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PREFACE

This tract is based on lectures given during the study week "Stapelen
en Overdekken" (Packing and Covering), June 5-9, 1978, organized by the
Mathematical Centre. To make the collection more complete two further papers
(Chapters 11 and 14) have been added.

The tract aims at introducing the reader to several parts of combina-
torics, considered from the point of view of packing and covering problems.
Topics covered include the packing of code-words, sphere-packings in Euclid-
ean space and other geometrical packings, the packing and covering of sub-
sets by subsets, packing and covering as optimization problems, and eigen-
value methods for solving packing and covering problems.

We have tried to cover both the more or less classical theory as well
as the more recent results. Thus attention is given to the Rogers bound for
sphere-packings, Lloyd's theorem on perfect codes, Ramsey's theorem, graph-
theoretical results of Kénig, Menger, Turdn and Tutte, Delsarte's linear
programming bound, Wilson's existence theory for designs, Lovdsz's results
on perfect graphs, Kneser's conjecture and the Shannon capacity, Baranyai's
theorem on partitions into partitions, the Cock-Karp theory of NP-complete-
ness, the solution by Duijvestijn of the squared square problem, the results
of McEliece, et al., and of Odlyzko and Slcane on codes and sphere-packings,
and the Edmonds-Giles method for solving certain integer linear programs.

We are grateful to the participants of the study week, and to Profes-
sors J. Edmonds, R.L. Graham, H.W. Lenstra, Jr, D. Schattschneider and H.
Schneider, for their suggestions and remarks on a preliminary version of
this tract. Moreover, we thank Dr D.E. Taylor for his advice on the English
of the text, and all those at the Mathematical Centre who have contributed

to the technical realization of the tract.

B. Schrijver
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SOME COMBINATORIAL CONCEPTS

Throughout this tract we assume familiarity with basic concepts from

combinatorics; here we mention some of them.

A graph is a pair (V,E), where V is a finite set and E is a family of
pairs of elements of V. The elements of V and E are called the vertices (or
points) and the edges, respectively, of the graph. Two vertices are adjacent
if together they form an edge. The adjacency matrix of the graph (V,E) is
a |v[x|v|-matrix with ones in positions "corresponding" to adjacent vertices,
and zeros in the other positions. Sometimes, pairs of vertices are allowed
to occur more than once in the family E. The number of times a pair occurs
in E is called its multiplicity.

The degree or valency of a vertex is the number of edges containing that
vertex. The graph is regular (of degree k) if all valencies are equal (to k).
The complete graph Kn is a graph with n points, each two of them being adja-
cent.

A subset V' of V is called stable or independent or a cocligue if V'
contains no edge as a subset. A cligue is a subset V' of V such that each
pair of vertices in V' forms an edge. a(G) and w(G) denote the maximum size
of any coclique and of any clique, respectively, in the graph G. The com-
plementary graph G of G has the same vertices as G, but G has, as edges,
exactly those pairs of vertices which are not an edge of G. So a(G) = w(G).

Y(G) is the colouring nuiber or chromatic number of G, i.e., the minimum
number of colours needed to colour the vertices of G such that no two adja-
cent points have the same colour. So Y(G) is the minimum number of cocliques

needed to cover the vertex set. It is easy to see that

vl
=3
(1) w(G) = ¥(G) and vy(G) = TE)
The graph G = (V,E) is bipartite if ¥(G) < 2, i.e., if V can be split

into two sets V' and V" such that each edge intersects both V' and V". If



E = {{v',v"} | v'ev',v"eV"} then G is called a complete bipartite graph,
denoted by Km,n if |v'| = m and |V"] = n.

A graph G' = (V',E') is a subgraph of G = (V,E) if V' ¢ V and E' < E.
G' is called the subgraph induced by V', and denoted by <V'>, if two vertices
are adjacent in G' if they are adjacent in G.

A directed graph or digraph is a pair D = (V,A), where V is a finite
set and A is a collection of ordered pairs of elements of V, i.e., A © VXV.
The elements of V and A are called the vertices (or points) and arrows of
D, respectively. The vertices v and w are called the tail and the head, re-
spectively, of the arrow (v,w). (Scmetimes ordered pairs of vertices may

occur more than once as an arrow.)

A k-(sub)set is a (sub)set having exactly k elements. Pk(x) denotes the
collection of all k-subsets of a set X. Pk(v) is the collection of all k-
subsets of a fixed v-set, say of {0,...,v-1}

A hypergraph is a pair H = (V,E) consisting of a finite set V and a
family € of subsets of V (again, a subset is allowed to occur more than once
in E). The elements of Vv and E are called the vertices (or points) and edges
of H, respectively. The degree or valency of a point is the number of edges
containing that point. If the set X' occurs k times as an edge in H then k
is called its multiplicity. If H = (X,Elj, cee o H = {X,En) are hypergraphs
then H = {X,EiEiJ is the hypergraph whose edge family is the disjoint union
of the edge families of Hl’ .k Hn. So the multiplicity of a set X' < X
is the sum of its multiplicities in Hl' ’ Hn‘

H is called k-uniform if each edge of H contains k elements, i.e., if
Ec F;(V). So a graph is, by definition, a 2-uniform hypergraph. H is called
complete k-uniform if E = Pk(v). A complete k-uniform hypergraph with n
vertices is denoted by K

E

n
. A

The herfdltary closure of a hypergraph H = (V,E) is the hypergraph H =
(V,e) where £ = {V' | V' ¢ V' for some V' e E}. H is called hereditary if H =
A

*
H. The dual hypergraph H has vertex set E and edges all sets {EeE | veE} ¢ F
for ve V.

For a hypergraph H = (V,E) we denote

(2) a (H)
p (H)

max {|Vv'| | v'ev, |viaE] =1 for all Ec E},
min {|E*| | E'cE, UE' = v},

T(H) = min {|v'| |V'cv, IV'nE| 21 for all Ee E},

V(H) = max {|E'| | E'cE, E\NE, = @ for all distinct Ei, EyeE').



SOME COMBINATORIAL COMNCEPTS 3

So v(H) = a(8") and p(H) = T(5").

The line graph L(H) of a hypergraph H = (V,E) is the graph with vertex
set E, two elements of E being adjacent iff their intersection is nonempty.
The incidence matrix of H is a |V|x|E|-matrix with a 1 or 0 in the positions
depending on whether or not we have ve E for the "corresponding" ve V and
Ee¢ E.

A t-(v,k,\)-design (or an SA(t,k,v)) is a pair (X,B), where X is a v-set
and B is a family of k-subsets of X such that each t-subset of X is contained
in exactly X sets of B. The elements of X and B are called the points and
blocks, respectively, of the design. If A = 1 the design is called a Steiner
system, written S(t,k,v). If t = 2 it is called a balanced incomplete block
design (BIBD) (or a B(k,h;v)).

If Q is a finite set, a subset C of Qn is called a code, over the alpha-
bet Q, and of length n. The Hamming-distance dH(x,y) of two elements x and y
of Qn is the number of coordinate-places in which x and y differ. In case
0e€ Q the weight wi{x) of an element x ¢ Qn is the number of non-zero coordinates
of x.

If Q = {0,1} a code over Q is called binary. If Q is a finite field and
C is a linear subspace of Qn then C is a linear code. (Note that a (unique)
finite field with g elements (denoted by GF(g) or Fq} exists, if and only if
g is a prime power.) An (n,k)-code is a linear code of length n and dimension
k.

The upper and lower integral part of a real number x are denoted by

[x] and LxJ, respectively.

For more combinatorial background information we refer to:

C. BERGE, Graphs and hypergraphs, North-Holland, Amsterdam, 1973.

B. BOLLOBAS, Extremal Graph Theory, Acad. Press, London, 1978.

J.A. BONDY & U.S.R. MURTY, Graph Theory with Applications, Macmillan, London,
1976.

M. HALL, Jr., Combinatorial theory, Blaisdell, Waltham, Mass., 1967.

F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

F.J. MacWILLIAMS & N.J.A. SLOANE, The theory of error-correcting codes,
North-Holland, Amsterdam, 1977.
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b4

SOME BACKGROUND INFORMATION FROM LINEAR ALGEBRA

A. SCHRIJVER

In this chapter we collect some results from linear algebra (in partic-
ular from the theory of inner product spaces) which we shall need frequently
in other chapters. We assume familiarity with basic linear algebraic con-
cepts and manipulations such as vectors, matrices, and their multiplication.

First we present some notations and conventions. R" and cn dencte the
n-dimensional real and complex vector spaces. For a matrix A, the matrices

t * .
A" and A" are the transpose and adjoint of A, respectively; i.e., A arises

from at by replacing each entry of At by its complex conjugate. For a vec-
tor x, xt and x have a similar meaning.

Identity matrices are denoted by I, and zero vectors by 0. <x,y> is the
usual inner product of vectors x and y, i.e., <x,y> = x*y. When using expres-—
sions such as <x,y>, Ax and yta, where x and y are vectors and A is a matrix,
we implicitly assume correctness of sizes.

In this chapter we restrict ourselves to complex-valued matrices and
vectors; moreover, in Sections 3 and 4 matrices and vectors are assumed to

be real-valued.

The subjects we shall discuss here are:

1. Normal matrices,
2. Hermitian and positive semi-definite matrices,
3. Closed convex cones,

4. Mathematical programming.

1. NORMAL MATRICES

A non-zero vector x is an eigenvector, and a complex number A is an
eigenvalue of a matrix A if Ax = Jx. So A is an eigenvalue of A if and only
if the matrix A - AI is singular. The function det(A-AI) in the variable X

is the characteristic polynomial of A. So the zeros of the characteristic



6 2. SCHRIJVER

polynomial of A coincide with the eigenvalues of A. This implies that the
sum of the eigenvalues of A, counting each eigenvalue according to its mul-
tiplicity in the characteristic polynomial, is egqual to the trace TrA of A
(being the sum of the diagonal elements of A).

call a set of vectors {xl,...,xn} orthonormal if 4xi,xj> =*Gij for all
i,j =1,...,n. A matrix X is called orthogonal or unitary if XX = X X = I,
i.e. if x'l = x* (i.e. if the set of columns of X forms an orthonormal set
of vectors).

An interesting question is the following: when does an nxn-matrix A
have an orthonormal set of eigenvectors {xl....,xn} which is a basis for the
vector space (P? If, for a certain matrix A, such a basis exists, let X be
the n*n-matrix with columns KyreeoeX i then X is orthogonal. Furthermore,

D = X*AX is a diagonal matrix (i.e., D has zeros on off-diagonal positions),
with the eigenvalues of A on the diagonal. Hence D*D = DD*, which implies
a"a = an", that is, by definition, A is normal. So if A satisfies the claim
formulated in the question then A is normal. The content of the so-called

"Spectral theorem" is the converse implication.

THEOREM 1 (Spectral theorem). Let A ke an nxn-matrix. Then there exists an
orthonormal basis consisting of eigenvectors of A, if and only if A is nor-

mal.

PROOF. Let A be a normal matrix with an eigenvalue A. The subspace
T = {x|Ax=Ax} is left invariant by A" since for x ¢ T,

*
A(A"x) = a"ax = an'x.

Let 5 = {y|<x,y>=0 for all xe T} be the orthegonal complement of T. Then
for x € T and ¥ € S we have <x,Ay> = <A*x,y> = 0 and therefore A acts as a
linear transformation on S. We obtain an orthonormal basis of eigenvectors

for the space by choosing such a basis for T and (by induction) for S. O

. Otherwise formulated: a matrix A is normal iff x*nx is a diagonal ma-
trix for some orthogonal matrix X.
More generally: when do nxn-matrices Al""'ﬂk have common eigenvec-
tors S RARRTE N forming an orthonormal basis? That is, when does there exists
an orthogonal matrix X such that, for each i = 1

matrix?

*
resviky X Aix is a diagonal

Clearly, necessary conditions are that each ni is normal and that

Aiaj = Ain for i,j = 1,...,n (since diagonal matrices commute); these
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conditions are also sufficient.

THEOREM 2. Let be given nxn-matrices Al""'AQ' Then there exists an ortho-
normal basis consisting of common eigenvectors of Al""'ht' if and only if

Al,...,AR are normal and commute with each other.

PROOF. The proof proceeds by induction on £. If Al,...,lk are the eigenval-

ues of AR' then, by Theorem 1, the whole space is the direct sum of the

eigenspaces Ti = {x|A£x=Aix}. Moreover, since hl,....A£ commute, each Ti is

fixed by Alf---.hg_l. So, by induction, each T, has an orthonormal basis of

common eigenvectors of Al""'Aﬁ' By the orthogonality of Tl""'Tk the the
orem follows. a

2. HERMITIAN AND POSITIVE SEMI-DEFINITE MATRICES

Examples of normal matrices are the hermitian matrices: these are ma-
s 5 *
trices A with the property that A = A . If A is hermitian, x"Ax is real for

- * * * .
each vector x, since (x Ax) = x Ax. One easily derives

THEOREM 3. A matrix A iIs hermitian iff A is normal and has only real eigen-

values.

PROOF. If A is hermitian, then, obviously, A is normal; hence there exists
an orthogonal matrix X such that x*nx is a diagonal matrix. As K*Ax again
is hermitian, all of its diagonal elements, being the eigenvalues of A, are
real.

Conversely, suppose A is normal and has only real eigenvalues. Then
X*Ax is a real-valued diagonal matrix, for some orthogonal matrix X. Hence

* * * e, W o
A =XX AXX = X(X AX) X = XX A XX =2a. O

A consequence is that real symmetric matrices have only real eigenval-
nes.
Now let B be a hermitian nxn-matrix, with orthogonal set of eigenvec-

tors {xl,...,xn} and corresponding eigenvalues A, 2z ... 2z An. Furthermore

1
let 1 £ k £ n. Then:

PROPOSITION 4. For each vector x in the subspace generated by {xl“"’xk}
we have x"Ax = Akx*x, and for each vector x in the subspace generated by

{x ,...,%x_} we have x*nx 2 e (Equality holds iff Ax = A _x.)
k n k k
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PROOF. Left to the reader (use <xi,xj> = 6ij)- a

So the largest and smallest eigenvalues of a hermitian matrix A are

equal to
*
X AxX X AX
max-ﬁr-and min i?d_
x#0 * *#0
respectively.

Call a square submatrix B of A a principal submatrix of A if the diag-
onal of B is part of the diagonal of A. So principal submatrices of hermi-
tian matrices are hermitian again. The next theorem relates the eigenvalues

of a hermitian matrix with those of its principal submatrices.

THEOREM 5. Let A be a hermitian n*n-matrix, with orthogonal set of eigenvec-—

tors {xl,...,xn}, and corresponding eigenvalues 11 2t ln. Let B be a
principal (n-1)x(n-1)-submatrix of A, with orthogonal set of eigenvectors
{Yl""'yn~1}’ and corresponding eigenvalues “1 = I - Un—l‘ Then
= > = - .
Al - vy 2 Az = el An—l voog kn

PROOF. Let 1 < k < n. We show that Ak 2 Vy.- By Proposition 4, for each vec-

tor x in the (n-k+1)-dimensional subspace S1 of Cn spanned by Koo we
have x Ax < lkx*x. Similarly, for each vector y in the k-dimensional sub-

space 52 of mnhl spanned by yl,...,yk we have y*By 2 vky*y. By an appropri-

ate embedding of sn—l in ¢ we obtain a k-dimensional subspace 53 of ¢
*

such that x Ax 2 vkx*x for all vectors x in 33.

Since the sum of the dimensions of 51 and 53 equals n + 1, there is a

non-—zero vector x in 8, n s_, satisfying

1 3
* * *
> M
Akx X 2 X Ax 2 VX X
therefore lk z uk. In the same way one proves vk z lk+1' O

A hermitian matrix A is called positive semi-definite if x Ax = 0 for

each vector x. The foregoing theory yields the following characterization.

THEOREM 6. A normal matrix A is positive semi-definite iff A has only non-

negative real eigenvalues, or, equivalently, iff A = B*B for some matrix B.
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PROOF. Left to the reader (use Theorem 1 and Proposition 4). 0O

If A is a real positive semi-definite matrix then A = BtB for some real
matrix B.

3. CLOSED CONVEX CONES

In the Sections 3 and 4 of this chapter we restrict ourselves to real
vector spaces and matrices (for a more general setting see BERMAN [1]).
A closed nonempty subset C of R is called a closed convex cone if

AX + My € C whenever %,y € C and A,y = 0. A powerful result is the follow-
ing, intuitively clear theorem.

n
THEOREM 7. Let C © R be a closed convex cone and let x ¢ C. Then there ex-

ists a vector w such that <w,x> < 0 and <w,c> 2 0 for all c in C.

PROOF. Since C is closed and nonempty, there exists a vector v in C which
has, among all vectors in C, minimal (euclidean) distance to x. Elementary
geometric arguments using the convexity of C show that the angle between
the vectors x -~ v and ¢ - v is not acute, for each vector c in C. That is,
for all ¢ in C, <v-x,c-v> 2 0. Since 0 « C and 2v € C we have that
<v-x,2v-v> =z 0 and <v-x,0-v> 2 0, whence <v-x,v> = 0. This implies that

w = v - x has the required properties. [J

By calling a set of the form {ye RF| <w,y> > 0} a closed half-space,
Theorem 7 asserts that each closed convex cone is the intersection of closed
half-spaces.

Now define for each subset C of R the dual cone C  of C by
* n .
¢ = {we R | <w,e>2 0 for all c in C}.

Clearly, C* is a closed convex cone. The following theorem is a straight-

forward corollary of Theorem 7.

THEOREM 8 (Duality theorem). A subset C of R is a closed convex cone if and
ko *
only if C = (C) .

PROOF. Two assertions do not need arguments:
*
(i) if c = (C*} then C is a closed convex cone, and

(ii) C is a subset of (C*}*-
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%k
It remains to argue that if C is a closed convex cone then (C ) < C. Sup-

pose indirectly that x € {C*}* is not an element of the closed convex cone

C. Then, by Theorem 7, there is a vector w such that
<w,x> < 0 £ <w,c>

* * K
for all vectors c in C. Hence, by definition, w € C . However, x € (C ) ,

contrary to <w,x> < 0. [J

Examples of closed convex cones and their duals are:

(1) R, with dual cone {0};
(ii) IRI_: + the cone of nonnegative real-valued vectors, with dual cone lRi H
(iii) PSD, the cone of real-valued (symmetric) positive semi-definite nxn-
matrices (conceived as vectors of length n2) + With dual cone
psp” = {2 is an nxn-matrix such that x‘Ax = 0 for x ¢ R} .
This last example needs some explanation (cf. HALL [3]). The inner product
a; the n*n-matrices A = {aij) and B = (bij}’ considered as vectors of length
n-, is as follows:
i t
<A,B> = E_ 3,405 = Tr(a'B).
i.3
Now suppose A € PSD*, that is, <A,B> 2 0 for all real-valued positive semi-
definite matrices B. Let x ¢ R" and consider the positive semi-definite

n¥n-matrix B = xxt. Since
0 < <B,A> = <xx%8> = Tr (xxa) = xax,

i t
certainly x Ax = 0. Conversely, if A is an nxn-matrix such that xtnx =20
n
for all x ¢ R, then also Tr (BtaB) 2 0 for all real matrices B. Hence

t t
Tr(BB'A) = <BB ,A> 2 0 for all matrices B, whence, by Theorem 6, A ¢ PSD’|r

Note that A is in PSD if ang only if A is a symmetric element of PSD.

4. MATHEMATICAL PROGRAMMING

Finally we come to a useful application of Theorem 8, called the "Dual-

ity theorem of linear programming". First two bropositions are needed. (To

facilitate notations we shall sometimes identify vectors with their tr
poses.)

ans-—
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T
PROPOSITION 9. Let C © R be a closed convex cone and let A be an m*n-ma-

trix such that the set {Ax|xeC) is closed. Then the closed convex cone

{Ax |x € C} has the set {we R [the C*} as dual cone.

e *
PROOF. By definition, w ¢ {Ax |x<c}” if and only if w'Ax > 0 for all x ¢ C.
This is equivalent to the condition w'a ¢ ¢'. [

PROPOSITION 10 (Farkas' lemma). Let C © R be a closed convex cone, let A
be an mxn-matrix such that the set {Ax |xecC} is closed, and let z € R .

m £ *
If, for all we R , w A e C implies woz 2 0, then z = Ax for some x € C.

t *
PROOF. If <w,z> 2 0 whenever w A € C , then, by definition, z ¢

m t * . *
{we R |whAeCl} . Hence, by Proposition 9, z ¢ {Ax | x ¢ c}. O

The Duality theorem of linear programming is fundamental to the theo-
ry of mathematical programming and optimization; it asserts that a certain
maximum (or supremum) is egual to a certain minimum (or infimum). We pre-

sent the theorem in the following (general) form.

; . . n n
THEOREM 11. (Duality theorem of linear programming). Let C € R and D ¢ R
be closed convex cones, let b ¢ 1€mand CiE If‘, and let A be an m*n-matrix.

Then
*
sup {<c,x> X € C; b-Ax € D} = inf {<y,b> | y € D; yA-c ¢ C },

provided that b — Ax € D for some x € C and that {(Ax,Cx}]xe c} is a closed
& £
set, or that yA -~ ¢ € C for some vy € D* and that {{yA,yb) |yeD }is a

closed set.

PROOF. By symmetry we lose no generality by assuming that b - Ax € D for
some x € C and that the set { (Ax,cx) ]xe c} is closed.

It is easy to check that the supremum is not greater than the infimum:

<C,X> = <yR-C,X> + <C,X> = <yA,¥> =

= <y,BAx> £ <y,AX> + <y,b-Ax> = <y,b>.

To prove the converse inequality, suppose the infimum is at least k.

This means:

(1) yeD, yA-cec’ =<yb>2k,
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or, which is the same:

* *
(2) yeD, t>0, yAa-tcecC = <y,b> 2 tk.
The existence of x € C such that b - Ax € D yields

(3) v € D*. vA € C* = <y,b> = <y,Ax> + <y,b-Ax> =

= <yA,x> + <y,b-Ax> = 0.
Combining (2) and (3) yields
* *
(4) YED,t20,yA~-tcecC = <y,b> 2= tk,

or, by joining vectors, matrices, and cones, respectively,

I A 0 * * b
(5) (y.t}(o ot 1) € D x g x . - (y,t)(_k) z 0.

Application of Proposition 10 implies the existence of vectors w e D and

Xx € Cands 20 (since m*xc*x:a+)*= D x C x R,) such that
b I A O\{(¥\
6 5
© (5)-G 2 d=).
s

i.e., b=w+ Ax and -k = -cx + s.

SoxeC, b-Ax=weDandcx = k, or: the supremum is at least k. [J

REMARK. The proof shows also that if the supremum and infimum are finite
(i.e. both object sets are nonempty) then the supremum is a maximum in case
{(ax,cx) |x € c} is closed, and the infimum is a minimum in case

{(yA,yb) |y € D"} is closea.

By specializing cones C and D we obtain:
(i) taking C = R’: and d = K] :

max {<c,x> [x20,Ax $b} = min {<y,b>| y20,yazc};
N n n n
(1i) taking ¢ = R and D = R+
max {<c,x> | Ax<b} = min {<y,b> |y >0,ya=c}

(provided that the object sets are nonempty) .
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EIGENVALUE METHODS

W. HAEMERS

1. INTRODUCTION

A packing of a finite collection of sets in a subcollection consisting
of mutually disjoint sets. This can be reworded in graph theory as follows.
Let G be the graph whose vertices are the sets; two vertices are adjacent
iff they have, as sets, an element in common. Now a packing corresponds
to an independent set of vertices (a coclique).

If we have a number of packings, covering all sets in the collection
we may as well assume that these packings have no set in common. This cor-
responds to a colouring of G (i.e. a partition of the vertices into co-
cliques).

We take without loss of generality {1,...,v} to be the vertex set of G.
And from Chapter 1 of the present tract we repeat the following ineqguality

v
(*) ¥ (G) 2-€fa}_!

where v(G) and o«(G) denote the chromatic number and the independence number
of G, respectively. The eigenvalues of G are the eigenvalues of its adjacen-
cy matrix. We denote these eigenvalues by Al Sy Av (the eigenvalues are
real, cf. Theorem 3 of Chapter Z). Of course, isomorphic graphs have the
same eigenvalues, although their adjacency matrices may be different.

The following theorem is well-known (mostly a consequence of the Perron-

Frobenius theorem on nonnegative matrices)- cf. [1],[4]1,[9] ana [11].

THECOREM 1. Let G be a connected graph on v vertices with adjacency matrix A

and eigenvalues Al & i Rv. Then:

(i) if G is regular of degree 4 then 4 = A and the all-one vector Jj is a

‘1!
corresponding eigenvector;

(ii) 11 has an eigenvector consisting of positive coordinates;
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(1ii) A, 2 =2 ;

1 v
(iv) the following conditions are equivalent:
@ Ay = -Ag,
=] i = LieesVy
(b) ki -'\v+1-i for all i 3 7

(e¢) G is bipartite.

In this chapter we shall loock for bounds for v(G) and o (G) in terms of
the eigenvalues of G. A first result in this direction (due to CVETKOVIC
[2]) is the direct consequence of Theorem 5 of Chapter 2 of the present

tract.

THEOREM 2. For any graph G

a(@) < min {[{il); s0}, [{112, 2 0}]}.
PROOF. If B is a principal submatrix of A with eigenvalues VyreeaiVar then,
by applying Theorem 5 of Chapter 2 repeatedly, we get Ai = vy = Av-cc+i for all
i=1,...,a. If B is the zero-matrix then vl = \Ja = 0, hence )'cc z 0 and

lv—uﬂ < 0. This proves the theorem. []

A different type of bound is due to A.J. Hoffman (unpublished) .

THEOREM 3. If G is regular of degree d then

-A
v
a(G) = vYaoo -
v

PROCF. The all-one matrix J commutes with A. By Theorem 2 of Chapter 2 A and

J have a common basis of e:.genvectors Hence the smallest eigenvalue of

A - —(d—)\ )J is l . Now A - —(d A )J has a principal submatrix -—-(d—,\ )J of

size a(G); this submatnx has eiqenvalue =(d=A )u(G)/v on repeatedly apply-
ing Theorem 5 of Chapter 2 we get - (d-A ]u(G}/\r 2 )

sired inequality. [J

¢ Which yields the de-

In later sections we pProve theorems which have Theorem 3 as a corollary.
For convenience we define

=X
v
B(G) := Va_—;\v*

for a regular graph of degree d. (So Theorem 3 reads a(G) < B(G).) From The-
orem 1,

Theorem 3 and the inequality (x) it follows that:
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COROLLARY 4. If G is regular then

X1
Y(G}ZI—T.

v
In the next section we shall see that Corollary 4 holds for arbitrary

graphs. This result is due to A.J. Hoffman.

EXAMPLE. Let G be the pentagon:

Then we see that G = G, «(G) = 2, y(G) = 3,

0 1 0 0 1

1 01 0 O
A=|0 1 0 1 0},

0 0 1 0 1

1 0 0 1 0O

AT = 2J, Az = AAt =.J + I -~ A.

Hence (A+(&+%/5)I) (A+(%-%/5)I) (A-2I) = 0. Now, since Tr A = 0 and
Det A € Z, we have A, =2, A, = A3 = -k + L/5, Ag= g =k - 4v/5. Theorem
2 yields oa(G) = 2. Theorem 3 gives «(G) = Y5 = B(G). Combining Theorem 2

with the inequality (*) yields y(G) z 2%. Corollary 4 yields y(G) 2 V5.

EXAMPLE. Let G be the line graph of Kg, with adjacency matrix A. Clearly &
is regular of degree 12, hence AJ = 12J. Because (Kzli. equals the number

of paths of length two from vertex i to wvertex j, it follows that

Ao m 191 %6R +4fI-R-T).

Without loss of generality we take A of the form

n o ©

¥ M
N
=

=
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We now define the 27x27-matrix A by

A J=-B

E:
1 2

J-A A

2 =

Straightforward matrix manipulations give
2% = 161 + 108 + 8(I-A-1). A7 = 167,
or equivalently

(+) (A-4I) (a+21) = 8J, (A-16I)J = 0.

The graph G having A as its adjacency matrix is called the Schl&fli graph
(cf. [17]). From (+) and TrA = 0 we obtain the eigenvalues of G:

= = = = = L. = ==2,
11 16, Az i A? 4, 18 AZ?
For the eigenvalues XI e 2 52? of é, the complement of G, we find
A, = 10, Ay = ... = Izl =1 A, = .= Xpq = =5.

From the above definition we immediately have «(G) = 3, a(G) = 6. We see
B(G) =3, B(G) = 9. Theorems 2 and 3 give a(Q) < 6, a(G) < 6 and a(G) < 3,

a(G) < g, respectively. Thus a(G) = 3, a(G) = 6. Inequality (*) gives
Y(G) 2 9, Y(G) 2 27/6. By inspection it follows that y(G) = 6, y(G) = 9.

2. INTERLACING OF EIGENVALUES

Let A and B be two square matrices having only real eigenvalues

11 T wawi An and v1 &l & um. respectively (m<n). If for all 1 i <m

we have Ri 2 vy 2 An—m+i’ then we say that the eigenvalues of B interlace

the eigenvalues of A. Theorem 5 of Chapter 2 implies that this property
holds if B is a principal submatrix of the hermitian matrix A. We used this
in proving Theorems 2 and 3. We shall now prove that interlacing of eigen-

values holds in other cases also, in order to obtain further bounds for a(G)
and v(G).

o * 5
LEMMA 5. Let S be a complex mxn-matrix such that 8§ = I. Let A be a hermi-

i . * .
tian nxn-matrix. Then the elgenvalues of SAS interlace the eigenvalues of
A,
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FPROOF. Let T be an (n-m)x*n-matrix such that its rows form an orthonormal

basis for the othogonal complement of the row space of S. So R := [g} satis-
* -—
fies R =R 1. Now
* *
sas SAT ]
*
RAR = [
* *
TAS TAT J

* : - . 3
hence SAS is a principal submatrix of the hermitian matrix RAR . Thus the
x o . *
eigenvalues of SAS interlace the eigenvalues of RAR . Since RAR* and A have

the same eigenvalues the lemma has been proved. O

Note that if S = [I|0] then SAS" is a principal submatrix of A. Hence
Theorem 5 of Chapter 2 is a special case of Lemma 5. We are now able to

prove the announced generalization of Corollary 4, due to HOFFMAN [9] (see
also [1], [8]).

