1 and G1, and by defining f1 and f2 such that 
they vanish on G1 and G1, respectively. On rectangular grids, often used examples 
are the Line Hopscotch and the Odd-Even Hopscotch methods which arise if G 1 and 
G1 contain grid points lying on alternating lines and diagonals, respectively. 
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The law of large numbers, not really a law but a mathematical theorem, is 
at the same time a justification for application of statistics and an essential 
tool for the mathemat ical theory of probability. As such, it must be taught 
to many students. The traditional method for this, using independent and 
identically distributed rawlom variables, was developed hy Kolmogorov in the 
1930's, and explains well what happens, and much more, at this level of gener
ality. However, it has recently come to light that the reason for the validity of 
this theorem in its general setting, that of stationarity, is much simpler than 
was first thought. In this short article, I shall try to explain to the general 
audience towards whom this collection is directed , the essence of the law of 
large numbers. A complete treatment should certainly include many references 
and interesting historical comments, and I apologize for their absence here. 

Let me start with the basic law of large numbers by considering, very simply, 
an infinite sequence 

each of whose elements is either 0 or 1. Perhaps it will help (or hinder! ) to 
think of :1:11 as the result of the ntl' trial of an uncertain experiment, with x 11 = 1 
designating success and x,. = 0 failure. Let 

:1:0 + X 1 + · · · + 3;11 - I 
a,. = 

n 
(n :'.'.'. 1) 

denote then the average numbers of successes up to time n. It is very easy to 
see mathematically that for some sequences x, 

Jim a,. 
n-oo 

exists , while for other sequences x, this is not the case. One can only affirm 
with certainty that 

Jim (a 11 + 1 - a,,) = 0, 
n -oo 
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hut nothing impedes the averages a,, from oscillating more and more slowly as 

n grows. Thus it. seems that fort.her discussion is useless, and that uncertainty 

here must. be accepted. 
Phenomenologically, however, we are faced with t.he fact t hat in cert.ain situ

at.ions, such limits seem to exist., and the society makes seemingly understand

able statements concerning the percent.age of smokers dying of cancer, the 

probability of rain tomorrow, or an industrial average yiel<I. \Ve are rnnfront.ed 

with the question as to whet.her nature produces sequences whose averages do 

converge, and why. Of course, this is not. a mat.hemat.ical question, all(( in order 

to say something mathematically sensible, one must adopt a model. 

The currently accepted model, ancl it. is difficult. to see how it could be re

placed by something else, is that for a given sit.ua.t.ion in which such sequences :i: 

appear, in principle all sequences are possible, hut. there is also a mass distribu

t ion with tot.al mass 1 over the set. of sequences, which assigns to each "event" 

which might occur a probability, t his being t he total ma8s of those sequences 

for which the event. occun;. If an event, for instance the existence of lim a 11 , 

11 -00 

has probability 1, then one says that. t he event. will occur almost .mrely. 

The determination of such a mass distrilmt.ion in different. pract.ical sit.nations 

is one of the most. import.ant tasks for probahilist.s, and requires a goo<l mixt.ure 

of mathematics, other sciences, and good old common sense. First principles 

are of utmost importance, as determining such an object. hy experiment.at.ion 

resembles very much a cat chasing it.s own t.ail! Oue oft.he basic properties of 

such a ma.<>s distrihution , already alluded to briefly above, is that. of stntionarify. 

We say t hat. t he probability measure ( == mass clist.rihut ion ) is stal.ionar,11 if 

the event.s have time-homogeneous probabilities. That is, shifting any e\'ent. 

forwards or backwards in time does not. change it.s prohahilit.y. 

Perhaps a brief remark 011 mass distributions is in order. There is a branch 

of mathemat.ics, measure theory, which deals extensively with t he specification 

and manipulation of such objects. However, one can 1111derst.a11d well most. 

arguments an<l principles by using the intuitive not.ion, which is my intent.ion 

here. 

Now we can state the 

B ASIC LAW OF LARG E NUMBERS: 

If :r, == (:1:0, :1:1, ..• ) is a stationary sequence of zeroes and ones, then lirn,, _= a,, 

exists almost surely . 

.Just to be sure that. you are (mathematically) still wi th me: A unit mass 

distribution on sequences of zeroes and ones is given; it. is stationary. Then 

the set of all sequences :i; for which lim a,, exists has total mass 1. The set. of 
11 -00 

sequences for which this limit. does not exist has mass 0. Remember, this is a 

theorem, and I want to explain the proof. 
To 1111derst.aml t he proof will require the level of first-year university analysis, 
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given the intuitive acceptance of the mass distribut ion notion. We begin by 

defining 

a := lim sup a11 ; 

n. -oo 

this always exists, and 0 :::; a :::; 1. It is also clear that if we had started 

observing x at a later time point, the value a would be the same: 

- l" Xk + Xk+l + · · · + Xk+n - l 
a = nnsup 

11-00 n 

for any k ~ 0 and any sequence x. 
Next, we need a way to measure how close we are to the lim sup, a. Thus, 

let E > 0 be a fixed positive number, and for each k ~ 0, define 

N ·- · { l . Xk + Xk+t + · · · + Xk + 11 - l _ } 
~: .- nun ll ~ • _ a - E • 

n 

By t he defini t ion of lim sup, the set on the right is non-empty and hence Nk is 

finite for each k. The crucial point we need to address concerns the size of the 

numbers Nk; to make our idea clear, let us examine the simplest case first . 

CASE 1. Suppose that for each E > 0 there exists a (large) positive integer Al 

such that for each k, Nk :::; AI almost surely. (That is, the set of sequences :r 

for which Nk :::; M has total mass 1. ) 

REMARK: Note that by our assumption of stationarity the events N~, :::; AI for 

different k all have the same probability. 

If now x is such a sequence that for each k, Nk :::; A/, we claim that lim a,. 
u-oo 

exists. The idea is that, as n gets larger, a,. can only change more and more 

slowly, and that then wandering is impossible because the lim sup is reached 

again and again within lv! steps. Formally, one proceeds as follows. Fix f. > 0 

and choose any n > Al/ E. Then starting at the beginning of a:, hreak :r up into 

pieces of lengths at most A/ such that the average of :i; over each piece is at 

least ii - E. Stop at the piece containing the coordinate n . Then it is clear that 

Xu+ :1: 1 + ... + :1;11 - 1 ~ (n - M) (ii - t:), 

so that 

xu+x1+ ... +x11- 1 ( )( - ) _ 
a,. = ~ 1 - E a - f. ~ a - 2f. 

n 

for each n > lvl / f.j it follows that lim a 11 = ii exists. 
u -ex> 

REMARK: Note that only the last piece is of importance; it must not become 
too long. 

379 



· ~ ~"~ --=-

Actually, t.he same type of argument. works in t.he general case, when c0111-

bined with an idea coming originally from non-standard analysis. 

C ASE 2: Ge11eral case. By the remark aft.er Case 1, it remaius true that the 
events Nk ~ /11 all have t.he same probaoilit.y, for any k and fixed A/ . Since 

N~- is finite for each :i;, we may not. he able to fiud an /11, fo r E > 0 given, such 

t.hat these events have probabi lity 1, but we certainly can choose /11 so large 

t hat for any /.:, t.he probability of N~. ~ 1\1 is less than f. 
Fix now snch an integer /11 , given E > 0. Next, we want to make the same 

iueqnality work for us, ont. we are impeded whenever Nk > /11. So Jet us change 
a: at. t hose places t.o irnmre quick arrival at. t.he Jim sup. 
Namely, define 

:i:~. if Nk _ M 

. -! (k - 0) .l,k . -

1 if Nk > M. 

Then clearly xz. 2: :i:k for each k, so that if we set. 

* . { :i;r. + · · · :i:A:+11 - 1 _ } 
Nk := nun n 2: 1 : 

11 
2: a - E 

(same ii), t hen Ni, ~ Nk, aml moreover if k is such that 

Nk > M , 

then we have 

Ni, = 1, 

s ince set.ting :er. = 1 insures immediate arrival above ii. - E < 1. 
Now we are almost. ready. As above , breaking :i;* up into pieces yields for 

n > M / 1:. 

:i::i + x i + ... + :1:;, _1 2: (n - M ) (a - 1:), 

but now we cannot conclude anything about. the sequence :1; because we have 

replaced it by x*. 
Instead, we now need to use our mass distribution to calculate the average 

value of each side of the inequality over all sequences x , called by probability 

theory the expectat.ion and denoted by JE( · ). Let 

lE (xo) = : p 

and 

lE (:i::i) = : ]>* ; 
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by stationarity, IE (x;) = p* for all k, and by the choice of M , we have 

p* ::; p + €. 

Of course, p is just the proba bility that Xk = 1, and p* the probability that 

xj. = 1, for any k. Now, taking expectat ions of each side of the inequality 

results in 

n(p + €) :=:: np* :=:: (n - M )(IE (ii} - €) (n ::::: M /€) . 

Now divide by n, send n to infinity and then € to zero, giving 

( ) (
. xu + . .. +x,, _1) 

IE il = IE Inn sup S p. 
u --oo n 

Finally, apply t he ent ire argument above to t he "mirrored" 0 - I - sequence 

Yk = 1 - :i;k; an easy calculation (exercise!) shows that 

IE(I .. f xo+ .. . +x,, _1) > 
1111 Ill - p. 
11 -ex> II 

But for any sequence :i:, certainl~' 

. . xo+ .. . + :i:,. _ 1 . xu+ .. . +:i:n- 1 
11111 mf S hm sup -------

11 -00 n ,,_= n 

it is an elementary fact of expectations or averaging that the three inequalities 

then must be equalities, the la.'it one almost surely. Hence lim sup = lim inf 

for a set of sequences of total mass one, i.e. the limit exists almost everywhere. 

This concludes the proof of the basic law of large numbers. 

In concluding, we state without proof that this method can be widely ex

tended wit h minor, straight-forward modifications to the most general laws 

of large numbers based on stationarity. The above proof should, however, in 

my opinion be included in basic probability courses, since it so clearly shows 

the natnre of t he interplay of stat ionarity assumptions and the existence of 

statistical limits. 
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Het Europese ESPRIT Programma: 

Een Persoonlijk Perspectief 

P. Klint 

Opgedragen aan Cor Baayen voor zijn b·ijdmge aan de Europese samenwerking 

op het gebied van Wisk·unde en Informatica. 

1 I NLEIDING 

Historie. Het European Strateg·ic Progmmmc for Research and Development 

in Infonnation Technologies, kortweg ESPRIT, is in 1983 gestart metals oorspron

kelijk doel om de Europese IT industrie van de vereiste hasistedmologie te 

voorzien die nodig zou zijn 0111 de jaren negeutig te overleven, om Enropese 

sameuwerking te bevor<leren, en om bij te <lragen aan de ontwikkeling van 

internationaal geaccepteerde standaards. 
De doelstellingen van het ESPIUT µrogramma zijn geleidelijk verschoveu. In 

de eerste fase (1983-1986) stond het creeren van samenwerking op Europese 

schaal t ussen on<lerzoekscentra en bedrijveu centraal. In de tweede fase (1986-

1990), lag het accent meer op precompetitief ouderzoek, d.w.z. gemeenschappe

lijke ouderzoeksinspanningen die pas na het ESPRIT project door de cleelnemers 

in producten omgezet moesteu wordeu. In de hnidige derde en laatste fase ligt 

de nadruk vooral op het ontwikkelen van producteu die aan het eiwle van een 

project marktrijp zijn. Voor on<ierzoek is in deze fase nauwelijks plaats meer. 

Naast dit zogenaamde hoofdprngmmma van ESPRIT, bestaat er sinds enkele 

jaren een Basic Research Action (BRA) waarin op kleine schaal fundamenteel 

011derzoek gesubsidieerd wordt. Ik beperk me in dit artikel verder tot het 

hoofdprogramma van ESPRIT. 

Eigen ESPRIT achtegrond. Ikzelf ben direkt betrokken geweest bij drie ESPRIT 

projecteu. lndirekt heh ik de voortgang van diverse andere ESPRIT projecten 

knnnen meeheleven doordat mijn collega's daaraan deelnamen. Daarnaa.st ben 

ik incidenteel als beoordelaar van projecten opgetreden. Al met al voldoeude 

voor een persoonlijk perspectief, maar duidelijk ouvoldoende voor eeu objec

tieve beoordeling van het ESPRIT programma a.ls geheel. 

2 VAN VOORSTEL TOT PROJECT 

Call for Proposals. In het ESPRIT programma is een aautal keren eeu "call 

for proposals" uitgeschreveu waarin Europese bedrijven, universiteiten en on

derzoeksinstit uten uitgenodigd werdeu om projectvoorstelleu in te dieueu op 

van te voren, ruim omschreveu , gehieden. 
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Hierop wer<l door de <loelgroep gereageerd <loor ou<le cont.act.en t.e hernieuwen 
of door nieuwe contacten t.e leggen 0111 zo te komen tot een consortium van 
aanvragers die tezamen een voorst.el hij de EG in<lienen. De samenstelling 
van een consortium wordt. deels <loor inhoudelijke en <leels door opportuni
sche overwegingen bepaald. Het. ligt natuurlijk voor de hand 0111 inhoudelijk 
gelnteresseerde partijen hij elkaar te brengen. Daarnaast spelen fact.oren als 
deelname van een van de grote twaalf IT indust.rieen, het land van herkomst. 
(bij voorkeur Zuid-Europa of Ierland ), of aanzien van een partij hinnen ESPRIT 
een grote rol. Bovendien stelt. de EG zelf voorwaar<len aan de samenstelling, 
o.a. qua verdeling over Europese landen, verhoudiug bedrijven/ universiteiteu 
en dergelijke. 

De motivatie. Waarom cloen partners mee? Deze vraag is in zijn algemeenheid 
natuurlijk moeilijk te beantwoordeu, maar er zijn toch we! een aantal veelvoor
komende mot ieven t e noemen. Allereerst , om een gemeenschappelijk doel t.e 
realiseren. Deze situatie cloet zich, hij voorbeeld, voor als partijen met verge
lijkbare on<lerzoeksact.iviteiten bezig zijn en besluit.en deze hinnen een ESPRIT 
project gezam elijk, en waarschijnlijk iutensiever , t e buudelen. Ten t.weede, is 
het importeren van technologie een overweging 0111 samenwerking te zoeken 
met t.echnologisch voorliggende partners. Ten derde, en het spiegelbeeld van 
het. vorige punt, kan het. exporteren van technologie een drijfveer zijn voor eeu 
technologisch geavanceerdc partij om te proberen de zelf ontwikkelde techno
logie te propageren via partners die deze kunnen toepassen in !nm proclucten. 
Tenslotte kmmen de '/lcrhuur '/Ian rnenskracht ("body shopping" ) en publiciteit 
drijfveren zijn om aan een ESPRIT voorstel cleel te nemen. In de eerste ja
ren van ESPRIT werd er overigens in academische kring nogal neergekeken op 
deelname aan ESPRIT project.en , maar met. het schaarser worden van de (uni
versitaire) onderzoeksrniddelen hoort men tegenwoordig nauwelijks meer iet.s 
van deze skepsis. 

Het voorstel. Een typisch voorstel is ruwweg hon<lerdvijft.ig pagina's dik en 
hest.aat uit drie <lelen. Deel I (±30 pagina's) bevat. admiuistratieve en finan
ciele informatie. Deel II (meestal de "Technical Annexe" genoem<l, ± 90 pa
gina's) beschrijft de technisch/ inhoudelijke doelstellingen van het project. en 
geeft een zeer gedetailleercl plan (inclusief staaf- en PERT-diagrammen) hoe 
deze doelstellingen bereikt zullen worden. Essentieel onder<leel is een lijst. van 
t ussenresult,aten ("deliverables") en de tijdstippen waarnp deze gepro<lnceerd 
znllen worden. Deel III (±30 pagina's) bevat inforrnatie over <le deelnemende 
partijen, toe t,e passen management- en marketingtechnieken, en de CV's van 
de staf <lie het project zal gaan uitvoeren. De omvang van project.en varieert. 
van enkele t ientallen mensjaren tot vele hondcrden. 

De selcctie. De drie on<lenlelen van een voorst.el wor<leu apart beoordeeld. 
Delen I en III door de EG zelf, cleel II door externe desknndigen die per aan-
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vraagroude, ad hoe, door de EG ingehuurd zijn. Zij moeten in korte tijd ( ouge
veer een week) vele tientallen voorstellen beoordelen. Nadat aanvragen iu deze 
eerste ronde op administratieve en technisch/ inhoudelijke kwaliteiten beoor
deeld zijn, volgt een meer politieke beoordelingsronde waarin factoren zoals 
het aantal projecten per thema, en de verdeling van subsidies over de verschil
lende landen, een rol spelen. In deze roude kunnen ook al onderhandelingen 
met de aanvragers beginnen over bet toevoegen van partners, reduceren van 
budgetten , of bet combineren van verschillende aanvragen over vergelijkbare 
onderwerpen. 

Het goedgekeurde project. Als een project eeumaal goedgekeurd is word t het 
voor 50% door de EG gefinaucieer<l en begiut het, volgem; plan, ziju werk. Het 
is standaard da t elke zes tot twaalf maanden de voortgaug van het project 
bekeken wordt op eeu "review" hijeenkomst. In eeu sessie van een tot twee 
<lagen warden de geproduceerde deliverables mondeling toegelicht en besproken 
met een aantal externe <leskundigen ("reviewers" ) en de EG official die voor 
bet project verantwoordel ijk is. 

3 POSITIEVE ASP ECT EN VAN ESPRIT 

Hoewel bet E S PRIT programma 11og niet geleid beeft tot een aantoonhare ver
sterking van de marktpositie van <le Europese IT indnstrie, zijn er toch een 
aautal, minder tastbare, posit ieve effecten te noemeu. 

De samenwerking. Er is duidelijk eeu Europese iufrastructnur en samenwer
kiugscultuur voor IT onderzoek ontstaan. Waar eerst cultuurverschillen en 
vooroordelen bepalend waren (de "groudige" Duitsers versus de "nonchalante" 
Fransen) is la11gzaam maar zeker een wederzijdse appreciatie op basis van 
prestaties gegroeicl . Het kan niet genoeg benadrukt worden hoe belangrijk 
bet is <lat vooral jonge medewerkers in dit soort projecten leren inzien dat uiet 
de cul tuurgebondeu werkwijzc en werklw ·uding van buitenlan<lse partners van 
belaug is, maar dat men vooral op elkaars feitelijke prestaties moet letten. Ook 
de samenwerkiug tussen hedrijven en universiteiten is door E SPRIT duidelijk 
bevorderd. 

Andere positieve effecteu op de deelnemers zijn eeu toegenomen inzicht en 
bewustzijn van technologische ontwikkelingen die op Europese schaal plaatsvin
den en een verbre<ling van de horizon tot buiten grenzen van de eigen discipline. 

Tenslotte mag niet onvermeld blijven dat voor de meeste onderzoekers ESPRIT 

projecten eenvoudigweg de grootste samenwerkingsverbanden zijn waaraan zij 
ooit deelgenomen hebben en de ervaring <lie daarbij opgedaan is (zowel inhou
delijk als qua management, planning, connnunicat ie, en interne poli t iek van 
een project) lijkt me van grote waarde voor de toekomst. 

Het plannen van onderzoek. Het was voor veel onderzoekers een nieuwe er
varing om gedetailleerde meerjarenplannen te maken voor onderzoeksprojecten 
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en om regelmat.ig, uit.voerig, over de voort.gang daarvan t.e moeten rapporteren. 

Hoewel er vele negatieve kanten aan cleze gedetailleerde plannen zitten, zoals ik 

hieronder zal t.oelichten, denk ik toch dat onderzoekers geleerd hebben op welke 

punten planning voor hun onderzoek nut.t.ig is, dat. het regelmat.ig procluceren 

van resultaten essentieel is, en dat zij zid1 meer bewust. gewonlen zijn van de 

noo<lzaak (en de moeilijkheid) om de relevantie en de voort.gang van het. eigen 

onderzoek t.e verdedigen. 

4 NEGATIEVE ASPECTEN VAN ESPRIT 

De 8electiepror:edure. De call for proposals en de daarop volgende select.iepro

ce<lure hehben een aantal negatieve kanten. Allcreerst is Iwt opstellen van een 

voorstel zeer arheidsint.ensief. Een invest.ering in rle ordc van grootte van een 

mensjaar lijkt me nonnaal. Ik denk dat. vooral de zeer gedet.aillcerde planning 

(en al zijn financiele en organisatorische consequent.ies) daaraan dehet. is. Teu 

t.weede, hevorclert. de hierboveu beschreven select.ieprocedure projectaanvragen 

met. steeds ambit.ieuzere doelst.ellingen. Als een aanvraag geen nienw-ogend 

idee ( "vonk") hevat., is de kaus op afwijzing groot. Hierdoor maken solirle, 

meer op graduele verhetering dan op revolutionaire vinrlingen gericht.e aanvra

gen nauwelijks kans. De vlucht naar voren in steeds spectaculairder aanvrageu 

is zo onvermij<lelijk maar mijns inziens voor de feit.elijke technische vooruit.gang 

ongewenst. 

Het. 71lan. Het. is een bekend verschijnsel dat pla1111ennmkers 111111 plannen met 

de realit.eit. verwarren. Een goed plan kan de realiteit. nat.uurlijk in st.erke mate 

be"iuvloeden, maar vaak hlijkt. rle realiteit. t.e weerharst.ig en zullen plannen 

bijgestekl moeten worden. ledereen weet ook dat het gedetailleerd voorspellen 

vau complexe, technische, ontwikkelingen op een tennijn van drie a vier jaar 

onmogelijk is. Toch werken ESPRIT project.en met. zeer gerlet.ailleerrle plannen 

met. een dergelijke tijdschaal. Vaak gebruikt men planningen die er eerder op 

gericht lijken 0111 de amhitienze doelstellingen van em1 project. te adst.rneren, clan 

om de doelstelli11ge11 van het project. te realiseren. Anders gezegd, de plannen 

bevatt.en vaak wenselijkheden in plaats van realist.ische, effoctieve, stappen om 

een gegeven cloel t.e bereiken. 
De situatie is nat.uurlijk paradoxaal. Gezien vannit rle EG client het. ver

lenen van subsidies zo zorgvnldig mogelijk t.e geheuren. Omdat. de project.en 

inhoudelijk vaak zeer moeilijk door EG officials t e beoordelen zijn ( ook na het. 

inwinnen van advies van externe cleskundigen) is het. vast.leggen en t.oet.sen van 

een zeer gedetailleerd plan de enige mogelijkheid tot controle. Gezien vannit 

de aanvragers wordt, om opportunistische redenen, de fictie inst.and gehouden 

dat. een rlergelijke planning mogelijk is. Tot overmaat van ramp is het bijstellen 

van deze gedetailleerde plannen een kostbare zaak. 

De samenwerking. Samenwerken valt niet mee, zeker niet als de part ijen waar

mee moet worden samengewerkt. een anclere culturele, technische of vakma-
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tige achtergrond hebben, en daarhij vaak ook nog verschillende doelstellingen 

nastreven. 
Ook juridisch schept samenwerking problemen. Immers, wie mag wat doen 

met de in het project hehaalde resultaten? Hoe zit het met het eigendom van 

eigen prodm:ten die t ijdens een ESPRIT project (misschien we! door anderen) 

verbeterd zijn? Wat te denken van verbeteringen en eigen ontwikkelingen die 

na afloop van het ESPRIT project op de gemeeuschappelijke resultaten zijn 

aaugehracht'? Wat te <loen als resultaten voor een dee! hinnen verschillende 

projecten hehaald zijn '? De amateur waagt zich natuurlijk al helemaal niet aan 

deze vragen maar ook professiouele juristen komen er Jang niet altijd uit . 

De resultaten. De resultaten van ESPRIT projecteu zijn vaak indrukwekkend 

en divers: producten, prototypes, wetenschappelijke puhlicaties, hoeken, en 

confereuties. Een vau de minder positieve resultaten is de verdere groei van 

het grijzc publimtiecircuit. Hiermee bedoel ik cle altijcl dikke en smus iute

ressante "deliverables" die geproduceerd worden . Deze verdwijneu steevast in 

de Brusselse archieven, er wordt soms door de auteurs zelf uog we! eern; naar 

gerefereerd, maar ze dringeu niet door tot bet uormale wetenschappelijke puhli

catiecircuit en ziju daardoor cffectief onvindbaar. Dit "schrijven voor ESPRIT" 

is verspilling van euergie. 

5 L ESSEN 

De samenwerking. Essentieel voor een goede samenwerking zijn: 

• Gemeenschappelijk hegrip van de doelstellingen van het project. 

• Erkenning van de (mogelijk co11Hicterende) doelstellingeu en belaugen van 

de partners. 

• Gemeenschappelijke (maar ook complementaire) keunis en vocabulair om 

de doelstellingen te benaclereu. 

• Uitwisseling van door de partners gebruikte methoden en techuieken, en 

meer in het algemeen, keunistrausfer tusseu de partners. 

• Selectie van methoden en tecltuieken die in het project gebruikt zulleu 

wordeu. 

• Taakverdeling. 

Hoewel deze punten voor zichzelf sprekeu, is voor elk ervan eeu voorbeeld te 

geven van eeu ESPRIT project dat op dat specifieke punt gefaald heeft. 

Een the01ie. Op groud van het voorafgaande, kom ik tot. eeu theorie over 

ESPRIT projecten. Er zijn allerlei aspecten te onderscheiden die men in elk 

project iu meerdere of mindere mate aautreft, b.v.: 
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• Wa.<> de doelstelling al voor de aanvang van het project gegeven, of is deze 
pas hij de opzet van het. project geformuleerd? 

• Is de doelstelling precies geformuleer<l? 

• Is de doelst.elling realist.isch? 

• Hebben <le partners een gemeenschappelijk visie op de manier waarop het 
doe! gerealiseerd moet worden? 

• Werkten de partners voor het. project. al met elkaar samen? 

• Hoe groot. is de wens om subsidie t.e ont.vangen? 

Verdeel ESPRIT project.en nu in twee categorieen. In ide<~-georicnteerdc pro
ject.en werken partijen samen die ook al v66r dat project met. elkaar samenwerk
t.en, die alien de doelst.ellingen van het. project. onderschrijven, en die hovendien 
een gemeenschappelijke ideologie bezit.t.en over de vraag hoe deze doelstellin
gen gerealiseerd moeten worden. Het EsPHIT project is, kortom, een goede 
gelegenheid om een al bestaaude gemeenschappelijke doelstelling te realiseren. 

In subsidie-georicntecrdc project.en wordt de deelname van partners vooral 
iugegeven door <le wens om subsidie te verwerven middels een ESPRIT project.. 
Daartoe wordt samen met nieuwe partners, een nieuwe doelstelling geformu
leerd. 

Mijn stelling luidt nu simpelweg: 

idec-georientcerde proj cd cn slagen, 
suhsidic-georienteerde pro.fccten falen . 

Ik nodig de lezer uit om deze theorie te toet.sen aan de eigen ervaringen binnen 
ESPRIT project.en. 

De a11dere lessen. Er zijn nog enkele andere lessen te leren. Allereerst. , is het. 
helangrijk om in t.e zien dat samenwerking vele vormen kan hebben die soms 
afwijken van wat men daar gewoonlijk onder verstaat. Ik uoem: 

• Gehruik van elkaars ideeen: de ideeen van andere partners werken als 
inspirat iebron en stimuleren eigen ontwikkelingen. 

• Gebruik van elkaars tools: door import van technologie kan men eigen 
ontwikkelingen versnellen. 

Ten tweede, ik verval in herhalingen, dient "schrijven voor ESPRIT" zoveel 
mogelijk vcrmeden te worden. 

Ten derde, zijn kleine consortia t.e prefereren want hoe kleiner de comhina
toriek, hoe eenvoudiger het is om consensus t.e bereiken. 

Ten slotte, is het van belang <lat elke partner datgene aan een project. bij
draagt waarin hij goed is. Dit bet.ekent dat onderzoekers dicht bij hun gebied 
van expertise moeten blijven (in plaats van modienze thema's na te jagen) en 
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dat bij de taakverdeling tussen onderzoekers en bedrijven ook goe<l op ieders 

sterke en zwakke kanten gelet wordt. Het is, bij voorbeeld, een slecht idee om 

een academicus in te schakelen als productieprogrammeur. Kortom, schoen

maker blijf zoveel mogelijk bij je leest. 

G TOT BESLUIT 

Laat bet duidelijk ziju: ik heh veel aan bet ESPRIT programma te dankeu. 

Zowel qua ervaring en inhoudelijke samenwerking maar ook, uiteraard, qua fi

nanciering van mijn eigen onderzoek. Zonder ESPRIT had ik samen met mijn 

mede-onderzoekers niet de onderzoeksresultaten kunnen realiseren <lie nu in in

ternatiouaa I vooraanstaande tijdschriften gepubliceerd zijn maar ook laugzaarn 

maar zeker lnm weg vinden naar bet bedrijfsleven. 
De vaak kritische opmerkingen in dit artikel clienen clan ook twee positieve 

doelen: 

• Ancleren wijzen op cle mogelijke risico's die deelname aan bet ESPRIT 

program ma (of aan vergelijkbare andere Europese programma's) met zich 

mee kan brengen. Om risico's te kunnen vermijden moet men ze immers 

eerst kennen. 

• Dienen als inspiratiel,ron voor het opzetten van betere vonnen van (inter

nationale) samenwerking voor industrie-gericht, Htrntegisch onclerzoek. 

Dit tweede punt verdient nog enige toelichting. Deelname aan ESPRIT leert mij 

dat samenwerking geba:;eerd moet zijn op projecten met 

• Een klein aantal partners (2- 4). 

• Partners die al bewezen hebhen samen te kunnen werken. (Vrnag: hoe 

komt de eerste samenwerking tot stand? Antwoord: het is beter dat 

cleelnemers het samenwerken op eigen kosten leren in plaats van op kosten 

van de gemeenscbap. Deze eis vormt dus een indirecte stimulans tot 

:;amemverking.) 

• Een doelstelling die innovatief is, doch geen :;cience fiction. (Vraag: 

wordt het hierdoor niet onmogelijk mn revolutionaire vernieuwiugen te 

h<~reiken? Antwoord: Nee, revolutionaire veruieuwingen zijn meestal het 

resultaat van fun<lamenteel onderzoek dat ook als zodanig gefinancier<l 

uwet wonlen. Fundamenteel onderzoek is immers een noodzakelijke voor

waarde voor strategisch onderzoek. Strategische samenwerkingsprojecten 

met zeer ambitieuze doelstellingen zijn gevaarlijk maar niet omnogelijk. 

De risico's moeten voornf alleen beter geanalyseenl worden.) 

• Een globale planning en strenge toet:;ing van de re:mltaten achteraf. 
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Mel, dank aau .1 . Heering en H.R.. ¥/alters voor lmn commentaar op dit, ar t ikel. 

Deze tekst is eerder gepubliceerd in Informa f.ie Nr.4, April 1994 en is met 

toest.emming van de ni tgever (Kluwer Be<lrijfi;wete11schappe11 ) in deze humlel 

opgenomen. 
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Special Functions Associated with Root Systems: 

Recent Progress 

Tom H. Koornwinder 

University of Amsterdam, Department of Mathematics, 

Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands 

e-mail: thk©fwi, uva. nl 

1. Introduction 

It is a pleasure for me to contribute to this farewell bundle for Cor Baayeu. 

During his long period of involvement with the Mathematical Centre he has 

demonstrated from the beginning a wide interest in all kinds of pure math

ematics, see his publications and colloquium contributions ou many different 

topics during the sixties. During his years as a head of the Department. of 

Pure Mathematics (ZW) he will have been aware that some pure math was 

being done within the MC but out.side his department. Iu the late seventies I 

joined his department, but quite soon Cor was then called for a higher post: 

director of the whole institute. Next the departments of Pure and of Applied 

Mathematics joined into the new Department of Analysis, Algebra and Ge

ometry, headed by Michie! Hazewinkel. In his new position, Cor had to deal 

with a much bigger world than just pure math. It included all kinds of applied 

math and a very large amount of computer science. Forced by national science 

policy and by financial constraints he had to take some unfavorahle decisions 

concerning t he heritage of his old ZW department. Fortunately, 011 a com1-

trywide scale, he could give pure (or theoretical) mathematics some important 

financial injections via the foundation SMC (mathematics research money fl ow 

to t he universities), of which he was automatically also a director. In my opin

ion Cor was a good science manager, showing a real interest iu t he research 

being done iu his institute and in the people performing this research. 

Iu t his paper I present a brief survey of the active area of Special Functions 

associated with Root Systems. The article is intended for a general mathemat

ical audience. It will not suppose prerequisites ou eit her special functions or 

root systems. I t will also skip many technical details. Some early developments 

in this area took place at t he Mathematical Centre during the sevent ies ( [17], 

[32]), and some recent developments ([30], [18]) as well. During the last ten 

years important break-throughs were made by Heckman am! Opdam (Leideu; 

Heckman later in Nijmegen) [11], [27], [28], [12]. Abroad, I. G. Macdonald [23], 
[24], C. F . Dunk! [8] and I. Cherednik [3], [4], [5] greatly contributed to the sub

ject. A special period at the St ieltjes Insti tute (physically at the Universities of 

Leiden and Amsterdam) was devoted to this subject in the spring of 1994. The 

subject is also au important theme within the four-year country-wide project 

"Lie Theory and Special Functions", which just started and which is sponsored 

by SMC. 
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A lot. oft.he motivat ion for the subject. of t his paper comes from analysis on 
semi::;imple Lie groups. Spherical fu nctions on R.iemannian symmetric spaces of 
the compact. or non-compact. t.ype can he writ.ten as special functions depending 
on parameters which assume only special <li::;crete values. In t.he one-variable 
ca.ses these special functions a.re da.ssical, also for para.meter values wit.bout. 
group theoretic interpret.at.ion, but. in the more-variable cases they were new. 
In the case of group theoretic interpret.at.ion, many properties of these special 
functions, as well as associated harmonic analysis, immediately follow by group 
t.heoretic arguments. The c;u;e of more general para.meter values yields t.he 
special functions associated with root. systems. Properties derived in t.he group 
case can still be formulated in the general ca.<ie, hut. now a.<i conjectures rat.her 
titan theorems. This paper describes some of the progress which has been made 
in proving t.he::;e conjectures. For convenience, I will restrict. to the polynomial 
(compact.) case, with Bessel functions as a sole except.ion. (For an introduction 
t.o the non-polynomial ca.<ie see [29], [13).) Neither will I discuss t.he recent. work 
on commut ing operators with ellipt ic functions a.'i coefficients. An import.ant. 
aspect of t he whole theory, which will not. be discussed very much in t.his 
paper, is the connect.ion with completely integrable systems, for instance the 
generalized Calogero-Moser system. 

Special functions associated with root. systems have also been developed 
in the q-case, where q is a deformation parameter giving back the earlier cases 
when q = 1. Motivation and development of the theory in the q-case has been 
quite different from the q = 1 ca.<ie. Except. for the case of Hall polynomials 
[22], theory wa.<i developed [23], [24), [18) without. interpretation in group theory. 
But afterwards quantum groups looked very promising as a natural setting for 
these polynomials. This had turned out to he true in the one-variable case 
[19], and very recently some interpretations of more-variable cases on quantum 
groups were found [25), [10). 

In any ca.-;e, a quantum group interpret.ation for generic values of the pa
ra.meters cannot he expected. But, by Cherednik's work [3), [4), [5) we know 
already another algebraic setting for special functions associated with root. sys
t.ems: affine and graded Hecke algebras [20]. As shown by work of Opdam [W], 
this new algebraic context. also allows harmonic analysis. 

2. The one-variable case 

In this sect.ion I will int.roduce t.hree cla.<isical families of special functions, each 
depending on a real parameter k 2: 0, and such that the ca.<ies k = 0 and 
k = 1 are elementary. The three families are connected with each other by 
limit transitions. Later, for each of the families I will discuss generalizations 
which are associated with root. systems. 

2.1. Bessel functions. Consider Bessel functions in a non-standard nota
tion: 

<Xl ( _ !x2)j 
..'h(x) := L ( 4

1 ) . (x E IR). 
. k+ ;-,1· 1! 

J = O - • 

(2. 1) 
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Here we use the notation for shifted factorial: 

(a )j := a (a + 1) ... (a + j - 1) (j = 1, 2, ... ); (a)o := 1. 

The function J k is related to the Bessel function J0 in standard notation [9, 
Ch. VII] by 

Note that 
J k(x) = .:Tk( - x ), .:Tk(O) = 1. (2.2) 

The cases k = 0 and k = 1 yield elementary functions: 

.:To (x) = cos :r:, --r ( ) sin x 
o..11 x = -- . 

x 
(2.3) 

The function :r; i-+ .:Tk( ,\:r;) ( ,\ E IR) is eigenfunction of a differential operator: 

( 
d

2 
2k d) 

- 2 + - -1 J k( ,\ x) = - ,\2 .:Jk( ,\:r: ). 
dx :r; ( X 

It is the uuique C 00 solution of th is different ial equat ion under conditions (2.2). 

2.2. Ultraspherical polynomials. Consider ultraspl1erical or Gegenbauer 
polynomials [9, §10.9], i.e. polynomials c~ of degree n Oil IR such that 

11T C~ (cos x) C~,(cosx) (siu x) 2k dx = 0 (n, m E Z+ , n =/= m ). 
ll 

Then the C~ are determined up to a constant factor (in general, we will not 
use the standard normalization for Gegenbauer polynomials) . For k = 0, 1 we 
have: 

C~(cosx) = const. cos(nx), 
sin((n + l )x ) 

C 1 (cos x ) = const. . 
n sh1 x 

(2.4) 

The function x i-+ C~ (cos :r:) is eigenfunction of a different ial operator: 

( 
d2 d) 

dx 2 + 2k cot :r; d:c C~(cosx) = - n(n + 2k) C~(cosx) . 

For ( n N) being a sequence of positive integers such that n N / N _... ,\ for some 
,\ ~ 0 as N _... oo, we have the limit result 

. C~N ( cos(x j N)) 
11111 Ck ( ) = .:Tk( ,\x) . 
n~oo llN 1 

2.3. q-Ultraspherical polynomials. Let 0 < q < 1 and define for any 
complex a: 

00 

(a ; q )oo := IT (1 - aqi ). 
j = O 
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The infinite product converges because of the condition 011 '1 · We will con

sicler q- 11/trnspheric;i] polynom ials [1] in a non-standard notation. These are 

polynomials c~·, " of degree n 011 R such that 

!. ,.. I ( '> i T ) 12 k ·'I , ., . A:.q , ,. e- . ; 'l oo , • _ 
C11 (co:;.1,) C,,, (cos.1.) ( A· 2 .. . ) d.1. - 0 

• fl q (' /.I.; q 00 
(n. m E Z+ . n ~ m) . 

Then the c~·· 'I are cletermi11ed II)> to a constant factor. If we put, 

then P,, is eigenfunction of a q-differew:e operator: 

1 - r/ e'2 i:r p ( ,!, i:r) 1 - qA·e-
2

i .r: p ( - ,!, ,i :r:) _ ( - ,!,11 ,!,11+k) p ( , i:r) 

1 2 · . 11 q - <' + '> · . 11 11 - L - <J - + <j - 11 C • 
- e 1:.1 1 - e- -1.1. 

Note that the P11 on the left hand side have arg11111e11ts off the unit circle, while 

orthogonality is on the unit circle. The cases /.: = 0 and /.: = 1 are elementary 

as in (2.4) (not depending 011 q): 

c::"1 (cos :1;) = const. cos( 11:1:) , G" "( ) ::;in ((n + 1):1:) 
11 • co:; :i: = const. . . 

Siil ;i; 

With suitable normalization there is the limit relation 

I. C'A· 'I ( ) C'A· ( ) 1111 11 . cos :i; = 11 cos :i; . 
<JI I 

The q-ultraspherical polynomials form a suhclm;s of the A skey- Wilso11 po/yno

rnfa/s [2]: a family of orthogonal polynomials depending, apart from q, on four 

non-trivial parameters. 

2.4. Dunkl operators in one variable. We will now generalize the ele

ment.ary formulas 

d ., ., 
- e'"·" = i>. e' ":r 
d:i: 

(2.5) 

(the firnt formula follow:; by (2.:~)). Dunk! [8] generalized the operator d/ d:i: to 

a mixture of a differential and a reflection operator: 

( D (A·) J)(:r,) := J'(:r,) + k f( :1:) - f (-:i:) . 
:i; 

(2.6) 

Note that this D1111kl operator sends smooth functions t.o smooth functions. 

Let us define a generalized expone11tial function in terms of Bessel functions 

(2.1 ) by 
i>.:1; 

£k( >. :1:) := .'.h(>.:1;) + -- Jk+1(>.:1:). 
21.: + 1 

3!)4 

(2. 7) 



Then it follows immediately from well-known differential recurrence formulas 

for Bessel functions that 

(2.8) 

Formulas (2. 7) and (2.8) generalize the formulas in (2.5 ). The function x I--' 

£k(.\x) is the unique C00 function which equals 1in0 aud which is eigenfunction 
with eigenvalue i.\ of D (k) . 

For (D(kl)2 we compute 

(D(k))2 J(x) = J" (x) + 2k J1 (x) _ k J(x) - .f (-x) . 
x x2 

Thus, ou even functions f the square of the Dunk! operator acts as the differ

ent ial operator (d/dx) 2 + 2kx - 1 d/ dx. In particular, its action on 

.Jd.\x) = ~(£k( .\x) + £k( - .\x)) 

yields 

3. Preliminaries about root systems 

3.1. Definition of root system. Let V be a d-dimensional real vector 

space with inner product ( . , . ) . For Cl' E V\ { 0} let s., denote the orthogonal 

reflection with respect to the hyperplane orthogonal ton (cf. Fig. 1): 

2((3, Cl') 
s ,,((3) := (3 - -( - ) n ((3 E V) . 

n,CI' 

A root system in V (see [15]) is a finite subset R of V\{O} which spans V and 
which satisfies for all a , f3 E R the two properties that 

((3) R d 
2((3, a) '71 

s .., E , an - - E /£..;. 

(n, o:) 

Clearly, if o: E R then - o: = s,, (a) E R. For convenience, we will restrict 

ourselves to the case of a reduced root system, i.e. , a root system R such that, 

if a , (3 E Rand a = cf3 for some c E JR, then c = ± 1. The so-called irreducible 
root systems can be classified as four infinite families A,., B 11 , C,., D ,, of classical 

root systems and five exceptional root systems G2 , F4 , E6 , E;, E 8 . Here the 

subscript denotes the rank of the root system, i.e. the dimension of V. There 

is oue infinite family of non-reduced irreducible root systems: of type B C,. . 

s._. (!3) /3 

~ I 

Fig. 1. Reflection Sa 

- 2 
< • 

2 
') 

Fig. 2. Root system A1 
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An example for d = 1 is the set R := { ±2} C lR (root system of type 
Ai, cf. F ig. 2). An example fo r d = 2 is t.lw set R. = R+ U (-R+), where 
R+ := {(1, - 1), (2,0),(1 , 1) , (0, 2)} c JR.2 (root system of t.ype C2 , cf. Fig. 3). 
In general, when we have a root system R in V then we can write it as a disjoint. 

union R. = R+ U ( - R+), where R+ and - R+ are separated from each other by 
a hyperplane in V through the origin. The choice for R+ is not unique. The 
elements of R. are called roots and the elements of R+ are called positim rants. 

Let G L (\! ) be the group of invertible linear transformations of V. The 
Wey! group 1'1' of the root syst.em R. is the subgroup of GL(V) which is gener
ated by t he reflections 8n (n E R). The group W is finite and it. acts on R. It 
permutes the possible choices of R+ in a simply transitive way. 

3.2. Dunkl operators associated with R. Let R be a root syst.em in 
V. Let /.:: n f-!- !.:": R. --> [O, oo) be a function which is l·V-invariant, i.e., which 
satisfies l.: 111 " = k,, for all w E lV and all o E R.. If R. is an irreducible 
(reduced) root. system then the Wey! group is transitive on all roots of equal 
length aud there are a.t most two different. root lengths. Tims kn then assumes 
at most. two different. values. See the above examples: one root leugth in A1 

and two root. lengths in C2 . The function !.: is called a m11Jtip/icity Eu11ctio11. 
The reason for this name is that root systems naturally arise in the structure 
theory of real semisimple Lie algebras, where roots have an interpretation as 
joiut. eigenvalues of certain operators and the!.:,, then are (integer) mult.iplicities 
of such eigenvalues. 

For ~ E V we will denote by Of. the corresponcliug directional derivative. 
T he D1111kl operators [8], [rn] associated with the root system R. and the nmlt.i

plicity function !.: are defined a.<; the operators D~k l : C 00 (V) _, C00 (V) (~ E V ) 
given by 

This definition is easi ly seen to be iudependent of the choice of R+. In case of 
root system A 1 formula (3.1) reduces for ~ := 1 to formula (2 .fi). Note t.hat. the 
operator (3.1 ) consists of a t.erm involving a first order derivative and terms 
involving reflection operators, just. as we have seen in (2.6) . It. is an amazing 
fact., which can he proved in a rat.her straight.forward way, that. the operators 

D~k ) commnt.e: 

[D (k) n <kl] = 0 (' E V) f. ' 1/ <.,' T/ • 

Let. IIJl(kl he the algebra generated by the operators v tl. This is a commutative 

algebra. It. can he shown t.hat. each W-invariant operator D in IIJl(kl, when 
restricted in it.s act.ion t.o the H1 -invariant C 00 functions on V, coincides with a 
partial differential operator (so its reflect.ion terms vanish when acting on a W
invariant function). The joint W-invariant eigenfunctions of the lV-invariant 
operators in IIJl(kl are called Bessel function s aBsociated with R. In the example 
A 1 things reduce to the one-variable consiclerations of §2.1 and §2.4. More 
generally, one may study the joint eigenfunctions of the fnll algebra IIJl(k) aud one 
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may try to do harmonic analysis for these eigenfunctions. A lot of satisfactory 
results have been obtained, see (rn] and the references given there. 

3.3. Weight lattice asscociated with R. We still assume a root system 
R in V. The weiglit lattice P of R is defined (15] by 

P := {>. E VI 
2
((>.,a)) E Z for all a E R}. 
a,a 

The subset P+ of dominant weights is then given by 

P+ := {>. E P I 
2
((>., a)) :'.'.'. 0 for all a E R+ }· 
a,a 

It is easily seen that w(P) = P for w E W, so the Weyl group acts on P. 
Moreover, it can be shown that each Weyl group orbit in P has a one-point 
intersection with P +: 

\:/>. E P Card(W>. n P +) = 1. 

Thus the dominant weights can be used as a set of representatives for the 
W-orbits in P. 

Fig. 4. Root system C2 with dominant weights and the set {µ E P + I JL -< >.} 

We introduce a partial ordering on P which is induced by the root system: 
for >., µ E P we say that µ -< >. if>. - µ = LnER+ Tnnlt for certain nonnegative 
integers m 0 • For root system C2 the concepts of this subsection are illustrated 
in Fig. 4. 

3.4. Trigonometric polynomials associated with R. Let P be the 
weight lattice of a root system R in V. For >. E P define the function e.x 
on V by 

e.x(:z;) := ei(.X,x) (x E V). 

Note that e.x e'' = e.x+1• . Thus the space 

A:= Span{e.x I>. E P} 
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is an algebra: t.he algebra of trigo110111etri<' f111u;tio11s 011 V (wit.h respect t.o R ). 
For a function f on \! writ.e (wf) (:1:) .- f (w- 1:r:) (w E W , :i: E V ). The11 
we,\ = e"',\ (w E H' , ,\ E P ). Put 

in,\:= L e1' (,\ E P+). 
/I E ll',\ 

Then the functions m ,\ are H' -iuvariant. am! t.hey form a basis oft.he space A II' 
of H1-invariaut. element.s in A . 

Let. t.he dual root fattice Q' he defined h:v 

Q· := {,\ E V I (,\,JI ) E Z for all 11. E P} . 

This lattice gives rise t.o a t.orns 

T := V/ (2rr(t). 

Let. :r; r--+ :i: be t.he nat.ural mapping of V ont.o T. Thell each fnnct.ion f in A 
act.ually lives Oil T: f( .i:) = J(:i;) for a suitable funct.ion f Oil T. 

In the example A 1 we have P = Z, P + = { 0 , 1, 2, ... } , t.he algebra A is 
spanned hy t.he funct.ions x r--+ ei"·" ( n E Z) aud the subalgehrn A 11' by the 
funct.ions 1 and .1; r--+ 2cos(1u;) (n = 1, 2, ... ) . The toms T equals JR/ (2rrZ ). 

4. Jacobi polynomials associated with R 

4.1. Definition of Jacobi polynomials for R. L1•t R lie a root. system 
in V ami let. /..:: R -+ [O, oo) be a Ml -invariant. multiplicity fim ct.ion as before. 
Define a weight. funct.ion lh on T by 

tid:1:) := IT 12 si11( (n , :i:) ) 1 2 ~"'. ( 4.1 ) 
n E R+ 

This definit.ion is independent oft.he choice of R+· Define an inner product. on 
the linear space A by 

(!, g) ~. := { J (:i:) g(:i:) tik(:i:) d:i: (!, .<J E A ). 
.lr 

(4 .2) 

Here dx denot.es Lebesgue measure on T , normalized such t.hat. t.he volume of 
T is equal to 1. 

The Jacobi polynomial PY) (cf. [11]) of "degree" ,\ E P+ and of "order" 
k is an element of Aw of t.he form 
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such that C>.,>. = 1 and 

(k) 
(P>. , mµ)k = 0 ifµ E P+ andµ~ .X. (4.3) 

Instead of (4.3) we can equivalently require that P?) satisfies the second 
order differential equation 

In the example A1 we obtain that P,~k)(x) = const. C,~(cosx), where C~ 
is the ultraspherical polynomial of §2.2. The case of the (non-reduced) root 
system BC1 would have given us, more generally, t he classical one-variable 
Jacobi polynomials. 

4.2. Three problems and their solutions. As soon as the above defini
tion of Jacobi polynomials associated with R is given, three highly nontrivial 
questions can naturally be posed: 

1. It follows immediately from the definition that the orthogonality 

(p (k) p (k)) - 0 
>. ' I' k -

(4.5) 

holds if µ ~ A or A ~ µ. What about ( 4.5) if A and 11 are not related in 
the partial ordering? 

2. Prove the existence of a commutative algebra of differential operators with 
d algebraically independent generators, such that the operators in this 
algebra have the Plk ) (.X E P+) as joint eigenfunctions. (Note that the 
operator in (4.4) can be taken as one of the generators.) 

3. Give an explicit expression for (Plk l, Plk))k, or rather for its two factors 

(p (k) p (k)> 
>. ' >. k 

(P.(I.· ) p,(k)> 
0 ' 0 k 

and (4.6) 

In the past few years all these questions have been answered in the positive 
sense. Let me give some indications. 

• If problem 2 can be solved then the answer to 1 follows readily, cf. [ll]. 
Indeed, we need sufficiently many differential operators having the Plk ) as 
eigenfunctions such that the joint eigenvalues, in their dependence 011 .X, 
separate the points of P+. 

• For certaiu special choices of k the functions PY ), reuormalized such that 

Plk )(O) = 1, have au interpretation as spherical functious on compact sym
metric spaces G / K , cf. [14]. (For instance, in case A 1 the ultraspherical 

polynomial c,t m - l can be interpreted as spherical function on the ( m - 1 )
dimensional sphere SO(rn)/SO(rn - 1).) Then problems 1, 2 and the first 
half of problem 3 can be solved hy using the group theoretic interpretation. 
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The orthogonality ( 4.5) for general >. , p. follows by Schur's orthogonality 
relations for matrix elements of irreducible unitary representations of G . 
The first expression in ( 4.Ci ) was explicitly computed by Vretare [:33] in 
terms of Harish-Chandra's c-funct.ion related to the spherical functions on 
the corresponding non-compact. symmetric space. The algebra of differen
tial operators in problem 2 can be obtained by taking the radial parts of 
the G-invariant. differential operators on G / I\ . 

• For the classical root systems quest.ion 2 could be answered in a positive 
way by giving explicit. expressions for generators of the algebra, see [17] 
for BC2 and A2 , and Olshanet.sky & Perelomov [26], Sekiguchi [31] and 
Debiard [6] for the higher rank cases. 

• Heckman and Opdam [11] have given positive answers to 2, and hence to 1, 
by use of deep transcendental arguments. This also solved part of Problem 
3 (the first expression in (4 .6)). In 1!)82 Macdonald [21] had already given 
conjectures for the explicit evaluation of the second expression in (4.G), 
which could be proved in a number of special cases. 

• Problem 3 for general >. was solved by Opdam [28] by using so-called shift 
operators [27]. The most simple example, for case A 1 , of such operators 
is the following pair of differential recurrence relations for Gegenhauer 
polynomials: 

d Ck( ) c·k+t( ) -
11 

:c = const. 
11

_ 1 :r: , 
rfa; 

((1 - ;r, 2 ) -H~ ;:,; o (1 - :1:2)k+~) Ct,'~ ~ ( :1;) = const. c;,·(:i:) . 

By use of these t.wo fornmlas we can write J~ 1 (C,~' (:i:)) 2 (1 - :1:2l- ~ d:r: as 

an explicit constant times ./~ 1 (ct,·~ ~( :r.)) 2 (1 - :r.2 )H~ d:r:. Opdam's shift 
operators in general have a similar structure of lowering >. and raising k, 
or conversely. The ca.o;;e of root system BC2 was already considered in [17], 
[32]. 

4.3. Dunkl type operators. Some years after Heckman first solved the 
problems 1 and 2 of the previous subsection he cfo;covered a dramatical sim
plificat.ion [12] for proving these results. For a given root system R in V and 
a given multiplicity function k he wrote down a trigonometric variant of the 
Dunk! operators (3.1) for E, E V: 

(Dt) f)(x) := (D~J)(x) + ~ L ~'" (o:,E,) cot(~ (a, :r.)) (f(:r:) - f(s,, x)) 
n ER+ 

(:r: E V, f E C00 (V)). (4.7) 

Now the operators D~~·) will no longer commute, in general. However, Heck

man showed that the operators "'I:,,1 E w~(D~k))i (E, E V, j = 0, 1, 2, ... ), when 
restricted to the H1-invariant C 00 functions on V, coincide with different.al op
erators which comnmte with each other and form a commutative algebra. This 
is the algebra looked for in Problem 2 of the previous subsection. The .Jacobi 

400 



polynomials Plk ) are the joint eigenfunctions of the operators in this algebra. 
By this approach, Heckman also obtained a quick existence proof for Opdam's 
shift operators. 

Next Cherednik [3] made a slight but significant variation in Heckman's 
Dunkl type operators ( 4. 7). He put 

(Dt) J)(x) := (ot,f)(x) + L ka (a,~) 
1 

_ e~"(x) (f(x) - J(s 0 x)) 
nER+ 

- ~ L k,. (a, x) J(x). 
n E R+ 

(Here I took the part of the right hand side on the second line from Opdam [13, 
p.86]; Cherednik is not very specific about this part of his formula.) Cherednik's 
operators have the nice property that they mutually commute, without the 
need of first restricting to TV-invariant functions. On the other hand, they do 
not share the property w ntl w - 1 = D~~j of Heckman's operators. Anyhow, 
by means of Cherednik's operators one can draw the same conclusions as by 
Heckman's operators, an<l in a similar way. Moreover, a structure of graded 
Hecke algebra can be associated with Cherednik's operators. 

5. Macdonald polynomials associated with R 

5.1. Definition of Macdonald polynomials. Let 0 < q < 1. We keep the 
assumptions of §4.1 except that we replace the weight function {Jk in ( 4.1) by 

Then the Macdonald polynomials PY'q ) were defined by Macdonald [23], [24] 
just as the .Jacobi polynomials Plk), but with the inner product in ( 4.2) replaced 
by 

(f,g)k,q := lf(x)g(:1:)8k,q(x)dx (f,g E A). 

In the case of root system A1 the Macdonald polynomials coincide with the 
q-ultraspherical polynomials x f--7 C~·'l(cosx). For any root system R, in the 
limit for q j 1, the Macdonald polynomial Plk,q ) tends to the corresponding 

.Jacobi polynomial Plk ). 

Macdonald gives some explicit q-difference operators of which the Plk,q ) 
are eigenfunctions. Although these operators, except for root system A11 (where 
they were independently found by Ruijsenaars [30]) do not yet give a full com
mutative algebra of operators having the Plk,q ) as joint eigenfunctions, the 
additional parameter q gives enough freedom such that already the eigenvalue 
of one such operator separates the elements of P+ for generic q, by which a 
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positive answer to question 1 in §4.2 can be given for the case of Macdonald 

polynomials. Taking limits for q I 1 then yields the same positive answer for 

the case of Jacobi polynomials. This is an alternative to Heckman 's approach 

via Problem 2. Macdonald also gives conjectured explicit. expressions for the 

I (p (k .q ) p (b1)} 
squarec norms A , A k ,q · 

5.2. Askey-Wilson polynomials for root system BC,, . The author [18] 
introduced for the non-reduced root system BC,, a class of polynomials having 

two more parameters than Macdonald's class for BC,,. This ext.ended class 

reduces for n = 1 to the Askey-Wilson polynomials [2]. In [18] only one explicit 

q-difference operator was given having the BC,,-polynomials as eigenfunctions, 

hut this was sufficient. for establishing orthogonality. Lat.er, wm Diejen [7] 

gave explicit. expressions for the generators af a full connnutative algebra of 

operators having the BC,, polynomials as joint eigenfunctions. 

5.3. Cherednik's approach to Macdonald polynomials. Cherednik [4], 

[5] succeeded t.o give positive answers to questions 2 and 3 in ~;4 .2. In the 

context of certain representations of affine Hecke algebras he could realize a 

connuutat.ive algebra of operators which have the l\facdonald polynomials as 

joint eigenfunctions. In the same context he could realize q-analogues of Op

dam 's shift operators and next, by the same technique as in Opdam , prove 

Macdonald's co11jectures in the q-case. 

It is beyond the scope of this short. survey to explain Chered11ik's approach 

in any detail. In May 1!)!)4 I. G. Macdonald delivered some very helpful lectures 

in Leide11 in order to explain Cherednik 's approach. Let me here only give a few 

indications . .1 ust. as a Hecke algebra is a deforma t. ion of t.hf' group algebra of a 

'Vey! group, an affine Hecke algebra ( cf. [20]) deforms the group algebra of an 

affine Wey! group. If R is an irreducible root system in V with \Vey! group W 
then the (ext.ended) a!fiIJe Weyl grn11p is the semidirect. product W := JF I>< p ·, 

where the <lwil weight lattice p - is defined as p - := { ,\ E V I (,\, n } E Z}, an 

abelian group un<ler addition. Then HI acts as a group of motions Oil V, with 

p · acting as a group of t.ranslatiolls. The group JtJ! also acts on A , with IF 

act.ing as before and with the action of p · still clepenrling 011 a parameter q. 

The <lfline Hecke algebra H can he defined in terms of generators and 

relations which still depend Oil the values of a H1-invariant function o- ,..___, t" 011 

R.. Corresponding to a choice of R+ we can define P +·. The emhedcling of P +· 
in H then generates a commutative subalgehra Y of H. 

For given q we can use the action of T-V on A in order to clefine an action 

of H on A , by specifying the act.ion for a set of generators of H (Demazure 
operators). This action depends on q and the t,.. Put. t,. = q- k .. /2 , where 

k: R -+ [O, oo) is a multiplicity function. Then Cherednik proves that the 

Macdonald polynomials PY'•'J) are the joint eigenfunctions of the IV-invariant. 

elements in t.l1e comnmtative algebra Y. This answers quest.ion 2 in s4.2. 

At the moment it is still an open problem to extend Cherednik's approach 

to the B C,, polynomials. As van Diejen [7] already answered question 2 in s4.2 

in a positive way for this case, it would be nice to complement. van Diejen 's 
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constructive approach with the deep conceptual approach via affine Hecke al
gebras. 
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Adaptive Spline-Wavelet Image Encoding and Real-Time 

Synthesis on a VLSI Difference Engine for Image 

Generation 

To Cor Baayen, at the occasion of his retirement 

A.A.M. Kuijk, P.C. Marais and E.H. Blake 

The low level components of a new raster graphics architecture developed at 
the CWI have proven to have novel uses in image reconstruction . The display 
hardware can be regarded as a very fast (llns per operation) Difference 
Engine that works in two-dimensions. The speed is partly achieved by the 
use of custom VLSI components for the most primitive operations and this 
permits the video rate reconstruction of images and other signals compressed 
by encoding them on various polynomial bases. A wavelet-based image
encoding is described which, when used in conjunction with the Difference 
Engine allows us to reconstruct an image in real-time without the need 
to set each pixel explicitly. The image is compressed using a quadratic 
spline-wavelet transform; when reconstructing, an image-adaptive instruction 
generator attempts to produce the minimal instruction stream to give a good 
reproduction. The wavelet coefficients are used to decide which regions of 
the detail images should be retained in the multi-resolution analysis (MRA). 
A decision is made for each scanline as to whether it is more economical, 
in terms of rendering time, to use the 'truncated MRA' or to set the pixels 
directly. The above approach provides a significant gain over standard image 
reconstruction / rendering schemes. 

1 INTROD UCTION 

A radical reappraisal of the three-dimensional (3-D) interactive raster graphics 
pipeline has resulted in au experimental architecture for a graphics workstation 
which is currently being evaluated at the CWI. Some of the novel uses of parts 
of the hardware were not foreseen when the research project was initiated. 

Principal features of the design for the new raster graphics architecture are: 

1. Emphasis on real-time interactive shaded 3-D graphics. 
2. Object space methods rather than image space methods are used where 

possible. 
3. Avoids the use of a frame buffer. 
4. Uses custom VLSI only at the lowest, most primitive, levels where com

mercial products are unlikely to suffice in the near term. 
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It was these desigu decisions that lead to a m1111her of interesting consequences 
that have made parts of the architecture eminently suited to a a far wider range 
of problems iu computer graphics and image processing. The init ial top-down 
design produced an architecture for raster graphics (only) . The bottom-up de
sign that followed concent rated on extracting the lowest common denominator 
of primit ive operations for synthesizing pixels - a language for manipulating 
rela ted pixek This voca.hulary can be used for expressing other facts about 
images. For example, t he custom VLSI development. t hat. was a major part. 
of t he project produced what is essentially a very fast Differeru:e Engine (to 
borrow a term from the 19th century history of computation). This engine can 
compute forward differences in parallel over the \vhole width of a typical image, 
taking about llns per operation (90 Mhz clock) i11clepenclent.ly of t he length 
of the forward difference spans. It. was recognized that this feature would be 
useful for image reconstruction as well. 

Studies have shown that for image reconstruct.ion the wnvelet tmn.~form [3] 
offers a better compression/ fidelity tradeoff than the Discrete Cosine Trans
form (DCT )[4]. The complexity of the blocked DCT is of the same or<ler 
as tha t. of au (unblocked ) fast. wavelet. transform - consequently, blocking is 
not required and blocking artifact.s are no longer a prohlem. Furthermore. 
t he multi-resolution structure of the transform allows fo r resolut ion-dependent. 
coding techniques. 

The 'standard ' approach to image S)'nthesis, aft.er such transform codiug, 
is to perform au iuverne t ransform, thus producing the data required for each 
pixel. However, by requiring that our image he expressible on a suitably cle
fined (quadratic) spline basis, and using the propert ies of the Difference Engiue, 
it is possible to regenerate the image, progressively, if t his is desired , from a 
subset of the full MRA , by examining the transform coeffi cients which under
lie the analysis. This synthesis procedure allows one to reduce the number 
of instruct.ions required to render an image, when compared wit.h t.he direct 
approach. 