THEOREM 6. For any graph G
A
Y(G)Zl——l—l-.
v
PROOF. Let Cl,...,cY represent the partitioning of the vertices of G accord-
ing to the different colours of a colouring. Let x = (xi""'xvjt be a real

~

eigenvector belonging to A,. We define the yxv-matrix S by

1

0 if i ¢ C,
)

s),, =
2 x,ifiec
3 3
- ] v i 1 . $y ,
So $j = x, S§ = D, where D is a diagonal matrix with positive diagonal en-

tries. (This follows from Theorem 1 (ii); however, we can easily do without
this theorem by just skipping the possible zero-rows of S.) Put § := D_Hg.
Then SSt = I and Lemma 5 implies:

(1) The eigenvalues of SASt interlace the eigenvalues of A.

From the definition of S it is clear that:

(2) All diagonal entries of SASt are Zzero.

Furthermore SAStD%j = SAgtD_5D5j = Shx = Alsx = ALD_BEEtj = AIDhj, hence
(3) 11 is an eigenvalue of SAst.
Let v, E i 2 UT be the eigenvalues of snst. Then (1) and (3) imply
~ , R Y oy e
Al = vy Together with (2) and (3) this implies Zi=2 vy vy Al. By (1)
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¢ hence Xv

A
we have v, Av—"(ﬂ'. imy—y+2 i

€ -)- Thus y 2 1 - llﬁ\v- O

Using Theorem 1 we see that if G is biparite we have equality in Theo-
rem 6. The way Corollary 4 follows from Theorem 3 suggest that the general-
ization of Theorem 3 for nonreqular graphs would be a(G) < —VJ\V/(J\l-L\v) 5

This however is not true. The stars (i.e. graphs K ) provide counter-

1,v-1
examples. Indeed, the eigenvalues of a star are .\1 ; V-1, 3\2 = ... = Av—l =
=0, '\v = -Y¥=1, hence —vlv/(ll-lvl = &v, whilst a(G) = v -~ 1. Later in this
section we prove a generalization of Theorem 3 for nonregular graphs. In or-—
der to do so we shall need another result on the interlacing of eigenvalues

(see [5]): ;

o . 2 .
LEMMA 7. Let A be a hermitian nxn-matrix, partitioned into m" block matri-

ces Aij' such that all Aii are sguare matrices:

Let B denote the mxm-matrix whose ij-th entry eguals the average row sum of

Aij’ for all 1,3 = 1,...,m. Then the eigenvalues of B interlace the eigen-

values of A.

PROOF. Let di denote the size of Aii for all 4 =1,

mxn-matrix S by

~+«,m. We define the

lownd Oowel: 02000 oy 00io0]
0::20 leiwel 0h0n0 wve 0...0
§= 0 0...0 1...1 R 0 [P o |
o S o
0...0 0...0 1...1]
a a a a
1 2 3 m

Put D = diag(d;,...,d ), then S8° = D, B = p~'Zagt.

. Define § := D_&'S' then
SS” = I. Now Lemma 5 implies that the

eigenvalues of SASt interlace the
eigenvalues of A. On the other hand sas® = p~5aStp™ - 5’80~ ", which has

the same eigenvalues as B. This proves the lemma. ]
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THEOREM 8 ([5]). For any graph G with minimal degree dmin we have

a(G) < v =
ad . =i A
min "1 v

PROOF. We apply Lemma 7 with m = 2 to the adjacency matrix A of G.

0 A

where the zero-matrix O has size a(G). Now for the matrix B of Lemma 7 we

may write

0 b12

Pag: g

where b21 = u(G)blzf(v—a(G)). Let vy = Vg be the eigenvalues of B. Then

Det B = -b12b21 = —blza(G)/tv-u(G)) = Vv Lemma 7 implies —VyVy = -Allv
Hence bl ,a(G)/(v-a(G)) = =MA e SO
_Alhv
a(G) = v 3
P12
Using dmin =< b12 we obtain the reguired result. O

In the above proof we used only part of Lemma 7, namely kl < vy < lv
for all i = 1,...,m. This fact is commonly used under the name "Higman-Sims

technigue" - see [7].

If G is a star, then

e B e
dmin_kiAv
50 in this case the bound of Theorem 8 is sharp. If G is regular of degree
d we have Al =d = dmin; hence in this case Theorem 8 reduces to Theorem 3.
For m = 1 Lemma 7 implies that the average row sum of a hermitian ma-
trix cannot exceed the largest eigenvalue. This result can be used in prov-

ing the following inequality due to WILF [19].
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THEOREM 9. ¥(G) = 1 + 11.

PROOF. Let T be an induces subgraph of G having the smallest possible num-~
ber of vertices such that y(I') = Y(G). Assume I' has a vertex x of degree

< ¥(I') - 1. Discard x to obtain T. Now Y(F} = y(I') - 1, but x is adjacent

to less than Y(F) vertices of I', hence at least one colour does not occur
among the neighbours of x. But then we can give x that colour, which contra-
dicts y(T) = y(G). Thus the minimum and hence also the average degree of [

is not smaller than y(I') - 1. If vy is the largest eigenvalue of T we now

know: y(I') - 1 < v, S ll. O

3. ASSOCIATION SCHEMES

So far we have obtained several bounds for a(G) and y(G) in terms of
the eigenvalues of the adjacency-matrix of the graph G. The problem remains

that, given a graph G, it is not always easy to compute the eigenvalues. In

this section we shall discuss special types of graphs for which the eigen-—

values are relatively easy to obtain; so the derived bounds are useful here.
However, it will turn out that, because of the special situation, we can
find other bounds. Almost all results of this section can be found in
DELSARTE [3] (see also MacWILLIAMS & SLOANE [13]).

A set of graphs Gl""'Gn on a common vertex set {1,...,v} forms an

association scheme if their adjacency matrices A

I,...,An satisfy the follow-
ing conditions:

n
(1) ! a =0-1,

(2) kz pljak + p I, for ali i,j = 14,...,n,

for certain integers pij.

Condition (1) says that any two distinct vertices are adjacent in exactly

one of the G.'s. Condition (2) says that if two vertices x and y are adja-

cent in Gk, then the number of vertices z adjacent to x in G and adjacent

to ¥ in Gj' is equal to the constant pkj (independent from which adjacent

pair of Gk we have chosen), for i,j:;k=1,...,n. (So p:j = p?i.) For con-
venience we put Ao

Observe that Gi is regular of degree p0

= I.

» because the degrees of the

vertices of G are on the diagonal of Az. The matrices AO,...,A commute;
n
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indeed, (2) implies

n n
X k .t t
Nk, = § po= ¥ prac=(Ra0" AR,
% iy’ k=0 1]Ak k=0 13 k i™3 b i
Clearly, the matrices AO,...,An span a commutative (n+l)-dimensional algebra

A, the so-called Bose-Mesner algebra of the association scheme. Another ba-

sis for A, the basis of minimal, orthogonal idempotents, is given in Theorem
10.

J.

THEOREM 10. There exists a basis J ""'Jn for A, such that I, 3 = 6ijJi’

0
for all i;3j = Dpssopne

PROOF. By Theorem 2 of Chapter 2 there exists an orthogonal matrix S (whose

;

i . t
rows are eigenvectors of Ai) and diagonal matrices D, such that SA,§° = D,

for i = 0,...,n. It is clear that DO,...,Dn‘span an algebra X isomorphic to
A. Write
v—
R —Voﬂ Fyyers va,
where VO,...,Vm are the common eigenspaces of DO""’Dn' Define the diagonal
matrices FO,-..,Fm by

(L), = B
33 0 ife, ¢V,
J i
where e, denotes the unit vector tﬁlj""'svj)t' Then these matrices are lin-
J
early independent and any matrix in X is a linear combination of To,...,rm.

Let D € A be a matrix with m + 1 different eigenvalues. We know that

£ n
1

Dt = jéa a; Dy

for some coefficients aij' for all i 2 0. Hence

b.D7,
g 9

k

+1

pF*l = 7

j=

for some ccefficients bj’ for some k < n. This implies that D has at most
n + 1 distinct eigenvalues, hence m < n.

Thus rO""’Tm form a basis for i. so m = n. Putting, for i = 0,...,n,
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J, = StP.S
i i
we have the required Ji's. O

If we take VO to be the one-dimensional eigenspace corresponding to the

degrees of Gl""’Gn' then we easily see that JO = %J.

Let us express the two bases for A, in terms of each other:

(3) Aj =

n
lg Py 03, for j = 0,...,n.

0
n
(4) v, = §

Q.(1)a,, for j
J i=0 ] i

1
o
B

Formulas (3) and (4) define the numbers Pj(i) and Qj{i). In fact,
Pj(o),...,Pj(nJ are the eigenvalues of Aj’ for (3) and Theorem 10 imply

(5) AjJi = Pj(i)Jif

for i,5 = 0,...,n.
We define the matrices P and Q by

P),, =P . = Q. (1).
( )13 j(i) and {Q]ij Qj(l)
Then (3) and (4) imply PQ = QF = vI. Put
0
Vi =Py (the degree of GiJ, and My == Rank Ji.
LEMMA 11. Po(i} = Qoti) =1, P, (0) = Vi Qi{OJ =M. j

PROOF. Po(i} = 1 and Pi(DJ = vi follow from (5). Qo{i) = 1 follows from (4). ?
Taking traces of both sides of (4) yields Qj (0} = Tr J5 = Rank Jj = uy- a 5

n
REM - i) =
THEQ 12 iEL‘J V30, (1)Q (1) VHy8y, -

PROCF. Use J.J, = J, v
s 92 35j£ (4) and (2) to obtain

1 . 1 m
8575 =L QWA (] @A) =< T o (i)o, () T o™ a . i
b i | w2 T it L Ak v ik ) A g ik'm
Take traces of both sides and use ng = &, v, to get the required identity. [

ik'i

Theorem 12 is a so-called orthogonality relation. It is egquivalent to
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I
; = 6
1 WP ()R (1) = vv 8,
i=0
and to
oY
Qj(l) = ‘—’: Pi(]) '

as follows straightforwardly from PQ = QP = vI.
Let ¥ € {1,...,v}, where {1,...,v} is the (common) vertex set of the
graphs G, . For each i = 1,...,n define a, to be the average degree of the

j
subgraph of Gi induced by Y. That is

1 t
a, = —ry A -
(6) 3 Y] ¥ iY
where y = (yl,...,yv)t is the characteristic vector of ¥. Put a, = 1. Then
n
(7) ltl = ] a,.
i=0
The vector a = (ao,...,an)t is called tae inner distribution of Y. The fol-

lowing theorem is basic to DELSARTE's work [3].

THEOREM 13. If a is the inner distribution of a set ¥, then Qta z 0, or,
equivalently,

ain(i) z 0, for all j = 0,...,n.

Il 13

i=0

PROOF. Using (6) and (4) we have

n n
. 1 g _
izﬁ 2,0, (1) = [§T ¥ (iZO Q, (1)a)y =

vt v kLt Lt
=TT Y ij =TT {y Jj)(y Jj) z 0. 0

We say that a graph G is in the association scheme {GI""'Gn) if its
adjacency matrix is in the Bose-Mesner algebra A, that is, if the edge set

of G is the union of the edge set of some of the Gi's. Let us write G = Ga

if A € {1,...,n}, and G had adjacency matrix Eieﬂ AL IfY < {1,...,v} is a

coclique in G, then, clearly, a, = 0 whenever i € A. Now formula (7) and

Theorem 13 imply:
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THEOREM 14. For A < {1,...,n}, one has

n
u(Gﬁ) < max { E a; | a, = 15 a. 0if i e A, a, = o,

% 1
i=0

]

a,0.(i) 2 0 for § = 1,...,n}.
i=0  d

By the Duality theorem of linear programming (Theorem 11 of Chapter 2) the

maximum in Theorem 14 is equal to

n n
min{)‘bi|b0=1,Zbipi(j)szJifj;au{o},bizo
i=0 i=0

for i = 0s...;n}.

This bound on a(G,) is therefore called the linear programming bound. One

can apply linear programming techniques to obtain its value.
Using the above results Delsarte proved the following theorem:

THEQREM 15. u[Gﬁl.a(Ga) £ V.

We shall postpone the proof of this theorem to the last section of this
chapter, where a more general inequality will be proved.

Now let us look at some examples of association schemes.

Let V = {0,....q—1}n. We define the Hamming distance of two elements
(vectors) x and y from V to be the number of coordinate places in which x
and y differ. lLet Gi be the graph with vertex set V, two vertices being adja-
cent iff their Hamming distance is i. Then Gl""'Gn form an association

scheme; schemes obtained this way are called Hamming schemes. The eigenval-

ues Pi(j} of Gi are given by

i
<. . k i-k,j, n-j
P = K. = - - .
i(j) Kl(J} kgo (-1) " (gq-1) (k}(i—k)’

. v
K, (x) is the Kravcuk polynomial of degree i in the variable x (see [3] or
Chapter 9).

A second example is obtained by taking for V the subset of {0,1}" con-
sisting of elements of weight (= number of coordinates equal to 1) n; the

Johnson distance of two vectors x and y from V is, by definition, half of
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the Hamming distance. Let Gi be the graph with vertex set V, two vertices
being adjacent iff their Johnson distance is i. Then Gl,....Gn form an as-
sociation scheme, the so-called Johnson scheme. The eigenvalues are:

i ;
- o _ i-k n-k, ,n-j, m-n+k-Jj
(8) P03 = By(3) = kéo (G Vi Vo T G 15

Ei(x) is the Eberlein polynomial of degree 2i in the variable x (see [3])
The graph Gn of this association scheme is called a Kneser-graph, and de-

noted by K(m,n) (cf. Chapter 4) .

If G is a non-trivial graph in an association scheme with two classes
(i.e. n = 2), then G is a so-called strongly regular graph. From Theorem 14
it follows straightforwardly that the linear programming bound for w(G) of a
strongly regular graph equals f(G); moreover, in this case, B(G)B(G)= v.

(For other association schemes the bounds of Theorems 14 and 15 are usually
smaller than B(Ga).l

It is easily checked that the pentagon and the Schlafli graph are strong-

ly regular.

Hamming and Johnson schemes are useful in coding theory. For example in
case of a Hamming scheme Theorem 15 yields the Hamming bound for error cor-

recting codes - see Chapter 9.
4. THE SHANNON CAPACITY

Let be given graphs G and G', with vertex sets V and V', respectively.
We define the product G.G' to be the graph with vertex set VxVv', two verti-
ces (x,x') and (y,vy') being adjacent iff x = y or x and y are adjacent, and
x' = y' or x' and y' are adjacent. Let Gk denote the product of k copies
of G. Clearly a(Gk) < vk, so we may define
k

(1) @(G) := sup a(Gk)
k

This number, first defined by SHANNON [18], is called the Shannon capacity
of G.

If we consider the vertices of G as letters in an alphabet, two verti-
ces being adjacent iff the letters are "confoundable", then we can inter-

k 4
prete a(G ) as the maximum number of k-letter words such that any two of
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them are inconfoundable in at least one position.

Clearly «(G) < 0(G), and O(G) can be different from a(G). Indeed, let
G be the pentagon. Then «(G) = 2, but { (1,1}, (2,3), (3,5), (4.2), (5,4)} is
a cocligue in Gz, so 0(G) = V5. We shall see that for any regular graph we
have @(G) < B(G). In case of the pentagon we saw B(G) = Y5, thus 0(G) = V5.
The determination of the Shannon capacity of the pentagon was an unsolved
problem for over twenty years, until 1ovasz [10] solved it by proving (among

others) the mentioned upper bound.

For an mxn-matrix A = (a,.) and an m'¥n'-matrix A' the Kronecker product
1]

A ® A' is the mm'*nn'-matrix

The following properties of the Kronecker product follow directly from the
definition:

(2) Rank (A @ A') = Rank A.Rank A’
(3) (A ®a')(B®B') =2aB ® A'B",
(4) ateB%= (a e Bt

where A, A', B and B' are such that the above operations are well defined.

We denote the k-th Kronecker product of A with itself by ngk.

For convenience we introduce the following notion. A real vxv-matrix B

0 if i and j are distinct non-
adjacent vertices of G. Suppose B fits G, and B' fits G'. Then it is clear
from the foregoing that B ® B' fits G.G'.

fits a graph G if B is symmetric and (B) i3 =

In order to study Lovdsz's upper bound for the Shannon capacity we
introduce the following numbers for an arbitrary graph G. The eigenvalues
of a real symmetric vXv-matrix B are denoted by AL(B} 2 ... 2 A _(B).

v

8,(6) := min {max (ctu)f | % =1, vty fits q, (ww,, =1
* For = Hyneiiw )y

%219 t=min {0 (B) | B -0 fits G, (B);, =1 for L = 1,...,v},

63(6) :=max {Tr BJ | B fits G, B « PSD, Tr B = 1},
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8,(6) := max {1-X,(B)/)_(B) | B fits G, (B),;, =0
for i = 1,...,v},
65 (G) := max {a*vvta | vty fits g, aa=1, wv ., =1
1l

For:4+ = Lpssmavks

Here PSD denotes the set of symmetric positive semi-definite matrices (cf.

Chapter 2). LOVASZ [10] showed that these five numbers are equal.
THEOREM 16. 8,(G) = 8,(G) = 8,5(G) = 8,(G) = 8.(G)

PROOF. I. BI(G] < Bz(G): Suppose B achieves the minimum of 32(5" Then

Al(B)I — B € PSD, hence AI{B}I - B = wtw for some real matrix W (see Theorem

6 of Chapter 2). Define U = (;\l(a))']‘[wth]t and ¢ = (0,...,0,1)%, then U
and ¢ satisfy the conditions for BI(G)' Thus

t . =2 _
Gl(G) < mgx (c U)i = AI(B) = GZ(G}.

II. Bz(G) = 83(G): We define the vxv-matrices Eij as follows:
the identity matrix if i = J;

the all-zero matrix if i and j are distinct non-adja-

E _ Jcent vertices of G;
ij
the matrix with a 1 in the ij-th and ji-th position
if i and j are adjacent, and a O elsewhere.
Now we can rewrite the expression for 83(G):

64(6) = max {<J,B> | B e Psp; I - (<E;4/B>) = o},

" r
where the inner product <A,B> of two matrices is defined as Tr AB . The Dual-

ity theorem of convex programming (Theorem 11 of Chapter 2) yields:
o C) =i .
6,(6) = min {<c,I> | (<E;4:C>) e PSD}

Put <C,I> =: A and J - (<E,,,C>) +AI =: B. Then B - J fits G, Ay(B) = A,
1]
(B)ii = 1 for alli=1,...,v. Thus

85(® = min () | A (B) S A, B - J fits G, (B),, = 1.

From this it follows that 63(6) = 82(6)-
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i 63(G) < eq(G): Suppose B achieves the maximum of EB(G)' Let B'

be the matrix obtained from B by deleting all the all-zero rows and columns.
Now B' ¢ PSD and therefore all diagonal elements of B' are positive. Let D

be the diagonal matrix having diagonal equal to the diagonal of B. Define
B' := D*BB'D_5 - I. Extend B' to the vxv-matrix B by adding all-zero rows

and columns. Then B satisfies the conditions of 84(G}. Moreover XV(E) Z2 =1,
i 4

since D 'B'D ® € PSD, Thus

8,(G) 2 1+ A, (B) =1 + AI(E') > 1+ 3% 'p%/3%5 =

=1+3%'3-1=13%;j= 8,(6) .

iv. 84[GJ < SS{G}: Suppose B achieves the maximum of 6 (G). Put

4
—l/lv(B)(B-Av(B)I}. Now B € PSD, so we may write B =: vV for some real

matrix V. Let d be a normalized eigenvector of wt corresponding to

B =

Al(vvt) = A, (B). Then 4 and V satisfy the conditions for 65(G). So we have

£, ~ g _
85(0) > a"w'a = 4, B) = (A (®)-A (B))/A,(B) = 6,(G).

V. B.(G) = 8,(G): Suppose 4,V and e,U achieve the maximum and mini-

mum of BS(G) and Bi{G), respectively. Let v, and U, denote the i-th column
of V and U respectively. Then

v
. t 2 t 2
G) /9 = :
85(G) /8, (G) AL (5 ~§1 @v)“ <
v v =
< ) fuavp?= T ((coa) tuev,))?
i=1 i=1 S

on applying (3) and (4). Now the vectors (uiavi) are pairwise orthogonal,

as follows again from (3) and (4). Thus by Pythagoras' theorem

v
} (eea)t(u.ev.))? < lc @ al = cot. aat = 1.
i=1 o

This proves the theorem. ]

We write €(G) for the common value of the ei(c).

LEMMA 17. a(G) < B(G).

PROOF. Let X be a coclique of G of size a(G) . Define the vxv-matrix B by
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(B).. = [1/0(G), if i,3 € X,
= 0, otherwise.

Then B satisfies the conditions for 83(6) . Hence 8(G) =2 Tr BJ = a(G).

ILEMMA 18. 8(G.G') = 6(G).B (G").

PROOF. Suppose c¢,U and c',U' satisfy the conditions of Bl(G) and SI(G'}

respectively. Then ¢ ® ¢' and U @ U' satisfy the conditions for eitG-G')-
Thus

8(G.G') S max 1/((c®c') (UsU")), =
i

o 1/({ctmi.(c'tu'}j} = 8(G).6(G"). D

i,3

THEOREM 19. 0(G) = 8(G).

PROOF. Using Lemma 17 and 18 we have

0(G) = sup 5a(Gk) < sup ljﬁ(G ) £ sup Y(8(c))" = 8(a). O
k k k
THEOREM 20. If G is regular of degree d, then

8(G) = R(G) -

PROOF. Let A be the adjacency matrix of G. Take B := v/(?\v-d)a + J; then B
satisfies the conditions for BZ(G) and

wd
A v_d

3\1(3) = v + = B(G).

Thus 8(G) < B(G). O

We have again proved that a(G) = B(G) for regular graphs. Also Theorem

6 can be proved using Lovdasz's methods:

THEOREM 21. 1 - A, /A, < 8(G) £ (&) .

PROOF. Let G be coloured with y colours, with colour classes clf-..,c_(

Define the yxv-matrix U by
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1 if j e Ci
(o), =
ij {

o] elsewhere

Put ¢ = T-Bj then (ctU}zz = Yy, and U and c satisfy the conditions for 81(6).
Hence 6(G) < ¥(G).
The other inequality is immediate, since the adjacency matrix of G satisfies

the conditions for 64{G}. ]

LOVASZ [10] obtained several other properties of 8(G) from Theorem 16

such as:

(5) 6(G.G") = B(G)B(G");

(6) 8(G)8(G) 2 v, with equality if the automorphism group of G acts
transitivily on the vertices.

(7) 8(G) = B(G), if G is regular and the automorphism group of G

acts transitivily on the edges.

Using Theorems 19 and 20 it follows, as we announced in the introduc—
tion, that the Shannon capacity of the pentagon equals ¥5. From Theorems
19 and 21 we see that the Shannon capacity of any graph with a(G) = y(G) is
equal to a(G). This includes all even circuits. The smallest eigenvalue of
an odd circuit C, equals -2cos /v (see [1]). Thus by (7), for odd v:

cos /v

a =
(cv} b l+cos /v °

Lower bounds for G(Cv) are also known
v=3andv=S5§ O(Cv) is known.

- see [12]. For odd v only for

It is not true that 0(G) = 8(G) for every graph. This can be shown

with the use of the following theorem (cf. [6]1).

THEOREM 22. Suppose the matrix B fits G,

and (B)ii =1forall i =1
Then

el

©(G) < Rank B.

ek
PROOF. B has a submatrix I of

X size a(c¥), because 8% fitg oK.
Rank B

5 Hence
* @(G7). On the other hand (2) yiélds: Rank %%

= (Rank B)k. Thus

0(8) = sup ¥a(®) < sup Ymank B)* = rank B.
k k ’
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EXAMPLE. Let G be the Schldfli graph (cf. Section 1). Then al(G) = B(G) = 3,
a(G) = 6, B(G) = y(G) = 1 - A/}, = 9. Now using Theorem 19, 20 and 21 we
have 6(G) = 0(G) = 3, and 6 < 0(G) =< 8(G) = 9.

= If A is the adjacency matrix
of G, then B :=

I - A satisfies the conditions of Theorem 22. From the eigen-

values of A it follows that Rank B = 7, hence O(G) =< 7. Thus 6 < 0(G) < 7.

It is not necessary to take the matrix B of Theorem 22 over the field
of real numbers - any field will do. On the other hand, if B is real and
B € PSD then, as is proved in [10], Rank B = 6(G).

5. COMPARING THE BOUNDS OF DELSARTE AND LOV;\SZ

The determination of 6(G) from the foregoing section is a convex pro-

gramming problem. However if G = G& is a graph in an association scheme

(cf. Section 3), this convex programming problem will turn out to be linear.
This makes it relatively easy to compute with B(Gﬂ) . The results of this
section are due to MCELIECE, RODEMICH & RUMSEY [12] and SCHRIJVER [15].

For a graph G,, for 4 < {1,...,n}, in an association scheme with n

classes, we define

n n
6.(G,) :=max { ] a, |a,=1,a, =0ified, } ag. (i) 20
6" A joo L 0 i i=0 i%®)
for j = 1,...,n}
n n
o e = i) = 0 if 5 £ A
8,(G,) := min {1§c b, | by =1, iEO b,P, (3) = 0 if 3 £ & u {0},

o
[}

0 for A= Lyl

Here the matrices P and Q are as given in Section 3. Then we have
THEOREM 23. 66(63) = S.?(GA} = B(Ga)-

PROOF. I. The first eqguality follows directly from the Duality theorem of

linear programming (Theorem 11 of Chapter 2), and the orthogonality relation
(Theorem 12).

II. 8(G,) = 8,(G,): Suppose ag,.--,a, achieve the maximum in B_(G,) -
Define
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Then B fits Eé, and Tr B = 1, the matrices AO,...,An commute. This implies

that B has eigenvalues

} .}

| —— P, (j) = —Q ()

i=0 Vi * i=0 V¥5 73

for j = 0,...,n, on using the orthogonality relation (Theorem 12). By defi-

nition, the right hand side of the above equality is nonnegative. This im-

plies that B ¢ PSD. Thus B satisfies the conditions for 6,(G ), hence

3
n a.i n
0(G,) = Tr BI = ] 5 TEAT= | oa=06.G,).
i=0 i i=0

III. B(Ga) = BT(GA)= Suppose bD""'bn attain the minimum of B?{Gal.
Define

n b,
B:=6,(G)I- ) —Lo (i)a +4J
TR 1 e ky 3L
BE
= 8,(G,)I - ( 0. (1)-DA,,
TR 420 gm0 My 3 *

on applying (1) of Section 3. The eigenvalues of B?(GBJI - B are

i3z ; 2
( —=Q.(1)-1)p, (i) = —vé., -6,
i=0 3=0 “j 5 k j=0 “j ik Ok

for k = 0,...,n, once again using the orthogonality relations. The right
hand side of the above equality is clearly nonnegative. This implies that
97{Gﬂ} connot be smaller than the largest eigenvalue of B. On the other hand
it is easily checked that B satisfies the conditions for BZ(GQ" Hence

B(Gﬂ) < litB) < a?(Gﬂ]' 0

THEOREM 24. If =N is a graph in an association scheme, then
G(Gﬂ) B(GA) s v.

PROOF. Let ao.-..,an achieve the maximum in BG(GA)' Put

n
by = (iZO a0,(4)) / 8(G

I

for j = 0,...,n. Then bo =1, bj 20 for j=1,...,n and for i € A we have
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l’zl I
b.P (1) = ( ] a,0.0)P.(i)) / 8(G,)
j=0 3 3 5,k=0 k>3 j A
n
= 1 8,3/ 8(G=av / 8(G) = 0.
k=0
Hence bO""’bn satisfy the conditions for B?GE;). Thus
: i )
8(G,)-8(G,) < B(G,)- b, = a0
A A :
87520 3 4,5m0 173
li 2% n
= a E Q1Y = I 8. causr = a
=0 i 520 i izo 0i i

The inegquality u(GQ) < G(G&) and the above theorem immediately yield a

proof of Theorem 15, as promised.

Ccombining Theorem 24 with (6) of Section 4 we get

(1) B(Gﬁ)B(G = V.

A
This result is different from (6) of Section 4, because there are {many)

graphs which are in an association scheme, but whose automorphism group does

not act transitivily on the vertices.

EXAMPLE. lLet G = G6 be the Kneser-graph K(m,n) (see Section 3 or Chapter 4).

Using formula (8) of Section 3 we cbtain
_ m—l\
g@ = (n—l;'

m—1
It is easily seen that a(G) 2 n—l)' So we have
AS

n-1

a(G) = 0(G) = 8(G) = B(G) = (""1)-

The equality o(G) = (ﬁ:l) is known as the Erdds-Ko-Rado theorem. By (1) we

1 -—
have 8(G) = m/n. Obviously a(G) = I_m/nj, so if n divides m, then a(G) =
= ©(8) = 6(8) = m/n. However, in general the value of ©(G) is still unknown

(see Chapter 4).

Using the above techniques, SCHRIJVER [16] determined the Shannon ca-
pacity for graphs G& in the Johnson schemes, for 4 = {g,8+1,...,n}, for

any & (provided m is large enough with respect to n).
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It is remarkable that the formulas for BS(G.&) and 37(Ga) are only
slightly different from the linear programming bound for cocliques in Gé.
(Theorem 14). Because of this, one could expect that the linear programming
bound for cocliques in association schemes generalizes, like 8(G), to a con-
vex programming bound for cocligues in arbitrary graphs. This indeed is the

case. Put

8'(G) = max {Tr BJ | B fits G, B PSD, Tr B = 1, B)y g =0

for i,j = 1,...,v}.
Then

THEOREM 25. a(G) < 8'(G) < 6(G).

PROCF. 8'(G) < SS(G): This is clear.

a{G) = 8'(G): This can be proved in a way completely analogous to the proof
of Lemma 17. [J

THEQOREM 26. 8! (Gé) equals the linear brogramming bound for cocligues in Gﬂ.

PROOF. Analogous to the proof of Theorem 23. O

M.R. Best showed the existence of graphs G with 8'(G) < 8(G) - see
[15]. ROSENFELD [14] studies 8(G) in relation to distance geometry.

I thank Lex Schrijver for helping and stimulating me to write this chapter.
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UNIFORM HYPERGRAPHS

A.E. BROUWER & A. SCHRIJVER

INTRODUCTION

Let X be a fixed n-set (an n-set is a set having n elements). Considex
the set Pk(x) consisting of all k-subsets of X. There are various problems
of a "packing & covering"-nature presented by the set Pk(x). In this chapter
we shall deal with some of them, mainly grouped around the following four

questions:

1. What is the maximum number of pairwise disjoint sets in Pk(x)?

2. What is the maximum number of pairwise intersecting sets in PR{X)?

3. What is the minimum number of classes into which Pk(x} can be
split up such that any two sets in any class are disjoint?

4. What is the minimum number of classes into which Pk(X} can be

split up such that any two sets in any class intersect?

We shall first give, briefly, the answers to these questions; they are
treated more extensively in the Sections 1-4. To streamline the answers we
assume, for the moment, that n is at least 2k (for smaller n the questions
are not difficult).

The answer to the first problem is trivially L%J (|x] ana [x] de-
note the lower and upper integer part of a real number X, respectively) .

The answer to the second question is easily seen to be at least (E:i):
take all k-subsets containing a fixed element of X. The content of the Erd&s-
Ko-Rado theorem (1961) is that one cannot have more: {2:1) is indeed the
answer to question 2.

The answer to the third question must be at least
n n
(1) [zt

since each of the classes partitioning the (2) elements of Pk(x) contains at.
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most Ln/kj elements. In 1973 Baranyai proved that indeed Pk(xj can be split
into this many classes each consisting of pairwise disjoint sets. This is
particularly interesting in case n is a multiple of k: then this splitting
yvields (2:1} partitions of X, containing each k-subset exactly once.

In a similar manner we have that the answer to question 4 must be at

least
n n-1 _ [n
(2) G761 = [§]

An upper bound for the answer is given by the following construction (where
we may suppose, without loss of generality, that X = {1,...,n}): let K.‘E. be
the collection of k-subsets of X whose smallest element is i (i = 1,...,n);
then

(3) K U K

B LR L T A

172
are n-2k+2 classes of pairwise intersecting k-subsets of X, with union Pk(x) -
So the answer to problem 4 is at most n-2k+2. Kneser conjectured in 1955
that n-2k+2 indeed is the answer; in 1977 Lovdsz was able to prove this
conjecture, using homotopy theory and topology of the sphere.

We may set the problems described above in the language of graphs. The
graph K(n,k), usually called a Kneser-graph, has, by definition, the set
Pk (X) as vertex set, two vertices being adjacent iff they are disjoint (as
k-subsets) . Now let, for any graph G, a(G), w(G) and v(G) be its stability

number, cligue number and colouring number, respectively. In Chapter 1 we
saw that

(4) w(G) = a(G), w(6) =y(G) and a-(vg—)Sw((G),

where v is the number of vertices of G. The solutions to the problems 1-4

above may be translated as follows.

1. a®@nX) = [n/k),

2. = (Bl
&‘K(nfk)) (k_l’r

3. Y@K = [Gh/IR]1,

4. v (K(n,k)) = n-2k+2.

In particular, if k divides n, the inequalities in (4), for G = K(n,k)
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become equalities.
In this chapter we shall discuss the above mentioned and related prob-
lems. In Sections 1,2,3 and 4 we go further into the problems 1,2,3 and 4,

respectively.
{. COLLECTIONS OF PAIRWISE DISJOINT SETS

Let n and k be natural numbers such that k < n. Let X be an n-set. In
this section we consider problems asking for the maximum size of collections
of disjoint or "almost" disjoint sets in Pk(xa, and in some derived collec-
tions. The first question to arise is easy to answer: what is the maximum
number of pairwise disjoint sets in Pk(x)? Answer: L%ﬁ. However, this ques-—

tion has some more difficult and more interesting generalizations.

Our first generalization is to investigate the maximum number D(t,k,n)
of k-subsets of X such that no two of them intersect in t or more elements.
So D(l,k,n) = [n/k]- The problem of determining D(t,k,n) is a genuine pack-
ing problem: D(t,k,n) is the maximum number of pairwise disjoint sets Pt(Y)
for ¥ € Pk{x}. Its covering counterpart is the problem of determining the
minimum number C(t,k,n) of k-subsets of X such that each t-subset is con-
tained in at least one of them. So C(t,}.,n) is the minimum number of collec-
tions Pt(Y) (for ¥ € Pktx)) covering the collection Pt(x).

It is easy to see that p(t,k,n) = cit,k,n) if and only if there exists
a Steiner system S(t,k,mn) (i.e., a collection of k-subsets of X such that
each t-subset is in exactly one of them).

The investigations into the functions c(t,k,n) and D(t,k,n), and their
design-theoretical aspects have assumed such large proportions that they
will be dealt with in Chapter 5 ("The Wilson theory") and 6 ("Packing and
covering of (t)—sets"}. In Chapter 6, when considering c(t,k,n)-problems,

t and k are assumed to be fixed, while the behaviour of c(t,k,n) as a func-
tion of n is viewed. Now C(n-£,n-k,n) is the minimum number of (n-k)-subsets
of X covering each (n-£)-subset. Passing to complements, one can view this
as Turdn's problem: what is the minimum number T(n,k,£) of k-subsets of X

such that each f-subset contains one of them as a subset? So
(1 c(n-£,n-k,n) = T(n,k,4L).

The distinction between the investigations into C and into T does not rest
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on any analytical basis but is simply a difference in approach: T(n,k,£)
will be considered mainly as a function of n (fixing k and £

We may view the problems of determining D(2,k,n), c(2,k,n) and T(n,2,£)
as graph-theoretical problems: D(2,k,n) is the maximum number of pairwise
edge—-disjoint complete graphs l(k in Kn: C(2,k,n) is the minimum number of
complete subgraphs Kjc in Kn covering all edges of Kn: and T(n,2,£) is the
minimum number of edges in a graph on n vertices containing no £ pairwise
nonadjacent points. So (121} - T(n,2,£) is the maximum number of edges in a
graph on n vertices containing no clique of size £.

The Turdn-like problems will be considered more extensively in Chapter

7 ("Turdn theory and the Lotto problem").

Now look at a second generalization of our main problem. Call a subset
Yy X oo XY Of XX ... XX = %@ a k-hypercube if e = .o = Iy4l
Now we may ask for the maximum number H(d,k,n) of pairwise disjoint k-hyper-
cubes in xd. So H(1,k,n) = |n/k]| and H(d,k,n) = 1 if k > 4n. Furthermore

PROPOSITION 1. H(d+l,k,n) < LE . H(d,k,n) ].

+
PROOF. Suppose there are h pairwise disjoint k-hypercubes in ){d 1. The num-

d+1
ber of points contained in the union of these k-hypercubes equals h.k .
For any x € X, the number of points contained in xd x {x} is at most

k%.8(a,%,n). So the total number n.k®"! is at most n.x3.H(a,k,n), which

implies that h < ]_%.H{d,k,n)]. o

COROLLARY 2. H(d,k,n) < [%{2 L o I

d t:l.me s

By a straightforward construction one sees that, if k divides n, H(d,k,n)

E-]' » S0 in those cases the inequality passes into equality. This happens
also if d = 2,

THEOREM 2. H(2,k,n) = [F[Z]].

PROOF. Suppose X = {0,...,n-1}, and let ¢ = R/nZ be the circle of length

2 . . .
n; so C is a torus. We identify C with the interval (0m), in which we

count modulo n. Let n = gk + r, where g and r are integers such that

0 2r = k-1. Let

(2) p = lJgll =q®+ 1Z0.
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2
Choose in C* the squares [x,x+k) * [y,y+k) with

3 7 = (0,0 SIL 5, ALY R
(3) (x,¥) (0,0, (p' ) s Z(P:P),"..(p 1)(9. ) .

1L
P P

respectively. That is, the vertices (x,y) lie equidistantly on a spiral of
the torus with g rotations. In the following figure g copies of the torus
are unrolled and glued +together:

)

— g —

Inspection of the figure yields that disjointness of the squares follows
from

(5) (1) B2k, ana (i1) a.2 < n.
P P

(i) implies that square numbered 1 is disjoint from square numbered 0. (ii)
implies that square numbered g still has points in torus copy I. (i) again
gives that square numbered g is "high" enough to be disjoint from square
numbered 0'.

Now we have p disjoint squares, of side k, in cz. Since 1'(2 (= C2, the
intersection S n x2 is a k-hypercube in xz, for any square S. So the inter-

2
sections of the squares with x2 from a packing of p k-hypercubes in X . g

Again, problems of dimension 2 can be formulated in the language of
graphs. H(2,k,n) can be regarded as the maximum number of edge-disjoint
K_,'s in K . BEINEKE [8] showed that the maximum number of edge-disjoint

L r
subgraphs Kk, 2 of Km -

r

n) equals

(such that the "k-sides" of Kk 3 coincide with the
r

"m-side" of K

m

(5) min((F1711, LRI

that is, the maximum number of disjoint kxf-rectangles (i.e., sets lefz
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= X,| =n,
such that [Y1| = k and [YZI = {) in a set X ¥X, with |x1| m and | 2|
is equal to expression (5). This can be proved in a manner similar to the

proof of Theorem 3.

Theorem 3 proves equality in Corollary 2 for d = 2. This cannot be
generalized to arbitrary d, since it can be shown that H(4,2,5) < 30 =
N3 = that if k is not
[5[51_5{5““ {note that H(3,2,5) = 12). In fact it f..seems ' ;
a divisor of n, then the inequality of Corollary 2 is strict for some d.

—d
It is straightforward to see that H(d,k,n) = a(K(n,k) ), where the

product graph is defined in Section 4 of Chapter 3 ("Eigenvalue methods").
So

a d
(6) sup\/{-;(d,k,n) = suqu(K(n.kld) = B(K(n,k))

d d

—_— n
equals the Shannon-capacity of K(n,k). In Chapter 3 an upper bound of X for

O(K(n,k)) is given (this upper bound also follows from Corollary 2), but it
is still an open problem whether this upper bound can be actually reached;
so we have the

d
PROBLEM. Is sgpv’ﬁid,k,n) =2, for k< Yn?

The answer is obviously "yes" if k divides n, but for no other values of k

and n do we know an answer, For k = 2, n =5, the simplest unknown case,

K(n,k) is the complement of the Petersen-graph. To calculate (6) in this

case we cannot adapt the construction of the proof of Theorem 3 straight-

forwardly: that construction yields "connected" k-hypercubes of {0,...,n-1 }d

the projections onto the components are connected intervals in the
cyclic ordering).

(i.e.,

The maximum number of disjoint connected 2-hypercubes in

iO,...,n—l}d is equal to u(CS) , Where Cn is the circuit on n vertices.

LOVASZ [66] (cf. Chapter 3) showed that, for odd n,

d
(7) 0(Cc_) := sup u(Cd) s B-cos(w/n)
n a n

n
l1+cos(m/n) 2

r

whence G‘(Cs) = V5, Since this number is sraller than 5/2 we cannot use the

construction of Theorem 3 to answer the problem affirmatively for k =

2r
n = 3 (for some calculations of u(Ci) See BAUMERT, et al. [7]).
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2. INTERSECTING FAMILIES

2.1. The Erdds-Ko-Rado theorem

Let k and n be natural numbers such that 2k < n, and let X be an n-set.

The following theorem of ERDOS, KO & RADO [33] is fundamental to this section.

THEOREM 1. (The Erdds-Ko-Rado theorem) The maximal number of pairwise inter-

secting k-subsets of an n-set is (2:1}.

PROOF. Evidently, the wvalue (::i) can be reached. Let A be a subset of Pk(X)
such that no two sets in A are disjoint. Let C be the collection of all cy-
clic orderings of the set X; so !C[ = (n-1)!. Make a (0,1)-matrix M, with
rows indexed by C and columns indexed by A, as follows. The entry of M in
the (C,A)-position is a one if and only if the set A occurs consecutively
in the cyclic ordering C; that is, if and only if A induces a (cyclic) in-
terval on C (C € C, A € A).

It is easy to see that the sum of the entries in any column of M eguals
k!(n-k)!. So the total number of ones in M is equal to IA[.k!(n—k)!. We are
finished once we have proved that the numbexr of ones in each row is at most
k, since it then follows that the total number of ones is at most
k.|C| = k.(n-1)!, which yields

|A] .x! (n-k)! < k.(n-1)!,

i, Al s OTh.

So let C € C be the index of an arbitrary row. We may suppose that X =
{1,...,n} and that C represents the usual cyclic ordering of {1,...,n} modulo
n. We have to prove that there are at most k sets in A occurring as an in-
terval in C. To this end, underline any number from 1,...,n which is the
first element (in C) of an interval (of length k) belonging to A. Moreover,
encircle any number j whenever j-k (mod n) is underlined; thus encircled
numbers are numbers directly following the last element of an interval in
A. So no number will be both underlined and encircled, since A contains no
disjoint sets (n = 2k).

Now consider any encircled number, say, j. Then the n-2k subsequent
numbers j+1,...,j+n-2k (mod n) cannot be underlined since any interval start-
ing in one of these points is disjoint from the interval starting in j=k

(which is in A). So there exists an encircled number j such that the n-2k
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numbers following j are neither underlined nor encircled. Since the number
of underlined numbers is equal to the number of encircled numbers, there
cannot be more than k underlined numbers, i.e., the sum of the entries in

the row indexed with C is at most k. [

This method of proof is due to KATONA [58,60] (for a generalization,
see GREENE, KATONA & KLEITMAN [48]; for a proof using the "Kruskal-Katona
theorem", see DAYKIN [23]; for a proof using eigenvalues, see LOVASZ [66]
(c£. Chapter 3)). The proof may be easily adapted to show that we may re-—
place the condition A ¢ Pk(n) by: all sets in A have at most k elements,
and no two of these sets are contained in each other.

FRANKL [36] generalized the above proof to obtain |A|l = (n-l) whenever

k-1
Ac Pk()(} ¢ ik/(i-1) £ n, and any i sets in A have nonempty intersection.

2.2, Sharper bounds

Elaboration of the proof also shows that, in case 2k < n, the bound
(E:b can be achieved only by "stars", i.e., by collections consisting of
all k-subsets of C containing a fixed element of X. HILTON & MILNER [55]
(answering a question of ERDOS, KO & RADO [337]) proved that collections A
of pairwise intersecting k-subsets of X which are not a star (that is,
nA = @), have at most 1+(:::)-(n::1) elements (this bound can easily seen
to be attained; Hilton & Milner also showed that all collections achieving

the bound are isomorphic).
MEYER [69] asked for the minimum size of a maximal (under inclusion)

collection of pairwise intersecting k-subsets of X; he conjectured that the

set of lines in a finite Projective plane achieves this minimum.

2.3. Larger intersections

ERDGS, KO & RADO [33] also proved the following extension of Theorem 1.

Let 0 £ t=< k. The maximum number of k-subsets of X such that any two of

them intersect in at least t elements, is equal to (n_t) + provided that n

k_
is large enough (with respect to k and t). Let n(k,t) be the smallest num—
ber such that for all n >

z n(k,t) the maximum is attained only by collections
of k-subsets of X containing a fixed t-subset of X. So n(k,1) = 2k+1.

RADO [33] and msIEH [S6],
FRANKL [38] determined n(k,t) for t > 15; he found that n(k,t) is about
(k=t+1) (t+1)+1 if t »

19, and that, for all t, (k-t+1) (t+1)+1 < n(k,t)
S 2(k—t+1) (t+1)+1,

After earlier estimates given by ERDOS, KO &
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A related conjecture of Erdds, Ko and Rado is that, if k is even and
n = 2k, the maximum number of k-subsets of X which pairwise intersect in at
least two elements is egqual to &[(E)_(Ei)z)' FRANKL [38] extended this to
the conjecture that for each n-set X the maximum size of a collection of k-
subsets pairwise intersecting in at least t elements always is attained by

a collection A of the form
A=1{acx| |al=% and [an x'| 2 t+r}

for some r = 0,...,/%(n-t) ] and some (t+2r)-subset X' of X.

KATONR [60] observed that if a t-(n,k,1)-design exists (i.e. a collec-
tion D of k-subsets of X such that each t-subset of X is in exactly one set
of D; cf. Chapter 5), then certainly the maximum cardinality of a collection
of k-subsets, pairwise intersecting in at least t elements, is (E:t). For

let A be such a collection and let U be a t-(n,k,1)-design. So

_ms s _s{n=thl)
o] = k- . (k-t+1)

For each permutation m of X let 7D be tie design {rala e P}, where
TA = {wx1x €AY
go AntD contains at most one set, <or any permutation mw, since any two

sets in 7D have intersection at most t-.; hence
n! 2} |AnnD|,
m

where 1 ranges over the set of permutations of X. The right hand side of
this inequality is equal to the number of triples A € A, D « P, 7 permuta-
tion, such that mD = A. For fixed A and D the number of permutations 7 such

that 7D = A, is equal to k!(n-k)!. Therefore

' tin-J} ! = n. ... .(n-t+1) Vi) !
n! 2 [A].]D] .kt = |A]L S —oern) K (@R L
and the required upper bound for A follows. (This result alsc follows from
Delsarte's linear programming bound (Theorem 15 of Chapter 3).4)
The following question was asked by FRANKL [36]: does there exists an
€ > 0 such that if k € (%+e)n, A < Pk(n) and |anBnc| € 2 whenever R,B,C ¢ A,
n-2

then 1Ai < (k—Z)?
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FRANKL [37] investigated the following problem of Erdds, Rothschild and
Szemerédi: given t and 0 < ¢ < 1, what is the maximum cardinality of a col-

lection A of k-subsets of X such that |a0B| = t, whenever A,B ¢ A, and for
all x e X:

[{A € Alx e a}] < c.|Al?

2.4. The Hajnal-Rothschild generalization

HAJNAL & ROTHSCHILD [52] generalized the Erd&s-Ko-Rado theorem as fol-
lows. Let A be a collection of k-subsets of X such that each subcollection

A" of A with more than r elements, contains two sets which intersect in at
least t elements; then

X .
i+1 r n-it
|A] = izl (G20 I o N i I

provided that n is large enough with respect to k,r,t, i.e., n = n(k,r,t).
Clearly, in case r = 1, this result reduces to the Erdds-Ko-Rado theorem.
If we put t = 1, Hajnal and Rothschild's theorem becomes: if A c Py (X)

contains no r+1 pairwise disjoint sets -hen

n n-r
[A] = G = i)

provided that n 2 n(k,r,1). ERDGS [28] conjectures that for all n

rk+k~-1 n n=-r
[A] < max{( e R o Gt

this was proved for k = 2 by ERDOS & GALLAT [31].

ERDOS [28] showed that n(k,r,1) < C-¥r and KATONA [60] conjectured
that n(k,2,1) = 3k+1 (taking all k-subsets of a Ffixed (3k-1)-subset of X
in case n = 3k, shows that 3k+1 is the smallest number we may hope for).

2.5. A relation with Turan's theorem

CHVATAL [20] has designed the following framework generalizing both
the Erdds-Ko-Rado theorem and Turan's theorem (cf. Chapter 7). Call a col-

lection A of sets m-intersecting if any m sets in A have nonempty intersec—

tion. Let f(n,k,m) be the maximum cardinality of a collection A of k-subsets

©f X such that for all A' cA: A' is m-intersecting implies A' is (m+1)-inter-

secting.
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So fin,k,1) = (i:i], for n = 2k, is equivalent to the Erdés—-Ko—-Rado
theorem; £(n,2,2) = [%nzj, is the content of TURAN's theorem [76,77] and
TURAN [78] asked (in another terminology) for the number f(n,k, k).

CHVATAL [20] proved that f(n,k,k-1) = (E:;) if n = k+2. ERDGS [29]
wondered whether f£(n,k,2) = (:ii) if x> 2 and n = %ﬂc; CHVATAL [20] ex-
tended Erdés' gquestion to the conjecture that fin,k,m) = (2:1) whenevexr

m+1

k >mand n 2-1;—.k. So this has been proved for k = m+l, and for m = 1.

For some more results see BERMOND & FRANKL [13].

2.6. Some further related problems and results

HILTON [54] showed that, if 1 < h = k € n, htk = n, and A consists of

pairwise intersecting subsets A of X with h < || < k, then

k
s ) G-

KLEITMAN [61] proved that if h+k < n and A and B consists of k-subsets
and h-subsets, respectively, of X such that A n B # @ for 2 ¢ A and B ¢ B,
then |A| = (2:1) implies |B| = (E:i}: HILTON [ 53] generalized this result.

KATONA [59] (cf. LOVASZ (64]) proved the following conjecture of
Ehrenfeucht and Mycielski: let Al,...,hm be k-subsets of X, ani+iet Bl""’Bm
be h-subsets of X, such that Ai n Bj # @ iff i # j; then m = | K ). This
result was generalized by T. Tarjdn - see KATONA [60].

ERDOS & RADO [34] proved that, given natural numbers c and k, there is
a number ¢c(k) such that if A is a collectien of k-sets with @C(k) elements,
then A has a subcollection A' of cardinality c with the property: if A,Be A’
then A n B = nA'. They conjectured that one can take @c(k) < (cc']k for a
certain absolute constant c'. SPENCER [74] proved an upper bound for ¢c(k}
of order about ct.k! (cf. ERDGS [301).

FRANKL [39] proved that if Al,-..,Am are k-subsets of X such that
'Ainhji # 1 then ms (::i) if k * 4 and n large enough with respect to k.
See FRANKL [41] for extensions.

2.7. Permutations

An analogue of the Erdés-Ko-Rado theorem, due to FRANKL & DEZA [42] is:
let T be a collection of permutations of X such that for allw,., 7, € I
there is at least one x € X such that T,x = m,x; then |n| £ (n-1)!. A general-

ization has been conjectured by Deza and Frankl: if for any two @,, T, € I
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i uch that n.x, =w.X,,
there are at least t distinct elements Kyrens ,xt in X s i

1 2%

for i = 1,...,t, then [‘TI $ (n-t)!. o
In a way similar to Katona's method using t-designs mentioned above,
can derive this bound for t = 2 from the existence of a collection P of
isti for all distinct
permutations of X such that for all distinct EPES € X and

2

¥y+¥, © X there is exactly one permutation p in P such that px, = y, and
: :

T
. . . i —
X, = 92‘ The existence of such a collection P is easily seen to be equiv
. of
alent to the existence of a set of n-1 mutually orthogonal latin squares
See
order n; so the conjecture is true, in case t = 2, for prime powers n. (

also BANDT [1].)

In this section we have considered mainly intersection problems for

collections of sets with a fixed size. For a more extensive survey of (also

more general) intersection problems and results we refer to ERDOS & KLEITMAN

[32], xaTONA [60], GREENE & KLEITMAN [49], BoLIOBAS [14].
For a more general approach to intersection problems - see DEZA, ERDOS
& FRANKL [26]. Such problems can be handled with eigenvalue techniques within

the theory of association schemes (using Eberlein polynomials)

- see DELSARTE
[24], scERIJVER [73], and Chapter 3.

Often one may replace expressions like "k-subsets of an n-set” by "k-
dimensional flats in an n~dimensional projective
ficlients by Gaussian coefficients (cf. [47]),

results - see DELSARTE [25], LOVisz [64,567].

space", and binomial coef-

and so on, to obtain analogous

3. BARANYAI'S THEOREM AND EDGE COLOURING OF UNIFORM HYPERGRAPHS

3.1. Plrtitioninq into partitions

Let X be a fixed n-set, In this section

we consider partitions of Py (30)
into classes of disjoint

sets, and some generalizations. BARANYATI [3] showed
that the minimum possible numhe

r of classes in such a partition is equal to
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namely the case when n is a multiple of k. Then the theorem becomes

THEOREM 1. (BARANYAI [3]) Let n be a multiple k. Then there exist (2:13

partitions of X into k-sets such that each k-subset of X occurs in exactly

one of these partitions.

(This was proved for k = 3 by PELTESOHN [70] and for k = 4 by J.-C.
Bermond.) In order to prove Theorem 1 we prove a corollary of this theorem
which contains Theorem 1 as a special case. To this end let n = mk and
M= (E:;). call an ordered m-tuple (Yl,...,Ym) an m-partition of a set Y if

Yian = @ whenever i ¥ j, and ¥ = UY_. (So the empty set may occur once or

more times in an m-partition.) Moreover we assume X = seant

Now suppose we have, as in Theorem 1, m-partitions Hl,...,ﬂM of X such
that each k-subset of X occurs in exactly one of these partitions as a class.
et 0< £< n. Then we have also m-partitions H;,...,ﬁé of {1,...,£} such
that, for t = 0,...,k, each t-subset of {1,...,L} occurs exactly (;:ﬁ) times
among these partitions. This can be seen by taking ﬂé = (xlnx'....,xmnX')
where Hj = (xl,..-,xm} and X' = {1,...,£}. So Theorem 2 is equivalent to

Theorem 1, since taking £ = n reduces Theorem 2 to Theorem 1.

n-1

THEOREM 2. Let n = mk, M = (k~1) and 0 < £< n. Then there are m-partitions
nl""'HM of {1,...,4} such that each t-subset of {1,...,L} occurs exactly
(::ﬁ) times among these partitions, for t = 0,....,k.

A basis for the proof of Theorem 2 is Ford & Fulkerson's integer flow

theorem (cf. Chapter 13).

INTEGER FLOW THEOREM. Let D = (V,A) be a directed graph, and let f:A -~ R

be a flow function (i.e., for each vertex v € V the sum of the values £ (a)
of arrows a with head v, is equal to the sum of the values f(a) of arrows
a with tail v). Then there exists a flow function g:A -+ Z such that for

each arrow a we have: g(a) = |£(a) | or g(a) = [£(a) ].

PROOF OF THEOREM 2. We proceed by induction on £. For £ = 0 the theorem is

trivial; we can take “1 =g B HM = (@,...,8). Suppose we have proved the
theorem for some fixed £ < n. Let nl""’“M be partitions of {1,...,£} such
that, for t = 0,...,k, each t-subset of {1,...,£} occurs exactly (2:%) times
among these partitions. Make a directed graph with vertices: S, T (two new
objects), the partitions Hl""'RM' and all subsets of {1,...,£} with car-

dinality k or less. There are arrows from S to any partition Hj‘ from any
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subset of {1,...,3} to T, and from T to S. Furthermore there is an arrow

from N, to subset X' iff X' occurs in Hj as a class.

B

Ty
M
\
Now let £:A + R be given by:
[1, if a = (s,nj) for some j;
n-f~-1 \ . . Al e
(k—t—Ij' if a = (X',T) for scme X f1,...,£} with | x f = t;
(1) f(a) = <M, if a = (7,8);
::t o ifa= (N;,X) and [x'| =t > 0
k
ifa = A times in T, .
W7 r ifa (ijﬁ) and @ occurs ) times in 5

It is straightforward to check that f is a flow function. By the integer
flow theorem there is an integer-valued Flow function g and A such that g
coincides with f on the arrows given in the first three lines of (1)
Furthermore for the two remaining possibilities for a we have 05 f(a) < 1
since the total amount of flow on arrows with tail Hj is equal to 1. Hence
we can take g(a) to be 0 or 1 on those arrowvs.

So for each j = 1,...,M there is a unique X' in Hj such that g(I.,x') = 1.
Now let H% arise from I, by replacing this unique X' by X'W{£+1} (for

|
j=1,...,M). Then Hi.....Hé are m-partitions of {1,...,8+1} such that each

t-subset of {1,...,L+1} occurs exactly {n;fgll times among these partitions
(for £ = 0,...,k}. J
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3.2. Colourings

Let H = (X,E) be a hypergraph with vertex set X and edge set E.a
(vertex) p-colouring of H is a partition C = {c;li=p} of X into p (possibly
empty) subsets ('colours'). We consider four successively stronger regquire-—

ments on the colouring.

(i) C is called proper if no edge containing more than one point is mono-
chromatic, i.e. E ¢ E and [E| > 1 imply E¢ C; for all i =1,...,p.

(ii) C is called good if each edge E has as many colours as it can possibly
have, i.e., |{i[E n¢C # g}| = min(|E|, B).

(iii) C is called fair or egquitable if on each edge E the colours are rep-

resented as fairly as possible, i.e.,
el 51 L
P:;ils iE n cils T—;~1 for i = 1,...,pP-

{iv) C is called strong if on each edge E all colours are different i.e.,
lE n Cil €1 fori=1,...,p-

(This is just the special case of a good or fair colouring with p colours
when p 2 max{|E]| iE e E}.) Instead of asking for an equal partition over

the edges one may ask for an equal partition of colours over the points:

(v) ‘A proper colouring is called equipartite if for i = 1,...,p we have
1] [x1
s |C,| = :
L o J i l| f B 1

Dually one defines a (proper, good, fair, strong, equipartite) edge p-
colouring of H as such a p-colouring of H* = (E,X), the dual of H (where

x € X is identified with Ex ={E e Elx € E}).

EXAMPLE 0. For p = |x| the partition of X into singletons is an equipartite
and strong p-colouring. Hence any H has a proper, good, fair, strong and

equipartite p-colouring for some p.