2 THE WAVELET TRA NSFORM 

A wavelet, w(:i:, y), is an L2 (IR2 ) function which sat isfies 

.ff w(x, y )dxdy = 0 (1) 

This condition ensures that the wavelet. is localized in hot.h t ime and frequency 
and exhibits a measure of oscillation - hence the name. The di8crete (dyadic) 
wavelet transfo rm, (W '(I I )(j; i, l ) of an L2 (IR2 ) function , I (:1:, y), with respect to 
the wavelet W is define<l as 

(W,,, J)(j;i ,1 ) = (WJ;i.1 ,J), i,j,l E Z (2) 

where (,) denotes the L2 inner product. and Wj:i.1(:1:, y) = 2.i w(2:i: - i ,2y - l ). 
For non-orthogonal wavelets, there is a corresponding dunl wnvelet, W, which 
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satisfies the relationship 

(3) 

It can be shown that the functions {'11j;i,t; j,k,l E Z} span the space L2 (1R2 ) 

[3]. Hence, any function, I( x, y), in this space can be written as a linear 
combination of such scaled and translated wavelets: 

I (x, y ) = · · · + 9- 1 (x, y) + Yo( x, y) + gi( :i;, y) + · · · (4) 

where 
Yi(x,y) = Ldi;it WJ;i,t(x,y), j E Z. (5) 

i ,l 

Because of the bi-orthogonality relation, Equation (3), one may write dJ ;i l = 

(J , Wj;i ,t ), i,j, [ E z. 

3 M ULTI-RESOLUTION ANALYSIS 

The concept of a Multi-Resol'Ution Analysis (MRA ) is already familiar to those 
who have dealt with pyramidal image decompositions; it serves to formalize 
such a decomposition. Firstly, one must define the term "resolution". The in
tuitive interpretation, viz., that it serves to quantify the amount of pennissable 
variation in a region, is formalized. Hence, a high resolution image has a large 
amount of detail in a region, whereas a low resolution image is much smoother 
over this same region. One may further quantify this concept with a statement 
such as: "a kth resolution image contains k x k samples per unit square". The 
idea here is that we can capture more detail if we are able to sample at a higher 
rate. 

To develop the theory of such an analysis, we first consider the case of one 
dimensional signals. 

Our signal, f (x), must be an elements of the space £ :l(JR), that is, it must 
contain finite energy. We seek a decomposition of this signal which will re
veal its structure on different 'resolution ' levels. Such an analysis can provide 
invaluable information about the relative importance of variations in the signal. 

Each of these m'ulti-resolution approximations resides in a space which con
tains all possible approximations at that resolution of every L2 (IR) function. 
These spaces are denoted VJ; the parameter j indicates the resolution level: 
the "resolution" of the jth level is given by r = 2J . Thus, level 0 has r = 1. 

By convention, this is the input level. 
Just as the wavelet spaces1 WJ are spanned by the scaled translates of a 

single kernel function, 1/J , we seek a single function, </>, the so-called scaling 
function, which will span the spaces VJ in the same way. If this is the case, 
then we may define a Multi-Resolution Analysis of L:i (IR). Since we desire that 
t his analysis be complete, the MRA must encode the detail that is sacrificed 

1 Wj = closL2span{ l/.ijk: k E Z} ; the operation of C LOSure essentially adds all the limit 
points to a space, thus 'closing' it up. 
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when we go from a higher to a lower resolution. This detail is stored in the 

complementary wavelet spaces, Wj. We have the following relationship for any 
resolution level j 

(6) 

This states that the higher resolution approximation may be re:;;ynthesized from 
the next lower approximation by adding the detail that we sacrificed t.o achieve 
that lower approximation. One can deduce the following properties: 

i. ... c v_. c Vi, c Vi c .. ·; 

2. closL2 ( LJj Vj) = C-1(-R ); 

3. n.i VJ = {O}; 

4. l'J+1 = VJ+ lV1, j E Z; 

5. f(:i:) E \!'.; ~ f(2x) E \!'.;+1, j E Z. 

For a more detailed discussion and alternative formulation of these properties, 

see [l ]. 
The space H~; is the the orthogonal complement of the space \!'.; in l'J+•· 

The spaces Wj are spanned by 'lfJJ.;(:c) = 2.i / 2 ijJ (2J:i; - i), where ijJ (:i:) is a 1-D 
wavelet, satisfying the 1-D analogue of Equation ( 1). The spaces VJ are spanned 
by scaled and translated versions of a so-called scaling function, </>( :r,). The ap
proximation spaces VJ contains the jth resolution approximation, f j(:i;), of the 
input function, J(x), while the detail spaces, H'j, contain the information lost 
when going from a (j + 1 )th level approximation to the jth level approximation. 

A common met.hod used t.o generate a 2-D MRA, is to take the tensor product 
of the corresponding 1-D multi-resolution analysis with itself [3]. This provides 
one with three wavelets, wl1•l(x, y), l1 = 1, 2, 3 and a scaling function, <I> (:i:, y), 
all of which are separable 2-D functions: 

wl•l(:z:, y) </>(:r,) ijJ (y) (7) 

wl2l(x, y) 1/J (:i:)<f>(y) (8) 

wl:Jl(x, y) 't/J (X )1/J(y) (!J) 

<I>(x, y) </>(:z:)<f>( y) (10) 

These wavelets are essentially orientated, resolution-dependent band-pass fil
ters; the scaling function may be viewed as a low-pass filter. The detail spaces, 
spanned by each wavelet type, thus contain difference information with a spe
cific orientation only: vertical, horizontal and diagonal. 

The multi-resolution pyramid goes off to infinity in both directions. How
ever, realisable signals are baud-limited. Thus, we truncate the representation, 
discarding all higher level information, by 'projecting' our input function into 
a space which has sufficient detail to represent the sampled signal - V0 by 
convention. Similarly, since signals do not always contain arbitrarily low fre
quencies, it may be unnecessary to decompose one's signal beyond a certain 
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level. Thus, one has a Jth level multi-resolution decomposition 

I (x, y) Io (:i:,y) 

g_ 1 (x, y) + · · · + g_ J(x, y) + LJ(x, y) 
- J 3 

L LLd!Plt;ii wl~1)x, y) + 
l=- 1 i ,j p = l 

L C- J; ij <P - .l; i .j(X, y). 
i ,j 

(11) 

The waYelet transform is also truncated; the .Jth level discrete wavelet trans
form provides the set of coefficients 

{{dl1'lt;ij}, {c_ .1; ij }, i,j E Z, l = - 1, - 2, ... - J; p = 1, 2, 3} (12) 

where the detail coefficients are obtained as follows 

d - ( 'i'. [JJ] / ) .. : '71 [p]1. ·. - 'l' HJ., ' t,J Ea,. 
,l,J ' ' 

Formally, the approximation coefficients are given by 

Ct;i,j = (<i>t; i,j, / ), i,j E Z 

(13) 

(14) 

where <i> (x, y) is the dual scaling function. The approximation coefficients, Ci;i,J, 
encode the present in the lower levels of the multi-resolution pyramid. 

Semi- Orthogonal Cardinal Spline MRA 

The space of cardinal splines of order m, S111 , contains all those functions 
expressible as a weighted sum of mth order cardinal B -splines, Nm(x): 

(15) 

The values of N,,, (x) may be found using the following identity: 

:c m - x 
N,,,(x) = --N 111 - 1(x) + --N111 - 1(:i; - 1). (16) 

m - 1 m - 1 

N 111 (:i:) := (Nm - 1 * N1)(x) = J.1 

N 111 _1(:i: - t)dt, m 2: 2, (17) 
0 

where 

N 1 x = , x = ' { 
1 if x E [O 1); 

( ) X [o, I) ( ) 0 otherwise. (18) 

The cardinal B-splines are t hus generated by repeatedly convolving the unit 
box with itself. Figure 1 shows some of these functions. 

Cardinal B-spliues satisfy the following identity, which enables one to com
pute their values without resorting to integral formulations: 
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FIG URE 1. Spline scaling functions. The cardinal ~pline scaling fuuc t.ions a re genera ted 

by repeatedly convolving Nl(x) with itself. 

The spline-based MRA introduced in [5, G] has N,, 1 (:1:) as its scaling function. 

The corresponding mth order spline wavelet, 't/,•111 (:1; ), has support. on the in

terval [O, 2111 - 1]. This wavelet is scmi-orthof1onal, meaning that it is orthogonal 

to scaled versions of itself, but not to t.ranslates on the same resolution level. 

These functions sat.isfy t.he following two-.w:alc relationships 

Ill 

LPkN111(2:i; - /.:) , (HJ) 
k= O 
:hu - 2 

L <u.N,,,(2:1: - k) (20) 

k= O 

The values of these sequences, for the quadratic case, can he found in [5]. 

4 CA LCU LAT ION OF nm WAVELET COEFFICIENTS 

Before one can use the MRA, a means must he found to compute the coefficients 

of the wavelet transform. To this encl we use the filtering scheme proposed in 

[7]. In the coutext of this work, this gives us the following set of separable 

cou\'olut ional equations for computing t.he detail and approximation coefficients 

(from the approximation coefficients of the previous level): 

Cj - l :kl =LI: (/ 111 - 2k(/11 - 21Cj:11111 (21) 
,,, 11 

<f[! Jj- l:kl = L L (1 111 - 2k/J11 - '2lCj;11111 (22) 
Ill 11 
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FIG URE 2. A quadratic spline wavelet. 

(23) 
Ill 11 

d [:iJj- l;kl = L L b,,, _ .,u.,b 11 - 2!Cj ;11111· (24) 
IU. 1l 

To recoustruct the approximation coefficients (from those lower down in the 
analysis), one has the following reconstruction relation: 

Cj ;k11t = L I Lt Pk - 2lPrn - :!tCj - l :ll + 
LI Lt P k - 21</m - 21.d [l ]j - 1:11 + 
Lt Lt <Jk - :UP111 - 21 d [2Jj- l ;l1 + 
L1 Lt <Jk - :!l</111 - 21d[:iJj- l ;lt· 

The { ak} and {bk} sequences can be found iu [8]. 

Calculation of { co; i.j} 

(25) 

Iu order that we cau use the filteriug scheme above, one must first generate 
the iuitial set of approximation coefficieuts, { <:o; ij } - which are the basis coef
ficients of the B-spline representatiou of the input image. If oue just wants to 
achieve compression, the image samples may he used as the initial coefficient 
values. If, however, one wishes to evaluate the MRA, then these values must 
he properly computed. 

We use quasi-inte17JO[ation [9] to obtain these coefficients. Quasi-interpolation 
is a local interpolation scheme, in which t he amount of data used tu determine 
the approximating qnasi-iuterpolaut cau be limited. In this work a :h3 couvu-
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lution mask (/.: = 1, below) was used to determine the required coefficients: 

co,;; = (>,k/)(i,j), i,j E Z, / E L2 (!R2
) . (26) 

This sequence is computed as 

{(.X~J)(i)} = (li - m + · · · + (- l )t' m * .. · * 1n) * / 0 (i), i E ~}, (27) ...___,_...._, 
k t.inies 

where li = 8; .1,0 = 1 if i, j = 0, ancl 0 otherwise and 

{ 
<I> (O, 0) - 1 

Tll i,j = <I>(i,j ) 
for i,j = O; 
for i, j =/:- 0. 

(28) 

Because the B-splines must. he centred [9], <I> (:i:, y) = N:1(:1; + 3/ 2)N:i(Y + 3/ 2), 
and the coefficient values actually represent the shifted image / 0 (x + 3/ 2, y + 
3/ 2). It is important to remember t.his shift when evaluating image funct ions 
in the MRA. 

5 Q UANTIZATION 

We used vector quantization t.o compress the wavelet encoded image. The ap
proach of [10] was used: the various wavelet sub-bawls were sub-divided into 
2x2 or 4x4 blocks (as determined hy the desired compression ratio) and these 
blocks were quantized with t,J1e previously t.rainecl codebooks to yield 8-hit 
indices (thus permitting 256 reproduction levels per sub-band). The LBG al
gorithm wi t.ha minimum mean-squared error measure wa.'i used [11]. The code
book was trained wi th a collection of dispara te images, so as not t.o introduce 
any kind of image bias; the test images were not in the training sequence. As 

is done elsewhere, for example [10, 12], the entropy of the coefficient sequence 
is used as a measure of compression i.e., we assume that. t.he quantization is 
followed by a perfect ent ropy coding. 

6 THE DIFFERENCE ENGINE 

The Difference Engine is the final component in the rendering pipeline of a 
new display architecture developed at CWI [13]. This display processor has 
t.he ability to interpolate au arhitrary length polynomial span with a single 
instruct.ion, in time proportional to the degree of the polynomial. The forward 
difference interpolatory logic is implemented as a systolic array - each new 
cycle produces the complete set of difference values for the specified span. An 
nth degree polynomial span may be specified hy a starting point , a set of n 

forward differences and the width of the span. The pt.h order forward difference 
of I (x) is 

(2!J) 

where 
( ~n/)(:r.) = I (:z:). ( ~O ) 
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Once the required differences are computed, using the simple recursive scheme 
presented above, the polynomial values at uniformly spaced intervals (Z, in this 
case) may be obtained by using the following simple update rule 

(.6.1,!)(:1; + 1) = (.6.,,I)(x) + (.6.,,+1/)(x), p = 0, · · · , n - 1. (31) 

for consecutive values of :c. The 11ns cycle time of this processor means that one 
can perform these calculations with sufficient speed to ensure pixel production 
at t he display refresh rate. 

The proposed architecture does not employ a framebuffer. Instead, the image 
is represented as a list of primitives and the objects selected from this list are 
converted into Difference Engine instructions by customized hardware, at a 
sufficient ; ate to provide real-time video display. The complexity of the image 
determines the size of the list and consequently the nmnher of instructions 
which are produced. 

There are two important points which should he noted: 

• the Difference Engine can interpolate arbitrary order polynomials, in time 
proportional to the degree (currently n + 2 cycles for a polynomial of 
degree n - 1). 

• the Difference Engine provides a scanline accumulator. 

The Difference Engine can interpolate polynomial spans accurately up to a 
length dependent on the degree of the polynomial - currently about 409G 
pixels for a quadratic and 512 pixels for a cubic. This limit poses no problems, 
since the image data can be segmented into several spans if the need arises, 
which is unlikely if one uses the quadratic scheme. 

The existence of an intensity accumulator is essential if one wishes to use the 
Difference Engine for multi-resolution image synthesis, since one then needs to 
accumulate several levels of detail for each scanline. 

7 M ULTI-RESOLUTION IMAGE SYNTHESIS 

The various images in the quadratic cardinal spline MRA satisfy certain very 
stringent conditions: 

• They are elements of C 1 (11~.2) 

• The approxima tion images consist of quadratic patches, with support on 

• The detail images also have this property, but over squares half the size 
on the resolution level j. 

These conditions are a consequence of the tensor product used to generate 
the MRA and the properties possessed hy the prototype 1-D MRA. Thus, the 
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image data along a scanline (on each level) is composed of adjacent quadrat ic 

segments of the same length. It is a simple matter to compute the differences 

for any such polynomial (using t he shifted image functions), and to compose t he 

Difference Engine instructions which will interpola te the polynomial scanline 

data. 
If used without care, multi-resolution synthesis can he far more expensive 

(in terms of Difference Engine instruction cycles) than just setting each pixel 

directly, since many instructions must be issued t.o accu11111late all t he detail 

information for each scanline. If however, only 'busy' regions of t he detail 

images are added back to t he approximat.ion image, t his ' tnmcat.ed' l'vIRA can 

provide significant. gains over direct. reconst.ruct.ion (i.e., l\.VT and set.ting each 

pixel directly). \Vavelet. compression should maintain only t he most important. 

coefficients viz. those which will ensure good reconstruct.ion fidelity. These 

retained coefficients can be used as an indication of ' busy ' image area:-;, and 

t he bases which they weight. can be used to build the t runcated MRA. We 

determine t he extents of these bases which intersect the current scanline - this 

information iH recorded and used to determine whether it is more economical 

(in t.erms of Difference Engine instruct ion cycles required ) to simply set. t. he 

pixels in the current scanline or to render the t runcated MRA. If t.he latter 

opt ion is selected , the function evaluations are done and t he t iers of detail are 

acc1111111lated on top of t he approximat.ion signal. If it. is less economical (as 

will be t he caRe in highly detailed regions), the scanline pixels are set. directly. 

Due to t he continuity constraints, and t.he archit.ecture of t he chip, we need 

only issue one quadratic interpolat ion instruction to interpolate the ent ire ap

proximat ion scanline: only t he second order differences need he changed as we 

cross each new span houndary. These can be comput.ed and set. before the in

terpolation instruction is issued , hy using a low cost. set-difference instruct.ion . 

A similar strategy can he used fo r detail scanlirn~ segment.s consisting of severa l 

adjacent spans. 
To improve performance, neighbouring quadratic spans are merged if their 

differences are t.he same; t.his reduces t he nmnher of instruct.ions required to 

interpolate a mult i-span segment . However , Hince t his kind of redundancy is 

only likely to occur in the approximation image, merging is not applied t.o 

detail scanline segments. Furt hermore, for reasons of effi ciency, t he mergiug 

procedure is not. applied prior to deciding what. kind of s.vnt.hesis method t.o 

employ. Doing so would require additional calculations which would he wasted 

if direct synthesis were used. 

8 RES ULTS 

8. 1 Wavelet. Compre8sion 

It. was apparent tha t t he fidelity of the recoustructed images left. something to 

be desired, even at. modest. hit-rates (around 1 hpp) - Figure 4. There are 

a numher of reasons for t his lack of performance, in particular, the nse of a 

MMSE distortion metric, which takes no account of edge informat ion and does 
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FIGURE 3. Test Images. The (8-bit greyscale) images are Lenna, House and 

Sugar bowl. 

FIGURE 4. Typical VQ compression result - 0.82 bpp. 

not guarantee simultaneous minimization of reconstruction error and transform 

domain quantization error (since Parseval 's identity does not hold in a semi

ort hogonal framework). Simple thresholding tests revealed that MMSE VQ was 

not exploi t ing the redundancy provided hy the wavelet trarn;form effectively. 

8. 2 Image Synthe8is 

The results given below are based 011 a three level wavelet decomposition in 

which, rather t han applying VQ, the wavelet coefficients were t hresholded and 

those retained were used in the MR synthesis calcnlations. This was done to 

decouple the compression implenientation from the synthesis algorithms, since 

the former retained too many (unrepresentative) coefficients to illustrate the 

concepts referred to earlier. The thresholcling used is adapted to orientation 

and resolution level and forms part of t he new compression scheme we are 

investigating. To enable us to quant ify t he gains produced by MR synthesis, we 

introduce the Gain Factor (GF) - the ratio of the instruction cycles required 

to render the image directly to the nmnber of cycles required if adaptat ion is 

used. The GF is always 2: 1.0. 

415 



Table 1 summarizes the results of this preliminary work. Observe that two 
sets of data are given: the first uses the current cycle costs for the relevant 
instruction2 while the second uses the cycle costs which will be used in subse
quent implementations of the Difference Engine. 

Cycles Lenna House Sugar bowl 
Setddi 2 0 4 62 
Eva!O 1 100 95 33 
Evall ;{ 0 0.5 0.2 
Eval3 5 () 0.5 4.8 
GF - 1.23 1.63 :.3.43 
MR - No Yes Yes 

Cycles Lenna House Sugar bowl 
Setcldi 1 1.4 7.6 G5.7 
Eva!O 1 97.5 87.0 13.9 
Evall 1 1.0 4.7 14.7 
Eval3 3 0.1 0.7 5.7 
GF - 1.22 1.57 :.3.86 
MR - Yes Yes Yes 

TABLE 1. Synthesis Results. The first four rows of each table give the percent.ages 
each of the instruct.ion types contributed t.o the final rendering cost .. The final row indicates 
whet.her mult.i-resolution synthesis was invoked or not . The same threshold was employed 
with all images. The second t.ahle gives t.he figures when the proposed lower cost. inst.m et.inns 
are used. 

There are several things which were evident from our experiments. Firstly, 
the smoot.lmess of an image is directly relater! t.o t he gains ohtaiuable when 
using MR synthesis: the more texture t.he image possess, the less likely MR 
synthesis is to yield any benefit , unless the texture is highly localised. In the 
latter case, the non-textured scanlineH can still be rendered more cheaply. Sec
ondly, image detail is expensive to render, because a) it. is present on multiple 
levels of the MRA and b) t he quadratic spans are smaller and c011Hequent.ly 
more inst.ructions are required to interpolate a scanline. This is the mot iva t.iou 
for truncating the MR.A. 

Images which are themselves composed of splines (such as the Phong shaded 
images in [13], of which 'Sugarhowl' is an example) will experience greater 
gains than other (smooth) images. However, the extent of this reduction will 
depend on the size of the Hpline patches of which the image is composed and 
for most images these are fairly small. The Difference Engine is ideally suited 

2 The interpolation instructions are of the form 'evaln ', where 11 is the order of the poly
nomia l t.o he interpolated ; 'evalO' switches off accumu lat.ion of subsequent. pixel values at. 
the given location, othe rwise acting like an 'evall ' - since it is cheaper, it. is used for direct. 
reconstruct.ion. The 'set.rldi ' instruct.ion can he used to set the second difference at. a specified 
point.: suhHequent. int.erpolat.ions, passing through this point .. will uses this value rat.her t.han 
t. he one t.hey had been propagat ing. 
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to rendering such images. 
The images 'Sugarbowl' and 'House' were both able to derive varying degrees 

of benefit from MR synthesis, since there were regions in which the intensity 
data varied slowly. 'Lenna' contains a lot of texture; but with lower instruction 
costs, it becomes economical to use the MRA on some scanlines. In highly uni
form or smooth images, span merging on the approximation level can become 
significant, boosting rendering efficiency substantially. An extreme example of 
this would be an object on a uniform background; the background would only 
be present in the approximation image and could be generated very quickly 
and efficiently. 

For highly textured images, when we are forced to chose direct reconstruc
tion, we can still gain by merging neighbouring pixels; this saves one having 
to set each pixel individually. Since pixels are usually correlated, even the 
most chaotic of images may benefit (albeit marginally) from such merging. In 
the examples given above, Lenna experienced a GF of 1.23 from such pixel 
merging: all neighbouring pixels along a scanline which are within one gray 
scale of the first pixel considered are approximated by this initial value, and 
a zero-degree polynomial (evalO) of the appropriate length is emitted. When 
using MR synthesis, smooth images can yield very large gains (a GF of > 3 
for non-trivial images like Sugarbowl). The nature of the smoothness plays an 
important role in determining the magnitude of these gains i.e., is the image 
actually a spline, or just smoothish? True spline images can be approximated 
with fewer resolution levels and coefficients. 

Although not explicitly indicated in the tables above, the level of the decom
position has a very definite affect on the rendering gains one can achieve. If 
the number of levels is too low, then one gains nothing in rendering time, since 
short pixel spans (less than the order of the polynomial) must be set directly. 
If, on the other hand, the number of levels is too high, then too much infor
mation must be accumulated from the detail tiers and the rendering efficiency 
drops. A three level decomposition appears to be optimal. 

The Difference Engine is able to produce low resolution approximation im
ages very efficiently, since the spline patches are then quite large (the 3rd level 
approximation of Lenna can be rendered in a quarter of the time required to 
render the full image, using the old instruction costs). Progressive transmission 
is possible if the receiver is equipped with a screen buffer in which incoming 
information can be accumulated. 

9 CONCLUSION & FUTURE WORK 

Although the implementation of the quantization algorithm was inadequate, 
the compression potential of the spline WT can be exploited by a better algo
rithm. Smooth images can be rendered more rapidly using MR synthesis than 
by direct reconstruction. Even heavily textured images can be rendered more 
efficiently if zero-degree pixel merging is applied to exploit pixel correlation. 

A better quantization system is currently under development. Work can be 
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done to improve the usability of the Difference Engine w.r.t. MR synthesis 

- the Difference Engine was not specifically designed to render this kind of 

structure. One of the modifications that can be made, is the addition of a 

screen-wide accumulator which the Difference Engine can access to enable ef

ficient rendering of progressively transmitted images. Work can also be done 

to improve the simple efficiency measures used - the emphasis here was on 

rendering performance, which assumes that the MR data can be produced at 

an adequate rate. All the required information can be computed using paral

lelised FFT hardware - so on the face of it, this assumption is a reasonable 

one. Nonetheless, one may desire a different measure of efficiency. 
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In this paper we present two vectorized numerical sieve algorithms for the 
number theoretical functions µ,(n) and r(n). These sieve algorithms are gen
eralizations of Eratosthenes' sieve for finding prime numbers. We show algo
rithms for fast systematic computations on Mertens' conjecture and Dirich
let's divisor problem . We have implemented the algorithm for Mertens' con
jecture on a Cray (90 and performed a systematic computation of extremes 
of M(x)/,,fi up to 101

:
1

• We established the bounds - 0.513 < M(x)/,,fi < 
0.571, valid for 200 < x :S 1013

. 

1 INTRODUCTION 

Eratosthenes' sieve is one of the oldest algorithms in number theory (3rd cen
tury B.C.). The ult imate sieving device for Eratosthenes ' sieve and its gen
eralizations is a (parallel) vector computer or a massively parallel computer. 
Our generalizations of Eratosthenes' sieve are devised with large (parallel ) vec
tor computers in mind. They are virtually 100 percent vectorizable and they 
become more and more efficient when the amount of memory increases. 

We start by introducing Merteus' conjecture in Section 2. Section 3 is de
voted to a completely vectorized algorithm for a systematic computation of 
M(:i:) and analysis of M(x)/..jX. In Section 4 we describe Dirichlet 's divisor 
problem. The corresponding algorithm is given in Section 5. This algori thm in 
its t urn is a generalization of the algorithm described in Section 3. In Section G 
a selection of the numerical results for /11 (x) / .J.i;, x = 1, ... , 1013 , is presented. 
Finally, in the last section we give some concluding remarks. 

421 

.·· ... ::;;;: ;.. 



2 MERTENS ' C oN.JECTURE 

The Mobius function /t (n) is defined as follows 

{ 

1, 
11.(n) = 0, 

(- l)k' 

n = 1, 
if n is divisible by a prime square, 
if n is the product of ~~ distinct primes. 

We consider A1(x), the first summatory function of µ (n), 

M(x) = L 11(n) . 
n ::;, x 

A1(x) describes the difference between the number of squarefree positive inte
gers n ::; x with an even number of prime factors and those with an odd number 
of prime factors. 

Based on a table of M (x) for x = 1, ... , 10000 Mertens [11] conjectured that 

IM (;i:)I < -/X, x > 1. 

Later, based on more extensive numerical 'evidence' , Von Sterneck [17] even 

conjectured that 
1 

IM(x)I < 2-/X, x > 200. 

The Mobius function is related to the Riemann zeta function by 

_ 1 __ ~ µ(n) 
((s) - ~ n s ' 

n = l 

3?(s) > 1. 

Boundedness of !v/(:r)/ v'X implies the truth of the Riemann hypothesis. How
ever , the converse does not hold. 

For the history of the function M(x)/-/X and the disproves of Von Ster
neck 's conjecture and later Mertens' conjecture- both first theoretical and later 

effective- we refer to [16]. A comprehensive bibliography may be found in the 
paper hy Odlyzko and Te Riele [13] in which they disprove Mertens' conjecture. 

Although it is known that A1(x)/:r --+ 0 as ;i; --+ oo (and even more than 
this), the best known effective a.'>ymptotic upper bound on IM (x)I to date [4] 
is 

x 2: 617973. 

3 A VECTORIZED ALGORITHM FOR M (x)jy'x 

3. 1 Eratosthenes ' sieve 

Eratosthenes indicated the following method of obtaining all the primes in the 
range 2, ... , N: put all numbers between 2 and N into a 'sieve'; as long as 
the sieve is not empty, select the smallest number remaining in the sieve, and 
strike out all multiples of this prime number. The complexity of both the 
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sieve initialization and the prime number selection is O(N). The complexity 
of striking out all multiples of the prime numbers found and therewith the 

complexity of Eratosthenes' sieve is 

,..<v'Jiil N 
~ lpJ,..., NloglogVN, 

where 7r(x) denotes the number of prime numbers not exceeding x. Usually, one 
only sieves the odd numbers. Moreover, if N becomes large one has to partition 
the sieve interval. Even for N large, 1013 , say, log log ./N is fairly small. This 
gives an almost linear complexity O(N). For the sake of completeness: the best 
(sub)linear prime number sieve has complexity O(N/ log log N), cf. [10, 15]. 

3.2 Sieving µ(n) 

The following algorithm yields the Mobius function µ(n) for n = 1, ... , N. 

for n = 1 to N 
µ(n ) = 1 

for all p :=:; ./N 
for all n,p In 

/t (n) = - p · /t(n) 
for all p :=:; .JN 

for all n,p2 In 
µ(n) = 0 

for n = 1 to N 
if iµ(n) I i- n then 

µ(n) = - µ(n) 
for n = 1 to N 

11(n) = sign(µ(n)) 

This algorithm starts initializing a sieve array µ with the value 1. Besides the 
sieve array we also keep a list of all primes not exceeding ./N. Next, for all 
prime numbers p not greater than .JN we multiply µ(n) by - p for every n a 
multiple of p. By multiplying with - p we achieve two things: 1. we multiply 

by p in order to see if we end up having handled all prime factors of n; 2. by 
multiplying with - p instead of p, we keep track of the parity of the number of 
different prime factors of n handled so far. For all prime numbers p not greater 
than ./N we set /t (n) to 0 for every n a multiple of p2 . After this step we 

check whether ltt (u) I = n holds. If ltt(n) I = n holds , n is squarefree and none 
of its prime factors is greater than ./N. If l/l(n)I = n does not hold, we have 
two possibilities: either /t(n) = 0, in which case n is not squarefree, or n is 
squarefree and has exactly one prime divisor p > ./N. Anyhow, if lp (n) I = n 
does not hold , we just change the sign of /t(n ), taking care of the parity for 
this last. prime factor , or a no-op if /t (n) = 0. At this point. we have three 
possibilities: 1. 11(n) = 0, if n is not squarefree; 2. 11.(n) < 0, if n is the product. 
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of an odd number of distinct primes; 3. µ( n) > 0, if n is the product of an even 
number of distinct primes. With the obvious definition of sign, the last loop in 
the algorithm above completes the computation of the Mobius function µ(n) 
for n = 1, ... , N. It is easy to see that the complexity for the above algorithm 
is the same as for Eratosthenes' sieve: C'.J{NloglogVN). 

As we already mentioned for Eratosthenes' sieve, we have to partition the 
sieve interval if N becomes large. The determination of whether a prime hits a 
partition and, if so, the first index it hits, is a non-vectorizable process. In order 
not to loose vector speed one should choose the partition size considerably (10-
100 times, say) larger than the number of sieve primes. In our computations 
N equals 1013 , so the number of sieve primes becomes 7r(VN) = 227,647. We 
chose our partition size equal to 107 . 

:J. :J Small prime variation 

Since we want to compute all values of M(x) systematically, we can not halve 
the amount of work by only sieving the odd numbers, as we can for Eratos
thenes' sieve. For the same reason we can not apply a 'small prime variation' 
as in MPQS [14]. However, it is possible to apply a different kind of small 
prime variation: replace the initialization µ(n) = 1 by a 'block-initialization' . 
Using the small primes 2, 3, 5, 7, 11, say, and also the small prime squares 4, 9, 
we get a pattern-length of 

2 . 3 . 5 . 7 . 11 . 2 . 3 = 13,860. 

Sieving with only these few primes and prime squares requires 

l ~ J + l ~ J + l ~ J + l ~ J + l ~ J + l ~ J + l ~ J ~ L5
N 

sieve updates. If we store the initial pattern of length 13,860 and do a periodic 
block initialization of the sieve array with this pattern (instead of the tot.al 
initialization with 1), we get about l.6N sieve updates, for these small primes 
and prime powers, for free. 

We did not tell the full story by stating that one can not manage sieving only 
the odd numbers. As pointed out by Tijdeman [18] one may use the identity 
µ(n) + Jt(2n) = 0, for n odd, together with the identity p(4n) = 0, to avoid 
the computation of µ(n) for n even. However, for N large, so that we have to 
partition the sieve array to get the job done, this becomes impractical because 
one would have to store some N/4 intermediate µ(n)-values for n even. 

3.4 Vectorizing the partial summation 

Thus far we described a vectorized algorithm for the systematic computation 
of the Mobius function. Eventually, however, we are interested in the extremes 
of M(x) /./X, so that first of all we have to compute the partial sums 

M(x) = L µ(n), x= 1, . .. ,N. 
n~x 
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Phrasing this as an algorithm one might compute the partial sums as follows. 

M (l) = µ(1 ) 
for x = 2 to N 

M( x) = µ(x) + M(x - 1) 

The previous loop is a classical example of a non-vectorizable loop because of 

its recursion on M(x - 1). 
Assuming that the array M initially contains the values of µ (we do this 

computation in-place anyhow), and partitioning the array in chunks of length s, 

1 ~ s :::; N we can compute the partial sums using the following algorithm. 

for ll = 2 to s 
for x = y to N by s 

M(x) = M(x) + M(x - 1) 

l = LN/sjs 
for y = s + 1 to l by s 

for x = y to !J + s - 1 
M( x) = M(x) + M(y - 1) 

for x = l + 1 to N 
M(x) = M (x) + M(l) 

Here, the first loop nest solves r NI s l independent partial summation problems. 

The inner loop of the first loop nest performs the same operation simultaneously 

on all chunks. Because of the increment s, this inner loop is not recursive, 

therefore vectorizable. After executing the first loop nest, the original partial 

summation problem is only solved for the first chunk JVJ(x),:i; = 1, ... ,s. The 

second loop nest takes care of the other chunks in tum by adding /\f(y - 1) , 

the end-point-value of the previous chunk, to all values in the current chunk. 

Here, the inner loop is vectorizahle, since trivially y - 1 < y, ... , y+s - 1. After 

executing the second loop nest, all chunks except for possibly the last one also 

contain the correct values for the original partial summation problem. Finally, 

the last loop handles the last chunk in case s does not evenly divide N. 
Using this algorithm, also the partial smnmation is vectorizable albeit at the 

price of doing twice as many additions but, at a performance gain of an order 

of magnitude, because it now readily vectorizes. On a Cray C90 we measured 

a speecl-up factor of 5- 9 depending on the values of N and s. 
We still have not chosen the chunk size s. In order to perform both loop 

nests at vector speed, s should be chosen such that the iteration counts of the 

respective inner loops (being N / s and s) are not too small. Moreover, s, being 

the increment of the first inner loop, should not he a multiple of the number of 

memory banks. The latter would cause memory bank conflicts resulting in a 

measured performance degradation by a factor 4 in CPU time ou a Cray C90. 

Finally, the choice of s also depends on other optimization techniques in the 

actual implementation. 
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Had our prototype not been writ ten m;ing Fortran INTEGERs, we probahly 

would have opted for Cray's SCILIB (SCientific LIBrary) rout ine RECPS. Our 

implementat ion and RECPS perform comparably. In Section 5 we can not do 

wi thout the partial stmmmt ion algorithm described above, since there is no 

SCILIB rout ine with the same functionality for INTEGERs. 

3. 5 Gathering the statistics 

Having a completely vectorized algorithm for the systematic computation of 

.M(x) we are still not completely done. One not entirely minor point remains: 

we want to study the local extremes of lv! (:r.)/VX,. Clearly, we do not want.

neither have to- compute -JX for all :i; . • M (x)/ -JX can only reach a new extreme 

value if .M(:r) does. Searching for new extremes can only be done at vector 

speed if the number of extremes is small with respect to the number of elements 

we are considering. If in the interval we are investiga t ing Mertens' conjecture 

-vx < M (x) < vx, 1 < :r ::; N, 

holds, it guarantees at most VN local maxima and minima. On the other hand, 

if Mertens' conjecture would not hold in the interval we are invest igating, we 

would find the smallest argument value :i; giving a counterexample for Mertens' 

conjecture. 
We search l\1 (:i.:) for new ext remes in either directiou using t he highly efficient. 

Cray SCILIB routines ISRCHFGT and ISRCHFLT. 

We refrain from describing the actual bookkeeping process, since hookkeeping 

of the ext remes gets rather complicated by the sieve partitioning, our search for 

ext remes in two directions (positive/ negat ive) , and minimization of the printed 

output. 

3. 6 Comparison to Neubauer's algorithm and Dress' version 

Te Riele drew our attention to t he work of Neubauer [12], who used a similar 

algorithm for comput ing l\f(x) , x = 1, . . . , 108 . Neubauer also had to part it ion 

his sieve interval. However, he used three sieve arrays. His algorithm [12, p. 2] 

reads as follows: for n = 0, 1, . . . 

lOOOn < m ::; 1000( n + 1) 

pf I m ::::} µ(m ) = 0 

g(m) = L logp; l/(m) =I: 1 
1» Im p ;l m 

Neubauer builds up e(m) to check whether there is a prime factor p > VN 
and he counts the number of different prime factors in l/(m). Neubauer does 

not use multiplications, nor divisions. However, he must take care of precision 

because of the inherent ly inexact. log p; values. 
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Recently, Dress used a variant of Neubauer's algorithm using only two sieve 

arrays (a and µ in [3, Algorithme 2]) and- at least in the description- a division 

step. 
Our algorithm only uses one sieve array, computing µ(n) in-place. Moreover, 

on current vector computers a vector-multiplication is just as expensive as a 

vector-addition. Because of the overhead involved in partitioning the sieve 

interval , there is a certain trade-off between memory usage and CPU usage. 

Using only one sieve array, and, of course, the unavoidable prime table, it is 

possible to use the available memory as efficient as possible. Moreover, we have 

added a small prime variation. 

4 DIRICHLET'S DIVISOR PROBLEM 

We consider D(x), the first summatory function of T(n), 

D(x) = L T(n), 
11 :=; x 

where T(n) denotes the number of divisors of n. Dirichlet [2] proved that 

D(x) = 3; log 3; + (21 - l) x + E(x), 

where / is Euler's constant, and E( 3;) = CJ( JX). This may be considered 

as a lattice point problem, counting the muuber of lattice points in the first 

quadrant between the axes and the hyperbola qd = x, including those ou the 

hyperbola 

D(:i:) = I::L1 = L 1. 
11 :=; .c t! lu 11.il 

qd ::; ,, 

Compare FIGURE 1. An unsolved problem in aualytic number theory is the 

estimation of the order of the error term E(x) . TABLE 1 shows the historical 

developmeut of Dirichlet's divisor problem. For a more complete table, further 

references, and much more about lattice point prohlems in geueral, we refer 

to [5, 7]. 

5 A VECTORIZED ALGORITHM FOR DIRICHLET'S DIVISOR PBOBLEM 

Given the unique prime factorization of n 

k 

n = rrp:'• 
i= l 

we have the following formula for T(n) 

k 

T(n) =IT (e ; + 1). 
i= l 
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FIG URE I. Dirichlet 's divisor problem 

Using two sieve arrays instead of one, and exploiting the above mentioned 
formula we can sieve r(n) similarly as JJ.(n ). The following algorithm computes 
the number of divisors function r(n) for n = I, ... , N. 

for n = I to N 
I (n) = I 
r(n) = 1 

for all p ::; .JN 
for all n, p I n 

I(n ) = p · I (n) 
r(n) = 2 · r(n) 

for e = 2 to L log2 N J 
for all p ::; ifN 

for all n,p" In 
I(n ) = p · I (n) 

r(n) = (e + 1) · r(n) 

for n = 1 to N 
if I ( n) -:fa n then 

r(n) = 2 · r(n) 

e 

\Ve need two sieve arrays because keeping track of a parity as for Jl(n) does not 
suffice. In t he / -array we multiply all prime factors encountered during sieving. 
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TABLE 1. The order of the error term in D(x) 

Dirichlet 
Voronol 
Van der Corput 
Kolesnik 
Iwaniec & Mozzochi [6] 
Van de Lune and Watte! conjecture [9] 

Hardy and Landau 

year 
1849 
1903 
1922 
1969 
1988 
1990 
1915 

E (x) 
C'.J( x1/2) 

C'.J(x113 Jog x) 
C'.J (x33/1UU) 
C'.J(x(l2/:H)+E) 
O(x1/22) 
C'.J(x l /4 Jog :i:) 

This way ouly a single prime factor p > ,/N can remain which is taken care of 

by the last loop nest. In the r-array we maintain the number of divisors using 

the above mentioned formula: when sieving with a prime factor we multiply 

r(n) with 2 (since e = 1); sieving with a prime square we divide the current 

value of r(n) by 2 and multiply with 3; when sieving with higher prime powers, 

exponent e, say, we divide by e aud multiply with e + 1. 

Similarly as for the /t (n ) we cau use a small prime variat ion hy creating 

patterns for both the / -array and the r-array. 
The partial summation, and gathering of the statistics can all be performed 

analogous to the procedures for Pvl ( :i:) / yfX. 
For an actual implementation ou the Cray C90 one should use an INTEGER 

r-array, because of the very fast but inexact floating point division (resulting 

e.g. in 3.0/ 3.0 -::/; 1). 

6 N UMERICAL RESULTS FOR A/(x)/ Vx 
\Ve verified the results of Neubauer [12], Cohen & Dress [1], and Dress [3]. 

Furthermore, we established the bounds - 0.513 < AJ(:i:)/ JX < 0.571 , valid for 

200 < x _ 1013 . See TABLE 2 for some selected values of l\J(x) and M(:i:)/ vx 
for :i; = 1, ... , 1013 . 
The computation of Cohen and Dress [1] in 1!)79 up to 7.8 · 10!1 took a week 

ou a TI980B minicomputer. The computation of Dress [3] up to 1012 in 1992 

took 4000 hours on three Sun SPARCstations 2. 

Our results were all obtained using one processor. A test run up to 1010 of 

our prototype implementation took 32 minutes on a Cray Y-MP. The i;ame run 

of our final implementation took 9 minutes on a Cray C90. The speed-up was 

due to the faster machine and the improved implementation. The verification 

of [3] (up to 1012 ) took some 17 hours on a Cray C90. Finally, the computation 

up to 1013 took a li t tle less than 200 hours on a Cray C90. 
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TABLE 2. M(:i:) an<l M (:i:) / -/X for some selected" :r, < 101:1 

M(x) 
M (x) M(:i:) 

M (:i:) 
:r. 

.jX 
:i: 

.jX 

30,095,923 - 1,448 - 0.264 9,826,066,363 - 31,20i - 0.315 

30.91!),091 - 2,573 - 0.463 15,578,66D,387 - 51,116 - 0.410 

:H,750,986 1,420 0.241 18,835,808,417 50,287 0.3()6 

61.913,863 2,845 0.362 19,890,188,718 60.442 0.429 

70,497,IO:l - 2,574 - o.:m1 22,745,271 ,553 - 51 ,117 - 0.339 

76,015,339 - :3,448 - 0.395 38,066,:135,279 - 81,220 - 0.416 

90,702,782 2,846 0.299 48,201,938,615 ()0,443 0.275 

92,418,127 3,290 0.342 48,638, 777 ,062 76,946 0.349 

109,528,655 - 3,449 - 0.330 56,794,153,135 - 81,221 - 0.341 

110,103,729 - 4,610 - 0.43!) 101,246,135,617 - 129,332 - 0.406 

141,244,329 3,291 0.277 106,512,264, 731 76,947 0.236 

152,353,222 4,279 0.347 108,924,543,546 170,358 0.516 

179,545,614 - 4,611 - 0.344 148,449,169,741 - 129,333 - 0.336 

179,919,749 - 6,226 - 0.464 217,:309,283, 735 - 190,936 - 0.410 

216,794,087 4,280 0.291 295, 766,642,409 170,359 0.313 

360,718.458 6,695 0.353 297,193,839,495 207,478 0 .381 

455,297,339 - 6,227 - 0.292 325,813,026,298 - 190,937 - 0.335 

456,877,618 - 8,565 - 0.401 330,138,494,149 - 271 ,317 - 0.472 

514.440,542 6,696 0.295 330,486,258.610" - 287,440 - 0.500 

903,087,703 10,246 0.341 330,508,686,218" - 294,816 - 0.513 

1,029,223,105 -8,566 - 0.267 400,005,203,086 207,479 0.328 

1,109,331,447 - 15,335 - 0.460 661,066,575,037 331 ,302 0.407 

1,228,644,631 10,247 0.292 1,246,597,697 ,210 - 294,817 - 0.264 

2,218,670,635 15.182 0.322 1.440,355,022,306 - 368,527 - 0.307 

2,586,387,614 - 15,336 - 0.302 l ,Ci00,597.184,945 3:H ,303 0.262 

2,597,217,086 - 17,334 - 0.340 1,653,435,193,541 546,666 0.425 

3,061 ,169,989 15,183 0.274 2,008, 701,330,005 - 368,528 - 0.260 

3,314,385,Ci78 21 ,777 0.378 2,087,416,003,490 - 625,681 - 0.433 

3,724 ,183,273 - 17,335 - 0.284 2,319,251,110,865 546,667 0.359 

3, 773,166,681 - 25,Cl71 - 0.408 2,343,412,610,499 594,442 0.388 

5,439,294 ,226 21,778 0.295 3.268,855,616,262 - 625,682 - 0.346 

5,439,294, 781 21,791 0.295 3,270,926,424,607 - 635,558 - 0.351 

6,600.456,626 - 25,072 - 0.309 3, 754,810,967 ,055 594.443 0.307 

6,631,245,058 - 31 ,20Ci - 0.383 4,098,484,181,4 77 780,932 0.386 

7,544,459,107 21,792 0.251 5,184,088,665,413 - 635,559 - 0.279 

7,660,684,54 1 38,317 0.438 5,197,159,385, 733 - 689,688 - 0.303 

7, 725,038,6291
' 43,947 0.500 6,202,507,744,370 780,933 0.314 

7,766,842,8131
' 50,286 0.571 9,784,334,467,058 889,948 0.285 

" A listed Jl/(x)-value guarantees the corresponding :c to bet.he sma llest. argument. value 

for which Jl/(x) assumes this value. Consecut.ive Jlf (x)-column-entries of the same sign gua r-

ant.ees absence of new extremal Jl.f(x)-valnes of the opposite sign in between . A fra med 

Jl/ (3:)/ ../X value guarantees the corresponding :i: t.o he t.he smallest. argument value grea ter 

than 200 for which !IJ(:i:) / ../X assumes this value. 

"This verifies a result of Cohen and Dress [l ]. 
r. T his verifies a result of Dress [3]. 
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7 CONCLUDING REMARKS 

We showed two vectorized algorithms: one for fast systematic computations on 

Mertens' conjecture, and one for fast systematic computations on Dirichlet 's 

divisor problem. In an update of this paper we will extend Section 6 with 

numerical results for Dirichlet 's divisor problem. 

The algorithms we described are generalizable to arbitrary arithmetical func

tions f : N -+ Z as long as we have a fairly simple relation between f (peq) and 

J(pe- 1q), where e, p, q E N , p prime, p f q. For example r(p"q) = "~ 1 r (p"- 1q). 

In particular, we have devised similar algorithms for GauB' lattice point prob

lem and amicable numbers, to name just two [8] . 
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Actions on the Hilbert cube 
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We provide a negative answer to Problem 933 in the "Open Problems in 
Topology Book" . 

K ey words 8 phrases: Lie group, action, conjugate 
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1 INTRODUCTION 

Let Q denote the Hilbert cube f1::1[- 1, l];. In the "Open Problems in Topol
ogy Book" , WEST [2] asks the following (Problem #933): 

Let the compact Lie group G act semifreely on Q in two ways such 
that their fixed point sets are identical. If the orbit spaces are 
ANR 's, are the actions conjugate? 

The aim of this note is to present a counterexample to this problem. For all 
undefined notions we refer to [1]. 

2 THE EXAMPLE 

Let G be a group and let ?r : G x X --+ X be an action from G on X. Define 
Fix(G) = {x E X: (Vg E G)(7r(g,x) = x)}. It is clear that F ix(G) is a closed 
subset of X: it is called the fixed-point set of G The action 7f is called 8emifree 
if it is free off F ix(G), i.e. , if x E X \ Fix(G) and 7r(g,x) = x for some g E G 
t hen g is the identity element of G. The space of orbits of the action 7f will be 
denoted by X / G. Let Il denote the interval [O, 1]. 
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Let G denote the compact Lie group 'JI' x Li, where '][' denotes the circle 

group. We identify Li and the subgroup { - 1, 1} of 'JI'. In addition, D denotes 

{z EC : lzl :S 1}. We let G act on D x Din the obvious way: 

( (g, €)' ( :r,' y)) I-+ (g . x, € . y) (g E 'JI', c: E {- 1, 1}, :i: ,y E D ), 

where "·" means complex multiplication. Observe that this action is semifree, 

and that its fixed-point set contains the point. (0, 0) only. Also, observe that. 

(D x D) / G ~ Il x D. 

LEMMA 2.1 Let H denote either G or 11'. There is a semifree action of H on 

Q x Il having Q x {O} as its fixed-point set. Moreover, (Q x Il )/ G and Q are 

homeomorphic. 

PROOF. We will only prove the lemma for G since the proof for 11' is entirely 

similar. We first let G act. on X = D x D x Q as follows: 

( (g, €), ( :r,, y' z)) I-+ (g . :r,' € . y, z) (g E 'JI', c: E {- l , l}, :1:,y E D, z E Q). 

This act.ion is semifree and it8 fixed-point set is equal to {(0,0)} x Q. Also 

observe that X/G ~ Il x D x Q. 
We now let G act coordinatewise on the infinite product x cxo . This action 

is again semifree, having the diagonal .6. of { (0, 0)} x Q in x cxo as its fixed

point set. Also, X 00 /G is homeomorphic to (I x D x Q)00 ~ Q. Since .6. 
projects onto a proper subset of X in every coordinate direction of X 00

, it 

is a Z-set. Since X 00 ~ Q there consequently is a homeomorphism of pairs 

(X00 ,.6.) _... (Q x Il ,Q x {O}). We are done. 

We will now describe two actions of G on Q x [- 1, 1). By Lemma 2.1 there 

is a semifree action or:'][' x Q x Il _... Q x Il having Q x {O} as its fixed point set, 

while moreover Q x Il/G~ Q. We let'][' act on Q x [- 1,0) a." follows: 

(z, (q, t)) 1--+ (ij, s) iff a,.(z, (q, - t)) = (ij, - s). 

We will denote this action by O'/. So a = a 1Ua,. is an action of'][' onto Q x [-1, 1), 

having Q x {O} as its fixed-point set. Now define a: G x (Q x [- 1, 1)) --. 

Q x [- 1, 1) as follows: 

_ (( ) ( )) { a(z, (q, t)), 
a z,c:' q,t = a(z,(q, - t)), 

(c: = 1), 
(c: = - 1). 

Then a is a semifree action of G onto Q x [- 1, 1] having Q x {O} as its fixed-point 

set, while moreover (Q x [- 1, 1))/a ~ Q. Observe the following triviality. 

LEMMA 2.2 If A <:::;; Q x [- 1, 1) is ii-invariant such that A is not contained in 

Q x {O}, then A intersects Q x (0, 1) as well as Q x [- 1,0). 
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We will now describe the second action on Q x [-1, l]. By Lemma 2.1 there 

is a semifree action fJr : G x Q x H -+ Q x H having Q x {O} as its fixed point 

set, while moreover Q x H/G ~ Q. Construct fJ1 from (J,. in the same way we 

constructed o:1 from 0:1•• Then (J = (11 U (J,. is a semifree action from G onto 

Q x [- 1, 1] having Q x {O} as its fixed-point set. Moreover, (Q x H)/(J is the 

union of two Hilbert cubes, meeting in a third Hilbert cube, hence is an AR. 

(It can be shown that (Q x H)/{J ~ Q. ) 

Now assume that the two axions ii and fJ are conjugate. Let r: Q x [-1, 1]-+ 

Q x [-1, 1] be a homeomorphism such that for every g E G, {J(g) = r - 1 oct(g) or. 

Then r ( Q x (0, 1]) is a connected a-invariant subset of Q x [-1, 1] which mh;ses 

Q x {O}. This contradicts Lemma 2.2. 
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The Expansion Theorem for Median Graphs 

Henry Martyn Mulder 

To Car Baayen, at the occasion of his retirement 

1. Introduction 

This paper deals with the adventures of the expansion theorem for median 

graphs [~ ' u 78, Mu 80b). It was the first theorem I ever proved (on a walk 

during the Fifth Hungarian Combinatorial Conference in Keszthely, Hungary, I 

was 'struck' by the idea ultimately leading to this theorem), and it was the 

starting point for my Ph. D. thesis written under the inspiring guidance of 

Cor Baayen. Median graphs existed already in the literature [Av 61, Ne 71), 

but they were independently introduced by LEX Sct11JVER and me [MS 79) in the 

context of a problem in finite topology posed by JAN VAN MILL [vM 77) early 

1976. All three of us were at that time Ph. D. students of Cor Baayen. 

Loosely speaking the idea of expansion is the following. Let G be covered 

by a number of subgraphs, which two by two intersect in the same subgraph G0 

of G. Now we take disjoint copies of the covering subgraphs and join the 

respective copies of G0 in these subgraphs by new edges. 

By imposing conditions on the covering subgraphs and on how to insert the 

new edges we get specific instances of expansion. Some types of expansion may 

not be sensible to study, but others seem to be quite promising in producing 

interesting problems and results. In [Mu 90) a 'masterplan' was formulated 

for studying various expansion problems. 

To show how fruitful this approach can be, we discuss a number of results 

on median graphs. These all have elegant and straightforward proofs using a 

specific instance of expansion, by which median graphs can be characterized. 

A median graph is a graph such that, for any triple of vertices u, v, w, there 

exists a unique vertex minimizing the sum of the distances to u, v and w. 

2. Median graphs and expansion 

In this section, we will give some results and introduce terminology 

found in [Mu 78, Mu 80b, t>lu 90, MMR 94). All graphs considered in this paper 

will be finite, and we use the standard notation G = (V,E) to denote a graph 

with vertex set I' and edge set E. \Ve will often simply write only G and leave 
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V and E u11clerstood. Also, we will not distinguish between a subset IV of V and 

the subgraph induced by IV. In a connected graph, the distance d(x,y) between 

two vertices x and y is the length or a shortest x,y-path, or an 

x, y- geode.sic. The star of our show is the median graph G: a connected graph 

such that for every three vertices x,y,z, or G, there is a unique vertex w on 

a geodesic between each pair or x,y, z. This vertex w is called the median of 

the triple x,y,z. The interval between the vertices x and y is the set 

/(x,y) of all vertices on x,y - geoclesics, i.e., 

/(x,y) = {weV:d(x,w)+d(w,y) d(x,y)}. 

The interval function I of a graph G was extensively studied in [Mu 80b). It 

is an easy observation that a graph G is a median graph if and only ir 

l/(x,y) n /(y,z)I =I for all vertices x,y,z of G. Median graphs were first 

studied in 1961 by AVANN [Av 61), and independently introduced by NEBESKY [Ne 

71) and MULDER and Sc1m1JVER [MS 79]. Trees are the simplest examples of 

median graphs. Another prime example is the n-cube Q,.. Recall that Qn has 

{O,I}" as vertex set, and two vertices are adjacent whenever they differ in 

exactly one place. F'or three vertices x = x1x2 •• • x,. ,y = y1y2 ••• y,. ,z = z1z2 •• • z11 

of Q,. the median w=w1w2 ... w,. of x,y,z is determined by the majority rule: 

w; = 6 ir 6 occurs at least twice among X; ,y; ,z; , for i = I, . . . , n. Other 

examples of median graphs are the grids and the covering graphs of 

distributive lattices. It is also an easy observation that median graphs are 

bipartite, for ir x0 •• • xkxk+i·· .x2kxo is a shortest cycle of odd length, then 

x 0,xk,xk+I would have X1; and xk+1 as two distinct medians. The smallest 

bipartite graph that is not a median graph is K2,3: the profile consisting of 

three independent vertices has two medians. 

A set IV of vertices of a graph G is convex ir /(x,y)QV for every x,y, eW, 

and a convex subgraph of G is a subgraph induced by a convex set of vertices 

of G. Clearly, a convex subgraph of a connected graph is also connected. 

Moreover, the intersection of convex sets (subgraphs) is convex. The convex 

hull Con(U) or a set of vertices U is the intersection of all the convex sets 

containing U. It was proved in [Mu 80b] that intervals in median graphs are 

convex, so that Con( {x,y}) = /(x,y) . Also, in median graphs, convex sets can be 

viewed in another useful way through the notion or a gate. For Wi;;V and x e V, 

the vertex zelV is a gate for x in IV if ze/(x,w) for all weW. Note that a 

vertex x has at most one gate in any set IV, and ir x has a gate z in W, then 

z is the unique nearest vertex to x in IV. The set IV is gated if every vertex 

has a gate in JI' and a gated subgraph is a subgraph induced by a gated set. It 
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is not difficult to see that in any graph, a gated set is convex and that in 

a median graph a set is gated if and only if it is convex. (This last fact 

follows inunediately from results in [Mu 80b ]. ) 

Recall that for two graphs G1 = (Vh£i) and G2 = (V2,£2), the union G1uG2 is 

the graph with vertex set V1uV2 and edge set £ 1u£2, and the intersection 

G1nG2 is the graph with vertex set V1nV2 and edge set E1n£2• We write G1nG2 =Cll 

( ;t0) when V1nV2 =0( ;tO). A proper co-uer of G consists of two convex subgraphs 

G1 and G2 of G such that G=G1uG2 ,G1nG2 ;e0. Every graph G admits the trivial 

proper cover G1 ,G2 with G1 = G2 =G. On the other hand a cycle does not have a 

proper cover with two proper subgraphs. 

We are now able to give the definition of the operation which will help 

yield a characterization of median graphs. Let G' = (V',E') be properly covered 

by the convex subgraphs G1' = (V1',£1') and G2' = (V2',£2') and set G0'~G1'nG2'. 

For i = 1,2, let G1 be an isomorphic copy of G1', and let ..\; be an isomorphism 

from G;' onto G1• We set G0; = .X;[G0') and ..\;(u') = u;, for u' in G0'. The 

expansion of G' with respect to the proper cover G1', G2' is the graph G 

obtained from the disjoint union of G1 and G2 by inserting an edge between u1 

in G10 and u2 in G20 , for each u' in G0'. Denote the set of edges between G10 

and G20 by F12• This is illustrated in Figure 1. We say that ..\; lifts G;' up 

to G;. for any subgraph ff' of G' we abuse the notation and write ..\;[H'] for 

..\;(H'nG;'J. So ..\; lifts the part of H' lying in G;' up to G;. 

This type of expansion was called a "convex expansion" in [Mu 78], [Mu 

80b], and a "convex Cartesian expansion" in [Mu90] for a more general 

setting. We are now able to state the following fundamental result on median 

graphs first proved in (Mu 78] and [Mu 80b]. This result is the basis of a 

recent O(IVl 2logWI) algorithm for recognizing median graphs found in (JS]. 

Theorem 1. A grnph G is a median graph if and only if G can be obtained by 

successive expansions from the one vertex graph /(1• 

Using this theorem, trees can be obtained from K1 by restrictng the 

expansions to those of the following type: G1 is always the whole graph G and 

G2 is a single vertex. Expansio with respect to such a cover amounts to 

adding a new vertex adjacent to the one in G2• The n-cubes can be obtained 

from /(1 by using only trivial proper covers. Note that K2. 3 can not be 

obtained from a smaller graph by expansion with respect to a proper cover. 

In order to make full use of Theorem and to develop additional 

techniques, Wl~ give a very brief sketch of the proof. Along the way we 

introduce some extra terminology. 



The basic ideas use cl for the proof o r Theorem I are the following. Take 

an arbitrary eclge V1V2 in a median graph G. Let G1 be the sub graph of G 

induced by all vertices nearer to ·u, than to V2, and let G2 be the subgraph 

induced by all vertices nearer to V2 than V1. Since G is bipartite, it 

follows that G1, G2 partition G. We call such a partition a split. Let F12 be 

the set of edges between G1 and G2 , and let GiO be the subgraph induced by 

the endvertices in Gi of the edges in F12, for i = 1,2. Then one proceeds to 

prove the foll owing facts (not necessarily in this order): 

(i) F12 is a matching as well asa cutset (minimal disconnecting edge-set). 

(ii) The subgraphs G 11G 2,GID,G20 are convex subgraphs of G. 

(iii) The obvious mapping of GID onto G20 defined by the edges in F12(u1 ... u2, 

for any eclge u 1u 2 in F 12 with ui in G;0, for i = 1,2) is an isomorphism. 

(iv) For every edge u1u2 or F 12 with ui in Goi (i= l,2), the subgra.ph G 1 

consists or all the vertices of G nearer to u1 than to u2, so that u1 

is the gate in G1 for u2• A similar statement holds for G2• 

Now the contraction G' of G with respect to the split G11G2 is obtained 

from G by contracting the edges of F12· To illustrate this in Figure 1, move 

from right to left. Clearly expansion and contraction are inverse operations. 

The contraction map " ' of G onto G' , associated with F12 is thus defined by 

11:lc. =Ai\ for i= 1,2. Finally one shows that G' is a median graph and so, by 
I 

induction on the number of vertices, Theorem 1 is proved. 

We present another feature of median graphs that helps in getting the 

right mental picture of how to operate with them in the rest of the paper. A 

cutset coloring of a connected graph is a proper colouring of the edges 

(adjacent edges have different colours} such that each colour class is a 

cutset (a minimal disconnecting edge set). Of course, most graphs will not 

have a cutset colouring, whereas even cycles of length at least six have more 

than one. if we want to cutset colour the edges of a graph, then in an 

induced 4-cycle wxyzw, opposite edges most have the same colour. So, w, z a.re 

on one side and x, y 011 the other side of the cutset colour of wx, and thus 

yz gets the same colour as wx. \Ve call this the 4-cycle property of cutset 

colourings. It follows from (i), (ii) and (iii) that in any cutset colouring 

of the median graph G', the set F12 must be a colour class. Using induction on 

the number or colours gives the next corollary [Mu 78, Mu 80b]. 

Corollary 2. A median graph is uniquely cutset colourable up to the labeling 

of the colours. 
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For a split G.,G2 , we call the set F12 a colour, and G1 and G2 the 

colourhalves of F12• Thus it follows that any colour in the cutset colouring 

of the media11 graph G defines a split into two convex colourhalves, as in the 

case of F12 with all the properties listed above. Hence the 4-cycle property, 

one can determine the colour class of an arbitrary edge xy. This colour class 

splits G into the convex subgraph of all vertices nearer to x than to y and 

the convex subgraph of all vertices nearer to y than to x, etc. There is yet 

another important feilture of median graphs that we need in the sequel, and 

which follows from (the proof of) Theorem 1 [Mu 80b]. If we consider any two 

colours in the cutset colouring of the median graph G , and we contract them 

in any o··der, then we get the same median graph G". Hence we can apply the 

corresponding expansions to obtain G from G" in any order. This means that 

in obtaining G from a median graph II by a succession of expansions, we can 

apply these expansions in any order. This is easily seen in the case for 

trees: every expansion corresponds to an edge in the tree, and it does not 

matter in what order we introduce the edges in forming the tree. 

The basic techni<1ue that will be used in proofs found in the next section 

is as follows: One or more contractions on the median graph G are performed 

to oblai11 a smaller median graph G', on which we apply the appropriate 

induction hypothesis. Then we perform the corresponding expansions in reverse 

order on G' so that we regain G. During this process, a vertex x of G is 

contracted to a unique vertex x· in G'. When we recover G from G' by 

expansions, then x ' is lifted up in each expansion to the appropriate 

colourhalf until we regain x. The sequences of vertices and expansions that 

we obtain in this way from x· up to x is called the history of x (with 

respect to the expansions involved). Similarly, if ir=(x11 ••• ,xA:) is a 

sequence of vertices of G, a profile for short, then ir is contracted to a 

profile ir' =(xj, . .. ,xt) on G' , where is the contraction of X;, for 

i = l, ... ,k. We thus define the history of ir in the obvious way. If x• is a 

vertex of G' and we lift x ' up to a vertex x in an expansion of G', then we 

call x a descendant of x·. Hence if we know which lifts are applied on x' in 

the expansions to regain G from G', then we know the history of all the 

descendants of x '. 