In the case of proper or strong colourings the only interesting question

is to ask for the minimum number of colours needed (which number is usually
called % (H) resp. Y(H) in case of vertex-colourings and ? (H) resp. g(H) in
case of edge-colourings) since here adding unused colours does not change
the property. In the case of good, fair or equipartite colourings we really

want to know for which p such a colouring exists.
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EXAMPLE 1, Let H = (X,E) be a simple (undirected) graph (i.e. E ¢ Pz (X)) .
By VIZING's theorem [80] if

P 2 max 6(x) + 1
xeX
then H has a good (hence fair & strong) edge p-colouring. By GUPTA's
theorem [50,51] if

p < max §(x) - 1
xeX
then H has a good edge p-colouring (but not necessarily a fair one, and
certainly no strong one).

[Here (and below) &(x) = |Exj = |{x|x ¢ E € E}|.]

EXERCISE 1. Determine the minimal p for which there exists a proper edge
p-colouring of K:. fK: = (x,Pk(x)) where Ix| =n.]

EXERCISE 2. Verify that the complete graph K? (=K§} has a fair edge p-
colouring unless p = 2 or 6, a good edge p-colouring unless p = 6 and an

equipartite edge p-colouring unless p=El.

EXERCISE 3. (FOURNIER [35]) Let H = (X,E) be a graph. Then H has a good

edge 2-colouring iff no component of H is an odd cycle.

3.3. Baranyai's theorem

Let [X| = n. The hypergraph H = (x,Dk(x)) is called the complete k-
uniform hypergraph, written K: In this case BARANYAT [3] provided a com-
plete sclution for the edge-cclouring problems by proving
THEOREM 3. Let H = 13:1 and write N = (;:) + the number of edges of H. Then

(1) H has a good edge p-colouring iff it is not the case that

v [§l<p <n/ (2],
ie. iff

N n N
—u 5 5 n
p:"'{ orpa[k'[

(ii) H has a fair edge P-colouring iff
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[SiH < o<1g

where A = %? is the degree (valency) of each point.
s n
i) qm = [v/ [3] 1.

Note that (iii) generalizes Theorem 1. For the moment we restrict curselves

to proving necessity.

PROOF OF NECESSITY. This part of the proof will be valid for any reqular

k-uniform hypergraph on n points with N edges. Let ( be any edge p-colouring

of H and define for % € X
clx) := [{i!Ex nc, # g} .

the number of colours found at point x.

(i) p < N/[%J, i.e., [Eﬂ < % means that there exist two non-disjeoint
edges with the same colour i.e., c(x) < &(x) = A for some x.

p > N/ fﬁq, i.e., r%ﬂ > E—means that not every colour occurs at

each point, i.e., c(x) < p for some x.

But for a good edge p-colouring we have Wx: c(x) = min(6&(x),p).

(ii) By definition of a fair edge colouring we have for each i

i2lisE e liw T2,

and hence
ligjils eyl = (1215

Averaging over i we find the stated condition.

(iii) g(H) = [N/ L%J] immediately follows from (i). O

REMARK. (i) and (iii) can be formulated more generally as follows.
For a regular hypergraph H = (X,E) let v(H) be the maximum cardinality
of a set of pairwise disjoint edges in H, and let p(H) be the minimum

cardinality of a set of edges covering all vertices.
(i) can be stated as: if

lE|
P

v(H) < < p(H),
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then H does not have a good edge p-colouring.

(iii) can be stated as:

[E|]

a(H) = ru(H)

Concerning the sufficiency half of Theorem 3 we shall in fact prove
slightly more, since we need it later. Let s be a positive integer, and
H= (X,E) be a hypergraph. Then define sH = (X,sE) to be the hypergraph with
the same vertices as H, but with each edge from H taken with multiplicity
S. Obviously v(sH) = v(H) and p(sH) = p(H). A colouring of sH with p colours
is sometimes called a fractional colouring of H with g = g-colours. We show
here that sKi has a good or fair edge p-colouring iff p satisfies the con-
ditions (i) resp. (ii), where now N = s(7).

A hypergraph (X,E) is called almost regular if for all X,v € X we
have [8(x)-8(y)| € 1. Now we have
THEOREM 4. (BARANYAI [3]) ret &y+---sa, be natural numbers such that
Zi 1 ai=N:=(n)s. Then the edges of sz can be part;tzoned in almost regular
hypergraphs (X, Ey) such that |E | = a; (1s js<u).

It is easily verified that Theorem 3 follows from Theorem 4:

(i) Ifps N/[ET then use Theorem 4 with s = 1, t = p and
7o = ey = 71 ey = nee-n R
Ifip s N/[—J then use Theorem 4 with t = fN/[EJ] and
a1=..-—_-

e [;J- a_ = N-(t-1) [EJ'
This also proves (iii).

i i = L = é pid
(1i) write £, = flg_J x| and t .L[p k| If Pfy < N < pf .
then use Theorem 4 with s = 1, t = p and al B e = ag = Liﬂ + 1
N
and ag+1 = o = [ =] where g = N - p L 1.

V 0 < a, < fl guarantees that we get a fair colouring.

Theorem 4 will be proved in subsection 3.6 as a consequence of much more
general theorems.

3.4. Normal, balanced and unimodular hypergraphs

The results mentioned in this subsection are treated mor

e extensively
in Chapter 13.
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DEFINITION. A hypergraph H = (X,E) is called balanced if for any odd cycle

a.sE_.,a ,E

0"F0’21 it

= a

1 2p" 22p+1 0

(where a € E; ¢ E (0 <i < 2p)) there is an i (0 = i s 2p) such that

%141
Ei contains at least three vertices of the cycle.
Note that for graphs balanced means the same as bipartite (no odd

circuits).
EXAMPLE 2. X = R, E = {E ¢ R| E connected} yields a balanced hypergraph.
PROPOSITION 1. The dual of a balanced hypergraph is balanced. 1]

PROPOSITION 2. H = (X,E) is balanced iff for each A ¢ X the subhypergraph

e (a,{E n &l E € E}) has x(HA) < 2.

PROOF. (if) Obvious from the definitions. (only if) Induction on ]X] .

Let (X,E) be a balanced hypergraph, and let G=En PE(X) . Let a € X be a
non-cut point of the bipartite graph (X,0). is balanced, hence by
induction it has a proper bicolouring: ®fal = C1+Cz. Since (x,6) is bi-
partite and a is not a cut point all neighbours of a in this graph have the
same colour, say C,- But then X = C, + (Cz u {a}) is a proper bicolouring

of (X,B). O

THEOREM 15. (BERGE [9]) Let H = (X,E) be balanced. Then H has a good vertex

p-colouring for each p.

PROOF. Let C = {ci1i < p} be a best possible vertex p-colouring, i.e., one
with maximal ZEEEC(EJ (where c(E) is the number of colours of edge E).

If C is not good then for some E € E we have c(E) < min(|E|,p).
since c(E) < |E| there is a colour i with ]Ci n El =z 2.

Since c(E) < p there is a colour j with lcj n E|l = 0.

Since H is balanced HCi‘.le has a good 2-colouring (Ciucj) = ci + C:'}.

Replacing Ci and C,j by Cj‘_ and C.;l we obtain a colouring with larger value

of ZEEEC(E)' contradiction. 0O
COROLLARY. Let H be balanced. Then H has an edge p-colouring for each p.
COROLLARY. Let H be balanced. Then

y(H) = max lel,
EeE
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g(H) = max §(x),
xeX

H has min |E| disjoint transversals,
EeE

H has min §(x) disjoint point covers.
xeX
DEFINITION. A hypergraph H = (X,E) is called normal if for each partial
hypergraph H' = (X,E') of H [i.e. E' ¢ E] we have g(H') = A(H') [where
A(H) denotes the maximal degree of a hypergraph H: A(H) = ma.xx 8(x)].

Xe
By the second line of the second corollary a balanced hypergraph is normal.

PROPOSITION 3. (LOVASZ [63]) Let H = (X,E) be normal and E € E. Then
H' = (X,E+{E]) is normal tco. That is, increasing the multiplicity of edges

leaves a normal hypergraph normal.

THEOREM 4. (LOVASZ [63]) B = (X,E) is normal iff for each partial hypergraph
H' we have v(H') = T(H'). [Where V(H) is the maximum cardinality of a set of
pairwise disjoint edges and t(H) is the minimum cardinality of a transversal

(set of points meeting every edge).]

COROLLARY. (BERGE & LAS VERGNAS [12]) Let H = (X,E) be balanced. Then
v(H) = t(H).

COROLLARY. H = (X,E) is balanced iff for all H' = (X", E") with ¥ ¢ X%,
E* « {E n X'|E € E} we have Vv(H') = T(H") (or: y(H') = ma.:E: |E!; or:
EekE!
q(H') = max 6'(x); or: H' has min |E| disjoint transversals; or: H' has
XEX E€E’

min &'(x) disjoint point covers) .
xeX

DEFINITION. A hypergraph H = (X,E) is called unimodular if its incidence

matrix is totally unimodular (i.e. each square submatrix has determinant
0 or #1).

THEOREM 7. (GHOUILA~HOURT [46]1) B is unimodular iff for each A < X the sub-
hypergraph HA has a fair vertex 2-colouring.

COROLLARY. A unimodular hypergraph is balanced.

Note that for (multi)graphs unimodular is equivalent to bipartite. If
a hypergraph is unimodular,
graph.

then so is its dual and any partial sub-hyper-
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THEOREM 8. (BERGE [9]) Let H = (X,E) be unimodular. Then H has a fair vertex

p-colouring for each p.
PROOF. Similar to the analogous one in the balanced case. O

3.5. The r-partite case

Let X be partitioned into r subsets: X = E§=1 X, . and let n = |Xx],
n, = lxil' The hypergraph H = (X,E) with E = {E € Pk(x) TVi: |IE n xi[ < 1}
is called a complete r-partite k-uniform hypergraph, written Kﬁlh_- oy
When NS wee =R, ™ m then H is written Kl;xm. Here the problems are not

yet solved, but the following is known.

- For K!;xm BARANYAI [4] proved the analogue of Theorem 1 and Theorem 3.

k
The results are exactly the same when we read there n = mr, N = (i)m ?
r-1. k-1
A = (j_l)m -
- For k = r BERGE [10] showed that K:l = has the edge-colouring prop-
fip=e sy
erty (ECP), that is g(H) = m?}é §(x).
x i
In this case, when n, = n, 2 ... 2 n_ this means that g(H) = nr ! n,.
1 2 5 r i=1 i
Then MEYER [68] showed that K“l u has a good p-colouring for any
pae s pilyy

p = 1 (explicitly constructing one).

- Finally BARANYAT & BROUWER [6] showed that Kii'”” _ has a fair
p-colouring for any p 2 1 as a corollary of the theory in the previous
sections and the fact that the 1xr matrix (11...1) is totally uni-

modular:
The arguments proving this run along the following lines. Let R = i i T~ )
and let a hypergraph H= (R,E) be given. Define H(n ,...,n ) = (x.E(nl,.. -m))
;o
h = =
where X zi=1 X0 ny !xii and

E(n ..,nr)={EeP(x)[Vi: IxinE| < 1s {J'_IIMi nE|l # 0} ¢ E}.

il
" 0

Define H (nl,... ,nr) to be the hypergraph with vertices R and edges E but

each edge E € E with multiplicity nieE n;-

With this notation we have for H = 1(: that H(nl,- F .,nr) = Kk

THEOREM 9. If 1° COREE n ) has a fair edge p-colouring then H(n,,.. -anr)

has one too.

COROLLARY. If B is unimodular then H(nl,. i ,nr) has a fair p-colouring for
any p z 1.
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COROLLARY. If H has a fair edge p-colouring and HieE ny does not depend on

E (e.g. when n1 = L., = nx and H is k-uniform) then H(nl,...,nr) has a fair

edge p-colouring.

k

Hence all akove mentioned results on Kn i follow from Theorem 9
groseriie
(and Theorem 3).
EXERCISE 4. (Brouwer.) Show that q(Ki q ) = ptg+e when p 2 g 2 r and € = 0
e r

P2 o
unless p=g=r =1 (mod 2) or p- 1 =g =1r =0 (mod 2) in which case
e = 1.

3.5. Parallelisms

A parallelism or 1-factorization of a hypergraph H = (X,E) is a parti-
tion E = 3=1 Fi where each Fi is a parallel class or 1-factor, that is, a

partition of X. In other words, a parallelism of H is a strong edge-colour-
ing of H with §(H) colours.

REMARK. Let w(H) be the maximum cardinality of a set of pairwise inter-—
secting edges (clique) in H. Obviously A(H) < w(H) <‘q(H) for any H.
V. Chvatal conjectured that if H is hereditary, i.e. if BE' ¢ E c E implies

E' € E, then A(H) = w(H), i.e. some maximum cligque is a star.

Concerning the edge-colouring property for hereditary hypergraphs
we have:

THEOREM 10. (BROUWER & TIJDEMAN [18]) Let H = ﬁz = (X, Psk(x)n where
lx| =

n. Then H has the edge-colouring property (and hence a fair p-colour-
ing for any p) iff
(1) ns 2k ang RO7F7

or

has the edge-colouring property,
(ii) n > 2k and

either n 2 0 (mod k) and n 2 k(k=-2)
or n

m

-1 (mod k) and n = Lk(k-2)-1.

A
When Kn does not have the edge-colouring pProperty not much is known.

J.-C. Bermond proved for k = 3 and n = 1 (med 3), n 2 7 that

3. _ 3 n—-4
q(ﬁn) = a(ﬁn) + [==1.
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BERGE & JOHNSON [11] showed that for k = 4 and n = 9 that

ifn =1 {mod 4) then q(ﬁi) ﬁ{ﬁ:J + [Ei%:él] i

if n = 2 (mod 4) then q(ﬁi) = atﬁi) + [212:221 3

A
They also showed that &l has the edge-colouring property.

Lre==r

When parallelisms exist we may study them as geometrical objects, or look
for parallelisms with special properties (cf. CAMERON [19]). Let {Fi|i < q}
be a fixed parallelism on (X,E). We say that ¥ is a subspace of X when ¥ cX
and for each i the collection {F|F ¢ Fi and F ¢ Y} is either empty or a
partition of Y. In this case the non-empty ones among these collections form
a parallelism on (Y,E,) where E = {E|E ¢ E and E c ¥}. (In geometrical terms:
Y is a subspace of X when for y € Y and E ¢ ¥ the unigque line F containing vy
and parallel to E is contained entirely within Y.)

Now let (X,E) = KE. By Theorem 1 a parallelism exists iff k|ln. Let ¥
be a proper subspace, and lY! = m. CARMERON [19] showed that m < 4n (since

the (i:}) colours used to colour Pk(Y) colour Eig-(ﬂ:i] k-subsets of X\Y,
n-m ,m-1 n-m n-m-1
i <
so that m (kﬂl) ( W k=1
Conversely it seems to be true that 2|¥| < |x] ana |x%| = |¥] = 0 (mod k)

), hence (i:;) £ ¢ ) and consequently m £ n-m) -
suffices to guarantee the existence of a parallelism on (the k-subsets of)

X with subspace Y. BARANYAI & BROUWER [6] proved this for k < 3 and for
arbitrary k, when n 2 mk or m|n. In case m|n there even exists a parallelism

on X with % disjoint subspaces of size m.

EXERCISE 5. (WILSON [81]) Show that for k = 2 the existence of a parallelism
on K. with a subparallelism on K for n » 2m is equivalent to the fact (proved
by CRUSE [22]) that any symmetric Latin square of order m can be embedded in

a symmetric Latin square of order n iff n = 2m.

EXAMPLE. An interesting example of a parallelism on 24 points is obtained
from the Steiner system S(5,8,24). Take &s parallel classes all partitions
of the 24 points into 6 4-sets with the property that the union of any two
of the 4-sets is a block in the Steiner system. There are (%f} such parti-
tions, and they form a parallelism. Each block of the Steiner system is a

subspace of this parallelism.
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3.6. Baranyai's method

Baranyai (see BARANYAT [3],[4],[5] and BROUWER [16]) proved a larxge
number of very general theorems (sometimes so general as to be almost un-
intelligible) all to the effect that if certain matrices exist then hyper-
graphs exist of which the valency pattern and cardinalities are described
by those matrices. An example is

THEOREM 11. Zet |X| = n, H = (X,E) where E = Xf_lPk‘ (X) (the k, not necessari-
e 5 1

) be an sxt-matrix with nonnegative integral en-
t A =
j=171ij

ly different). Let A = {a:i.j

tries such that for its row sums E (;_) holds. (For k < 0 er k > n
i
we read (2) =0.)

Then there exist hypergraphs Hij = (x,Eij} such that

(i) IEijI =2y

5 t
(ii) Pki(x) = {j=1Eij (1sis s),

- s ; %
(iii) (x, i-IEij) is almost regular (1= j§5 t).

Note that for k; = ... = k_ = k this implies Theorem 4. If £ is an in-
teger, let £ ~d (and a4 ~ £) denote that either £ = |a] or £ = [a] holds.

We first give some lemmas.

LEMMA 1. For integral A we have

LEJ - L;1"\-|PL/n l_] s l-%-l = rA—IA/n |-E

n n-1 n-1
Lemma 1 is an easy exercise in calculus.

LEMMA 2. Let H = (X,E) and a € X. Then H is almost regular iff Hx\{ } is
; - 1 =
almost regular and £, (a) m ;E{F lE|.

This can be proved by using Lemma 1.

LEMMA 3. Let (Eij] be a matrix with real entries. Then there exists a

matrix (eij) with integral entries such that

(i) eij ~ eij for all 1,3,
(ii) zi eij e zi Eij for all j,
(1id) Zj ey ™ Zj €;y for all i,

(iv) Ei,j °; 4 mzi.j €5y
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PROOF. This follows straightforwardly from Ford & Fulkerson's Integer flow
theorem (subsection 3.1). [

PROOF OF THEOREM 11. By induction on n = [)(1. If n = 0 the theorem is true.

The induction step consists of one application of Lemma 3. We may suppose

ki
that for i £ s we have 0 =< ki S n. Let Eij i aij' the average degree of

the hypergraph (x,Eij) we want to construct.

By Lemma 3 there exist nonnegative integers ei_ with ‘,F_'.. = (kn“.li)’
~ pn=l 1 113 o
Ej‘aij eij) = (ki) and Zieij B Eikiaij'
Let a ¢ X and apply the induction hypothesis to X' = X\{al with s' = 2s,
' =t, k! = k., k! =k,~-1 (1= i=s s}, b = g - ! =
i i' Ti+s i 245 qi3 7 %147 a(i-i-s)j €5

(That this is the proper thing to do is seen by reasoning backward:
when we have Eij and then remove the point a, Eij is split up into the class
of edges that remain of size ki and the class of edges that have now size
ki—l. The latter class has cardinality Eij on the average.)

By the induction hypothesis we find hypergraphs Fij and Gij such that

[Fygl = aygegyr 1641 = ey

szij = Pki(x), EjGij = Pki~1(x’ .

zi(Fij"'Gij) is almost regular.

Defining Eij = Fij u feu{al| G e Gij} we are done (using Lemma 2). ]

SKETCH OF THE PROOF OF THEOREM 8.

(i) The 'only if' part rests on estimates of (sums of) binomial coefficients.
E.g., if n > 3k and n Z 0 or -1 (mod k) then a parallelism cannot exist
since each parallel class (colour) must contain at least one edge of

size at most k-2 but }: (2} < (;::i) , so that there are not enough

k-2
small sets.

n

~1
(ii) The 'if' part follows from Theorem 11: Let 4 = Eisk(i—l) be the degree

A
of 1(::. If there exists a A X k-matrix D such that
(1) D has nonnegative integral entries,

Qs k g .

(ii) Ej=1dijj =n for all i=s A4,
iy n o

ot - < &

(iid) Ei=1dij (j) for all j .
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then Qk has a parallelism (the proof is an exercise). It turns out that
n
in all cases a suitable matrix D can be found (or at least it can be

proved to exist). [

A more general multipartite version (see BROUWER [16] for the regular
case, BARANYAI [5] for the almost regular case) is:

THEOREM 12. Let Dyreesn be positive integers, and let K = (ktj}tSr,sz be

a matrix of integers, where 0 < ktj <n (tsx). Let Q= {Ql,....Qo} be a

partition of {1,2,...,s}, and suppose that

#{5]5 « Qr (kyyok ) = (kg ok ek )} S W (

2j""'krj e

for all i < p and all integer vectors (kl.kz,...,kr).

Then there exist (0,1)-matrices (Etjﬁ)j£s,£Snt

for t £ r such that
e

(1) E£=1etj£ = kyy for all t,3,

(ii) the vectors (etj£)t5r,£Snt are different for j ¢ Qi'

; ; £,
(iii) the mat:;cez (Etj£)£Sgt,j£5 are almost regular for all
i = < " <
that is, |zj=1etj£ jzletjﬁ'[ & Lofor:l £ < n, .
Even more generally, for each t let Ft be a forest (or laminar) hyper-
graph on the set {1,2,...,s} (i.e. a hypergraph such any two of its edges
are disjoint or comparable). Then we may also require that all matrices
£ r.
(Etj£}£5n JjeF are almost regular, for all F e Ft' t<r
The proof is similar to that of Theorem 11 (use induction on r). The
results about the existence of parallelism with subspaces of a given size

follow as corollaries of this thecrem.
4. PARTITIONING INTO INTERSECTING FAMILIES

Let n and k be natural numbers such that n 2 2k, and let X be an n-set.
Call a subset A of Pk(x) a cligue if any two elements of A intersect. This
section is concerned with the question of determining the minimal number of
cligues needed to cover Pk(x), and with related questions.

As stated in the Introduction to this chapter, the minimal number of
cliques needed to cover Pk(X) must be at least [n/k] and at most n-2k+2.
KNESER's conjecture [62] is that n-2k+2 indeed is the minimal number. This
pProblem can be visualized by considering the Kneser-graph K(n,k) (cf. the
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Introduction): Kneser conjectured that the chromatic number y(K({n,k)) of
K(n,k) is equal to n-2k+2.

For k = 1 or 2, Kneser's conjecture is easy to prove; GAREY & JOHNSON

[44] proved the conjecture for k = 3. In 1977 LOVASZ [65] was able to prove
Kneser's conjecture for general k, using algebraic topology and Borsuk's
antipodal theorem; also in 1977 BARANY [2] showed that Kneser's conjecture
immediately follows from Borsuk's theorem and a theorem of Gale from 1956.
Below we give Bardny's proof. First we give the two ingredients of the proof.
Let S be the d-dimensional sphere, i.e. Sd = {x ¢ ]:Rdd'1 [le] = 1}
Borsuk's antipodal theorem [15] says that if Sd

is covered with d+1 closed

subsets, then one of these subsets contains two antipodal points (for a

proof see DUGUNDJI [27]). Simple topological arguments show that in Borsuk's
theorem we may replace "closed" by "open". [Borsuk's theorem is also equiv-—
alent to the assertion that for each € » D, the chromatic number of the
Borsuk-graph B(d,e) is at least d+2, where the Borsuk-graph B(d,e) has
vertex-set S, two vertices being adjacent iff their euclidean distance
is at least 2-¢ (in fact y(B(d,g)) = d+2 if & is small enough).]

GALE's theorem [43] states that one can choose 2k+d points on Sd such
that each open hemisphere contains at least k of these points. PETTY [71]
(cf. SCHRIJVER [72]) found that one can ta'ke these points to be

d
wl""'w2k+d € S, where

v

. b & y L & | .d d+1
L e and vi—til (154" penn ™) '€ B r
1
for i = 1,2,3,... (The proof consists of showing that for each non-zero

real polynomial p(x) of degree at most d there exist n distinct natural
numbers i between 1 and 2k+d such that [~1)1p(i} > 0, which is not hard.)

We now prove Lovdsz's Kneser-theorem with Bdrdny's method.

THEOREM 1. (LOVASZ [65]) The minimal number of clique needed to cover Pk(x)
is egqual to n-2k+2.

PROOF. Let d = n-2k. Suppose we could divide Pk()() into n-2k+1 = d+1 cligques,
7 a

say Al" "'Ad+1' We may assume that X is embedded in S so that any open

hemisphere of S contains at least k points of X (Gale's theorem). Define

d

the open subsets U of S by

1ree Va4

u, = {x ¢ Sd the open hemisphere with centre x contains a k-
i

subset of X which is an element of A;}.
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So sd = LT1 U...u Ud+1 and hence by Borsuk's theorem one of the sets, say Ui,
contains two antipodal points. But these antipodal points are the centres
of disjoint open hemispheres, each containing a k-subset in Ai' These k-sets

are necessarily disjoint, contradicting the fact that Ai is a cligue. ]

Using Bdrdny's method SCHRIJVER [72] showed that the set of all stable
k-subsets of a circuit with n vertices (a subset is stable if it contains
no two neighbours) constitutes a minimal subcollection of Pk(x) which cannot
be divided into n-2k+l1 cliques (identifying X with the set of vertices of
the circuit); in other words, the subgraph of K(n,k) induced by the stable

subsets is (n-2k+2)-vertex-critical.

An interesting extension of Kneser's conjecture was raised by STAHL
[75]. Define for each graph G and for each natural number £ the £-chromatic
number Yp (G) by

YE{GJ is the minimal number of colours needed to give each vertex

of G £ colours such that nc colour occurs at two adjacent vertices.

Otherwise stated, Y{‘G] is the minimal number of stable subsets of the vertex
set of G such that each vertex occurs in at least £ of them.

First observe that Y,E(G) £ n if and only if
G =+ K(n,d),

where the (ad hoc) notation @ -+ H stands for: there is a function ¢ from
the vertex set V(G) of ¢ into the vertex set V(H) of H such that if v and w

are adjacent vertices of G then $(v) and ¢(w) are adjacent in H (in particu-
lar, ¢(v) # ¢(w)).
Stahl showed that

Kin,k) + K(n-2,k-1),
for each n and k, from which it follows that for any graph G
(1) G) =

Ty (G Y1 (G + 2.

(Stahl showed K(n,k) + K(n-2,k-1) as follows. Assume K(n,k) (K(n-2,k-1),

respectively) has vertices all k-subsets ((k-1) -subsets, respectively) of
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{1,...,n} ({t,...,n-2}, respectively). Now define

p(A) = {ie {1!---1-11"2}! j e A for all j=i+l,...,n, or

i€ A and j ¢ A for some = £,

for all k-subsets A of {1,...,n}. Then ¢ has the required properties.)
Since yl(x(n,k)) = n-2k+2 (Kneser's conjecture) and Yk(K(n,k) = n (since,
by the Erdds-Ko-Rado theorem, each colour class contains at most (:_i) ver-

tices), it follows from (1) that, for 1 = £ < k,
Yp (K(n,k)) = n-2k+24.

STAHL [75] conjectures that, in general,

(2) vp(K(n,k)) = [%] (n-2k) + 2£.

Again by using the Erdés-Ko-Rado theorem one can prove the validity of (2)
if £ is a multiple of k. By (1) the right hand side of (2) is an upper bound
for Y£(K(n,k}}. Also by (1) it is sufficient to show (2) for £ = 1 (mod k).

Stahl proved (2) in case n = 2k or n = 2k+1 (cf. also GELLER & STAHL
[45]) ; moreover GAREY & JOHNSON [44] proved (2) for k = 3, £ = 4.

Some asymptotic results were also obtained. Stahl showed that if £ is
large with respect to n and k then T£+k{K(n,k)) =n + Yz(K(n,k)), so for
fixed n and k we have to prove (2) for only a finite number of £. CHVATAL,
GAREY & JOHNSON [21] showed (using Hilton and Milner's result of subsection
2.2) that if n is large with respect to k then Yk+1(K(n,k)) =Yk+1{K(n—1,k))+2;
so for fixed k and £ = k+1 it is sufficient to prove (2) for only a finite
number of n.
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WILSON’S THEORY

A_.E. BROUWER

INTRODUCTION

A balanced incomplete block design (BIBD) with parameters b,v,r,k,X
(also called a 2-(v,k,A) design or an SJ\(Z,k,v) or a B(k,A;v)) is a collec-
tion B of k-subsets (called blocks) of a given v-set X (of points) such that
any pair of points in X is contained in precisely )\ blocks. The parameters
b and r denote the number of blocks and the number of blocks containing a
given point, respectively. If A = 1 we often omit the index ) and write
s(2,k,v), B(k;v) etc. Simple counting arguments show that bk = vr and
r(k—=1) = A(v-1), so that A{v-1) = 0 (med k-1)}) and Av(v-1) = 0 (mod k(k-1)).

WILSON [4,5] proved that, conversely, given k and ) there is v_. such

0]
that if v 2 v, and A(v-1) = 0 (mod k-1) and Av(v-1) = 0 (mod k(k-1)) then

there exists 2 2-(v,k,A) design. That is, the trivially necessary conditions
are asymptotically sufficient. The proof goes in two steps: first use cyclo-
tomy in finite fields in order to find at least one (or a few) designs with
given block size k, next use recursive constructions (due to HANANI [3] and
WILSON [5]) to produce designs for all sufficiently large v satisfying the
divisibility conditions. The techniques used are much more generally applic-
able: many problems involving some condition on pairs of peoints have been
solved (at least for v sufficiently large, but often even for all v) in this
way . (Examples are the decomposition of complete graphs into graphs isomor-
phic to a given one, construction of Whist tournament tables, resolvable or
group divisible designs, designs with prescribed substructures, maximal pack-
ing (with blocks without common pairs), minimal covering (of all pairs by
blocks) etc.)

For triplewise balanced designs some recursive constructions are known,
but often it is not even possible to show the existence of a single design

with a given block size. (E.g., no S(3,7,v) is known.)
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In this section we give a complete proof of Wilson's existence theorems
for block designs - self-contained except for the use of the theorem of CHOWLA,
ERDYS & STRAUS [2] on the asymptotic existence of transversal designs.

The larger part of this section is taken from notes of a series of
lectures given by R.M. Wilson in spring '77 at the Technological University
in Eindhoven.

1. CONSTRUCTION OF AT LEAST ONE EXAMPLE

Let B(k) be the set of all v for which an S(2,k,v) = B(k,1;v) exists.

THEOREM 1. B(k) contains all sufficiently large prime powers q with
q =1 (mod k(k-1)).