Having now introduced the basic techniques and results on median graphs, 

we will use them frequently without specific mention in the sequel. 

In a sense median graphs are the ap1>ropriate common generalization of 

trees and hypercubes. This as well as many other results on median graphs 

suggest the following 'meta'conjecture. 
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Metaconjecture. Any 'reasonable' property shared by trees and hypercubes is 

shared by all median graphs. 

In the rest of the paper, we use the standard notation developed above: G 

is a median graph with split G1, G2 with colour F12, contraction G' etcetera. 

3. Median sets 

Let G be a connected graph. A profile on G is W is a vertex sequence 

lr=(v1,v2, ••• ,vl;) in G. Note that multiple occurrences in ir are allowed. The 

length k of the profile is denoted by lirl. A profile is even or odd depending 

on whether k is even or odd. The (simultaneous) distance D(u,ir) of a vertex u 

to ir is defined by 

k 

D(u,ir) [ d(u,v;). 
i=I 

A median of ir is a vertex x minimizing the distance D(x,ir), and the 

median set M(ir ) of ir consists of the medians of ir. Since G is assumed to be 

connected, a median set is always non-empty. The median set of two vertices 

u,v is the interval /(u,v). In general not much is known about the structure 

of median sets, but not so for median graphs. Clearly here every triple of 

vertices has a unique median. For longer profiles the situation is equally 

plain. After one has made the effort to develop the expansion technique, on 

can sit down in the armchair and let the expansions do the work. In [MMR 94) 

the expansion teclmique is exploited in its full richness to study median 

sets in median graphs. We present here the main results and prove one Lemma 

to give an idea how one could proceed to prove the theorems. 

If ir is a profile in a median graph G with split G., G2, then let ir; be 

the subprofile of ir consisting of all elements of ir in G;. For each subset W 

of V, we set IV'=i.:[IV] and x'=11:(x). Note that if for some u· in G0, both u1 and 

u2 are elements of IV, them u' is in IV' and llV'I <!IV!. If ir is a profile on 

G, then we have 7r;=11:(ir;) and ir;=A;(ir;), where i;, and A; are applied 

component wise. 

Lemma 3. With the above notation, if ir is a profile in the median graph G 

with lir.I > lir2 1, then fll(ir') is contained in Gj, and M(ir) is contained in G11 

and M(ir') = ftl (ir)', and lft/(7r)I = jft/(ir')I . 
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Proof. Let w' be a vertex in G2-G0 and let x' be the gate of w' in Gj. Then 

we have 

D(w',iri) = D(x',iri)+ lirild(x',w'). 

The triangle inequality for d yields 

D(w',ir2) ;,: D(x',ir2)- lir21d(x',w'). 

Hence we have 

D(w',ir') = D(w',irj)+D(w',ir:i) 

So M(7r') lies in Gi . 

;,: D(x',ir')+d(x',w')( l7ril - l7r21) 

> D(x', ir'). 

Now choose a vertex w in G2 and a vertex v in G1 with v' in M(7r'). Then we 

have 

D(v,7r) 

D(w,11") = D(w' ,7r') +I irtl, 

whence D(w,7r) > D(·v,7r). So M(7r) lies in G1• Finally, for each vertex v in G, we 

have 

so that M(7r}' = M(7r') . Since M(7r) lies in Gil it follows that IM(7r) I = IM(7r') I· D 

Using this Lemma, we can relate M(ir) to the median set of 7r' in G'. 

Theorem 4. If ir is a profile in a median graph G with 111"11 > lir21, then 

M(ir) = ,\1(il/(7r')]. Furthermore, if ir is odd, then IM(7r)I = 1. If 7r is even, 

then M(7r) is an interval, and then 

Using expansions, we can also relate M(7r) to the median sets of its 

vertex- deleted subprofiles. 
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Theorem 5. Let ir = (·u1, ·u2 , ••• , ·uk) a profile in a median graph G with 

k > l. If ir b odd, then ft/( ir) = n ft/( ir- ·u;), and if ir is even, then 
I 

ft/(ir) =Con( '(,l/(ir-·u;)). 

For proofs the reader is referred to (MMR 94]. 

4. Dynamic search 

In (CCS 87] and (CCS 89) CHUNG, GRAHAM and SAKS considered the following 

intriguing problem and proved some important results. 

Let G = (V,E) be a connected graph, where on each vertex some piece of 

information is located. A retriever is located at some vertex u of G, his 

position. A quest for a piece of information comes in the form of a quest for 

the vertex where this information is located. The retriever has two options: 

(i) to retrieve from u the information at v, which costs d(u,v); 

(ii) to move from u to some vertex v, which also costs d(u,v). 

If the retriever is at an initial position p0 , then his goal 

sequence of quests Q = q., q2, ••• , q11 to find a sequence 

P = p0 ,p1 ,. •• ,p11 such that the following distance sum is minimized: 

n 

(*) [ d(P;-11P;)+d(p;,q;). 
i=l 

is, given a 

of positions 

We can read this sum as follows: being at Pi-1' the retriever first moves to 

p; and then retrieves q;, for i = I, ... , n. 

With each quest sequence Q and each position sequence P we can associate 

a caterpillar R(P,Q) consisting of P, Q and a Pi-hP;-geodesic and a p;,q;

geodesic, for i= l, ... ,n. Note that in R(P,Q) we may have multiple occurrences 

of vertices as well as edges. The Pi-hP;- geodesics with i= 1, ... ,n form the 

spine of the caterpillar, the p;,q;- geodesics are the legs (note that 

mathematics is capable of creating new biological species). The length t(P,Q) 

of the caterpillar R(P,Q) is the sum of the lengths of all geodesics involved 

in constructing the caterpillar, and thus t(P,Q) equals sum (*) above. In 

these terms, given a quest sequence Q and initial position p0 we want to find 

a shortest caterpillar R(P,Q). 

If the retriever being at the initial position knows all the quests in 

quest sequence Q, then he can always find a shortest caterpillar R(P,Q) 
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minimizing his total costs. llow to find P is another story. But if he has 

only partial kuowledge at some position Pi-Ii he can only optimize Pi with 

respect to, say, the next k quests q;,q;+1, ... ,qi+IH· When finally aU 

quests have come in and he has completed his caterpillar R(P,Q), then it is 

generally not the shortest possible caterpillar. 

If at any position Pi-I we have only foreknowledge of the next two quests 

qi and qi+!, then the best thing we can do is choosing a median point of 

Pi-1tqiiqi+1 as our next position Pi· This is the median strategy. In 

[CGS 87] the problem was posed and settled on which graphs the median 

strategy, with always foreknowledge of the next two quests at each position, 

will prml'lce a shortest caterpillar for each initial position p0 and each 

quest sequence Q, cf. (\Vr 87]. 

Theorem 6. Let G be a connected graph. The median strategy with foreknowledge 

of the next two <1uests at each position produces a shortest caterpillar for 

each initial position p0 and each quest sequence Q if and only if G is a 

median graph. 

If the median strategy is optimal, then CHUNG, GRAHAM and SAKS proceed in 

the following way. Assume that there are vertices u,v,w having two distinct 

median points. Choose such a triple with d(u,v)+d(v,w)+d(w,u) as smaU as 

possible. Now, with initial position u, by choosing quest sequences of length 

at most 6 of the type u,u,v,w,q,q and varying q, a contradiction can be 

derived. F'or full details of this proof the reader is referred to [CGS 87]. 

To prove the converse they make use of BANDELT's theorem [Ba 84] that the 

median graphs are precisely the retracts of hypercubes (see the next 

subsection). Here we give an alternative proof for the 'if part' using our 

expansion approach. 

Proof of the 'if part' of Theorem 6. We use induction on the number of 

expansions, so let F,G1,G2 ,G',ir',IV' etcetera be as above. Let P be the 

position sequence obtained via the median strategy with respect to initial 

position p0 and quest sequence Q. Note that, because of unicity of medians, P 

is uniquely determined. 

Assume that there is a position sequence T with t(T,Q) <t(P,Q). Note that 

P' is the position sequence obtained via the median strategy in G' with 

respect to Pu and Q'. By induction hypothesis, we know that 

t(T',Q') ~l( P',Q') . Note that, for any caterpillar R(S,Q) in G, it follows 

from the expansion procedure that 
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l (S,Q) l (S' ,Q ' ) +o:(S, Q), 

where o:(S,Q ) is the number of edges from F lying on R(S,Q ). 

Without loss of generality we may assume that p0 lies in G1• Put q0 = p0• 

The spine of R(P,Q ) starts in G1• Beginning in p0 we walk along the spine of 

R(P,Q) and check where the caterpillar crosses the cut F: 

if Pi-I• qi- t• qi+t lie in (;1 and qi lies in G2, then the crossing is in 

the p;,qi- leg and the spine remains in G1, 

if Pi- t• qi-1' lie in G1 and qi, qi+t lie in G2 , then the crossing is in 

the spine between Pi-t and p;; now we exchange the roles of G1 and G2 and 

proceed along the spine. 

Note that a crossing only occurs if Q crosses F, but not necessarily, for in 

the first case above Q crosses F twice and the caterpillar crosses F only 

once. Each caterpillar must cross F at least once in the above situations. 

So, for any position sequence S, we have o:(S,Q) ;::: o:(P,Q). 

Combined with l (T' ,Q ');::: l (P' ,Q') we get l(T,Q);::: l(P,Q), contradicting our 

asswnption that R(T,Q ) was a shorter caterpillar that R(P,Q ). O 

5. Retracts of hypercubes 

A retract of a graph G is an isometric subgraph ff of G such that there is 

a distance decreasing map of G onto II, which restricted to ff is the identity. 

BANDEI.T [Ba 84) proved that the median graphs are precisely the retracts of 

hypercubes (for further references on retracts see [Ba 84) or (CGS 89)). This 

result also can be proved using expansions. We only sketch that here using 

the notation introduced above. 

We define an extremal colo'Ur of a median graph G to be a colour F such 

that, say, G1 = G0• Then G'1 is an extremal sub graph. In a tree the end vertices 

are the extremal subgraphs, and in an n-dimensional hypercube (n- cube, for 

short) the (n - 1 )- subcubes are the extremal subgraphs. Note that the edges on 

a geodesic in a median graph all have different colours. 

Lemma 7. Let G be a median graph with split G11 G2• Then G1 as well as G2 

contain an extrt>m<tl subgraph. 

Proof. Assunw that G1 1" G10• Let x be a vertex in G1 - G10 adjacent to a vertex y 

in G10 , and let z be the neighbour of y in G20• Recall that z is the gate for 
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y in G2• Let A be the colour of xy, and let F be the colour of yz (i.e. the 

colour between G1 and G2 ). \Ve will show that colour A does not occur in G2• 

Note that, if :I occurs in G10, then it occurs in G20 as well. 

Assume the contrary, and let pq be an edge of A in G2 with, say, 

d(y,p)+l = d(y,q) . Then u and pare on one side of A, so that x and q are on 

the other side. Let P = y-+z-+ ... -+p be a y,p-geodesic. Then there is an 

x,q-geodesic Q=x-+t-+ ... -+q with t adjacent to z. Then xt and yz have the same 

colour, so xt is in F. This implies that x is in G10 contradicting the choice 

of x. So the colour A is fully contained in Gil and G10 u G2 is on one side 

of A and x on the other side. 

Repeating this argument, if necessary, we arrive at an extremal subgraph 

of G fully contained in G1• Similarly there is an extremal subgraph contained 

D 

Using Theorem 3.2.7 from (Mu 80b], we can easily verify that a retract of 

a hypercube is a median graph. To prove that each median graph can be 

realized as a retract of a hypercube we use induction on the number of 

colours. 

Let G be a median graph, and let F be an extremal colour with extremal 

subgraph G1 = G10• We embed G in an n-cube Q as in Theorem 3. Then F splits Q 

into two (n- I) - cubes Q1 and Q2 with Gi in Qi, i = 1, 2. By induction there is a 

retraction of Q2 onto G2 • Apply the corresponding retraction on Q1• Then it 

maps Q1 onto a copy //1 of G2 matched isomorphically via F to G2• This map 

preserves G1• Now we only have to map //1-G1 into G2 in the right way. If u1 

in H1-G1 has neighbour u2 in G2-G20, then we map u1 on a neighbour of u2, 

which is nearer to G20 than u2• This is possible whenever we have a distance 

decreasing map of G2 into itself, which preserves G20 and maps vertices of 

G2-G20 on neighbours nearer to G20• 

The existence of such a map can again be proved by induction on the 

number of colours. \Ve omit the details here. 

Actually this is precisely the way how W1L1.:E1T [Wi 86] proved that the 

so-called quasi- medi<m graphs are the retracts of the Cartesian products of 

arbitrary complete graphs (see Section 4 ). 

6. Crossing splits 

Two splits G1, G2 and 111, 112 of a median graph G, or their associated 

colours, are said to be crossing if Gi n /Ii 'F 0, for i ,j 1,2. Note that, 

for a split G1, G2 uf G, the subgraph G1 is extremal if and only if each 
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colour occurring in G1 crosses F12 (see (Mu 90)). We use this fact in the 

following theorem, which has a very simple proof due to the expansion 

technique. 

Theorem 8. Let G be a median graph. Then G contains n pairwise crossing 

splits if and only if G contains an n-cube as an induced subgraph. 

Proof. If G contains an n-cube, then the n colours of this cube extend to 

pairwise crossing splits in G because of the 4-cycle property. 

Asswne G contains n pairwise crossing splits lf., c! for k=l, ... ,n. 
Without loss of generality, we may assume that G has no other spilts. 

Otherwise we could contract these, and the contraction would still contain n 

pairwise crossing splits, and the existence of an n-cube in contraction 

yields an n-cube in any expansion by its history. 

Note that now every colourhalf ~ is an extremal subgraph of G, i.e., for 

k = 1, ... ,n, colour ~2 yields an isomorphism between lf. = lf.o and 

G!=~o· Using induction on the number of colours n in G, we may conclude 

that both lf.' and ~ are (n-1 )-cubes, so that G is an n-cube. a 

7. The hull number of a median graph 

The intersection of convex sets in a graph is again convex. This gives 

rise to the following definition. Let IV be a subset of vertices in a graph 

G = (V,E). The convex hull of IV, denoted by Con(IV), is the smallest convex 

subgraph of G containing IV (see (Mu 80b], where it was termed the convex 

closure). A set S ~ V generates G if Con(S) =G. In (ES 85] EVERETT and SEIDMAN 

introduced the httll number h(G) of a graph G to be the size of a minimum 

generating set. llere of course, minimum means that there is no generating set 

with fewer vertices. 

Any two diametrical vertices (vertices at largest distance) generate a 

hypercube. So h(Q) = 2, for any hypercube Q except K1• In a tree T we need all 

end vertices to generate T. By convention an end vertex will be the vertex of 

degree zero if T = /(1, and a vertex of degree one otherwise. Clearly, h(T) is 

the number of encl vertices in T. 

In this subsection we consider (minimum) generating sets of median 

graphs. We S<LY that a set IV touches a subgraph H of G if H contains a vertex 

of IV. The following three results are 1Sbvious (we use the above notations). 
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Lemma 9. If S gl~nerates the median graph G and G" is a contraction of G, then 

S' generates G'. 

Corollary 10. If G' is a contraction of the median graph G, then h(G) ~h(G'). 

Lemma 11. If G1,G2 is a split in a median graph G generated by S, then S 

touches G1 as well as G2 • 

The main result of this subsection is the following theorem. 

Theorem 12. Let S be a set of vertices touching each extremal subgraph of a 

median graph G. Then S generates G. 

Proof. We use induction on the number of expansions. Let F be an extremal 

colour with split G1,G2 and G1 = G10• We may take G2 as the contraction of G 

with respect to F. Note that every colour in G1 occurs in G20 as well, and 

vice versa. 

Every extremal colour of G distinct from F is an extremal colour of G2• 

So all extremal subgraphs of G2 associated with these colours are touched by 

S' . If A is a non-extremal colour in Gh then it is also non-extremal in G20 

as well as in G2 • 

Assume that 11 is an extremal colour in G2 that is not extremal in G. Then 

G20 must be contained in the extremal subgraph of B. Since S touches G., it 

follows that S' touches G20 , so it touches the extremal subgraph of B in G2 

as well. Hence S' touches all extremal subgraphs of G2• 

By induction S' generates G2• Let whxh···,z1 be the vertices of S in 

G., and let w2,x2,. • .,z2 be their respective neighbouring gates in G20• Since 

S generates G, it touches G2, say in v. Then w2 lies in l(w., v), etcetera. So 

Con(S) contains w2,x2,. • .,z2• Therefore Con(S) contains Con(S') = G2, in 

particular Con(.5') contains G20• Take any vertex p2 in G20 with neighbouring 

gate p1 in G1• Then /(w1,p2 ) contains p1• So G1 =G10 is contained in Con(S) as 

well, and we are clone. D 

The following theorem is an immediate consequence. 

Theorem 13. Let G be a median graph. Then h(G) is equal to the minimum number 

of vertices touching all extremal subgraphs of G. 
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It is easily seen that one can actually decrease the hull number by 

contractions. Uut what a.re the contractions that preserve the hull nwnber? In 

a tree one can contract all internal edges, thus obtaining a star (a K1,n) 

with the same number of end vertices. Contracting any further edge decreases 

the hull number. In a hypercube we can contract all colours but one, thus 

obtaining the star /\1, 1 with the same hull number. By convention we will 

consider 1\1 also to be a star. 

A star contraction of a median graph G is a star obtained by successive 

contractions of G. Let T be a star contraction of G with the maximwn possible 

nwnber of end vertices. We define r(G) to be the number of end vertices of 

this star T. Then we get the following problem. 

Question. For which median graphs G do we have h(G) = r(G)? 

8. Quasimedian graphs 

Almost all of the above results can be generalized to quasimedian graphs, 

which generalize median graphs. These graphs were introduced and 

characterized by another expansion procedure in [Mu80b ]. For the relevant 

theorems on retracts see (CGS 89] and [Wi 86), and for the generalization of 

the dynamic search problem, see (CGS 89). 
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This expository paper is directed to a general audience of engineers, mathe
maticians, and computer scientists. A discrete event system is a mathemat
ical model (in the form of an automaton, Petri nets, or process algebra) of, 
for example, a computer controlled engineering system such as a communi
cation network. Control theory for discrete event systems aims at synthesis 
procedures for a supervisor that forces a discrete event system such that it 
satisfies prespecified control objectives. As an example it is discussed how 
the control problem of blocking prevention for nondeterministic systems may 
be solved by the use of failure semantics. 
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1 INTRODUCTION 

The purpose of this paper is to introduce the reader to the research topic of 
control of discrete event systems. This expository paper is written for a general 
audience of engineers, mathematicians, and computer scientists. No specific 
background is needed neither of system and control theory nor of computer 
science. Only subsection 4.2 contains results derived at CWI. 

The motivation for control of discrete event systems comes from control of en
gineering systems, manufacturing processes, and computer systems. Examples 
are online scheduling of transactions in databases, control of a rapid thermal 
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processor, and design of a communication protocol. The control objectives in 

such problems are, for example, liveness, safety, and prevention of blocking. 

In modeling of practical control problems use is made of models from com

puter science: automata, Petri nets, and process algebras. A discrete event 

system is often taken to be an automaton in which the outside world can in

fluence the occurrence of events. 
The control problem for discrete event. systems is then oft.en formulated as: 

Construct a supervisor which observes the events of the system and determines 

aft.er every event which elements of the set of possible next. events must he 

prevented from occnring. Control object ives are as mentioned above, primarily 

to guarantee a certain level of liveness and safety. 
Control theory for discrete event systems makes use of several subareas of 

computer science such as automata theory, process algebras, logic, temporal 

logic, complexity, etc. 
A descript.ion of the paper by section follows. Section 2 contains motivation 

and Section 3 models of discrete event systems. Control synthesis problems 

are discussed in Section 4. Guidelines for further reading may he fouml in 
Section 5. 

2 MOTIVATION 

Research in control of discrete event systems iH motivated by practical control 

problems in, for example, comm1111ication networks, databases, manufacturing 

:-;ystems, and traffic systems (metro lines, railways, and freeway traffic). See 

for references Section 5. 

Example 2.1 Consider a telephone network. Subscribers can generate events 

such as ' taking the receiver off the hook', 'replacing the receiver', 'press a 

hu t.ton '. The telephone network itself also generates events, such as ' ring t.he 

bell ', 'start the dialtone', 'establish a connection'. Some sequences of events 

represent unwanted hehavior. For instance, a hell should not ring if the receiver 

is off the hook. Other sequences represent wanted hehavior. For instance, 

a connection should be established if the right protocol is followed by both 

subscribers. The caller should have taken the receiver off t he hook, waited for 

the dial tone, dialed the correct number, etcetera. Some of these event. sequences 

are enforced by the hardware of the telephone network. A receiver can only be 

replaced after it is taken off the hook. Some sequences have to be enforced by 

a supervisor. In the old days a human operator was necessary to guarantee the 

correct behavior. Nowadays a computer does t he job. The challenging task is 

to automatically synthesize the computer program when provided information 

only about the uncontrolled behavior of the telephone network and the control 

objectives. 

Practical control problems in the areas mentioned lead to control problems at 

the level of engineering and computer science. Examples of control objectives 

for problems at this level are: 
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1. Safety. Prevent the controlled system from reaching states at which a 
disaster may occur. 

2. Liveness. Guarantee that the controlled system is able to perform a 
specified minimum level of performance. 

An example of a safety property is blocking: Prevent that the controlled system 
reaches a state from which it cannot proceed to any other state. One speaks of 
deadlock in case of a system with two independently operating supervisors in 
the situation where both supervisors are waiting for each other [10]. Control 
problems at the engineering level are transformed into control problems at the 
control theory level, see section 4 below. 

Terminology of systems and control is summarized below. An event is the 
occurrence of an action. A discrete event system or plant is a mathematical 
model of an object exhibiting a sequence of events. A sape1·uisor is the math
ematical object that restricts the operation of a discrete event system. The 
discrete event system in connection with the supervisor will be called the con
trolled discrete event system or the closed-loop system. A control objective is a 
specification on the behavior of the closed-loop system. 

Control problems for discrete event systems at the level of control theory 
lead in general to the following theoretical questions: 

• Existence. Does there exist a supervisor such that the closed-loop system 
satisfies the control objectives? 

• Decidability. Can a supervisor be constructed with an algorithm that 
terminates in a finite number of steps? 

• Algorithm. How to construct an algorithm that produces a supervisor 
meeting the coutrol objectives? 

• Complexity. How, polynomially or expouentially, does the nmuber of 
computations of an algorithm for the construction of a supervisor depend 
011 the parameters of the problem? 

It is the aim of control theory for discrete eveut systems to answer questions 
as these. 

The approach to control of a discrete event system take11 in the research area 
of systems aud control differs from that taken i11 computer science. In control 
theory the approach is control synthesis. In computer science the approach is 
specification and verification. Thus, in computer science a specification is made 
that the coutrolled system is to satisfy, au implementatio11 for the closed-loop 
system is made, and finally it is verified whether or not the closed-loop system 
meets the specification. The latter step is called ve1·ification. Verificatio11 can 
be doue by automata theoretic tools, see [2GJ. Si11mlatio11 is a popular method 
to test whether au algorithm or program satisfies the specification but for 
most practical problems complete testing by simulatio11 is unfeasible. \Vhich 
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approach to control is to be preferred, that of control theory or that of computer 

science'? The answer to this question must he based on experience with a large 

number of practical control problems for discrete event systems. It will take 

several more years to collect such experience. 
The area of modeling and control of discrete event systems is intertwined with 

computer science. Modeling of discrete event systems is based on computer 

science models. Also logic and temporal logic is used in both areas. The subject 

of verification is also of interest to systems and control. The use of computers 

in engineering and data processing is expected to lead to new control problems 

for which systems and control, and computer science will he needed. 
The approach of supervisory control is entirely different from cont.rol theory 

as practised in stochastic control and from control of queues as practised iu 

operations research. In the latter areas the processing time is of major interest. 

Correctness is the major concern in control of discrete event systems. In timed 

discrete event systems the concept of time also appears but. often in constraints 

aud not as part of the cost function. 

3 MODELING OF DISCRETE EVENT SYSTEMS 

To model practical control problems in terms of computer science concepts the 

following model classes are currently usecl: (1) automata; (2) Petri nets; (3) 

process algebras. Automata will be described in detail below. 
Which model class is to he preferred for the practical control problems men

tioned in section 2'? The choice of a model class must be a trade-off between 

descriptive power and complexity. In regard to descriptive power it has been 

proven that the model class of Petri nets strictly contains the automata, while 

the model class of process algebras strict.ly contains Petri nets. A control prob

lem in Petri nets or in process algebras may be undecidahle, that is , there does 

not exist an algorithm for that problem which terminates in a finite number of 

steps. The authors prefer automata theory over Petri nets because the concept 

of state is more explicit.. This makes control synthesis easier. The authors like 

the model class of process algebras because of its modeling power. In many 

engineering cfo;ciplines the model class of Petri nets is rather popular. 

There follows terminology and notation on automata. 

DEFINITION 3.1 An automaton is a collection 

A = (E, X,d, :1:0,X111 ), 

where E is a finite set of event. labels called the alphabet., X is set of states, 

:i:o E X is the initial state, X 111 C X is the set of marked states, and d : 
E x X ---+ X is said to be the transition fnnction. 

A generator is an automaton in which d : E x X ---+ X is only a partial 

function. Thu.~, for :1; E X there is a subset I:(:i;) C E such that d(., :1;) : 
E(:1;) ---+ X is a function. 
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A finite state system is a generator in which X is a finite set. The term 
discrete event system, or for short system or plant, is defined in this paper to 
be an automaton. 

In an automaton events are modelled as to occur spontaneously. The mecha
. nism that selects an event is not modelled. In a discrete event system there is 

no model for a clock. Events occur sequentially. 

dialtone number 

on on 

bell 

FIGURE 1. Automaton representing a telephone unit. 

Example 3.2 A complete model of a system such as a telephone network 
consists usually of a number of modules, each representing a part of the total 
system. In Fig. 1 the automaton representing the behavior of the telephone 
unit is shown. The off-event represents the lifting of the receiver. The on-event 
represents putting the receiver back on the hook. Encircled nodes indicate 
marked states. The small arrow that does not start at a node points to the 
initial state. The automaton describes that a number can only be chosen after 
a dialtone is given. This is an abstraction of the fact that buttons can he 
pressed before a dialtone is given, but that these actions do not result in au 
event inside the system. It is not represented in the automaton that a dialtone 
should not be given when the receiver is taken off the hook to answer a call. 
This behavior has to be enforced by a supervisor. 

An automaton generates a language which concept is defined below. 

DEFINITION 3.3 Let ~ be a set which will be called the event alphabet. A 
string is a sequence of events 

where for n E Z+, i = 1, ... , n, <J; E ~. The empty string, denoted by F., is 
defined to be the string without elements. The set of all strings over ~ including 
the empty string, is denoted by ~*. A language is defined to be a subset L C ~*. 

The prefix closure of a language L, denoted by L, is defin ed to be the set 

L = {s E ~* 1 3t E ~* such that st E L}. 

The language L C ~* is said to be prefix closed if L = L. 
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DEFIN ITION :3.4 Let G = (E, X , d, a:0 , X,,, ) be a generator. E:r.tend tlw /,mnsi

tion function d : E x X ---+ X to d : E* x X ---+ X by 

d(E, :r) 

d(sa, :i:) 

:c, 

d(a, d(s, :1:)), if well defined a.ndforrr E E*,s E E, 

The hehavior of G is defined to be the language 

L (G ) = {s E 'E* !d(s,a;0 ) is defined} , 

and the marked hehavior is defi.11ed to he the lnnguage 

L ,,,(G ) = {s E L (G )!d(s , :z:o) E X,,,}. 

A string in L,,, ( G) is said to be a marked string. 

(1) 

(2) 

A string in the hehavior is a finite string that G can generate. A string in the 
marked behavior is a finite string that ends in a marked state. A marked string 
represents a completed task. If G is a generator then by definition of L ( G ) this 
set is prefix closed. 

Does there exist. a generator G for a giveu language L such that the language 
generated by G equals L , or L (G) = L ? This representat ion problem is rather 
fundamental in system theory and automata theory. Not every language has 
such a representation. A major theorem of automata theory, see [21 , Section 
2.5], states that any regular language can be represented by a finite-state au
tomatou. The concept of a regular language will not be defined in this paper 
because of space limit.at.ions. Thus, a finite-staJe generator produces a regular 
language while a regular language can be represented a.'i being generated by a 
generator. The formalisms of regular languages and of finite state generators 
are thus equivalent.. In the remainder of t he paper the two formalisms are used 
interchangeably, with most res11lt.s being formulated in terms of languages. 

Cont.rol can be enforced by synchronization of the plant with a controller 
(supervisor). A supervisor can only hlock events of the plant. . It cannot enforce 
the executiou of a event. 

D EFINITION 3.5 The synchronous composition of plant G = ('E, X , dy. :i:0 , X ,,,) 

and supervisor S = (E, Q , d,,, qn , Q,,,) is the automaton GllS = ('E, X x Q,d!I·" 
(:1:0, q11 ),X111 x Q,,,) , where 

d ( (
, . )) - { (dy(rr, :1:!1) ,d.,(rr , q,,)) , if well defined, 

'I" a , .1,,,, q,, - J fi d I . · · ·1mr,e ne , ot icrunse. 

Events in the synchronous composition are possible only if t hey are possible in 
the plant as well as in the supervisor. Then 

L (G l! S) 

L 111(G l! S) 

L (G ) n L (S), 

L,,,(G) n L ,,,(S ). 
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4 CONTROL SYNTHESIS 

The purpose of this section is to describe how practical control problems are 
formulated and solved at the level of control theory. 

4.1 Supervisory control synthesis 

In this subsection the basic concepts of supervisory control, as introduced by 
Ramadge and Wonham [39], will be explained. The general problem of con
t rol theory for discrete event systems is to find a controller (supervisor ) that 
influences the behavior of the plant iu such a way that it meets the control 
objectives. 

In some applications the supervisor does not have the ability to block all 
events. For instance if an alarm event is executed when some water level exceeds 
a t reshhold, then this event can be observed by the supervisor but it cannot be 
blocked. If this event has to be prevented from occuring then somewhere else 
in the system some other events have to be blocked (For instance the closing 
of a waste gate) such that the alarm event cannot occur anymore. Usually 
t he presence of uncoutrollable events is modelled by splitting up the event set 
into two subsets Ee and E,,, where Ee represents the controllable events, and 
Eu the uncontrollable events. It is required that a supervisor never blocks an 
uncontrollable event. Such a :mpervisor is called complete. 

The main objective of control synthesis for discrete event :;ystems is to find a 
complete supervisor which allows only legal event sequences. These sequences 
together form the legal language. This language is specified by an automaton, 
denoted E , which generates exactly all legal strings. The basic control objective 
is to find a complete supervisor such that L (GllS) = L (E) . It was shown by 
Ramadge and \Vonham that this supervisor exists only if the plant cannot go 
from a legal string to au illegal string by executing only 1111c:ontrollable events. 
This property is formulated in the controllability condi t ion. 

D EFINITION 4 .1 Let G be a plant and E" the set of ·uncontrollable events. The 
language K is said to be controllable if 

F:E" n L (G) ~ F.: , 

where J\"E 11 = {sa E E*l .s E /\",a E E 11 }. 

TH EOREM 4.2 Let G be a plant and E a .specification of the legal behaviur, 
with L ( E ) ~ L ( G) . There exist.s a complete supervisor, S, such that L ( GI IS) = 
L (E) if and only if the language L (E ) is controllable. 

If t he language L (E ) is not controllable then there exists no supervisor such 
that Gll S generates exactly all legal strings. The control objectives may be 
relaxed such that any system that generates 110 illegal strings is satisfactory. 
Tims, a supervisor is looked for such that L (GllS) ~ L(E). 
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THEOREM 4.3 Let G be a plant and E a .~pecifica tion of the legal behavior, with 
L (E ) ~ L (G). There e:i:ists a complete .mpervisor, S, such that L(GllS) ~ 
L ( E ) if and only if there exist a prefix-closed and controllable language con
tained in L (E ). 

Ramadge and Wonham also showed that. the set. of languages that are prefix
closed , controllable and contained in L (E ) is closed under arbit.rary unions. 
This implies that. there is a unique snpremal element in this set .. That is, there 
exists a language such that. all languages that are controllable and contained in 
L (E) are a subset of this language. From lattice theory a fixed point algorithm 
is known that computes this supremal language. This algorithm has polyno
mial complexity with respect. to the number of states in the state space of the 
automata G and E. The automaton that generates this supremal language can 
be used as supervisor. 

4. 2 Blod~ing 

The relaxed control objective in the previous section does not guarantee that. 
the closed-loop system will never block. After t.he system has generated a 
certain string, it. may happen that no subsequent. event is possible. Either 
events cannot be generated by the plant , or t.he supervisor blocks the events. 
The marked behavior, as defined in Section 2, may be used to guarantee that. 
systems are nonblocking. Because we will use another definition of nonhlocking 
later on, we will indicate this form with marking-nonblocking. A system is sairl 
to he marking-nonblocking if every string that the system generates can be 
extended t.o a marked string. 

DEFINIT ION 4.4 System E is said to be marking-nonblocking if 

L (E ) = L 111 (E ). 

The supervisory control problem for systems with marking is t.o find a complete 
supervisor such that. L,,,(GllS) ~ L,,, (E ) and GllS is marking-uonblocking. 
Note that these two conditions together imply that no illegal string will be 
generated. That. is, L (GllS) = L,,,(GllS) ~ L ,,,(E ) ~ L(E ). 

THEOREM 4.5 Let G be a vlant and E th e specification of the legal behav
ior, with L 111 ( E ) ~ L ,,, ( G). There exists a complete supervisor, S, such that 
L ,,,(GllS) ~ L,,,(E) and L (GllS) = L ,,,(GllS), if and only if there exist a. 
controllable language contained in L ,,, ( E ). 

Note that the defini t ion of controllability is given for general, not. necessarily 
prefix-closed, languages. As in the previous section, the set of languages that 
are controllable and contained in L 111 ( E ) is closed under arbitrary unions. This 
means that. there exists a supremal language in this set. Let I\ he this supremal 
language. Then, the automaton, S, with L( S) = F.: and L,,, ( S ) = I\ can be 
used as a supervisor. 
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If some parts of a system are not completely modelled, or only a part of 
the system can be observed, then the system may exhibit nondeterministic 
behavior. That is, the observed sequence of events does not uniquely determine 
the state of the system. 

DEFINITION 4.6 A nondeterministic automaton is defined to be a a'Utomaton 
in which the transition function d is of the form d : E x X ---+ 2X. The set 
d( a, 3;) precisely contains all states that can be reached frorn state x by event a. 

Consider now the supervisory control problem of blocking prevention for non
deterministic systems. Marking is not sufficient to guarantee that uondeter
miuistic s~·stems are uonblockiug. Consider the following example. 

a. 

~> 
FIGURE 2. Blocking of a uondeterministic automaton. 

Example 4. 7 Let G be an automaton as in Fig. 2.a. Suppose string ab is 
illegal. If event b is blocked, then an automaton as in Fig. 2.b is obtained. It 
is clear that. this system can block after event a. But this is not detectable by 
considering the marked language. From L ( G) = {a, ac} = { ac} = L ,,, ( G) it 
follows that G is marking-nonblocking. 

Hoare [19] introduced a different method to deal with blocking in nondetermin
istic systems. Not only the language of the system is considered but also the 
events that cannot be executed are taken into account. If a nondeterministic 
system is offered a set of admissible events, via the synchronous composition, 
and the system can be in a state in which it cannot execute any of the offered 
events, then the system is said to refuse all events in this set. Such a set of 
events is called a refusal. 

DEFINITION 4.8 The set of refusals or the refusal set of the system G after 
string s is defined to be the set 

ref(G,s) = {R ~ E:3x E d(s,x0 ) s.t. R n ,\(3;) = 0} , 

where ,\(3:) = {a E E ld(a,:c) is defined} . 

Note that a refusal is a set of events. lu the definition above R is a refusal. So 
a refusal set or set of refusals is a set of sets of events. 

The method introduced by Hoare is known as failure semantics. Using this 
method, blocking of a nondeterministic system can be defined as the situation 
in which all events can be refused. 
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DEFINITION 4.9 The {nondeterministic) .~ystem G is said to be nonblocking if 

for alls in L(G) , I: (j_ ref(G, s ). 

The controlled system is guaranteed to he nouhlocking if the legal behavior 

is uonhlocking ancl the controlled system does not. refuse more thau the system 

descrihing t.he legal hehavior. This statement mot.ivat.es t.he reduction relation. 

D EFINITION 4.10 One says that system G reduces system E, denoted G £ E, 
if 

L(G) <;;; L(E ), and 

\Is E L(G), ref(G,s) <;;; ref(E, s). 

The supervisory control problem for nondet.erminist.ic systems is to fincl a com

plete supervisor, S, such that G I IS £ E. It. is shown in [37] that an important. 

condition for the existence of such a supervisor is the rerlucihility condition. 

D EFINITION 4.11 Language K is said to be reducible {w.r.t. G a11d E) if 

't/s E /\, 't/Ry E ref(G, s), p(I\, s) U R y E ref (E, s), 

where p(I\,s ) = {a E ~ I sa (j_ !\}. 

THEOREM 4.12 Let G be a no11deterministic system and E a specificatio11 of 

the legal behav'ior. Th ere exists a complete .m7wrvisor, S , .~uch that G I IS £ E, 

if and only if there exists a controllable and reducible language contained in 

L(E) . 

Thus, if E is nonhlocking and if there exists a cont.rollahle and reducible lan

guage contained in L(E ), then there exists a supervisor S such that L (G ll S ) <;;; 

L(E) and G I IS is nonblocking. 
It. has heen shown that the set of reducible and controllable languages is 

closed under arhit.rary unions. So a unique supremal language is contained in 

the set and is computable hy a fixed point algorithm with polynomial c0111-

plexity. As with deterministic systems, the (deterministic) automaton that 

generates t his suprcmal language can be used as supervisor. 

5 G UIDEL INES FOR FURTHER READING 

Practical control problems for which control of discrete event. systems has been 

analysed include: database operations [27]; rapid thermal multiprocessor [6]; 

and protocol design for communication networks [13, 17, 40]. 

Automata theory at. an introductory level may be found in [21] and at au 

advanced level in [15]. A hook on Petri nets is [14] and a hook on related 

morlels [4 J. The t.heory of process algebras may be found in [5, 18, l!J , 31 J. For 

temporal logic see [30]. 
Supervisory control of discrete event. systems was st.arterl and mainly devel

oped by WJvl. Wonham and his doct.oral studeut.s, see [38, 39, 41, 4:3, 45, 47]. 
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An overview paper is [44]. For publications of S. Lafortune and co-workers 
see [11 , 12, 27, 28]. The supervisory control problem with failure semantics 
is treated in [37]. A large quantity of additional publications remains unmen
tioned because of space limitations. 

Control of infinite string automata was developed by J.G. Thistle [43]. Such 
strings are used to express liveness conditions. Techniques to do verification 
for the associated languages were developed by R.P. Kurshan [2Ci]. A hook by 
Kurshan will appear shortly. Modeling for control of discrete event systems by 
process algebras was considered by K. luan and P. Varaiya in [22, 23]. 

Time plays a role in many practical control prohlems. Examples of such prob
lems are the operation of a railway gate [3Ci] or the operation of a telephone 
network. Timed discrete event systems are closely related to the computer sci
ence area of real-time systems. A stimulating discussion on theoretical concepts 
for real-time system:; i:; presented in [25, 42]. fvlodeling of timed discrete event 
systems brings with it several new issue:; compared with untimed discrete event 
systems, such as the role of durations and forcing of events. Models of timed 
discrete event systems that have been proposed include discrete-time systems 
[7], timed automata proposed by R. Alur and D. Dill [1, 3], temporal logic [3G], 
and timed process algebras developed hy J. Sifakis and co-workers [:~2, 33, 34]. 
Control of timed discrete event system:; is treated in [7, 20, 29, 3Ci , 4Ci] of which 
the work by G. Hoffmann and H. Wong-Toi is of particular interest. An ap
plication to specification and clesign of a telephone exchange is presented iu 
[24]. 

A hybrid system is a mathematical model of a phenomenon in which the 
model indudes logical variables and continuous variables described by differ
ential equations. l\fany computer controllecl engineering systems are hybrid 
systems, for example a temperature controller for a house or the controller of 
au air plane. Models for hybrid systems were proposed in [2, 9, lCi, 34, 35]. For 
an approach to control of hybricl systems, see [8]. 

G CONCLUDING REMARl{S 

What has been achieved in control of discrete event :;ystems? For practical 
problems with logical variables discrete event systems have been formulated as 
mathematical models. These systems are the basic building blocks for control. 
Control synthesis results yield algorithms that produce supervisors that will 
satisfy a specified level of performance. 

What research directions should be explored in control of discrete event sys
tems? First experience must he gained with realistic and practical problems 
as they appear in industrial laboratorie:;. Mocleliug of discrete event syste111s 
would benefit from a deeper analysis of the trade-off between 111o<leling power 
and complexity. Hierarchical decomposition may be a direction to explore. A 
discrete event system has little mathe111atical structure hence it is difficult to 
enlist the aid of parts of traditional mathematics. The developments in theo
retical computer science should be watched closely. Control theory of discrete 
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event systems should also concentrate attention on decentralized control mo
tivated by the use of networks of computers. Faster algorithms for control 
synthesis would be useful in practice. 

Control of t imed discrete event systems needs more motivat ion by realistic 
and practical problems. Experience must he gained with the model classes of 
timed discrete event systems and t imed process algebras. Cont rol of hybrid 
systems leads to a diverse set of problems. Research in this area has only 
recently started. 
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Most of the work on randomized query optimization has relied heavily on 
the use of transformations rules for the generation of execution plans. Re
cently, however, we gave evidence that for the problem of choosing a join 
evaluation order, generating alternatives uniformly at random from the space 
yields solutions comparable to those obtained with transformation-intensive 
methods, and requires generating fewer candidate plans. 

This paper presents a thorough empirical study of the impact of catalogs 
and join methods on the relative performance of transformation-free and 
transformation-based randomized optimization. Basically, our previous re
sults remain valid for a wide variety of catalogs and relational profiles. But 
in contrast with the problem of selecting a join order, selecting join algorithms 
(e. g. hash, merge, nested-loops) seems better handled by transformations 
than random picking. 

We then propose a two-phase approach that combines the speed of random 
picking with the quality of solutions of transformation-based optimization, 
and verify experimentally its superiority over the other algorithms, in all the 
search spaces considered. 

1 I NTROD UCTION 

A major task of relational query optimizers is to select a suitable join evalua
tion order for which the estimated evaluation cost is minimum [Ull82, CP85, 
KRB85]. For small queries, exhaustive search is often feasible, but the number 

1 To Cor Baayen, at the occasion of his retirement and as a tribute to his choice in 1985 
to establish a Database Research group. His visionary goal to improve scientific cooperation 
is exemplified by the co-author Cesar Galindo-Legaria, one of the few ERCIM fellows. 
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of join orders increa.'ies very fast as t.he munber of relations grow. Heuris

tics and/ or probabilistic algorithms are then a viable alternative. Research on 

probabilistic algorithms has focused on Sirnulat.ed Annealing (SA) and Iterative 

Improvement (II) , and their variations [IW87, SG88, Swa89b, Swa89a, IK90, 

IK!H , LVZ93]. Those optimization algorithms rely heavily on transformation 

rules to generate alternat ive join evaluation orders. The transformation rules 

are usually based on algebraic properties of the join evaluation orders, like 

commutativity and associativity, and they impose a particular topology on the 

search space - namely, evaluat ion plans are adjacent if they differ by a single 

application of a transformation rule. But the effect of a given topology on 

the behavior of search algorithms remains difficult to quantify. This prompted 

us to examine a transformation free (TF) optimization scheme that generates 

plans uniformly at random and keeps the best solution generated [GLPK94]. 

Our finding was that transformations tend to improve solutions "slowly," and 

the TF scheme converges faster and finds plans comparable to those found by 

transformation based optimizers. 
The study in [GLPK94] was ha..<ied on a calibrated cost model for the DBS3 

system [ACV!ll] - a main memory database whose cost model accounts for 

C PU only- and considered execution plans with only hash-joins. In this paper 

we extend our previous experiments to assess the stability of the phenomenon 

observed. We use the same I/ 0-dominated cost model used at the University of 

Wisconsin in their randomized optimization work [IK90, Kan91]. We examine 

the impact of indices, changes on the statistical profiles of the catalogs, and 

the use of different. join algorit.hms. 
For the problem of selecting a join-order, the size of the space is exponential 

in the number of relations (see [GLPK95] for the exact size) . When, in addition, 

a join algorithm is selected ( 11 - 1 m-ary decisions for a query on n relations 

with m algorithms available), the resulting search space is the product of t.wo 

exponentially large spaces. So, including the selection of join algorithms has 

a different. effect on the problem than changing the cost model or the catalog 

profiles. In fact, our current experiments show a qualitative difference in t.he 

relative performance of optimization algorit.hms when different. join algorithms 

are allowed. The "high proportion" of good solutions iu the space of evaluation 

orders is for t.he most part preserved on different cata.logs and cost models. hut 

it decreases in the product space of evaluation orders with method select.ion. At. 

the same time, the transformations used in this product space seem particularly 

appropriat.e and lead to good solutions. 
We t.hen study a two-phase approach similar to those of [IK90, LVZ9:{], using 

TF in the first. phase and then transformations. The behavior of this algorithm 

combines the fast. converge of random picking with the high quality of solutions 

of transformatiou-ha..'led search, and it is superior to t.he other algorithms i11 

all the spaces we considered. From t.he hehavior of this hybrid algorithm, it 

appears that. the neighborhood structure around a given plan, from the point 

of view of the transformation-induced topology, depends mostly 011 the cost of 

such plan. That is, a transformation-based search beha\'es roughly the same 
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way when started on any two randomly-selected plans of the same cost. 

Road map. Thi::; paper is organized a.'> follows. In Section 2 we give definitions , 

details on the cost model, and the three ba.'i ic ::;earch algorithms. The testbed 

for the experiments is described in Section 3. Section 4 describes experiments 

with various catalogs, and Section 5 examines multiple join algorithms. Finally, 

Section 6 contains experimental results on hybrid algorithm. Conclusions are 

given in Section 7. 

2 DEFINITIONS 

This section defines the search space, the basic probabilistic search algorithms 

used on that space, and the performance measure used for comparing the al

gori thms. 

2.1 Search Space 

Query e-ual'Uation plans. We represent a query by means of a query graph. 

Nodes of such graph are labeled by relation names, and edges are labeled by 

predicates. An edge labeled p exists between the nodes of two relations , say R;, 
Rj, if predicate preferences attributes of R;, RJ· The result of a query graph 

G = (V, E) is defined a::> a Cartesian product followed by relational selection: 

api /\· ·· /\ p,. (R 1 x ··· x R ,,,), where {p1 , .•. ,p,,} are the labels of edges E and 

{ R1 , ... , R111 } are the labels of nodes V. 
Query e·ualuation plans ( (JEPs) are used to evaluate queries, instead of the 

straight definitiou of product followed by selection given above. A QEP is an 
operator tree whose inner nodes are labeled by a join operator and whose leaves 

are laheled by relations. The result of a QEP is computed bottom-up in the 

usual way. QEPs include annotations on the join-algorithm to use - e. g. nested 

loops, hash, merge, etc.- when several are available. 
Not every binary tree cm the relations of the query is an appropriate QEP, 

because some may require t he use of Cartesian products. \Ve restrict t he search 

space to those QEPs that do not require products, called valid in [SG88]. Some 

systems restrict the topology of QEPs further, so that each join operates on 

at least one base relation . Such restriction leads to the space of linear QEPs. 

We do not impose such restriction here, so we work on the more general bushy 

space. 

Tree transformations. The transformations used to generate uew QEPs, where 

applicable, are the following [IK90, IK91]: Commutativity, A IXJ B +-> B IXJ A; 
associativity, (A IXJ B ) IXJ C +-> A IXJ (B IXJ C); left join exchange, (A IXJ B ) IXJ 

C +-> (A IXJ C) IXJ B; right join exchange, A IXJ (B IXJ C) +-> B IXJ (A IXJ C) and 

join method selectiou, A IXl11wt.lwrl ; B +->A IXl 111.,iJwrlj B. 
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PROCEDURE II() { 
minS = infinite; //with cost(infinite) 
WHILE not (stopping_condition) DO { 

S = random state; 
WHILE not (local_minima(S)) DO { 

S' =random state in neighbors(S); 
if cost(S') < cost(S) THEN S = S';} 

IF cost(S)<cost(minS) then minS = S;} 
return(minS);} 

infinite 

FIG URE 1. Iterative Improvement 

2.2 Search Algo1·ithms 

\Ve experiment with three basic search algorithms, the transformation-based 
Iterative Improvement and Simulated Annealing, and a transformation free 
algorithm. We smumarize t.hem here for completeness. More details on the 
transformation-based optimizers can be found in a number of references, in
cluding [KCV82, NSS86, SG88, IK90, LVZ93]. 

Iterative Improvement (JI) performs a large number of local optimizations. 
A local optimization starts at. a random QEP, called t.he current QEP. By 
applying a randomly selected transformation rule to the current QEP a new 
one is generated. If this is cheaper then it is accepted as current. QEP, otherwise 
it. is rejected. A local optimization stops when a local minimum has been 
reached. The II algorithm stops as soon as a- predefined number of plam; has 
been generated. The plan found with the lowest cost is returned as the result. 
Figure 1 shows the pseudo-code of the II algorithm. 

To detect. a local minimum the neighhors are not searched exhanstively but. 
a r-local minim.nm is nsed [Kan91], i.e. a plan is a local minimum if none of r 
randomly selected neighbors has a lower cost .. Since the plans are selected at 
random, and repetitions are possible, a r-local minimum is not guaranteed to 
test all neighbors. In the experiments r is set to the number of neighbors of a 
node. 

Simulated Annealing (SA ) . Sometimes the II algorithm fails t.o find good plans 
because it gets stnck in high cost local minima. SA attempts to solve this prob
lem by also accepting new QEPs with a higher cost, with some probability. The 
SA algorithm starts at a random QEP and randomly generates next QEPs. The 

probability of accepting QEPs with higher cost decreases as time progresses. 
\Vhen a predefined number of plans has been generated or a "stable condition" 
has been reached the SA algorithm stops. 
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PROCEDURE SA() { 
S = SO; 
T = TO; 
minS = S; 
WHILE not(frozen) DO { 

WHILE not(equilibrium) DO { 
S' =random state in neighbors(S); 
deltaC = cost(C') - cost(S); 
IF (deltaC <=O) THEN S = S'; 
IF (deltaC > 0) THEN S = S' 
IF cost(S)<cost(minS) THEN 

T = reduce(T);} 
return(minS)} 

with probability e-(-deltaC/T); 
minS = S;} 

FIG URE 2. Simulated Annealing 

Figure 2 shows the pseudo-code of the SA algorithm. The frozen and equi
librimn conditions used in our experiments are those given in [Kan91]. 

If time is infinite both transformation based search algorithms will find the 
global minimum, but in practice the resource available for optimization are 
limited and must be used as efficiently as possible. 

Transformation Free (TF) . To remove the reliance on transformation rules, 
and a potentially slow quality improvement, the TF algorithm was investigated 
in detail in [GLPK94]. This algorithm generates QEPs nuifonnly at random, 
and keeps track of the one with the lowest cost. The algorithm terminates 
after it has generated a predefined number of QEPs. The QEP with the lowest 
cost is returned as preferred plan for execution. Like II and SA, if TF is given 
infinite time it will find the global minimum. But unlike SA and II, if time is 
finite TFs performance only depends on the cost distribution over the search 
space and not on the topology imposed on the space by the transformation 
rules. Figure 3 shows the pseudo-code of the TF algorithm. Note that the 
random states are chosen unifonnly from the space. See [GLPK95] for details 
on how this is achieved. 

2.3 Pc'tfonnancc l'vlcasure 

The behaviour of an optimization strategy can be represented by a function 
mapping the number n of plans explored to the estimated cost of the best plan 
found. For a given algorithm A, we call this cost the solution after n, and 
denote it by S:,1• Formally, using u:,1 as the set of the first n plans visited by 
A, the solution after n is: 

s;,1 = 1nin{cost(p ) Ip E u:,1}. 
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PROCEDURE TF(){ 
minS = random state; 
WHILE not(stop_condition) DO { 

S = random state; 
IF cost(S)<cost(minS) THEN minS S;} 

return(minS)} 

F IG URE :~. Transformation Free 

For transformation-base algori thm , every valid plan generated hy the a l

gorithm is counted as explored, even if it. i:-; not accepted by the algorithm 

(e. g. because it.s cost is higher than t.he current plan in II). 

Since the algorithms are probabilistic, U,~1 is a random subset. of size n from 

the search space, and therefore S:,1 is a random variable. Based on this, we 

measure the success of these algorithms using t he mean and standard devi

ation of the solution. As 11 increases, t.he mea11 of S:,' should approach t he 

minimum cm;t, in t.he search space; while at. the same time the standard devia

t ion of s:,1 approaches zero. The second condition ensures that the algorithm, 

t hough probabilistic, behaves in a st.ahle way. Alt.hough the number of plans 

explored does not. account. for all the resources required by a.11 algorithm, we use 

this solution aft.er n as an implementation-independent measure of algorithm 

performance. 

;3 TESTBED 

To assess t he stability of the TF search algorithm we conduct.1~d a large number 

of experiments with t he I/ 0-hasecl cost. model of (Kan91 J and queries and 

cat.alogs that. were also rn.;ecl in our earlier work with the DBS~ cost. model 

(ACV91]. 
The new cost. model is used exhaustive to study t.he impact. of t he catalogs 

and the available join methods on the performance of TF, II , and SA. The 

queries used in the experime11ts are randomly generated and acyclic. They 

range form 4 to 20 joins and all join predicates are equality joins. These 

queries were optimized for three catalogs with different. variance i11 at.t. ribut.e 

values and relation size. The queries and catalogs used in [IK!)l] const it ute our 

starting point. and in the sequel oft.his paper these cat.alogs will be referred to 

as t.he original catalogs . 

.':I. I Cost Model 

The cost model called CM2 iu (Kan91] is t he basis for our cxpcrime11t.:-;. This 

cost model assumes a disk-based datahasf' system. Since the cost of evaluating 

a QEP is dominated by the I/ O, t he rn1111ber of pages that are read or written 

dnring the evaluation of a QEP is used as cost metric. A large buffer is assumed 
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Catalog Cardinality Perceutage of unique values in attribute 
catalog 1 1000 [0.9,1.0] 
catalog 2 [1000,100000] [0.9,1.0] 
catalog 3 [1000,100000] [0.1,1.0] 

FIGURE 4. Sizes and selectivities of the original catalogs 

in the cost model. The major difference with the DBS3 cost model used in our 
previous work, is that the DBS3 model assumes a main memory databa.-;e 
system, in which the CPU cost is the predominant factor. 

The CM2 cost model is ahle to handle three join algorithms, namely ne.~ted
loop, mcrge-.~can and hash-j oin. The cost functions for the uested-loops algo
rithm are page-level nested-loops join and index-scan nested-loop. The cost of 
the cheapest alternative is returned as cost for a nested-loop join. The cost of 
the merge-scan join consist of sorting the inputs, if they are not already sorted, 
and by merging the two input streams. The hash-join also ha.'> two alternatives 
of which the one with the cheapest cost is returned. These two alternatives are 
simple hash-join and hybrid hash-join. In the computation of the cost for the 
hash-join it is assumed that the hash table is build 011 t he smallest input. 

When an index is available for a join attribute it can he used to reduce 
the loading cost. The usual assumption is made that the attribute values are 
uniformly distributed and that the columns values are independent . 

• 'J. 2 Factors Considered 

The factors considered in our study are the following: 

• Catalog variance (the difference in relation size and join selectivity). 

• Relation sizes (original catalogs or enlarged catalogs). 

• Indices (present or not). 

• .Join algorithms (nested-loop, hash-join, merge-scan). 

The catalogs used are randomly generated from a profile that specifies an 
allowed range for relation sizes and uniqueness of attributes. Fignre 4 gives the 
profiles for the three types of catalogs used. For example, a catalog of type 2 
(or simply catalog 2) uses relation sizes ranging from 1,000 to 100,000 tuples 
and the uniqueness of the attribute values range from !JO% to 100%. This 
percentage of unique values is used for the computation of the join selectivity 
in the cost estimation. The ranges are chosen such that the vm·iance in catalog 
1 is small , and it is incrern;ed in catalogs 2 and 3. 

The enlmyed catalogs are constructed by multiplying the relation sizes in the 
original catalog (Figure 4) by a hundred. These enlarged catalogs were used to 
study the impact of the large I/ O buffer in the cost model and possible 11011-

linear behaviour of the cost functions. For both the original and the enlarged 
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catalogs we used two variants; one with many indices and one without. indices. 
They are used to check the hypothesis that indices have a strong effect. on the 
shape of t.he search space and, therefore, affect the performance of the search 
algorithms. 

In the experiments discussed in Section 4 there is only one join met.hod 
available for a single QEP. So all of join operators in a QEP are either nest.ed
loop, merge-scan or hash-join. Section 5 and 6 describe experiments in which 
the plans considered combine different. join algorithms. 

3 .. "1 Perforwance Characteristics 

These graphs showing our results present. the average of solutions found by the 
various algorithms aft.er exploring a given number of plans. As is usual in the 
work on this subject., the y-axis is a linear measure of scaled cost, with a scaled 
cost of 1 for the cheapest. individual plan found by any algorithm, in the given 
search space. 

These graphs have some propert ies useful for the comparison of search algo
ri thms. A general description of the graph of TF and II is as follows. Up to 
a crossover point the TF algorithm generates better plans, and after that the 
II algorithm finds bet.t.er plans. This crossover point marks the solution that is 
found by both algorithms after exploring the same number of plans. 

After exploring a many plans, t he cost of solutions found by probabilistic 
algorithms improves very slowly. We could say that. at some point the optimizer 
becomes stable and call the quality of the plan at that point the final cost. The 
difference in final cost is usecl to compare algorithms. 

Another important characteristic of t he graph is the cost range. If the dif
ference between the best solution and the worst solution in the search space is 
small, t he optimization has a relatively smaller impact on the execution time 
of the query. If, on the other hand, t.he cost range is large, t he optimizer can 
produce a dramatic improvement on query performance. 

These t hree aspects - crossover 7JOint, final cost (difference) and cost range
of a performance graph are helpful in analysing the performance of the search 
strategies. In Figure 5 these aspects are marked in a skeleton performance 
graph. 

4 EFFECT OF VARIAN C E, INDICES, AND R ELATION SIZES 

This sect.ion discusses t.he experiments done t.o determine the circumstances 
for which the random generat ion of plans is comparable to the t.ransformat.ion 
hasecl approach. The sequel of this sect.ion describes the behaviour of TF, II 
and SA for various cat.alogs and join met.hods. All graphs shown are averages 
over a large number of runs. 

4 .1 Catalogs with Indices 

The original catalogs wi th indices are used for our firn t. experiment. As men
tioned in Sect.ion 3 the optimizers only consider QEPs in which all join algo-
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Scaled cost 

Cost range 
.. Ee:----

Crossing point 

/ Final cost Final cost difference 

Sample size 

FIGURE 5. Skeleton performance graph 

ritlnns are either nested-loop, merge-scan or hash-join. 
We observed that as the catalogs changed, from low variance to high variance, 

the cost range of the graphs increased and the crossover point shifts to the left. 
The final cost of the II and TF algorithm are similar for catalogs 2 and 3. Only 
for the low-variance catalog 1 the II algorithm is consistently better. For the 
high-variance catalogs the relative performance TF algorithm is best. Figure 
(i illustrates shows the results for a query of 20 joins when only hash-joins are 
considered (the results for nested-loops and merge-join are similar). 

To our surprise the QEPs with only nested-loops join were the cheapest in 
absolute cost. A closer examination of the QEPs generated showed that the 
large buffer size, relative to the size of the relations involved, caused this effect. 
Most of the processing can ue done such that the inputs to the join operator 
fit in the buffer, so the nested loops algorithm does not require any reloads. 
Due to the overhead cost of the other two algorithms they resulted in more 
expensive QEPs. 

4. 2 Catalogs without Indices 

We drop all indices in the next round of experiments, to test the assumption 
that indices reduce the cost range and make the search space smoother. That 
is, the cost difference with neighbors becomes smaller. 

Surprisingly, for the experiments conducted, the performance difference be
tween search algorithms in spaces with indices or without is small. But an 
interesting change can be observed for the high variance catalogs in Figure 7. 
Compared to the indexed catalogs the crossover points shifted slightly to the 
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FIG URE 7. Space of hash QEPs for the original catalogs without indkes 

right. for all join methods and t.he quality of the plans at the crossover points 

is better. The cost mnge of t.he graphs and the final costs arc similar to those 

of the indexed cat.alogs. 
Our experiments, then, lead to t.he conclusion:=; that although indices have a 

11ot.iceahle impact. 011 opt.imizat.io11 performance, it is relatively small compared 

to the impact. of the catalog variances or varia11ce in join selectivity. 

4. 8 Large Catalog.~ with Indices 

To examine the impact of the large buffer on the performance of the search 

algorithms, we enlarged the relation :=;izes of t.he origi11a.l cat.a.logs. For these 

big relations the QEPs with 011ly hash-joins were consist.e11tly cheaper than 

QEPs with only merge scan or 11ested loop. This search space of QEPs, with 

only hash joins, al:=;o showed the biggest. change i11 performance. For cat.alog 2 

TF finds plans much faster than II and also the distance between the graphs has 

grown in comparison to the original catalog 2. For cat.alog :J the TF algorithm 
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FIGURE 8. Space of hash QEPs for enlarged catalogs with indices 

improves faster before the crossover point, but this crossover point has a high 
cost. 

With the enlarged catalogs both the cost aud the difference between final 
costs has grown. To make the performance graphs of the search algorithms 
visible, the scale of t he y-axis was enlarged by a factor of teu. In Figure 8 
the performance graphs of t he search algorithms are given for the tree catalogs 
when only hash-joins are used. 

We also ran experiments for enlarged catalogs without indices. The results 
are basically the same as t hose presented for t he spaces with iu<lices, so they 
are not shown here. 

5 EFFECT OF Ml LTIPLE JOIN ALGORITHI\.lS 

We now consider the use of multiple joiu a lgorithms in QEPs. To deal wit.h 
this case in trausformatiou based strategies, a rule is added that changes the 
algorithm at a specific join operator. Such additiou leads to a dramatic growth 
of the search space. If m joiu algorithms are considered aucl the QEPs joins n 
relations, each QEP in the original search space is mapped to 111" - 1 QEPs with 
joi11 selection. This big search space seems tu contain cheaper QEPs - e. g. a 
hash-join whose inputs are sorted can be replaced by a merge-scan- hut it 
also introduces many QEPs with higher cost. Important for the performance 
of all three search algorit hms is how the cost distribution changes, and for 
transformation based optimizers also t he modified connectivity of the search 
space. 

Uniformly random generation of elements from the enlarged space is easy 
- modulo the uniform generatiou of evaluation orders. Simply select iudepeu
dently and uniformly a join algorithm for each join in the QEP. 

Figure 9 shows the performauce graphs for the three search methods using 
all join algorithms. For reference, we also show the result of II and TF on the 
restricted space of plaus that use hash-joins only. The effect. of t,he enlarged 
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space is clear from this graph. Initially, hoth TF and II progress about as 
quickly iu the space restricted to hash-joins as in the more general space. But 
then TF becomes stable in more costly solu tions when it. has to select a join 
algorithm, while II finds better solutions when selecting a join algorithm. 

We can conclude that the reduced percentage of good plaus in the bigger 
space has a negative effect on the performance of the TF algorithm. However, 
the topology imposed by the change-join-algorithm transformat ions seems par
ticularly appropriate for a tram;format.ion-based search. 

In the following sect.ion we show experiments in which random generation 
and the use of transformation rules are mixed. Ideally these met.hods should 
incorporate the good hehaviour of hoth the TF and II algorithm, fast conver
gence and good final plans. 

6 HYBRID ALGORITHMS 

Considering all experiments performed, an improvement of transformat.ion 

based optimizers seems feasible by balancing the generation of random plans 
with the application of transformations. Other multi-phase optimizat ion 
schemes have been proposed in [Kan91 , LVZ93], hut. they still rely mainly 
on transformations to generate alternatives. 

It. is reasonable to consider starting the search by generating a pre<lefinecl 
nnmher of plans (TF-phase), followed by one transformatiou-hased local opti
mization. During this local opt.imization phase no new random starting points 
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PROCEDURE SII(n) { 
minS = infinite; //with cost(infinite) 
WHILE not (stopping_condition) DO { 

S = random state 
FOR i = 1 TO n - 1 DO { 

S' = random state; 
IF cost(S') < cost(S) THEN S = S';} 

WHILE not (local_minima(S)) DO { 
S' =random state in neighbors(S); 
IF cost(S') < cost(S) THEN S = S';} 

IF cost(S)<cost(minS) then minS = S;} 
return (minS);} 

infinite 

FIGURE 10. Set-Based Iterative Improvement 

are generated. A generalizatio11 of this idea is what we call t he Set-ba.~ed Iter
ative Improvement (Sil ,,) algorithm. This hybrid algorithm is an II algorithm 
that uses the best plan of a randomly generated set as starting state for a local 
optimization. The n represents the size of the randomly generated start set. 
Figure 10 shows the pseudo-code of the algorithm. 

Figure 11 shows the performance of Sil100 , as well as TF and II for the space 
of join ordering, when using the enlarged catalog 3. The graph of t he SII1oo 
algorithm reflects the behaviour of both the TF and II algorithm. It converges 
as fast as the TF graph in the first part of the graph and then picks up the 
behaviour of the II algorithm, resulting in very good quality plans. Figure 11 
is typical for the behaviour of the Sil algorithm. 

Figure 12 shows the performance of Sllwo on t he space of join ordering plus 
joi11-algorithm select.io11 , also in combination with enlarged catalog 3. Although 
the TF algorithm has a weak performance for this search space, t he Sil rno 
algori thm maintains its good behaviour. 

7 CONCLUSIONS 

In this paper we examined the impact of several fact.ors on the performance of 
probabilistic query optimization algorithms, in particular the relative behavior 
of random picking of solut.i o11s with respect to trnnsformation-hase<l search. 
The results of random picki11g give a direct indication of the proportion of 
good solution in the search space, while t he transformation-based search also 
clepe11ds 011 the topology imposed hy the specific set of transformations used. 

Our experiments show that the results obtained i11 [GLPK!J4] for a mai11-
memory database remain valid , for t he most part, when the I/ 0-based 
cost model of [IK!JO, Kan!J l ] is used instead. A transformation-free algo
rithm finds good plans faster t han a transformation-based approach, but. the 
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transformation-based search finds the best plans in the end. This happens 
because the ratio of good plans is substantial and the topology imposed by as
sociativity/ commutativity/ exchange transformations does not seem to aid the 
search significantly, especially at the beginning of the process. We observed 
that the presence of indices does not reshape the search space, and affects only 
marginally the performance of all the search methods. 

We then studied the effect of selecting a join algorithm, in addition to a join 
evaluation order. In this case the search space becomes the product of two ex
ponentially large spaces, and its properties turn out to be qualitatively different 
from those of selection of a join orcler evaluation alone. The proportion of good 
plans decreases in this combined space, and at the same time the topology 
induced by the change-algorithm rule seems to favor the transformation-based 
search. 

Finally, we described and tested a two-phase optimization approach that 
starts with random picking to generate good plans quickly, and then applies 
transformations for further refinement. The result is a combination of the best 
of both search strategies: fast convergence to solution:; of very high quality. 
We believe this hybrid approach is ba:;ically the best alternative in a purely 
stochastic search - i. e. one that does not consider heuri:;tics- probably with 
au additional Simulated Auuealiug phase at the end as suggested in [IK90]. 

There are related issues that remain to be addres:;ed. The first is how to 
incorporate heuristics in a robust manner. Iu our view, the use of heuristics 
in randomized search must he that of "rigging the odds" in favor of the better 
plans. \Ve are in the process of formulating the uece:;sary framework. Also, 
the two specific spaces identified in this paper on which the trnusformation
hase<l and transformation-free schemes behave :;iguificautly differently provide 
a test case for the study of when and how are transformations advantageous 
for optimization. 

Acknowledgements. To conduct the experiments reported on this paper, we 
coded the uniformly-distrilmted generation of join trees, and the TF and hybrid 
algorithms on top of the code for randomized query optimization cleveloped at 
the University of Wisconsin [IK90, Kan91]. \Ve are grateful to Yaunis loa1111idis 
for kindly providing us with a copy of their software, a11d for allowing us to 
modify it for our experiments. 
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Job scheduling on a parallel shared memory bus computer 

Dedicated to Cor Baayen, with esteem and admiration 

H.J.J. te Riele 
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1098 SJ Amsterdam, The Netherlands. 

The advent of vector computers in the beginning of the eighties, and of 

parallel computers a few years later has triggered the development of new 

algorithms, especially tailored to these new architectures. One of the many 
initiatives of Cor Baayen was the stimulation of research activities in this 
new field and the provision of the necessary equ ipment, both at CWI and at 
SARA. 
In this paper we study a problem which is typical for these new developments, 
namely the scheduling of jobs on b'U1>~type parallel computers. The pro

cessing elements of such computers communicate with a common memory 

through channels called buses. Usually, there are less buses than processing 

elements, so that several processing elements have to share the same bus. It 
is a consequence of this restriction, as we show in this paper, that the total 
processing time of a parallel job may depend on the order of execution of 

the communication parts of the different subjobs. Unfortunately, this order 
of execution can not, in general, be influenced by the programmer. There
fore , this phenomenon must be accepted as an inherent uncertainty in the 
timing and reproducibility of jobs on parallel bus- type computers. 

AMS Subject Clu.wifimtion (1991): Primary 6902; Secondary 69051 

CR Subject Classification (1991 ): 8.4.3, C.1.2 

/{ eywords l:'3 Phrnse8: Bus- type parallel computers 

1 I NTRODUCTION 

Consider a parallel hus - type computer with a shared memory having p * b 
processing elements (PEs), where bis the number of buses and p is the number 
of PEs per bus; see Figure l. 
Apart from the main shared memory, each PE has its own small local nrnm
ory, called cache. It is important to re-use cache data as much as possible, 
in order to minimize transport of data between the cache and the main mem
ory. Processing elements which share the same bus cannot send/ receive data 
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MAIN SHARED MEMORY 

FIG URE 1. Parallel bus - t.ype shared memory comput.er, b = 7, p = 4 

to/ from the main memory simult.aneously. C\VI has at least. two computers of 

this kind, viz., the Cray S-MP (b = 7, p = 4; each PE has a data cache of 8 

Kbytes; the size of the shared memory is 256 Mbytcs) and the SGI Challenge 

(b = 1, p = 4; each PE has two data caches: a primary cache of 16 Khytes, and 

a secondary (slightly slower) cache of 1 Mhytes; the shared memory has a size 

of 256 Mbytes) . 
We make the simplifying assumption that a job for our parallel shared mem

ory bus computer can be split up iu S equal subjobs. Not many real-life appli

cation jobs satis(y this condition, but basic building blocks like matrix-vector 

mult.iplication do. Each suhjob com;ists of one part where dat.a are loaded from 

the shared memory into the cache, a second part. where computations are done 

with t hese data, and a final part where the results a re stored from the cache into 

the shared memory. The times (in seconds) for these three parts are denoted 

by /, c, and s, rnspect.ively. Schenmt.ically, we will represent a suhjob as 

1 = 2 c = 4 

where the lengths of the line segments have the ratio I : c : H. Communication 

parts (I and s ) are marked hy thick lines. 
The total time T of a job depends ou b, p, S, I, c, and H, so 

T = T (b,p,S, l, c,s) . 

By T.(b,p, S, l, c, s) we will denote the minimal time needed to complete the 

job. In general, it. is easy to give upper and lower bounds for T. For example, 

p (I + s) :S T ( 1, p , p , I , c, s) :S p (I + s) +c. 

The lower bound just counts all the communication times (neglecting the com

puting t.imes), and for the upper bound we a.'isume that after the last PE has 
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loaded its data, the computing parts of all the subjobs are carried out simul

taneously. 

P1 :..._~1_=_2~~~~~-c_=~4~~~ 

P2: 

P3: 

P4 : 

c 

c s 

c 

FIG URE 2. Job schedule with T (l, 4, 4, 2, 4, 1) = 13 

P1 : .__~'-=-2~~~~~-c-=~4~~~~s~=__,l 

Pi: c: 

P:1 : c s 

P4 : (! 

FIGU RE 3. Joh schedule with T (l , 4, 4, 2, 4, 1) = 14 

s 

s 

Figures 2 aud 3 illustrate for the case b = 1, p = 4, S = 4, l = 2, c = 4, 

s = 1, that T may depend ou the order hy which the different PEs execute 
t heir comm1111icating parts. In the schedule of Figure 2, processing element P 1 

only starts with storing the data into the shared memory a fter all the PEs have 

loaded their data. In the schedule of Figure 3 processing element P1 starts wi t h 

storing the data as soon as it has completed its computing part (and the bus 

channel is free). Consequently, we find T = 13 aud T = 14, respectively. 
In t his paper, we shall analyze the case b = 1 in Section 2, and part ly 

generalize this in Section 3. We present theorems \vhich give the minimum 
times needed to execute a job on a !ms- type parnlh~l computer, under the 
a.'lsmuption that the total job can be split up into a number of equal subjobs. 

Proofs will appear elsewhere, hut no doubt t he reader will he able to construct 

some of them without too much effort. 

2 TH E CASE b = 1 
We start by assuming S = p, and give three examples with p = S = 4, viz., 
l = 1, c = 2, ,, = 2 (Figure 4), I = 2, c = 2, s = 1 (Figure 5), and l = 1, c = 4, 
s = 2 (Figure (i ). 

These examples suggest that in some cases T.(h,p, S, I , c, :;) = T.( b, p, S, :;, c, l ), 
i.e., that the time T remains fixed , if we interchange l and s. Define 

111. = min( l , s), and m = max( l , :; ) , 

t hen we have the following 
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P1: 1l = 1 1 c = 2 s = 2 

P2: c s 

Pa: c s 

P1: c s 

FIG URE 4. Job schedule with '.[(1,4,4, 1,2,2) = 4(1+s) = 12 

P1: 1.___1 =_2_.___c_ =_2___, 

P2: 

Pa: 

P1: 

c 

c 

FIG URE 5 . .Job schedule with I:(l, 4, 4, 2, 2, 1) = 4(1+s) = 12 

THEOREM 1 Let b = 1 and s = p; 
i. if c :::; (p - l)m, then'.[ = p (m + m) = p (I+ s); 
ii. if c > (p - l)m, then'.[ = m + c +pm. 

Figures 4 and 5 correspond to Theorem Li and Figures 2 and 6 correspond to 
Theorem l.ii. 

The next case we consider is S = 1.~ * p for some integer J.: 2: 2. In that 
case, each processing clement will execute k subjobs. One possibility is that 
the schedule of Theorem 1 is just repeated J.: times, so that the total time is: 
kp(m + m) if c :::; (p - l)rn, and k(m + c +pm) if c > (p - l)n1. However, 
it turns out to be lllore efficient in general, if a PE continues with the loading 
part of the next. suhjob, as soon as the storage part of its previous subjob has 
been finished. This concentrates the conm11mication parts of the work done by 
one PE, and therefore gives more freedom to carry out the computing parts in 
between them. An example with b = 1, p = 4, k = 2(S = 8), I = 1, c = 4, s = 2 
is given in Figure 7. Counting from the end of the job back to the beginning 
we find that 

T (l, 4, 8, 1, 4, 2) = 4s + 4(/ + s) + c + l = 25 

(vs. T = 26 if we repeat the schedule of Theorelll l.ii two t imes). Notice that 
if we fix the schedule of the load and storage parts, the first computing task 

P1 : 1I = 11 c = 4 s = 2 

P2: c s 

P.1: c s 

P1: c s 

FIG URE 6 . .Job schedule with I:(l, 4, 4, 1, 4, 2) = I+ c + 4s = 13 
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of processing elements P2 , P3 , and P.1 could have been scheduled somewhat 
later, and the second computing task of all the four PEs could also have been 
scheduled somewhat later , without effect on the total computing t ime T. 

P 1: c s c ~ 
P~ : c s c ~ 
P3: c s c ~ 

P3: c s c 

FIGURE 7. Job schedule with T(l , 4, 2 * 4, 1, 4, 2) = 25 

We have t he following 

THEOREM 2 Let b = 1 and S = k * p for some integer k ;::: 2; 
i. if c :::; (p - 1 )m, then T.. = kp ( m + m) ; 

~ 

ii. if (p - l )m < c :::; (71 - l )m, then T.. = c + m + pm + (k - l )p (m + m); 
iii . if (p - I )m < c :::; (p - l )(m+m), then T.. = 2c+m+m+(k- l )p (m+ m) ; 
iv. if (p - l)(m + m) < c, then T.. = k(c + m + m) + (p - l )(m + m) . 

Figure 7 corresponds to Theorem 2.ii: we find 

T..(1, 4, 8, 1, 4, 2) = 4 + 1 + 4.2 + (2 - 1)4( 1 + 2) = 25, 

so the schedule of Figure 7 yields the minimal t ime. To fur ther illustrate this 

theorem, we consider case iv., and compare its t ime with that obtained by just 

repeating Theorem 1.ii k t imes. We find, assuming that (p - 1 )(m + m) < c, 

LThm2.iv 

LThml.ii 

k(c+m+m)+(p - l )(m+m) c+m+m 
---'------'-------'-----'--'----'- ---+ as k ---+ oo. 

k(c+m+pm) c+m+ pm ' 

For example, for p = 4, c = 20, l = 1, s = 2 t his gives 

LThm:.!.iv = 23k + 9 ---+ 23 = 0.793, as k ---+ 00 . 

LTl11112. iv 29k 29 

Now we study, for another example, how t he total time T depends on c, if the 
other parameters are kept fixed. Assume b = 1, p = 4, k = 10 (S = 40), m = 
1, m = 2. If we simply repeat Theorem 1 ten times, we find that T = 120 if 
c :::; 3 and T = lOc + 90 if c > 3. Theorem 2 gives the minimum t imes, wit h 
T.. = 120 for c :::; 3, T.. = c + 117 for 3 < c :::; 6, T.. = 2c + 111 for 6 < c :::; 9, and 
T.. = lOc + 39 for c > 9. This is represented graphically in Figure 8. It follows 
that an efficiency- loss of nearly 40% is possible (for c = 9 we have a worst / best 
times ratio of 180/ 129 ~ 1.40). 

3 THE GENERAL CASE 

For the general case for b we present two t heorems. In the next theorem, 

we assume t hat suhjobs on different buses update different parts of t he main 
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210 

T(c) 

l 
180 

I b = 1, p = 4, s = 40, !!! = 1. m = 2 I 

Theorem 1 
repeated 

"" 
180 

I 

210 
I 

I 

; 159 

150 ............ / I 

Theorem 2 ........ 
I \ 1.·· .. 
I •••••• , 129 
············ 

120 ~-----.. ··················t123 I 

I 

0 3 6 9 
--+C 

12 

FIGURE 8. Total time T(c) obt.aine<l with Theorem 1 (drawn line) and Theorem 

2 (dotted line) 

memory, so they can update the main memory at the same time. Moreover, 

we restrict ourselves t.o the condition of case iv. in Theorem 2. 

THEOREM 3 Let (p - l)(m + m) < c, S = k1pb + k2 with 0 :::; k2 < pb. and 

k2 = k3b + k4 with 0 :::; k4 < b; a8.mme that .mbjobs on different buses update 

different parts of the main m emory. 
i. Ifk2 = 0, thenT_ = ki(c +m+ m) +(p - l )(m+m); 

ii. if /..:2 I- 0 and k4 = 0, then T_ = (k1 + l)(c + rn + m) + (k:i - l )(m + m): 
iii .if k2 I- 0 and k4 I- 0, then T_ = (k1 + I)(c + m + m) + /..:;3(111 + m ). 

In our final t heorem we assume that subjobs on different buses not necessar

ily update different. parts of the main memory; this means that if one PE is 

updating t.he main memory, all t.he others can not (neither those connected to 

the same bus, nor t.hm;e connected to other buses) . 

THEOREM 4 Let S = P*b, so we have precisely one .mbjob for each PE; as.mme 

that if one PE updates the main memory, the others can not. 

i. If e :::; (p - l )m, then T_ = pi+ pbs; 
ii. if e > (p - l)m and l :::; s, then T_ = I + c + pbs; 
iii.if c > (p - l)m and l > s , then T_ = l + e + pbs + (p - 1)(1 - s). 
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4 CONCLUSION 

We have shown that the order of execution of communication parts of sub jobs 

on a parallel shared memory bus- type computer can influence t he total pro

cessing time of a parallel job unfavourably. Since, in general , the programmer 

can not influence this order of execution, this phenomenon must be accepted 

as an inherent uncertainty in parallel processing. Examples illustrate that an 

efficiency-loss of 40% is not uncommon. 
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Rambling along paths, trees, flows, curves, knots, and rails 

Alexander Schrijver 
CW/, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, 

University of Amsterdam, P/antage Muidergracht 24, 1018 TV Amsterdam, The Netherlands. 

As Professor of Mathematics at the Free University, Cor Baayen was an 
inspiring teacher. His lectures were lucid and skilful, and his broad knowledge 
enabled him to exhibit the students unexpected vistas and panoramas through 
several areas in mathematics and theoretical computer science, with topology, 
set theory, discrete mathematics, logic, and computability as landmarks. As a 
student you learned that everything is related to everything. 

Another characteristic of Cor Baayen's lectures was that he always was eager 
to present courses on 'modern' topics in mathematics - modern in the sense of 
not belonging to the standard student curriculum in mathematics (many still 
don't belong to it). Thus we learned about boolean algebras, graphs, modal 
logic, proof theory, recursion theory, computability, etc. At the same time there 
was a strong interest in the historical side of the results discussed. 

The courses of Cor Baayen (and his oral examinations, which generally out
growed to private lessons of at least three hours) being stimulating, he added a 
personal touch by inviting students from their first year at his home, for further 
metamathematical background. He has stimulated the enthusiasm of several 
students for mathematics and for doing research. 

I think it appropriate not to restrict myself in this paper to one area, but 
rather to try to link some of the areas of Cor Baayen's interest, by a ramble 
through topology, discrete mathematics, and algoritlnnics, with due attention 
to the historical roots and to some connections with a few of the other interests 
of Cor Baayen. 

1. Roots of topology. It seems that Leibniz was one of the first interested 
in topology, or what he called geornetria sit-us. In 1679 he wrote in a letter to 
Christiaan Huygens: 

... mais apres tous Jes progres que j'ay faits en ces matieres, je ne suis 
pas encor content de I' Algebre, en ce qu 'elle ne donne ny Jes plus cour
tes voyes, ny Jes plus belles constructions de Geometrie. C'est pourquoy 
lorsqu'il s'agit de ccla, je croy qu'il nous faut encor une autre analyse 
proprement geometrique on lineaire qui nous exprime directement situm, 
comme I' Algebre exprime magnitudinern. Et je croy d'en voir le moyen et 
qu'on pourrait representer des figures et mesme des machines et mouve-
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mens en caracteres, comme l'Algebre represente Jes nombres ou grandeurs: 
et je vous envoye un essay qui me paroist considerable. 

According to Listing, in his Vorstudien znr Topologie of 1847 [37], this was the 
first idea of a scientific and 'calculatory' elaboration of the modal side of the 
geometry, 

... in welchen von einer Art Algorithmus die Rede ist. womit man die 
Lage riiumlicher Gebilde ehen so der Analyse unterwerfen miisste, wie es 
hinsicht.lich der Grosse mitt.elst der Algebra geschieht .. 

(The essay referred to by Leibniz is following Listing not of 'eigentlich modalen 
Inhalts'.) 

Listing also mentions work hy Euler and others on 'die bekannt.e Aufgabe des 
sogenannten Rosselsprungs', by Vandermonde on the route by which a thread 
should go in or<ler to represent. for instance a braid or a garter of the weave of 
a stocking, and by Clausen on the smallest. number of penst.rokes with which a 
given figure can be drawn. 

Listing, a student of Gauss, says that. except. for this, the modal side of 
geometry ha.'i ' to expect. its elaboration and development almost completely from 
the future'. As reasons for the fact that since Leibniz not much ha.'i been done 
on the topic, Listing mentions the complexity of discovering effective methods 
to reduce spatial intuit.ion to concepts, and the inadequacy of language for 
describing scientifically these, oft.en highly entangled, concepts. 

Listing does not claim that he had performed this hard job, and therefore he 
calls his treatise Vorstudien zur Topologie, thereby coining the name topology: 

Es mag erlauht. sein , fiir cliese Art Unt.ersuchungen riiumlicher Gebilrle 
den Namen "Topologie" zu gehrauchen stat.t. der von Leibniz vorgeschla
genen Benennung "geomet.ria sit.us", welche an den Begriff des Masses, 
der hier ganz unt.ergeordnet ist., erinnert., und mit dem bereit.s fiir eiue an
dere Art geomet.rischer Bet.racht.ungen gehriiuchlich geworrleuen Namen 
"geometrie de posit.ion" collidirt. Unter der To7mlogie soil also die Lehw 
von den modalen Verhiiltnissen raumlicher Gebilde verstanden werden, 
oder von den Geset.zen des Zusammenhangs, der gegenseit.igen Lage um! 
der Aufeinanderfolge von Punkt.en, Linieu, Fliichen, Ki:irpem un<l ihren 
Theilen oder iluen Aggregat.en im Raume, abgesehen von den Mass- uncl 
Gri.issenverhiilt.nissen. 

List.ing discusses how several spatial configurat ions c:oul<l he represented hy a 
calculus. In particular he focuses on the orientation of ohjeds, an<l on how 
one can nse his observations when looking through the micro- or telescope, 
especially when also mirrors are involved. Moreover, he considers <lextro- and 
laevorotation of screws, springs, ropes, spiral staircases, snail's shells, and stalks. 

Listing finds that it. is difficult to describe the orientation of ohject.s hy 
words, claiming the inadequacy of the description of dext.ro- and laevorotatory 
in Linnaeus ' Philosophia Botanica (1751): 
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Den Ausdruck c au 1 is v o 1ubi1 is namlich erkliirt Linne so: spiral it er 

adscend ens per ram um alien um und zwar sin is t rors um (0 se

c und um solem vulgo, e.g. Humulus, Lonicera cet.; dextror

sum (Jl) contra motum sol is vulgi e.g. Convolvulus, Phase

o 1 us, cet. Bei der Intorsio wiederholt er diese Bestirnmung und stellt sie 

mit den Windungstypen am Cirrhus, an der Corolla und anderen Organen 

zusammen. In einer Anrnerkung hierzu gibt nun Linne seine Definition 

von sin is t rors urn und dext rors um, welche spiiter - zum Theil aus 

Anlass des dabei vorgefallenen Druckfehlers - die verschiedensten Ex

egesen erfahren hat . Linne setzt fest: sin is t r ors um ho c est, q u o d 

respicit dextram, si ponas Te ipsum, in centro constitu

tum, rneridiem adspicere; clextrorsum itaque contrarium, 

und erkliirt damit, dass er die nach der rechten Seite eines im Centrum ste

hende Beobachters hervorragenden Blumenbliitter als Kennzeichen einer 

links gewundenen Corolla angesehen wissen wolle, und vice versa. Das 

meridiem adspicere ist in der concreten Sprache Linne's nicht sowohl ein 

iiberfliissiger, aL5 vielmehr ein pr~ignanter Ausdruck fiir die aufrechte Stel

lung des mitten in der Blume gedachten Beobachters, der das Gesicht uach 

einem hestimmten Punkte des Horizonts kehren soil - versteht sich, den 

Scheitel nach oben gerichtet. Freilich bleibt bei diesen Erkliirungen in 

topologischer Hinsicht manches zu ergiinzeu, manches zu fragen iibrig. 

x 
Figure 1 

Studying orientation brings Listing to knots. (A knot is a 

simple closed curve in JR3 .) They were considered hefore 
by Gauss in computing inductance in a system of linked 
circular wires. Listing introduced a (now standard) planar 
representation of crossings, as in Figure 1. 

Eine Kreuzung dieser Art, wobei sich uach angegebener Weise in der Pro

jection oder Zeichmmg der iiberliegen<le von dem untenliegeuden Faden 

durch den blossen Anhlick leicht unterscheiden liisst, nennen wir eine Ue

berkreuzung im Gegensatz zur Durchkreuzung, wo ein wirklicher Durch

schuittspunkt im Raume stattfindet, und die eben gedachte Entfemung 

heider Faden bei J( entweder Null ist, oder wenigstens als verschwindend 

betrachtet win!. Zwei Wege konnen demuach, wie beim gewohnliclum 

Kreuzwege, einander clurchkreuzeu, oder aher, wie diess in mauchen Stiidt

en und bei vielen Kreuzungen zwischen Eisenbahnen uud auderen Fahr
strassen der Fall ist, einander iiberkreuzen. 

He also introduces a calculus with >. (for laeotrop) and ti (for dexiotrop) in

dicating the corners at the crossing as in Figure 2, claiming that this signing 

Figure 2 

will facilitate an algorithmic discussion ( 'wie sie ihres Ortes 

gefiihrt wer<leu muss') of the equivalence of knots. 
Without proof Listing states that the m1111ber of cross

ings in the trefoil knots (Figure 3) cannot be decreased, and 
that the two knots in the figure are not equivalent. 

Iu particular, Listing was interested in knots in which each face of the pro

jection is 'monotype' - that is, contains either only >. or only 15. Such knots are 
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now known as alternating knots - indeed, when 
following the knot one goes alternatingly over and 
under. The type-symbol assigned to such knots is 
for instance li5 + 3/i\ A4 + 2A3 + 2A2 , indicating 
that there is 1 Ii-face with 5 edges, 3 Ii-faces with 

Figure 3 3 edges each, 1 A-face with 4 crossings, 2 A-faces 
with 3 edges each, and 2 A-faces with 2 edges each. 

Clearly, the Ali type-symbol is an invariant under the trivial operations on 
the diagram: rerouting an edge through the unbounded face, and mirroring 
the diagram, while interchanging 'up' and 'down' at each crossing. However, 

Listing realizes that the Ali type-symbol 
does not give an invariant for alternat
ing knots - he gives an example of two 
equivalent alternating knots (Figure 4) 
that have different Ali type-symbols. 

Interesting is that Listing mentions 
Figure 4 as one of the further applications of to

pology, beside natural sciences and art, also the area of industrial mechanics, 
for which Listing refers to the work of the computer pioneer Charles Babbage 
[4] on representing machine movements by symbols. 

2. Tait and knots. Independently of Listing, P.G. Tait studied knots. He was 
interested in knots because of the 'vortex atom' model invented by his friend, 
the physicist W. Thomson (later Lord Kelvin ), like Tait. of Scottish origin. 

Tait had a broad scientific interest in mathematics, physics and other dis
ciplines, and published papers and notes on electrodynamics, magnetism, the 
molec11lar arrangement in crystals, determinants, quaternions, thermodynam
ics, the value of the Edinburgh Degree of M.A., the fecundity and fertility of 
women, earth rotation, comets, fluid dynamics, partial differential equations, 
spectral analysis, thermoelectricity, the retina, the pend11lum motion, combina
torics, viscocity, integral calculus, sound and music, the double rainbow, tlmn
derstorms, and the pace of a golf ball. 

Studies of curves in the plane led him to investigating the four-colour prob
lem, and he also applied them to knots. In a paper presented to the British 
Association in 1876, Tait [66] observed that the cells of a plane closed curve can 
be coloured black and white so that adjacent cells have different colours. He 
finishes by remarking: 

The development of this subject promises absolutely endless work - but 
work of a very interesting and useful kind - because it is intimately 
connected with the theory of knots, which (especially applied in Sir W. 
Thomson's Theory of Vortex Atoms) is likely soon to become an important 
branch of mathematics. 

In the theory of 'vortex atoms' of Thomson [72], the internal coherence of atoms 
was assumed to be determined by a knot, or rather a link (a disjoint union of 
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knots) , connecting the different indivisible parts of the atom, the 'vortex tubes' 

{a theory soon abandoned by Thomson). By classifying knots, Tait hoped to 

shed light on the periodic table of elements. 

In a note communicated to the Royal Society of Edinburgh on 18 Decem

ber 1876, Tait [61] observed that any closed curve in 

the plane gives an alternating knot, just by going al

ternatingly over and under. He conjectures that if 

Figure 5 such an alternating knot is reduced, that is, cannot 

be decomposed as in Figure 5, then it has a minimum number of crossings 

among all knots equivalent to it; that is, 'cannot have the number of crossings 

reduced b. · any possible deformation.' As a motivation for considering alternat

ing knots, Tait [65] mentioned that they occur on various sculptured stones and 

in woodcuts of Diirer. 

"! am indebted to Mr Dallas J or a photograph of a 

remarkable engraving by Diir'cr, exhibiting a very 

c:omple:1; but. symmetrical linkage, in which this 

alternation is maintained throughout." (Tait [65]) 

After having presented 
his subsequent 'Note on the 
Measure of Beknottedness' 
(Tait [62]), Tait's attention 
was drawu by the physicist 
J.C. Maxwell (also Scottish) 
to List.iug's Vorstiulien zur 
Topologie, which Tait next 
studied with great eutlm
siasm, calliug it an 'extre
mely valuable , but too brief, 
Essay'. 

It made Tait aware of 
the fact that there exist al 
tenmting knots that are e
quivalent but canuot be ob
tained from each other by 
trivial operations, as t hey 
have differeut )..8 type-sy111-
bols. In fact, in [G3] he sta
tes that the sole point of 
Listing's paper which (as far 
as knots are concerned) was 
thoroughly new to Tait -
'though not unexpected' -
was an operation that Tait 
extracted from Listing's as
sertion that the knots in Fig
ure 4 are equivaleut. 

The operation transforms one alternating knot into another. To apply it , one 

needs to decompose the kuot into two blocks as iu the first picture in Figure 
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6. Then one of the blocks is rotated 180° , as indicated in the second picture 

of Figure 6. Later, Tait called this operation ftyping. Note that also the trivial 

operations can be obtained as the result of a series of Hypings. 

Figure 6 

The new operation made Tait. conclude that. the classification of knots 1s 

much more difficult than Tait initially thought, 

and it is so because the number of really distinct. species of each order is 

very much less than I was prepared to find it. 

It made him plan to give up the whole area of knots, as the note ends with: 

And here I am glad to leave it., for at. this stage it is entirely out of my 

usual sphere of work, and it has already occupied too much of my time. 

But. saying farewell to knoti-; is not that easy, and Tait 's abstinence was 

of very short. duration. In the same 'Session 1876-77' of the Royal Society of 

Edinburgh he published five more notes on knots and links, including one 011 

'Seve11fold K11ottiness' [64). In this paper, t.he reduced alternati11g k11ots with 

seven crossings are classified. This may be considered as the root of 'Tait 's 

Hyping conjecture' (although in [64] the term 'Hyping' is not used yet). 

In his classificatio11, the equivalence of knots is derived by applying only 

Hyping (including the trivial operations). On the other hand, Tait. seemed to 

have only intuitive means of showing that. certain knots are non.equivalent - at. 

least, he does not describe in his paper why certain knots are nonequivalent. So 

Tait. assumed without proof that equivalence of alternating knots is completely 

determined by Hyping. Therefore one may say that Tait conjectured: 

Tait's flyping conjecture. Two reduced alternating knots are equivalent if 

and only if they can he obtained from each other hy a serie8 of ftypings. 

Tait was aware of the fact that he did not yet have a way of proving nonequiv

alence of knots, as in [68] he wrote: 

.. . and thus, though I have grouped together many widely different. hut. 

equivalent. forms, I cannot. he absobdcly certain that. all those groups are 

essentially different. one from another. 

Tait's big article 'On knots' [65] seems the first. in which he uses the term 

ftyp ing: 
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The deformation process is, in fact, one of fiyping, an excellent word , 

very inadequately represented by the nearest equivalent English phrase 

"turning outside in" . 

Although it seems that he restricted the term for turning a knot completely 

upside down, earlier in the paper the operation of Figure 6 was mentioued: 

... this process ... gets rid of a crossing at one place only by introducing 

it at another. It will be seen later that this process may in certain cases 

be employed to change the scheme of a knot, ... 

Moreover , in a later paper, Tait [67] speaks of 'fiyping of individual parts' of 

a knot , thereby indicatiug that the geuernl operation described above indeed 

should he called fiyp ing. 
The word ' ftype' is old Scottish and means acconling to The Concise Scots 

Dictionary: ' fold back; turn wholly or partially inside out; tear off (the skin) 

in strips, peel'. A Dictionary of the Older Scottish Tongue, from the Twelfth 

Cent1iry to the End of the Seventeenth has as lemma: 

Flyp(e, v. [e.111 .E. and ME. flype (c. 1400), of obscurn origin; current in 

later Sc. arn l northern Eng. dialects .] tr. To fold uack; to turn outwards. 

Thare la ithlie lyuing fur thwart fl y pit; LYND. Sycfo Ta illi.- !!7. Aue pair o f wyd 

slevis of a rming fl y pand lmkwar<l ; 15() 1 h w. W m·drnbe 128. Sum flyrand , t hair 

phisnom eis t hai Hyp [11.r. Hipe]; l'vluNTG. Plyt. 510 (T ). I used often to Hype up 

t he lids of my eyes; Row 452. 

The Scottish National Dicl.ionary, designed partly on reyional liues and partly 

on historical principles, and containi11y all the Scotti.~h words known to be in 

w;e or to have been in ·Ilse since c. 17UU gives amoug other t he fo llowing usage: 

Sc. 18!J(i Stevenson W. of Hcrmiston vi.: 
.. Miss Christina, if you please, !\fr. Weir!" says I, and just Hyped up my 

skirt tails. 

Sc. 1721 J . Kelly Proverbs 218: 
I wi ll sooner see you fleip-ey'd , like a French Cat .. A disdainful rejecting 

of an unworthy Proposal ; spoken by hold Maids to the vi le offers of young 

Fellows. 

In a discussion of Listing's Vorstwlien, Tait [G7] describes fiypi11g as follows: 

When we fl ype a glove (as in taking it very wet, or as we skin a hare), 

we perform an operation which (nut describable in English by any shorter 

phrase than "t'Uniing outside in") changes it character from a right-hand 

glove to a left. A pair of trousers or a so-called re·uersible waterproof coat 

is, after this operation has been transformed, still a pair of trousers or 

a coat, but the legs or arms are interchanged; unless the garments, like 

those of "Paddius a Corko", are buttoned behind. 

The processes described hy (Peter) Tait and the vocabulary introduced by him 

inspired the physicist (J ack) Maxwell to the following poem: 
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(CATS) CRADLE SONG 
By a Babe in Knots. 

Peter the Repeater 
Flatted round a platter 
Slips of silvered paper 
Basting them with batter. 

Flype 'em, slit 'em, twist 'em, 
Lop-looped laps of paper; 
Setting out the system 
By the hones of Neper. 

Clear your coil of kinkings 
Into perfect plaiting, 
Locking loops and linkings 
Interpenet.rating. 

Why should a man benighted, 
Beduped, befooled, besotted, 
Call knotful knittings plighted , 
Not knotty but beknotted? 

It 's monstruous, horrid, shocking, 
Beyond the power of thinking, 
Not to know, interlocking 
Is no mere form of linking. 

But little Jacky Horner, 
Will teach you what is proper, 
So pitch him, in his corner, 
Your silver and your copper. 

Tait [65] also introduced a convenient. auxiliary graphical representation of 
knot and link diagrams (more generally, sets of closed curves ) in the plane. 
Colour the faces of a link diagram /( hlack and white, so that adjacent faces 
have different colours, and so that the unbounded face has colour white. Now 
put a point in each of the black faces. If any two black faces f, J' are 

aclja cent to a common crossing, draw a line 
connecting the points in f and J' - cf. Figure 
7. In this way we obtain a plane graph HJ\. 
that uniquely determines the projection of the 
link diagram /(, at. least combinatorially. If 
the link diagram is alternating, we can recon
struct it from HI\ (after adopting a convent.ion 

Figure 7 on whether each black face corresponds to a 
dexiotrop or a laeotrop face of the link). We 

thus obtain an equivalence of combinatorial questions on alternating knots and 
on plane graphs. 

3. Work on Tait's conjectures. Since the work of Listing and Tait , the 
study of knots has come to great flourishing. Work on distinguishing knots by 
polynomial invariants (including the well-known .Jones polynomial), the connec
tions to mathematical physics, and the applications for instance to DNA have 
contributed to that. Especially, the work on polynomials has made it possible 
to prove the nonequivalence of several pairs of knot.s. 

In this ramble I just want to restrict myself to some of the work clone on 
Tait's conjectures. Using the .Jones polynomial , Kauffman [27], Murasugi [4:~], 

and Thistlethwaite [69] were able to show Tait's conjecture that a reduced alter
nating link diagram attains a minimum number of crossings, taken over all (not 
necessarily alternating) links equivalent to it. In particular, any two equivalent 
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reduced alternating links have the same number of crossings. 
A special case of Tait's flyping conjecture was considered in [57]. Call a link 

00 
diagram K well-connected if it does not have a nontrivial cut 
that crosses the diagram in at most four curves only. That is, 
for any decomposition of the diagram as in Figure 8, one of the 

Figure 8 blocks should contain at most one crossing. 
For a well-connected alternating link diagram, flyping clearly loses most of 

its lustre. For well-connected links Tait's flyping conjecture reduces to: 

Theorem 1. Let K and K' be links with well-connected alternating diagrams. 
Then K a11 d K' are equivalent if and only if the diagrams arise from each other 
by trivial operations. 

Meantime, Menasco and Thistlethwaite [39) have announced a proof of Tait's 
flyping conjecture in full generality. 

We sketch some elements of the proofs. Let K and K' be two links, with 
reduced alternating diagrams. We must show that if K and K' are equivalent, 
then their diagrams arise from each other by a series of flypings. In both proofs, 
surfaces are introduced to trace the movements when transforming K' to K. 

Let K be an alternating link, with link diagram having a dextrotrop un
bounded face. Then the compact bordered surface Ex is 'the' surface with 
boundary K and with projection equal to the closure of the union of the laeotrop 
faces. A pictorial impression is given in Figure 9. 

Now note that if we move link /\' to 
link K, there will be two surfaces with 
boundary K: first the surface EK asso
ciated with K; second the transformed 
surface T( EK' ), where T : S 3 ---+ sa 
describes the isotopy bringing K' to K . 
Thus the surface T(EK' ) in a way bears 
the 'history' of moving K' to K. 

There are some parameters of comFigure 9 
pact bordered surfaces that remain in

variant under isotopy. First, the Euler characteristic is an invariant. A second 
parameter invariant under isotopy is the twisting number , which is about the 
number of twists one makes when driving on the surface, close to the boundary, 
like on a roller coaster (added up over all boundaries). 

Now one can- show that if K is a link with well-connected alternating dia
gram and if E is any compact bordered surface with boundary K and with the 
same Euler characteristic and twisting number as EK, then there is an isotopy 
bringing E to EK. 

This directly gives, for any two equivalent links K and K' with well-connected 
alternating diagrams, that there is an isotopy bringing EK' to EK. Indeed, for 
this it suffices to show that Ex and EK' have the same Euler characterist ic 
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and the same twisting number. This follows directly from earlier results on the 

invariance of the number of black faces and oft.he 'writ.he' of a link (Mura.c;ugi 

[44], Thistlethwaite [70], [71]). 
Finally, to finish the proof of Theorem 1, one has for links /\ and K' with 

well-connected alternating diagrams: if there is an isotopy bringing EK' to EK, 

then the diagrams arise from each other by trivial operations. This fact is 

proved by showing that if EK and E J(' are isotopic, then the cycle spaces of HK 

and HK' form isomorphic matroi<ls. This is shown by comparing the twisting 

numbers of circuits in EK and EK'· 
Hence, by a theorem of Whitney [76], HK and HJ(' are the same up to 

trivial operations (note that these plane graphs are 3-connected by t.he well

connectedness of the diagrams). This gives that the diagrams are the same 

up to trivial operations, and thus we have Tait's flyping conjecture for well

connected links. 
The proof of the full Tait flyping conjecture as announced by Menasco and 

Thistlethwaite [39] makes a more extensive use of invariants, including polyno

mial invariants, and applies them simultaneaously to the surface Eg and to the 

surface E~ obtained similarly as Eg but with respect to the dextrotrop faces 

(assuming the link diagram being on the 2-sphere). 

4. Reidemeister moves. A basis of representing a knot hy its diagram is that 

never more than two points of a knot project to the same point in the plane, 

and if two points have the same projection, it is a crossing. By this one does 

not. lose generality. 
Reidemeister [48] observed that this principle can be extended. If one con

siders the isotopic move of a knot, one has a fourth dimension, the time. Then 

one may assume that the move is so that at any fixed moment not more than 

three points of the knot project to the same point in the plane, and if three 

points have the same projection, they pairwise cross. 
Further analysis led Reidemeister to showing that if two links are equivalent, 

then their diagrams can be moved to each other by a series of simple operations, 

called Reidemcister moves: 

(l) type I: replacing Q by r-., and conversely; 

type II: replacing X::X by X, aud conversely; 

type III: replacing ~ by A· 
(In Reidemeist.er's book Knotenthcorie [49], these operations are called n.1, fl.2, 

and n.3.) 
It enables to study knot equivalence just hy diagrams, and it reduces knot 

equivalence to a combinatorial question. Most of the knot polynomials have been 

shown to be invariant by showing that they are invariant under the Reidemeister 

moves. 
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On the other hand, Reidemeister moves do not imply a finite algorithm to 

test if two given knots are equivalent. There is no upper bound known (expressed 

in the number of crossings of the knots) for the number of Reidemeister moves to 

be made to transform one knot to another, equivalent, knot. Equivalently, there 

is no upper bound known for the maximum number of crossings at intermediate 

diagrams when transforming two equivalent knots to each other by Reidemeister 

(2) 

Figure 10 

moves. 
Consider next a closed curve in the plane, like in 

Figure 10, assuming that there are only a finite num
ber of double points, each being a crossing of two 
curve parts. It is quite trivial to show that it can 
be unwrapped to a simple closed curve by a series 
of the following operations - which are also called 
Reidemeister moves: 

type /: replacing 0 by , and conversely; 

type II: replacing 

type III: replacing 

by 

' by , . 

, and conversely; 

Next it is an easy exercise to show something stronger: in transforming a 

plane closed curve to a simple curve we can restrict the Reidemeister moves to 

those not increasing the number of crossings. That is, the Reidemeister moves 

of types I and II are only applied from left to right in (2). A similar statement 

holds when transforming a system of plane closed curves to a system of pairwise 

disjoint simple closed curves, except that we should add a Reidemeister move 

of type 0: 

(3) type 0: replacing by J 

(Using the analogy between a system J( of plane closed curves and the plane 

graph HK as introduced by Tait (see Figure 7), one can derive from this the 

result of Griinbaum [23] that each plane graph can be obtained from the empty 

graph by a series of the following operations: (i) adding a new vertex, possibly 

connected by a new edge to an existing vertex; (ii) adding a new edge parallel 

to an existing edge; (iii) adding a new vertex in the 'midst' of an existing edge; 

(iv) 'Y ~', that is, replacing a vertex v of degree 3, and the three edges incident 

with v, by a triangle connecting the three vertices adjacent to v; (v) '~ Y', that 

is, the operation reverse to (iv).) 
If we have a closed curve C 011 a compact surface Sit is clear that in general 

one cannot make it simple by Reidemeister moves. The best one may hope for 

is to reduce the number of crossings to the minimum number of crossings taken 

over all dosed curves freely homotopic to C. 
That is, define 

(4) mincr(C) := min{cr(C ') IC' freely homotopic to C }. 

503 



Here er( C') denotes the number of selfcrossings of C', counting multiplicities. 

Two closed curves C, C' : 3 1 --+ 3 are freely homotopic, in notation C "' C', if 

there exists a continuous function <I>: 3 1 x [O, I] -+ 3 such that <I> (x, O) = C(i:) 
and <I>(x, I )= C'(x) for each x E 3 1. 

Call C minimally crossing if cr(C) = mincr(C). Then it is shown in [22] that 

each closed curve C can be transformed to a minimally crossing closed curve by 

Reiderneister moves, without increasing the number of crossings throughout the 
moves. 

This holds more generally for systems of closed curves. To this end define 

for closed curves C and Don 3: 

(5) mincr(C, D) := min{cr(C', D') IC' "'C, D' "' D}. 

Here er( C' , D' ) is the number of crossings of C' and D' , counting multiplicities. 

A system C1 , ... , Ck of closed curves on 3 is called minimally crossing if each 

C; is minimally crossing and if er( C;, Ci) = miner( C;, Ci) for all i =/:- j. 

Then the following is proved in (22]: 

Theorem 2. Any system of closed curnes on a surface can be transformed to a 

minimally crossing system by a series of Reidemeister moves, without increasing 

the number of crossings during the moves. 

(To be precise, one should add some tameness assumptions: the surface should 

be triangulizable, and the system of closed curves should have only a finite 

number of double points , each being a crossing.) 
It is important to note that the main content of Theorem 2 is that one does 

not need to apply any of the operations (2) in the reverse direction - otherwise 

the result would follow quite straightforwardly with the techniques of simplicial 

approximation. 
The idea of the proof is as follows (for one nontrivial closed curve C) . First 

it is shown that one may assume that 3 is 'hyperbolic', that is, has a hyperbolic 

distance on it. Then C is freely homotopic to a unique shortest closed curve C' 
on 3. Consider the following operation. Choose a closed disk A on 3, convex 

with respect to the hyperbolic distance. Straighten out the intersections of C 
with A; that is, replace each intersect.ion I by the shortest curve that has the 

same end points as /. Due to an extension of a theorem of Ringel (50), this can 

he done by applying Reidemeister moves to A. 
Now one may show that by choosing a finite number of closed disks A , 

one can move C arbitrarily close to C'. Then making C minimally crossing 

essentially is reduced to making a closed curve on the annulus or the Mi:ibius 

strip minimally crossing (depending on whether C is orientation preserving or 

not ). This last turns out to boil down to the following auxiliary results on 

permutations. 
Let 7f be a permutation of {I, ... ,n}. A crossing pair of1f is a pair {i,j} 

with (i - j)(7r(i)- 7r(j)) < 0. The crossing number (or length (cf. Bourbaki (7])) 
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er( 7r) of 7r is the number of crossing pairs of 7r. 
Let miner( 7r) denote the minimum of er( 7r1

) taken over all conjugates 11"
1 of 

11". So mincr(7r) only depends on the sizes of the orbits of 71". A permutation is 
minimally crossing if er( 7r) = miner( 7r). Similarly, maximally crossing is defined. 

A transposition is any permutation (k, k + 1) for some k E {1 , ... , n - 1} . 
. Since each permutation a is a product of transpositions, it is trivial to say that 
each permutation 7r can be transformed to a minimally crossing permutation by 
a series of operations 

(6) 7r --4 T11"T , 

where T is a transposition. Similarly for maximally crossing. 
What however can he proved more strongly is: 

Lemma. Each permutation 7r of {1, ... , n} can be transfonned to a minimally 

crossing permutation by a series of operations (6), while never increasing the 

number of cross·ing pairs. A S'imilar statement holds for maximally crossing. 

Geck and Pfeiffer [21] proved the first part of the Lemma more generally for any 
Wey! group (instead of just a permutation group). It is not known if also the 
'maximally crossing' part also holds for Wey! groups. 

5. Curves and circulations on surfaces. One motivation for studying 
Reidemeister moves on surfaces was to derive a homotopic circulation theorem 
for graphs embedded on a surface. Once one has Theorem 2, such a circulation 
theorem can be derived by a number of straightforward arguments based on two 
kinds of duality: duality of graphs on surfaces and linear programming duality 
(Farkas' lemma). 

Again, let S be a surface, and let G = (V, E ) be an undirected graph em
hedded on S. For any closed curve D on S , let cr(G, D ) denote the number 
of intersections of G and D (counting multiplicities). Moreover, mincr(G, D ) 
denotes the minimum of cr(G, D' ) where D' ranges over all closed curves freely 
homotopic to D and not intersecting V. 

We first derive the following theorem from Theorem 2, which was proved for 
the projective plane hy Lins [36]: 

Theorem 3. Let G = (V, E) be an Eulerian graph embedded on a s111face S. 

Then the edges of G can be decomposed into closed c·urues C1 , .•. , Ck such that 
f nr each closed curve D on S: 

k 

(7) miner( G, D) = L miner( C;, D ). 
i = l 

Here a graph is Eulerian if each vertex has even degree. (Connectedness of 
the graph is not assumed. ) Moreover, decomposing the edges into G'1, ... , Ck 
means that each edge of G is traversed by exactly one of the C;. 
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Note that the inequality 2: in (7) trivially holds, for any decomposition of 

t.he edges into closed curves C 1 , . •. , Ck. The content of t.he theorem is t hat 

there exists a decomposition attaining equality for each D. 
The idea of t.he proof is as follows. First , by an easy construct.ion we may 

assume that each vertex v of G has degree at most. four. Next, we define the 

straight decomposition of G as the system of closed curves that decomposes t he 

edges of G in such a way that in each vertex of G, opposite edges are traversed 

consecutively. So each vertex of G of degree four represents a (self-)crossing of 

C1, ... ,Ck. 
Up to some trivial operations, such a decomposition is unique, and con

versely, it uniquely describes G. So any Reidemeister move applied to C1 , •.. , C1: 

carries over a modification of G. Hence we can speak of Reidemeister moves 

applied to G. 

(8) 

The following is easy to see: 

if G' arises from G by one Reidemcist.er move of type III, then 

miner( G', D ) = miner( G, D ) for each closed curve D. 

Let us call any graph G = (V, E) that is a counterexample to the theorem 

with each vertex having degree at most four and with a minimal number of 

faces, a minimal c01mterexamplc. 

(9) 

From (8) it directly follows that: 

if G' arises from a minimal counterexample G by one Reiclemeister 

move of type III, then G' is a minimal counterexample again. 

Moreover one has: 

(10) if G is a minimal counterexample, then no Reidemeist.er move of 

type 0, I or II can be appliecl to G without increasing the number 

of vertices of G. 

For suppose that a Reidemeister move of type II can be applied to G. Then G 

contains >8 < as subconfiguration. Replacing this hy '>C·. would give a smaller 

counterexample (since the function miner( G, D ) does not change by this oper

ation), contradicting the minimality of G. 
One similarly sees that no Reidemeister move of type 0 or I can be applied. 

The proof is finished by showing the contradictory statement. that the straight 

decomposition C1 , ... , C1: of any minimal counterexample G satisfies (7). 

Choose a closed curve D. By Theorem 2 we can apply R.eidemeister moves to 

the system D , C1, .•. , Ck so as to obtain a minimally crossing syst.em D' , C~, ... , Cf. . 

By (10) we did not. apply R.cidemeister moves of type 0, I or II to C1 , ... , Ck· 

Hence by (8) for the graph G' obtained from the final c;, .. . , C~, we have 

miner( G', D ) = miner( G, D ). So 
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k 

(11) mincr(G,D) = mincr(G' , D) :::; cr(G',D') = I:cr(CL D' ) 
i= l 

k k 

= L miner( c:, D' ) = L miner( C;, D). 
i = l i = l 

This proves Theorem 3. 
Using surface duality one directly obtains from Theorem 3 the next theorem. 

If G is a graph embedded on a surface S and C is a closed curve in G, theu 

minlengtha ( C) denotes the minimum length of any closed curve C' ,..., C in G. 

(The length of C' is the number of edges traversed by C ' , counting multiplicities.) 

Theorem 4. Let G = (V, E) be a bipartite graph cellularly embedded on a 

compact smfacc S. Then there exist closed c-urves Di , ... , D, on S \ V such 

that each edge of G is crossed by exactly one DJ and by this DJ only once and 

such that for each closed curne C: 

I 

(12) minlengthc(C) = L mincr(G', DJ)· 
J= I 

Now with linear programming duality (Farkas' lemma) one derives from 

Theorem 4 the followiug 'homotopic circulation t heorem' - a fractional packing 

theorem for cycles of given homotopies in a graph on a compact surface. 

Let G = (V, E) be a graph embedded on a compact surface S. For any 

closed curve C on G and any edge e of G let trc( e) denote the number of times 

C traverses e. So trc E JR.E . 
Call a function f : E ---. JR. a circulation (of value 1) if f is a convex 

combination of functions trc. We say that f is freely homotopic to a closed 

curve Cu if we can take each C freely homotopic to Cu . 

Theorem 5 (homotopic circulation theorem). Let G = (V, E ) be an undirected 

graph embedded on a compact surface S and let C1 , ... , Ck be closed curves on 

S . Then there exist circulations Ji , ... , h s·uch that f ; is freely homotopic to 

C; (i = 1, ... , k ) and s·uch that L~= I f ;(e) :::; 1 for each edge e, if and only if 

for each closed curve D on S \ V one has 

k 

( 1:~ ) cr(G,D) ;:::: l:mincr(C;, D ). 
i= l 

We sketch the proof if G is cellularly embedded. Necessity of the condition is 

direct. To show sufficiency, by Farkas' lemma (cf. [54]) it suffices to show that 

if d E <fi' and l E IQ~ such that I::,,E E trc ( e) ;:::: d ; for each i and each closed 

curve C,..., C; in G, the11 L ,,EE l(e) ;:::: 2:: ~~ 1 d;. 
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Then one can show that it may he assumed that each d; and each l (e) is an 
even integer, and that l (e) > 0 for each e. Replacing each edge e hy a path of 
length l (e) makes G into a bipartite graph G' . Applying (13) to each of the DJ 
of Theorem 4 gives the required inequality. 

6. Disjoint curves in graphs on surfaces. In the homotopic circulation 
theorem one may wonder when there exists an integer-valued circulation. This 
would correspond to a system of pairwise edge-disjoint cycles C~ , ... , C£ in G 
with c; freely homot.opic to C;. However, the conditions given in the theorem are 
not sufficient to get an integer-valued circulation; an<l no additional condit ions 
are known to ensure the existence of an integer-valued circulation. 

If we want. to have vertex-disjoint circuits, such conditions have been given 
in [55], proving a conjecture of L. Lovasz and P.D. Seymour: 

Theorem 6. Let G be an undirected graph embedded on a compact surface S and 

let C 1, ... , Ck be pairwise disjoint simple closed curves on S . Then there exist 
pairwise disjoint simple circuits C~ , ... , C£ in G where Cf is freely homotopic 
to C; for i = 1, . . . , A:, if and only if 

k 

(14) cr(G , D ) ;:::: L mincr(C; , D) 
i= l 

fo r ench closed curve D on S, with strict inequality if D is doubly odd. 

Here a closed curve D is doubly odd if D is t he concatenat.ion of two closed 
curves D 1 and D2 , with a common beginning (= end) point , which is not on G, 

in such a way that er( G, Di)+ I:7~ 1 mincr(C;, Dj) is odd for j = 1, 2. It is not. 
difficult. to see that. the condition given in the theorem is necessary. 

The problem solved in Theorem 6 arose during the graph minors project of 
N. Robertson and P.D. Seymour. Principal result of this deep project. is a proof 
([53]) of Wagner 's conjecture: in any infinite class of graphs t here are graphs G 
and H such t hat H is a minor of G. ( H is a minor of G if H arises from G by 
a series of deletions and contractions of edges.) 

Equivalent to Rohertson and Seymour's theorem is that if g is a cla.<>s of 
graphs closed under t.aking minors, then there is a finite collect.ion 1i of graphs 
with the property that. a graph G belongs to g if and only if G does not have a 
minor H with H E H. 

We may assume that. 1i does not contain two graphs H, H' such that H' is 
a minor of H . Then 1i is called the set of forb idden minors of Q. 

K 
5 

K 
3.3 

The well-known theorem of Kurat.ow
ski [34] (or rather, its equivalent fornrn
lation by Wagner [74]) states that if g is 
the class of planar graphs, then {/(5, KJ.:i} 
is the set of forbidden minors. 
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A consequence of Robertson and Seymour's theorem is that for any surface 
S there is a finite class of forbidden minors for the class of graphs embeddable 
on S. This was shown before by Archdeacon [2] for the projective plane and by 
Archdeacon and Huneke [3] for compact nonorientable surfaces. 

Very roughly speaking, the proof of Robertson and Seymour of Wagner's 
coujecture is as follows. It can be shown that for any graph G there is a finit e 
collection of surfaces such that each graph not containing G as a minor can be 
expressed as a tree-structure of 'pieces' such that each piece can 'almost' be 
drawn on a surface in the collection. Part of the proof next is that any graph 
H embeddPd on a surface S is a minor of each graph that is embedded densely 
enough on .)' ('enough ' depending on H ). 

Related to this last statement is the question under which conditions for two 
given graphs G and H embedded on S , His a minor of G on S. That is, when 
can we delete and contract edges of G, while keeping the embedding, so as to 
obtain H (possibly after a homotopic shift of H over S). The case where H 
consists of disjoint loops only is solved in Theorem 6. 

The more general case of this question where H is au arbitrary graph is not 
solved completely, but can be approached slight ly similarly as follows. Let G 
and H be graphs embedded on S. For each edge f of H choose an edge e f of G. 
Now we wish to complete these edges to a minor of G isomorphic to H. By this 
it. is meant that one should find for each vertex u of H a tree T 11 in G such that 
the T,, are mutually disjoint and such t hat for each edge f of H , e f is incident 
with T 11 if and only if f is incident with v . Thus cont racting each tree T,, to one 
vertex, the edges e f would give a minor isomorphic to H. 

Now an extension of Theorem 6 ( cf. [56]) characterizes nuder which condi
tions such trees exist, given the homotopy of the trees. It amounts to finding 
disjoint trees T 1, . • • , Tk such that each T; connects a given set \!; of vertices. If 
each \!; just consists of two vertices, it reduces to a disjoint paths problem. 

7. Menger and Konig. Disjoint paths problems belong to the heart of classi
cal graph theory. They go back to 1927, when the topologist Karl Menger [40] 
published an article called Z.ur allgerneinen Kuruentheo1·ie in which he showed 
a result t hat uow is one of the most fundamental resul ts in graph theory: 

Satz {J . Ist I\ ein kompakter regular eindimensionaler Raum, wclcher 
zwischen den beiden endlichen Mengen P 1md Q n -punktig zusammen
hiingend ist, dann enthiilt I\ n paa1weise fremde Bogen, von denen jeda 
e-inen Punkt mm P und einen Punkt von Q ve1·bindet. 

The result can be formulated as a maximum-minimum theorem m terms of 
graphs, as follows: 

Menger's theorem. Let G = (V, E ) be an undirected graph and let P, Q ~ V. 
Then the ma:J:immn number of pai·rwise disjoint P - Q paths is equal to the 

minimum cardinality 11 of any set of vertices that intersects each P - Q path. 
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Here a P - Q path is a path starting in P and ending in Q. Two paths are 

disjoint if they do not have any vertex or edge in common. The result became 

also known as then-chain theorem or then-arc theorem. Knaster [28] observed 

that (by an easy construction) Menger's theorem is equivalent to: 

Menger's theorem (variant). Let G = (V, E) be an undirected graph and let 

s , t E V with st ~E. Then the maximum number of pairwise internally di.'ljoint 

s - t paths is eqnal to the minimum cardinality of any subset of V \ { s, t} that 

intersects each s - t path. 

Here an s - t path is a path starting in s and ending in t. Two paths are 
internally disjoint if they do not have a vertex or edge in common, except for 

the end vertices. 
Why wa." Menger interested in this question? In his article he investigates 

a certain class of topological spaces called 'Kurven': a curne is a connected 

compact topological space X with the property that for each ;i; E X and each 

neighbourhood N of :c there exists a neighbourhood N' ~ N of x such that 

hcl(N') is totally disconnected. Here bd stands for 'boundary'; a space is totally 

disconnected if each point forms an open set. Notice that each graph, considered 

as a topological space, is a curve in Menger's terminology. 
In particular, Menger wa.<; motivated by characterizing a certain furcation 

number of curves. To this end, a curve X is called regular if for each :i; E X and 

each neighbourhood N of x there exists a neighbourhood N' ~ N of :i: such that 

Jbd(N') I is finite. The order of a point. :i; E X is equal to the minimum natural 

number 11 such that for each neighbourhoo<l N of :1: there exist.s a neighbourhood 

N' ~ N of :i; satisfying lh<l(N') I :::; n. 
According to Menger: 

Eines der wicht.igsten Probleme der Kurventheorie ist die Frage nach 

die Beziehnngen zwischen der Ordnnngszahl eiues Punkt.es cler reguliiren 

Kurve K nnd der Anzahl der im betreffencleu Punkt. znsammenst.ossenden 

nnd sonst fremden Teilbogen von K. 

In fact, Menger used 'Satz (3 ' to show that if a point in a regular curve /\ has 

order n, then there exists a topological n-leg with 71 as top; that is, K contains 

11 arcs P1, ••• , P,, such that P; n P1 = {11} for all i, j with i 'I j . 

The proof idea is as follows. There exists a series N 1 :::::> N2 :::::> · · · of open 

neighbourhoods of p such that N 1 n N2 n · · · = {p} and lhd(N;) I = n for all 

i = 1, 2, . .. , and such that 

(15) lbd(N) I ~ n for each neighbomhood N ~ N 1• 

This follows quite directly from the definition of order. 
Now Menger showed that we may assume that the space G ; := N ; \ N ;+1 

is a (topological) graph. For each i, let Q ; := hd(N;). Then (15) gives with 

Menger's theorem that there exist n pairwise disjoint paths P;. 1, ••• , P;. 11 in G 
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such that each P;,J runs from Q ; to Q;+i · Properly connecting these paths for 
i = 1, 2, ... we obtain n arcs forming the required n-leg. 

It was however noticed by Konig [30] that Menger gave a lacunary proof of 

'Satz (3 '. Menger applies induction on IEI, where Eis the edge set of the graph 
G. Menger first claims that one easily shows that IEI ~ n, and that if IEI = n 
then G consists of n disjoint arcs connecting P and Q. He states that if IEI > n 
t hen there is a vertex s <f_ P U Q, or in his words (where the 'Grad ' denotes !E l) : 

Wir nehmen abo an, der irreduzibel n-punktig zusanunenhangende Raum 
I\' besitze den Grad g (> n). Offenbar enthalt dann /\' ein punktfiirmiges 
Stiick 8, welches in der Menge P + Q nicht enthalten ist. 