PROOF. Let g = mt+l be a prime power, where m = ( ) (and t is even). The cy-
clic group JFq has a unique subgroup CO of index m (namely, ={xe ]F |x —-1}} .
Its cosets CO’ Cl,...,cm_1 are called cyclomatic classes of index m. Suppose
h

(i < j) form a system of representatives for the cyclomatic classes of index
m; then (Fq,B) will be an S(2,k,q) design if we let B= {uB+v|pec

we can find a block B = {al,...,ak} - EE such that the m differences aj-a

Ohf v EJFq}t
where COh is some arbitrary set of representatives of the cosets of {-1,+1}

in CO.

(Check: we have qt/2 blocks, each covering (g) = m pairs so that gmt/2 = (g)
pairs have been covered. This is the correct number, so it is enough
to verify that each pair is covered at least once. But {x,y} is
covered by uB+v iff *(y-x)/u occurs among the differences aj—ai in

B. Since *y takes all values in CO this is 0OK.)

(Example: let k = 3, v = 9=19 =3.6+41, m =3, t = 6.

¢, = 11, 8, 7,-1,-8,-7},
¢, = {2,-3,-5,-2, 3, 5},
cz = {4,-85, 9,-4, 6,-9}.

The block B = {0,1,6} has differences 1,5,6, hence the 57 blocks

{i,i+1,i+6}, {i, i+7,i+4}, {i,i-8,i+9} (i = 0,1,...,18) form a
Steiner triple system on 19 points.

Note that this construction is in some sense a dual of the well

truction for Steiner triple systems on 9 = 3t + 1 points (with q an odd
prime power): there one takes B = {uB+v|u # 0,

known cons-

H,ve Ié} where B = {l.a,az}
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with a~ =1, a # 1. In the former case the multipliers form a group, in the
latter case the base block is a group.)
It remains to show the existence of a suitable base block B for suf-

ficiently large g, but this is a consequence of the following theorem.

THEOREM 2. Let k and m be given. If q is a prime power such that q = 1

(mod m) and q 2 qoik,mJ then there exists a k-tuple (al,az,...,ak) € E;
such that the (:) differences aj—ai (i < j) belong to any prespecified cyclo-

matic classes of index m.

PROOF. We proceed by induction on k. Given elements al,...,ak of rq let
Ei1'---'ik(a1""'ak) (0 = lj < m-1) denote the number of x ¢ Fq such that
xﬁaj € Cij (1 =3 s k). Given i = (il,...,ik) we need the existence of at
least one sequence a = (314---:ak) with correct internal differences such

that Ei(E) > 0. To this end we do some statistics on the list of all

- )k

N = q(g-1)... (g=k+1}m"

numbers FL(E). For their average we find easily
(1) A=N17J E; (@) = N lg® g mt,
and for the wvariance

(2) v=n17} (E, (a) - a2 < (gx)/mc.

(For: If x,y € Fq' *#y then the number of ¢ ¢ Iq such that x-c and y-c
are in the same cyclomatic class of index m is (g-1)/m - 1 because x-c and

y—c are in the same Ci iff

€ ot o ikiw ¢ V1)
y-c y-c¢ 0

Hence
Zﬂit_a_} (E.J_;(-a_) - 1) =

= E [{Ex,y)[ x#y and Vj:x—ajis in the same cyclomatic class as y—a§1=
a

= - -1 k
=3 (et - qre-n & - 3

xl’Y
x#Y
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so that
W 2
v=N'JE (a)(E (@ - 1) +A-Aa° <A
o &

. st
Since A > 0, scme sequence a can be extended with a (k+1) element. But
we want to extend a sequence a with prescribed inner differences. So let
M.k be the collection of all k-sequences of distinct field elements such

that the differences are where they should be. Let Mk = |F/§(| . Then Ml = q,

H2 = g(g-1)/m and as we shall see below
k
-~ q(k)/m(?.) i
We apply the following lemma:

LEMMA. Let Cpreeerly be real numbers with average A and variance V. Then

for m £ N we have i [c1+...+cm) e m|2 < m(N-m)V.
PROOF. Without loss of generality A = 0. Now

v=N*12ci=N'lzci+N"1§:ciz

i=N i=m i>m
1 2 1 2
= (le) v ——(Jc)’. O[O
Nm i<m i N (N-m) j<m *

Observing that the numbers Bi (a) with a € Mk are in the long list considered
above, we find for Mk+1 = Ea:M Ei{_a_) that:
arMe

-k 12 -k k k k 2k+1
Iu}cﬂ_lﬁ('%] ‘"kmﬁnk)iF<CI-qu-Ci/m = g~

Since by induction M.k is of orxder qk, and Mk+1 differs from (q-—k)/mk.Mk by

something of order at most qk“’ it follows that

K1
gk K+
Meer ~ R - ¥ mt2),

completing the induction. In particular M_ > 0 for q sufficiently large. [] [J

2. CONSTRUCTION OF AN EXAMPLE IN EACH ADMISSIBLE RESIDUE CLASS

In the previous section we saw that there exist designs S(2,k,v) for

certain v = 1 (mod k(k-1)). Now, given some vy with vu-l 2 0 (mod k-1) and

Yo (vO—I) = 0 (mod k(k-1)) we want to construct an S(2,k,v) for some v with
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v = Yo (mod k(k-1)).

The construction proceeds in two steps: first we construct an SR(ka.u)
(probably with repeated blocks) using linear algebra, and then unfold it to

obtain a design with X = 1 (and hence without repeated blocks).

THEOREM 3. If X = lo(v,k) and A(v-1) = 0 (mod k-1), Av(v-1) = 0 (med k(k-1))

and v 2 k+2 then an Sllz,k,v) {possibly with repeated blocks) exists.

PROOF. Let A be the incidence matrix of pairs and k-sets (incidence
inclusion), i.e., the (;)*(:) -matrix with ap'K = 1 if PcK, 0 otherwise.
An 53(2,}(,\7} in which repeated blocks are allowed is nothing but a vector
s of length (K) and nonnegative integer entries such that As = 1j where j
is the all one vector of appropriate length (here (;)) .

Since A(-_.;_+l) = As + (;:g)j_ we can find an s with nonnegative entries
from an arbitrary one by adding a constant solution. (This yields solutions
for ,\+c}\1 with l!. = (;:é)and ¢ =z c(})). The theorem follows if we take
Ay = max{k+c(;\)llll < Ays Alv-1) =0 (mod k-1), Av(v-1) = 0 (mod k(k=1))1}.)

So it suffices to find an arbitrary integer solution to As = Aj. But
it is well known that an equation Ax = b (where the entries of A and b are
integers) has an integral solution x iff for all rational vectors y such
that ¥j: Zyiaij € Z we have zyibi € Z (see e.g. Van der Waerden, Moderne
Algebra II (1940), Section 108, Aufgabe 5).

So, let y be a vector such that for all k-sets K we have ZPYPaP,K =0
(mod 1). Let L be a (k-2)-set, and i,j,p,q four distinct points not in L.
Then (writing Yij for Y{i,j}h

- -y +y. =
iy Yiq Yjp Y5q

= g Yptap,LU{i,p}_aP,LU{i,q}-aP,Lu{j,p}+aP,LU{j,q}) =10 (mod 1),

Hence for suitable rational z, (i £ v):

i

Yij =z + zj (mod 1).
(Foxr: if the rotation of a vector field is zero, there is a potential; or:
solve qu = zp +* zq' Ypr = zP‘ + Z e yqr = Zq + Z Ypi = zp + z;
for p,q,r fixed and for all i#p. Now Yqi £ Ypi + Yqj - ij = zq + zi (med 1)

and . = .+ . - E 2, + 2, od 1).)
Yig 2 ¥y ¥ Vg3 " Ypq T T @
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Next, let M be a (k-1)-set, and i,j two points not in M. Then

(k=-1)z, - (k-1)z, = D 1 w3 %
4 iepeMu{i} P jepcMu{4} P
2 - ' £ 0 (mod 1).
- g yP(EP,L\ﬁu{i} ElI-",!-lu{j }) (
Finally, let K be a k-set. Then
k(k-1)z, = Jy = Z = 0 (mod 1)
pcK F P P'K

for each i £ v. But now

(1}

%yp.l = A(v-1) [zi Alv-1)vz, = 0 (mod 1)

i
since (k-1) [A(v-1) and k(k-1) |Av(v-1). 0O

REMARK. The same proof applies to t-designs with arbitrary t: given t, k and
v then a t-(v,k,)) design always exists whenever ) is large enough and satis-—

fies the necessary congruences.

Now given some design with large i, we unfold it to a Steiner system
A= 1),

THEOREM 4. If there exists an S (2,k,u), where A = q is a prime power, and

also an 8(2, k.q ), then there exists a Steiner system s(z,k,uqu if g 2 ut+2
and 4 = tz) i

PROOF. Let (X,B) be the given $,(2,k,u), and choose for each pair P= {i,j}ex

an arbitrary bijection N, {B1P SBeBl+TF . Let V be a d-dimensional

vector space over JFq. We construct a Steiner system S(Z,k,uqu on the point-
set XxV as follows:

First of all cover all pairs within a stalk {ilxv (i e X), using an
S(2,%,4%) on each of the stalks. Next we have to cover the pairs {(i,x) (3,7}
with i # j. For each block B ¢ B let fB: B + V be some function, for each
point 1 e X let Ti= V -+ V be some linear map, and let H be some hyperplane
in V. We shall specify fB’ Ti and H below.

Now, for the new design take all blocks

{(i,2) |1 ¢ B ang & mE4 Tty 4o 04))
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for x € V, ¥ € H, B € B. Note that this is the correct number of hlocks:

given i and j, there are qu pairs {(i,x),(j,y)}, and the indicated blocks
cover gq .qd_l.q such pairs.

Hence, in order for this to work, we have to choose fB' "I‘i and H in
such a way that each pair {(i,x),(j,y)} is covered at least once. But such
a pair is covered iff {(i,0),(j,y-x)} is covered, i.e., we have to arrange

that for giwven i and j the expression
'I'j(y) o Ti(y) i fB(j) < fB(:.)

takes all values in V.
; u : ;
Since 4 = (2) we can coordinatize V in such a way that the set of co-
ordinates contains the set P2(x) of all pairs from X. (I.e., we write

v o= (VP)P € V where P runs through all pairs in X and possibly some other
values.) Let H = {v ¢ V| Z'VP 0}.

Define T, for i € X by:

i

Ti(y)P ol if P = {i,j} for some j € X, and yp.al otherwise,
where a is a primitive element of :IF‘q and we take for simplicity Xx=1{1,2,...,u}.
Let P = {i,j}. Given z ¢ V there is ay € H with T (y)—Ti{y) =z iff 2, = 0.

But if we then choose fB in such a way that (for P = {i,3i}) fB(i)p = (0 if

i < § and NP (B) if i > j) then alsoc the P-coordinate takes all values. 0

REMARK. Wilson proved the above theorem using a somewhat .more complicated

construction, enabling him to replace "g = u+2 and d = (2)" by "d = u2".

THEOREM 5. If VO = 1 (mod k-1) and vD(vo—l) £ 0 (mod k(k-1)) then there

exists for any M = 1 a Steiner system S(2,k,v) with v = Vg (mod Mk(k-1)).

PROOF. Without loss of generality let vo = k+2. Applying Theorem 3 we find
an Sq(2,k,v0) where g is a prime power, g = 1 (mod Mk(k-1)). (Use Dirichlet's
theorem.) Applying Theorem 4 with d large enough, so that Theorem 1 guaran-

tees the existence of an S{E,k,qu we find an S(2,k,v0qd). M
3. SOME RECURSIVE CONSTRUCTIONS

Now that we have one example in each residue class we use recursive

constructions to find designs for all sufficiently large v. The recursive
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constructions work on pairwise balanced designs (and produce pairwise bal-
anced designs which sometimes turn out to be BIBDs) and are mostly due to

HANANTI [3].

DEFINITION. (X,B) is called a pairwise balanced design B(K,\;v) if v = x|,
any two points in X are covered by exactly ) blocks B € B and B ¢ B= |B| ¢ K.
B(K,)) is the set of all v for which a B(K,);v) exists. When A = 1 (as it
usually will be) we suppress the A and write B(K;v) and B(K). If K = {k} we
write B(k;v) and B(k).

DEFINITION. (X,B,06) is called a group divisible design GD(K,A,M;v) if
(X,BurG) is a B(KUM,);v) and G is a partition of X, where the elements of

B (called blocks) have sizes in K and the elements of G (called groups) have
sizes in M. (Or, in other words, G is a partition of X into sets called
groups, with sizes in M, and any pair of points not contained in a group is
covered exactly A times by blocks from B, where these blocks have sizes in

K.) Again we drop A if it is 1 and write k,m instead of {k} and {m}.

Let R, = {r|r(k-1)+1 € B(X)} (all replication numbers r occurring in
designs B(k;v)).

HANANI'S LEMMA. E(Pk] = Rk

PROOF. Let u ¢ B(R), so that a (U,B) exists with fUI = u and B has block-

sizes in Rk' Let I = Ik—l be a set of cardinality k-1, and = be a point not

in UXI. Construct a B(k; u(k-1)+1) on the set UxTu{e}

_— by taking the blocks of a B(K; IBl.(k-1)+1) on the set
_— BxIu{=} for each block B ¢ B. If we take care that each
B e 1 s B(k; IBl.(k-1)+1) contains the blocks {blxIy{w}
_— for b € B, and we take these blocks only once, we find
v the desired design, Proving that u ¢ Rk The inclusion
Ry © B(R) is obvious. []
REMARK. Clearly B(B(K)) = B(K) for any set kK of block sizes.

DEFINITION. A transversal design T(t;v) is a set of v2 transversals (of size
t) of a collection of t disjoint v-sets such that every pair of points from
two different v-sets is covered exactly once.
groups of this design.

(The v-sets are called the
- This corresponds to the usage for group divisible
designs, since a T(t;v) is nothing but a GD(t,v;tv).)
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It is not difficult to see that a T(3;v) is the same as a Latin square
of order v, and more generally, that a T(t;v) corresponds to a set of t-2
mutually orthogonal Latin sgquares of order w. CHOWLA, ERDOS & STRAUS [2]
proved (by pure number theory, using constructions of BOSE, PARKER & SHRIKHANDE
[1]) that a T(t;v) exists for all v > n(t). (On the other hand it is easy to
see that a T(t;v) cannot exist for v < t-1, and that the case v = t-1 corres-
ponds to a projective plane of order v.) The best estimate known today is
Wilson's n(t) < tlT. (For small values of t we have: n(3) = 0, n(4) = 6,
n(5) < 14, n(6) < 52, n(7) < 62, n(8) = 76, n(9) = 2780, n(31) < 34115553.)

Using the existence of transversal designs it is possible to find an

r > 0 such that r,r+l € Rk:

Take v € B(k) with v sufficiently large so that a T(k;u) exists for u = wv-1.

R Then first of all vk € B(k): take a T(k;v) and put a
k{— B(k;v) on each of its groups.
¥ Secondly (v-1)k+1 e B(k): take a T(k;v-1) and for each
k{: . of its groups G put a B(k;v) on Gu{e«}.
——;:T__' = The replicaticon numbers z:;l and (v;i;k indeed differ by 1.

LEMMA. If r,r+l,s,t e Rk' s 2 tand s > n(r+l) (i.e., s € T(r+l)), then
rstt € Ry .

PROOF. Removing s-t points from a group of T(r+l;s) yields a pairwise balanced

+ design B({s,t,r,r+1}; rs+t). Now use Hanani's lemma. |
r+l1 —————-——J y LEMMA. If R is a set of natural numbers such that 0,1¢R
I with the property that s,t € R, s 2 t = rs+t € R then
s

R contains all sufficiently large integers n = 0 or 1

(mod r).

PROOF. (i) All polynomials in r with coefficients in {0,1} are in R.

(ii) R contains all

rk+2+ rk + a r2+ r+a
QX+ ... 2 a, 0
where 0 = a; < i+1. 3
(iii) R contains all multiples n of rlw_1 with n = ¢ +1.
(For:
o k+2 =1 .
ns= bk+2r + see + br-lr =
k+2 2 k r-1
= x + ((bk+2-1)r + bk+1r4-bk)r + ...+ br~1r
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3 2 3
where 0 < bi<r, bk+221' kzr -1 and (bk+2—1)r +bk+1r+bk5r .)
(iv) Now it suffices to show that R contains representatives of the congruence
classes (mod r. rr-l} which are = 0 or | (mod r). But obviously the coefficient

c; of r* can take all values (except when i = 0) since

i- i i
D 1+...) + (...+cir Fnn) = au. + (ci+1)r +... 0O
REMARK. If moreover a € R then R contains all sufficiently large integers

n a (mod r).
We can now prove the existence theorem for BIBDs with A = 1.

THEOREM 6. B(k) contains all sufficiently large integers v with v—1 = 0
(mod k-1) and v(v-1) = 0 (mod k(k-1)).

PROOF. Since v-1 = 0 (mod k-1) we can write v = r(k-1)+1, and we have to

prove that R, contains all sufficiently large integers r with r(r-1) = 0

(mod k). Let Iy € Rk such that (ro+1) € Rk If te Fk then by the previous
lemmas R, contains all sufficiently large r with r = t (mod ro} . Since we

may take ro such that klro (indeed, we found ro = k.i—:—i‘-) it suffices to show
for each r, such that T (rl—l) = 0 (mod k) the existence of an r ¢ Rk with

r = T, (mod ro), that is, for each v, such that vl—l 2 0 (med k-1) and

vl(vl—l) 2 0 (mod k(k-1)) the existence of a v € B(k) with v = vi(mod ro(k—l))-
But such a v is provided by Theorem 5. []

More generally we have for pairwise balanced designs and general A:

THEOREM 7. B(K,\) contains all sufficiently large integers v with A(v-1) = 0

(mod @ (K)) and Av(v-1) = 0 (mod B(K)), where a(K) = g.c.d.{k-1|k ¢ X} and
B(K) = g.c.d.{k(k-1) |k ¢ K}.

Again this follows from the existence of some special designs and
THEOREM 8. If K = B(K) then X is eventually periodic with period B(K) (i.e. i
if K Iintersects the residue class a (mod B(K)) then X contains almost all
integers k = a (mod B(K))).

PROOF. It suffices to show that, whenever 2 < k ¢ K, 1 <v € B(k) and

v =1 (mod k(k-1)) then K is eventually periodic with period v-1.

(For: the eventual pericds form an ideal, and B(k) contains numbers v, and

1
V, congruent 1 (mod k(k-1)) such that g.c.d.{vl-l, v5—1) = k(k-1) by
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Theorem 6.) Hence, fix such v and k. Let f ¢ K. We wish to show that all

large n = £ (mod v-1) are in K. First of all we can find arbitrarily large

n € Kwithn = £ (mod v-1) by taking n = f£(t(v-1) + 1) for large t. (For:

by theorem 6 we have t(v-1) + 1 € B(k) for large t; take t > n(f) so that

T(f; t(v-1)+1) exists and replace the groups of this design by designs

B(k; t(v-1)+1).) Hence we may suppose f to be large, e.g., £ > n(v)+1.

———t e m}ﬂ}ﬂa—a—a—é(ﬁf_l
(610 e L -1
fi— VA Vr— e f+1{e—e—e—e——e——o -
e
— I lise 58
t(v-1)+1 £ £-1 m

By removing one point from a T(v;f) we get a Gp(K,{(£-1) " ,v-1}; vE-1)

(the groups arise from the blocks and group that contained the removed point;
the star in M=={(f—1)*.(v—1)} denotes that the corresponding groupsize occurs
exactly once - all other groups having size v-1).

Likewise by removing one point from a T(v;f-1) and adding one peoint at
infinity (to each of the groups of the transversal design)we get a GD(K,M; vE-v).
Using these group divisible designs as irgredients we can perform the follow-
ing recursive construction. Let m > n(f+1) so that T(f+l;m) exists. In this

design replace each point % by a set Sx where the sets Sx are mutually dis-

joint, TSxI = f-1 for x in the top group, ISx| = 0 for all but t points x
in the second group, and stl = v-1 for all other points x. On the pointset
X = USxU{m} (with |X|] = (£f-1)vm + t(v-1) + 1) we construct a pairwise bal-

anced design by replacing each block B from the transversal design by the
blocks of a group divisible design GD(K,M;w) on the set 8 = U{sx[x € B} con-
structed in such a way that the sets Sx {x ¢ B) form its groups (note that
w = IQI = vf-1 or vEf-v so that such a group divisible design exists). Next,
for each group G of the transversal design put a design B(K;g) on the set
8ul=} = U{s |x e Glu{=} (where g = 18] + 1 = (v-1)m +1 or (v-1)t + 1 or
(f-=1)m + 1).

For g = (v-1)m+i or (v-1)t+l such designs certainly exist whenever m
and t are sufficiently large; for g = (f-1)m+l it suffices to require m = 1
(mod k(k—-1)) and m sufficiently large (because f > n(v) = n(k) and m e B(k)
implies (f-1)m e GD(k,f-1) and hence (£-1)m+1 e B({k,£}) c B(K)).
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Thus we have shown that if m, is sufficiently large, and

mo St <mmz1(mod k(k-1)) then (f=1)vm+ tf{v-1) +1 ¢ K.

Choosing values m = 1 (mod v-1) we see that all n = £
(mod v-1) with n = (f-l)v(m0+v(f-—1)}+m0(v—1)+1 are in k. [d

m

In order to prove Theorem 7 we first observe that B(K,X) = B(B(K,A)) so that

Theorem 8 is applicable. Let us compute B(B(K,A)).

Define

k(k=1)/(X,k(k~1)) if this is even,
B =
2k(k~1)/(A,k(k-1)) otherwise.

Claim: 80 = B(B(k,A)).
Indeed, v € B(k,A) implies Av(v-1) = 0 (mod k(k=1)), i.e.,

k (k-1)

YO 8 &t e

¥

Also v(v-1) is even, so BO|B(B (k,2)) . Next we need the following generali-
zation of Theorem 1:-:

LEMMA. B(k,A) contains all sufficiently large prime bowers q with q = 1
(mod k(k-1)/(X,k(k-1))).

PROOF. If 10 = (A,k(k-1)) then repeating the blocks of a B(k, J\ iv) J\/J\o
times yields a B(k,A;v). Consequently we assume that A]k(k—l). 1£ ll( )

then write g = mt+1 with m = ( )/:\ and t even, and apply Theorem 2 just as

in the proof of Theorem 1. If JL J’ ( ) then X is even, and writing g = mt+1
with m = k(k-1)/} we may apply Theorem 2 to find a base block B= (alia2 ceray)
such that each cyclotomic class of index m is represented exactly A/2 times
by the difference aj—ai (i < j). Using multipliers u with ut = 1 we again

find a B(k,X;:q). (Distinguish the cases q even and g odd.) O

Write B = B(B(k,\)). Applying the lemma to a large prime p > 8 of the
form p = B, (B, + 1)x - 8o +1wefindanxsuchthatﬁ[so By * 1)x - B,.
In particular (B, B +1) = 1. Again applying the lemma we find a ¥ such that
gl By + By~ But th:.s implies B]BO, Proving the claim. Now from

WIS Ba(fcx}n |BBE,A) | g.c.a.{8(B(X,1)) | k € K}

and
k(k-1) k(k-1) _ B(K)
et Extem | X ¢ O gea G ke 0 - BI



WILSON'S THEORY 87

it is immediately seen that B(B(K,A)) = Tiﬁé%%TT if this number is even, and
twice this if it is odd.
Given f with A(f-1) = 0 (mod a(K)) and Af(f-1) = 0 (mod B(K)) we shall

find v with v = £ (mod B(B(K,X))) and v-1 = 0 (med a(K)), v(v-1) = 0 (mod
B(K)). This will show that if Theorem 7 is true for A=1, it is true for
general ). (Because B(K,A) = B(K,1).)

c

(A,2)
some prime p, then £ = € (mod pe) with EP = 0 or 1. Choose v such that

Write a = a(K), b = B(K), ¢ = b/a. Note that (a,c) = 1. If p'l

for

v =1 (mod a) and v = Ep (mod pd) for all p dividing c, where 4 is defined
by pdﬂc.

Clearly v-1 = 0 (mod a(K)) and v(v-1) = 0 (mod B(K)) and Av-£) 2 0
(mod B(K)). If B(B(K,A)) = 2b/(b,A) and v Z f (mod 2b/(b,}2)) then v'=v+c ax

0
satisfies all conditions if 2d"c, <o = c/zd, x a solution of c.ax = 1-2v

(mod 2d). (Note that in this case a is odd.) 2

So we are now reduced to proving Theorem 7 for A = 1. Again use the
same trick: Given £ with f-1 = 0 (mod «(K)) and f(£f-1) = 0 (mod B(K)) we
shall find k € B(X) and v with v = £ (mod B(K)), v-1 = 0 (mod k-1),v(v=1) =0
(mod k(k-1)). Using Theorems 6 and 8 (and the fact that B(B(K,1)) = B(K))
this will complete the proof of Theorem 7.

Choose a finite KO c K with a(KU} = a(K) and B(KO) = B(K). Rgain write
a =a(), b=8(K, ¢ =b/a. Let k = N{kylk, € Ky} (mod B(Kq)) and k suffi-
ciently large so that k € B(KO) c B(K). (If k', ,k" € KO and k" > n(k') then
k'.k" € B(KO), using a transversal design.) This Xk satisfies k £ 1 (mod a)
and k = 0 (mod c). If peﬂc then £ = Ep (mod pe) with € = 0 or 1. Choose Vv
such that v = 1 (med k-1) and v = Ep (mod pd) for all p dividing k, where
p3lk. This v satisfies all conditions. [J
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6

PACKING AND COVERING OF (X)-SETS

A.E. BROUWER

INTRODUCTION

Let 0 £ t £ k £ v, and define

D(t,k,v) = max{|B||B < Pk(v} and no two elements of B have t
points in common},

and
c(t,k,v) = min{|B||B < Pk(u) and each T € Pt(v) is contained

in some B € B}.

The problems of determining c(t,k,v) and D(t,k,v) (C for ‘cover' and D for
'disjoint') are called the problem of covering respectively packing t-sets

with k-sets. Trivially we have

(1) D(0,k,v) = C(0,k,v) = 1,

(2) ok, = [, ek = [¢,
(3) D(k,k,v) = Cli,k,v) = (),

(4) Dl(t,v,v) = C{t,v,v) = 1.

Also, if an S(t,k,v) exists, then
v k
(5) D(t,k,v) = C(t,k,v) = [S(e.k, M| = (/D

while D(t,k,v) < {E}/(:)-z and C(t,k,v) 2 (:)/(i)+1 if (E)/(:) is integral
but no S(t,k,v) exists. (Problem: improve these bounds.)
(Generalizing the packing and covering problems, we may lock for Ck(t,k,v)

and Dltt,k,v}, the minimum respectively maximum number of k-subsets of a
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v-set such that each t-subset is covered at least respectively at most
A times. Obviously Ck(t,k,v) = Dl(t,k,v) iff a t-(v,k,X)-design exists.
In the sequel we shall mainly be concerned with the case X = 1.)

A disguised form of the packing problem is the coding problem for con-

stant weight codes, where one tries to find large collections of binary vectors

of given length and weight (= number of ones) and minimal mutual distance
(= number of places where two vectors differ). Defining A(n,d,w) to be the
maximum number of codewords in a binary code of length n, constant weight
w and minimum distance d, we have A(n,d,w) = D(w+l-%d, w,

lently, D(t,k,v) = A(v,2(k+1-t) k).

n), or, eguiva-

This enables us to use the known bounds
on the size of constant weight codes:

(6) D(t,k,v) = D(v-2k+t,v-k,v).

(Note that something like this does not hold for coverings;

tation we get Turdn numbers from covering numbers.)

by complemen-

If a 2kx2k Hadamard matrix exists (and k is even) then

(7) D(%k+1,k,2k) = 4k-2, D(%k,k-1,2k-1) = 2k-1, D(%k,k-1,2k-2) = k.

The bounds (8)-(11) are due to JOHNSON f13].
If D(t,k,v) = d and ka = vg+r, 0 £ r < v then

(8) va(g-1) + 2qr < (t-1)d(d-1).

Corollary:

9 Hitakewy s L(k+1£t?§r:;)(:—klj - "kz(kit:‘:)v '
provided the dominator is positive.

(10) Dtk ) < |ZD(t-1,k-1,v-1)] (v2k >0,

(11) D(t,k,v) < L-‘;‘;’?n(t,k,v-nj (v>k=z0).

(Proof: Consider the derived and residual collections at a suitably chosen
point.)
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The smallest possible bound obtained by repeatedly applying (10) or (11)
(and (1)-(4)) is called the Johnson bound JB(t,k,v). For large v it usually
(always?) gives the true value of D(t,k,v) but for v < kz/(t—i) the bound
(8) is often sharper.
PROPOSITION 1. (Folklore) D(t,k,v) < EEEE%; .. .%Eg%%;D(t—s,k~s,v—s)
(s < k < v), and egquality holds iff any optimal packing with parameters

t,k,v is an s-(v,k,\) design (for some suitable A).

For coverings the analogue of (10) is due to ScHONHEIM [24] (but was in

terms of Turan numbers already given by KATONA, NEMETZ & sIMoNovITS [181):
(12) cltk,v) 2 [F.clt-1,k-1,v-1]

and the analogue of the above proposition is true.

The bound obtained by repeatedly applying (12) (and (1)-(4)) is called
the Schénheim bound SB(t,k,v). Contrary to what seems to be the case for the
Johnson bound, SB(t,k,v) does not always give the correct value of C(t,k,v)
for large v. E.g., for v = 13 (mod 20) we have c(2,5,v) > sB(2,5,v) as

follows from
PROPOSITION 2. (GARDNER [6], MILLS [21]) Let (i)f(i) and (tji}l(;j;) for
el (A
Then clt,k,v) = [ (vSB(t-1,k-1,v-1)}+t)/k].
It is not difficult to see that under the same conditions we have
D(t,k,v) € [(vIB(t-1,k-1,v-1)-t)/k].