Indeed , as Menger shows, if such a vertex s exists one is clone: If s is not 

contained in any set W intersecting each P - Q path such that !WI = n , then 
we can delete s and the edges incident with .~ without decreasing the minimum 
in the theorem. If s is contained in some set vV intersecting each P - Q path 
such t hat IH' I = n, then we can split G into two subgrnphs G 1 and G'2 that 
intersect in H' in such a way that P i:;:; G 1 and Q i:;:; G'2. By t he induction 
hypothesis, there exist n pairwise disjoint P - W paths in G 1 ancl n pairwise 
disjoint W - Q paths in G'2· By pairwise sticking these paths together a t 1-V we 
obtain paths as required. 

However , such a vertex s need not exist. It might be that V is the Jisjoint 
union of P and Q in such a way that each edge connects P and Q. In that cm;e, 
G is a bipartite graph, and what should be shown is that G contains a matching 
( = set of disjoint edges) of size n. This is a nontrivial basis of t he proof. 

It is unclear when Menger became aware of the hole. In his reminiscences 
on the origin of t he n-arc theorem, Menger [42] wrote in H.181: 

lu the spring of 1930, I came through Budapest aud met there a galaxy of 
Hungarian mathematicians. In particular, I enjoyed making the acquain
tance of Denes Konig, for I greatly admired the work 011 set theory of 
his father, the late Julius Konig- to this day one of the most significant 
contributions to the continuum problem- and I had read with interest 
some of Denes papers. Ki\nig told me that he was about to finish a book 
that would include all that was known about graphs. I assured him t hat 
such a book would fill a great need ; and I brought up my n-Arc Theorem 
which, having been published as a lemma in a curve-theoretical paper, 
had not yet come to his attention. Konig was greatly interested , but did 
not believe that the theorem was correct. "This evening," he said to me 
in parting, "I won't go to sleep before having constructed a counterex
ample." When we met the next day he greeted me with the words, "A 
sleepless night!" and asked me to sketch my proof for him. He then said 
t hat he would add to his book a final sectiou devoted to my theorem. This 
he did; and it is largely thanks to Konig's valuable book that the 11-Arc 
Theorem has become widely known among graph theorists. 

Denes Konig was a pioneer in graph theory and in applying graphs to otJ1er 
areas like set theory, matrix theory, and topology. He had published in the 
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1910s theorems on perfect matchings and on factorizations of regular bipartite 
graphs in relation to the study of determinants by Frobenius. 

At the meeting of 26 March 1931 of the Eotvos Lorand Matematikai es 
Fizikai Tarsulat (Loraucl Eotvos Mathematical and Physical Society ) in B u
dapest, Konig [29] presented a result that formed in fact t he induction basis for 
Menger's t heorern: 

Paros ki:iriiljarasl1 graphhan az elekct kimerit.O szi:igpontok minimalis sza
ma megegyezik a paronkent ki:izi:is vegpontot uem tartalmazo elek maxi
malis szamaval. 

In other words: 

Konig's theorem. In a bipartite graph G = (V , E ), the maximum size of a 
matching is equal to the minim um number of vertices needed to cover all edges. 

Konig did not mention in his paper that this result provided the missing induc
tion basis in Menger's proof, al though he finishes wit h: 

Megemlitjiik vegiil, hogy ereclmenyeink szorosan i:isszefiiggnek FROBE
NIUSnak determinansokra es MENGERnek graphokra vonatkozo nemely 
vizsgalataval. E kapcsola tokra 1misutt foguuk kiterjeszkedni. 

'Masutt' became Konig [30], where a full proof of Menger's theorem is given, 
with the following foot.note: 

Der Beweis von MENGER euthalt eine Liicke, cla es vorausgesetzt wird (S. 
102, Zeile 3- 4) daB "[( ' eiu pnuktfOrmiges Stiick s enthalt , welches in 
der Menge P + Q uicht ent halten ist.". wii.hrend es recht wohl mi:iglich 
ist , claB - mit der bier gewahlteu Bezeichnungsweise ausgedriickt -
jeder Kuoteupunkt von G zu H1 + H 2 gehort . Dieser - keineswegH ein
facher - Fall wurde in nnserer Darstellung durch den Beweis des Sa tzes 
13 erledigt. Die weiteren - bier folgenden - Uberleguugen, die nus 
zum Mengerschen Satz fiihrcn werdeu , stimmen in Wesentlichen mit dem 
- sehr kurz gefaBten - Beweis von MENGER iiberein. In Anbetracht 
der Allgemeinheit und Wichtigheit des Mengersc:hen Satzes wird im Fol
genden auch dieser Tei! ganz ausfiihrlich und den Forderuugen der rein
kombinntorischen Graphentheorie entsprechend dargest ellt. 

[Zusatz bei der Korrektur, 10.V.1933] Herr MENGF.R hat die Freundlich
keit gehabt - naclulem ich ihm die Korrektur meiner vorliegenden Ar
beit zugeschickt babe - mir mitznteilen, daB ihm die obeu beanstandete 
Liicke seines Beweises schon hekannt war, daB jedoch sein vor Kurzem 
erschienenes Bnch Kurnentheorie (Leipzig, 1932) einen vollkommeu liic
kenlosen und rein komhinatorischen Beweis des Mengerschen Satzes (des 
"n-Ket tensatzes" ) ent hiilt. Mir blieb dieser Beweis bis jetzt unbekannt. 

This hook of Menger [41] was published in 1932, and contains a complete proof of 
Menger's theorem. Menger did not refer to any hole in his proof, but remarkecl: 
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Uber den n-Kettensatz fiir Graphen und die im vorangehenden zum Be
weise verwendete Methode vgl. Menger (Fund. Math. 10, 1927, S. 101 f. ). 
Die obige detaillierte Ausarbeitung und Darstellung stammt von Ni:ibeling. 

In his book Theorie der endlichen und unendlichen Graphen, published in 1936, 
Konig [31] calls his theorem ein wichtiger Satz, and he emphasizes the chrono
logical order of the proofs of Menger's theorem and of Konig's theorem (which 
is implied by Menger's theorem): 

Ich habe diesen Satz 1931 ausgesprochen und bewiesen, s. Konig [9 unrl 
11]. 1932 erschien daun der erste liickenlose Beweis des Mengerschen 
Graphensatzes, von dem in §4 die Rede sein wird und welcher als eine 
VeraEgemeinerung dieses Satzes 13 (falls dieser nur fur endliche Graphen 
formulier t wird) angesehen werden kann. 

8. Disjoint paths and trees. Menger's theorem addresses the problem of 
finding a set of paths with one common beginning vertex and one common end 
vertex. A more general problem is the following disjoint paths problem: 

(16) given: a graph G = (V, E) and k pairs of vertices s 1, t 1, •.• , Bk, tk; 

find: pairwise disjoint paths P1 , ... , Pk where P; runs from s ; to 
t; (i = l , ... ,k). 

This covers four variants of the problem: the graph can be directed or undi
rected , and 'disjoint' can mean: vertex-disjoint or edge-disjoint. 

In 1974, D.E. Knuth (see [26]) showed that the edge-disjoint undirected 
variant, and hence also each of the other variants, is NP-complete - and this is 
even so if we restrict ourselves to planar graphs (Lynch [38]) . This destroys (for 
those believing NP#co-NP or NP#P) the hope for nice theorems (like Menger's 
theorem) and for fast algorithms for solving this problem. 

On the other hand, Robertson and Seymour [52], as another important re
sult of their graph minors project, proved that for each fixed k, there exists a 
polynomial-time algorithm for the disjoint paths problem for undirected graphs. 
Their algorithm has running time bounded by Ck lVl3 , for some constant c1.: 

heavily depending on k. (It implies that for each fixed graph H there exists a 
polynomial time algorithm to test if a given graph G contains H as a minor. ) 

For directed graphs, t he situation seems different. In 1980, Fortune, Hopcroft, 
and Wyllie [20] showed the NP-cornpleteness of the vertex-disjoint paths prob
lem for directed graphs, even when restricted to the case k = 2. 

For planar directed graphs however there is a positive result ( [58]): 

Theorem 7. For each fixed k there ·is a polynomial-time alg01ithm for the k 
verte:i:-disjoint paths problem for directed planar graphs. 

This is a result only of interest from the point of view of theoretical complexity: 
the degree of the polynomial bounding the running time of the algorithm is 
quadratic in k. 
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The proof of Theorem 7 is based on representing disjoint paths as 'flows' over 

a free group. Indeed, let a directed planar graph D = (V, A) and s 1, t 1, ... , sk, , h E 

V he given. Let G 1.: he the free group with J..: generators g1, .•. , 9k. If II = 

( P1, .•. , Pk) is a solution to the disjoint paths prohlem, let </>n : A ---> G k he 

defined hy, for a E A: </>n (a):= Yi if Pi traverses a (i = 1, ... , /..:),and := 1 if no 

P; traverses a. 
Let F he the set of faces of D . Call two functions </> , 1f; : A ---> G1.: homologous 

if there exists a function p : F ---> G k such that for each arc a of D one has: 

(17) lf! (a) = p(f) - 1</>(a)p(J'), 

where f and J' are the faces at the left hand side and the right hand side of a 

respectively (with respect to the orientation of the plane and of the arc a). 

This defines an equivalence relation on functions A ---> G1.:. We now enu

merate representatives of homology classes of functions A ---> Gko· Generally 

there are infinitely ma1~;v homology classes, hut one can find in polynomial time 

a collection of O(JVJ2k"+3 ) homology classes of which one can he sure that it. 

covers all functions </>n with 11 a solution to the vertex-disjoint paths problem 

(without having these functions explicitly). 
For the representative 1f; of each of these classes one should test if there is 

a path packing function </>n homologous to 1/J . This can he done in polynomial 

time, hy reducing it to the following dual problem. 
Given any directed graph D = (V, A) (not necessarily planar) and any group 

G, call two functions </>, 'If! : A ---> G cohomologous if there exists a function 

p : V ---> G such that for each arc a = ( u, w) of D one has: 

(18) 1/1 (a) = p(n) - 1</>(a)p(w). 

Again this is an equivalence relation. 
Consider the following cohornology f casibility problem: 

(19) given: a directed graph D = (V, A) and functions </> : A ---> G and 
H: A ___. P(G); 

find: a function 1/J cohomologous to </> with 1/J( a) E H( a) for each 

a E A. 

This is in its general form an NP-complete problem: when G = C:1 (the group 

with three elements) and </>(a) = 1 and H(a) = C:1 \ {1} for each arc a, the 

problem amounts to the 3-colourability of the vertices of D. However: 

Theorem 8. If G is the free group and each H(a) is hereditary, then the 

cohomology f easibility problem is solvable in polynomial time. 

Here a subset Hof the free group is hereditary if for each (reduced) word w'ww" 

in H, also the word w he longs to H. 
Now the problem of finding a path packing function </>n homologous to a 

given function 1/J , can he reduced to the cohomology feasihility problem on an 
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extension of the dual graph of D, where each H (a) is equal to { 1, g1 , .. . , gk} or 

to {l,g1,g} 1
, ... ,gk,gk" 1}. This finishes the outline of the proof of Theorem 7. 

Theorem 7 can be generalized to disjoint trees connect ing given sets of ver

tices, and Theorem 8 can be generalized to free partially commutative groups 

- see [59] . Moreover, necessary and sufficient conditions for t he existeuce of a 

solution can be described in terms of cycles in t he graaf D. 

9. VLSI-routing. The approach described above for the vertex-disjoint paths 

problem in directed planar graphs is analogous to a method developed for the 

VLSl-rout·ing problem. This problem asks for the routes that wires should make 

on a chip so as to connect certain pairs of pins and so that wires connecting 

different pairs of pins are disjoint. 
As the routes that the wires potentially can make form a graph, the problem 

to be solved can be modeled as a disjoint paths problem. Consider an example of 

such a problem as in Figure 11 - relatively simple, since generally the munber 

of pins to be con11ected is of t he order of several thousands. The grey areas are 

'modules' 011 which the pins are located. Poiuts with the same label should be 

connected. 

2 3 5 6 

3 7 

' 'u 
9 ID 

'J 

II 2 1 
Ju 

4 13 1:: 
16 0 5 

.,, 1 15 2 

I 14 12 

Figure 11 

In the example, the graph is a 'grid graph' , which is typical in VLSI-design 

since it facil itates the manufacturing of the chip and it ensures a certain min

imum distance between disjoint wires. But even for such graphs the disjoint 

paths problem is NP-complete. 
Now the following two-step approach was proposed by Pinter [46]. First 

choose the homotopies of the wires; for irn;tance like in Figure 12. That is, for 

each i one chooses a curve C; in the plane connecting the two vertices i, in 

such a way that they are pairwise disjoint, and such that the modules are not 

traversed. 

515 



.:_-_,,. __ :_:~; -

r ~ r-k / 
........ -

-.oii ' 2,,, ;;"" 3 6"' 

" 
7 

~i..-- In 

\ / v i" 9 J) 

\ ... /' I / ~ 
~r--.. ~ ~ 

!I / /' J " 

~ 
11 2 I v J lvl'- , 

/ .-. .,.,,, 
13 ,~ ' i ,J 

f- - 4 [/ / v-- 1'- 16 0 s 
7 14 ' 15 -- v ~ 2 
I~ .-. J ' 14 12 

\. ./ J 
... ./ 

Figure 12 

Second, try to find disjoint paths P1 , • .• , Pk in the graph such that P; is ho
motopic to C;, in the space obtained from the plane by taking out the rectangles 
forming the modules. In Figure 13 such a solution is given. 
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Figure 13 

It was shown by Leiserson and Maley [35] that this second step can he 
performed in polynomial time. So the hard part of the problem is t.he first step: 
finding the right topology of the layout. 

Cole and Siegel [8] proved a Menger-type cut theorem characterizing the 
existence of a solution in the second step. That is, if there is no solution for the 
disjoint paths problem given the homotopies, there is an 'oversaturated' cut: a 
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curve D connecting two holes in the plane and intersecting the graph less than 
the number of times D necessarily crosses the curves G;. 

This can be used in a heuristic practical algorithm for the VLSI-routing 
problem: first guess the homotopies of the solution; second try to find disjoint 
paths of the guessed homotopies; if you find them you can stop; if you don't find 
them , the oversaturated cut will indicate a bottleneck in the chosen homotopies; 
amend the bottleneck and repeat. 

Similar results hold if one wants to pack trees instead of paths (which is 
generally the case at VLSI-design), and the result can be extended to any planar 
graph [56]. As a theoretical consequence one has (by an enumeration argument 
similar to t he one used for Theorem 7): 

Theorem 9. For each fixed number of modules, the planar VLSI-muting prob
lem can be solved in polynomial time. 

10. Railway timetabling. The cohomology feasibility problem also shows 
up in the problem of making the t imetable for Nederlandse Spoorwegen (Dutch 
Railways), a project currently performed for NS by CWI (Adri Steenbeek and 
me). The Dutch railway system belongs to the busiest in the world, with sev
eral short distance trajectories, while many connections are offered, with short 

transfer time. 
Task is to provide algorithmic means to decide if a given set of conditions on 

the timetable can be satisfied. In particular, the hourly pattern of the timetahle 
is considered. The basis of the NS-timetable is a periodic cycle of one hour, so 
that on each line there is a train at least once au hour. 

How can this problem be modeled? First of all, each departure time to he 
determined is represented by a variable v1• Here t is a train leg that should go 
every hour once. So v1 represents a variable in the cyclic group Guo = Z/60Z. 
Similarly, the arrival time is represented by a variable a1 in Guo. 

In the problem considered by us, a fixed running time was assumed for each 
leg. This implies that if train leg t has a running time of 11 minutes, then 
a1 - v 1 = 11. The waiting period of a train in a station is prescribed by an 
interval. E.g. , if t and t' are two consecutive train legs of one hourly train, and 
if it is required that the train stops at the intermediate station for a period of 
at least 2 and at most 5 minutes, then one poses the condition v11 - a1 E [2, 5] 
(as interval of Guu). 

This gives relations between train legs of one hourly train. To make connec
t ions, one has to consider train legs in two different trains. So if one wants to 
make a connection from leg t, arriving in Utrecht say, of one train , to a leg t' 
departing from Utrecht of another train, so that the transfer time is at least 3 
and at most 7 minutes, then one gets the condition 1111 - a1 E [3, 7]. 

Finally, there is the condition that for safety each two trains on the same 
t rajectory should have a timetable distance of at leaBt 3 minutes. That is, if 
train leg t of one train and train leg t' of another train nm 011 the same railway 
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section, then one should pose the condition v11 - v1 E [3, 57]. 
By represent ing each variable by a vertex, the problem can be modeled as 

follows. Let D = (V, A) be a directed graph, and for each n E A , let H (a) be 

an interval Oil c 60. Find a function p: v ----; C6o such that. p(w) - p(u) E H (a) 

for each arc a = (u , w) of D. 
This is a special ca.o;;e of t he cohomology feasibility problem. Note t hat (as 

Cno is abelian) one may equivalently find a ' length' function l : A ____. Cno such 

that l(a) E H (a) for each a E A and such that each undirected circuit. in D has 

length 0. (For arcs a in the circuit traversed backward one takes - l(a ) for its 

length. ) 
It is not difficult to formulate this problem as an integer linear programming 

problem. Indeed , if for any arc a = ( u , w ), H (a) is equal to the interval [l,,, 11" ], 
we can put. : 

(20) ln :S :r,,. - :r,. + 60ya :S 11,,, 

where Yn is required to be an integer. Thus we get a system of IAI linear 

inequalities with IVI real variables :i;,, and IAI integer variables y,. . In fact., if 
there is a solut ion, there is also one with the x., being integer as well (as the x 
variables make a network matrix). 

Now in solving (20), one may choose a spanning t ree T in D , and assume 

that y,. = 0 for each arc a. in T (cf. Serafini and Ukovich [60]) . Alternatively. 

one may consider the problem as follows. 
A circulation is a function f : A ____. lR such that the ' flow conservation law': 

(21 ) L f (a) = L f (a) 

holds for each vertex v of D. Here 15 - ( v) and 15+ ('u) denote the sets of arcs 

entering v and leaving v, respectively. 
Let L be the lattice of all integer-valued circulations. Now one can describe 

the problem as one of finding a linear function <I> : L ____. Z such that t here 

exist. Zn (for a E A) with the propert ies that l ,, ::; Zu ::; Un for each arc A and 

zT f = 60<1> (!) for each f E L. 
The existence of such z" can be checked in polynomial t ime, given the values 

of <I> on a bas is of L . Hence, in a searching for a feasible t imetable one can branch 

on values of <P on an appropriate basis of L . Given <P , if there exist z,,, one can 

opt imize the z,, under any linear (or convex piecewise linear) objective function 

(for instance, passenger wait ing time). 
Typically, t he problems coming from NS have about 3000 variables with 

about 10,000 constraints. In a straight forward way they can be reduced to 

about 200 variables with about 600 constraints. The above observations turn 

out to require a too heavy framework in order to solve the problem fast. in 

practice (although they are of help in opt imizing a given solut ion). 

The package CADANS (Combinatorisch-Algebralsch Dienst.regeling-Algori t.

me voor de Nederlandse Spoorwegen) that. CWI is developing for NS for solving 
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the problem above, is based on a fast constraint propagation technique and fast 

branching heuristics designed by Adri Steenbeek. It gives, within time of the 

order of 1-10 minutes either a solution (i.e., a feasible timetable), or au inclu

sionwise minimal set of constraints that is infeasible. If CADANS gives the 

latter answer, the user should drop, or relax, at least one of the constraints in 

the minimal set in order to make the constraints feasible. Thus CADANS can 

be used interactively to support the planner. Alternatively, it can uncover bot

tlenecks in the infrastructure, and indicate where extra infrastructure (viaducts, 

flyovers, four-tracks) should be built in order to make a given set of conditions 

feasible. 

11. Transportation and flow problems. Railway transportation forms 

a classical source of problems studied in operations research. In 1939, Kan

torovich [25] published in Leningrad a monograph called Mathematical Methods 

of Organizing and Planning Prod·uction, in which he outlined a new method to 

maximize a linear function under given linear inequality constraints, thus laying 

the fundaments for linear programming. He gave the following application: 

Let there be several points A, B , C, D , E which are connected to one 

" another by a railroad network. It is possible to make 

the shipments from B to D by the shortest route 

• c BED, but it is also poss ible to use other routes as 

· well: namely B C D , BAD. Let there also be given a 

schedule of freight shipments; that is, it is necessary 

u to ship from A to B a certain number of carloads, 

from D to C a certain number, and so OIL The 

problem consists of the following. There is given a maximum capacity 

for each route under the given conditions (it can of course change under 

new methods of operation in transportation). It is necessary to distribute 

the freight flows among the different routes in such a way as to complete 

the necessary shipments with a minimum expenditure of fuel , under the 

condition of minimizing the empty runs of freight cars and taking account 

of the maximum capacities of the routes. As was already shown, this 

problem can also be solved by our methods. 

In 1941, Hitchcock [24] formulated another variant of a t ransportat ion prob

lem. Independently, during the Second World War, Koopmans was on t he staff 

of the Combined Shipping Adjustment Board (an agency formed by the Allied 

to coordinate the use of their merchant fleets). Influenced by his teacher Tin

bergen ( cf. [73]) he was interested in the topic of ship freights and capacities. 

His task at the Board was t he planning of assigning ships to convoys so as to 

accomplish prescribed deliveries, while minimizing empty voyages (cf. [12]) . 

Koopmans found in 1943 a method for the transshipment problem, but due to 

wartime restrictions he published it only after the war [32]. 

Koopmans and Reiter [:3:3] investigated the economic implications of the 

method: 
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For the sake of definiteness we shall speak in terms of the transportation 
of cargoes on ocean-going ships. In considering only shipping we do not 
lose generality of application since ships may be "translated" into trucks, 
aircraft, or, in first approximation, trains, and ports into the various sorts 
of terminals. Such translation is possible because all the above examples 
involve particular types of movable transportation equipment. 

The cultural lag of economic thought in the application of mathematical 
methods is strikingly illustrated by the fact that linear graphs are making 
their entrance into transportation theory just about a century after they 
were first studied in relation to electrical networks, although organized 
transportation systems are much older than the study of electricity. 

The breakthrough in linear programming came around 1950 when Dantzig 
[10] published the simplex method for the linear programming problem. The 
success of the method was caused by a very simple tableau-form and pivoting 
rule and by the large efficiency in practice. Dantzig also described a direct 
implementation of the simplex method to the transportation problem ([9]) . 

In the beginning of the 1950s, T.E. Harris at the RAND Corporation (the 
think tank of the U.S. Air Force in Santa Monica, California) called attention 
for the following special case of the problem considered by Kantorovich: 

Consider a rail network connecting two cities by way of a number of in
termediate cities, where each link of the network has a number assigned 
to it representing its capacity. Assuming a steady state condition, find a 
maximal flow from one given city to the other. 

This question raised a stream of research at RAND. The problem can be for
malized as follows. 

Let he given a directed graph D = (V, A), with two special vertices, a 'source' 
sand a 'sink' or 'terminal' t. Then ans - t flow is a function f : A --+ JR+ such 
that for each vertex v =/:- s, t the flow conservation law (21) holds. The valne of 
f is equal to the net flow leaving s; that is: 

(22) value(!):= L f(a) - L f(a). 
a Eb+ (s ) 

It is not difficult to prove that this value is equal to the net flow entering t. 
If moreover a 'capacity' function c : A --+ JR+ is given, one says that f is 

subject to c if f (a) :S c( a.) for each arc a. 
Now the maximum flow problem can be formulated: 

(23) given: a directed graph D = (V, A), vertices s, t E V, and a 'capac-
ity' function c : A --+ JR+; 

find: a flow f subject to c maximizing value(!). 

In their basic paper "Maximal flow through a network" (published as a 
RAND Report of l!) November 1954), Ford and Fulkerson [17] observed that this 
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is just a linear programming problem, and hence can be solved with Dantzig's 

simplex method. 
Main result of Ford and Fulkerson's paper is the famous rnax-flow min-cut 

theorem. To this end, the concept of a cut is defined. Let U is any set with 

s E U and t <:f_ U. Then o+ ( U) (the set of all arcs leaving U) is an s - t cut. The 

capacity of the cut is the sum of all c(a) for a E lJ+(U). 
It is clear that the capacity of any cut is an upper bound on the maximal 

value of s - t flows. What Ford and Fulkerson [17] showed is: 

Max-flow min-cut theorem. The maximal value of the s - t flows is equal 

to the mini •nal capacity of the s - f. cuts. 

Since (as follows from an observation of Dantzig [9]) there is an integer-valued 

maximum flow if all capacities are integer, au arc-disjoint version of Meuger's 

theorem follows from the max-flow min-cut theorem. 
Alternative proofs of the max-flow miu-cut theorem were given hy Robacker 

[51] and hy Elias, Feinstein, and Shannon (14]. In this last paper it is claimed 

that the result wa.<> known by workers in communication theory: 

This theorem may appear almost obvious on physical grounds and ap
pears to have heeu accepted without proof for some time by workers in 

communication theory. However, while the fact that this flow cannot he 

exceeded is indeed almost trivial , the fact t hat it can actually be achieved 

is by no means obvious. We understand that proofs of the theorem have 

been given hy Ford and Fulkerson and Fulkerson and Dantzig. The fol

lowing proof is relatively simple, aud we believe different in principle. 

The max-flow min-cut theorem being also a combinatorial result, one was 

interested in obtaining combinatorial methods for finding ma.ximum flows. First , 

Ford and Fulkerson (17] gave a simple algorithm for the maximal flow problem 

in case the graph, added with an extra edge connecting s and t, is planar. 

Next , a heuristic method , the flooding technique, was presented by Boldyretf 

[GJ 011 3 June 1955 at the New York meeting of the Operations Research Society 

of America (RAND Report of 5 August 1955). The method was intuitive, and 
the author did not claim generality: 

It has been previo11:;ly assumed that a highly complex railway transporta

tion system, too complicated to be amenable to analysis, can be repre

sented by a much simpler model. Thi:; was accomplished by representing 

each complete railway operating division by a point, and by joining pairs 

uf such points by arcs (lines) wit.h traffic carrying capacities equal to the 

maximum possible volume of traffic (expressed in some convenient unit, 

such as trains per day) between the corresponding operating divisions. 

In this fashion, a network is obtained consisting of three sets of points -

points of origin, intermediate or junction points, and the terminal points 

(or point:; of destination ) - and a set of arcs of specifiecl traffic carrying 

capacit, i1~s , joining these points to each other. 
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Boldyreff's arguments for designing a heuristic procedure are formulated as: 

In t.he process of searching for the met.hods of solving this problem the 

following ohject.ives were used as a guide: 

1. That the solution could he obtained quickly, even for complex networks. 

2. That. the method could be explained easily to personnel wit.hunt spe

cialized technical training and used hy them effectively. 

3. That the validity of the solution be suhject. to easy, direct. verification. 

4. That. the met.hod would not depend on the use of high-speed computing 

or other specialized equipment. 

Boldyreff's 'flooding technique' pushes a maximum amount of flow greedily 

through the net.work. If at. some vertex a 'bottleneck' arises (i.e., there are 

more trains arriving than can be pushed further through the network), it is 

eliminated by returning the excess trains to the origin. It is empirical, not. using 

backtracking, and not leading to an optimum solution in all cases: 

Whenever arbitrary decisions have to be made, ordinary common sense 

is used as a guide. At each step the guiding principle is to move forward 

the maximum possible number of trains, and to maint.ain the great.est. 

flexibility for t.he remaining network. 

Boldyreff speculates that 'in dealing with the rnmal railway networks a single 

flooding, followed by removal of bot.t.lenecks, should lead to a maximal flow. ' 

He gives as an example of a complex network, a railway transportation system 

with 41 vertices and 85 arcs, for which 'the total time of solving the problem is 

less than thirty minutes.' 
Soon aft.er, Ford and Fulkerson presented in a RAND Report of 29 December 

1955 [18] their 'very simple algorithm ' for the maximum flow problem, basecl 

011 finding 'augmenting paths'. The algorithm finds in a finite number of steps 

a maximum flow, if all capacities have rational values. After mentioning the 

maximum flow problem, they remark: 

This is of course a linear programming problem, and hence may be solved 

by Dantzig's simplex algorit.hm . In fact., the simplex comput.at.ion for a 

problem of this kind is particularly efficient, since it can be shown that. t.he 

sets of equations one solves in the process are always triangular. However, 

for t.he flow problem, we shall describe what. appears t.o be a com;iderably 

more efficient. algorithm; it is, moreover, readily learned by a person with 

no special training, and may easily be mechanized for handling large net.

works. We believe t.hat problems involving more than 500 nodes and 4,000 

arcs are within reach of present computing machines. 

Ford and Fulkersou's algorithm for t.he maximum-flow problem formed a 

breakthrough. It has implementations that require only polynomially hounded 

running time, as was shown by Dinits [11] and Edmonds and Karp [13]. In the 
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latter paper , a lso a polynomial-time algorit hm is given for t he minimum-cost 

flow problem. It implies a polynomial-time algorithm for the minimum-cost 

circulation problem. 

12. R out ing of railway stock. T he work on the minimum-cost circulation 

problem can he applied to minimizing the railway stock needed to run a sd1ed

ule. NS (Nederlaudse Spoorwegeu) runs an hourly t rain service on its route 

Amsterdam - Schiphol Airport - Leyden - The Hague - Rotterdam - Dordrecht 

- Roosendaal - Middelburg - Vlissingen vice versa, with timetable as in Table 1. 

train number I 2123 I 212712131 I 2135 I 2139 I 2143 I 2147 I 2151 I 2155 I 
Amsterdam v (i.48 7.55 8.56 9.56 10.5(i ll.5(i 12.5(i 13.56 

Rotterdam A 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 

Rotterda m v 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14 .02 15.02 

Roosendaal A 7.40 8 .41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 

Roose11daal v 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 

Vlissiugen A 8.38 9.38 10.38 1U8 12.38 13.38 14.38 1.5.:38 16.38 

tram number I 2159 I 2163 I 2167 I 2171 12175 I 2179 I 2183 I 2187 I 2191 I 
Amsterdam v 14.5(i 15.56 16.56 17.56 18.56 19.56 20.56 21.5(i 22.56 

Rotterdam A 15.58 l(i.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58 

Rotterdam v 16.00 17.01 18.01 l!J.02 20.02 21.02 22.02 23.02 

Roosen<laal A 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54 

Roosendaal v 16.45 17.45 18.44 19.43 20.43 21.43 
Vlissiugen A 17.40 18.40 19.:m 20.38 21.38 22.38 

train number I 2108 I 211212116 I 2120 I 21241212812132 I 2136 I 2140 \ 

Vlissiugeu v 5.30 6.54 7.56 8.56 !J.5(i 10.56 11.56 

Rooseu<laal A 6.35 7.48 8.50 9.50 10.50 11.50 12.50 

Roosendaal v 5.2!J 6.43 7.52 8.53 9.53 10.53 11.53 12.5:l 

Rotterdam A 6.28 7.26 8.:i2 !J.32 10.32 11.32 12.32 13.32 

Rotterdam v 5.31 (i.29 7.32 8.35 9.:l4 10.34 11.:34 12.34 13.35 

Amsterdam A 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 

tram numher I 2144 I 2148 I 2152 I 2156 I 2lh0 I 2164 I 2168 I 2172 12176 I 
Vlissiugen v 12.56 13.5G 14.56 15.5(i lU.56 l 7.5(i 18.fi(j l!J .55 
Rooseudaal A 13.50 14.50 15.50 16.50 17.50 18.50 l!J .50 20.4!J 

Roosendaal v 13.fi3 14.53 15.53 lU.53 17.53 18.53 19.53 20.52 21.fi3 

Rotterdam A 14.32 15.32 lU.32 17.33 18.32 19.32 20.32 21.30 22.32 

Rotterdam v 14.35 15.34 lU.34 17.35 18.34 19.34 20.35 21.32 22.34 

Amsterdam A 15.38 l(i.40 17.:i8 18.38 19.38 20.38 21.38 22.38 23.38 

Table 1: T imetable Amst erdam -Vlissin gen vice ver sa 

The trains have more stops, but for our purposes only those given in the table 

are of interest. 
For each of the legs of any scheduled train, Nec lerlandse Spoorwegen has 

determined an expected number of (second-class) passengers, given in Table 

2. The prohlem to be imlved is: What. is the minimum amount of train stock 

uecessary to perform the service in such a way that at each leg there are enough 

seats? 
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t.rain number l2123l2127l2131 l2135l2139l2143l2147l2151 l2155 I 

Amsterdam-Rotterdam 340 616 407 336 282 287 297 292 
Rott.erdam-Roosendaal 58 272 396 364 240 221 252 267 287 
Roosendaa l-Vlissingen 328 181 270 237 208 188 180 195 290 

tram number I 2159l2163l 2167l2171I2175l2179l 2183l 2187 l2 191 I 

Amsterdam-Rotterdam 378 527 616 563 320 184 161 190 123 
Rotterdam-Roosendaal 497 749 594 395 254 165 130 77 
Roosendaal-Vlissingen 388 504 381 276 187 136 

t rain nun1her l2108l2112l2116l2120l2124j2128j2132j2136l2140I 

Vlissingen-Roosendaal 138 448 449 436 224 177 184 
Roosendaal-Rotterdam 167 449 628 397 521 281 214 218 
Rotterdam-Amsterdam 61 230 586 545 427 512 344 303 283 

tram number l2144 l2148l2152l2156l2160l2164l2168l 2172l2176 I 

Vlissingen-Roosendaal 181 165 225 332 309 164 142 121 
Roosendaa l-Rotterda.111 174 206 298 422 313 156 155 130 64 
Rot.terdam-Amsterclam 330 338 518 606 327 169 157 154 143 

Table 2: Numbers of required seats 

In order to answer this question, one should know a number of further char
acteri8tics and constraints. In a first variant of the problem considered, the 
train stock consists of one type of two-way train-units, each consi8ting of three 
carriages, and each having 163 seats. Each unit has at both ends an engineer's 
cabin, and units can be coupled together, up to 15 carriages, that is, 5 train
units. 

The train length can be changed, by coupling or decoupling unit8, at. the 
terminal stations of the line, that is at Amsterdam and Vlis::;ingen, and en 

route at two intermediate stations: Rotterdam and Roosendaal. Any train
unit decoupled from a train arriving at place X at time t can he Jinked up to 
any other train departing from X at any time later than t. (The Amsterdam
Vlissingen schedule is such that in practice this gives enough time to make the 
necessary swi tchings. ) 

A last condition is that, for logistic rea.<;ons, for each place X E {Amster
dam , Rotterdam , Roosendaal , Vlissingen} , the number of train-units staying 
overnight at X should be constant. during the week (hut may vary for clifferent 
places) . 

Given these problem data and characteristics, one may ask for the minimum 
number of train-unit::; that should he available to perform the daily cycle of train 
rides required. 

If only one type of railway st.ock is used, the classical min-co::;t circulation 
method can he applied (Bartlett. [5), cf. [15) , [16), [45), [47), [75)) . To this 
end, a directed graph D = (V, A) is constructed as follows. For each place 
X E {Amsterdam, Rotterdam, Roosendaal, Vlissingen} and for each time t at 
which any train leaves or arrives at X, we make a vertex (X, t ). So the vertices 
of D correspond to all 198 time entrieH in the timetable (Table 1). 
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For any leg of any train, leaving place X at time t and arriving at place Y 

at time t' , we make a directed arc from (X, t) to (Y, t'). For instance, there is 

an arc from (Roosendaal, 7.43) to (Vlissingen, 8.38). 
Moreover, for any place X and any two successive times t, t' at which any 

train leaves or arrives at X, we make an arc from (X, t) to (X, t'). Thus in our 

example there will be arcs, e.g., from (Rotterdam, 8.01) to (Rotterdam, 8.32), 

from (Rotterdam, 8.32) to (Rotterdam, 8.35), from (Vlissingen, 8.38) to (Vlis

singen,8.56), and from (Vlissingen, 8.56) to (Vlissingen, 9.38). 

Figure 14: The graph D. All arcs are oriented clockwise 

Finally, for each place X there will be an arc from (X, t) to (X , t'), where t 
is the last time of the day at which any train leaves or arrives at X and where 

t' is the first time of the day at which auy train leaves or arrives at X. So there 

is an arc from (Rooseudaal, 23.54) to (Rooseudaal, 5.29). 
\Ve cm1 now describe any possible routing of train stock as a function f : 

A ---. Z+, where J(a) denotes the following. If a corresponds to a leg, then 
J(a) is the number of units deployed for that leg. If a corresponds to an arc 

from (X , t) to (X , t'), then J(a) is equal to the number of units present at place 

X in the time period t- t' (possibly overnight). 
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First of all, this function is a circulation, that is, the flow conservation law 

(21) holds. Moreover, in order t.o satisfy the demand and capacity const raints, 

J(a) should satisfy d(a) :::; f(a) :::; 5, where d(a) is the minimum number of 

train-units necessary for leg a, based on the lower hound on seats for leg a. 

Now observe that the total number of units needed, is equal to the total 

flow on the 'overnight ' arcs. So if we wish t.o 1n inimize the total number of 

units deployed, we could restrict ourselves to minimizing I:"EAo f(a.), where A 0 

denotes t.he set of overnight. arcs . (So IA0 I = 4 in the Amsterdam - Vlissingen 

example.) 
It is easy to see that this fully models the problem. Hence determining the 

minimum muuher of train-units amounts to solving a minimum-cost circulation 

problem, where the cost function is quite trivial: we have cost.( a) = 1 if a is an 

overnight arc, and cost(a) = 0 for a ll other arcs. 

Having this model, we can apply standard min-cost. circulation algorithms, 

based on min-cost. augmenting paths and cycles ( cf. Ford and Fulkerson [19] 
and Ahuja, Magnanti, and Orlin [1 ]). Implement.at.ion gives solutions of the 

problem (fort.he above data) in about 0.05 CPUsecomls on au SC:I R4400. 

Alternat ively, t.he problem can be solved easily with any linear programming 

package, since hy the integrality of the input. data and by the total unimo<iularit.y 

of the underlying matrix the optimum hasi<" solut ion will have int.<·lger values 

only. \Vit.h the linear programming package CPLEX (version 2.1 ) t.lie optimum 

solution given in Table 3 was obtained again in about 0.05 CP U.seconds (on an 

sea R44oo): 

train number I 2123 l2127 l 2131 J2135 J 213fl J 2143 J 2147J2151J215!1 I 
Au1st.erdam-Rotterclam 3 4 ;3 :3 2 2 2 2 

Rotterdam-Roosemlaal 1 2 3 3 2 2 2 2 2 

Roo~endaal-Vlissingen 3 2 2 2 2 2 2 2 2 

tram number I 215!J l 2163 l 2167l 2171 l217!1 I217!J I 2183 I 2187 l 2HJ1 I 

I Amst.erdar11-Rot.t.erdan1 5 5 4 4 2 2 1 2 I 

I Rot.t.erdam-Roosendaal 4 5 4 3 2 2 1 I 

I Roosendaal-Vliss ingen 3 4 :i 2 2 1 

train number J 2108l 2112 I 211G J 2120l 21 24 l2128 l 2132 J 2136 l 2140 \ 

Vlissingeu-Rooseudaal 1 3 3 3 2 2 2 

Roosendaal-Rot t.crdam 2 4 4 3 4 2 2 2 

R.ott.erdam-Amst.erdarn 1 2 4 4 3 4 3 2 2 

t.ram unmber I 2144 I 2148l 2152l215ul21GOl 2164 I 2168l 2I 72 l217G I 

Vlissingen-Roosendaal 2 2 2 3 2 2 1 4 

Roosendaal-Rotterdam 2 3 2 4 3 1 1 1 1 

Rotterda111-A msterdam 3 3 4 4 3 2 1 1 1 

Table 3: Minimum circulation with one type of stock 

Required are 22 units, divided during the night over Amsterdam: 4, Rotter

dam: 2, Roosendaal: 8, and Vlissingeu: 8. 
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It is quite direct to modify and extend the model. Instead of minimizing 

the number of train-units one can minimize the amount of carriage-kilometers 

that should be made every day, or any linear combination of both quantities. 

In addition, one can put an upper bound on the number of units that can be 

stored at any of the stations. 
Instead of considering one line only, one can more generally consider networks 

of lines that share the same railway stock, including trains that are scheduled 

to be split or combined. (Nederlandse Spoorwegen has trains from The Hague 

and Rotterdam to Leeuwarden and Groniugen that are combined to one train 

on the common trajectory between Utrecht and Zwolle. ) 

If only one type of unit is employed for that part of the network, each unit 

having the same capacity, the problem can be solved fas t even for large networks. 

13. Two types of stock. The problem becomes harder if there are several 

types of trains that can be deployed for the train service. Clearly, if for each 

scheduled train we would prescribe which type of unit should be deployed, the 

problem could be decomposed into separate problems of the type above. But 

if we do not make such a prescription, and if some of the type:-; can he coupled 

together to form a train of mixed composition, we should extend the model to 

a 'multi-connnodity circulation' model. 

Let us restrict ourselves to the case Ami->terdam-Vlissingeu again, where now 

we can deploy two types of two-way train-units, that can b<~ coupled together. 

The two types are type IC3, each unit of which consists of 3 carriages and has 

163 seats, and type IC4, each unit of which consist:-; of 4 carriages and has 218 

seats. 
Again, the demands of the train legs are given in Table 2. The maximum 

number of carriages that can he in any train again is 15. This means that if a 

train consi:-;ts of :i; units of type IC3 and :i; units of type IC4 then 3:c + 4y :S 15 

should hold. 
It is quite easy to extend the model above tu the prei->eut. case. Again we 

consider the directed graph D = (V, A) as above. At each arc u let J(a) be the 

number of units of type IC3 011 the leg corresponding to a and let y( a) similarly 

represent type IC4. So both f : A ~ Z+ and y : A : Z+ are circulations, 

that is, satisfy the flow circulation law: 

(24 ) L f (a) = L J (a), 
11 Eb- ( " ) 11 Eb+( ,, ) 

2:: g(a) = 2:: g(a), 

for each vertex u. The capacity constraint now is: 

(25) 3f(a) + 4g(a) :S 15 

for each arc a. representing a leg. The demand constrniut can he formulated as 

follows: 
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(26) 163/(a) + 218g(a) ~ p(a), 

for each arc a representing a leg, where p(a) denotes the number of seats required 
(Table 2). Note that in contrary to the case of one type of unit, now we cannot 
speak of a minimum number of units required: now there are two dimensions, 
so that minimum train compositions need not be unique. 

If cost1c :1 and cost1c4 represent the cost of purchasing one unit of type IC3 
and of type IC4, respectively, then the problem is to find f and g so a.'> to 

(27) minimize L (cost1c:d(a) + cost1c<1!J(a)). 
a E .4 ° 

The cla.<>sical min-cost circulation algorithms do not apply now. Moreover, 
when solving the problem as a linear programming problem, we lose the pleasant 
phenomenon observed above that we automatically would obtain an optimum 
solution f, g : A ______, lR with integer values only. 

So the problem is an integer linear programming problem, with 198 integer 
variables. Solving the problem in this form with the integer programming pack
age CPLEX (version 2.1) would give (for the Amsterdam-Vlissingen example) 
a running time of several hours, which is too long, for instance when one wishes 
to compare several problem data. 

However, t here are ways of speeding up the process, by sharpening the con
st raints and by exploiting more facilities offered by CPLEX. The conditions (25) 
ancl (26) can be sharpened in the following way. For each arc a representing a 
leg, the two-dimensional vector (f(a),g(a)) should he an integer vector in the 
polygon 

(28) Pu:= {(:1:,y) l:i: ~ 0,y ~ 0, 163:r, + 218y ~ p(a),3:i: + 4y :S: 15}. 

For instance, the trajectory Rotterdam-Amsterdam of train 2132 gives the poly
gon 

(29) Pa = {(:I:,y) i:c ~ 0,y ~ 0,163:i: + 218y ~ 344,3:i:+ 4y :::; 15}. 

Iu a picture: 

4. • • • • • • 

t 3 • • 
-t 
!:::! 2 • • 
1l.. 
0 

• • 

• 
() 2 4 5 6 

lypclCJ-
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In a sense, the inequalities are too wide. The constraints given in (29) could 
be tightened so as to describe exactly the convex hull of the integer vectors in 
the polygon Pa (the 'integer hull'), as in: 

4. • • • • • • 

t 3 • • 
... 
~ 2 • • 
!!.. 
?:-

• • 

• 
() 4 6 

typcIC3-

Thus for segment Rotterdam-Amsterdam of train 2132 the constraints in 
(29) can be sharpened to: 

(30) x 2:: 0, y 2:: 0, ;1; + y 2:: 2, x + 2y 2:: 3, y :::; 3, 3x + 4y :::; 15. 

Doing this for each of the 99 polygons representing a leg gives a sharper set 
of inequalities, which helps to obtain more easily an integer optimum solution 
from a fractional solution. (This is a weak form of application of the technique 
of polyhedral combinatorics.) Finding all these sharpened inequalities can be 
done in a pre-processing phase, and takes ahout 0.04 CPUseconds. 

Implementat ion of t hese techniques makes that CPLEX gives a solution to 
the Amsterdam-Vlissingen problem in 1.58 CPUseconds - see Table 4. 

train number I 2123l 2127l2131l2135l2139l 2143l 2147l 2151I2155 I 

Amsterdam- Rotterda m 0+2 0+ 3 4+0 0+2 0+2 1+2 0+2 1+1 
Rotterdam-Roosendaal 0+1 0+2 0+2 4+0 0+2 0+2 1+3 0+3 1+1 
Roosendaal-Vlissingen 0+2 0+2 0+2 2+0 0+1 0+1 0+2 0+2 2+0 

tram number I 2159l 2163l 2167l 2171I2175l 2179 l 2183 l2187l2191 I 

Amsterdam-Rotterdatn 0+3 2+1 o+a 1+2 0+2 0+1 1+2 0+1 0+1 
Rotterdam-Roosendaal 0+3 2+2 0+ 3 0+2 1+1 2+0 1+3 1+0 
Roosendaal-Vlissingen 0+ 2 2+1 0+2 0+2 2+0 0+1 

train number l2108 l2112 I 2116l 2120l 2124 l2128 l2132 l21::16 l2140 I 

Vlissingen-Roosendaal 1+0 0+3 1+2 0+2 0+2 0+1 1+1 
Roosendaal-Rotterdam 1+2 3+0 0+3 0+2 1+2 0+2 2+1 1+3 
Rotterda111-Amsterdam 0+1 0+ 2 4+0 0+3 0+3 1+2 0+2 2+0 0+2 

tram number I 21441214812152 I 2156 !2160l2164l 2168l 2172l 217G I 

Vlissingen-Roosendaal 1+1 0+1 0+2 0+2 2+0 0+2 2+0 0+1 
Roosendaal-Rot terdam 0+1 0+3 1+::1 0+3 1+1 0+1 2+2 0+ 1 1+0 
Rotterdan1-Amsterdam 1+ 1 0+3 1+2 0+3 1+1 0+1 0+2 0+1 0+1 

Table 4: Minimum circulation with two types of stock 
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In this table x + y means: x units of type IC3 and y units of type IC4. In 

total, one needs 7 units of type IC3 and 12 units of type IC4, divided during 

the night as in Table 5. 

number of number of total total 
units of units of number of number of 

type 103 type IC4 units carriages 

Amsterdam 0 2 2 8 

Rotterdam 0 2 2 8 

Roosendaal 3 3 6 21 

Vlissingen 2 5 7 26 

Total II 5 12 II 17 63 

Table 5: Required stock (two types) 

So compared with the solution for one type only, the possibility of having 

two types gives both a decrease in the number of train-units (17 instead of 22) 

and in the number of carriages (63 instead of 66). 
Our research for NS in fact. bas focused on more extended pro'Qlems that 

require more complicated models and techniques. One requirement is that in 

any train ride Amsterdam-Vlissingen there should be at least one unit that 

makes the whole trip. Moreover, it is required that., at. any of the four stations 

given (Amsterdam, Rotterdam, Roosendaal, Vlissingen) one may either couple 

units to or decouple units from a train, but not hoth sinmltaneously. Moreover, 

one may couple fresh units only to the front. of the t.rain, and decouple laid off 

units only from the rear. (One may check that these conditions are not met by 

all trains in the solution given in Tahle 4.) 
This all causes that the order of the different. units in a train does matter, 

and that conditions have a more global impact: the order of the units in a 

certain morning train can still influence the order in some evening train. This 

does not fit directly in the circulat ion model described above, and requires a 

combinatorial extension. 
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Data Mining: Exploratory Data Analysis on Very Large 

Databases 

To professor Baayen at the occasion of his retirement 

Arno Siebes ( arno©cwi . nl) 

CW/ 

Artificial Intelligence and Database research are recognised parents of Data 

Mining research . Statistics is only considered related in as far as it allows 

the assessment of the quality of the results of mining. In this expository 

paper it is shown that Statistics can lay legitimite claims of parenthood. 

More in particular, it is shown how Data Mining can be seen naturaly as a 

generalisation of both Projection Pursuit and Cluster Analysis. Subsequently 

it is discussed how this link can help to give Data Mining firm mathematical 

foundations. 

1 INTRODUCTION 

One of the younger brauches of Computer Science , called Data Mining or 

Knowledge Discovery, was born out of a , partial , merger of Database and Ar

tificial Intelligence research. 

1.1 What is Data Mining? 

The goal of Data Mining is to discover information in large databases. Both 

large and small organisations have set up and maintained databases for years, 

often for pure accouuting reasons. The mountains of data accumulated this 

way, form potential treasure-troves of strategic information. 

For example, consider an insurance company. From your own car insurance 

policy you can deduce that such a company does not associate t.he same risk 

with all of its clients. Rather, this risk depends on where you live, your type of 

car , your age, and many other factors. If the insurance company has registre<l 

all the relevant information of its insurants in databases, it should be able to 

derive precise rules that tell which risk to assign to which client. The derivat ion 

of such risk-vrofiles is au example of data mining. 

Many production processes are partly or complf~tely automated. A side effect 

of this automatiou is that many aspects of the production process, such as t he 
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quality of the end product and the parameter settings of the machinery along 
the way, are recorded electronically. The optimal paramater settings, those 
that one can he confident of the quality of the end product, are hidden in these 
databases. Data mining intends to facilitate unearthing this knowledge. 

1. 2 The Roots 

Data Mining is based on techniques inherited from both AI and database re
search. Statistics is used to assess the validity of the results . The roots of Data 
Mining in these three areas is discussed briefly in this subsection. In the la.<;t 
part, on Statistics, the goal of this paper is set out. 

1. 2.1 Artificial Intelligence 

The AI parent of Data Mining is without a shadow of doubt Machine Learning. 
One of the aspects of intelligent beings is that they adapt their behaviour to 
their environment. So, it is only natural that early AI researchers developed 
systems that mimicked this behaviour. 

One of the oldest examples of such systems is the Perceptron by Roseublatt 
[36], a system for pattern recognition. The object of pattern recognition is to 
sort patterns into different classes so that patterns which belong to a class 
share features. If we call the set of all possible feature combinations the feature 
space, Perceptron performes well for those patterns that are linearly separable 
in feature space. Minsky and Pappert showed the limitations of the Perceptron 
if the patterns are not linearly separable in [29]. Neural networks are a way to 
overcome these limitations, see, e.g., [10] for an introduction in this area. 

Neural networks are by far not the only attempt at building learning au
tomata. In fact., an overview of machine learning research is far beyond the 
scope of this article, if not beyond the scope of a single book. The interested 
reader is referred to the collection of papers bundeled in [38] and the books 
edited by Michalsky, [27, 28, 23] to get a feeling for the area. The more theo
retically inclined reader might enjoy [l]. 

The most important development in machine learning for current Data Min
ing research is the introduction of rule induction systems, [14]. Rule induction 
is similar to neural networks in that it seeks to separate patterns. The ma
jor difference is that it seperates using descriptions rather than weights in a 
network. The descriptions are expressions in the attributes or features of the 
objects. Hence, the results of rule induction are directly interpretable by human 
beings. 

1. 2. 2 Databases 

The problems in database research that gave rise to Data Mining are more 
diverse and less well-documented than those in AI. Rather than attempting to 
describe briefly all these seemingly unrelated problem areas, we describe one 
in somewhat more detail. 
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One of the main problems in maintaining large data sets, electronically or 
otherwise, is to keep them error-free. One of the contributions of database 
research towards the resolution of this problem is the notion of integrity con
straints. The constraints on a database describe which entries in a database 
and which database states are to be considered legal. The more accurate the 
constraints are, the more errors at, say, data entry can be obviated. 

The traditional way to discover constraints is to elicit them from domain 
experts. Thus, inherently, there is the risk that some constraints are missed. 
One way to alleviate this risk is by searching for additional constraints when the 
database is in existence. By confronting the domain experts with constraints 
that are satisfied by the current database state, these missing constraints can 
be identifi··d. Pioneering papers in this area are [30, 2, 3]. 

In theory, a constraint is simply a logical expression. In practice, however, 
database management systems support only the enforcement of a restricted 
set of constraints, such as functional dependencies. In table R attribute A 
functionally determines attribute B , denoted by A --+ B, if whenever two entries 
share the same A-value they also share the same B-value. 

For this restricted class of constraints, the problem is solved. Efficient algo
rithms can be found in, e.g., [2:1]. While Manilla gives precise bounds on the 
sample sizes needed to conclude the constraints with sufficient confidence in 
[21]. 

1. 2. 3 Statistics 

As should be clear from the examples given before, Data Mining is based on in
ductive inference. In other words generalities, such as rules or laws, are induced 
from a finite number of examples. Such a conclusion is, of course, never logical, 
the logical conclusions can be inferred using deduction. The epistemological 
problems of induction and its conclusions have been discussed by philosophers 
since at least the time of Hume. Some interesting points of view pertaining 
these problems can be found in [12]. 

Since a long time, Statistics is the most successful approach to asssess the 
validity of inductive conclusions. It is therefore to be expected that Statistics 
is used in Data Mining precisely for this reason. In other words, Statistics is 
related to Data Mining. 

However, Statistics offers more than is currently used. An introductory course 
in Statistics and Probability is sufficient to read almost all the literature on 
Data Mining. Curiously, all Statistics that comes under the name of Exploratory 
Data Analysis is absent in these requirements. 

It is the intention of this paper to show that Statistics is more than related 
to data mining. It could have been, and perhaps should be considered as, one 
of its parents. More in particular it is shown that Data Mining can be seen as 
a natural generalisation of a statistical techniques known as Projection Pursuit 
and Cluster Analysis 
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1. 3 A Roadmap 

The object of this paper is expository, the reader is neither expected to he a 
statistician nor a data miner. The only new fact in this paper is the surprisingly 

strong link between Exploratory Data Analysis techniques and Data Mining. 

In Section 2, we give a brief review of the classical techniques Regression 

Analysis, Principle Component Analysis and Cluster Analysis. In the next sec

tion Projection Pursuit is introduced and, following Huber [15] it is shown how 

this subsumes the first two techniques of Section 2. 
In the fourth section Data Mining is defined and it is shown how it generalises 

both Projection Pursuit and Cluster Analysis. In Section 5, the contribution 

of AI and databases is discussed in the light of this new viewpoint. 
In the final section of this paper it is discussed how this link might help to 

give data mining firm mathematical underpinnings. Since the discovery of such 

underpinnings needs guidance from experimentation, the architecture of a data 

mine tool is also briefly discussed. 

2 CLASSICAL EXPLORATORY DATA ANALYSIS 

In many laboratory experiments parameters can he individually set. Conse

quently, hypotheses underlying these experiments can be tested with straight

forward statistical techniques. Not all sciences are so lucky, however. In the 

life sciences and in the social sciences the parameters cannot even be set by 

the scientist. To analyse this kind of data Statistics developed Multivariate 

Analysis. 
Tukey coined the name ExploratoN.J Data Analysi8 (EDA) [40] for, a subset 

of, these techniques to indicate that the analysis is only part of the work. The 

interpretation of the results, the formulation of hypotheses and their subse

quent testing are equally important. Since I agree with this observation, I have 

adopted this catchy name. 
In this section three "classical" techniques, Regression Analysis, Principle 

Component Analysis, and Cluster Analysis, are briefly reviewed. The motiva

tion for this section is twofold. In the first place it may serve as a reminder for 

the avarage data miner. In the second place, the power of Projection Pursuit 

is argued in the next section by discussing how it subsumes the first two tech
niques. Subsequently it. is argued that Data Mining subsumes both Projection 

Pursuit and Cluster Analysis. Far more information on EDA can be found in 

standard textbooks such as [40, 25]. 

2.1 Regression Analysis 

Suppose that the insurance company from the introduction has d real valued 

attributes in its clients database. If it assumes that, say, the expected claim 

amount is a function of these variables, it can use Regression t.o determine this 

function. 
In formal terminology, let (X, Y) be a pair of random variables such that 

X is nc1 valued while Y is 'R valued. The problem is to estimate the respon.~c 
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surface 
f(x) = E(YIX = x) 

from n observations (Xi, Y1), · · ·, (X,., Y,,) of (X, Y). 
A simple way to fit a function to these n observations is through least squares 

estimation. First a parametric form for f is chosen, e.g., if f is assumed to be 

a linear surface, we have J(i) = E:~ 1 a;x; +a,,. Following, the parameters a; 

are estimated by minimising 

11 

z)Yi - /(X;))2. 
i = l 

This can be generalised by assuming Y to be Rk valued rather than R valued. If 

f is then assumed to be linear we get what is known as multivmiate regression. 

A generalised least squares estimation exists for this case. 
Regression analysis is an example of EDA, if only because one can try dif

ferent parametric forms for f and choose the one that fits best. Of course, the 

number of parameters should be small compared to the number of observations. 

In the terminology of Machine Learning, one should beware of over.fitting. 

2.2 Principle Component Analysis 

With Principle Component Analysis (PCA), one hopes to explain most of the 

variability in the data using only the principle components with the highest 

variability. In other words, PCA is a technique to reduce the dimensionality of 

the data. 
Let X be an Rd valued random variable and let X 1 , · · · , X 11 be a set of n 

observations of X. In statistical terminology, (X1 , ... , X,,)T is a data matrix. 

For example, we have a group of n students who all participated in d exami

nations and X ii denotes the score of student i for examination j. The sample 

mean vector X is simple defined by 

1 7l 1 7l 

(- z=xil ,···, - z=x;df, 
n n 

i = l i= I 

In other words, X; denotes the mean score for examination i . The sample 
covariance matrix is the d x d matrix S with entries 

The covariance matrix S can be written in the form S = GLGT in which G 
is au orthogonal matrix and L a diagonal matrix of the eigenvalues of S , with 

l 1 2: l2 2: · · · 2: l,, 2: 0. 
The principle component transformation is defined by rotation 
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the columns of W represent 1mcorelated linear combinations of the variables; 
they are called the principle components. 

The importance of PCA lies in the observation that (l1 + · · · + lk) /(11 + · · · + 
ld) represents the "proportion of the total variation" explained by the first A: 

principle components. So, if in our examination example li/(l 1 +· · ·+l,L) = 0.75 
and its eigenvector is (1, 0, ... , 0) , the we can conclude that 753 of the variation 
of the scores of the students is due to the first examination. 

2. 3 Cluster Analysis 

Cluster Analysis (CA) is similar to pattern recognition discussed before. Again 
we try to classify based on similarity. Different from the previous two tech
niques, CA does not require the data to be real valued. To simplify our brief 
discussion we, however, make this assumption. 

Again, let X be an 'R" valued random variable and let X = X 1 , · · · , X ,. be a 
set of n observations of X. A clustering of X is a cover of X by disjoint subsets 
C1 , ... , Ck . The goal is that the observations in t.he same class are similar while 
observations in different classes are different. 

For example, if the X ; are observations on flowers , recording the length of 
the stem, the number of petals, et cetcra, a clustering should put observations 
of flowers of the same kind in the same class. 

Inherent in this statement of the cluster problem is the concept of an opti
mality criterion which dictates when a desirable partitioning has been found. 
This criterion can be phrased using a quality function. The higher the quality 
of a partitioning, the better it. is. 

More in particular, we need a measure of the homogeneity within a cluster 
and the disparity between clusters. Both measures can very well be based on a 
distance function or metric on n". 

For example, in complete linkage one of the restrictions on a class is that 
t.he distance between t.wo observations may not exceed some threshold value 1'. 

In the centroid method, t he distance between classes is defined as t he distance 
between t heir centroids. One of the objectives of this method is to maximise 
t he distance between classes. 

There are way to many clustering algorithms to attempt even the shallowest 
of surveys here. An old, but very readable survey, can be found in [5]. This brief 
description ends with the observation that clustering by complete enumeration 
is comletely out of the question. 

Briefly, this technique would simply enumerate all possible clusterings, eval
uate the quality of all of them and report the one(s) with the highest quality. 
This approach is infeasible simply by the sheer number of possible clusterings. 
The number of partitions of n objects in m non-empty subsets is given by 
Stirling's numbers of the second kind: 

m ( ) S(n,m) = ~L r~i (- l)j(m - j)n. 
m. J 

j = O 
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So, since the number of classes is in general not specified, the total number of 
clustering alternatives is given by: 

TI 

L S(n,m). 
m = l 

3 PROJECTION PURSUIT 

Mapping multivariate data into low dimensions for visual inspection is a com
monly used technique in data analysis; if only because of the uncanning ability 
of humans to discover structure in two-dimensional plots. The discovery of such 
mappings that reveal the salient features of the multidimensional data set is in 
general far from trivial. Projection Pursuit (PP) introduced by Friedman and 
Tukey in [9] is a technique to discover such mappings. 

In a nutshell, PP works as follows. We have a p-dimensional dataset X and we 
examine "all", say, two-dimensional projections of X. We are given some quality 
function, called the projection index, with which we calculate the quality of all 
the projections. PP then reports the projection with the highest quality. 

Stated as such, PP sounds like just another EDA technique which might as 
well have been discussed in the previous section. After a brief discussion of 
PP, however, it is shown, following Huber [15], that PP subsumes many EDA 
techniques. 

3.1 What is Projection Pursuit? 

The simplest mappings from higher to lower dimensions are, linear, projections. 
That is, linear maps A of, say, rank 1 or 2. By definition, PP searches for a 
projection A that maximises a quality function, in this context it is called the 
projection index. 

To get more concrete, let X be a Rd valued random variable and let X = 
{X1, · · ·, Xn} be a set of n observations of X. A I-dimensional projection A is 
then a 1 x d matrix of rank 1. The quality of A should be determined from the 
data set A(X) = {AXi, · · · , AX11 }. 

Many projection indices are possible, an important observation by Huber 
is that the index should measure how far the projection is away from a set 
of data points sampled under a normal distribution. The heuristic arguments 
underlying this claim are: 

• A multivariate distribution is normal iff all its one-dimensional projec
tions are normal. Thus, if the least normal one dimensional projection is 
normal, we need not look at any other projection. 

• For most high-dimensional data sets most low-dimensional projections 
are approximately normal. 
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A simple projection index in this case is, thus, a x2-test. Another example is 
the sample entropy, i.e., 

1 n - L log(f(AX;)) 
n 

i = I 

in which j is the density estimate of the projected points. Friedman and Tukey's 
original index I is the product of two functions s and k, where s measures 
the spread of the data and k describes the "local density" of the data after 
projection. 

Defining the index is only part of the work. The question is, of course, how to 
find the projection A that maximizes the index. Friedman and Tukey mention 
that their projection index is sufficiently continuous to allow the use of hill
climbing algorithms for the maximization. 

A simple form of hill-climbing is as follows. First we choose a random pro
jection matrix A = (a1, ... ,ad) and compute its quality. Subsequently, we 

construct a set {A1, ... , AN} by adding small vectors to A in "all possible 
directions". Then we compute the quality of all these projections. The new 
projection A' is that projection from the set {A, A1 , ... , AN} that has maxi
mal quality. If A = A' we stop, else we iterate. 

This form of hill-climbing will always end in a local maximum. To find a 
global maximum the algorithm should be repeated with different initial pro
jections. Moreover, in fact the search is not so much for the global maximum 

as well as for a projection that gives the analyst insight in the distribution of 
the data. In other words, we can stop as soon as we find a local maximum that 
satisfies this criterium. 

Besides hill-climbing many more search algorithms exist, we return to this 
topic later in this paper. 

3. 2 Projection Pursuit .mb.mmes classical techniques 

It is straightforward that PP is a generalisation of PCA. For, in PCA we simply 
calculate the eigenvalues and eigenvectors of the covariance matrix and project 
the data orthogonally into the space spanned by the eigenvectors belonging to 
the largest eigenvalues. This projection clearly fits into our description of PP 
above. 

3. 2.1 Regression 

The subsumption of Regression by PP is less straightforward than that of PCA 

above. A central role is played by the "curse of dimensionality" caused by the 
fact that a high-dimensional space is mostly empty. To give an example let 
d = 20, which is actually low in most data mining examples. Assume that. we 

have a large number of points uniformly distributed in a 20-dimensional unit 
ball. Then the radius of a ball containing 5% of the data is (0.05)(n.mi) = 0.86. 
So, if we want to pick out small features the sample size has to be gigantic. In 
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other words, for high-dimensional data sets standard Regression is not likely 
to produce good approximations. 

In this case (15], it is often attractive to approximate the response surface 
by a sum of ridge functions: 

m 

f(x) ~ L9i(af x) 
i = l 

In other words, we assume that f can be approximated by the sum of a set 
of 'R-valued functions , each of which is defined on a I-dimensional projection 
of X. The idea is now to use PP to find the "optimal projections" for this 
approximation. More in particular, Friedman and Stuetzle's Projection Pursuit 
Regression process (8] works as follows. Assume we have already determined 
the first m - 1 vectors ai and functions g;. Let 

ni ~ l 

r ; = Y; - L g;(af;r) 
i = l 

be the residuals of this approximation. Choose a unit vector a E R" and fit a 
smooth function g through the data set formed by the pairs (aT X ;, 1"i). Calcu
late the sum of squared residuals relative to this g, 

11 

L(ri - g(aTX ;))2 
i= l 

and then minimise this sum over all possible choices for a. The resulting a and 
g are then inserted as the next term in the approximating sum. This iterative 
procedure stops if the improvement becomes small. 

In a similar sense, PP can be said to subsume density estimation. That is, in 
cases of high-dimensionality Projection Pursuit Density Estimation yields an 
acceptable approximation. 

3. 2. 2 Cluste1ing 

If stating that PP subsumes Regression was already stretching the limits, stat
ing that it subsumes Clustering certainly oversteps these limits. However , PP 
can certainly help to detect clusters; one might say that this was the motiva
tion for developing PP. In fact , Huber presents the following list of as possible 
actions after one has found some interesting projections: 

1. Identify clusters, isolate them and investigate them seperately. 

2. Identify clusters and locate them (i.e., replace them by, say, their center 
and classify points according to membership to a cluster). 

3. Find a parsimonious description (seperate structure from random noise 
in a nonparametric fashion ). 

Data Mining not only generalises PP, it does generalise Clustering. How it 
achieves this, is discussed in the next section. 
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4 DATA MINING 

For some researchers, Data Mining is simply the application of Machine Learn
ing techniques to large databases. This point of view, however, is far too broad; 
if only because some techniques simply do not scale up to the massive amounts 
of data available in databases. 

Klosgen and Zytkow define KDD, one of the many aliases of Data Mining, 
in [22] as 

Knowledge Discovery in Databases (KDD) is a major di
rection in machine discovery dealing with knowledge discovery pro
cesses in databases. KDD applies to the ready data available in 
all application domains of science and in applied domains of mar
keting, planning, controlling, etc. Typically, KDD has to deal with 
inconclusive data, noisy data, and sparse data. 

where machine discovery and knowledge discovery process are defined by re
spectively: 

Machine Discovery is a subfield of Artificial Intelligence which 
develops discovery methods and discovery systems to support knowl
edge discovery processes. 

Knowledge Discovery Process aims at finding out new knowl
edge about an application domain. Typically, a discovery process 
consists of many discovery steps, each attempting at the completion 
of a particular discovery task, and accomplished by the application 
of a discovery method. A discovery process emerges iteratively and 
depends on the dynamic, result dependent discovery goals. The pro
cess iterates many times through the same domain , typically based 
on search in various hypotheses spaces. New knowledge is inferred 
from data often with the use of old knowledge. Domain exploration 
and discovery focussing are discovery processes applied in new do
mains, where old knowledge is not available. 

For the definition of the unfamiliar terms in these definitions, the reader is 
referred to [22]. In this paper we use a, slightly, formalised restricted version 
of this general definition. It is not meant as a general introduction to Data 
Mining. Again, this is far beyond the scope of this paper. The interested reader 
is referred to [14, 31, 32]. 

4 .1 Descriptions and Quality 

Central in Data Mining is the notion of a description. Recall that a database 
table consists of a schema and a state. A schema is a set of attribute names 
A = {A1,. .. ,Ap} together with a set of attribute domains {D1, ... Dp}, such 
that D; is the domain of A;. A state of the table can be seen as a finite subset 
of D 1 x · · · x D,,. 
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Usually, databases have more than one table and the tables are subject to 
constraints etcetera, but these nuances are unimportant for our present pur
poses. In other words, we will equate databases with tables as defined above, 
i.e. , a database state db <;_ Jin D 1 x · · · x Dp. By DB we will denote the set of 
all possible database states. 

A tuple t is simple an element of a database state, i.e., t E db. Rather than 
using a projection-notation like 11"D;(t ), t.Ai , or even ti if A is understood, is 
used to denote the value oft for attribute Ai. 

With these conventions, we can define a description language <.T> as a first 
order language such that V</J E <.T> Vdb Vt E db it can be decided whether </J 
holds fort in db. Note that usually the attribute names in A will be among the 
non-logical symbols of <.T>. 

A popular descript ion language is that of set-descriptions, these are descrip
tions of the form: 

A; E V; A ··· A Ak E Vi , where Ai E A A VJ <;_ D j A VJ is finite. 

The description age E [19, 24] A gender = male is an example. Since the v; are 
assumed to be finite , t his is a first order language in disguise. 

The cover of a description </J, denoted by (</J) db, in a database state db is the 
set of all tuples in db that satisfy </J ; if db is clear from the context, this subscript 
is often ommited. For example, (age E [19, 24] A gender = male) denotes all 
tuples in the database that describe young men. 

Besides descriptions, a central role is played by quality functions , similar to 
those encountered in EDA. In fact , there are three classes of quality functions 
that are used in Data Mining: 

Class 1 this are quality functions that assign a quality to a single description 
for a given database state. That is, it are functions of type <.T> x DB ---+ R. 

Class 2 this are quality functions that assign a quality to a finite set of 
descriptions for a given database. That is, they are of type P1;11 (<.T> ) x 
DB ---+ R. 

Class 3 this are quality functions that assign a quality functions that assign 
a quality to a set of descriptions for a given database state based on a 
combination of a Class 1 and a Class 2 quality function. In other words , 
a quality function of this class is specified by three funct ions: 

1. Q1 : <.T> x DB ---+ R; 

2. Q2 : 'P1;11 (<.T> ) x DB __, R: 

3. f: P1;,,(R ) x R ---+ R; 

and Q3: 'P1;,,( <.T> ) x DB ---+ R is defined by Q3 = f ({Qi} , Q2). 

Given the set of descriptions <.T> and the quality function(s), Data Mining is sim
ply: "find the (set of) description(s) with the highest quality" . Simple variations 
are of the form: "give me the n best descriptions" etcetera. 
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It is now easy to see that. both Cluster Analysis and Projection Pursuit are 

examples of Data Mining. 

4.1.1 Cluster Analysis 

Define the description language <I> such that. all finite subsets of P(D1 x · · · x 

D,,) can be described. Moreover, define Q1 as a function that measures the 

homogeneity of the clusters, i.e. , of the (</J;), Q2 as a function that measures 

the disparity between the clusters, and define f as a function that combines Q1 

and Q2. The resulting Class 3 quality function and the description language <I> 

together form a specification of the clustering problem as defined before. 

4.1.2 Projection Pursuit 

This one is even more simple, define <I> such that all and only all projection 

planes can be described. Moreover, define the Class 1 quality function as your 

favourite PP index. The result is PP as a Data Mining problem. 

4.1.3 Subsumption 

It is disputable whether Data Mining with Class 3 quality functions is a more 

general problem than Cluster Analysis. However, although the two problems 

may be close in theory, they are widely different in practice. Most often in 

Cluster Analysis, the quality is somehow related to a distance function. In 

Data Mining, however, the quality function is simply part of the specification 

of the kind of information one is interested in. 

The fact that Data Mining with Class 1 quality functions is more general 

than Projection Pursuit is far less disputable. There is at least one paper that 

studies PP on discrete data rather than continues data, [4], but in Data Mining 

one does not fix an a priori "projection dimension", rather one lets the system 

find the most striking projection. 
The generality of Data Mining does have its price, however. In the first place, 

one has to specify each search task. That is, one has to choose au appropriate 

description language and a reasonable quality function. This specification comes 

at the price of a thorough analysis of the problem. In other words, Data Mining 

is not "plug and play". 
The second down-side lies in the search algorithms. The generality of the 

Data Mining problem implies that it is difficult to use the structure in a problem 

to speed up the search. In other words, the search algorithms should be able 

to cope with a large collection of widely different quality functions which, e.g., 

do not have to depend on a metric as in Cluster Analysis. 

In the next subsection we give an example on the definition of quality func

tions. In the next section we return to the problem of search algorithms. 

4. 2 Risk Profiles: an example of quality functions 

One of the Dutch insurance companies has asked us to derive risk-profiles from 

their car-insurance databases. A set of risk-profiles is a classification of the 
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insurants such that the insurance company can expect all clients in the same 
class to cause the same claim-amount per year. The relevance of this knowledge 
for the insurance business is obvious. 

As a first approximation, we derive risk-profiles for the probability that some
one will cause a claim, rather than for the expected claim-amount. In this sec
tion we briefly explain how these risk-profiles were found; more information 
can be found in [39]. 

4. 2. 1 The Problem 

The assumptions underlying this task are as follows. First, we assume that 
there only a few groups of clients, such that clients in the same group share 
the same probability of causing a claim. Secondly, we assume that these groups 
can be distinguished using only a few, say 80, properties of the clients and 
their cars; moreover, these properties are present in the database as attributes. 
Finaly, we assume that these groups can be distinguished by our description 
language <I>. 

A precise definition of <I> is not important here. It is a sublanguage of the 
language of set-descriptions that satisfies the following properties: 

1. <I> should be sparse, this more or less means that (rfJ) should be large and 
with attributes such as area and age there should be no gerrymandering; 

2. If (r/J) n (1/J) is large for r/J, 'ljJ E <I>, then rjJ /\ ·i/J E <I>. 

To state our problem in terms of descriptions, define a set { </J 1 , ... , <Pk} of 
descriptions to be a disjunctive cover, abbreviated to discovery, if: 

1. Vi,j E {1, ... , k}: i-:/= j--+ [r/J; /\ </Jk--+ ..l] 

2. lV7=1 r/J;] --+ T 

The problem can then be restated as: find a discovery { rjJ1 , ... , <Pk} such that 

4. 2.2 Analysis of the problem 

A set of clients is called homogeneous if all members have the same probability 
of causing a claim. A description rjJ is homogeneous, if the set of all clients 
that satisfy rjJ is homogeneous. Clearly, the discovery we want to find should be 
homogeneous, i.e., all its descriptions should be homogeneous. 

For a homogeneous description r/J, the probability of causing a claim of the 
clients that satisfy <P can easily be estimated from the database. Since, all tuples 
in (r/J) can be seen as records of trials of the same Bernoulli experiment. The 
outcome of this experiment is 1 (a success (sic)) if there was an accident and 0 
otherwise. 
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So, using standard probability theory, [7], we can compute the, say 95%, 

confidence interval CJ</> for the probability of causing a claim of the clients 

that satisfy </J. 
In fact, we will compute CJ</> in this way for all descriptions </J, regardless of 

whether they are homogeneous or not. Since our end-result is a homogeneous 

discovery this does not introduce errors. 
The question is now, how do we decide whether a description is homogeneous 

or not. Intuitively, <P is homogeneous, if all subsets of (<P) have the same asso

ciated probability. But this cannot not work, in a vase with with n blue and rn 

red marbles one can find subsets with fractions of blue marbles varying from 0 

to 1. 
However, we are not interested in random subsets, but only in subsets that 

can be described by <I> and <I> is assumed to be sparse. Therefore, we define a 

description <P E <I> to be homogeneous1 if: 

In other words, if we call <PA 1/J an extension of </J, a description is homogeneous 

if its associated probability cannot be distinguished, with 95% certainty, from 

those of its extensions 
Not all homogeneous discoveries are answers to our question, because not all 

homogeneous discoveries satisfy the condition that the associated probabilities 

are distinct. Those homogeneous discoveries that do satisfy this condition are 

said to split the database. In other words, a homogeneous discovery {<Pt , ... , <P1} 
splits the database if: 

'Vi,j E {1, ... ,l}: i #j-+ Cl</>; nCI,/>; = 0 

All such discoveries are potential answers to our question. 

4. 2.3 Existence and Quality 

If <I> is carefully defined, many homogeneous discoveries will exist. For example, 

from a list W = [</>1, ... , <fJ11 J, <Pi E <I> of descriptions we can generate the list 

'11' = { </>1, •</>1 A </>2, •</>1 A • </>2 A </J3, ... , ( •</>1 A··· A •</Jn)}. IJ!' is potentially a 
homogeneous discovery if it is, W is called a decision list, [35]. 

Whether there exist homogeneous discoveries that split the database depends 

more on the actual database state than 011 the design of <I>. In other words, there 

might be 0, 1 or many. 
If there are 0, we are out of luck. The database simply does not contain 

enough information to partition the clients through risk-profiles. If there are 

many, we seem to be in similar straits because we can assign many different 

risks to the same client. However, the quality of the different discoveries may 

differ considerably. In other words, one might be naturally the best. 

1 A related notion of homogeneity has been introduced independently in [37] 
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A detailed discussion of quality measures on discoveries is outside the scope 
of this paper. One aspect, however, is interesting to note. One reason for having 
many homogeneous discoveries is that many descriptions are homogeneous by 
definition, i.e., all those descriptions which have no extensions in <I>. 

These trivially homogeneous descriptions are in a sense too small to count. 
In other words, a homogeneous description with a large cover is better than one 
with a small cover. Extending this to discoveries, a discovery that partitions 
the database in large subsets is better than one that partitions it into smaller 
subsets. 

Similarly, the better a set of descriptions distinguishes between its compo
nents, the better it is. To formalise this, define that a homogeneous set of 
descriptions {<Pi, ... , <Pi} strongly splits the database if its descriptions differ in 
all aspects: 

'V'lj; E <T> 'Vi,j E {1, ... , l}: </J; /\ 'lj; E <T> [ 

if: j 

</J3 /\ 'lj; E <I> 

Let {<Pi, ... , <Pk } and { 7/;1 , ... , 7/;1} be two homogeneous discoveries that strongly 
split the database and such that all (</J;) and (7/;3) are large. Then there is for 
each </J; at least one 7/;3 such that (</J;) n (7/;J) » 0 and thus (</J; /\ 7/;3) E <I>. But 
since both discoveries strongly split the database, there can be at most one. So, 
(</J;) ~ (7/;J) and C / c/i; ~ CI.µr In other words, in this case there is essentially 
only one way to partition the database in a good way. 

The fact that the discoveries are not unique is simply caused by the fact 
that a set of tuples can have more than one description. For example, it could 
happen that almost all young clients are male and vice versa. In that case the 
descriptions age = young and gender = male are equally good from a theoretical 
point of view. Not necessarily from a practical point of view. For, it is very well 
possible that the description age = young makes sense to a domain expert 
while gender = male does not. Hence, both options should be presented to the 
domain expert. 

4. 2.4 The Search 
If a homogeneous discovery exists that splits the database, it must contain a 
homogeneous description with the highest associated probability. This suggests 
a simple algorithm to find such a discovery: 

Make a list of homogeneous descriptions as follows: 
find a <P that has the maximal associated probability. 
remove (<P) from db and add <P to the list. 
continue with this process until T is homogeneous on the remainder of db; 

Check whether the decision list splits the database. 

lu other words, we can use the associated probability of a rule as a measure of 
its quality. 
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5 WHAT COMPUTER SCIENCE OFFERS DATA MINING 

If Data Mining can be considered as a generalisation of more or less standard 

statistical techniques, what has Computer Science to offer? In other words, how 

can Computer Science help to solve the Data Mining problems? In this section 

we discuss how the two Computer Science parents, AI and database technology 

help to solve Data Mining tasks with a reasonable performance. 

5.1 AI: Search Techniques 

Much effort in Machine Learning and in AI in general has been invested in 

efficient and/or robust search techniques. The range of these often problem 

specific techniques is far too large to discuss in this paper. Rather, we will 

concentrate on one technique, viz. , genetic search [11, 26, 18]. To simplify our 

discussion, we start with the assumption that we have a Class 1 quality function. 

Genetic search, like all genetic algorithms, is defined in analogy with biologi

cal evolution, i.e., it is based on the survival of the fittest. It maintains a popu

lation of proposed solutions (chromosomes) for a given problem. Iteratively, the 

population undergoes a simulated evolution: relative "good" solutions produce 

offspring, which subsequently replace the "worse" ones. 

Each iteration, called a reproduction cycle, is performed in three steps. During 

the selection step a new population is formed from stochastically best samples 

(with replacement). Then, during the recombination step some of the members 

of the newly selected population are altered. Finally, all such altered individuals 

are evaluated. 
The recombination is based on two operators: mutation and crossover. Muta

tion introduces random variability into the population, and crossover exchanges 

random pieces of both chromosomes in the hope of propagating partial solu

tions. Schematically, we have the following algorithm: 

t := 0 
initialise P(t) 
evaluate P(t) 
while (not termination-condition) do 

t:= t+l 

od 

select P(t) from P(t-1} 
recombine P(t) 
evaluate P( t) 

Hence, for the specification of a genetic algorithm for a particular problem we 

must have the following five components: 

l. a "genetic" representation for potential solutions to the problem, 

2. a way to create an initial population of potential solutions, 
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3. an evaluation function that plays the role of the environment, rating 
solutions in terms of their "fitness" , 

4. genetic operators that alter the composition of children during reproduc
tion, 

5. values for various parameters that the genetic algorithm uses (population 
size, probabilities of applying genetic operators, etc. ). 

For our search problem, the items 1, 3, and 4 can be defined as follows. The 
chromosomes are simply the descriptions in our description language <I> , say 
slightly modified set-descriptions. More in particular set-descriptions of the 
form: 

In other words all set-descriptions cover all attributes, the cases where Vj = DJ 
simply cover the attributes on which one doesn't select. 

The evaluation function is simply our quality function. The genetic operators 
can be defined as follows: 

Crossover For two descriptions A 1 E Vi /\ ··· /\ A,, E V,, and A 1 E W1 /\ 
··· /\ A,, E W,,, choose two elements ·i,j E {1, ... ,p} and conclude the 
descriptions: 

A1 E Vi /\ · · · /\ A ;- 1 E lti - 1/\ 

A; E W; /\ · · · /\Ai E Wi /\ Ai +I E Vj+I /\ · · · /\ A,, E V,, 

A1 E W1 /\ · · · /\ A;- 1 E W;- 1/\ 

A; E V; /\ · · · /\ Ai E Vj /\ Ai +I E Wi +I /\ · · · /\ A,, E W,, 

Mutation For a description </J , choose an ·i E {1, ... , p} and a random W ; ~ 
D;, and replace A ; E V; in <P by A ; E W ;. 

Alternatively, one might execute one step of the Hill-climber algorithm 
as a mutation step. 

The good parameters for the algorithm can hardly be defined in advance, they 
have to be found by experimentation. It is well-known, however, that the pop
ulation size should be relatively large, say a few hundred, and that quite some 
iteration steps, again say a few hundred, are needed before such a system will 
converge. 

If we consider Class 2 or Class 3 quality functions we have to deal with 
genomes, i.e. , sets of descriptions rather than with descriptions. In principle, 
this only changes the possible genetic operators. For example, genomes can 
switch complete chromosomes or they can pair their chromosomes and com
bine these pairs as above. In mutation, one might also consider simply dropping 
chromosomes are change one of the chromosomes with a completely new, arbi
t rary, chromosome. This freedom of choice implies that we simply should take 
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a larger collection of operations with a varying probability of being actually 

chosen. For more information and other possible choices, see [14]. 

As explained at the beginning of this subsection, there are many more search 

algorithms than genetic search. One of the distinct advantages of genetic search, 

however, is its inherent parallelism. All recombinations and all quality evalu

ations can be done in parallel. This promises a considerable speed-up of the 

process. 

5. 2 Databases: Handling massive volumes of data 

Large in Statistics is a different term from large in Databases. In statistics a 

large sample consists of a few thousand records. Large Databases have hun

dreds of thousands if not millions of records. Moreover, the number of possibly 

relevant attributes in Data Mining count easily up to 50 or 60. Using samples 

to cope with these large volumes of data means invariably a loss of resolution 

in our search. It is far easier for a group of 20.000 to stand out significantly in 

a crowd of a million than it is for a group of 20 to stand out significantly in a 

crowd of a thousand. 
However, standard database technology is not the answer to the problem of 

massive amounts of data either. For, the discovery process queries the database 

severely, since: 

1. dbms's are tuned to a variety of uses including transactions, 

2. discovery is in principle a read-only process on the database; having ac

cess, during the search, to the newest data does no improve the quality 

of the information significantly, 

3. during the search, old results can often be reused, 

it is profitable to have a knowledge discovery tool with its own data-server, 

geared specially towards discovery. 
Such a data server is a dbms-kernel tailored for data mining purposes. That 

is, it contains no transaction management functionality nor write protection. 

In fact, one can only store new, derived, data, one cannot update data. 

What it does contain however, are various mechanisms to speed up query 

processing as much as possible. For data mining causes an avalanche of queries 

posed to the database as is witnessed by the description of genetic search. 

First and foremost , the data server is a parallel system, since it has been 

proven that parallel systems can answer bursts of queries far more efficiently 

than mono-processor systems. 
Secondly, it contains a query-optimisation module that optimizes queries 

both statically and dynamically. Static optimisation is rewriting a query into 

the most efficient form given database characteristics. Dynamic optimisation 

means that the query is processed as efficiently as possible given all the other 

queries that are processed concurrently, [41]. 
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Finally, it contains a browsing optimization module. Many queries in a data 
mining search are related. That is, later queries can be executed much more 
efficiently if some previous results are stored temporarily than when they are 
executed against the complete database. The browsing optimization module 
tries to optimize query processing by storing such intermediate results [20]. 

Another aspect of efficient query processing is using the most suited data 
structure. Therefore, the data-server can dynamically adapt its data-layout (in 
main memory) to suit the current search process as much as possible [19]. 

All these techniques are either well-studied in database research or are cur
rently under vigorous investigation 

6 FOUNDATIONS OF DATA MINING: THEORY AND EXPERIMENT 

Data Mining becomes a mature tool for the exploratory data analyst only if 
one can trust the results. In other words, Data Mining should be given sound 
mathematical foundations. These foundations comprise two aspects, viz., the 
quality functions and convergence of the search process. 

The primary goal of Data Mining is the discovery of strategic information. 
In other words, the results will be used to predict the, near, future. The quality 
functions should be chosen in such a way that such extrapolations are, at least 
statistically, valid. 

Given a description lauguage, a quality function, and a database state, we get 
a so called fitness landscape; a multi dimensional graph of the quality functiou 
over the descriptions. The task is to list the descriptions of high quality. 

Most often, the size of the set of descriptions makes an exhaustive search 
over the fitness landscape intractable, as discussed above. Heuristic searches 
are the only viable option. The immediate question is then, of course, how well 
do the results found by heuristic search compare with the, almost hypothetical, 
results of exhaustive search. 

The only way in which a heuristic search can consistently outperform ran
dorn search is by exploiting the shape of the fitness landscape. The shape of 
this landscape is governed by the, perhaps implicit, structure in the set of 
descriptions aud the behaviour of the quality function on this structure. 

In other words, to design good search algorithms one should study the struc
ture of the set of descriptions, e.g., does it form a lattice, is it a topological 
space or even a metrical space? Moreover, one should study the behaviour of 
quality functions on this structure, e.g., are they continuous or monotonic. 

6.1 What Stat istics might offer 

Since we have argued that Statistics should be considered as one of the parents 
of Data Mining, it is only natural to ask what Statistics might offer towards 
the resolution of these two foundational problems. 

For the first problem, the quality function, this is rather obvious. If only 
because of the quality functions defined for Projection Pursuit. More in general , 
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if we want statistically valid results, we should use Statistics to test the validity 

of our results. 
For the second problem, the convergence problem, the situation is less clear. 

There are some results on convergence properties for genetic algorithms in a 

framework of stochastic processes [33, 34]. However, these results apply to the 

case of an infinite population size in continuous space. To make this results 

usefull as foundations for Data Mining, they should he extended to finite pop

ulation sizes in mixed continuous and discrete spaces. 

For a different type of search algorithms, viz. , Neural Networks, there are 

more results. In (10], for example, techniques from Statistical Mechanics are 

used to analyse the behaviour of Neural Networks. Moreover, in [17], the au

thors derive the Information Geometr!J of Boltzmann Machines, a special class 

of Neural Networks, along the lines of (16]. These results still depend on con

tinuous space, but no longer do they depend on an infinite population size. The 

problem with these results, however, is that it far from clear how Neural Nets 

can be used in a search for descriptions. 

6. 2 Data Surveyor: experimental guidance 

The development of the mathematical underpinnings of Data Mining cannot 

be the result of theoretical studies alone. Consider, e.g., the quality functions. 

Although different functions may be more or less mathematically equivalent, 

their usablity in practice might differ considerably. Similar remarks are valid for 

the convergence problem. One can make synthetic databases in which known 

results are hidden. By testing the search strategies on such examples, some 

insight in the convergence process may be gained. 
To get. the experimental guidance for the theoretical development, a data 

mine tool called Data Surveyor is currently under development at CWI, (13]. 

Currently, it has a two-level architecture consisting of a data server on top of 

which the Surveyor kernel is executed. In the near future, it will he extended 

to a three level architecture. 
The bottom layer will still consist of the data server. The middle layer will 

consist of a set of different search modules. The top layer will be the user

interface with which the user can formulate data mining tasks and guide the 

search task. The rationale for have several different search modules is twofold. 

First, it is very well posible that different algorithms perform better for different 

data mining problems. Second, hy using different search algorithms on the same 

real world database states more insight in the convergence properties of the 

various algorithms can he gained. 
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We consider two problems on generalized Bernoulli polynomials Bf.(z). One 
is connected with defining functions instead of polynomials by making the 
degree n of the polynomial a complex variable. In the second problem we 
are concerned with the asymptotic behaviour of Bf. ( z ) when the degree n 
tends to infinity. 

1. INTRODUCTION 

At present Bernoulli numbers are introduced through generating functions, as 
we shall do below, but historically they arose in connection with the sums of 
the p-th power of the first n - 1 integers 1 + 2P + · · · (n - l)P. The Greeks, 
Hindus and Arabs all had rules amounting to 

n - 1 

I> = !n(n - 1) = !n2 - !n, 
i=l 

n - 1 

~ i2 - ln3 - ln2 + ln 
L.., - 3 2 6 ' 
i = l 

n - 1 

~ i3 = ln4 - ln3 + ln2 
L.., 4 2 4' 
i = l 

n - 1 

~ i4 = ln5 - ln4 + !n3 - ..l..n L.., 5 2 3 30 . 
i=l 

Nowadays we write for p = 0, 1, 2, ... , n = 1, 2, 3, ... (putting o0 = 1) 

n - 1 p ( ) ~ ·p - _ 1_ ~ p + 1 B v+1 - k 
L.., i - + 1 L.., k kn , 
i=O p k = O 
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where the coefficient of the linear term n equals the p- th Bernoulli number. 
In this way the numbers were mentioned (without using their present 

names and notation) by Jakob I. Bernoulli in his posthumous Ars conjectandi 
of 1713. In fact he gave the above general formula, observing that the num
bers also occur in the coefficients of the other powers of n. See the Latin text 
and table of Bernoulli's first ten summae potestatum from his Collected Works. 
Bernoulli actually made a mistake in the coefficient of n2 in the ninth row, 
which he gave as - ~, but which should read- 2

3
0 • Euler also tackled the prob

lem of summing powers and in 1755 he published a proof of the Bernoulli forms 
based on the calculus of finite differences, christening the coefficients of n the 
Bernoulli numbers in honour of Jakob. 

Next we give some general definitions through generating functions. The 
generalized Bernoulli polynomials Bf: ( z) are defined for all complex numbers 
z and µ by the expansion 

~ B''( z)tn = ezt (- t-)''' ltl < 27T. 
L.,, n n! et - 1 
n=O 

(1.1) 

An immediate consequence of this definition is the representation of the gen
eralized Bernoulli polynomials as a Cauchy type integral: 

B'' ( ) _ n! { zt ( t ) µ dt 
n z - 27Ti Jc e et - 1 tn+I' (1.2) 

where the contour C is a circle with radius less than 27T around the origin. 
There are several reductions for this general definition. 

- When µ = 1 we have the Bernoulli polynomials B n ( z ). 
- When z = 0 we have the generalized Bernoulli numbers B:: . 
- When µ = 1 and z = 0, we have the classical Bernoulli numbers B n. 

The quantities B::( z ) are polynomials of degree n in bothµ and z ; µis called the 
order. The classical numbers Bn occur in practically every field of mathemat
ics, in particular in combinatorial theory, finite difference calculus, numerical 
analysis, analytical number theory, and probability theory. For the polynomials 
the same remarks apply, although in several occurrences the polynomials give 
just a convenient method of notation instead of giving insight or possibilities 
to further manipulate analytical expressions. 

In this paper we consider two problems on the generalized Bernoulli poly
nomials B:: (z). One is connected with defining functions Bv(z) where 11 is a 
complex variable. We derive a functional equation that generalizes the well
known property B n( l - z) = (- 1)" Bn(z ), and that gives information how th 
interpret Bv(x) when x < 0. In the second problem we are concerned with 
the asymptotic behaviour of B::( z) when the degree n tends to infinity. We 
consider this problem in connection with our earlier results for Stirling num
bers and discuss some other results from the literature. Finally we give new 
asymptotic representations. 
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Atque si porro ad altiores gradatim potestates pergere, levique negotio sequentem 
adornare laterculum licet: 

Summ<e Potestatum. 

}
. 1 1 
n =-ynn+ 2 n. 

J nn = -}-na ++nn ++n. 

J na = _..!:.._n4 1 1 + - na + 4 nn. 
4 2 

J n4 = _..!:.._ ns 1 1 * 1 +-n4 + - na - 30 n. 5 2 3 

J ns 
1 1 5 1 

= 5n& +- ns + - n4 * - 12 nn. 2 12 

Jn& = _..!:.._n1 1 1 * - _..!:_ na * + 1 + - n& +-ns 42n. 7 2 2 6 

J n7 = _..!:.._ ns 1 7 * - _!__ n4 * + 1 + - n7 + - ne rrnn. 8 2 12 24 

J ns = _!__ ng 1 2 * - _!__ ns •+~na * 1 +- ne +3 n1 - 30n. 9 2 15 9 

1 1 3 J n9 * _ _!_no * + _..!:.._ n4 * 1 = - n10 + - n9 +4ne - 12 nn. 10 2 10 2 r 1 1 5 *- n7 •+ ns * _ _!__ na . 5 nio =-nu + - n10 + - n9 1 1 * + 66n. • 11 2 6 2 

Quin imo qui legem progressionis inibi attentuis inspexerit, eundem etiam continuare 
poterit absque his ratiociniorum ambabibus: Sum ta enim c pro potestatis cujuslibet 
exponente, fit summa omnium n• seu 

r 1 1 c c·c - l·c - ? 
n • = -- n•+l + - n• + - A n•-1 + - B n•-3 

. c+ l 2 2 2·3·4 

c·c - l·c - 2·c - 3·c - 4 
-t- Cn•-5 

2·3·4·5·6 

c ·c-l· c -2·c-3·c-4·c - 5·c - 6D 7 • • + 2 . 3 . 4 . 5 . 6 • 7 . 8 n•- ... & ita demceps, 

exponentem potestatis ipsius n continue minuendo binario, quousque perveniatur ad n 
vel n n. Litene capitales A, B, C, D &c. ordine denotant coefficientes ultimorum ter
minorum pro Jn n, J n4, J ne, J ns &c. 
nempe 

1 1 1 1 
A = 6 • B = - 30 ' C = 42 ' D = - 30. 
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2. BERNOULLI FUNCTIONS 
We consider the problem of generalizing B 11 ( z ) by making n a complex variable. 

A motivation for this is given by the wish to generalize a fundamental difference 

relation of the Bernoulli numbers: 

Bn(Z + 1) = Bn(z ) + nz" - 1
, n = 0, 1, 2, ... , (2.1) 

to a relation that also holds when n is replaced by a complex parameter v. A 

further step then is t.o interpret such a generalization for negative values of z . 

When we now how to interpret another fundamental property: 

B 11 ( 1 - z) = ( - 1 )" Bn ( z) (2.2) 

when n is complex and z is negative the problem can completely be solved. 

A second motivation comes from the recent set of papers [4]- [7] by BUTZ ER 

et al. in which Bernoulli numbers and polynomials (and related quantities) 

are generalized. It seems that Butzer et al. have overlooked several rather 

old papers (for instance JONQUIERE (1891) and BOHMER (1910)), in which 

generalizations of Bernoulli polynomials are considered. Part of our analysis is 

based on these two classical papers. 
The difference relation (2.1) is the heart. of difference calculus, the branch 

of mathematics that became so important in solving problems from numerical 

analysis, in particular in solving differential equations. Further information 

on classical difference calculus can be found in JORDAN (1947), NORLUND 

(1924); and MILNE-THOMSON (1933). 
One of the striking occurrences of Bernoulli numbers in special functions 

is the relation 

((2m) = ~ ( - l)m+l (27r )2"' ~:!, m = 1, 2, 3, ... , (2.3) 

where ((s) = I:~ 1 , the Riemann zeta function. This relation was given by 

Euler (1735/1739), and Ramanujan used it to define signless Bernoulli numbers 

of arbitrary index s by writing 

(2.4) 

(see BERNDT (1985, pp. 125f, 151£)), 'signless' meaning that 

B;"' = (- l)m+I B 2m > 0, m = 1, 2, 3 ... . 

In fact, as Berndt (loc. dt. p. 125) remarks, already Euler made a very 

first attempt to introduce (signless} Bernoulli numbers of arbitrary index as 

above. Apparently, he made no significant use of his idea. The relation (2.3) 

gave hope to many mathematicians that it would be possible to find values of 

((2m + 1), and the numbers B.: defined in (2.4) might be a convenient starting 
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point for this when relevant new properties of B; could be found. Until now 
this approach to identify ((2m + 1) in terms of simple quantities has not been 
successful. 

In this section we consider a different way of generalizing, by taking another 
explicit representation. When we generalize this by taking n complex we write 
(1.2) in the form 

Bµ.( ) = r(v+ 1) [ zt (-t-)µ. _!!!__ 
" z 27ri Jc e et - 1 t11+1 , 

(2.5) 

where lRz > 0. Because of the algebraic singularity of t 11+I at the origin we 
assume now that the contour of integration C runs from - oo, arg t = - 7r, 
encircles the origin in positive direction (that is, anti-clockwise) terminates at 
-oo, now with argt = +7r. We assume that all zeros of et - 1 (except t = 0) 
are not enclosed by the contour, and, initially, that the many-valued function 
t" is real for real values of v and t > 0. 

2.1. Bernoulli functions B.,(z ) in tlle complex plane. 
In this subsection we first consider the analytic continuation of B 11 (z) up to 
the negative z-axis. Originally the branch cut of the many-valued function 
t" in (2.5) runs from 0 to - oo. However, this choice is by convention. When 
arg z 2: 0, we may turn the loop C in clockwise direction into the upper half 
plane. In this way we redefine the location of the branch cut in the t - plane. 
Turning around a positive angel b, we have at one side of the cut arg t = 7r + b, 
and on the other side argt = - 7r +b. When we take b E [O, !7r), the integral 
remains convergent when we allow arg z ranging in the interval [O, 7r). A similar 
method can be used for z in the lower half plane. This gives the analytic 
continuation of B 11 (z) defined in (2.5) to the sector I arg z l < 7r, for any complex 
value of v. 

By using (2.5) it follows easily that the basic difference property (2.1) of 
the Bernoulli polynomials remains valid for the Bernoulli functions: 

B 11 (z + 1) = B 11 (z ) + vz 11
-

1, v E <C, I arg z l < 7r. (2.6) 

Also the derivative property 

d 
dz B.,( z ) = vB.,- 1(z), vE<C, larg z l < 7r (2.7) 

is easily verified by using (2.1). Observe that the analytic-continuation of B.,( z) 
from the half plane lRz > 0 into the left half of the complex plane also follows 
from (2.6). Also in this way we cannot reach the negative z - a.xis. 

Next we want to verify how relation (2.2) transforms when n becomes 
a complex parameter. This will give a quite non-trivial property. To obtain 
information on B.,(1 -z) we replace z with - z in (2.6). To take into account the 
many-valuedness of the function z" and the condition I arg zl < 7r, we change 
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in (2.6) z into ze- i" when z is in the upper half plane ~z > 0 and change z 
into ze+;,, when z is in the lower half plane. The result is when SSz > 0: 

Bv(I - z ) = Bv(-z) - ve- i"vzv- l. 

Combining this with (2.6) and eliminating zv- l we obtain the relation 

ei"v Bv(I - z ) - Bv(z ) = ei"v Bv(-z ) - Bv(I + z), SSz > 0, 

which says that the left-hand side is a periodic function of z with period 1. In 
other words, 

Bv(z) = ei"v Bv(I - z ) + wt(z), SSz > 0, (2.8) 

where wt(z) is a I- periodic function in the upper half plane. In a similar way 
we obtain 

Bv(z ) = e- i1rv Bv(I - z ) + w; (z ), SSz < 0, (2.9) 

where w; ( z) is a I- periodic function in the lower half plane. 
The functions w;;=( z ) can be obtained as follows. Consider (2.5) withµ = I 

and <Jz > 0. As we did for the analytic continuation we can turn the path of 
integration C into the upper half plane, even across the poles at tk = 27rik, k = 

I, 2, 3, ... , and pick up the residues. Summing the residues, which can be done 
when ~z > 0, and taking into account the value of the phases oft at both sides 
of the cut when both branches of C pass the poles, we obtain 

[ ] 

00 e21rikz r(v + I) 1 e z t 
B (z ) = r(v +I) e ~ 1rVi - e- ! 1rvi .L: --- + dt 

v k = l (27rk)v 27ri c (et - I)tv ' 

(2.10) 
where C runs around the cut, which now occurs in the first quadrant. of the 
t - plane. When ~7r < arg z ~ 7r we can take the cut along the positive t - axis. 
At the upper part of the cut we have arg t = - 27r, at the lower side arg t = 0. 
The contour starts at +oo (at the upper side of the cut) and encircles the origin 
in positive direction. 

In this position of the contour we introduce a new variable of integration 
by writing t = ve- i" . By using the relation 

e-V - I e" - I 

and interpreting the new integral in terms of Bv(I - z ), we obtain the functional 
equation (2.8) with 

00 27rik z 
+( ) 2· · i ,..,,; r( I)'"' e w,, z = ism 7rV e 2 v + L_;,,, (27rk )v. 

k = l 

(2.11 ) 

This relation holds for all values of z in the upper half plane, since all three 
terms in (2.8) are analytic functions with respect to z in this domain; v may 
be any complex number. 
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Repeating the procedure for values of z in the lower half plane, we obtain 
(2.9) with 

1 . ~ e - 21rikz 
w-;; (z) = - 2i sin 7rV e- 2.,,.v'r(v + 1) ~ (

2
7rk)v , 

k= l 

(2.12) 

a result as in (2.11), with all quantities i replaced by - i. 
We can now define the Bernoulli function Bv(x) for x < 0. This will 

depend on the way we approach the negative z-axis: from above or from 
below. Taking the average of the two values obtained so, we define 

B *( ) ·- 1. Bv(x + iy) + Bv(x - iy) 
v x .- 1m 

2 
, x < 0. 

y-+O 
(2.13) 

It easily follows that we have 

~ sin(27rkx - !v7r) 
B~(-x) = cos7rvBv(x + 1) + 2r(v + 1) sin 7rv ~ (27rk)v 2 

, (2.14) 

where x > 0, ~v > 1, the latter condition being needed to guarantee the 
convergence of the infinite series. Again, the series is a I - periodic function 
on the real line. The function Bi(x) satisfies the following difference property 
(compare this with (2.1)): 

{ 

vxv- 1 
Bv(x + 1) - Bv(x) = ' 

- vlxlv- l cos 7rV, 

if x ~ O; 
(2.15) 

if x < 0, ~v > 1. 

The series in (2.14) is closely connected with the familiar Fourier series for the 
Bernoulli polynomials: 

( ) 
_ _ 

1 
~ cos(27rkx - ~n7r) 

B 11 x - 2n. ~ (27rk)11 , 

k= l 

n = 1,2,3, ... ,x E [0,1). 
In BUTZER et al. (1992) a quite different approach and result is given 

for defining the value of Bv(z) for negative values of z. Our approach, which 
leads to (2.14) and (2.15), is based on the crucial functional relations in (2.8) 
and (2.9), with (2.11) and (2.12). These relations are not available in the cited 
reference, and there the difference property (2.15) contains for x < 0 the factor 
cos 7rV - sin 7rV instead of only cos 7rV. In our approach the relation for x < 0 
links up nicely with the original difference relation in (2.1), because in order to 
replace (- 1)11 we just take the average of e±i.,,.v. 

2.2. Series in powers of z 
We conclude by giving the Maclaurin series (in powers of z) and an asymptotic 
expansions (in negative powers of z) of Bv(z ). These expansions have received 
little or no attention in the literature. 
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The well-known property 

(2.16) 

holds for the Bernoulli functions in the form of an asymptotic expansion: 

(2.17) 

in the sector I arg zl < 1r. This follows by taking in (2.5) µ = 1 and expanding 

Interchanging the order of summation and integration, applying Watson 's Lem

ma for loop integrals (see OLVER (1974)), and using Hankel's contour integral 

for the reciprocal gamma function 

1 1 { t -z d 
r(z) = 27ri le e t t 

(where C is the same as in (2.5)) , we obtain (2.17). 
It follows that, when Rv < 0, 

B., (z) -+ 0, as z -+ oo 

in the sector I arg zi < 7r. An application of this yields an interesting relat ion 

with t he generalized zeta function , which is defined by 

00 

(( s, t ) = ~)n + t )-·', Rs > 1, t =/=- 0, - 1, - 2, . . . , (2.18) 
n =O 

and which reduces to the familiar Riemann zetta function when t = 1: ((s) = 

((s , 1). Observe that repeated application of (2.6) gives 

m - 1 

B,,(z + m) = B.,(z ) + v L (z + k)"'- 1
. (2.19) 

k=O 

When m tends to infinity and Rv < 0 the left-hand side vanishes. It follows 

t hat 
B .,(z ) = - v(( l - v, z ), z =/=- 0, - 1, - 2, . . .. (2.20) 

By using analytic cont inuation it follows that this relat ion holds for all complex 

values of v . The function ((s, t ) has a pole at s = 1, wit h residue 1. Hence, 

the right-hand side of (2.20) is well defined as I/-+ 0. 
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From the expansion 

1 00 (1 - t)k 
((s,t) = r(s){;r(s+k)((s+k) kl , lt - 11 < 1, 

which easily follows by expanding in (2.18) 

[ 
t 1 ]-s 

(n + t) - s = (n + 1)- s 1 + n + 
1 

in powers of (t - 1), and using (2.1), we obtain 

v - 1 1 ~ ) ( ) (-z)k I I Bv(z ) =-vz +r(-v)~r(k+l - v(k+l - v~, z < l. 

This expansion reduces to the finite (polynomial) representation (2.16) when 
we take the limit v---+ n (integer). 

Both expansions (2.17) and (2.16) are contained in one integral: 

1 1 -Bv(z+ l) = ( ) . ((1 - v - w)r(w)r(l - v - w)z wdw, r - v 27ri .c 
(2.21) 

where ~v < - 1 and £ is a vertical in the strip 0 < ~w < - v. This integral 
follows from the Mellin transform of ((s, t + 1) with respect tot , which reads: 

100 

((s, t + l)tw- l dt = ((s - w)B(w, s - w ), O~w < ~s - 1, 

where we have used the Beta integral 

Upon inverting the Mellin transform we obtain (2.21). 
The expansions (2.17) and (2.16) follow from (2.21) by shifting the contour 

£to the left, across the poles of the gamma function r(w), and picking up t he 
residues to obtain the Maclaurin expansion (2.16), and shifting to the right 
across the pole of ((1 - v - w at w = - v and the poles of r(l - v - w) at 
w = k - v + 1, k = 0, 1, 2, ... , to obtain the asymptotic expansion (2.17). 

3. ASYMPTOTICS OF Bf; 
Our current interest in the asymptotic behaviour of the generalized Bernoulli 
numbers Bf; stems from our earlier research on Stirling numbers, as published 
recently in TEMME (1993). Indeed, the quantities Bf; are related with Stirling 
numbers. First we explain this relationship. 
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The Stirling numbers of the first and second kind, respectively denoted by 

s~m) and s~m) ' are usually defined through the finite generating functions 

n 

x(x - l)···(x - n+l) = L:s~m)xm, (3.1 ) 
m = O 

n 

xn = L: s~m> x<x - 1) . . . <x - m + 1), (3.2) 
m = O 

where we give the left-hand side of (3.1) the value 1 if n = 0. Similarly, the 
factors on the right-hand side of (3.2) have the value 1 if m = 0. This gives 
the 'boundary values' 

S~n) = S~n) = 1, n 2: 0, and S~O) = S~O) = 0, n 2: 1. 

Furthermore it is convenient to agree on S~m) = S~m) = 0 if m > n. 
Several other generating functions are available for Stirling numbers. We 

have 
(ln(x + l)]m oo n 

= L:s(m)~ (3.3) 
m! n I ' n. 

n = m 

(ex -1r oo n 
= L:s(m)~ (3.4) 

m! n 1 • n. 
n = m 

These two equations give the link with the generating functions of the gener
alized Bernoulli numbers given in (1.1). The relations are 

5 (m ) = ( n - 1) Bn 
n m - l n- m> 

s (m) = (n) B - m n m n- m· (3.5) 

To explain this for the numbers of the first kind, we write 

s<m) = _1_ n! r (ln(z + l)]m dz 
n 27ri m! Jc z n+l ' 

where C is a small circle around z = 0. Substituting z = e"' - 1 and integrating 
by parts gives an integral that is similar to (1.2). For the Stirling numbers of 
the second kind the relation with the numbers Bf; is quite straightforward. 

When we consider the asymptotic problem for Bt we take v as the large 
parameter. The parameter µ may have any complex value in the definition 
of Bt, and the asymptotic behaviour of this number strongly depends on the 
value ofµ. In our paper TEMME (1993) we have derived new asymptotic 
approximations of the Stirling numbers of both kinds, which hold when n is 
large and which are uniformly valid for m E (0, n]. Although the Stirling 
numbers are defined for integer values of n, m , the results and methods can 
be interpreted for continuous variables. Considering the relations in (3.5), we 
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Figure 1. Parameter domains (shaded) for which the uni
form asymptotic expansions of the Stirling numbers can be 
used to obtain a first order approximation for Bf;; upper 
area via the Stirling numbers of the first kind, lower part 
via the Stirling numbers of the second kind. 

observe that the uniform asymptotic results of the Stirling numbers numbers 
can be used for the generalized Bernoulli numbers Bf; in the shaded areas of the 
(v, µ) - plane, given in Figure 1. Here v0 , µ0 are large numbers, v0 indicating the 
large v- domain [v0 , oo) for which the uniform approximations of the Stirling 
numbers can be used for the generalized Bernoulli numbers Bf;. 

In §3.1 and §3.2 we concentrate on the asymptotic behaviour of Bf; for 
(v, µ) in the non-shaded area in the upper right half plane, that is, v large 
and 0 :S µ :S v. In fact our goal is to obtain a uniform approximation in this 
domain, as we obtained for the Stirling numbers in the shaded areas. However, 
the situation here is quite different from the Stirling case, as will be explained 
in §3.2. In §3.3 we consider a problem for B v(z) in which z is large and v acts 
as a uniformity parameter on the real axis. First we summarize existing results 
from the literature. 

3.1. Norlmid 's results. 
In NORLUND ( 1961) results are given for a parameter domain that corresponds 
to the neighbourhood of the diagonal v = µ. In fact, Norlund considered the 
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polynomials B~+p+I (z), where p and z are fixed complex numbers (fixed means 

independent of v). His result is 

B~+p+l(z),..., (- It (Inv)" [~ (p) (-l)s As(z) + 0 ((lnv) - n)], (3.6) 
v! v z L...J s (Inv) .. 

.<=O 

as v -+ oo. The coefficients A.. (z) are derivatives of the reciprocal gamma 

function: 
d8 1 

As(z ) = dz" f(l - z ) 

The asymptotic expansion (3.6) shows inverse powers of ln v, giving a rather 

slow asymptotic convergence for computations, unless v is very large. When 

z = 0, this is in fact the case S~':+.~~ 1 of Stirling numbers of the first kind, 

the coefficients A.,(z) reduce to the coefficients of the Maclaurin expansion 

of 1/r(l - z ), which easily follow from those of 1/f(z) (see, for instance, 

ABRAMOWITZ AND STEGUN (1964, page 256)). 
When p = 0, 1, 2, ... , the series in (3.6) reduces to a finite number of terms 

(because the binomial coefficient vanishes when s > p). In particular, when 

p = 0, we have the simple case B~+l(z ) = (z - l)(z - 2) · · · (z - v). That is, 

B~+1 (z)_(- l)'' f(v+l - z) ,...,~ B~-z (-1)" 

v! - f(l -z)f(v+l) ~n!f(l -z -n) v z+n' 

which is a well-known result for the ratio of two gamma functions. 

We observe that this expansion is in negative powers of v, because in (3.6) 

the expansion containing inverse powers of ln v completely vanishes. What 

remains was hidden in the 0 -symbol of (3.6) and shows up when p = 0 (quan

tities that are asymptotically negligible with respect to all negative powers of 

lnv occurring in the series and the 0 - term in (3.6)). This is a nice example in 

which 'exponentially small terms' become important when a parameter changes 

a critical value (in this case: when p = 0). 
For fixed values ofµ Norlund gives the expansion 

Bt(z) = v1, _ 1 2cos7r(2z+ µ - ~v) [l+O(v- l)]. 
v ! r(µ)(27r)" 

3.2. Saddle point metlwds for B!: . 
We now discuss asymptotic properties of the generalized Bernoulli numbers B!: 

in connection with our previous results for the Stirling numbers. Consider (1.2) 

with z = 0 and v f. µ, and integrate by parts. It follows that 

1, _ µ f(v + 1) l ti• - "e1
· 

B , --- . dt. 
I µ - I/ 271"1. • C (et - l)Jl+I 
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This integral has better convergence properties when we deform the contour C 
into a path that extends to - oo. We write 

{3.7) 

where 
<f>(t) = (µ - v) lnt - µIn (et - 1). 

In the saddle point method one tries to deform the contour C through one or 
more saddle points of the integrand. To calculate the saddle points we have to 
solve the equation ft<P(t) = 0, which is equivalent to solving 

1 - t 't \ = _ µ _ _ - e =A 1 A 
µ - v 

(3.8) 

The solution t = 0 is not of interest, because the contour C is not allowed to 
pass through the origin. To keep the discussion surveyable we assume that v 
is large and positive, and that µ is a real parameter. 

We can distinguish three µ - domains of interest, which correspond with 
the three domains indicated in Figure 1. 
(i) µ < 0::::} 0 < ,\ < 1; in this case (3.7) has a real positive solution; 

(ii) 0 < µ < v =? ,\ < O; in this case (3.7) has no real solutions; 
(iii) µ > v ::::} ,\ > 1; in this case (3.7) has a real negative solution. 
We conclude that in the two shaded areas of Figure 1 (both 'Stirling cases' ) 
there is a real saddle point, and that in the area that has to be done there is no 
real saddle point. It will turn out that in the latter case, that is, when ,\ < 0, 
equation (3.8) has complex solutions, which occur in complex conjugated pairs, 
and one pair can be used for the saddle point method. 

Equation (3.8) is equivalent to the equation 

wew = x, where w = t - ±, x = - ±e-± 

When ,\ ranges through the interval (- oo, 0) the quantity x ranges through 
the interval (0, +oo). The trivial solutions w = -± is not of interest. The 
equation wew = x has received quite some attention in the literature. MAPLE, 

the package for symbolic computations, has the solution w(x) as a standard 
function. To give more insight on the location of the complex solutions of this 
equation, we give a few steps in solving the equation for real positive x . 

We write w = u +iv, with u , v real, and see that the equation wew = x is 
equivalent to 

v = - xe-u sin v , u = -v cot v. 

For positive values of x solutions occur in the v- intervals 

(7r, 27r), (37r, 47r), ... 
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and in similar negative v- intervals. When x is small, that is, - .X is a large 
positive number, a conjugate pair of saddle points t± has imaginary parts near 
±7r and the real parts satisfy Rt± "" - ln( - .X). Because of the convergence of 
the integral in (3.9) at t = ± oo, the contour C can be deformed into two separate 
conjugate paths c±, c- running from -oo to +oo with "St E (- 7r, - 27r) , and 
c+ from + oo to -oo with "St E (7r,27r), such that c± run through the saddle 
points t±. Locally at t = t± we can approximate </>(t) up to the quadratic term 
of its Maclaurin expansion, and we obtain the asymptotic result 

B I' rv ,Xf(v + 1) "'""' e<f>( t *) 1 !ef>" (t* }( t - t*)2 d 
., 

2 
. L.., , ± e t. 

7rZ At C± 
(+, - ) 

That is, 

B''"" r(v + 1) [ eef>(t - ) - e<f>(t+) l 
" ./2iii t - J - </>"(t - ) t+J- </>"(t+) . 

(3.10) 

We have for the second derivative of </>: 

II µ - V µet 
</> (t) = - f:l +(et - 1)2 

Evaluating this at the saddle points, using 1 - .Xt± = e- 1* , see (3.11), we have 

These quantities have negative real parts when - .X is a large positive number. 
The first approximation given in (3.10) can be supplied with more t erms by 

using standard techniques of the saddle point method, but we omit the details 
here. Also, it is possible to repeat the analysis for the generalized Bernoulli 
polynomials B~ (z ) , and to compare the results with Norlund's results. All 
this is outside the scope of the present paper, because the elaborations are 

rather technical and complicated. Moreover, further investigations are needed 
to determine the range of the parameters for which the expansion holds. We 
expect that (3.10) will be uniformly valid for .X = µ / (µ - v) belonging to 
compact sets of the interval (-oo, 0), and v -+ + oo. When indeed this is true, 
we can fill a large part of the unshaded area in the first quadrant of Figure 1. 

3.3. Uniform asymptotics for large values of z 
We return to B.,(z ) and consider the problem of obtaining an expansion for 
large values of z and v. When v is fixed the expansion in (2.17) is applicable. 
In this subsection we give two expansions, one holding uniformly with respect 
to v E [O, oo ), and a similar expansion holding uniformly with respect to v E 

(-oo,O]. The approach is based on earlier work discussed in TEMME (1983). 
The asymptotic problem in that paper is to obtain an expansion of the 

integral 
1 { co 

F>.( z ) = r(.X) Jo t>. - Ic- z t f(t) dt, z ,.X > 0, (3.12) 
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that holds uniformly with respect to A E [O, oo ). Laplace integrals can be 
expanded by invoking Watson's Lemma {see OLVER {1974) or WONG {1989)): 
expand f at the origin and interchange summation and integration. That is, 

00 

f(t) = LCntn 
n=O 

~ r(A + n) - n- .x 
F.x(z) '"'"'~en r(A) z 

as z---+ oo, A fixed. When A is not fixed (say, A is depending on z) this becomes 
invalid. It is better to expand at t = "' := A/ z, the saddle point of the dominant 
part t.\e- zt of the integrand. We have 

00 00 

n=O n=O 

where 

{3.14) 

That is, 

It is quite easy to obtain the recursion: 

and the estimate 
{3.15) 

This expansion is, under mild conditions on a,, ("'), that is, on f, uniformly 
valid with respect to A E [O, oo). For instance, when f(t) = l/{t + 1), the 
coefficients a,, ( "') are given by 

(3.16) 

and we see from (3.15) that, in this case, the terms an("') Pn(A) z - 11 in the 
expansion of F.x(z) given in (3.13) do not lose their asymptotic character when A 
runs through the domain [O, oo). This is not a proof of the asymptotic nature 
of the expansion. but an indication that the expansion has some robustness 
with respect to large values of A. For a proof we refer to TEMME (1983). 

We can apply this method by writing B.,(z) in the form (3.12). This is 
possible when v is negative. We observe that in that case we can integrate in 
(2.5) along both sides of the negative real axis (using different phases ±rri of 
t), and obtain 

B.,(z ) = -- c"- 1e-z 1f(t)dt, 1 1.00 

r(- v) o 
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f(t) = 1 - t - e 

(3.17) 



We define "' = - v/z and expand f at t = "' as in (3.13). In this case the 

expansion has a different asymptotic character than in the example with f (t) = 

l/(t + 1). To explain this, we have in the latter case the lucky situation that 

{an} constitute an asymptotic scale as "' -> oo. That is, 

In fact, when this is the case, the expansion in of F>.( z) in (3.13) has a double 

asymptotic property: it is also valid when A -> oo, uniformly with respect to 

z E [z0 ,oo), where z0 is a fixed positive number. 

Let us now consider f defined in (3.17) for the case of the Bernoulli func

tions. We have, as t -> oo, 

f(t) = t (1 + e- t + e- 2t + ... ) 

and 
J'(t) = 1+0 (te - 1

), /(n)(t) = 0 (te - t) , n = 2,3,4, . 

Hence, for n 2: 2, the coefficients an(K) are asymptotically small. The only 

snag is that the coefficients do not constitute an asymptotic scale. 

We conclude with giving a similar expansion for positive values of v. The 

starting point is the contour integral (2.5) 

with 

B ( ) = r(v + 1) 1 ztf( )~ d ., z 2 
. e t +i t , 

rri c t" 

t 
f(t) = - 1-1· e -

Again, there is a saddle point at t = "' := v / z and we obtain 

00 00 

J(t) = L bn(li) (t - K)" :::} B.,( z )"' z-" L bn(li) Qn(v) Z- n, (3.18) 

n=O n=O 

where 

Q ( ) =r(A+l)l zt( - )n~d 
n v 

2 
. e t Ii +l t. 

rri c t" 

It is easily verified that 

Qn(v) = (-1)" Pn(- v), n = 0, 1, 2, ... , 

where the polynomials Pn are given in (3.14), and that 

That's why I call the expansions in (3.13) and (3.18) quite similar. Also, the 

expansion for B.,( z ) for positive values of v has the same asymptotic nature 
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as the one for negative values of v given in (3.13). When n ~ 2 the coeffi
cients bn(K) are exponentially small when K is large, and do not constitute an 
asymptotic scale. 
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This paper is a prepublication of the first section of an introductory survey on 
realizability, for the Handbook of Proof Theory, edited by S.Buss, to appear 
with North-Holland Publ. Co. S. Buss, U. Kohlenbach, H. Luckhardt, J.R. 
Moschovakis and J. van Oosten have commented on earlier drafts of this 
paper. 

1 INTRODUCTION 

1.1. The realizability interpretation of intuitionistic arithmetic was first in
troduced by S.C.Kleene (1945). It has turned out to be an extremely fruitful 
interpretat ion, widely applicable to axiomatic systems bases on constructive 
logic, and yielding interesting results such as the consistency of Church's thesis 
with intuitionistic formalisms. Nowadays there is not just a single notion of 
realizability, but a whole family of notions, which of course resemble each other 
in certain respects. 

Here we present a streamlined development of the formalized version of 
Kleene's original notion. We presuppose some (not much) familiarity with 
intuitionistic first-order predicate logic, classical Peano arithmetic, as well as 
elementary recursion theory; for the rest the paper is self-contained. 

For the history of the topic, see (Troelstra 1973, Dragalin 1988). 

1. 2. Realizability by numbers introduced by Kleene as a semantics for in
tuitionistic arithmetic, by defining for arithmetical sentences A a notion "the 
number ll realizes A", intended to capture some essential aspects of the intu
itionistic meaning of A. Here ll is not a term of the arithmetical formalism , 
but an element of the natural numbers IN. The definition is by induction on 
the complexity of A: 

• ll realizes t = s iff t = s holds; 

• ll realizes A /\ B iff Poll realizes A and p 1ll realizes B; 
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• ll realizes AV B iff Poll = 0 and p 1ll realizes A or Poll = 1 and Pill 
realizes B; 

• ll realizes A ---+ B iff for all m realizing A, ll•ID is defined and realizes B; 

• ll realizes -.A if for no m, m realizes A; 

• ll realizes 3y A iff Pill realizes A[y/poll] . 

• n realizes Vy A iff ll•ID is defined and realizes A[y/m] , for all m. 

Here p 1 and Po are the inverses of some standard primitive recursive pairing 
function p coding JN2 onto JN, and m is the standard term smo (numeral) 
in the language of intuitionistic arithmetic corresponding to m ; • is partial 
recursive function application, i.e. D•ID is the result of applying the function 
with code n to m. (Later on we also use m, n, ... for numerals.) The definition 
may be extended to formulas with free variables by stipulating that n realizes 
A if n realizes the universal closure of A. 

Reading "there is a number realizing A" as "A is constructively true", we 
see that a realizing number provides witnesses for the constructive truth of 
existential quantifiers and disjunctions, and in implications carries this type of 
information from premise to conclusion by means of partial recursive opera
tors. In short, realizing numbers "hereditarily" encode information about the 
realization of existential quantifiers and disjunctions. 

1.3. Realizability, as an interpretation of "constructively true" is reminiscent 
of the well-known Brouwer-Heyting-Kolmogorov explanation (BHK for short) 
of the intuitionistic meaning of the logical connectives. BHK explains "p proves 
A" for compound A in terms of the provability of the components of A . For 
prime formulas the notion of proof is supposed to be given. Examples of the 
clauses of BHK are: 

• p proves A ---+ B iff p is a construction transforming any proof c of A into 
a proof p(c) of B; 

• p proves A/\ B iff p = (po, pi) and Po proves A, PI proves B; 

• p proves AV B iff p = (po,p1 ) with Po E {O, l}, and Pt proves A if Po = 0, 

PI proves B if Po =f. 0. 

Realizability corresponds to BHK if (a) we concentrate on (numerical) infor
mation concerning the realizations of existential quantifiers and the choices for 
disjunctions, and (b) the constructions considered for V, ---+ are assumed to he 
encoded by (partial) recursive operations. 
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1.4. Realizability gives a classically meaningful definition of intuitionistic 
truth; the set of realizable statements is closed under deduction and must be 
consistent, since 1= 0 cannot be realizable. It is to be noted that decidedly 
non-classical principles are realizable, for example 

-.\lx[3yTxxy V 'v'y•Txxy] 

is easily seen to be realizable. (T is Kleene's T-predicate, which is assumed to 
be available in our language; Txyz is primitive recursive in x, y , z and expresses 
that the algorithm with codex applied to argument y yields a computation with 
code z; U is a primitive recursive function extracting from a computation code 
z the result U z .) For -.A is realizable iff no number realizes A, and realizability 
of'v'x[3yTxxyV'v'y-.Txxy] requires a total recursive function deciding 3yTxxy, 
which does not exist (more about this below). In this way realizability shows 
how in constructive mathematics principles may be incorporated which cause it 
to diverge from the corresponding classical theory, instead of just being included 
in the classical theory. 