For t=2 and general X HANANI [12] gave

PROPOSITION 3. Let t=2 and A(v-1) = 0 (mod k-1). Then
(i) if Av(v-1)/(k-1) = -1 (mod k) then

Av(v-1)
C, (2,k,v) = [ k(k_nl +1,

and
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(ii) if Av(v-1)/(k-1) = 1 (mod k) then

Av(v=1), _
D, (2,k,) < | Sy - 1.

1 know of no analogue to (11). A result connecting v and v+1 is
PROPOSITION 4. C(t,k,v+1) < C(t,k,v) + C(t-1,k-1,v)
and
D(t,k,v) € D(t,k,v-1) + D(t-1,k-1,v-1}.

If an S(t,k,v) exists then we have equality in both cases (SCHONHEIM
[24]); in fact the left hand sides equal SB(t,k,v+1) respectively JB(t,k,v)
in this case.

1. RESULTS FOR LARGE k

In Chapter 7 of this book, a study is made of the Tur&n numbers T(v,k,L£)
defined by

T(v,k, L) = min{lBHB o P.ﬁ(x]" 1] = v, WK e Pk(x) 3L e B : L € K}.
But obviously T(v,k,£) = C(v-k,v-£,v), i.e., the Turan problem and the
covering problem are in fact equivalent. However, the fact that they are
usually studied for given (small) values of k and £ (resp. t and k) and
arbitrary (large) vV, gives them a very different flavour. A mixed version
is obtained by fixing t (small), and taking k large w.r.t.

v. (Of course,
k £ v.) Some results in this direction are-

If k = v then c(2,k,v) = 1,

o
Hy
A
~
A

then C(2,k,v) = 3,

™
Hh

"
1

aléw Mé-—- \oém m‘!w w‘iw
n A
- =
A A

then C(2,k,v) = 4,

™.
"
W
=
A

then C(2,k,v)

.
H

]

(2]

v
2
37
3
v then c(2,k,v) = 5,
5
gv
1
i

A
-~
A

then C(2,k,v) = 7, unless 3v = Tk-1,

C(2,k,v) = 8.

in which case



PACKING AND COVERING OF (:}-SE‘I‘S

93
2. RESULTS FOR SMALL t AND k

By (1)-(4) we may assume 2 £ t < k =< w.
2.1, t=2, k=3

It has been shown by KIRKMAN [19] in the cases v = 0,1,2,3 (mod &) and

by SCHONHEIM [23] in the remaining cases that

D(2,3,v)

38(2,3,v) = |5 5]] - e,

where € = 1 for v £ 5 (mod 6) and € = 0 otherwise. (This same result has

been found by quite a few others, see e.g. GUY [7], SPENCER [257, SWIFT
[26].)

The covering result
c(2,3,v) =sB(2,3,v) = [3 [‘1.'2_1]]

ie due to FORT & HEDLUND [5].

For arbitrary A we have
vy lv=1)2 -
D, (2,3,w = [JLEHA] - e,

where € = 1 if both v = A+1 = 2 (mod 3) and A(v-1) = 0 (mod 2), and e =0

otherwise, and
-1) A
€\ (2,3,v) = I'-‘3’—|'w—2)-—1]+ c,

where € = 1 if both v = A = 2 (mod 3) and A(v-1) =0 (mod 2), and € = 0
otherwise. (See H. HANANI [12], or G. HAGGARD rg] for the covering case.)

2.2. t=2, k=4

BROUWER [ 3] showed for v # 8-11,17,19 that
-1
D(2,4,v) = JB(2,4,v) = L%l_l’i—“ -,

where € = 1 for v = 7 or 10 (mod 12) and € = 0 otherwise.
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For the exceptiocnal v we have

v | 8 9 10 11 17 19
JB(2,4,v) 4 4 6 8 21 27
Bounds (9), (8) 3,2 3 5 - -
D(2,4,v) 2 3 5 6 20 25

In a sense the values 17 and 19 are the only nontrivial exceptions.

MILLS [20] showed for v # 7,9,10,19 that
c2,4,v) = s8(2,4,v) = [Y¥1]].

For the exceptional v we have

v | 7 9 10 19
SB(2,4,v) 4 7 8 29
c(2,4,v) 5 8 9 31

2,3, t=2, k=5

Here the results are far from complete. HANANT [10,11] showed that an
5(2,5,v) exists iff v =1 of 5 (mod 20). This solves the packing problem for
v =0,1,4,5 (mod 20) and the covering problem for v = 1,2,5,6 (mod 20).
GARDNER [6] has studied the covering problem, and proved moreover

€(2,5,v) = sB(2,5,v)

for

v E 10,14,17,18,30,94,97,98 (mod 100),

provided that

v # 1?,30,94,110,114,130,194,210,230;

and for some isclated values of v.

v = 38, 39;54;70,95, 150, 195,2?8'390,4?0'475

Free



PACKING AND COVERING OF (t}—SETS 95

He proved also that
c(2,5,v) = 8SB(2,5,v) + 1

for v = 13,93 (mod 100), v 2 293.

2.4. t=2, k26

[\"3
o

Not much is known.
2.5. t=3, k=4

HANANI [9] showed the existence of S(3,4,v) for v = 2,4 (mod 6). This
solves the packing problem for v=1,2,3,4 (mod 6) and the covering problem for
v =2,3,4,5 (mod 6). The case v = 0 (mod 6) was treated by MILLS [22] and
BROUWER [2]; MILLS [22] moreover solved the covering problem in case v =1
(mod 12). Altogether this yields

c(3,4,v) = SB(3,4,v) for v #7 (mod 12),
D(3,4,v) = JB(3,4,v) for v # 5 (mod 6).

Concerning the remaining cases, oily

c(3,4,7)

SB(3,4,7)+1 = 12

D(3,4,v) = JB(3,4,v) for v = 5, 11 (BEST [1])

are Known.

2.6. Other parameters

Not much is known. For packing see the tables in BEST, BROUWER,
MacWILLIAMS, ODLYZKO & SLOANE [1], for covering see the survey by MILLS
[217].
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TURAN THEORY AND THE LOTTO PROBLEM

A.E. BROUWER & M. VOORHOEVE

1. TURAN THEORY

Let k,£,n ¢ N such that k < £ < n. We define the Turdn number T(n,k,£)
as the smallest number of k-subsets of an n-set X such that any f-subset of
¥ contains at least one of these k-subsets. For example: T(7,4,5) = 7. (Take
x = {0,1,...,6}; the 4-subsets are all translates (mod 7) of {1,2,3,5}; this
is easily seen to be optimal.) The relation between Turdn numbers and cover-
ing numbers is discussed in Chapter 4 and 5. The above definition can be
formulated in the language of hypergraphs (see Chapter 1) as follows: for
a hypergraph H = (X,E), let its stability number B(H) be the maximal cardi-
nality of a stable subset of H (i.e. a set containing no edge). Then T(n,k,£)
is the minimal number of edges of a k-uniform hypergraph H with n vertices
such that B(H) < £. P. TURAN [10] posed the problem of determining T(n,k,£).
In this section we give some estimates for this number. Notice that T(n,k,£)
is increasing in n and k and decreasing in £. Trivially, T(n,1,£) = n-£+1.
The numbers T(n,2,£) and the corresponding graphs are determined by the
following theorem of TURAN [9].

THEOREM 1. Let n = £ 2 2 and let Gn 2 be the graph on n points consisting of
. . ; ) s n n

£-1 disjoint cliques of cardinality either Lz:zd or TI:TJ. Then every graph

G with n vertices and stability number less than £ that has the smallest

possible number of edges is isomorphic to Gn e

PROOF. If £ <n < 2£-2, the theorem is immediate. We proceed by induction on
n. Denote the number of edges of a graph G by m(G). Let Gx be a graph with
vertex set X, |x| = n+tf-1, and stability number < £ such that m(Gx) is mini-
mal. Then B8(G) = £-1. Let S be a stable subset of X with |s| = £-1. Let Gy\s
be the subgraph of Gy induced by X\S (see Chapter 1).

By the maximality of S, each point in X\S is adjacent to a point in S,
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80

m{GxJ - m(Gx £ o

\s’

By the induction hypothesis, m(Gx\Si 3 m(Gn'z) ; SO
m[Gx] 2 m(Gn,f.) 5.

It is easily checked by counting edges that

m(G

n+ —1,!’ = m(Gn,EJ i

Hence m(Gx) = m(sz_l ﬂ) and all the inequalities must therefore have been
equalities. So m(Gx\S)= m(Gn,—f.) and, by the induction hypothesis, Gx\s = Gn,-ﬁ'
Furthermore, each point of X\S is adjacent in Gx to one and only one point

of S. If two points from different cliques were adjacent to the same point

s in S, this would contradict the maximality of S, so G, consists of £-1

disjoint cliques of size
n S O =
I‘Z_-i'] + 1 or |'£_1‘| +1, so Gy Gn-l-ﬂ—l,-lf.’. % O

REMARK. The case { = 3 appeared in 1910 as problem 28, by W. Mantel, in
"Wiskundige Opgaven" of the Dutch Mathematical Society.

COROLLARY . T(n,2,£) = (q-1) (n-4(£-1)q), where q = I'z-fT'f.

Generalizing the above idea of taking disjoint cliques, we find for general
k the upper bound

1-

£-1
(1) T(n.k;i] = (:) [l_(-—_lJ

" £-1
(Partition X inte I-k_-T Subsets S, of almost equal size and take for E the

collection of all k-subsets of each Si.)

KATONA, NEMETZ & SIMONOVITS [6] proved that
T(n,k, 20 -
(n,k,2) = oy T(n=1,k,0) .

(Proof: For each point x € X there are at least T(n-
ing x. Now count pairs (x,E), where x ¢ E e E.)

1,k,£) k-sets not contain—

Since T(L,k,£) = 1, we fing by induction
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n n-1 £ niy ok
THEOREM 2. T(n,k,8) 2 [ 2[5 . ... [pmgg] -2 112 ()7 G-

COROLLARY. For any hypergraph H = (X,E) such that each edge of H contains
at least k points, we have B(H) = |Ix|/ Y|E|].

(Proof: Let n = |X| and m = |E|. If m < (n/f.)k then m < (2)/(§) < T(n,k,£),
so B(H) = £.)

ERDOS & SPENCER [4] generalized Theorem 2 by proving

PROPOSITION. T(n,k,£) = (a-(ﬁ—i))(;)lti) for £ < a € n.

PROOF. T(n,k,£) = E%E T(n-1,k,£8) = ... = ((;)/(z})T(a,k,ﬂ). Now notice that
T(a,k,£) = T(a,1,£) = a-£+1. a

We can also use T(a,k,£) = T(a,2,£) and Turdn's theorem (Theorem 1) to obtain
for k =z 2

T(n,k,£) 2 ([-tf—l]—n ca-w:-n[ﬁ—l]) (i)/(:). for £ £ a < n.

This is stronger than Theorem 2 and Erdos & Spencer's result, but only in

extreme cases is it essentially stronger.

CHVATAL [ 3] showed how to use lower bounds on T(n,k,£) in order to
obtain upper bounds for the same function (with different parameters). He
proved

£

n
THEOREM 3. T((k)r(k

n n
),(k)—T(n,k.£)+1) < ().

PROOF. Let X = Pk(U), where U is an n-set and choose an ((:)—T(n,k,£)+1)—
subset Z of X. Then X\Z has T(n,k,£)-1 elements, so there is a Yl € PK(U)
such that no k-subset of Yl is an element of X\Z. Hence %{(Yl) < Z. This
proves that each ((E)—T(n,k,£)+1)—subset of X contains a set of the collec-

tion E = {Pk(YllY € P£(U}]. Since |E| = (E), this proves the theorem. 0O
COROLLARY. T(n,k,£) < 1 + (2)(1—(2)_1/t), where t = cﬁ).

PROOF. Set M = (2), N = (;)—T(n,k,£}+1, E= (ﬁ). By Theorems 2 and 3
n M N s
(Z) = T(M,S,N) = (S)/(S) > (M/N)T.

Substituting the given expressions for M,N and S we obtain the corollary. O



102 7. BROUWER & VOORHOEVE

For certain n,k,£ this is an improvement of Turdn's bound (1).

LOREA [7] determines some Turdn numbers with the help of the affine
spaces AG(k,2). By a result of BROUWER & SCHRIJVER [2] the minimum cardinal-
ity of a vertex subset of AG(k,2) intersecting all hyperplanes is k+1. 59
each set of cardinality 2k-—k contains a hyperplane. Since there are 2. (2k—1)
hyperplanes, this proves

o k
o(2%,2%71 2%k < 2. (2%-1).

By a direct application of Theorem 2 we find

. - k
T(Zk,Zk 1,2k—k) 2z 2.(27-1).

Hence
r(2*, 251,250 = 2251,

and AG(k,2) with the hyperplanes form a so-called Tur&n hypergraph.
2. THE LOTTO PROBLEM

In this section we treat the problem of determining the minimal number
of lotto forms one must fill in to be assured of winning a prize. Formalized,
this becomes the question of finding the minimum number L(n,k,£,t) of k-sub-
sets of an n-set X, such that any £-subset of X meets one of these k-sub-
sets in at least t points. (Assume 0 € t < k,£ < n.)

For lotto in Holland, n =41, k=6, £ =7, t = 4; in Germany n = 49,
k =£ =6, t =3. The number L(n,k,£,t) is increasing in n and t and decrease-—
ing in k and £. Trivially, L(n,k,£,0) = 1 and L(n,k,£,1) = (“"£+1] When

= £ we have the covering problem: L(n,k,t,t) = C(t,k,n). When t = k we
have Turén's problem: L(n,k,£,k) = T(n,k,£). Bounds for c(t,k,v) and T(n,k,£)
usually can be generalized to bounds for L(n,k,£,t).

1 becomes

The analogue of Theorem
THEOREM 5. (HANANI, ORNSTEIN & SOS [4])

n(n-£+1)
(2) Lnk,8,2) 2 o Bes 5

and

lim L(n,k,£,2), K=(k-1) (£-1)
e

n(n=f+1) = L.



TURAN THEORY AND THE LOTTO PROBLEM 103

Equality in (2) holds iff n = m(£€-1) (m € W) and there exists an S(2,k,m)

Steiner system. (In particular when k < 5 and m = 1 or k (mod k(k-1).)

PROOF. Suppose H = (X,E) is a k-uniform hypergraph with n vertices and
L{n,k,£,2) edges such that each f£-subset of X meets some edge in at least
2 points. Construct the graph G = {X,E*) whose edges are all pairs of points

contained in any edge of H. Then

IE"| 2 T(n,2,8) 2 4n(n-£+1)/(L-1)
by Theorem 1, since each £-set contains an edge of G. Since each edge E of
H contains only (:) pairs, we have

_ n(n-£+1)
L(n,k:f-;zi = ]EI z m -

If equality holds in (2), then necessarily T(n,2,£) = 4n(n-£+1)/(£-1),
so (£-1)|n. The graph G then consists of £~1 cliques of cardinality m=n/(£-1).
For equality in (2) it is also necessary that the pairs in these m-cliques
are covered by k-sets, each pair lying in precisely one k-set, so each m-
clique carries an S(2,k,m) Steiner system. These conditions are clearly also

sufficient. For the asymptotic result, notice that
Lin,k,£,2) 5 (£-1).c(2,k, [z ] -

By Wilson's theorem (see Chapter 5)

. Cc(2,k,m) _
% m k,
n>e
¢ (2)/(2)

Combining these results we find

L(n;k,ﬁ;Z) k(k-1)
lim A o
N-+oo ([2:_—11) a [f‘f_—-f-l-ﬂ (£-1)

-

thus completing the proof. g

When C(2,k,m) is close to the Schdnheim bound for m near I%T it is

often possible to determine L(n,k,£,2) exactly. For instance:
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L(2m+1,3,3,2) = C(2,3,m) + C(2,3,m+1),
L(4m+2,3,3,2) = 2.C(2,3,2m+1),
L{4m,3,3,2) = C(2,3,2m-1) + C(2,3,2m+1)

(see BROUWER [1]). Generalizing the above idea, we find

X
THEOREM 5. L(n,k,f,t) > T(n,t,£)/().

Hence, by Theorem 2, we have
n
(tJ

S
(t)(tJ

COROLLARY. L(n,k,£,t) =

F. STERBOUL [8] gives the following two estimates, which are sometimes

stronger for small n, though weaker for n + =, k,f,t fixed.

THEOREM 6.
a-£+17 .n ® x n-k
(1) L(n,Xx,2,t) > pee [l % izt () Gy |

k
@O skt 2 omax [@t) @/ T e ).
£<asn i=t

Regarding upper bounds, no good general constructions are known.
STERBOUL [8]

that

gives a construction for the French (and German) lotto, proving
L(49,6,6,3) < 175,
The reader is hereby invited to give a construction for the Dutch lotto.
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RAMSEY THEORY

H.M. MULDER

0. INTRODUCTION

Ramsey theory is concerned with covering problems of the following kind.
Suppose a set X is covered by a given number of subsets, say X = xlu wew U xk.
Then, often, one of the sets xi must contain a subset of a given type, pro-
vided that |X| is large enough with respect to k, that is, [X| 2 f(k) for
some function f(k). The problem then is to show that such a function f exists
and to determine the smallest value for f£(k).

For example, let X be the set of edges of the complete graph Kn' and
let "the subsets of given type" be all triangles. Then Ramsey's theorem as-
serts that such a function f exists. For instance, £(2) = (3} , that is, if
the edges of K6 are coloured red and blue then there is a monochromatic tri-
angle.

We can state the problem otherwise. Given X, what is the minimum value
of k such that X = Xlu avaen U xk' where no xi contains a "subset of given
type"? Solving this problem consists of determining the minimal k such that
1%l < £(k).

In this chapter I have not tried to cover the fast-growing subject of
Ramsey theory. At least a whole volume would be needed to give a complete
survey. I have restricted myself to Ramsey's theorem, some variations and
some applications. The list of references, which is by no means exhaustive,
contains a number of survey papers to which the reader is referred for fur-

ther reading.
1. RAMSEY'S THEOREM
The "pigeon-hole principle" asserts that when a set with many elements

is partitioned in not too many subsets, then there is a subset in the par-

tition containing many elements. The following theorem, due to the logician
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F.P. RAMSEY [2B], can be regarded as a far-reaching generalization of this
principle. The version given here is combinatorial.

THEOREM 1. (RAMSEY [28]) Let r, kl""'km be positive integers. Then there
exists a minimal positive integer R(kl,...,km;r) such that: if X is an n-
set, withn 2 R(kl,...,km:r}, and Pr(x) is partitioned into Al,-..,Am, then
there exists a ki—subset Y of X, for some i (1 £ i £ m), such that Pr(Y) = Ai.

PROOF. Without loss of generality k - 'km 2 r. Note that it is suffi-

I
1772
cient to give an upper bound for the number R(kl,... ,km:r) to prove its
existence. First we give some easily determined values of R(kl,. . .,km;r) =

The special case r=1 yields the pigeon-hole principle.

(1) R(kl.-..,km:ll =k1+...+km—m+1,
(2) Rik;r) = k (k = ),
(3) R(k,r;x) = R(r,k;zr) = k (k = r).

Assuming the existence of R(kl,kz;r) , for kl'k2 =z r, the following recur-
rence relation follows immediately for m = 3.

(4) R(kl....,km;r} < R(R{kl""'km—l'—r)'km:r)'

To finish the proof it suffices to prove the existence of the numbers

R{ki.k ir). This is done by induction on r and k +k . The basis of the in-
duction is given by (1) and (3).

Let r > 1 and kll-k2 7 r, and assume the existence of the numbers

R(k -1.k2.r), R(kl,kz-l,r) and R(k,h;r-1) for k,h > r. Set ki z-R(k

k! =
and 3 R(kl,kz 1;r).

ix)
We shall prove the recurrence relation

(5) R(klrkzir) < R(ki,ké;r—l} + 1.

Let X be an n-set, with n » R(k-.kz',r-i) + 1, and let Az"‘z be a partition

of P (X). Let x ¢ X and § = X\ {x}. set

bt Al=faeP () 1auxe A} (1 =1,2).

Then A}, A} is a partition of L
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Now |s] = R(ki,ké;r—l) so S contains a k' -set T such that P l(T) c
3 r=

; 0
Aio' for some io e {1,2}. Take io = 1 (the case io = 2 is treated similarly).

The partition Alf Az of Pr(X) induces a partition of Pr(T). Since
7 T| = k' = R(k - .
(7) Il 1 (ky=1/k i),

there exists a kz-subset Y of T, all of whose r-subsets are in AZ (in which
case (5) holds), or otherwise there exists a (kl—l)—suhset Z of T, such that
Pr(Z} < Al. In the latter case it follows from Pr_l(z) c Pr_l(T} c Ai, that
Pr(z u{x}) < Al' Thus (5) has been proved. [

The numbers R(kl""'km:r) are called Ramsey numbers.

2. RAMSEYAN GRAPH THEORY

2.1. Graph Ramsey numbers

For r = 2 the Ramsey numbers can ke associated with graphs. We write
(8) r(klr---:km} = R(kly---fkmiz)v

Let us colour the edges of the complete graph Kn with the colours
1,...,m. From Ramsey's thecrem we ﬁeduce: if n 2 r(kl,...,km), then, for
some i, there is a monochromatic Kk- of colour i.

If we use the colours "visible" and "invisible", Ramsey's theorem reads:
let G be a graph with n vertices; if n 2 r{k,h), then G contains a clique
with k wvertices or an independent set with h vertices. The following theorems

give bounds for the numbers r(k,h). Other, and better, bounds can be found in
e.g. [12], [21].

THEOREM 2. (ERDOS & SZEKERES [14]) For k,h 2 2:

r(k,h} < r(k-1,h) + r(k,h-1).

PROOF. The inequality follows from (1) and (5). [
+h=-
COROLLARY. For k,h = 1: r(k,h) < [kkflz :
PROOF. The corocllary follows directly, by induction on k+h, from r(k,1) = 1=

= r(1,h) and theorem 2. ]
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The next theorem is an example of an application of the "probabilistic
method" in graph theory.

. k
THEOREM 3. (ERDOS [10]) For k > 2: rik,k) 2 25 .

PROOF. Since r(2,2) = 2, we may assume that k > 3. The number of 2-colourings

of the edges of K is equal to

9) 2 2
k
(=)
Taking a fixed K in K, there are 2.2 2-colourings of K such that

n ;
the fixed Kk is monochromatic. The number of Kk's in Kn is (k). So if
6 T o B
(10) 2 > (k).2.2

r

then there is a 2-colouring of Kn such that there is no monochromatic Kk'

Ifk =23 andn < Zﬁk we have

) 2 x
(11) 22 ok Kk kK 2> 2:0y. O

COROLLARY. For k,h 2 2: r(k,h) = min{27¥,2}.

Using more sophisticated arguments this bound can be improved. For this

and many other applications of the probabilistic method in graph theory see
ERDOS & SPENCER [13] (see also [251).

To determine the exact values of the Ramsey numbers turns out to be a
very hard problem. First r(k,1) = 1 = r(1,k) and r(k,2)
following table (cf.

=k = r(2;k) - The
[25]) gives all the other known values of r(k,h). The

table also gives some good known upper and lower bounds for some special
cases.

4 5 6 7 8 9
9 14 18 23 27-30 36-37
18 25-28 34-45
42-55 42-54
102-178

Table of known values for r(k,h).



RAMSEY THEORY 111

k1 #ooas = km - m+ 1, the only other known

17, due to GREENWOOD & GLEASON [20].

If

bhpart from R(kl,...,km;l)
Ramsey number is r(3,3,3) =

2.2. Generalized graph Ramsey numbers

Let H1 and H2 be two graphs. The generalized graph Ramsey number r(Hl;Hzl

denotes the smallest n such that H < Gor H2 © G for every graph G on n ver-

tices (G is the complementary graph of G). The existence of r{Hl,HZ) follows
from

{12) r(Hl'H2) = r(ni,nzl,

where ni is the number of vertices of Hi (i = 1,2). Obviously, r(k,h) =
r(Kk.Kh}.

For small graphs HI'HZ (one having at most 4 vertices, the other having
at most 5 vertices) the Ramsey number r(Hl,Hz) has been determined exactly
(see [51, [61, [71, [81, [22]).

Here I confine myself to giving one result due to CHVATAL [4].

THEOREM 4. (CHVATAL [4]) Let T be a tree on m vertices. Then r(T,Kn)=
= 1+(m-1) (n-1).

1
yields r{T.Kn) 2z (n-1) (m-1) + 1. Let G be a graph with 1+(m-1) (n-1) ver-

PROOF. The graph consisting of the disjoint union of n-1 copies of Km—

tices that does not contain an independent set of n vertices. Then G is at
least m-chromatic. But then G contains a subgraph of minimum degree at least
m-1. Using induction on m it is easily proved that a graph of minimum degree

(at least) m-1 contains every tree on m vertices as a subgraph. a
3. OTHER RAMSEY THEORY TOPICS

This section is a report on some other trends in Ramsey theory.
3.1. Matrices

Many Ramsey style theorems can be given concerning the existence of "sub-

matrices of given type" in matrices of sufficiently large order. For instance

THEOREM 5. Let S be an s-set and m a positive integer. There exists a mini-

mal positive integer M(m,s) such that: if A is a matrix of order n z M(m,s),
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with entries in S, then A contains a principal submatrix of order m with all
diagonal entries the same, all entries below the diagonal the same, and all

entries above the diagonal the same.

The proof can be given using Ramsey's theorem. The following theorem
can be proved directly (see [24]).
THEOREM 6. (HOFFMAN [24]) ret S be an s-set and m a positive integer. There
exists a minimal positive integer H(m,s) such that: if A is a matrix with

n z Him,s) mutually distinect rows, then A contains a Submatrix of order m,

such that {possibly after permutations of rows and columns) all diagonal

entries are the Ssame, all entries below the diagonal are the same, and all

the entries above the diagonal are the same.

HOFFMAN [24] used these Ramsey style theorems to prove results con-

cerning the eigenvalues of the adjacency matrices of graphs.

3.2. Arithmetic progressions

In 1927 Van der Waerden proved a now classical theorem.
THEOREM 7. (Van der WAERDEN [321) For any partition of the set of positive

integers into a finite number of classes, some class contains arbitrarily

long arithmetic bProgressions.

Proofs can be found in [18] ana [32].

The statement in the theorem does not specify which classes contain

those arbitrarily long arithmetic progressions. Erdds and Tursn conjectured

in 1936 that any class with "positive density" must contain arbitrarily long

arithmetic Progressions. In 1972 Szemerédi settled this conjecture, thus

generalizing Van der Waerden's theorem,

THEOREM 8. (SZEMEREDI [31]) et R be 4 set of positive integers such that

1im sup IRn{l,Z,...,n]] > 0.
nes n

Then R contains arbitrarily long arithmetic bProgressions.

Erdds had offered $1000,- for a solution of the conjecture,
prize is the highest ever collected from Exdss.
The proof took 46 pages.

and this

The result appeared in 1975.
A sketch of sketch of proof can be found in [19],
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(cf. [21]). A different proof, using ergodic functions, has been given by
FURSTENBERG [15] (see also [33]).

A stronger conjecture of Erdés, for a solution of which he has offered

$3000,-, is still unsettled: let al,az,... be a sequence of positive integers,
1

with a,<a,< ... ; if I g— ==, then {ai]i contains arbitrarily long arithme-
i %
tic progressions.

3.3. Linear eguations

Another classical theorem is that of Schur from 1916.

THEOREM 9. (SCHUR [29]) Let m be a positive integer. There is a minimal posi-
tive integer s(m) such that: if SyreveiSy is any partition of {1,2,...,s(m)},
then, for some i,Si contains three integers x,y and z, not necessarily dis-
tinct, satisfying the equation x+y = z.

PROOF. Set r = r(kl,...,km), where kl = ... = km = 3. Colour the edges of
the complete graph with vertex set {1,2,...,rm} as follows: edge uv is as-—
signed colour j if la-v| ¢ Sj. From Ramsey's theorem we deduce that there

is a monochromatic triangle of colour, say, i. Let a,b and c be the vertices
of that triangle, say a > b » ¢c. Then a-b, b-c, a-c € Si and (a-b) + (b-c) =

= (a-c). So r is an upper bound for s(m). O
This result has been generalized by Hindman.

THEOREM 10. (HINDMAN [23]) For any partition of the set of positive integers
into a finite number of classes, some class contains an infinite subset M

such that xEA X € M, for each nonempty finite subset A of M.

2 sketch of proof can be found in [19]. A proof by Glazer using ultra-
filter theory can be found in [9].

In the excellent survey by GRAHAM & ROTHSCHILD [19] a unified presenta-
tion is given, which includes the results of this section and those of the

preceding section as well.

3.4. Euclidean Ramsey theory

Let K be a finite set of points in }{2 the Euclidean n-space. Let H

n
be a group of transformations on R .

. . :y
Question: does there exist an r-colouring of the points of IR with no mono-

chromatic set g(K) for any g € H?
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The answer to the guestion depends on the structure of the "configura-
tion" K and Euclidean Ramsey theory is concerned with answering this question.
ERDOS et al. [11], [12] have proved a wealth of theorems (up to eighty) in
Euclidean Ramsey theory. As an indication of their results two theorems are

given.

= . 3 ; ;
THEOREM 11.(ERDOS et al. [11]) For any 2-colouring of TR~ there is an egqui-
lateral triangle of side 1, the vertices of which form a monochromatic 3-

set.

A set K = {xl,...,xk} in R" is called spherical, if there is a '"center"

x € R" and a "radius" s such that Ixi—xl =5, fori=1,...,k.

THEOREM 12. (ERDOS et al. [11]) Zet K ¢ R" be non-spherical. Let H be the
Euclidean group of mn. Then for all r there exists an r-colouring of the

points of :Rn, such that for no g in H the set ¢(X) is monochromatic.

Another result is the following.