1.5. Some notational habits adopted in this paper are: dropping of distin
guishing sub- and superscripts where the context permits; saving on parenthe
ses, e.g. for a binary predicate R applied to x, y we often write Rxy instead of 
R (x, y) (this habit has just been demonstrated above). The symbol = is used 
for literal identity of expressions modulo renaming of bound variables. => is 
used as metamathematical consequence relation, and in particular A, B => C 
expresses a rule which derives C from premises A , B. FV(A) is the set of free 
variables of expression A. 

2 FORMALIZING REALIZABILITY IN HA 

2.1. In order to exploit realizability proof-theoretically, we have to formalize 
it. Let us first discuss its formalization in ordinary intuitionistic first-order 
arithmetic HA ( "Heyting's Arithmetic"), based on intuitionistic predicate logic 
with equality, and containing symbols for all primitive recursive functions, with 
their recursion equations as axioms. Induction and successor axioms S x = 
Sy--+ x = y, Sx f. 0 are present as usual. 

x, y, z , ... are numerical variables, S is successor. We use the notation ii for 
the term S"O; such terms are called numerals. p 0 , p 1 bind stronger than infix 
binary operations, i.e. p 0 t + s is (p0t) + s. For primitive recursive predicates 
R , Rt1 ••• t,. may be treated as a prime formula since the formalism contains a 
symbol for the characteristic function XR· 

Now we are ready for a formalized definition of ":c realizes A" in HA. 

2.2. DEFINITION. By recursion on the complexity of A we define x rnA, x <f. 
FV(A), "x numerically realizes A" : 
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xrn(t = s) := (t = s) 
x rn (A I\ B) := (pox rn A) I\ (pix rn B), 
xrn(A--+ B) := 'v'y(yrnA--+ 3z(Txyz I\ Uz rnB)), 
xrn 'v'y A := 'v'y3z (Txyz I\ Uz rnA), 
xrn3y A := p 1xrnA[y/pox]. 

Note that FV(xrnA) c {x} UFV(A). D 

2.3. REMARKS. (i) We have omitted clauses for negation and disjunction, 

since in arithmetic we can take ·A := A --+ 1 = 0, AV B := 3x((x = 0 --+ 
A) I\ (x -:/:- 0 --+ B) ). If we spell out x rn (AV B) on the basis of this definition 
we find: 

xrn(A VB)~ (pox = 0--+ (pop1x)OrnA) I\ (pox# 0--+ (P1P1 X)OrnB), 

(ii) The definition of realizability permits slight variations, e.g. for the first 

clause we might have taken 

x rn' ( t = s) := ( x = t I\ t = s). 

However, it is routine to see that this variant rn'-realizability is eqnivalent to 

rn-realizability in the following sense: for each formula A there are two partial 

recursive functions </JA and 'I/JA such that 

f- xrnA--+ <fJA(x)rn'A 
f- x rn' A --+ 'If; A (x) rn A. 

(If in the future we shall call two versions of a realizability notion equivalent, it 

will always be in this or a similar sense.) Similarly, if we treat V as a primitive, 

the clause for x rn (A V B) given above may be simplified to 

which yields an equivalent notion of realizability. 
(iii) In terms of partial recursive function application • and the definedness 

predicate! (t! means "t is defined"), we can write more succinctly: 

x rn (A --+ B) := 'v'y(y rn A--+ X•Y! I\ X•Y rn B), 
x rn 'v'y A := 'v'y(x•y! I\ X•Y rn B). 

where t! expresses that t is defined (cf. next subsection). Of course, the 

partial operation • and the definedness predicate ! are not part of the language, 

but expressions containing them may be treated as abbreviations, using the 

following equivalences: 

t1 = t2 ~ 3x(t1 = x I\ h = x), 
t1•h = x ~ 3yzu(t1 = y I\ t2 = z I\ Ty zu I\ Uu = x) , 
t! ~ 3z(t = z). 
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(t 1,t2 terms containing•, :i:,y, z,·u not free in t 1,t2 ). However, note that the 
logical complexity of A(t), where t is an expression containing•, depends on the 
complexity oft! (On the other hand, t! is always expressible in E?-form.) For 
metamathematical investigations it is therefore more convenient to formalize 
realizability in a conservative extension HA* of HA in which we can treat "•" 
as a primitive. Treating t 1 = t2 for partially defined t 1 , t 2 as an abbreviation in 
a rigoorous way is possible, but involves a good deal of lengthy inductions, as 
demonstrated in (Kleene l!J69). Since ordinary logic deals with total functions 
only, we first need to extend our logic to the (intuitionistic) logic of partial 
terms LPT, or intuitionistic E+ -logic, in the terminology of Troelstra and van 
Dalen(l!J88, 2.2.3). LPT first appeared in (Beeson 1981). 

3 INTUITIONISTIC PREDICATE LOGIC WITH PARTIAL TERMS LPT 

3.1. Variables are supposed to range over the objects of the domain consid
ered, so always denote; arbitrary terms need not denote, so we need a predicate 
E, expressing definedness; Et reads "t denotes" or "t is defined". Instead of Et 
we shall write t!, in the notation commonly used in recursion theory. 

If we also have equality in onr logic, and read t = s as "t and i; are both 
defined and equal", we can express t! as t = t. 

3. 2. The following axiomatization is a convenient (but not canonical) choice 
for arguments proceeding by induction on the length of formal deductions: 

Ll A -+ A, 
L2 A, A --+ B :::::> B, 
L3 A --+ B, B --+ C :::::> A --+ C, 
L4 A/\ B --+ A, A/\ B --+ B, 
L5 A --+ B, A --+ C :::::> A --+ B /\ C, 
L6 A --+ A V B, B --+ A v B, 
L 7 A --+ C, B --+ C :::::> A v B --+ C, 
L8 A /\ B --+ C :::::> A --+ (B --+ C), 
L9 A --+ ( B --+ C) :::::> A /\ B --+ C, 
LIO ..L--+ A, 
Lll B --+ A :::::> B --+ 'v'x A (:i: <j. FV(B)), 
L12 'v':i; A /\ t !--+ A[:1:/t] (t free for x in A), 
L13 A [x / t ] /\ t !--+ 3x A (t free for x in A), 
L14 A --+ B :::::> :l:i: A --+ B (x <j. FV(B)) 

where t! := t = t. For equality ~'C h:ive ( F function symbol, R relation symbol 
of the language): 

EQ {
'v'xy(x = y --+ y = x ), 'v':i:yz(x = y /\ y = z --+ x = z), 
'v'x.ii(x = .ii A FxL--+ Fx = FY), 'v'xy(Rx A x = y -+ R.il) 

Basic predicates and functions of the language are assumed to be strict: 
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STR F(t1 , ... ,t11 )l -> t;l, R(t1, ... , t,,) -t t ;l 

Note that this logic reduces to ordinary first-order intuitio11istic logic if all 

functions are total , i.e. Vx(f:fl), since then tl for all terms t. 

For the notion "equally defined and equal if defined '" introduced by 

t '.:::'. s := (tl v sl) -t t = .9 , 

we can prove the replacement schema for arbitrary formulas A 

t '.:::'. s /\ A[x/t] -t A[:i:/8]. 

4 CONSERVATIVENESS OF DEFINED FUNCTIONS 

Relative to the logic of partial terms, the following conservative extension result. 

is easily proved. Let r he a theory based on LPT, such that 

r f- A(:c, y) /\ A(:c, z ) -t y = z . 

Then we may introduce a symbol <PA for a partial function with axiom 

Ax(<PA(x ,y) ,___, y = <P11(x) . 

The conservativeness of this addition can be proved in a straightforward syn

tactic way; the easiest method, however, uses completeness for Kripke models, 

see Troelstra and van Dalen {1988, 2.7). 
Let. f * consist of r and all substitution instances of the axiom schemata 

w.r.t .. the extended language, and let </>( f *) he the result. of systematically 

eliminating the fund.ion symbol <PA from the elements of r , and assume ef>( f *) 

to he provable from r, then the conservative extension result. still holds in the 

form: "f* + Ax( </> 11 ) is conservative over f". 
This extended reimlt. applies to HA* defined below, since eliminating the 

symbol for partial recursive function application from instances of induct.ion 

yields instances of in<luction in the language of HA. 

,5 FORl\IALIZING ELEMENTARY RECU RSION THEORY IN HA* 

5.1. HA* is the conservative extension of HA, formulated in the int11itio11is

tic logic of partial terms, with a primitive binary partial operation • of partial 

recursive f11nct.io11 application. t 1 .t2 .t:i ... abbreviates ( . . . ( (t 1 •f'.2 )•t:1) ••• ) (as

sociation to the left.). 
Note that strictness entails in particular t•f.' l ----; f.l /\ t' l for the application 

operation. Of course we have to require totality for the primitive recursive 

functions; it suffices to demand OJ, S:1:l . In all other case the primitive re

cursive functions satis(y equations with =, charnct.erizing them inductively in 

terms of functions introduced before (e.g. :1: + 0 = :1:, :1: +Sy = S( x + y) ). By 

induction one can then prove F :1:1 ••. :1:11 J for each primitive recursive fuuct.ion 

symbol F. 
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A formalization of elementary recursion theory in HA* can be given by using 
Kleene's index method in combination with the theory of elementary inductive 
definitions in arithmetic (Troelstra and van Dalen 1988, 3.6, :3. 7). The idea 
behind this formalization is the following: one gives an elementary inductive 
definition of the relation n := { (n, x, m) : X•11/, ~ 11}. An elementary inductive 
definition of a predicate PA is given by a predic.:ate A(X, z) in the language of 
HA* extended with an extra predicate variable X, such that A is in a class P 
generated by the following clauses: 

• all arithmetical formulas are in P; 

• X t E P for all numerical terms t; 

• P is closed under /\, V, 3 and bounded universal quantification \/:i; < t 
with x <f. FV(t). 

The predicate PA then satisfies 

\tx(A(PA,x) --> PA(:r:), and \tx(A(Q,:r:)--> Q:r:)--> \t:r:(PA(x) --> Q:r:) , 

for all predicates Q definable in HA* extended with PA. Predicates introduced 
by elementary inductive definitions are in fact explicitly definable in arithmetic, 
and the principles for PA stated above are provable in arithmetic. 

This leads to a smooth formalization of elementary recursion theory; in par
ticular we obtain the smn-theorem, the recursion theorem (Kleene's fixed-point 
theorem): for some primitive recursive if> 

\txflz(ef>(z,x).(fj) ~ z·(x,iJ)) 

(where (ii'.) is some standard encoding of the sequence ii'.), the Kleene normal 
form theorem, etc. Moreover, by the normal form theorem, every partial re
cursive function is definable by a term of the language of HA*. 

5. 2. NOTATION. If t is a term in the language of HA*, then A:i:.t is a canon
ically chosen code number for t as a partial recursive function of x, uni
formly in the other free variables; by the sum-theorem we may therefore as
sume Ax.t to be primitive recursive in FV(t) \ {x}. Ax1 . .. x 11 .t abbreviates 
Ax1 (Ax2 ... (A:i:,,.t) ... ). D 

We note the following 

5.3. LEMMA. In HA* tlle E~-formulas of HA are equirnlent to prime formulas 
of tl1e form t = t for suitable t, and each formula t = s is equivalent to a EV
formula of HA. 
PROOF. Systematically using the equivalences mentioned above transforms any 
formula t = .~ of HA* into a EV-forumla of HA. Conversely, let a E~-formula 
be given; by the normal form results of recursion theory, we can write this in 
the form 3zT (ii., (x), z) for a 1mmeral ii; this is equivalent to tt• (:i!) = iie(:C) . D 

\Ve are now ready to formalize :1: rn A direct.ly in HA*. 
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6 FORMALIZING rn-REALIZABILITY IN HA* 

6.1. DEFINITION. :1: rn A is defined by induction on the complexity of A , :r. <f. 
FV(A). 

x rn P := P /\ x! for P prime, 
x rn (A /\ B ) := po:i: rnA /\ P1 XrnB, 
:i: rn (A --+ B ) := Vy(y rn A --+ :r•JJ rn B ) /\ x!, 
:r: rnVyA := Vy(:r. .yrnA), 
x rn 3y A := P1 X rn A[y/pox]. 

We also define a combination of realizability with truth, x rnt A; the clauses 
are the same as for rn , the clause for implication excepted, which now reads: 

:1: rnt (A --+ B ) := Vy(yrnt A--+ xeyrnt B ) /\ x! /\ (A --+ B ). D 

6. 2. REMARKS. (i) t rn A is 3-free (i.e. does not contain 3) for all A. Note 
that, by our definition of V in terms of the other operators, 3-free implies V-free. 

(ii ) The clauses "/\ x !" have been added for the cases of prime formulas and 
implications, in order to guarantee the truth of part (i) of the following lemma. 

(iii ) For negations we have x rn · A ;.-; Vy( •y rn A) /\ x!, and x rn • •A +--> 

Vy( • yrn•A) /\x! ;.-; Vy 0 Vz 0 (z rnA) /\x! ;.-; ••3z(z rnA) /\ :r;! . 
The following lemmas are easily proved by induction on A. 

6. :1. LEMMA. (Dcfinedness ofrealizing terms; S11bstit11tio11 Property) For R E 
{rn,rnt} 

(i) I- t RA --+ t!, 

(ii) (:1: RA)[y/ t] =: :z: R (A[y / t]) (:r. <f. FV(A) U FV(t) , y ~ :i:) . 

PROOF. By induction on the complexity of A. Let e.g. trn 3yA, then p 1t rn A[y/ p 11 t], 
hence by induction hypothesis p 1 t!, and so by strictness f!. D 

6.4. LEMMA . HA* I- t rnt A --+ A. 
A similar lemma holds for all combinations of realizability with truth (i.e. 
realizabilities with 1 in their mnemonic code) we shall cm:ount.er in the sequel; 
we shall not bother to state it explicitly in the future. We can readily prove 
that realizability is sound for HA*: 

7 SOUNDNESS 

7.1. THEOREM. (Soundness theorem) 

HA* I- A =? HA* I- t rn A /\ t rnt A 
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for a suitable term t witli FV(t) C FV(A). 
PROOF. The proof proceeds by induction on the length of derivations; that 
is to say, we have to find realizing terms for the axioms, and for the rules we 
must show how to find a realizing term for the conclusion from realizing terms 
for the premises. We check some cases. 

L5. Assume t rn (A --+ B), t' rn (A--+ C), an<l let x rn A; then p(t•x, t' e:i:) rn (BI\ 
C), so Ax.p(t•x, t' •X) rn (A--+ B /\ C). 

L14. Assume t rn (A --+ B), :c <j. FV(B), and let y rn 3:c A, then p 1y rn A[x/p0 y], 
hence t[x/puy]•(P1Y) rn B , so Ay.t[x/PoY]•(P1Y) rn (3x A--+ B). 

Of the non-logical axioms, only induction requires attention. Suppose 

x rn (A[y/O] /\ 'ly(A--+ A[y/Sy])). 

Then 

PuxrnA[y/O], z rnA --+ (p1x).y.zrnA[y/Sy]. 

So let t be such that 

The existence oft follows either liy an application of the recursion theorelll, or i:; 
immediate if closure under recursiou has been built directly into the definition 
of recursive function. It is now easy to prove by induction that t realizes 
induction for A. D 

A statement weaker than soundness is f- A => f- 3x(x rn A); we might call 
this weak soundness. We can also prove a stronger version of soundness: 

7. 2. THEOREM. (Strong Soundness Theorem) For closed A 

HA* f- A => HA* f- fz rn A /\ ii rnt A for some numeral ii. 

PROOF. Let HA* f- A; from the soundness theorem we find a term t :;uch that 

trnA, hence tj,. 

t J, i.e. t = t i:; equivalent to a E?-formula of HA, say 3:i:(s = 0), an<l HA 
proves only true EV-formulas, from which we sec that t = ii must he provable 
in HA* for some muneral ii . Similarly for rnt. D 

7. 3. REMARK. If one formalizes the proof of the soundness theorem, it is easy 
to see that there are primitive recursive functions l/J , </> :;ud1 that 

where "Prf" i:; the formalized proof-predicate of HA*, 'C is the go<lehmmber 
of expression ~, and Sub( ' B ', x, 's ') is the godelnumber of B [x/ s]. 

In fact, the whole implication is provable even in primitive recursive arith
metic. But the statement expressing a formalized version of the strong com
pleteness theorem: 
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Prf(x, ' A ')---+ Prf(</>(x), r'l/i(:r;) rnA') 

(A dosed, for suitable provably recursive</>, 1/J) is not. provable in HA (see 10.6). 

The following lemma will be used in the sequel , but is also interesting in its 

own right: 

7.4. LEMMA. (Self-realizing formula.-;) For 3-free formulas, canonical realizers 

exist, tliat is to say for each 3-free A we lwve in HA* 

(i) l-3x(x rnA) -+ A, 

(ii) I- A ---+ tA rnA for some term tA with FV(tA ) C FV(A) . 

(iii) A formula A is provably equimlent to its own realiza/Jility, i. e. A <---> 

3x(xrnA)), iff A is provably equivalent to an existentially quantified 

3-free formula. 

(iv) Realizability is idempotent, 1.c. 3:i:(xrn3y(yrnA)) <---> 3:r,(:i: rnA); in 

fact,eve11 3:i:(xrn(A <---> 3y(yrnA))) lwlds. 

PROOF. Take ts=s' := 0, lA11a := p(tA , la), tvxA := Ax.tA, lA~a := Ax .ta 

(:r, f/. FV(ta)) , and prove (i) and (ii) by simultaneous induction on A. (iii) and 

(iv) are immediate corollaries. D 

7.5. REMARK. An observation of practical usefulness is the following. For 
any definable predicate with canonical realizers (i.e. a predicate A definable 

by an 3-free formula) we obtain an equivalent realizability if we read restricted 

quantifiers \l:r:(A( x) ---+ •.• ) and 3x(A(x) /\ ... ) a.<; quantifiers V:r:EA, 3:r:EA over 

a new domain with realizability clauses copied from numerical quant.ificat.ion, 

i.e. 

x rn lfyEA.B := lfyEA(:r:•y rn B) /\ :i:.l, 
:i: rn 3yEA.B := p 1:1; rn B[:1:/p 0x] /\ A(pna:). 

In short., we may simply forget about the canonical realizer:-;. 

8 AXIOMATIZING PROVABLE REALIZABILITY 

8.1. As we have seen already in the introduction, realizability validates more 

than what is provable in HA; in fact, we can formally prove realizability of in 

HA* an intuitionistic version of Church's thesis: 

CTo V:dy A(x, y) ---+ 3z\l:r, (A(:i:, Za:i:) /\ Ze:i;l) . 

CT 0 is certainly not provable in HA, since it is in fact refutable in classical 

arithmetic. This version of Church's thesis is in fact. a combination of the well

known version which states "Each humanly computable function is recursive" 

and the intuitionistic reading of\l:r;3yA(a:, y) which states that there is a method 
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for constructing, for each given x, a y such that A ( x, 'Y). Such a method 
describes a humanly computable function. 

We now ask ourselves: is there a reasonably simple axiomatization (by a few 
axiom schemata say) of the formulas provably realizable in HA ? The answer 
is yes, the provably realizable formulas can be axiomatized by a generalization 
of CT 0 , namely "Ea:tended Clwrch's Thesis": 

ECT0V:r(Ax ----> 3y B xy) ----> 3z\fx(A:i;----> Z•Xl /\ B (x, z.x)) (A 3-free). 

8. 2. LEMMA. Eacl1 instance of ECT 0 is HA* -realizable. 

PROOF. Suppose 

urn Vx(A:i: ----> 3yB :i:y) 

Then V:ru(vrnA:i: ----> U•X•Vrn 3yB:cy) , and since A is 3-free, in particular 

Vx(A:i: ----> 'U•X•tA rn 3yB xy), so V:1:(A:i: ----> PI (u.x.t,i) rn B (:i;, Po ( U• X•tA)). 
Then it is straightforward to see that 

realizes the conclusion. D 

R EMARK. The condition "A is 3-free" in ECT0 cannot be dropped: applying 
unrestricted ECT 0 to Ax := 3zTxxz V -dzT x:i:z , B :i: y := (y = 0 /\ 3zT:i:xz ) V 

(y = 1 /\ -.3zT :cxz ) yields a contradiction. lu fact, this example can he used to 
show that even unrestricted ECT0 ! fails (ECT 0 ! is like ECT0 except that 3y 
in the premise is replaced by 3!y; 3!y means "there is a unique y such that" ). 

8.3. THEOREM. (Cliaracterization Theorem for rn-re;ilizability) 

(i) HA* + ECT0 f- A +-+ 3x(x RA) for R E { rn, rnt }, 

(ii) For closed A, HA*+ ECT0 f- A <=:> HA* f- ii rnA for 1;orne numeral ii. 

PROOF. (i) is proved by a straightforward induction on A. The crucial case 
is A = B ----> C; then B ----> C +-+ (3:1;(x rnB)--> 3y(y rn C)) (by the induction 
hypothesis) +-+ V:i:(x rnB --> 3y(yrnC)) (hy pure logic) +-+ 3zV:i:(:r rnB __.,. 
Z•:i: rn C) (by ECT0 , since x rnB is 3-free) = 3z(z rn (B --> G')) . 

(ii). The direction ::::} follows from the strong soundness theorem plus the 
lemma; .;::: is au immediate consequence of (i). D 

Curiosity prompts us to ask which formulas are classically provably realiz
able, i.e. provably realizable in first-order Peanu Arithmeti<" PA, which is just 
HA with classical logic. The answer is contained in the following 
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8.4. PROPOSITION . PA f- 3x(:r: rnA} {::} HA + M + ECTo f- -.-.A , 
where M is Markov's principle: 

M lf:r:( A V -.A) A -.-.3x A -+ 3x A. 

PROOF. Let. PA f- 3x(:r; rnA }, and let B be a negat ive formula (i.e. a formula 
in the A, If, -+-fragment ) such that HA + M f- x rn A <-+ B (x) . Then PA f

-.lfx-. (x rn A}, and since PA is conservative over HA for negat ive formulas (in 
consequence of Godel's negative translation), also HA f- -.\fx-.B , i.e. HA + 
M f- -.-.3:i;(x rnA}, and thus it follows that HA + M + ECT 0 f- -.-.A . The 
converse is simpler. D 

9 EXTENSIONS OF HA* 

.9.1 . For suitable sets r of extra axioms, we may replace HA* in the sound
ness and characterizat ion theorem by HA* + r. Weak soundness and t he 
characterization theorem require for all A E r 

(1) HA*+ r f- 3x(x rnA). 

Soundness requires for all A E r 

(2) HA* + r f- t rn A for some term t , 

and Strong Soundness requires (2) and in addition: HA* + r proves only t rue 
E~-formulas. 

9.2. EXAMPLES 

(a) For r any set of 3-free formulas soundness and the characterization theo
rem extend. If HA*+ r proves only true E~-formulas , strong soundness holds. 
The next. two examples permit. characterization and strong soundness. 

(h) Let -< be a primitive recursive well-ordering of IN, provably tot.al and 
linear in HA*; for r we take a ll instances of transfinite induction over -< : 

Tl (-<'J'ify (lf:i.:-<y A -+ A [x/y]) -+ lfx A. 

(c} r is the set of instances of Markov's principle (cf. the last. proposition in 
8). In fact , in t he presence of CT 0 , which is valid under realizability, r may he 
replaced by a single axiom: 

lfx y (-.-.3zT x yz -+ 3zT :r;yz ) . 

It is also wort h not ing that. in t he presence of M, we can use the following 
variant. of ECT 0 which is equivalent to ECT 0 : 
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(d) An extension of another kind is obtained if we enrich the language with 

constants for inductively defined predicates, e.g. the tree predicate Tr. In
tuitively, Tr is the least set containing the (code of the) single-node tree (i.e. 
() E Tr), and with every recursive sequence of tree codes n.O, nel, ... , n•m, ... 
in Tr, Tr also contains a code for the infinite tree having the trees with codes 

n.rn as immediate subtrees, namely p(l, n). Thus if 

A(X,x) := (x = 0) V (p0 x = 1 /\. 'v'm(p1 x•m E X )) 

we have 

A(Tr,x) ___. x E Tr, 
'v'x(.A(,\y.B, x) ___. B[y/x]) ___. 'v':c E Tr.B[y/x] 

for all B iu the language extended with the new primitive predicate Tr. Then 
we can extend rn-realizability simply by putting 

x rn(t E Tr) := t E Tr. 

Let us check that the soundness theorem extends. A(Tr, x) is equivalent to an 
3-free formula, so its realizabili ty implies its truth, and x E Tr follows. As to 
the schema, assume 

urn'v'x(A(,\y.B,x) ___. B[y/x]), or 
urn'v'x[(x = 0 ___. B(O) ) /\.(pox = 1 /\. 'v'yB(p1X•Y) ___. B :i:)] . 

So 

Po (u.o). (O, 0) rn B (O), 
p 1(u.x) . v rnB(x) if pox= 1 and v rn (p 0 x = 1 /\. 'v'yB(p1x.y). 

Assume 'v'y(e• (P1 X•y)rnB(p1X•Y)), p 0 x = 1. Then 

v = p (O, Ay.ee(p1 X•Y)) rn(p0 x = 1 /\. 'v'yB(p1X•Y)). 

Therefore 

if Pox = 1 and 'v'y(e•(P1X•Y) rnB(p1 X•Y)) 
then P1 (11•x) . (O, Ay.c•(P1 X•Y)) rnB(:i:). 

Now we construct by the recursion theorem an e such that 

{

Po (u.o).o if x = o, 
eex ~ P1 (ue:i:)•p(O, Ay.ee(p1x•y)) if pox= 1, 

undefined otherwise. 

We then prove by induction on Tr that 'v'x E Tr( ee:i; rn B ( x)). This is straight
forward. This example is capable uf considerable generalization, namely to 
arithmetic enriched with constants for predicates introduced by iterated induc
tive definitions of higher level; see e.g. Buchholz, Feferman, Pohlers and Sieg 
(1981, IV, section u). 

The examples just mentioned also permit extension of rnt-realizability. 
We end the section with some applications of rn- and rnt-realizability. 
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10 APPLICATIONS 

10.1. PROPOSITION. (Consistency and inconsistency results) 

(i) HA*+ ECT 0 is consistent relative to HA* (aJJ<l lience also relatfre to 

PA). 

(ii) -.\lx(A v-.A), -.(\l:r: -.-.B ___, -.-.\l:r: B ) are consistent witli HA* for certain 

arithmetical A, B. 

(iii) Tlie schema "Independence of Premise" 

IP (-.A ___, 3zB ) ___, 3z( • A ___, B ) 

is not derivable in HA* +CT 0 + M; in fact, HA* + IP +CT0 +M f- 1 = 0. 

PROOF. (i) Immediate from the characterization theorem. 

(ii} is a corollary of the realizability of CT 0 : take A = 3yTw.:y, B = 
3yTxxy V -.3yTxxy. 

(iii ) By M, -.-.3yT xxy ___, 3zT xxz; apply IP to obtain \l:r:3z (-.-.3yT xxy ___, 

T :r,xz ), then hy CT0 there is a total recursive F such that -.-.3yT xxy ___, 

T (x, x, F x), and this would make 3yTxxy recursive in :1; . D 

We next give an example of a conservative extension result. 

10.2. DEFINITION. CC(rn} (the rn-Conservative Cla.'>s) is the class of formulas 

A such that whenever B ___, C is a subformula of A , then B is 3-free. D 

10.3. LEMMA. For A E CC(rn} we have f- 3:z:(x rnA} ___, A. 

PROOF. By induction on the structure of A. Consider the case A = B ___, C; 

then B is 3-free , so there is a t B such that f- B ___, ta rn B. Assume B and 

x rn (B --t C}, then X•ta ! /\ X•tB rn C, hence by the induction hypothesis C; 

therefore ( x rn ( B ___, C)) ___, ( B ___, C) . D 

The lemma in combination with the characterization theorem yields 

10.4 . PROPOSITION. HA*+ ECT 0 is conservative over HA* w.r.t. formulas 

in CC(rn): 

(HA* + ECTo} n CC(rn) = HA* n CC(rn). 

The following proposition follows from rnt-realizability. 

10.5. PROPOSITION. (Derived rules) In HA* 

(i) For sentences f- A V B ::::? f- A or f- B (Disjunction property DP), 

(ii) For sentences f- 3xA ::::? f- A[x/n] for some numeral ii (Explicit De/in

ability for Numbers EDN), 

(iii) Extended CJmrd1 's Rule: for 3-free A 
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ECR f- 'v'x(A--+ 3yBxy) =;. f- 3z'v'x(A Z•X! /\ B (:i:, Z•X)) . 

PROOF. (i) follows from (ii) (actually, (i) and (ii) are equivalent for systems 
containing a minimum of arithmetic, see Friedman (1975)). As to (ii), let 
f- 3xA, then, by the strong soundness for rnt-realizability, f- m rnt 3xA for 

some numeral ih, so f- p 1rrirnt A[x/po'rri], and hence f- A[x/po m] . 

(iii) Assume f- 'v'x(A --+ 3yBxy), then for a suitable t f- trnt'v'x(A --+ 

3yB a:y), i.e. 

and therefore f- \fx(A--+ B (x , p 0 (t•X•tA )) . So we can take z = A:z: .po (t •X•tA) · 
D 

10.(J. R EMARK. The DP cannot be formalized in any consistent extension of 
HA itself (Myhill (1973), Friedman (1977)). We sketch Myhill's argument (the 
result of Friedman is even stronger). Assume that there is a provably recursive 

function f satisfying 

f- Prf(x, r AV B ')--+ ((f:z: = 0 /\ Pr( A')) V ((fx = 1 /\ Pr( B '))). 

where Pr(x) := 3yPrf(y ,x) . So f = {p}, and f- \f:dyTjjxy. Let F enumerate 
all primitive recursive functions, i.e . .>..n.F(i, n) is t he i-th primitive recursive 
function. Put 

D (n) := fi•F(n, n)-/:- 0, 

then f- 'v'n(Dn V --iD n) (i.e. Prf(k, r\fn( D n V --iDn)') for a specific k), from 
which we can find a particular primitive recursive >.n.F(rri, n) such that f
Prf(F (m, n), r D nV--iD fi'). Then D ffi --+ p.F(fft, ffi) -/:- 0 --+ Prf(F (ffi, ·ff1), r D1h V 
-,D fit ' ) /\ Pr(r --i D 'fft '), hence --i D 'ffl follows, since HA* is consistent. If we start 
assuming --iDff1, we similarly obtain a contradiction. 

From this we see that DP cannot he proved in HA* itself; for if DP were 
provable in HA*, then a function f as ahove would be given by 

f (:1;) := p 0 (the least y s.t.(:z: does not prove a closed disjunction and y = 0) 
or (for some closed r A V B' , Prf(x, r A V B ' ) /\ p 0 y = 0 /\ Prf(p 1y, r A' )) 
or (for some closed r A V B' , Prf(:i:, r A V B' ) /\ p 1y = 1 /\ Prf(p 1y, r B' ))). 

This in t urn implies that the strong soumlness theorem is not formalizable in 
HA*, 8ince strong soundness for rn-realizabili ty immediately implies EDN for 
HA* + ECTo. 
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1 INTROD UCTION 

Reasoning about distribnted algorithms appears to be intrinsically difficult and 

will probably always require a great deal of ingenuity. Nevertheless, re::;earch 

on formal verification ha::; provided a whole range of well-established concept::; 

and techniques that may help us to tackle problem::; in this area. It ::;eems that 

by now the basic principles for reasoning about distributed algorithms have 

been discovered and that the main issue that remains is the problem of scale: 

we know how to analyze small algorithm::; but are still lacking methods and 

tools to manage the complexity of the the bigger ones (in this context we can 

take "::;mall" to mean "fi ts on one or two pages"). 
Not everybody agrees with this view, however, and frequently one can hear 

claims that existing approaches cannot deal (or cannot deal in a natural way) 

with certain types of distributed algoritlmrn. A new approach is then proposed 

to addres::; this problem. A recent example of this is a paper hy Chou [3], who 

offers a rather pessimistic view on the state-of-the-art in formal verification: 

At present , reasoning about distributed a lgori thms is still an ad 

hoe, trial-and-error proce88 that needs a great deal of ingenui ty. 
What is lacking is a practical method that supports, on t he one 

hand, an intuitive way to t hink about and understand distributed 

algorithms and, on the other hand, a fomwl technique for reasoning 
about distributed algorithms using that intuit ive understanding. 

To illustrate the shortcoming of the assert ional method::; of [2, 5, 6, 7, 8, 10, 

13], Chou discusses a variant of Segall's PIF (Propagation of Information with 

Feedback) protocol [18]. A complex and messy classical proof of this algorithm 

is contrasted with a slightly simpler hut definitely more structured proof based 

on the new method advocated by the author. 
I think that Chou's view of existing a.-;sertional methods is much too pes

simistic. First of all these methods are not ad-hoe, but provide significant 

guidance and structure to verifications. After one has described both t he al

gori thm and its ::;pecification as abstract programs, it is usually not so difficult. 
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to come up with a first guess of a simulation relation from the state space of 

the algorithm to the state space of the specification. In order to state this 

simulation it is sometimes necessary to add auxiliary history and prophecy 

variables to the low-level program. By j1rnt starting to prove that the guessed 

simulation relation is indeed a simulation, i.e. , that for each execution of the 

low-level program there exists a corresponding execution of the high-level pro

gram, one discovers the need for certain invariants, properties that arc valid for 

all reachable states of the programs. To prove these invariant properties it is 

sometimes convenient. or even necessary to introduce auxiliary state variables. 

Frequently one also has to prove other auxiliary invariants first. The existence 

of a Rimulation relation guarantees that the algorithm is safe with respect to 

the specification: all the finite behaviors of the algorithm are allowed by the 

specification. The concepts of invariants, history and prophecy variables, and 

simulation relations are so powerful that in most cases they allow one to for

malize the intuitive reasoning about safety properties of distributed algorithms. 

When a simulation relation (and thereby the safety propertieR) has been estab

lished, this relation often provides guidance in the suhsequent proof that. the 

algorithm satisfies the required liveness properties: typically one proves that 

the simulation relates each fair execution of the low-level program to a fair 

execution of the high-level program. Here modalities from temporal logic such 

as "eventually" and "leads to" often make it quite ea.c;;y to formalize intuitions 

about the liveness properties of the algorithm. 
As an illustration of the use of "cla.c;;sical" assertional methods, I present in 

this paper a verification of the algorithm discussed by Chou [3]. Altogether , it. 

took me about two hours to come up with a detailed sketch of the proof (during 

a train ride from Leiden to Eindhoven), and less than two weeks to work it out 

and write this paper. The proof is completely routine, except for a few uice 

invariants and the idea to use a prophecy variable. Unlike history variables, 

which date hack to the sixties [9], prophecy variables have been introduced ouly 

recently [1], and there are not that many examples of their use. My proof is 

not particularly short, hut it does formalize in a direct way my own intuitions 

about, the behavior of this algorit.Jun. 
It might very well he the case that for more complex distributed algorithms, 

such as [17], new methods will pay off and lead to shorter proofs that are closer 

to intuition. This paper shows that, unlike what is claimed by Chou [3], the 

old methods still work very well for a variant of Segall's PIF protocol. 

2 LABELED TRANSITION SYSTEMS AND SIMULATIONS 

In this paper we use a very simple and well-known transition system model. 

The model is a simplified version of the I/ O automata model [10, 11]: it. cloes not. 

deal with fairness or other forms of liveness and there is no distinction between 

input. and output actions. In this section we review some ha.'lic definitions 

and results concerning automata and simulation proof techniques. For a more 

extensive introduction we refer to [12]. 
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DEFINITION 1 A labeled transition system or automaton A consists of four com

ponents: 

• A (finite or infinite) set states(A) of states. 

• A nonempty set start( A) ~ states(A) of start states. 

• A pair (ext (A), int (A)) of disjoint sets of external and internal actions, 

respectively. The derived set acts( A) of actions is defined as the union of 

ext(A) and int(A). 

• A set steps( A) ~ states( A) x acts( A) x states( A) of steps. 

We let s, s', u, u' , .. range over states , and a, .. over actions. We write s ~A s', 

or just s ~ s' if A is dear from the context, as a shorthand for (s',a,s) E 

steps( A). 
An execution fragm ent of an automaton A is a finite or infinite alternating 

sequence, n = s0 a1s 1a2 s2 • • · , of states and actions of A, beginning with a 

state, and if it is finite also ending with a state, such that for all i, s ; "!.:!t1 
s ;+J · 

The function first gives the first state of an exet:ution fragment and, for finite 

execution fragments, the function last gives the final state. Au execution of 

A is au execution fragment that begins with a start state. A state s of A is 

reachable ifs = la.~t ( lt) for some finite execution a of A. 

The trace of an execution fragment a, written trace(n), is the sequence of 

external actions oct:urriug in n. A sequence f3 of actions is a trace of automaton 

A if there is an execution a of A with (J = trw:e (o:). The set of traces of A 

is denoted by traces(A). Suppose s and s' are states of A, and (J is a finite 

sequence of external actions of A. We write s =4r1 s', or just 1/ lb s, if A has a 

finite execution fragment u with first(a) = s, trace (o) = (J and last(o) = s'. 

D EFINIT ION 2 Let A and B be automata with the same external actions. 

1. A refinem ent from A to B is a function r from states of A to states of B 

that satisfies the following two comlitions: 

(a) If s is a start state of A then r(s) is a start state of B. 

(b) Ifs -!!.+ As' and hoth sand r(s) are reachable, then r(s) db 8 r(s' ), 

where f3 = trace((s, a, s' )) . 

2. A fo rward simulation from A to B is a relation between states of A and 

states of B that satisfies the following two conditions: 

(a) Ifs is a start state of A then there exists a start state u of B with 

(s,u) E f. 
(b) Ifs --!!.+ A s', (.o;, u) E f and s and u are reachable, then there exists 

a state n' of B such that u=! nu' aud (.o;',u' ) E f, where (J = 

trace((s, a, s')). 
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3. A history relation from A to B is a forward simulation from A to B whose 
inverse is a refinement from B to A. 

4. A backward simulation from A to B is a relation between states of A and 
states of B that satisfies the following three conditions: 

(a) Ifs is a start state of A and n is a reachable state of B with (s, n) E b, 
then n is a start state of B. 

(b) Ifs ~A s', (s', u') E bands and u' are reachable, then there exists 
a reachable state 11 of B such t.hat 11.Jb 8 11.

1 and (-", u) E b, where 
(3 = trace((s, a , s'}). 

(c} Ifs is a reachable state of A then there exists a reachable state 11 of 
B with (s, 11) E b. 

5. A 711n7>hecy relation from A to B is a backward simulation from A to B 

whose inverse is a refinement from B to A. 

A refinement, forward simulation, etc. is called strong if in each case where 
one automaton is required to simulate a step from the other automaton, this 
is possible with an execution fragment consisting of e:i:actly one step. 1 

A relation Rover S 1 and S2 is image-finite if for all elements s 1 of S 1 there 
are only finitely many elements s2 of S2 such that (s1 , s2 } E R. 

THEOREM 1 Let A and B be automata with the same external actions. 

1. If there i.'I a refin em ent from A to B then traces (A) ~ traces ( B ). 

2. If there is a forward simulation from A to B then traces( A) ~ traces( B ). 

3. If there is a history relation from A to B then trace.s(A) = traces (B ). 

4. If there is an image-finite backward simulation from. A to B then trace.~ (A) 

~ traces(B). 

5. If there is an image-finite prophecy relation from A to B then traces( A) = 
fraces(B). 

:~ DESCRIPTION OF THE ALGORITHM 

Consider a graph G = (V, E), where Vis a nonempty, finite collect.ion of nodes 
and E ~ V x V is a collection of links. We assume that graph G is undirected, 
i.e., (v, w) E E <=:? (w, v) E E, and also strongly connected. To each node 
v in the graph a value weight( v) is associated, taken from some set M . We 
assume that M contains an element unit and that there is a binary operator o 

1 Here we use the word "strong" in the sense of [14]. Actually, the notions of s imulation 
that we consider here are weak in the sense of [12] since their definitions include reachability 
conditions. 
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on M , such that (M , o, unit) is an Abelian monoid (so o is commutative and 

associative and has unit element unit). 
Nodes of G represent autonomous processors and links represent communi

cation channels via which these processors can send messages to each other. 

We assume t hat the communication channels are reliable and that messages are 

received in the same order as they are sent. We discuss a simple distributed 

algorit hm to compute the sum of the weights of all the nodes in the network. 

The algorithm is a minor rephrasing of an algorithm described by Chou [3], 

which in turn is a variant of Segall 's PIF (Propagation of Infonnation with 

Feedback) protocol (18] . 
The 0111~· messages that are requin~d by the algori thm are elements from M. 

A node in the network enters the protocol when it receives a first message from 

one of its 11eighbors. Init ially, the communication channels for all the links are 

empty, except the channel associated to the link e0 from a fixed root node v0 

to itself, which contains a single message.2 When an arbitrary node v receives 

a first message, it marks the node w from which t his message was received. 

It t hen sends a unit message to all its neighbors, except w. Upon receiving 

subsequent. messages, the values of these messages are added to the weight of 

v. As soon as, for a non-root. node, the total number of received messages 

equals the total number of neighhurs, the value that has been computed is 

sent back to the node from which the fir:;t message wa.<> received. \Vhen, for 

root node v0 , t he total number of received messages equal:; t he total 1mmber 

of neighbors, t he value t hat has been computerl by v0 is produced as the final 

ou tcome of the a lgorithm. 
In Figure 1, the algorithm is specified as an automaton S UM using the 

standard precondition/ effect style of the I / O automata model [10, 11 , 4]. A 

minor subtlety is t he occurrence of the variable v iu the definition of the step 

relat ion, which is neither a state variable nor a formal parameter of the actions. 

Semantically, the meaning of this v is determined by an implicit existential 

quant ificat ion: an action ci is enabled in a state s if t here exists a valuation ~ 

of a ll the variables (including 11) that agrees with s on the state variables and 

with a 0 11 t he parameters of the actions, such that t he precondition of a holds 

under ~· If action a is enabled in !I under ~ t hen the effect part of a together 
with ~ deten11iue the result ing sta te s'. 

For each link e=(v , w), the source v is denoted source(e), the target w is 

denoted target (e), a11d the reverse link (w ,v) is denoted c- 1 . For each node u, 
from (v) gives the set of links with source 11 and to(v) gives the set of links with 

target v, so eEfrom (v) {::} source(e)= v and cEto(u) {::} target (e)= u. All the other 

data types and operat.iou symbols used iu the specification have the obvious 

meaning. The states of SUM are interpreta tions of fi ve state variables in their 

doma i11s . The first four of these variables represent the values of program 
variables at each node: 

2The assumpt ion t ha t eo = (Vo, Vo) E E is not required , but a llows for a more uniform 
description of t he a lgorithm fo r each norle. 
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Internal: MSC 
REPORT 

External: RESULT 

State Variables: busy E V -> Bool 
parentE V -> E 
total E V -> M 
cnt E V -> lnt 
mq E E -. M * 

Init: /\ -, busy[v] 
/\: mq[e] = if e= eo then append ( unit, empty) else empty 

MSG (e : E , m: M ) 
Precondition: 

v = target(e) /\ m = head{mq(e]) 
Effect: 

mq[e] := tail (mq[e]) 
if -i busy[v] then busy[v] := true 

parent [v] := e 
total[v] := weight{v) 
cnt[v] := size(from (v) ) - 1 
for f E from (v)/{e- 1

} do mq[f ] := append(unit, mq [f ]) 
else total[v] := total [v] o m 

REPORT(e : E , m: M ) 
Precondition: 

cnt [v] := cnt [v] - 1 

11 = source(e) f. v0 /\ busy[v] /\ cnt[v] = 0 /\ e- 1 = parent[v] /\ rn = total [v] 

Effect: 
busy[v] := false 
mq [e] := append (m, mq[e]) 

RESULT(m : M ) 
Precondition: 

busy(vo] /\ cnt(vo] = 0 /\ m = total[vo] 
Effect: 

busy(vo] := false 

FIGURE 1. Automaton S UM . 
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• busy tells for each no<le whether or not it is currently participating in the 
protocol; initially busy [v] equals false for each v; 

• parent is used to remember the link via which a node has been activated; 

• total records the sum of the values seen by a node during a run of the 
protocol; 

• cnt gives the number of values that a no<le still wants to see before it will 
terminate. 

State variable rnq, finally, represents the contents of the message queue for each 

link. Initially, rnq[e] is empty for each link e except e0 . 

Automato11 SUM has three types of actio11s: an action MSC , which describes 
the receipt au<l processing of a message, au action REPORT, by which a non 
root 11ode sen<ls the final value that it has computed to its parent, an<l au action 
RESULT , which is the last action of the algorithm , used by the root node to 
output the fi11al result of the computatio11. 

4 CORHECTNESS PROOF 

The correctness property cl> of SUM that we wa11t to establish is that each 
maximal execution of the automaton consists of a finite number of internal 
actions followed by the single out put action RESULT("f:.,, EV weight(v)). 

Intuitively, propagation of messages occurs in two phases. First unit messages 
are sent from node v0 into the network, and then partial sums flow back from 
the network to v0 . In the first phase a spanning tree is constructed wi th root 
v0 all<l this spallning tree is use<l to accmnulate values in the secollcl phase. 

4 .1 Adding a History Variable 

A first importallt observatio11 about the algorithm is that ill each nm at most 
one message travels on each link. In order to state this property formally as 
an invariant, we add a so-called "history variable" sent to automaton SUM 
that reconls for each li11k e how many messages have beell sellt on e. Figure 2 
describes t he automaton SUM" obtained in this way. Variable sent is an aux
iliary / history variable in the sense of Owicki and Gries [Hi] because it does llot 
occur in conditions uor at the right-hand-side of assignments to other variables. 
Clearly, adding sent does not chauge the behavior of automatou SUM. This 
call be formali zed via the following trivial lemma, which in turn implies that 
SUM satisfies correctness property <I> if a ll<l only if SUM" does. 

L EM l\1A 2 The in-verse of the projection function that maps state.~ from SUM" 
to states of S UM is a :;trong hist0171 relation f rom SUM to SUM". 

Invariant 1 below gives a bas ic sallity property of SUM": at auy time the 
llumber of messages in a link is at most. equal to the uumher of messages that. 
have been sellt Oil that link. 
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Internal: MSG 
REPORT 

External: RESULT 

State Variables: busy E V --+ Boo) 
parentE V --+ E 
total E V --+ M 
cnt E V --+ Int 
mq E E -+ M • 
sent E E --+ Int 

Init: /\ --, busy(v] 
/\: mq (e] = if e=eo then append( unit , empty) else empty 
/\. sent(e] = if e=eo then 1 else 0 

MSG(e: E ,m : M } 
Precondition: 

v = target (e) /\ m = head (mq(e]} 
Effect: 

mq(e] := tail (mq(e]) 
if --,busy(v] then busy(v] := true 

parent(v] := e 
total[v] := weight(v) 
cnt[v] := size(from (v}} - 1 
for f E from (v)/{e- 1

} do mq(f] := append (unit , mq[f]} 
sent (! ] := sent (! ] + 1 

else total [v] := total [v] o m 
cnt(11] := cnt (v] - 1 

REPORT(e: E , m: M ) 
Precondition: 

v = source(e) :/: v0 /\ busy[v] /\ cnt [v] = 0 /\ e- 1 = parent [11] /\ m = total[v] 
Effect: 

busy[v] := false 
mq [e] := append (m , mq [e]) 
sent[e] := sent[e] + 1 

RESULT(m: M } 
Precondition: 

busy[vo] /\ cnt [vo] = 0 /\ m = total[vo] 
Effect: 

busy[vo] := false 

FIGU RE 2. Automaton SUM,. obtained from S UM by adding history variable 

sent. 
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INVARIANT 1 For all reachable states of SUMh and for all e: 

len(mq[e]) :S sent[e] 

At first sight, Invariant 2 below may look a bit complicated. It is however 
easy to give intuition for it. The key part of the invariant is the first conjunct, 
which states that at most one message travels on each link. The other conjuncts 
are only needed to get the induction to work in the invariant proof. The second 
and third conjunct imply that if in a MSG step a value is sent into some channel, 
this channels must have been empty in the start state of that step. The fourth 
conjunct allows to prove a similar property for REPORT steps. The routine 
proof of Invariant 2, which has been omitted here , uses Invariant 1. 

INVARIAN1 2 For all reachable states of SUMh and for all v and e: 

/\ sent[e] :S 1 
/\ len(mq[e0])= 1 --+ (V'fE from(vo) /{eo}: sent[f] = O) 
/\ v=f.v0 /\ • busy[v] /\ eEto(v) /\ len(mq[e])=l --+ (V'fEfrom (v) : sent[f] =O) 
/\ v=f.v0 /\ busy [v] /\ e = parent[v]--+ sent[e- 1]= 0 

Invariant 2 is quite powerful and implies in particular that the algorithm will 
always terminate. 

COROLLARY 3 Automaton SUM" has no infinite executions. 

PROOF: Define the state function Norm as follows: 

Norm L 2.sent[e] - len(mq[e]) 

eEE 

Since both sending and receiving a value increases Nonn, each step of SUMh 
with label MSG or REPORT increases Norrn. By Invariant 2, Norm can be at 
most 2.size(E), for any reachable state. Therefore there can be at most finitely 
many steps labeled by an internal actions in any execution of SUMh. Since 
each RESULT step changes the value of busy[v0 ] from true to false , there can 
be at most one RESULT step after the last internal step. D 

A next property that we will established is that each node can be activated 
only once in any run of the algorithm. We say that node v is activated in a 
step if busy[v] changes from false to true in that step. This implies that v has 
been activated iff it has received at least one message. The number of messages 
received by a node v equals the number of messages that have been sent to v 
minus the number of messages still in transit, and is therefore given by the 
state function: 

Received ( v) L sent[e] - len(mq[e]) 
e Et0(11) 

The following Invariant 3 gives a characterization of the value of R eceived (u) 
for reachable states. The proof is straightforward and uses Invariant 2. 
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INVARIANT 3 For all reachable states of SUM" and for all v: 

/\ busy[v] -+ R eceived(v) = size(to(v)) - cnt[v] > 0 

/\ 0 busy[v] -+ Received(v) = 0 V R eceived(v) = size(to(v)) 

Invariants 2 aud 3 together imply that each node is activated at most once in 

each execution. Because suppose that in some reachable state some node v is 

hoth inactive and activated. This means • busy[v] /\ Received( v) > 0. Then 

Invariant 3 gives Received(v) = size(to(v)). But this implies that no MSC 

action can he enabled, because this would violate Invariant 2. 

We conclude this subsection with two simple invariants that we will use later 

on. 

INVARIANT 4 For all reachable state.~ of SUMh and for all v: 

Receivcd(v) > 0 -+ v = target(7mrent[v]) 

INVARIANT 5 For all reachable states of SUM" and for all e : 

e i- e0 /\ mq [e] i- empty -+ Received(source( e)) > 0 

4.2 Adding a Prophecy Variable 

Intuitively, in the first phase of the algorithm a spanning tree is constructed 

with root v0 , and this spanning tree is used to accumulate values in the sec

ond phase. When the algorithm starts, it. not clear how the spauning tree is 

going to look like and in fact any spanning tree is still possible. While the 

algorithm proceeds, the spanning tree is constructed st.ep hy st.ep. The choice 

whether an arbitrary link will be part of the spanning tree depends on the 

relative speeds of the processors, and is entirely nondeterminist.ic. Such un

predictable, uondeterminist.ic behavior is typical for distrihnt.ed computation 

but ofteu complicates analysis. Fortunately, the concept. of pro71hec11 variables 

of Abadi and Lamport. [l] allows us to drastically reduce the nondeterminism 

of the algorithm or, more precisely, to push non<leterminism backwards to the 

initial state. \Ve add to SUM" a new variable tree, which records an initial 

guess of the full spanning tree and is used to enforce that. the actual tree that 

is constructed during execution is equal to this initial guess. Figure 3 describes 

the automaton SUM"P obtained in this way. In Figure 3, tree is the function 

that tells for each set of links whether or not it h; a tree. l\fore formally, for 

T ~ E and E = {source(e), target(e) I e E T} , tree(T) = true iff either T = 0 
or there exists a node v E E such that. for all v' E E there is a unique path of 

links in T leading from v to v'. 
In order to show that tree is a prophecy variable in the sense of [l , 12], 

we establish a prophecy relation from SUM" t.o SUM"P. For this, we need 

three more invariants. The proof of Invariant 6 uses Invariants 3, 4 and 5. 

Invariants 7 and 8 are completely trivial. 
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Internal: MSG 
REPORT 

External: RESULT 

State Variables: busy E V -> Boo! 
parentE V -> E 
total E V -> M 
cnt E V -> Int 
mq E E -> M * 
sent E E -> Int 
tree E V -> E 

l nit : /\ v • busy[v] 
/\e mq[e] = if e=eo then append(unit, empty) else empty 
Ac sent[e] = if e=eo then 1 else 0 
/\v tree[vo] = eu /\ v = target( tree[v]) /\ tree( { tree[v] I v E V / {Vo}}) 

MSG(e : E ,m: M ) 
Precondition: 

v = target (e) /\ m = head{mq[e]) /\ (•busy[u]-> e = tree[v]) 
Effect : 

mq[e] := tail (mq[e]) 
if •busy[v] then busy[v] := true 

parent[u] := e 
total[u] := weight{ v) 
cnt[v] := size(from (v)) - 1 
for f E from (v)/{e- 1

} do mq[f] := append ( unit , rnq[f]) 
sent[! ] := sent[!] + 1 

else total[v] := total[v] o m 
cnt[v] := cnt[v] - 1 

REPORT(e : E , rn: M) 
Precondition: 

v = source(e) I- v0 /\ bu.5y[v] /\ cnt(u] = 0 /\ e- 1 = parent[v] A m = ·total [u] 
Effect : 

busy[v] := fa lse 
mq[e] := append(m, mq[e]) 
sent[e] := sent[e] + 1 

RESULT (m: M ) 
P recondition : 

busy[vo] /\ cnt[vo] = 0 /\ m = total[vo] 
Effect: 

busy[vo] := false 

F IGURE 3. Automaton SUM",, obtained from SUM" by a<lding prophecy 
variable tree . 



INVARIANT 6 Let T be the state function defined by 

T ~ {parent[v] Iv "I- v11 /\ Received(v) > O} 

Then tree(T) holds for all reachable states of SUMh. 

INVARIANT 7 For all reachable states of SUMhP and for all v: 

Received(v) > 0 -+ parent[v] = tree[v] 

INVARIANT 8 For all reachable states of SUMhP and for all v: 

tree[vo] = e0 /\ v = target( tree[v]) /\tree( { trec[v] I v E V / { vo}}) 

LEMMA 4 The inverse of the projection function 7r that maps states of SUMhp 

to states of SUMh is a strong image-finite prophecy relation from SUM" to 

SUM"r. 

PROOF: Mapping 7r is trivially a strong refinement from SUMhP to SUM". 

Since the domain of variable tree is finite, 7r - 1 is image-finite. We prove that 
7r - 1 satisfies the three conditiom; of a backward simulation (condition (b) in 
the strong sense). 

For condition (a), suppose that sis a start state of SUM" and 11 is a reachable 
state of SUM 1'T' with 7r(11) = s. Then it follows by Invariant 8 that 11 is a start 
state of SUM"ri. 

To prove that 7r - 1 satisfies conditions (b) and ( c) we need the following 
claim: a state 11 of SUM"P is reachable iff 7r(u) is reachable and u satisfies 
the properties of Invariants 7 and 8. Direct.ion "::::}" of this claim follows by 
induction on the length of the shortest execution to u, and uses the fact. that 7r 
is a strong refinement together with Invariants 7 and 8. Direction "~" of the 
claim follows by induction on the length of the shortest execution to 7r(u). 

Using the claim, it is routine to prove condition (b). Condition (c) follows 
from the claim together with Invariant 6. D 

Note that as a direct corollary of Lemma 4 all invariants of SUM" are also 
invariants of SUMhP. 

4 .. '] A R efinem ent 

In this subsection we will prove that there exists a refinement from automaton 
SUMhp to the automaton S defined in Figure 4. Automaton S is extremely 
simple. It has only two states: an initial state where done=false and a final 
state where done=true. There is one step, which starts in the initial state, has 
label RESULT('L,

11
Ey weight(v)) , and ends in the final state. 

Define state functions !nit and Done by 

!nit( v) 

Done(v) 

A 
--i busy[v] /\ Received( 11) = 0 

--i /msy [v] /\ Received(v) = size(to(v)) 
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External: RESULT 

State Variables: done E Bool 

lnit: -, done 

RESULT(m: M) 
Precondition: 

-,done I\ m = I.:vEV weight(v) 
Effect: 

dune := true 

FIG URE 4. Automaton S. 

As a consequence of Invariant 3, each reachable state of SUMhp satisfies, for 
each v, either Init(v) or lmsy[v] or Done(v). In order to establish a refinement 
from SUM"P to S, we again need two extra invariants. Invariant 9 states that , 
until the moment where computation has finished, there is a conservation of 
weight in the network. Invariant 10 allows us to prove that in a state where 
RESULT is enabled , Done(v) holds for all nodes except v0 . 

INVARIANT 9 For all reachable states of SUM"P: 

• Done(vo ) ---; L weight(v) 

vEV 

L weight(v) 

{ vE V iR eceived(v)= O} 

+ I: total[v] 

{11EV lbusy[11)} 

+ I: head ( mq[e]) 

{ eE E irru1[c];iempty } 

INVARIANT 10 For all reachable states of SUM"T' and for all v and e: 

v-:/:- v0 /\ e = tree[v] /\ sent[e- 1
] = 1 ---; Done(v) 

LEMMA 5 The function r from states of S UM "P to states of S given by 

r(s) f= done {::? s f= Done(v0 ) 

is a refinem ent from SUM"P to S. 

4.4 Absence of Deadlock 

The existence of a refinement mapping from SUM"P to S does not guarantee 
that automaton SUM"1' will produce any output: t he automaton still may 
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have an infinite loop of internal actions or get into a state of cleadlock before 

an output step has been done. We can easily prove the absence of infinite loops 

by using the result of Corollary 3 that SUM" has no infinite executions and 

the fact that there is a strong prophecy relation from SUM" to SUM"T'. The 

proof that SUM"T' has no premature deadlocks is more involved and requires 

three additonal invariants. 

INVARIANT 11 For all reachable states of SUM 111' , sent[e0] = 1. 

INVARIANT 12 For all reachable states of SUM"P and for all v and e: 

e = tree[v] /\ Init(v ) /\ mq[e] = empty -+ Init(source(e)) 

INVARIANT 13 For all reachable states of SUM"P and for all v and e: 

--, /nit(v ) /\ source(e) = v /\ e- 1 f. tree[v] -+ scnt[e] = 1 

LEMMA 6 A reachable state of SUM1'P has no outgoing steps if and only if 

Done(v0 ) holds in that state. 

PROOF: (Sketch) 
"~" If Done ( v0 ) holds then we can prove using Invariant 10 that Done ( v) 

holds for all nodes v. Then Invariants 2 and 3 together imply that no message 

is in transit. Consequently, no step of SUM"P is enabled. 
"=>" Suppose that some given state is deadlocked. Then no message can be 

in transit on the spanning tree, otherwise a MSC step would be enabled. This 

implies, by Invariants 11 and 13, that --, /nit(v) holds for all nodes v. This 

in turn implies that no message can be in transit on any link it the network 

(otherwise a MSC action would be enabled). Next we use Invariant 13 to infer 

that exactly one message has been sent on each link in the network, except 

those on the reversed spanning tree. Finally, we prove for all nodes v of the 

network, starting with the leaves of the tree, that v has received a message over 

all incoming links; since no REPORT or RESULT action is enabled in v this 

implies Done(v) . D 

THEOREM 7 Automaton SUM .5atisfies property <I>. 

PROOF: Follows from the fact that SUM"r• satisfies <I> and the existence of a 

strong history relation from SUM to SUM" and a strong prophecy relation 

from SUM" to SUM 11P. D 

5 CONCLUDING REMARKS 

The verification of this paper has not yet been proof-checked by computer, 

but I expect that this will be a routine exercise, building on earlier work on 

mechanical checking of I/O automata proofs [19, 4, 15]. Although I have carried 

out the verification using a simple version of the 1/ 0 automaton model , it is 

probably trivial to translate this story to other state based models, such as 

Lamport's Temporal Logic of Actions [8]. 
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Stability Analysis of a Difference Scheme for 

Three-Dimensional Advection-Diffusion Problems 1 

Dedicated to Cor Baayen at the Occasion of his Retirement 

as our Scientific Director 

1 INTRODUCTION 

1.1 General 

J.G. Verwer 
B.P. Sommeijer 

CW/ 

The authors of this contribution belong to the research group Discretization 
of Evolution Problems of CWI's Numerical Mathematics Department. This 
research group focuses on fundamental and applied research into numerical 
methods for evolutionary differential equations. Both ordinary and partial dif
ferential equations are treated. In recent years much attention is devoted to 
large-scale applications and high performance computing. In this connection, 
an important research subject concerns Transport Problems in Environmental 
Applications which are constituted by systems of time-dependent partial differ
ent ial equations of the advection-diffusion-reaction type. Numerical research 
for this type of problems is important for the simulation and prediction of the 
chemistry and transport of hazardous pollutants in the atmosphere, groundwa
ter and shallow water. Because the systems are usually three-dimensional in 
space and usually contain many components, one for each chemical or biological 
const ituent in the model, they are extremely CPU and memory intensive and 
in fact belong to the computationally most expensive models in environmental 
research and fluid dynamics. Consequently, high performance computing on 
powerful vector and parallel computers is an important field of research for 
these applications. 

Moreover, when new methods and techniques designed for high-performance 
use on such computers are developed, also their fundamental numerical proper
ties need to be investigated, notably their stability, consistency and convergence 
properties. The present contribution provides an example of such a theoretical 
investigation. This paper deals with a linear stability analysis of a method 
recently designed in our group for the numerical integration of transport prob
lems in shallow water on vector and parallel computers. To appreciate the 

1This research was supported by C ray Research Inc. under grant C RG 94.04 via the 
Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NC F ). 
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complete paper the reader should have a numerical hackground. Fortunately, 

the linear stability analysis for difference schemes of the type considered here is 

based on the well-known Fourier method as proposed by J . Von Neumann (see 

[8], which is one of the earliest papers where the Fourier method is applied to 

finite-difference equations). This means that an important part of the paper, 

viz. Section 3, should be accessible, and hopefully is of some interest , for many 

readers without any numerical background. 

Section 3 is almost self-contained. Here we study the problem of determining 

the location of the zeros of a polynomial relative to the unit circle in the complex 

plane. This problem is of long standing (see Schur [11]) and of great practical 

relevance in applied mathematics (see Miller [6]). In our case we have to deal 

with a quadratic polynomial whose coefficients are complex-valued functions of 

a real variable, a phase angle. These functions are determined by the difference 

scheme and contain so-called advection and diffusion parameters. The question 

is what conditions should be imposed on these coefficient functions , and hence 

on their defining parameters, such that the two zeros lie on the unit disc for all 

phase angles. The resulting conditions determine the critical stepsize for the 

linear time step stability of the difference scheme. The analysis to solve this 

stability question shows interesting aspects and surprising results. 