THEOREM 13. (SHADER [30]) Let K be the set of verticés of a right triangle
X 2
in R . Let H be the Euclidean group of :IRZ- For any 2-colouring of the

2 . . : :
points of R™ there is a g in H such that g(K) is monochromatic.

3.5. A variation of Ramsey's theorem

A very recent result is the following theorem (see [26]).

THEOREM 14. (Paris) Let r,k and m be positive integers. Then there exists

@ minimal positive integer n = n(r,k,m) such that-: if Pr(fm,m+1,..-,n}) iz

partitioned into k classes, then there exists a subset ¥ of {m,m+1,...,n},

with |y| = rfig i, such that Pr(Y) is in one class.
€
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OPTIMAL CODES

M.R. BEST

1. PRELIMINARIES

In this section we briefly mention a number of basic concepts from
coding theory. For a thorough treatment of the subject, we refer the reader
to the book of MacWILLIAMS & SLOANE [18],

Let g and n be natural numbers, and let Q be a set of g ele-
ments, including a zero-element 0 . Q will be called the alphabet. A word
{of length n over Q ) is a sequence of n elements of © . The word con-
sisting merely of zexos is called the origin © . The (Hamming) distance
dH(x,y) between two words x and vy is the number of coordinate places in

2

which they differ: if x = (xlr Mo e xn) and y = (yl, Yor we-s YnJ '
then d (x, y) = [{i] 4 € {1, e n} A x, # yi}]. The (Hamming) weight

|x] of a word x 1is the distance of x to the origin: |[x| = dy(x,0) .

With this distance function, the set X = Qn

of all words becomes a metric
space.

A code (of length n over 0O ) is a subset of X . If g=2 , the code
is called binary. An element of the code is called a codeword. A code con-
sisting of at most one codeword is called degenerate. The smallest distance
between two different codewords in a nondegenerate code is called the mini-
mum distance of that code. An [n, dl-code is a code of length n which
either is degenerate or has minimum distance at least & . The maximum car-
dinality of an [n, dl-code is denoted by A(n, @) . An [n, d]-code for
which this maximum is achieved, is called optimal.

If ¢ is an [n, dl-code, then the collection of all words of C
which have a fixed element of O in a fixed coordinate place is called,
after deletion of that coordinate, a shortened code. This shortened code
is an [n-1, d]-code. From this construction, it follows that

A(n-1, d4) = A(n, d)/q .
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If from each word of C a fixed coordinate is deleted, the result is
called a punctured code. This is an [n-1, d-1]-code. From this construc-
tion it follows that A(n-1, d-1) = A(n, d) .

If C is a binary [n, dl-code with d odd, and if to each codeword
a new coordinate is appended so that the total number of non-zero coordi-
nates is even (this is called a parity check bit), then the resulting code
is called the extended code. It is easily seen to be an [n+1, d+1J-code.
From the last two constructions follows that A(n-1, 4-1) = A(n, 4) for
binary codes with d even.

A code is called t-error correcting if the balls of radius t arocund
the codewords in the metric space X are disjoint. For nondegenerate codes
this is the case if and only if 2t < d , where d is the minimum distance
of the code. If these balls form a partition of X ; the code is called t-
perfect. Since the number of words in a ball with radius t amounts to

£

¥ Mre-nd,
3=0 J

a t-perfect code C satisfies the sphere-packing condition:

t
lel =g®7 5 ®yigenyd .
j=0 ?

In general, a t-error correcting code satisfies the Hamming bound

t Z
el sq® /7 § M-I
j=o 1

(cf. HAMMING [11]). A sharpening of this bound has been given by JOHNSON
[12].

If Q happens to be a finite field, and € is a linear subspace of
the n-dimensional vectorspace X over Q , then C is called a linear
code. The dimension k of a linear code is its dimension as a subspace of
X . A linear code of length n and dimension k is called an (n, k)-code.
The ratio k/n is called the rate of the linear code. The minimum weight
of a nondegenerate linear code is the smallest non-zero weight of a code-
word. It is easily seen that the concepts of minimum weight and minimum
distance coincide for linear codes. The weight distribution of a linear
code is the sequence (AiJ;.LD where Ai equals the number of codewords

of weight i . The (hemogeneous) weight enumerator of the code C is the
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Polynomial Wc defined by

n-|ul| _ |ua] 5 n-i i
Wolx, y) = ] x yv'= )} Ax ¥y
A i
ueC i=0

We define on the vector space X the standard inner product <x, y>
n
> = =
of two vectors x and y by <x, y Ei=1 XY, s where x (xl, . xn}
and y = (yl, T yn) . Then the dual code of a linear code is its orthog-
onal complement with respect to X and the standard inner product.

The concepts of rate and weight enumerator have been generalized to

=-1.
general codes. The rate of a nonempty code C is defined as n qlcsg lel .
The distance distribution of C is the sequence (Ai)i_o s where Ai equals

the average number of codewords at distance i from a fixed codeword, i.e.

B, = |C|_1' z [{y| vec A dy(x, yi=i}| =

i
xeC

= IClil-I{(x, v)| xec A yec A a, (x, yv)=i}] .

Motice that A0=1 and that distance distribution and weight distribution
<oincide for linear codes. Of course, a distance enumerator can also be

defined.
2. THE LINEAR PROGRAMMING BOUND

In this section we derive the linear programming bound for error cor-
recting codes by elementary means. At the end of the section the same bound
will be derived from the general theory of association schemes.

We may give our alphabet Q the structure of the residue class ring
modulo q and define <x, y> in the same way as above. Let ¥ be some in-
Jective character on the additive group of Q (e.g. x(a) = exp(2ria/q) if
Q = {0; “any q—l} i

As an exercise, we evaluate the sum

T xl{<x, z=>)

L
zeX

lz =k

for a fixed word xeX of weight i .

Without loss of generality, we may assume that
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X = (xl, seay xi. D cwimimor Q) ,

with Xy #0 for 0 <h<i.

Let 0 < h1 L s B hj b S hj+1 PSP S hk <n, and let D be the

set of all words (of weight k ) which have their non-zero coordinates

precisely in the positions hl‘ P hk . Then

E x{<x, z») = E x( Z. + ... + z ) =
zeD Zy reeerZy eo\{0} xhl hy b
i k

j - 5
=@ ] xx @) = (=17 (@-0 7 .

m=1 zeQ\{0} m
Hence
I x(<x, 2) = ) (%)(g:é)t—l)j(q—lak'j )
zeX 4 =
lzl=k

By definition, this last expression equals Kk(i) , the k-th degree Kravéuk
polynomial evaluated at i . For the definition and properties of these
peolynomials, see the appendix. We have proved:

LEMMA 2.1. Let ¥ be an injective character on the additive group of Q ,

the residue class ring modulo q , and let xeX be a fixed word of weight
i . Then

E x(<x, z>) = Kk(i) S
zeX
lz|=k

Now let C be a nonempty code in X , let M denote the cardinality

of C , and let (Ai)2=0 be its distance distribution. Then

n
(1) Mo AK(@E = ] 1 I x(<x-y, z>) =
i=0 i=0 X,yeC zeX
dH(x,y)=i IZ|=k

YooY xtex, )2 20.
zeX xeC
lzl=k

We define the dual distance distribution of the code
defined by

C as the sequence

n
(Bk)k=0
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n
2 -
(2) B, E AK (1) .

Remark that BO =M . In (1) we proved:

n
THEOREM 2.1. Let (Bk) k=0 be the dual distance distribution of a nonempty

code. Then B = 0 forany ke {0, 1, ..., n} .

From this we derive the linear programming bound:

THEOREM 2.2. Let g, n,de N, gz 2, d>1 . Let ALP(n' d) be the

maximum value of B under the conditions

0
B
o=t
Aiéo for ie {0, 1, ..., n} ,
ni =0 for ie {1, 2, ..., da-1} ,

B. 20 for ke {0,1, ..., n} ,
where Bk has been defined in (2) . Then A(n, d) - ALp{n, d)

ALP(n, d) is called the linear programming bound or L.P.-bound for
A(n, d)
Tt is sometimes easier to switch over to the dual problem: any solution
of the latter furnishes an upper bound for A{n, d)
n n
THEQOREM 2.3. Let q,n,dem,qzz,dzl.rﬁt[u) and (B,)

k k=0 i'i=0
be two sequences of real numbers so that

n

B = kzo 0, K (1)

GO#O '

aka 0 .for: ki€ (05 1 swaw OF 5
Bi <0 for i e {0, a1, ..., n}

Then A(n, d) = BO/CLO .

n n . i
denote respectively the distance dis-
PROOF. Let {Ai)i=0 and (Bk)k=0 p Yy

tribution and the dual distance distribution of an [n, dl-code. Then

n T n

n
o.B. < wB = 3 ) ek (1A = ] BA < B
0% kzo i Tl g thIRy = L) TR
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Hence
M= B0 < BOAO/aO = BO/ao * ]

REMARK. If Q is a field and C is a linear code, then formula (1) still
holds if we take for X any non-trivial character on the additive group
of Q . But now erc x(<x, z>) is easily computed: it equals M if =z
is in the dual code ¢ » and 0 otherwise. Hence

) 3,
M ALK (1) = M
i=0 % zect ’

lz|=k
so

n
B iy :
A =N igﬁ ALK (1),

where (A;)E=O is the weight distribution of ¢t . Moving to generating

power series, we find (cf. the appendix) the famous MacWilliams identity:

THEOREM 2.4. Let C be a linear code, WC its weight enumerator, and W
e I

i
c
the weight enumerator of the dual code. Then

W ox, y) = q_kw (x+(g-1)y, x-y)
al c

Finally we indicate how one can derive the linear Programming bound
for error correcting codes from the general theory of association schemes
as developed in Chapter 3. To do S0, we define for each k ¢ {0, 1

the real square matrix Jk of order qn by

¢ mmmm T

=1
(3) (Jk)x,y =q K,

where i = dH(x, ¥) . We prove:

THEOREM 2.5. The set of matrices {JO' oy ey Jn} defined above forms

of the Bose-Mesner algebra A of the
Hamming scheme. Besides, the numbers Qk(i)

the basis of minimal idempotents
are given by Qk{i) = Kk(i) -

PROOF. As to the first assertion,

it suffices to show that for all
koo &% 05 4y v of =

(i) J #0,
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(ii) JRJE = dk,KJk .
(iii) I, € A
(i) and (ii) are straightforward consequences of the properties of Krav;uk

polynomials (see the appendix). Let Di be the adjacency matrix of the i-th

association class, so

(Di}x,y =1 if dH(x,Y) = 1.,

0 otherwise.

Then (3) is equivalent with

n
-n 5
Jk =g .I Kk(x)Di »
i=0

This proves (iii). Since the numbers Qk(i) were defined by

n

n —-

g = ) 9D, .
i=0

it follows that Qk(i) =K (i) . O

Combination with Theorem 13 of Chapter 3 yields the linear programming

bound for error correcting codes.
3. BINARY CODES WITH MINIMUM DISTANCE 3 OR 4

The smallest case in which the linear programming bound gives a new
result concerns binary [8, 3]-codes. The known [8, 3]-codes contain at
most 20 codewords. An example consists of (00000000) , (11010000} ,
(10101010) , (11100100) , (11111111) , and all cyclic shifts. (See also
MacWILLIAMS & SLOANE [18], page 57.) In order to find an upper bound for
A(B, 3) , we apply linear programming.

Let C be an optimal [8, 3]-code, and let M be its cardinality.

Then the extended code C is an optimal [9, 4]-code in which all distances

are even. Let (Ai)?=0 be the distance distribution of this code. Then
ho ik
A1=32=A3=AS=AT=A9=0,
A, = o, AG =20, AS 2 0.
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Theorem 2.1 yields

& 6 8
9+ B, -3A - TAg20,
(4) 36 - 434 + EOA8 20,
84~4A4+8A6—28A820,
126 + 6A4 - SAG : 14A8 200
(Note that Bg_k = Bk .)
We have to maximize M = 1 + A4 + As + AB . The (unigue) optimal solu-

tion turns out to be:

A,=18 , A_=4,8, A

4 1.8

hence M < 25 ,

The result was already found by JOHNSON [12]. But we can improve the
bound.

First look at AB = 1.8 in the optimal solution. This means that on
average, each codeword has 1.8 codewords at distance 8 from itself. But
of course, a codeword can never have more than one mate at distance 8 !

Hence we can add the extra inequality AB -3 T
Solving this new L.P.-problem, we find the optimal solution

A4 =14 , A =5

proving that M < 21 .,

There still remains a gap of 1 . But suppose that M = 21 , hence odd.
In (1) we proved, in case q=2

n
MY Ak = § [T (022
i=0 lKk zeK xeC
|z |=k

For codes with odd cardinality, the inner sum cannot vanish. Hence we can
improve Theorem 2.1 in this case.

n
THEOREM 3.1. Let (Bk}k=0 be the dual distance distribution of a binary

code with odd cardinality. Then B. > M"lcﬁ) for any k e {0, 1

% ¢ wwary MY e
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In our special case this means that we may multiply all constant terms
in (4) by 20/21 . But it is also obvious that AB < 20/21
. The solution of the

: since there
can only be ten pairs of codewords at distance 8

L.P.-problem now becomes:

20 2 1 20
= —_, 14 r = e— _— = —
T Be =31-53+ Bg=37+
20 1
s0 Msl+§~i-.20?~f21.

This proves M # 21 , so M < 20 , which shows:
THEOREM 3.2.
a(8, 3) = a(9, 4) = 20 .

This upper bound affects the upper bounds for [10, 4]-, [11, 4]- and

[12, 4]-codes. We must have:

AC 9, 3)

A(10, 4) = 40
A(10, 3) = A(11, 4) = 80
A(11, 3) = A(12, 4) < 160 ,

since shortening a code that violates one of these bounds would yield a

code violating the preceding bound.

It is possible however, by some ad hoc arguments combined with a com-
puter search, to prove that no [11, 4]-code with 80 codewords exists (cf.
BEST [3]). Hence:

A(10, 3) = A(11, 4) = 79 ,

A(11, 3) A(12, 4) < 158 .

n

As to the lower bounds, JULIN (cf. [13]) found a [12, 4]}-code with
144 codewords. Shortening this code gives an [11, 4]-code with 72 words.
Shortening again in an appropriate way, one finds a [10, 4]-code with 38
codewords, which had been found earlier by GOLAY (cf. [9]). However, the
Julin code of length 12 is far from unique: several non isomorphic [12, 42-
codes with 144 codewords exist. One of these yields, after shortening it
appropriately, a [10, 4]-code with as many as 40 codewords (cf. BEST [3]).

Combining these results, we have:
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THEOREM 3.3.

A( 9, 3) = A(10, 4)

i
b
o
-

72 = A(10, 3) = A(1l, 4) = 79 ,

144 = A(11, 3) A(12, 4) = 158 .

Presumably, the Julin codes are optimal, i.e. A(11, 4) = 72 and
A(12, 4) = 144 . But proving this seems very difficult (or time-consuming) .
The optimal [10, 4]-code mentioned can be represented as the union

of ten affine squares in I‘w which are related to each other by cyclic

2 r

shifts. One of the squares consists of the following four words.
(Ltot10000001),
{(t100101100) ,
(00o1010111),
(0111111010).

It is invariant under complementation followed by "reading backwards".
A cyclic shift over five places transforms a square into a parallel
one. Hence the code can also be described as the union of five affine cubes,

which are obtained from each other by shifting cyclically.

The upper bounds derived above can partly be generalized to arbitrary
codes with d =3 or 4 =4 (cf. BEST & BROUWER [4] and ROOS & De VROEDT
[23]). The L.P.-bound vields in the binary case for n > 3

n-1
A(n-1, 3) = A(n, 4) < 5=—— if n

m

0 (mod 4) ,

A(n-1, 3)

A(n, 4) =

if n

3 (mod 4) ,

A(n-1, 3) = A(n, 4) £ =—— 4if n 2 (med 4) ,

A(n-1, 3) = A(n, 4) =< If =n 1 (mod 4) .

in

The first bound is exactly the Hamming bound. The other three also
follow from the Johnson bound. However, in the last case we can do better,
since in the optimal program for the Problem with 4 = 3 r A 5 turns out

n—-

to be greater than one, Adding the inequality A -2 + A 1 =1 , one can
n—

still solve the problem explicitly, and one finds.
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n-1

2
A(n-1, 3) = < — i =
(n ) A(n, 4) = o if n=1 (md4) , n=>5

If this bound is odd, we apply Theorem 3.1. In the same way as in the
special case n = 9 we find:

n-2

Aln-1, 3) = A(n-1, 4) s 2 |25 .

From this last inequality, and A(n, d) < 2A(n-1, d) follows:

THEOREM 3.4.

n-4[n/47+a p4lns41-7
[n/4]

A(n-1, 3) = A(n, 4) < 2 ] if mzs,

We conclude this section with some families of good binary codes with
d=3 or d4=4, thus establishing lower bounds for A(n, 3) and A(n, 4).
The best known codes with minimum distance 3 or 4 are doubtless
the (extended) Hamming codes. The binary Hamming code is linear with length

n=2"-1 and dimension n - m - 1 . This shows

n-1
A(n-1, 3) = A(n, 4) = Zn if n=2" for some me W

Shortening this code one, two, or three times, we find

n-1

2 . m
A(n-1, 3) = A(n, 4) = =T if n=2" -1,
n-1
Alned, 3) = Alny 4) B o Af now 35 -2
r r = n+2 r
n-1
Alnsd; 3) = Afh; d) 22— 1f ned® a3
4 ' T n+3 !

respectively.

Combining this with Theorem 3.4, we find:

THEOREM 3.5. The zero, one, two, and three times shortened binary Hamming

codes are all optimal, i.e.,

Atht, 37 = A, 4y w2 e P lagae®, me w;

mz 3.
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The following, very plausible, conjecture is due to Van TILBORG (cf.
[27D:

m .
CONJECTURE. If the binary Hamming code of length n = 2 - 1 1is shortened

to at least 3/4 of its length, then it remains optimal, i.e.

-m-1 F 3 .m m
Atn=1, 3) = aln, 4) = 27" ¢ T8 e s &,

The conjecture cannot be sharpened, since we will give a construction

of a family of codes with length n = %.Zm , minimum distance 4 , and
with -:-.2[1_"1_1 codewords. The construction is due to SLOANE & WHITEHEAD

tafi :[250).

For m =4 , we have the [12, 4]-Julin code with 144 words mentioned
ahove.

For m =5 , we construct a [24, 4]-code with 9.215 codewords as
follows. To each word x of the [12, 4]-Julin code we add some word ¥
of even weight and length 12 , and concatenate this sum with the word g
The collection of all such words (x+y, y) forms a code with length 24 ,
distance 4 (as is easily checked), and 144--211 = 9-215 codewords.

We can apply the same construction to this newly found code. In this

way we find a family of codes with length n = %.Zm , Wminimum distance
4 , and cardinality %'211—::1-1 . This proves:

THEOREM 3.6.

A(n-1, 3) = A(n, 4) = %.2n—m-1 if n < %.zm

In exactly the same way, starting from the [10, 4]-code with 40

codewords, we find a family of codes with length n = i. i , minimum dis-
5 _n-m-1

tance 4 , and cardinality 7" 2 . Hence
THEOREM 3.7.

Aln-1, 3) = A, 4) 2 2.7 4 5 oo

@|

With the results of this section, all entries for d = 4 in table 1

have been explained, except for the upper bounds corresponding to n = 23

or n = 24 , where the Johnson bound beats the L.P.-bound.
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4. OTHER APPLICATIONS OF THE LINEAR PROGRAMMING BOUND

In this section we list some applications of the L.P.-bound for binary

codes with d > 4 which are worth mentioning.

1. The [12, 5]-Nadler code is optimal. It is a non-linear code with
32 codewords (cf. NADLER [20]). For a description of the code, see Van LINT
[16] or MacWILLIAMS & SLOANE [19], Chapter 2. The bound A(13, 6) < 32 fol-

lows by linear programming with the extra inequality hm + 43\12 < 4 (check!).
In GOETHALS [10] it has been proved that the extended Nadler code is unique,

while exactly two nonisomorphic optimal [12, 5]-codes exist.

2. The [20, 7]-triply shortened Golay code is optimal. Whether the
four, five, and six times shortened Golay codes are optimal is yet unknown.
(Conjecture: the first two are optimal, but there exists a [17, 7]-code with

72 codewords.)

n d=4 d =26 d=28 d=10 4 =12
5 1 1 1 1
6 2 1 1 1
. 2 1 1 1
8 16 2 2 1 1
9 20 4 2 1 1
10 40 6 2 2 1
11 72 - 79 12 2 2 1
12 144 - 158 24 4 2 2
13 256 32 4 2 2
14 512 64 8 2 2
15 1024 128 16 4 2
16 2048 256 32 4 2
17 2560 - 3276 256 - 340 36 - 37 6 2
18 5120 - 6552 512 - 680 64 - 74 10 4
19 10240 - 13104 1024 - 1288 128 - 144 20 4
20 20480 - 26208 2048 - 2372 256 - 279 40 6
21 36864 - 43690 2560 - 4096 512 40 - 54 8
22 73728 - 87380 4096 - 6942 1024 48 - 89 12
23 147456 - 173784 8192 - 13774 2048 64 - 150 24
24 294912 - 344636 16384 - 24106 4096 128 - 280 48

Table 1. Lower and upper bounds for A(n, d) for n <25, gq=2.
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3. 36 = a(l6, 7) = A(17, B) £ 37 . The lower bound follows from the
existence of a conference matrix code (cf. MacWILLIAMS & SLOANE [18], Chap—
ter 2, Section 5). The upper bound attained by the L.P.-bound with some extra
inequalities is 38 . However the fact that this number is not divisible by
four enables us in this case to lower the bound by cne. For details see BEST
et al. [15]. MacWILLIAMS & SLOANE [18] conjectured: A(16, 7) = A(17, 8) = 36 .
This is a special case of Elspas' conjecture, which states that A(n, d4) is

always even, except when it is one.

4. How good can codes be asymptotically? This means, what is, for some

fixed & , the maximum rate of an [n, 6nl-code for large n ? We define:

a(6) = lim sup max [Ri R 1is the rate of an [n, énl-code} =
n-e
i 12 A
= lim sup B log &2(n, dn) .
-+

Obviously, a (§) is a number between 0 and 1 . The best known classic-—
al bounds are:

THEQOFEM 4.1.

1= Hy(8) <a(® <1 -H(501 - V(1-26))) for 0 <68 <X

a(d) =0 for: ki< 6= 1 .
Here H2 is the binary entropy funcvion, defined by
2 2
Hy(x) = - x "log x - (1-x) “log (1-x) for x e (0, %] ,

(]

H,(0) =0 .

The lower bound is due to GILBERT [7], the upper bound to ELIAS (a2 24
[24]).

McELIECE, RODEMICH, RUMSEY & WELCH (cf. [20] or [19], Chapter 17,

Section 7) succeeded in deriving from the L.P.-bound a new upper bound
for a(8)

THEOREM 4.2,

a(8) < Hy(h - /(8(1-8))) for 0 < 6§ < _



OPTIMAL CODES 133

For not too small values of & , this bound is better than the Elias

bound. By applying the L.P.-bound in the Johnson scheme, the same authors
were even able to find (in the same paper) an upper bound which beats the
Elias bound uniformly. It is also an improvement of their own bound men-
tioned in Theorem 4.2,

The proofs are too technical to be treated here.

5. CLASSICAL BOUNDS

In this section we list two classical bounds, and show how they can be

derived from the L.P.-bound. The original proofs can be found in PLOTKIN
[21] and HAMMING [11].

THEOREM 5.1. (Plotkin bound)

d " (g-1)n

L L Ag=ain

A(n; d) = e (q—i)n IF a-= q

PROOF. Let C be an [n, dl-code and (&, )" ana (8 )" be its distance
ikt il i“i=0 k k=0

distribution and dual distance distribution. By Theorem 2.1 we have:

n n
0s<B = _): K, (1), = _{ ({g-1)n - qi)a; =
i=0 i=0
n n
= (@-1n+ ] ((@-1)n - qi)a; € (g-1)n + ((@-Dn -aqd) } A =
i=d i=d

= (g-1)n + ((g-1)n - qd) (By-1) .

Hence
—(g-n =—399 _____ if gd-(g¢-DUn>0. 0O
B, < ah= faiie + 1 = aas if a (gq-1)n

REMARK. By using Theorem 3.1 instead of Theorem 2.1, one shows that for

binary codes the bound may be lowered by 1 if its integral part is odd.

THEOREM 5.2. (Hamming bound)

f ol £
A(n, &) sq / } (‘j‘J(q—nJ ;

j=0

where 4 = 2t+1 .

PROOF. Define the numbers a ul, g by

o’ n
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2
@, = Lt(k) for ke {0, 1, ..., n} ,

where Lt is the Lloyd polynomial defined in the appendix. Then obviously

@ 20 for each k ¢ {0, 1 ot .

Next define the numbers BO' Blf wiaiy Bn by

n
By = 3 @ K (1) for i e {051y wasy BE
k=0
Then
n n n n n n
L BK G = ) oo ] K (KO = ) aa’s o =qdo .
i=0 m=0 =0 m=0

Since o is a polynomial of degree 2t in k , and Ki{k) is a polynomial

of degree i in k , it follows that Si =0 if i > 2t . Furthermore,

n n
k.n
B = ) ok (0) = § (g-1) () § K (K., (k) =
0 0 K% k=0 kK 3,5'=0 3 3
t n t :
= 1 3 :q~1)"(;‘)x.(kn<j.(k1 =" 18 i Den?-
3,3'=0 k=0 ’ jirt=0
: = . %
=q" I D! =g (0 .
=0
Now we apply Theorem 2.3 and find:
n
BO B q Lt(O) B qn ) qn
A(n, d)S?- 3 _L(O)_ - D
0 1,0 t 3

L n
Y Mig-n
il 3

J
6. LLOYD'S THEOREM

The last sections of this chapter are devoted to the existence of per-
fect codes. The basic tools in this study are the sphere packing condition
mentioned in Section 1 and the theorem of Lloyd. This was first proved for
linear codes by LLOYD, later generalized independently by DELSARTE and
LENSTRA to general codes (cf. [17], [6], and [14]).

In the proof we need the following inequality, first discovered by

MacWILLIAMS for linear codes, later generalized by DELSARTE to general codes
(cf. [6] or [18], page 60).

THEOREM 6.1. (MacWilliams inequality) Let C be an [n, dl-code with

d £ 2n+2 and with distance distribution {Bk)2=0 . Then |{x| B, # 0} = %a .
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PROOF. Suppose that |{k| B, # 0}| < 44 . Then a non-zero polynomial Yy of
degree less than %d exists so that +vy(k) = 0 if Bk #0 .

Define
2
o = vk for k£ {0, 1; coup n}
and
n
By = kEO oK (1) for ie {0, 1, ..., n}.

Then, as in the proof of Theorem 5.2, we find

n
1§0 ByK, (k) = q"o
so Bi=0 for iz 4.
If (Ai);;o denotes the distance distribution of C , we have
n n n n
G kZO By = kgo % LZO AR = i-—I-D BiPy = BoPp =

1]

% E‘ X n 2
(0) = (a=1) " yilk) ™ .
Kl % k=0 *

Hence vy(k) =0 for k e {0, 1, ..., n} . Hence ¥y vanishes identically.

This contradiction proves our theorem. O

THEOREM 6.2. (Lloyd's theorem) Let C be a t-perfect code of length n ,
n 2 t . Then the Lloyd polynomial Lt has t different zeros in
{1y 2y wvvs m) =

PROOF. Since C is perfect, the upper bound in Theorem 5.2 is tight. That
means that the bound in Theorem 2.3 must be tight, so

Hence = 0! For ¥ eill, 2, vesr AF &

uksk
By Theorem 6.1, there are at least t+1 walues of k for which
Bk # 0 . Therefore there must be at least t wvalues of k for which

a =0 . Since a, = Lt(k)2 , L must have at least t different zeros

k k
in f1; 2y seegente O

t
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7. PERFECT CODES

Several t-perfect codes € of length n

over an alphabet with g
elements are known:

1) t=0, |c|=q" : trivial codes.

2) t=1, g is a prime power, n = 9&-—__—11 i el =™ i e.g. the

Hamming codes;

3) t=2,'q=3, n= 11, |C|=36:theternaryGolaycode;
4) t=3, g=2, n=23, |c| = 3% , the binary Golay code;
5) g=2, n=2t+1, !C| = 2 : binary repetition codes;
6) t2n, |c| =1 : degenerate codes.
If q is a prime power, it has been proved that the above list is

exhaustive (cf. Van LINT [15] and TIETAVAINEN [26]) :

THEOREM 7.1. (Perfect code theorem) The only perfect codes over an alphabet
with q elements, with q a prime power, are the codes listed above.

However, there are several nonlinear codes with the same parameters as the
Hamming codes if g=2, r > 4 »and if g=23, r =3

For non prime powers, much less is known: For t =1 or + = 2 » the

sphere packing condition and Lloyd's theorem are not sufficient to prove
the non-existence of such codes. Only in some special cases,
proofs are known, e.g.:

non-existence

t

]

I
N

Q
I

=6, n=7: Block and Hall, cf. [10].

t

[
-
~

g=6, n=19 : Roos, Ppersonal communication;
t = 2 , some special values of q : REUVERS, cf. [22].

On the contrary, for t =3, t=4, or £ =5 , the non-existence

of unknown t-perfect codes has been shown (cE. REUVERS [22]). It has also
been proved, that for any fixed t = 3
can exist (cf. BANNAI [1]). This has been improved recently to (cf. BEST
[2D:

THECOREM 7.2.

only finitely many perfect codes correcting at least three errors exist.

Since the full proof is very long and technical, we shall confine

» only finitely many t-perfect codes

Except for the degenerate codes and the binary repetition codes,
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ourselves to a very rough sketch of the proof.
Suppose a t-perfect code of length n + 1

with g > 2 symbols. Then L(n+1)
+1
LM vy = k™

fact that the product of the zeros is integral one can deduce that

exists over an alphabet
has t different integral zeros. Since

(v=1) , Kt has t different integral zeros too. From the

t must
be much smaller than n : t < 2 logn .