1.2 Research contents 

In (12] and (13] an odd-even-line hopscotch (OELH) method is developed and 

implemented for the efficient numerical solution of three-space dimensional 

advection-diffusion problems modeling the transport. of pollutants and sus

pended material in shallow water. A special feature of this OELH method 

is that it is explicit for the horizontal transport and implicit for the vertical 

transport. The implicitness in the vertical direction is necessary to avoid a too 

stringent stability restriction on the time step. This implicitness gives rise to 

the solution of a large set of tridiagonal systems, one for every grid point in 

the horizontal plane. The solution of this large set of tridiagonal systems can 

be vectorized and parallelized over the horizontal grid, which results. in a very 

good performance [13]. In the comparison with other techniques discussed in 

[12, 13], the method has been shown superior. 
In neither of the aforementioned two papers a comprehensive stability anal

ysis is given. The purpose of the present paper is to fill up this gap. For 

the general, constant coefficient, linear advection-diffusion model problem we 

will derive sufficient and necessary conditions for von Neumann stability in the 

strict sense. Strict means that the stability property we investigate requires the 

absolute value of amplification factors less than or equal to one. The stability 

analysis is based on an equivalence with an associated scheme which is com

posed of the leap-frog, the Du Fort-Frankel, and the Crank-Nicholson scheme. 

The actual Fourier analysis is carried out for this associated scheme and ap

pears to be rather intricate. For example, the resulting expressions for critical 

stepsizes reveal that the presence of horizontal diffusion generally leads to a 
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smaller value, in spite of the fact that we have unconditional stability for pure 
diffusion problems. 

2 THE OELH METHOD FORMULATED FOR THE MODEL PROBLEM 

We consider the 3D, constant coefficient, scalar advection-diffusion model prob
lem 

(1) 

Let 
(2) 

be the semi-discrete approximation, resulting from the use of 2nd-order central 
differences at the uniformly spaced gridpoints 

(xi, Yj, zk) = (ihi,jh2, kh3). 

The basic formula [l, 2, 3, 4] defining the OELH method studied in [12, 13] 
then reads 

U11+1 = U" + r (} 'T} L11U
11 + r011+1 L11U11+1 

!. !. !. !. ! !. ' 
(3) 

where i. = (i,j, k), r = t11+1 - t,., and the hopscotch parameter Oj' is defined 
by -

(}" = { 1 
! 0 

for odd values of n + i + j, 
for even values of n + i + j. (4) 

Notice that the subscript k is not involved in this definition , i.e., all gridpoints 
on a vertical gridline have the same 0-value. If we consider only the odd points 
(in the space-time grid), then the forward Euler rule results, 

U11+1 = U" + rL U" !. .!. h ! , (5) 

and at the even points, for the same n, we have the backward Euler rule 

un+i = U" + T L un+i 
! ! " ! . 

(6) 

Consequently, by first applying the explicit forward Euler method at all odd 
points, and subsequently the implicit backward Euler method at all even points, 
we have carried out one step with (2.3). The merit of the method lies in the 
fact that the implicit step is only implicit for the vertical direction. This follows 
from the 3-point coupling in the horizontal directions and from the definition 
of the (}I' . If we remove the third dimension, then we recover the odd-even
hopscotch scheme (OEH ) which is scalarly implicit. Note that the OEH scheme 
for the ::m problem results if we replace (n + i + j) in Oj' by (n + i + j + k). 
The stability of the OEH scheme applied to (2.1) has be;n studied iu [14]. 

The von Neumann stability approach cannot lie carried out for (2.3) as it 
stands. Following [3, 14], we therefore derive an equivalent formula which 
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does admit Fourier analysis. First introduce, for m = 1, 2, 3, the advection 
parameter c111 and the diffusion parameter am, 

and the difference operators Hm and o?n, 

oiU:!. = Ui+ijk - 2Uijk +Ui- ljk, etc. 

We then may express rL 11 U:!. as 

3 

rL,.Ui = L (- ~c,.nHm + amo;.) u :!.. 
m = l 

(7) 

(8) 

(9) 

(10) 

Next introduce, in addition to (2.3), the OELH formula for the next time step 

(11) 

Using (2.3), (2.4) and (2.11), for the odd points we then can write, considering 

time levels n and n + 2, 

u n+2 = U!' + T L11 (u" + un+2
) 

!. ! !. !. . 
(12) 

Likewise, for the even points we find 

(13) 

Next we elaborate the odd-point formula (2.12). Using (2.13) to eliminate 

variables at even points, an elementary calculation with (2.10) shows that (2.12) 
can be written as 

(1 +a) u;:+2 = (1 - a) U{' + (4a1µ1 + 4a2µ2) UI1+1 -

(c1H1 + c2H2) UJ.'+ 1 + ( - ~c3H3 + a315'5) ( UJ.' + u; +2) , (14) 

where µm is the averaging operator 

(15) 

and 
(16) 

It is important to note that in (2.14) only variables at odd numbered points 

appear. This means that the solution defined by (2.3), can first be computed 
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by means of (2.14) at the complete set of odd points, and thereafter at the 
complete set of even points by means of (cf. (2.13)) 

U"+l = ! (w' + U!<+2
) ! 2 ! ! . (17) 

Hence for the stability analysis we may proceed with the odd-point scheme 
(2.14), because the sets of even and odd points are decoupled. 

We see that this odd-point scheme is composed of the leap-frog scheme for 
the horizontal advection part, 

u;+2 = Uf - (c1H1 + c2H2) u;+i, (18) 

of the Du Fort-Frankel scheme for the horizontal diffusion part, 

(1 +a) U{'+2 = (1 - a) Ui' + (4a1µ1 + 4a2µ2) U{'+l, (19) 

and of the Crank-Nicholson scheme, with stepsize 2r, for the vertical advection 
and diffusion part, 

(20) 

Consequently, in view of the unconditional stability of the Crank-Nicholson 
and Du Fort-Frankel scheme, at first sight one might expect that the critical 
stepsize for stability equals that of the leap-frog scheme (2.18). In the next 
section we will prove that this is indeed true if there is no horizontal diffusion. 
However, if horizontal diffusion terms are present, then the situation turns out 
to be more complicated. We will show that in this case the critical stepsize is 
generally smaller. 

3 STRICT VON NEUMANN STABILITY 

Substitution of the Fourier mode 

into scheme (2.14) leads to the characteristic polynomial 

with coefficients 

uu - 1 +a - 2a~ (cos03 - 1) + /c3sin03, 
2 

L - 4amcos0m+2lcmsin0n,, 
m = l 

(21) 

(22) 

(23) 

where 0,,. = w,,. h,,. denotes the phase angle. The specific stability property we 
will investigate is von Neumann stability in the strict sense: 
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DEFINITION 1 Method (2. 14) is called von Neumann stable if the zeroes 6 , 6 
of the characteristic polynomial (3.2) satisfy 

!~ ii, 161S 1 for all IOml S rr, m = 1,2,3. (24) 

Hence strict means that the stability property we investigate requires the ab

solute value of amplification factors less than or equal to one. In literature, 

this is also called 'practical' or 'modified' von Neumann stability (9, 7, 5]. Note 

that the original von Neumann condition is weaker as it requires l~I S 1 + 0 ( T) 

[9]. As is well known, for advection-diffusion problems this weaker condition 

can lead to unacceptably large errors [7]. Strict stability is also more natural 

here, since Fourier modes of the true solution cannot grow in time either. 

For the von Neumann analysis we will use results from [6]. We therefore 

introduce the polynomial 

(25) 

and the so-called first reduced polynomial 

(26) 

where 

li2a1 - a1ao = -8 ,'!;a,,. cosOm +I ( 8c3sin03 'j;,
1 
a,,. cosOm ) + 

I ( 4 (a+ 2a3 - 2a3 cos 03) ,i; Cm sin 0111 ) (27) 

and 
(28) 

Note that in the pure advection case the first reduced polynomial vanishes, 

because then am = 0 form = 1, 2, 3. 
In the remainder of this section we will prove and discuss two stability the

orems. Theorem 1 deals with the case where horizontal diffusion is absent 

(f1 = 0, f2 = 0 and f3 ;::: 0). In Theorem 2 we consider the remaining 

cases where diffusion exists in at least one of the two horizontal directions 

(f1;::: O,f2 ;::: 0,f3 ;::: 0 and f1 +f2 > 0). In both theorems all velocities c111 may 

take on arbitrary values, including zero. 

THEOREM 1 Suppose f1 = 0, f2 = 0 and f3 ;::: 0. Then we have von Neumann 

stability if and only if 
(29) 

PROOF. We distinguish the two cases f3 = 0 and f.;~ > 0. First suppose f3 = 0. 

Then the first reduced polynomial Ji = 0, so that according to case (ii ) of Th. 
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6.1 from [6], there holds 161, 161 ::; 1, if and only if the root fo of the derivative 

polynomial J' satisfies lfol ::; 1. Since ~o = - aif2a2 we find 

( t Cm sinOm )

2 

IC 12 _m_=_l __ ~-
<,,O = l + _') · 2 0 ' C;j Sm 3 

(30) 

which immediately proves the theorem for the case t:3 = 0. Next suppose 

t:3 > 0. Two subcases then must be distinguished, viz. phase angle 03 = 0 and 

03 =f. 0. If 03 = 0, then again f 1 = 0 and the proof goes the same as above. If 

03 =f. 0, then Ji does not vanish so that now case (i) of Th. 6.1 from [6] applies. 

That is, 161 , 16 1::; 1, if and only if 

(a) lf*(O)I > lf(O)I and 

( b) The root fo of Ji satisfies l ~o I ::; 1. 

Condition (a) means la2! > laol or, according to (3.8), 

ia212 - laol 2 = a2a2 - aoao = 4 (CT + 2CT3 - 2CT3 cos03) > 0. (31) 

We immediately conclude that condition (a) is unconditionally true because 

the diffusion parameter CT3 is positive and CT = 0. Generally, condition (b) is 

true if and only if 

2 ( 2 ) I - 2 1~1 CTm cos 0,,. + I 2c3 sin 03 ].;
1 

CT111 cos 0,,, + 

I ( ( CT + 2CT3 - 2CT3 cos 03) ,tl Cm sin 0,,. ) I :=:; CT + 2CT3 - 2CT3 cos 03. ( 32) 

Because CT1 = CT2 = 0 and CT3 > 0, this inequality simply means that 

2 

I L Cm sinOml :=:; 1, 
m = l 

which immediately proves the theorem also for the case t:3 > 0. D 

In the situation of Theorem 1 the Du Fort-Frankel scheme is absent in (2.14), 

so that only the leap-frog scheme and the Crank-Nicholson scheme as combined 

in (2.14) play a role. Theorem 1 nicely shows this. We see that the critical 

stepsize for von Neumann stability is determined by the familiar CFL condition 

of the leap-frog scheme (2.18), 

(33) 
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This is an optimal result in the sense that the vertical velocity q3 and the 

vertical mesh width h:~ are absent in the stability condition, which is due to the 

unconditional stability of the Crank-Nicholson scheme. Especially h3 should 

be absent, since in shallow water transport problems h3 is significantly smaller 

than h1 and h2 . This, in fact , was the motivation for developing the odd-even

line hopschotch method [12, 13]. Also note that in the case of pure advection 

(Em = O,m = 1,2,3} the characteristic polynomial f is conservative (161 = 
161 = 1) as long as (3.13} holds (Th. 6.4, [6]}. If we impose strict inequality, 

then f is simple conservative (conservative and 6 -:/:- 6, see [6], Cor. 6.5). This 

means that in the case of pure advection the OELH scheme does not damp 

Fourier modes, which is a natural property because the true Fourier modes are 

not damped either. If f.3 > 0, then one of the amplification factors must lie 

in the open unit disc as long as (3.13} holds, since Ji does not vanish. If we 

impose strict inequality in (3.13}, then both factors lie in the open unit disc 

which means damping of Fourier modes similar as for the true solution. 

Before we present Theorem 2, we first give a result due to [5] and repeat its 

proof here for reasons of self-containedness. 

LEMMA 1 Consider the finite, real-valued series 

M ( M )2 
S = 1 - f

1 

amo;, + ].; c,,,O,,. 

Suppose a,,. 2". 0 for all m = 1, ... ,M. Then we have S::; 1 for all 811., if and 

only if 

PROOF. Denote 

Cl' = diag( Cl' 11 ••• , Cl' M), C = ( C1, . . . , CM f, 0 = ( 81 , ... , (} M f. 

Then S can be expressed as 

s = 1 - iP"(a - ctI')if. 

Thus, we have S :::; 1 for all 0, if and only if the matrix f3 = a - c ifI' is 

non-negative definite. In particular, its diagonal elements a,,. - c;,. must be 

non-negative, so that O'm = 0 implies c,,. = 0 and the m-th dimension can be 

dropped. Hence in the remainder of the proof we may assume all O'm > 0. If 

we then define 
- - 1/2 - d" ( - 1/2 - 1/2) 

I - Cl' - lag 0'1 '···'a M ' 

we have (J = a 112 (ht - 1cifI' 1)a1/ 2 and the matrix 

f3
1 

= IM -1ctI' I = IM - (IC)(lcf = IM - JJr, 
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where d = 1c, must also be non-negative. This, in turn, means non-negativity 
of 

jI' ri z = jI' z - (dr Z) 2 

for all z. We can deduce that this is true if and only if 

d"""'r d ::; 1. 

Sufficiency follows immediately from the Cauchy-Schwarz inequality 

(d"""'l'Z) 2 ::; (d"""'r d)(fI'Z) 

and necessity by selecting Zm = cdm form = 1, ... , M, where c is an arbitrary 
constant. Since d"""'r d = I: c;n/ am, the proof is complete. D 

This lemma is used to prove necessity of inequality (3.14) in Theorem 2. 
Note that in certain cases the sum in (3.14) is infinite (division by am = 0), 
implying that the interval for von Neumann stability is empty. This situation 
is discussed in more detail later on. We wish to emphasize that the proof of 
this theorem is inspired by the proof of the stability theorem in [5], which also 
uses the result of Lemma 1. 

THEOREM 2 Suppose E1 , E2, E3 ~ 0 and E1 +E2 > 0. Then we have von Neumann 
stability if and only if 

3 2 

L::~ < i. 
m = l 2am/a -

(34) 

PROOF. Because a > 0, the first reduced polynomial Ji does not vanish so 
that case (i) of Th. 6.1 from [6] applies, similar as in the second part of the 
proof of Theorem 1 above. Hence, 161, 161 ::; 1, if and only if inequalities 
(3.11) and (3.12) are true. We immediately conclude that inequality (3.11) 
is unconditionally true, because a > 0 and a 3 ~ 0. So our task is to check 
inequality (3.12). Denote 

a* = a+ 2a3 - 2a3 cos ()3, 

a:,, 2am/ a*, m = 1, 2, 

ci c1, c~ = c2, cj = c3 L a:,.cos(Jm· 
m = l,2 

Inequality (3.12) is equivalent to lµI ::; 1. where 

2 3 

µ = ; - L a:,,(1 - cos(Jm) - L Ic:,. sin(Jm· 
m = l m = l 

Introduce the new diffusion parameter aj by writing 

.!!.__ = 1 - a;(l - cos ()3) , 
a* 
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which implies the same expression as for ai and a2, 

(37) 

Note that for zero phase angle 83 the definition of aj through (3.16) is mean

ingless. However, from the limiting case 

it follows, by substitution of (3.17) into (3.16), that expression (3.17) is also 

valid for fh = 0. Hence, for all phase angles we can write 

3 3 

µ = 1 - L::a~,( l -cos(}711 ) - L::1c;nsin811., (38) 
m = l m = l 

so that inequality (3.12) is true if and only if 

Our task is now to prove that (3.14) is necessary and sufficient for (3.19). 

We will first establish necessity of (3.14). Consider the limiting case: 8111 --+ 0 

with IBm I ::; (} for m = 1, 2, 3. For 8:1 --+ 0 we have 

* 2am ( 2) 2 a 111 =--+003 for m = l,2,3 and c~=c:1+0(8 ), 
a 

so that in the limiting case jµj 2 satisfies 

2 2am 2 4 3 ( :1 )2 
lµI = 1 - 1~1 -;;-8,,, + 1~1 c,,,fJTll + 0(8 ). (40) 

Set a 111 = 2a111 / a. Because a > 0, we have O:m 2: 0 form = 1, 2, 3 and appli

cation of Lemma 1 immediately reveals the necessity of (3.14). In particular, 

if a Gm = 0, then the corresponding c,,. must be zero too, which means that 

the dimension is dropped. Hence, in the sufficiency part of the proof we will 

assume that all O:m are positive and observe that for a lower dimension the 

proof of sufficiency goes entirely similar. 
To prove sufficiency of (3.14) we proceed as follows. Write 

3 2 

'"" * . (} '"" Cm r,:;:- . (} ~ cmsm m = ~ r,:;;- yO'.m sm m + 
m=l m = l yO'.m 

( 41) 
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The Cauchy-Schwarz inequality then yields 

( t c;,, sin Om ) 

2 

S 
m = l 

( 

3 2 ) I: ~ 
m = lam 

Set Ym = cosOm and invoke (3.14}. Using a1 + a2 = 1, we then can write 

Further, using a* = a+ 2a3(l - y3), we have 

so that there remains to prove 

2 1 2 lµI S 1+~(2a1Y1+2a2y2) + 03 
a 

(atyi + a~y2)2 
(1 - y3)2 - a1yi - a2y~ S 1 

(42} 

(43} 

(44) 

(45) 

for all Ym E [-1, 1], m = 1, 2, 3. Define jJ = (y1, Y2)T and Y = a3(l - ya). Then 

the second inequality can be rewritten as 

(46) 

where A is a symmetric two-by-two matrix with the entries 

A 
_ 4(Y + 1) 2 2a1 A _ 4(Y + 1) 

11 - 2 a1 - -, 22 - 2 a1a2, 
a* a a* 

A22 = 4(Y ~ 1) a~ _ 2a2 . 
a* a 

(47) 

Note that the entries do depend on y3 , but not on jJ. Hence, it is sufficient 

that A is non-positive definite for all y3 E (-1, l]. Because A12 > 0, A is 

non-positive definite if 

A trivial calculation shows that this is indeed the case for all y3 E [ - 1, 1], which 

completes the proof of the theorem. D 

Any case covered by Theorem 2 involves the Du Fort-Frankel scheme in 

(2.14) since a > 0. We emphasize that this gives rise to curious and unexpected 
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stability results. Substitution of a,,,, Cm in (3.14) shows that the critical stepsize 
for von Neumann stability in all cases covered by Theorem 2 is determined by 

(48) 

First, we see that the vertical meshwidth h3 is absent, which is advantageous 
as we explained in the discussion of Theorem 1. Second, for zero velocities 
(the pure diffusion case) we have unconditional stability, which is in complete 
agreement with the unconditional stability of the Du Fort-Frankel scheme (2.19) 
and the Crank-Nicholson scheme (2.20). However, if a velocity is not zero, then 
the corresponding diffusion parameter plays a role. Surprisingly, the critical 
stepsize determined by (3.28) is generally smaller than the one determined by 
the CFL condition (3.13) and in fact can be zero. 

To see this, let us first suppose that f 1 , f2, f3 are positive. Application of the 
Cauchy-Schwarz inequality to the CFL condition (3.13) then leads to (3.28) as 
follows, 

(49) 

Generally (3.28) appears to be more restrictive, implying a smaller critical 
stepsize. We consider this curious because it means, for example, that adding 
artificial diffusion to the advection problem can have a destabilizing effect for 
the time integration, rather than working out stabilizing. A similar curious 
situation has been observed earlier in [10, 14]. Also note that if the three 
diffusion parameters are equal, then they cancel out in (3.28) so that the critical 
stepsize then even is independent of the diffusion, but yet smaller than in the 
case of the CFL condition. Of course, the difference between the two conditions 
is minor if 

(50) 

The observation that for cases covered by Theorem 2 the critical stepsize can 
even be zero, follows directly from inspection of (3.28). For example, if we take 
qi, q2 , q3 # 0, f 1 , f 2 fixed and f 3 __, 0, then T __, 0 when satisfying the stability 
inequality. By also taking into account Theorem 1, we thus can formulate: 

THEOREM 3 For von Neumann stability it is necessary that either both f 1 and 
f2 are zero or positive and if they are both positive, then it is required to have 

f3 > 0 too. 
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4 THE Du FORT-FRANKEL DEFICIENCY 

We will further explain this curious stability result by relating it with the 
well-known Du Fort-Frankel deficiency, which describes the situation that for 
parabolic problems this method is only conditionally convergent, in spite of its 
unconditional stability {see [9], Sect.7.5). 

The necessity of (3.14) or (3.28) has been established from the asymptotic 
relation (3.20) where all three phase angles Orn ---+ 0. This suggests to compute 
for this limiting case the maximum of the absolute value of the two amplification 
factors ~i.6 directly from the polynomial (3.2). Denote ~max = max(lfal, 161). 
An elementary calculation then yields 

(51) 

Indeed, use of Lemma 1 shows again the necessity of (3.14). However, expres
sion ( 4.1) also reveals a link with the aforementioned convergence deficiency. 
To see this, consider the modified equation for scheme (2.14) (cf. [9], Sect. 
7.5), 

Ut +QI Ux + Q2Uy + Q3Uz = f1 Uxx + E2Uyy + f3U zz - !aTUtt· (52) 

This modified equation shows the convergence deficiency through the additional 
term - ~aTUtt· To establish the link between our stability deficiency and the 
convergence deficiency, it now suffices to substitute a Fourier mode into ( 4.2) 
and to compute the associated continuous amplification factor for vanishing 
phase angles, similar as we did in the derivation of (4.1). We then find that 
the continuous amplification factor just equals (4.1), up to 0(03 ). Further, it 
then follows that the term which causes the instability, that is, 

(53) 

originates from the deficiency term - !aTUtti although this term itself is inde
pendent of the velocities Cm· This means that also the modified equation is 
unstable if (3.14) is violated, in the sense that it admits growing Fourier modes 
in the low frequence range. This obviously implies that this then also must 
happen for scheme (2.14) when subjected to the von Neumann stability test. 

Noteworthy is that if we bound the phase angles from below, say Om ~ 00 > 0, 
that then an interval 0 < T ~ To exists for which the amplification factors 6, 6 
are strictly less than one. This follows from expression (3.18), since its real part 
is independent of T and can be made < 1 by taking 80 sufficiently small, while 
the imaginary part can be made sufficiently small by taking To small enough. 
Hence, if we consider a fixed grid, then we can always achieve stability, but of 
course To becomes smaller if the grid is refined. 
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5 PRACTICAL CONSIDERATIONS 

Strict von Neumann stability is known to have great practical relevance. There 

is no doubt that the von Neumann method is the best single technique (cf. [5]) 

for finding necessary conditions for stability if we are in a non-model situa

tion, which in practice of course always happens. In this connection a natural 

question is, how bad actually is the stability deficiency for the OELH scheme. 

In other words, should we in practice consider the CFL condition (3.13) as a 

'practical restriction', or should we take the more stringent condition (:3.28) 

really serious. 
Let Tc:Jl and T(J .28) denote the critical stepsizes. Because the necessity of 

condition (3.14) shows up in the limiting case (},,, --> 0, the maximum ( 11111 :r as 

derived in ( 4.1) will be only marginally larger than one if T(:l. 2s) < T :::; Tc: Jl . 

However , there is a possibility that other critical combinations of phase angles 

exist, away from zero, which also lead to (3.14) . Therefore we have computed 

approximate values of ~mrz:r. (the maximum taken over all discrete 0-values) as a 

function of T for several choices of f,,,, qm, h111 • We indeed observed other critical 

8-combinations away from zero. Yet, in all tests~""'" appeared to become only 

marginally larger than one in the stepsize range T(:i. 28 ) < T :::; Tcfl, similar as 

in the limiting case which Jed to (3.14). 
Figure 1 shows a plot of ~,,. 11 ,,( T) which is characteristic for the tests consid

ered. We see that the overshoot due to violating (3.28) is practically insignif

icant. In the interval T( :i. 28 ) < T :::; Tr: Jl the overshoot of ~""',,( T) is :::; 0.001. 

However , as expected, we also see that T > Tc:Jl will quickly result in severe 

instability. The fact that the CFL condition should be satisfied in general, thus 

also in all cases covered by Theorem 2, can be understood by computing (3. 18) 

for special choices of the 0,,,. For example, for 8111 = ~' m = 1, 2, 3, we get 

:i :l 

JL = 1 - La~, - L Jc;,, = - J (c1 + c2) , (54) 
111.= l 1n= l 

which trivially yields the CFL condition (3.13) for positive c1,c2 (cf. (3.IU)). 

We conclude that the more stringent condition (3.28) is only a theoretical 

curiosity. For the actual practice it will be of little importance since the in

stability that will occur by violation is so small that it will not he observed in 

actual computation, of course as long as the CFL condition (3.13) is satisfied. 

This condition is highly relevant for the actual practice and should always be 

obeyed. On the other hand, violation of (3.28) will only he noticable after an 

unrealistically large number of time steps. To illustrate this in actual integra

tion, we applied the OELH integrator to the model equation (2.1), discretized 

on a uniform 40x40x10 grid, using periodic boundary conditions. The parame

ters in this experiment were set to the same values as in Figure 1 and the grid 

sizes to (hi, h2, h3) = (500, 500, 10). These values yield 

T<: fl = 100.0, T(:l.28) = 37. 7. 
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FIGURE 1. Plots of ~max(r) for the parameters (E1,f2 , f3) = (1.0,0.5,0.01) , 

(q1 , q2 , q3) = (3, 2, 1). The grid sizes are (hi, h2, h3) = (200, 200, 1). This yields 

T(3 .2s) ~ 15.1 and Tc fl = 40.0. The left plot covers the r-interval 0 ~ T ~ 50, 

the middle plot 0 ~ T :::; Tcfl and the right plot Tc fl ~ T ~ 50. The middle and 

the right plot show a finer scale in the vertical. 
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Obviously, u = 1 is an exact solution for the test model. To study the long
term stability behaviour of the OELH method, we slightly perturbed the init ial 
condition to u(x, y , z ) = 1.0 + 8g(x, y , z), with g a smooth function with max
imum modulus equal to 1.0 and 8 = 10- 5

. Tahle 1 contains the values of t he 
experimental amplification factors 

(55) 

for various values of T and N. Here U;N denotes the numerical solution at 
grid point i after N steps of length T. The results are self evident. Violation 
of the CFL condition is disastrous, whereas violat ion of (3.28) leads to error 
growth, hut only destroys the solution after an unrealistically large number of 
time steps. 

T = 37 T = 100 T = 100.1 
N = lQ'I 0.724 3.68 101oa 

N = 105 0.497 870 
N = 5. 105 0.362 1020 

Tahle 1: Experimental amplification fact.ors (5 .2). 

Finally, it is also of interest to recall the convergence deficiency, from which 
the OELH scheme also suffers. Presumably, this convergence deficiency is also 
of little relevance for the shallow water transport application. In this appli
cation the regular temporal and spatial truncation errors are expected to be 
larger than the error induced by the parasitic, non-physical term 4aru11 • For 
example, in the experiments reported in [12, 13] this error plays no role. Ex
periments where this error is shown, though, can be found in [14] . 
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Randomness 

Paul Vitanyi1 

CWI and Universiteit van Amsterdam 

These draft excerpts of the chapter "Randomness" in 20th Century Math
ematics in preparation for the 'Matematica, Logica , lnformatica' Volume 12 

of the Storia del XX Secolo, to be published by the Jnstituto della Enci

clopedia Italiana, are dedicated to (or Baayen. Here we present in a single 

essay a combination and completion of the several aspects of the problem of 

randomness of individual objects which of necessity occur scattered in our 

text [3] . 
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P.S. Laplace (1749 - 1827) has pointed out the following reason why intuitively 
a regular outcome of a random event is unlikely. 

"We arrange in our thought all possible events in various classes; and we 
regard as extraordinary those classes which include a very small number. 
In the game of heads and tails, if head comes up a hundred times in a row 

then this appears to us extraordinary, because t he almost infinite number 
of combinations that can arise in a hundred throws are divided in regular 

sequences, or those in which we observe a rule that is easy to grasp, and 
in irregular sequences, that are incomparably more numerous" . 
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If by 'regularity ' we mean that the complexity is significantly less than maximal, 
then the number of all regular events is small (because by simple counting the 
number of different objects of low complexity is small). Therefore, the event 
that anyone of them occurs has small probability (in the uniform distribution). 
Yet , the classical calculus of probabilities tells us that 100 heads are just as 
probable as any other sequence of heads and tails, even though our intuition 
tells us that it is less 'random' than some others. Listen to the redoubtable Dr. 
Samuel .Johnson: 

"Dr. Beattie observed, as something remarkable which had happened to 
him, that he chanced to see both the No. 1 and the No. 1000, of the 
hackney-coaches, the first and the last; 'Why, Sir', said Johnson, 'there 
is an equal chance for one's seeing those two numbers as any other two.' 
He was clearly right; yet the seeing of two extremes, each of which is in 
some degree more conspicuous than the rest, could not but strike one in 
a stronger manner than the ·sight of any other two numbers." [Boswell 's 
Life of Johnson] 

Laplace distinguishes between the object itself and a cause of the object. 

"The regular combinations occur more rarely only because they are less 
numerous. If we seek a cause wherever we perceive symmetry, it is not 
that we regard the symmetrical event as less possible than the others, 
but, since this event ought to be the effect of a regular cause or that of 
chance, the first of these suppositions is more probable than the second. 
On a table we see letters arranged in this order C o r B a a y e n, and 
we judge that this arrangement is not the result of chance, not because 
it is less possible than others, for if this word were not employed in 
any language we would not suspect it came from any particular cause, 
but this word being in use among us, it is incomparably more probable 
that some person has thus arranged the aforesaid letters than that this 
arrangement is due to chance." (Slightly paraphrasing Laplace) 

Let us try to turn Laplace's argument into a formal one. First we introduce 

some notation. If x is a finite binary sequence, then l(x) denotes the length 

(number of occurrences of binary digits) in x. For example, l(OlO) = 3. 

Occam's Razor 

Suppose we observe a binary string x of length l( x) = n and want to know 

whether we must attribute the occurrence of x to pure chance or to a cause. 

To put things in a mathematical framework, we define chance to mean that the 

literal x is produced by independent tosses of a fair coin. More subtle is the 

interpretation of cause as meaning that the computer on our desk computes x 

from a program provided by independent tosses of a fair coin. The chance of 

generating x literally is about 2 - n. But the chance of generating x in the form 

of a short program x*, the cause from which our computer computes x, is at 

least 2 - l(x*). In other words, if x is regular, then l(x*) « n, and it is about 

2n - l(x*) times more likely that x arose as the result of computation from some 

simple cause (like a short program x*) than literally by a random process. 
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This approach will lead to an objective and absolute version of the classic 
maxim of William of Ockham (1290? - 1349?), known as Occam's razor: "if 
there are alternative explanations for a phenomenon, then, all other things 
being equal, we should select the simplest one". One identifies 'simplicity of 
an object' with 'an object having a short effective description' . In other words, 
a priori we consider objects with short descriptions more likely than objects 
with only long descriptions. That is, objects with low complexity have high 
probability while objects with high complexity have low probability. 

This principle is intimately related with problems in both probability theory 
and information theory. These problems as outlined below can be interpreted 
as saying that the related disciplines are not 'tight' enough; they leave things 
unspecified which our intuition tells us should be dealt with. 

Lacuna of Classical Probability -Theory 

An adversary claims to have a true random coin and invites us to bet on the 
outcome. The coin produces a hundred heads in a row. We say that the coin 
cannot be fair. The adversary, however, appeals to probabity theory which 
says that each sequence of outcomes of a hundred coin flips is equally likely, 
1/2 100, and one sequence had to come up. 

Probability theory gives us no basis to challenge an outcome after it has 
happened. We could only exclude unfairness in advance by putting a penalty 
side-bet on an outcome of 100 heads. But what about 1010 ... ? What about 
an initial segment of the binary expansion of 7r? 

Regular sequence 

Pr(OOOOOOOOOOOOOOOOOOOOOOOOOO) = 
2
!

6 

Regular sequence 

Pr(01000110110000010100111001) = 
2
!

6 

Random sequence 

Pr(10010011011000111011010000) = 
2
!

6 

The first sequence is regular, but what is the distinction of the second se
quence and the third? The third sequence was generated by flipping a quarter. 
The second sequence is very regular: 0, 1, 00, 01,.. .. The third sequence will 
pass (pseudo-)randomness tests. 

In fact, classical probability theory cannot express the notion of randomness 
of an individual sequence. It can only express expectations of properties of 
outcomes of random processes, that is, the expectations of properties of the 
total set of sequences under some distribution. 
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Only relatively recently, t.his problem has found a satisfactory resolution by 

combining not.ions of computability and statistics t.o express the complexity of 

a finite object. This complexity is the length of the shortest binary program 

from which t.he object can be effectively reconstructed. It may be called the 

algorithmic information content of the object. This quantity turns out to be 

an attribute of the object alone, and absolute (in the technical sense of being 

recursively invariant). It is the K olmogorov complexity of the object. 

Lacuna of Information Theory 

Claude Shannon's classical information theory assigns a quantity of information 

to an ensemble of possible messages. All messages in the ensemble being equally 

probable, this quantity is the number of bits needed to count all possibilities. 

This expresses the fact that each message in the ensemble can be comnmni

cated using this number of hits. However, it does not say anything about the 

number of bits needed to convey any individual message in the ensemble. To 

illustrate this, consider the ensemble consisting of all binary strings of length 

9999999999999999. 
By Shannon's measure, we require 9999999999999999 hits on the average 

to encode a string in such an ensemble. However , the string consisting of 

9999999999999999 l 'scan he encoded in about 55 bits by expressing 9999999999 

999999 in binary and adding the repeated pattern 'l '. A requirement for this to 

work is that we have agreed on an algorithm that decodes the encoded string. 

We can compress the string still further when we note that 9999999999999999 

equals 32 x 1111111111111111, and that. 1111111111111111 consists of 24 l 's . 

Thus, we have discovered an interesting phenomenon: the description of 
some strings can he compressed considerably, provided they exhihit enough 
regularity. This observation, of course, is the basis of all systems to express 
very large numbers and WcL'i exploited early on by Archimedes in his treatise 
The Sand Reckoner, in which he proposes a system to name very large numbers: 

"There are some, King Golon, who think that. the numhcr of sand is 
infinite in multitude [ ... or] that. no number has been named which is 
great. enough to exceed its multitude. [ .. . ] But. I will try to show you, 
by geometrical proofs, which you will be ahle to follow, that., of the 
numbers named by me [ ... ] some exceed not. only the mass of sand equal 
in magnitude t.o the earth filled up in t.l1e way described, but. allm that of 
a mass equal in magnitude to the universe." 

However, if regularity is lacking, it. becomes more cumbersome to express large 

numbers. For instance, it seems easier to compress the number 'one billion,' 

t han the number 'one billion seven hundred thirty-five million two hundred 

sixty-eight thousand and three hundred ninety-four,' even though they are of 

the same order of magnitude. 
The above example shows that we need too many bits to transmit regular 

objects. The converse problem, t.oo little bits, arises as well since Shannon's 

theory of information and communication deals with the specific technology 

problem of data transmission. That is, with the information that needs t.o be 
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transmitted in order to select an object from a previously agreed upon set of 

alternatives; agreed upon by both the sender and the receiver of the message. 

If we have an ensemble consisting of the Odyssey and the sentence "let's go 

drink a beer" then we can transmit the Odyssey using only one bit. Yet Greeks 

feel that Homer's book has more information contents. Our task is to widen 

the limited set of alternatives until it is universal. We aim at a notion of 

'absolute' information of individual objects, which is the information which by 

itself describes the object completely. 
Formulation of these considerations in an objective manner leads again to 

the notion of shortest programs and Kolmogorov complexity. 

2 RANDOMNESS AS UNPREDICTABILITY 

What is the proper definition of a random sequence, the 'lacuna in probability 
theory' we have identified above? Let us consider how mathematicians test 
randomness of individual sequences. To measure randomness, criteria have 

been developed which certify this quality. Yet, in recognition that they do not 
measure ' true' randomness, we call these criteria 'pseudo' randomness tests. 

For instance, statistical survey of initial segments of the sequence of decimal 

digits of 7r have failed to disclose any significant deviations of randomness. But 
clearly, this sequence is so regular that it can be described by a simple program 

to compute it, and this program can be expressed in a few bits. 

"Any one who considers arithmetical methods of producing random digits 

is, of course, in a state of sin. For, as has been pointed out several times, 

there is no such thing as a random number- there are only methods 

to produce random numbers, and a strict arithmetical procedure is of 

course not such a method. (It is true that a problem we suspect of being 

solvable by random methods may be solvable by some rigorously defined 

sequence, but this is a deeper mathematical question than we can go into 

now.)" [von Neumann] 

This fact prompts more sophisticated definitions of randomness. In his fa

mous address to the International Mathematical Congress in 1900, D. Hilbert 

proposed twenty-three mathematical problems as a program to direct the math

ematical efforts in the twentieth century. The 6th problem asks for "To treat 

(in the same manner as geometry) by means of axioms, those physical sciences 

in which mathematics plays an important part; in the first rank are the theory 

of probability .. ". Thus, Hilbert views probability theory as a physical applied 

theory. This raises the question about the properties one can expect from 

typical outcomes of physical random sources, which a priori has no relation 

whatsoever with an axiomatic mathematical theory of probabilities. That is, 

a mathematical system has no direct relation with physical reality. To obtain 

a mathematical system that is an appropriate model of physical phenomena 

one needs to identify and codify essential properties of the phenomena under 

consideration by empirical observations. 
Notably Richard von Mises (1883-1953) proposed notions that approach the 

very essence of true randomness of physical phenomena. This is related with 
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the construction of a formal mathematical theory of probabilit.y, to form a basis 
for real applications, in the early part of this century. While von Mises' objec
tive was to justify the applications to the real phenomena, A.N. Kolmogorov's 
(1903-1987) classic 1933 treatment constructs a purely axiomatic theory of 
probability on the basis of set theoretic axioms. 

"This theory was so successful, that the problem of finding the basis 
of real applications of the results of the mathematical theory of proba
bility became rather secondary t.o many investigators. .. . [however] the 
basis for the applicability of the results of the mathematical theory of 
probability to real 'random phenomena' must depend in some form ou 
the frequency concept of probability, the unavoidable nature of which has 
been established by von Mises in a spirited manner." (Kolmogorov] 

The point made is that the axioms of probability theory are designed so that 
abstract probabilities can be computed, but nothing is said about what prob
ability really means, or how the concept can be applied meaningfully to the 
actual world. Von Mises analyzed this issue in detail , and suggested that a 
proper definition of probability depends on obtaining a proper definition of a 
random sequence. This makes him a 'frequentist'- a supporter of the frequency 
theory. 

The frequency theory to interpret probability says, roughly, that if we per
form an experiment many times, then the ratio of favorable outcomes to the 
total number n of experiments will, with certainty, tend to a limit, p say, as 
n --+ oo. This tells us something about the meaning of probability, namely, the 
measure of the positive outcomes is p. But suppose we throw a coin 1000 times 
and wish to know what to expect. Is 1000 enough for convergence to happen? 
The statement above does not say. So we have to add something about the rate 
of convergence. But we cannot assert a certainty about a particular number 
of n throws, such as 'the proportion of heads will he p ± f. for large enough 11 

(with € depending on n) '. We can at best say 'the proportion will lie between 
p ± f with at least such and such probability (depending on f and n 0 ) whenever 

n > n0 ' . But now we defined probability in an obviously circular fashion. 
In 1919 von Mises proposed to eliminate the problem by simply dividing 

all infinite sequences into special random sequences (called collectives), having 
relative frequency limits, which are the proper subject of the calculus of prob
abilities and other sequences. He postulates the existence of random sequences 
(thereby circumventing circularity) as certified by abundant empirical evidence, 
in the manner of physical laws and derives mathematical laws of probability as 
a consequence. In his view a naturally occurring sequence can be nonrandom 
or unlawful in the sense that it is not a proper collective. 

Von Mises views the theory of probabilities insofar as they are numerically 
representable as a physical theory of definitely observable phenomena, 
repetitive or mass events, for instance, as found in games of chance, pop
ulation statistics, Brownian motion. 'Probability' is a primitive notion 
of the theory comparable to those of 'energy' or 'mass' in other physical 
theories. 
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Whereas energy or mass exist in fields or material objects, probabil
ities exist only in the similarly mathematical idealization of collectives 
(random sequences). All problems of the theory of probability consist of 
deriving, according to certain rules, new collectives from given ones and 
calculating the distributions of these new collectives. The exact formu
lation of the properties of the collectives is secondary and must be based 
on empirical evidence. These properties are the existence of a limiting 
relative frequency and randomness. 

The property of randomness is a generalization of the abundant ex
perience in gambling houses, namely, the impossibility of a successful 
gambling system. Including this principle in the foundation of probabil
ity, v0n Mises argues, we proceed in the same way as the physicists did 
in thr case of the energy principle. Here too, the experience of hunters 
of fortune is complemented by solid experience of insurance companies 
and so forth. 

A fundamentally different approach is to justify a posteriori the ap
plication of a purely mathematically constructed theory of probability, 
such as the theory resulting from the Kolmogorov axioms. Suppose, we 
can show that the appropriately defined random sequences form a set of 
measure one, and without exception satisfy all Jaws of a given axiomatic 
theory of probability. Then it appears practically justifiable to assume 
that as a result of an (infinite) experiment only random sequences appear. 

Von Mises' notion of infinite random sequence of O's and 1 's (collective) essen
tially appeals to the idea that no gambler, making a fixed number of wagers of 
'heads', at fixed odds [say ]J versus 1 - p] and in fixed amounts, on the flips of 
a coin [with bias p versus 1 - p], can have profit in the long run from betting 
according to a system instead of betting at random. Says Church: "this defini
tion [below] ... while clear as to general intent, is too inexact in form to serve 
satisfactorily as the basis of a mathematical theory." 

DEFINITION 1 An infinite sequence a 1, a2 , ... of O's and 1 's is a random se
quence in the special meaning of collective if the following two conditions are 
satisfied. 

1. Let f n is the number of 1 's among the first n terms of the sequence. Then 

for some p, 0 < p < 1. 

1. !11 
Im - = p, 

n-oo n 

2. A place-selection rule is a partial function </J, from the finite binary se
quences to 0 and 1. It takes. the values 0 and 1, for the purpose of selecting 
one after the other those indices n for which </J( a 1 a2 ... an - I) = 1. We 
require (1), with the same limit p, also for every infinite subsequence 

obtained from the sequence by some admissible place-selection rule. (We 
have not yet formally stated which place-selection rules are admissible. ) 
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The existence of a relative frequency limit is a strong assumption. Empirical 

evidence from long runs of dice throws, in gambling houses, or with death 

statistics in insurance mathematics, suggests that the relative frequencies are 

apparently corwe1:qcnt. But. clearly, no empirical evidence can he given for t.he 

existence of a definite limit for the relative frequency. However long the test. 

run , in practice it will always be finite, and whatever the apparent behavior in 

the observed initial segment. of the nm, it is always possible that the relative 

frequencies keep oscillating forever if we continue. 
The second condition ensures that no strategy using an admissible place

selection rule can select a subsequence which allows different odds for gambling 
than a subsequence which is selected by flipping a fair coin. For example, let 
a casino use a coin with probability p = 1/4 of coming up heads all(! pay-off 
heads equal 4 times pay-off tails. This 'Law of Excluded Gambling Strategy' 
says that a gambler betting in fixed amounts cannot make more profit in the 
long run het.t.ing according to a system than from betting at. random. 

"In everyday language we call random those phenomena where we cannot 

find a regularity allowing us to predict precisely their results. Generally 

speaking, there is no ground to believe that random phenomena should 

possess any definite probability. Therefore, we should distinguish be

tween randomness proper (as absence of any regularity) and stochas tic 

randomness (which is the subject. of probability theory). There emerges 

the problem of finding reas ons for the applicability of the mathematical 

theory of probability to the real world." [Kolmogorov] 

Intuitively, we can distinguish between sequences that are irregular and do not 
satisfy t.he regularity implicit. in stochastic randomness, and sequences that are 
irregular but do satisfy the regularities associated with stochastic rnnclonrneRs. 
Formally, we will distinguish the ::;econd type from the first type by whet.her or 
not a certain complexity measure of the initial segments goes to a definite limit. 
The complexity measure referred to is the length of the short.e::;t. description of 
the prefix (in the precise sense of Kolmogorov complexity) divided by its length. 
It will turn out that almost all infinite strings are irregular of the second type 
and satisfy all regularities of stochastic randomness. 

"In applying prohahilit.y theory we do not confine ourselves to negat

ing regularity, but from the hypothesis of randomness of the observed 

phenomena we draw definite positive conclusions." [Kolmogorov] 

Considering the sequence as fair coin tosses with p = 1/ 2, the second condition 

in Definition 1 imys there is no strategy <P (principle of excluded gambling system ) 

which assures a player betting at fixed odds and in fixed amounts, on the 

tosses of the coin, to make infinite gain. That is , no advantage is gained in 

the long run by following some system, such as betting 'head ' after each run 

of seven consecutive tails, or (more plausibly) by placing the nth bet 'head' 

after the appearance of n + 7 tails in succession. According to von Mises, 

the above conditions are sufficiently familiar and a uncontroverted empirical 

generalization to serve as the basis of an applicable calculus of probabilities. 

EXAl\IPLE 1 It. turns out that the naive mathematical approach to a concrete 

formulation, admit.ting simply all partial functions, comes to grief as follow::;. 
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Let a = a1a2 .•. be any collective. Define </>1 as </>1(a1 •. • a; _ i) = 1 if a;= 1, 

and undefined otherwise. But then p = 1. Defining </>o by <f>0 (a 1 .•. a; - 1 ) = b;, 

with b; the complement of a;, for all i, we obtain by the second condition of 

Definition 1 that p = 0. Consequently, if we allow functions like </>1 and </>u as 

strategy, then von Mises' definition cannot be satisfied at all. 0 

In the thirties, Abraham Wald proposed to restrict the a priori admissible </> 

to any fixed countable set of functions. Then collectives do exist. But which 

countable set? In 1940, Alonzo Church proposed to choose a set of functions 

representing 'computable' strategies. According to Church's Thesis, this is pre

cisely the set of recursive functions. With recursive </>, not only is the definition 
completely rigorous, and random infinite sequences do exist, but moreover they 

are abundant since the infinite random sequences with p = 1/ 2 form a set of 

measure one. From the existence of random sequences with probability 1/ 2, 

the existence of random sequences associated with other probabilities can be 

derived. Let us call sequences satisfying Definition 1 with recursive </> Mises

Wald-Church random. That is, the involved Mises-Wald-Church place-selection 

rules consist of the partial recursive functions. 
Appeal to a theorem by Wald yields as a corollary that the set of Mises

Wald-Church random sequences associated with any fixed probability has the 

cardinality of the continuum. Moreover, each Mises-Wald-Church random se

quence qualifies as a normal number. (A number is normal if each digit of the 

base, and each block of digits of any length, occurs with equal asymptotic fre

quency.) Note however, that not every normal number is Mises-Wald-Clmrch 

random. This follows, for instance, from Champernowne's sequence (or mm1-

ber), 
0.1234567891011121314151617181920 ... 

due to D.G. Champernowne, which is normal in the scale of 10 and where the 

ith digit is easily calculated from i. The definition of a Mises-Walcl-Church 

random sequence implies that its consecutive digits cannot be effectively com

puted. Thus, an existence proof for Mises-Wald-Church random sequences is 

necessarily nonconstructive. Unfortunately, the von Mises-Wald-Church defi

nition is not yet good enough, as was shown by J. Ville in 1939. There exist 

sequences that satisfy the Mises-Wald-Church definition of randomness, with 

limiting relative frequency of ones of 1/2, but nonetheless have the property 

that 
f n 1 
~ :'.'.'. 2 for all n. 

The probability of such a sequence of outcomes in random flips of a fair coin is 

zero. Intuition: if you bet 'l' all the time against such a sequence of outcomes, 

then your accumulated gain is always positive! Similarly, other properties of 

randomness in probability theory such as the Law of the Iterated Logarithm 

do not follow from the Mises-Wald-Church definition. 
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3 RANDOMNESS IN TERMS OF EXPECTATIONS 

For a better understanding of the problem revealed by Ville, and its subsequent 
solution by P. Martin-Lof in 1966, we look at some aspects of the methodol
ogy of probability theory. Consider the sample space of all one-way infinite 
binary sequences generated by fair coin tosses. Intuitively, we call a sequence 
'random' iff it is 'typical'. It i:; not 'typical', say 'special', if it has a particu
lar distinguishing property. An example of such a property is that an infinite 
sequence contains only finitely many ones. There are infinitely many such se
quences. But the probability that such a sequence occurs as the outcome of fair 
coin t.osses is zero. 'Typical ' infinite sequences will have the converse property, 
namely, they contain infinitely many ones. 

In fact, one would like to say that 'typical' infinite sequences will have all 

converse properties of the properties which can be enjoyed by 'special' infi
nite sequences. This is formalized as follows. If a particular property, such 
as containing infinitely many occurrences of ones (or zeros), the Law of Large 
Numbers, or the Law of the Iterated Logarithm, has been shown to have prob
ability one, then one calls this a Law of Randomness. 

An infinite sequence is 'typical' or 'random' if it satisfies all Laws of Ran
donmess. That is, a particular 'random' infinite sequence posesses all properties 
which are expected to hold with probability one for the ensemble of all infinite 
sequences. This is the substance of so-called pseudo-randomness tests. For 
example, to test whether the sequence of digits corresponding to the decimal 
expansion of 7r = 3.1415 ... is random one tests whether the initial segment 
satisfies some properties which hold with probability one for the ensemble of 
all sequences. 

EXAMPLE 2 One such property is so-called normality. E. Borel (1909) has 
called an infinite sequence of decimal digits normal in the scale of ten if, for 
each ~:, the frequency of occurrences (possibly overlapping) of each hlock y of 
length k ~ 1 in the initial segment. of length n goes to limit. 10- ~' for n grows 
unbounded, [l ]. It is known that normality is not sufficient. for randomness , 
since Champernowne's sequence 

123456789101112 ... 

is normal in the scale of ten. On the other hand, it. is universally agreed that 
a random infinite sequence must be normal. (If not, then some blocks occur 
more frequent than others, which can be used to obtain better than fair odds 
for prediction.) 

For a particular binary sequence w = w1 w2 .•. let f 11 = w1 + w2 + · · · + w,,. 

Of course, we cannot effectively test an infinite sequence. Therefore, a so
called pseudo-randomness test examines increasingly long initial segments of 
the individual sequence under consideration. 

We can define a pseudo randomness test for the normality property with k = 
1 to test a candidate infinite sequence for increasing n whether the deviations 
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from one half O's and l 's become too large. For example, by checking for each 
successive n whether 

nloglogn 
2 

(The Law of the Iterated Logarithm states that this inequality should not 
hold for infinitely many n). If within n trials in this process we find that the 
inequality holds k times, then we assume the original infinite sequence to be 

n · k · 
random with confidence at most, say, L i = l 1/2' - Li= l 1/ 2' . (The sequence 
is random if the confidence is greater than zero for n goes to infinity, and not 
random otherwise.) 

Clearly, the number of pseudo-randomness tests we can devise is infinite. 
Namely, jm:t for the normality property alone there is a similar pseudo-randomness 
test for each k ;:::: 1. 0 

But now we are in trouble. Each individual infinite sequence induces its very 
own pseudo-randomness test which tests whether a candidate infinite sequence 
is in fact that individual sequence. Each infinite sequence forms a singleton set 
in the sample space of all infinite sequences. All complements of singleton sets 
in the sample space have probability one. The intersection of all complements 
of singleton sets is clearly empty. Therefore, the intersection of all sets of 
probability one is empty. Thus, there are no random infinite sequences! 

Martin-Lof, using ideas related to Kolmogorov complexity, succeeded in 
defining random infinite sequences in a manner which is free of such difficulties. 
His starting point is to observe that all laws which are proven in probability 
theory to hold with probability one are effective. That is, we can effectively 
test whether a particular infinite sequence does not satisfy a particular Law of 
Randomness by effectively testing whether the law is violated on increasingly 
long initial segments of the sequence. 

The natural formalization is to identify the effective test with a partial recur
sive function. This suggests that one ought to consider not the intersection of 
all sets of measure one, but only the intersection of all sets of measure one with 
recursively enumerable complements. (Such a complement set is expressed as 
the union of a recursively enumerable set of cylinders). It turns out that this 
intersection has again measure one. Hence, almost all infinite sequences satisfy 
all effective Laws of Randomness with probability one. This notion of infinite 
random sequences turns out to be related to infinite sequences of which all 
finite initial segments have high Kolmogorov complexity. 

The notion of raudomness satisfied by both the Mises-Wald-Church col
lectiYes and the '.\fartin-Lof random infinite sequences is roughly that 
effective tests cannot detect regularity. This does not mean that a se
queuce may not exhibit regularities which cannot be effectively tested. 
Collectives geuerated by Nature, as postulated by von Mises, may very 
well always satisfy stricter criteria of raudomness. Why should collectives 
generated by quantum mechanic phenomeua care about mathematical 
notions of computability"? Again, satisfaction of all effectively testable 
prerequisites for randomness is some form of regularity. Maybe nature is 
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more lawless than adhering strictly to regularities imposed by the statis

tics of randomness. 

Until now the discussion has centered on infinite random sequences where the 

randomness is defined in terms of limits of relative frequencies. However , 

"The frequency concept based on the notion of limiting frequency as the 

number of trials increases to infinity, does not. contribute anything to 

substantiate the application of the results of probability theory to real 

practical problems where we always have to deal wit h a finite number of 

trials." [Kolmogorov] 

The practical objection against both the relevance of considering infinite se

quences of trials and the existence of a relative frequency limit is concisely put. 

in .J.M. Keynes' famous phra.'ie "in the long run we shall all he dead." It seems 

more appealing to try to define randomness for finite strings first, and only 

then define random infinite strings in terms of randomness of initial segments. 

The approach of von Mises to define randomness of infinite sequences in terms 

of nnpredictability of continuations of finite initial sequences under certain laws 

(like recursive functions) did not lead to satisfying results. The Martin-Li-if 

approach does lead to satisfying results, and is to a great extent equivalent 

with the Kolmogorov complexity approach. Although certainly inspired by the 

random sequence debate, the introduction of Kohnogorov complexity marks a 

definite shift of point of departure. Namely, to define randomness of sequences 

by the fact that 110 program from which au initial segment of the sequence 

can be computed is significantly shorter than the initial segment itself, rather 

than that no program can predict the next. elements of the sequence. Tims, 

we change the focus from the 'unpredictability' criterion to the ' incompressibil

ity' criterion, and since this will turn out to be equivalent wit.h Martin-Lof's 

approach, the ' incompressibility' criterion is both necessary and sufficient. 
Finite sequences which cannot be effectively described in a significant short.er 

description than their literal representation are called random. Our aim is to 
characterize random infinite sequences as sequences of which all initial finite 
segments are random in this sense. Martin-Lof's related approach characterizes 
random infinite sequences as sequenceR of which all initial finite Regments pass 

all effective randomness teRts. 

Initially, before the idea of complexity, Kolmogorov proposed a close 

analogy to von Mises' notionii in the finite domain. Consider a general

ization of place-selection rules insofar as the selection of a ; can depend on 

Uj with j > i [A.N. Kolmogorov, Sankhya, Series A, 25(1963), 369-376]. 

Let. <I> be a finite set of such generalized place-selection rnleR. Kolmogorov 

suggested that an arbitrary finite binary sequence a of length n 2: m can 

be called (m, c:)-random with respect. to 4>, if there exists some p such 

that the relative frequency of the 1 's in the subsequences a ;1 ••• n; ,. with 

r 2: m, selected by applying some </> in <I> to a, all lie within c: of p. (We 

discard</> that. yield subsequences shorter than m.) Stated differently, the 

relative frequency in this finite subsequence is approximately (to within 

c:) invariant under any of the met.hods of subsequence select.ion that yield 
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subsequences of length at least m. Kolmogorov has shown that if the 
cardinality of <I> satisfies: 

then, for any p and any n ~ m there is some sequence a of length n which 
is (m,€)-random with respect to <I>. 

4 RANDOMNESS AS INCOMPRESSIBILITY 

We are to admit no more causes of natural things (as we are told by Newton) 
than such as are both true and sufficient to explain their appearances. This 
central theme is basic to the pursuit of science, and goes back to the principle 
known as Occam's razor: "if presented with a choice between indifferent alter
natives, then one ought to select the simplest one". Unconsciously or explicitly, 
informal applications of this principle in science and mathematics abound. The 
conglomerate of different research threads drawing on an objective and abso
lute form of this approach appears to be part of an emergent applied science 
ranking with information theory and probability theory. 

Intuitively, the amount of informat ion in a fini te string is the size (number 
of binary digits or bits) of the shortest program that, without additional data, 
computes the string and terminates. A similar definition can be given for 
infinite strings, but in this case the program produces element after element 
forever. Thus, a long sequence of I 's such as 

10,000 times 
...-----"----. 
11111 ... 1 

contains little information because a program of size about log 10, OOO bits 
outputs it: 

for i := 1 to 10, OOO 
print 1 

Likewise, the transcendental number 7f = 3.1415 . . . , an infinite sequence of 
seemingly 'random' decimal digits, contains but a few hits of information. 
(There is a short program that produces the consecutive digits of 7f forever.) 
Such a definition would appear to make the amount of information in a string 
(or other object) depend on the particular programming language used. 

Fortunately, it can be shown that all reasonable choices of programming 
languages lead to quantification of the amount of 'absolute ' informat ion in 
individual objects that is invariant up to an additive constant. We call this 
quantity t he 'Kolmogorov complexity' of the object. If an object is regular, then 
it has a shorter description than itself. We call such an object 'compressible'. 

More precisely, suppose we want to describe a given object by a finite binary 
string. We do not care whether the object has many descriptions; however, 
each description should describe but one object. From among all descriptions 
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of an object we can take the length of the shortest description as a measure of 

the object's complexity. It is natural to call an object 'simple' if it has at least 

one short description, and to call it 'complex' if all of its descriptions are long. 

But now we are in danger of falling in the trap so eloquently described in 

the Richard-Berry paradox, where we define a natural number as "the least 

natural number that cannot be described in less than twenty words". If this 

number does exist, we have just described it in thirteen words, contradicting 

its definitional statement. If such a number does not exist, then all natural 

numbers can he described in less than twenty words. We need to look very 

carefully at the notion of 'description'. 
Assume that each description describes at most one object. That is, there is a 

specification method D which associates at most one object x with a description 

y. This means that Dis a function from the set of descriptions, say Y, into the 

set of objects, say X. It seems also reasonable to require that, for each object 

:i: in X, there is a description y in Y such that D(y) = x. (Each object. has a 

description.) To make descriptions useful we like them to be finite. This means 

that there are only countably many descriptions. Since there is a description 

for each object, there are also only countably many describable objects. How 

do we measure the complexity of descriptions? 
Taking our cue from the theory of computation, we express descriptions as 

finite sequences of O's and I's. In communication technology, if the specification 

method D is known to both a sender and a receiver, then a message :i: can be 

transmitted from sender to receiver by transmitting the sequence of O's and I 's 

of a description y with D(y) = :i:. The cost of this transmission is measured 

by the number of occurrence:; of O's and I 's in y, that is, by the length of y. 

The least cost of transmission of x is given by the length of a shortest y such 

that D(y) = :i:. We choose this least cost of transmission as the 'descriptional' 

complexity of x under specification method D. 
Obviously, this <lescriptional complexity of :r depends crucially on D. The 

general principle involved is that the syntactic framework of the description 

language determines the succinctness of description. 
In order to objectively compare descript.ional complexities of objects, to be 

able to say "x is more complex than z", the descriptional complexity of :i: should 

depend on x alone. This complexity can be viewed as related to a universal 

description method which is a priori assumed by all senders and receivers. This 

complexity is optimal if no other description method assigns a lower complexity 

to any object. 
We are not. really interested in optimality with respect to all description 

methods. For specifications to be useful at all it is necessary that the mapping 

from y to D(y) can be executed in an effective manner. That is , it can at 

least in principle be performed by humans or machines. This notion has been 

formalized as 'partial recursive functions'. According to generally accepted 
mathematical viewpoints it coincides with the intuitive notion of effective com

putation. 
The set. of partial recursive functions contains an optimal function which 
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minimizes description length of every other such function. We denote this 

function by D0 . Namely, for any other recursive function D, for all objects x, 

there is a description y of x under Do which is shorter than any description z of 

x under D. (That is, shorter up to an additive constant which is independent 

of x.) Complexity with respect to Do minorizes the complexities with respect 

to all partial recursive functions. 
We identify the length of the description of x with respect to a fixed specifica

tion function Do with the 'algorithmic ( descriptional or Kolmogorov) complex

ity ' of x. The optimality of Do in the sense above means that the complexity 

of an object x is invariant (up to an additive constant independent of x) under 

transition from one optimal specification function to another. Its complexity 

is an objective attribute of the described object alone: it is an intrinsic prop

erty of that object, and it does not depend on the description formalism. This 

complexity can be viewed as 'absolute information content': the amount of 

information which needs to be transmitted between all senders and receivers 

when they communicate the message in absence of any other a priori knowledge 

which restricts the domain of the message. 
Broadly speaking, this means that all description syntaxes which are power

ful enough to express the partial recursive functions are approximately equally 

succinct. The remarkable usefulness and inherent rightness of the theory of Kol

mogorov complexity stems from this independence of the description method. 

Thus, we have outlined the program for a general theory of algorithmic com

plexity. The four major innovations are as follows. 

1. In restricting ourselves to formally effective descriptions our definition 

covers every form of description that is intuitively acceptable as being 

effective according to general viewpoints in mathematics and logics. 

2. The restriction to effective descriptions entails that there is a universal 

description method that minorizes the description length or complexity 

with respect to any other effective description method. This would not 

be the case if we considered, say, all noneffective description methods. 

Significantly, this implies Item 3. 

3. The description length or complexity of an object is an intrinsic attribute 

of the object independent of the particular description method or formal

izations thereof. 

4. The disturbing Richard-Berry paradox above does not disappear, but 

resurfaces in the form of an alternative approach to proving Kurt Godel's 

famous result that not every true mathematical statement is provable in 

mathematics. 

Randomness of Individual Sequences Resolved 

The notion of randomness of an infinite sequence in the sense of Martiu-Lof, 

as posessing all effectively testable properties of randomness (one of which 
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is unpredictability) , turns out to he identical with the notion of an infinite 

sequence having maximal Kolmogorov complexity of all finite initial segments. 

This equivalence of a single notion being defined by two completely different 

approaches is a truly remarkable fact. (To be precise, the so-called prefix 

Kolmogorov complexity of each initial segment of the infinite binary sequence 

must not. decrease more than a fixed constant, depending only on the infinite 

sequence, below the length of that initial segment, [3].) This property sharply 

distinguishes the random infinite binary sequences from the nonrandom ones. 

The set of random infinite binary sequences has uniform measure one. That 

means that as the outcome from independent flips of a fair coin they occur 

with probability one. 
For finite binary sequences the distinction between randomness and nonran

domness cannot be abrupt, but must be a matter of degree. For example, it 

would not be reasonable if one string is random but becomes nonrandom if 

we flip the first nonzero bit. In this context too it has been shown that finite 

binary sequences which are random in Martin-Lof's sense correspond to those 

sequences which have Kolmogorov complexity at least their own length. Space 

limitations forbid a complete treatment of these matters here. Fortunately, it 

can be found elsewhere, [3). 
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