First assume that t is odd. By applying the recurrence relation for

v
Kravcuk pelynomials, one can show that K_ must have a zero v

+ 0 very close
to gél-.n s to be precise:

. [su_n_&i t,sr_I_n] :

0 q q q

It turns out, that the polynomial Kt is almost antisymmetric with

respect to this zero. From the difference equation for Kravguk polynomials

we find estimates for the two neighbouring zeros vy and Y4 - As expect-
ed, we find that M= Mg and Vg TIV.y rare almost equal. The estimates
can be executed so accurately, that 0 < (vo = v_l) - (vl - vol <1 for t
large enough. But obviously, this contradicts the fact that Vor Yy and
v—l are simultaneously integral.

In the case of t being even, we find that Kt is almost symmetric

. -]
with respect to some v_ very close to “—.n . If v, and v, are the

0 b 2
two smallest zeros larger than Vg and v_i and v_, are the two largest
zeros smaller than Vg ¢ one can prove that 0 < 1v_1 - v_2] -~ |v2 = v1| <1

for t large enough. This again contradicts the integrality of the zeros.
These contradictions prove that no t-perfect codes can exist for t

large enocugh. Combination with Bannai's theorem yields Theorem 7.2.
v
APPENDIX. Some properties of Kravcuk polynomials.

v ;
Let g, n and k be natural numbers. Then the Kravcuk polynomial

Kﬁn) or Kk is defined by

{n) x v, n=v 3j k-3
- - -1 -1 .
(1) K (V) = K (v) g (P Gy) D7 (a1
3=0
where
v, _ v(v=1)...(v=3+1)

J-
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Kk is a polynomial of degree k . Some properties are:

(3)

(4}

(5)

Ko(v) =1

Kl(v) = (g-1)n - qv .
k n

Kk(O) = (g-1) (k)

2 n
iEO K (1)K, (£) = q S g

Orthogonality relation:

(6)

n .
L @D DK (DK = a, () (a-1¥ .
=0 '

Recurrence relation:

(7)

(1)K, (V) = (k+(g-1) (n=k)=qv) K (v) + (q*l)(n-k+1)Kk_1(v) =0 .

Difference equation:

(8)

(q~1)(n—v)Kk(v+1) - {v+(q—1)(n—v}-qk)Kk(v) + ka(v~1) =0 .

(n)

The Lloyd polynomial Lk or L is defined by

(9)

k

(n) X
Lo ) =1 (v) = jZO xj (v) .

Obviously I..k is a polynomial of degree k . The following identity

holds:

(10)

(n) (n-1)
L. (v) = Kk (v=1) .

The properties can easily be derived by means of generating power
series (cf. e.g. [10], Chapter 5, Sectici 7).
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SPHERE-PACKINGS, CODES, LATTICES AND THETA-FUNCTIONS

J.H. VAN LINT

INTRODUCTION

During the year 1977-1978 the Combinatorial Theory Seminar Eindhoven
discussed several connections between the topics mentioned in the title of
this chapter. We shall now give a brief survey of the ideas, concepts, and
theorems which were treated. Obviously much will have to be skipoed and our
proofs will generally be sketchy. The reader who decides to become inter-
ested in this subject can find several excellent treatments in the litera-
ture. Our main sources are C.A. ROGERS, Packing and Covering [4] for the
classical theory of sphere-packings, T.M. APOSTOL, Modular Functions and
Dirichlet Series [1] for the theory of modular forms, N.J.A. SLOANE, Binary
Codes, Lattices, and Sphere-packings [6]. For a short treatment of modular
forms, lattices and gquadratic forms we also refer the reader to J.P. SERRE,

A Course in Arithmetic [5].
1. SPHERE-PACKING

i n
In the following K denotes a sphere in IR . The volume of a subset A

: % n
of ®' is denoted by u(a). If (Ei)ie is a sequence of points in IR we

™
; n
denote the set of translates {E—i +K|i e N} of K by K. If no point of IR
is an interior point of more than one of these translated spheres we call K
n ;
a sphere—packing. Let C:s be the cube {x ¢ TR |-‘:s < Xy <4%s, 1 £ i £ n}.

For a set A we define s(B) := min{s|a c CS}.

DEFINITIONS 1.1.

-1
p (K,c) :=u(c)) ) U (K+a,)
* s s :i.:K-l@_incS;!{d +
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1

p (K,c) ==nq(c )~ ) p(K+a, ),

=8 S {ik+a, cC -
i B s

p+(K) = lim sup p+(K,C5},

S

p_(K) := lim inf p_(K,C_).
= s 5

D+(K) and p_(K) are called the upper density and lower density of K.

THEOREM 1.2. p+(K) = 1.

. 0

n n
PROOF. Choose b such that K ¢ Cb. Then p+(K,CS) < (s+2b) /s

n
We are interested in the packing density i\n = A(K) of spheres in IR

which is defined to be the supremum of p+(KJ over all sphere-packings K.

Clearly An depends only on n and not on the radius of K. If e_,... 8 is a

=1
. n
basis for IR" we call the set A := Ze  ® Ze,® ... @ Ze a lattice in R

and the vectors g a basis for A.

The matrix M with the vectors g as columns is called a generator ma-

trix for the lattice. The determinant of A is defined to be

det A = |det M|,

If in (1.1) we make the restriction that the sequence (a ¥ ]Nconsists of

the points of some lattice then the corresponding latt;ae nack.mgr density

is denoted by a (K). If we allow the set fa ]J.. € N} to be a union of a

finite number of translates of a lattice we obtain in the same way ﬂ (X},
the periodic packing densi ty.

THEOREM 1,3, ﬂL(K) < QP(K) £ A(K).

PROOF. Trivial. [J

The definitions and theorems given above can immediately be generalized

to other sets than the sphere X (e.g. ellipsoids). Let T be a nonsingular af-
fine transformation of R" . Let A be the lattice (sz)" ana let
{a, +25s---,2.} be a set of points. We consider a sphere

-packing K :=
= {Kta +b.[1 < i <N,
-7l

j € N} where pj runs through the lattice A. We also
consider TK.
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THEOREM 1.4. p (TK) = p_(TK) = p_(K) = p_(K) = Np(K) /u(c,) .

PROOF .

(i) W.l.o.g. we may assume that each K+§._i has a point in C .
s

(ii) 7K is obtained by translating TK over all T{giﬂgj} = TR}~
(iii) Let G, := C where s, > 2s5(TC_) + 2s(TK), G. :=
=5 s1 1 ™ 9ATE) s 8y 3= G oty

= C i j
3 $1-2s (TC4) 25 (TK) * For each p € G3 there is a j such that
P € T(Cs+gjl < G2' Number the vectors Ej in such a way that

143

-1-11 ,32, - "P-M correspond to points P € G3 as described above. Then we
have
(a) Mu(TC) > u(G,) = (s,-2s(TC_) - 2s(TK))".

Clearly all the T(K+§3§.+Ej} , 1 =1 =<HN, 1= 3j <M are contained in G,_.

Therefore
(b) o_(TK,G,) = NMy (TK) /1 (Gy) .
From (a) and (b) we find

(e) p_(TK,G,) 2 e 1e: SN (1 -2

s {‘I‘Cs) +s (TK) \n
U{TCS) :

. sl

1

Observe that u(TK)/!.l(TCs)= u(K}/u(Cs) and let s, + =, Then (c) implies

1

p_(TK) = Np (K) /p(c).

(iv) In the same way we have p+ (TK) = Np(x)/u (CSI and then the theorem

follows from the fact that we may take T to be the identity mapping. [J

THEOREM 1.5. If K is a sphere-packing corresponding to the lattice A then
p (K) =p_(K) = u(K)/det A.

n
PROOF. Let T be the transformation which maps Z onto A. In Thecrem 1.4

replace K by T 'K and take s = 1. [J

. n
THEOREM 1.6. Let T be a nonsingular affine transformation of R . We have

A(TK) = &P{K) = A(K), ﬂL(TK‘.‘_ = ﬂL(K) .
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PROOF. The second part is trivial. For the first part we only have to show
that ap(x) = A(K) and apply Theorem 1.4. For every € > 0 there is a system
KE of translates of K such that p+(KE) > (1-e)A(K). Choose s so large that
{s/(s+2s(K))} >(1-g) and p,(K,C) > (1-e) p (K). The sets of K_ which

where s' := s+2s(K). Let

have a point in Cs are completely contained in Cs'

1
corresponding periodic packing K' has

. n
these sets be a +K,...,EN+K and let gj run through the lattice (s'Z2Z ) . The

p+(K') =p (K) = (1*5)36(1().

The theorem now follows from Theorem 1.3. []

We now wish to establish a bound for an due to C.A. ROGERS (cf. [3]).

(T e . i
Consider a sequence of points a,.a Bgrees in R with finite covering radius

and mutual distances = 2 (the covering radius equals, by definition, inf
(ReR | min, dfa,,x) SR for all x ¢ ®"}). With each point a of this se-
quence we associate a Voronoi-polyhedron Il ( a) consisting of the points x
such that d(a,x) = mini d('a—i +X) . Subsequently each polyhedron is dissected
in the following canonical way. Components will be simplices 2021-..5:11 where
So T &s &) is the point closest to a on some (n-1)-dimensional face of

T(a) and all other C, are on this same face, <, is the point closest to a

on some (n-2)-dimensional face of the previous face, etc.. Clearly the

angle between ¢, - - b i, i.e. if
g t n.oy goand_j c (atgi) is not acute if j > i, i.e. if we

take _c_{J as origin we have <c ,gi> = <Ei ,_c_i>. We now need a lemma known as
Blichfeldt's inequality (cf. [4]).

LEMMA 1.7. If 2,25, =eer2 4 all have distance d to 0 and mutual distances

at least 2 then d > (uzi)'!

k+1
PROOF. 2k (k+1) £ 3 <q;-a.,2,-a.> = (k+1) J <a,a >-<Ea Za >
—— __1 ’_j. r
s (ken2a?, [ 1si<iskel 3 =1 i=1 %
CC;I]:OLLARY If x is on an (n~k)-dimensional face of N(a) then d(x,a) =
[y »o "
k+1

This corellary and our cbservation above concerning <c, ,c.> establish
_i ._.,j
the following lemma.

LEMMA 1 8 For each simplex ¢

08485 - (50 = 0) in the dissection of a
Voronoi-polyhedron we have
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DEFINITION 1.9. Consider a regular simplex § in R with side 2 and the
n+l spheres of radius 1 centered at the vertices of the simplex. Let S0 be
the intersection of S with the union of the spheres. We define

o, = u{SO}/u(S).

Let us look at such a simplex S, say with vertices (15}0,0,...,0),
(O,“EZO;---;01:---,(0,0,...,0,/53 where these n+l points are in the hyper-
plane defined by Z?:i X, = Y2 in HJHJ . We divide § into n! congruent sim-
plices as follows. Start with the centroid of S, next take the centroid of

an (n-1)-face, the centroid of cne of its (n-2)-faces, etc.,...,vertex. A

A A

typical subsimplex G has vertices g9 = ‘i+1' a0 e 0,0,...,0), (n-4i

coordinates 0), (0 < i € n). We then have

21 - .
(a) <gi—vgo,gj—go> = o if i< 5

and furthermore if B is a sphere of radius 1 centered at 9, then
(b) u(BnG) /u(G) = o -

THEOREM 1.10. A < o
e e n n

PROOF. Suppose A(K) > O." We assume K has radius 1. It follows from Theorem
1.6 that we can find an s and a corresponding periodic packing K of spheres
n -

K+5i+13j (bj € (sZ) , 1 £1i £ N) such that p+(K) >0 ., i.e. Nu(K}/quS) >0 .
The system of points 2, + Ej (1 €£i < N,j e N) has covering radius R < svn.
Consider the corresponding Voronoi-polyhedra and their canonical dissection

into simplices. This is a periodic dissection of Bgi. Let T,,T "“'TM be

142
representatives of the different classes of simplices mod (sZ fﬂ One easily

sees that

M
pie) = ¥ ow(r),
s =1 k
11T
Nu(K) = p([kK+a, +b.. n T ).
k=1 i=13=1 g ¥

However, each simplex of a Voronoi-polyhedron meets only the sphere centered

at its own "Eo—vertex“. So somewhere we must have one of these simplices,
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say V, and a sphere B such that p(Bnv)/u(v) > g - As before let
0=c¢ 1CyrenesC be the vertices of V. Consider the linear transformation L
Pt _'O = J'__n =

i - , wh h . e the
which maps .\131+...+1ngn into g+ Ii=1 ?li (g; go) where the _gq_ ar '
points introduced above. Then L(V) = G and L(B) is an ellipsoid E. If x is
i - <x,x> £ 1., F = L(x) we find, using (a) and
in B then x Zi=1 Ri < and <x,x or ¥ X
Lemma 1.8

| t~18

Y-gyr¥9y> = £ ,\izj <%-g;0,_gj-go>

1 4=1

n n
- Ak, <c,,c.> = <x,x> < 1.
1£1 j£1 3 ==

Therefore E is inside the sphere Bl with center 9 and radius 1. Hence

s < L(B0V) _ p(Eng) _ M(GNB,)
n u(v) u(G) u(G)

= Un’
a contradiction. Our assumption A(K) > o was false. []

COROLLARY. 4, = w/(2¥3) = 0.9069.

PROOF . IR2 can be dissected into congruent equilateral triangles. [J

This is the only case where .’.‘.n is known. Usually one studies the center

density 6 =4 /V where V, is the volume of a sphere of radius 1 in r"
i.e. V.. & n/ /I‘ (‘m+1) If only lattice packings are considered then the

densest packings are known for n < 8. Connected with the sphere-packing

problem there is also the problem of touching spheres. The contact number

T is the greatest number of non-overlapping spheres of radius 1 in IR that

can touch another sphere of radius 1. Clearly Ty = 6. The number T is known

for n £ 9. In the following we study lattice packings only.

2. MODULAR FUNCTIONS AND MODULAR FORMS

In the next section we shall introduce the theta-function of a lattice.

As a preparation we treat part of the classical theory of modular forms in
this section.

Let the complex numbers ml,w2 be a ba.s:Ls for the lattice 2 in €. Other

bases are obtained by transformations ( "J' = (

cd m J, where a,b,c,d are
integers with ad-bec =

1. A meromorph:.c function £ wh:.c:h is doubly periodic,
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i.e, VZSCV;EQ[sz+w) = £(z)], is called an elliptic function. If such a
function has no pele in a period parallelogram (the parallelogram spanned
by a basis pair wl,mz) then f is bounded and therefore constant. By con-
sidering 1/f we see that a non-constant elliptic function has zeros. We as—
sume that there are no zeros or poles on the boundary of the period paral-
lelogram (otherwise we translate it slightly) and we refer to such a region
C as a cell. By the double periodicity we have acf(z)dz =0, i.e. if £ is
not constant then f has a pole of order 2 2 or at least two poles in C. In
the same way contour integration of £'/f shows that the number of zeros
(counting multiplicities) in a cell equals the number of poles. This number
is called the order of £.

It is easily established that zweg\{o}mha is absolutely convergent iff

a > 2.
DEFINITION 2.1. Given 2 we define the Eisenstein series of order n by

G := I w " {n = 3).

T wea\{o}
-0 O -0
Let a>2 and R>0. If |z| > R and Im| z 2R then [z«m[ <27 |l and therefore

-a
Ewsﬂ,|m[22R(z_m} is absolutely and uniformly convergent on {z e €||z| < R}.
LEMMA 2.2. Emeﬂ (z—{.u.)_3 is an elliptic function of order 3.

PROOF. We have already seen that the sum of the series is meromorphic with
a pole of order 3 in 0. The double periodicity follows from the absolute
convergence of the series and from the invariance of I under translation

by elements of Q. [
DEFINITION 2.3. The Weierstrasz §-function is defined by

—t . 23y

1
plz) 1= —
¥
z- wea\ {0} (z—w)2 M
Clearly % is an even function with a pole of order 2 at each point of Q. Since
?'(z) = =2 Ewsﬂ (z—w)_3 we see from Lemma 2.2 that for w € £ the function
plztw)=p(z) is constant. Taking z = -hw we find that the constant is 0, i.e.
§ is an elliptic function of order 2.

THEOREM 2.4. For 0 < |z| < min{|wl|u ¢ 2\{0}} we have
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is called the modular group T(1). We write rq) = SLz(E) and observe that

T(1) = SL_ (% )/{#I}. The transformations of F(1) can be represented by ma-
trices {cd)'

THEOREM 2.10. [ (1) is generated by the transformations

TT :=1T + 1, St = =1/7.

éi), s = (f_é). It is sufficient to consider

d- If c > 1 let

PROOF. Consider (ig), T = (
¢ 2 0. If ¢ = 0 we are finished. If ¢ = 1 then (:3) = TaST
d

[}

cg+xr with 0 < r < c. Then

—-aqg+b -a

ab, ~q. _
(cd)T ol r -c

]
and the proof follows by induction. [J

Observe that 52 = (ST)3 = I.

DEFINITION 2.11. An open subset R of H is called a fundamental region for

the subgroup G of T'(1) if no two distinct points of R belong to the same

orbit and every orbit has at least one point in R.

It is not difficult to show that {t ¢ B | [1] > 1, -4%< Re T <k} is a
fundamental region for G By repeated applications of S and T we find

other fundamental regions as in the figqure below.

DEFINITION 2.12. A function £ is called a modular function if

(i) £ is meromorphic on H,

(12) VAef(l) VTSI! f(ar) = £(0)],

(iii) £ has a Fourier expansion of the form
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£(r) = §  am &2™PT (¢ ¢ m).

n=-m

By Theorems 2.8 and 2.9 J is a modular function. When counting zeros and
poles in the fundamental region we make the following conventions. The

oxder of a zero or pole at p is divided by 3, the order of a zero or pole

at i is divided by 2, the order at i= is the order of the zero or pole at

z = 0 where z = ezﬂit. Only one point from every orbit is counted (e.g. only

the left half of the boundary is counted).

THEOREM 2.13. If f is a modular function, not identically 0, then in a

fundamental region (with part of the boundary) the number of zeros equals
the number of poles.

PROOF. We integrafe f'/f over the contour in the figure below. First assume
there are no zeros or poles on the boundary.

R —

(5)

ki

0} (&3]
m

Since f is a modular function the contributions of (1) and (4) cancel as

do those of (2) and (3). If we take (5) sufficiently high and substitute
z = e2HiT we find a contribution by the zero or pole at i® in accordance
with our convention. The modifications by obvious detours for zeros and
poles on the boundary are straightforward. The angle of 60° at p and p + 1

accounts for the division by 3, etc. [

We shall now generalize (2.12). We use the following notation. If
_ ,ab _ , . -k _,at+b
A = (cd) e T'(l) we write f[kA for the function with wvalue (cT+d) f{c1+d)
in T.

DEFINITION 2.14. An entire modular form of weight k is a function £ which
satisfies:
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(i) f is analytic in H,
(ii) f]k;\ = f for all A ¢ T(1),

o
(iii) f has an expansion f(t1) = Z:=0 c(n)e AR

Extensions of the definition are possible in sewveral ways. One can drop the
word "entire" by replacing "analytic" in (i) by "meromorphic" and making
(iii) less restrictive. One can restrict A to a subgroup of I'(1). Finally
one can replace (ii) by frkA = v(A)f where v(A) depends on A only. We shall
need all these generalizations later on but in this brief exposition we re-
strict ourselves to (2.14). If in (iii) we have c(0) = 0 then the form is
called a cusp form.

Exactly the same argument that proved Theorem 2.8 shows that A(T) is a
modular form of weight 12 and by Theorem 2.9 it is a cusp form. In the same
way we see that the Eisenstein series introduced in (2.1), i.e.

G, (1) := ) @) * (k2 2)

2k (m,n)#(0,0)

is a modular form of weight 2k.

THEOREM 2.15. If we count the number of zeros of a non-constant entire modular
form in the fundamental region using the conventions of Theorem 2.13 we find

k : : ;
?E-zeros, or in an obvious notation

k = 12N + 6N(i) + 4N(p) + 12N(i«).

PROOF. The proof is the same as for Theorem 2.13. However, now (2) and (3)
do not cancel but yield Tk:? (which is easily checked). [

COROLLARY. Every nonconstant entire modular form has even weight k 2 4. If
it is a cusp form then k 2 12.

THEOREM 2.16. Let M be the space of all entire modular forms of weight k.

Then Mk is a linear space of dimension
28 if k =2 (mod 12
l12J i = (mo ).e
L)+ 11fk 2 (moa 12)
|7z] '

and £ € Mk can be uniquely expressed as
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[x/12]
f = a_ G
r=0 o
k-12r#2

(where G0 = 1),

r
k-12r .

PROOE.

(i) For k < 12 this follows from Theorem 2.15. E.g. if f has weight 4 then
f/G4 is entire and it has weight 0, i.e. it is a constant.

(ii) Let f be an entire modular form of weight k 2 12. Since Gk(im) # 0 we
can define ¢ := f(im)/Gk[im). Then f - cG_ is a cusp form in M, and
it can therefore be written as A+h where h is an entire modular form
of weight k-12. The proof follows by induction. Uniqueness is obvious

because the functions Gkﬁlzrar are clearly linearly independent. [I

COROLLARY. If k = 0 (mod 4) then an entire modular form of weight k is
a polynomial in G4 and A.

PROOF. The proof is the same as above using powers of G4 of the right weight
and the fact that G4(im) #0. 0O

We now briefly look at one subgroup of [(1) which is important for our
purposes. This is the group F& generated by T2 and S. It consists of trans-
formations described by (23) where cd = ab = 0 (mod 2). This group has in-
dex 3 in the modular group. The regions 1,T, and TS in the figure following
Definition 2.11 form a fundamental region for Fe. The behaviour of a func-
tion near T = 1 is described by transforming this point to i with an ele-

ment of T (1). Theorem 2.15 has an analogue in this case which is
k = 4N + 4N(i=) + 4N(1) + 2N(i).

In this case one can also define Eisenstein series, etc. For details we
refer to the literature.

© 2
DEFINITION 2.17. 8(t) := ) o' '@

n=-o
Clearly 6(t+2) = 6(T). In Theorem 3.4 we shall show that 8(-1/1) =
= (-iT!ﬁe(T}. Therefore 88 is an entire modular form of weight 4 for Te
(with a zero at T = 1),
It is this function which is responsible for the name theta-functions.

We introduce a number of similar functions which will be used again later.
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wit -
DEFINITION 2.18. For T € H and g := e we define

L) 2
8,(t) =2 P S
m=0
o m2
0,(T) = 8(1) =1 +2 R G
m=1
@ mz
B, (1) : =1+ 2 E ()"
4
m=1

There exist many relations between these functions. We mention two which

are cbvious.

LEMMA 2.19.
(i) 93(41) + 92(4‘r) = 83(13,
(ii) 03(41) - 32(41‘) = 64(1‘).

3. CODES, LATTICES, AND THETA-FUNCTIONS

Let A be a lattice in IRn with basis 21,3 ,...,gn and let M be the

matrix with columns e, , i.e. A = {Mx | x € Z"}. The minimum squared dis-

tance of A is given by
a(h) = min{<x-y,x-y> | x € A, y € A, x # y}.

If we take the points of A as centers of spheres of radius p = %d(A) we
obtain a sphere-packing K:’\ with center censity 6(Kﬂ.) = p"/det A. The dual
lattice A"' is defined by

L

A = {x e mnl Vze!\[<i'x> € z 1}.

It is easily seen that (M—l}t is a generator matrix for A'i', i.e.
1 ~1
A = {(m }t__ ue z" }. A lattice with A = A" is called self-dual.

Our first theorem on lattices is a special case of the Poisson sum—
mation formula:

n
LEMMA 3.1. Let £ : R =+ € be a function such that

-]
) £l 4 1Ko ¥ity s o oo K4 )
k. .k reeok =—w
172 n
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is absolutely uniformly convergent on compact subsets of ]Rrl . Then we have

e2111<u,a> [ e—21n.<3,y_> f(l}dY1 . ‘dyn
n

= - R

for a € ®" .
PROOF. We refer to standard text books on analysis. []

THEQREM 3.2. Let f satisfy the conditions of Lemma 3.1. Define
_ =2mi<u,v>
Flv) = Ine f(g)dulduz_..dun.
R

If A is a lattice in TR then we have

-1 -
I £(x) = (Get A) T B
£ i Ak
xel vel
PROOF. In L 3.1 we replace f(k) by f(Mk) and we take a = 0. Then we find
¥ Ee) = F L E0Mk) = . I b b £My)dy,...dy_.
xel kez vezi n

-1
In the integral we substitute Y =M u and we observe that

vy =yv=uteht = <(M"1)t£f5>- a

The squared length of a vector x =Mk in A is given by

<x,x> = KMMk = k"Ak

where A = MtM is a positive definite symmetric matrix.
DEFINITION 3.3. The theta-function of A is given by

i t
E)A(T) = I e‘.frl'f(ﬂ,_}i) _ Z neﬂiT£ A]-_(_
xel keZ

Since 55&5 > ¢ <k,k> for some ¢ > 0, the series defines a function which is

analytic in H .

THEOREM 3.4. 0, ,(t) = det A (—ir)‘n/zeﬁtﬂ/ﬂ.
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TiT<x, X>
= g T

PROOF. The function f£(x) satisfies the conditions of Lemma 3.1.

Therefore we have by Theorem 3.2

=
=
Alig
o
I
Al
v

0, (1) = (@et NT § e T

Aa, .l
A u u
vell

[ury

A4

The value of the integral is not changed by the translation u + u + If

we then take T = it the integral becomes

2 2
=Tt (. L) /2
J e du,...du_ =t %
@ 1 n
R
So by analytic continuation we have

i
it P
T

0,(T) = (det T ¥ e .
L
vel

The required result follows by replacing A by Al. 0

The special case n =1, A = Z vyields the functional eguation for 8(T)
announced in Section 2.

The properties of lattices and their theta-functions described in the
first part of this section have guite a lot of analogy with properties of
linear codes. We assume that the reader is familiar with the terminclogy of
coding theory. In the homogenecus weight enumerator Wc(x,y) of a code for

length n over Fﬁ,

n
WC(X:Y) = Z KFHW(E)Yw(EJ = Z aixn iYic
ueC i=0
where w(u) := weight of u, the coefficient Ai counts the number of code

words of weight i. In Definition 2.3 we have

e, tt) = [ ST E Af'e"irz.
xel

where A£ is the number of lattice points x with Ig_l2

= £. The well-known
theorem of MacWilliams for Wc(x,y) and the weight enumerator of the dual

code, i.e.

-k
Werlxey) =g W (xt(g-1Dy,x-y),
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if ¢ is an (n,k)-code over Ea » has as its analogue the functional equation

(3.4). The relation between WC and wcL is extremely useful if C is self-dual,
L

i.e. C =C". In the same way we see that if a lattice is self-dual then
(3.4) makes it possible to apply the powerful theory of modular forms treat-
ed in Section 2. For this we have only to observe that Bh(1+2} = GA(T) and

hence (3.4) shows that for n = 0 (mod 8) the function Bhtr) for a self-dual

lattice is a modular form of weight % for FG. We shall return to this later.

We now describe two constructions which produce sphere-packings start-
ing from binary codes. Following Sloane we call them construction A and B.
Construction A starts with an arbitrary binary code C of length n and mini-
mum distance d. We assume 0 € C. The set A(C) in r" consists of all x ¢ r"

such that ZEE (mod 2) € C. The points of A(C) are the centers of a sphere-
packing with spheres of radius

27372 g1/2 if a

1A
-y

e if 4

v
-9

By definition this sphere-packing is periodic. We only have to consider a

cube of side 25 to find the center density:

5, = le| - B - 272,

THEOREM 3.5. The set A(C) described in construction A is a lattice iff C

is a linear code. If C is an (n,k)-code then det A(C) = 2%n—k and further-
more
AchH = A .
PROOF .
(i) The first assertion follows from the fact that the mapping ¢: Zn-+:F;
defined by ¢ (k) := k (mod 2) is a homomorphism. €
=% I B ;

(ii) If C has generator matrix (IB) then the matrix 2 5(0 21) is a genera-

tor matrix for the lattice A(C). Here B is of size k by n-k. This makes
the second assertion obvious. The final assertion follows directly from

the definition. [
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The following theorem shows that the theta-function of A(C) is closely re-

lated to the weight enumerator of C.

THEOREM 3.6. If C is linear with weight enumerator wctx,y) then the theta-
function of the lattice A(C) is given by

0 (1) = wc(83{2‘r},82(2-r)).

A(C)
PROOF. By (3.3) we have

lT..j_‘l <£+2£'9_+2.k_>

2
0 (v) = ¥ J e
A(C) cec xez"

In the inner sum we assume that € has w coordinates 1. Then this sum equals
= W
Tit AT

2 wit 2
© 2D (2k) © =L (2k+1)
2 2
( P o ) (z . ) .

k== =—co
The result immediately follows from (2.18) and the definition of Wc(x;Y). n

EXAMPLE 3.7. Let C be the code of length n consisting of all words of even
weight. For this code the minimum distance 4 is 2. So construction A yvields
a sphere-packing with spheres of radius %. The center density is 2_&n_1.
Since W, (x,y) = B{(x+y)n + (x—y)n} we find

o= n o n
Bmc)m = ‘:{(83(2T)+92(2ﬂ) + (8,(21) 82(21)) }.

3
By Lemma 2.19 this equals &{33(81)n + eqtﬁT)n}. We remark that it is known

that for n = 3,4 or 5 this is the densest possible lattice packing in r" .

EXAMPLE 3.8. Consider construction A for the extended Hamming code HG of
length 8. This yields a lattice A(HB). By Theorem 3.4 and Theorem 3.5 the
corresponding theta-function is an entire modular form of weight 4 for

re. However, every x in A(HB) satisfies <x,x> = 0 (mod 2), so GA(HQ} is in
fact an entire modular form of weight 4 for T'(1). By Theorem 2.16 and

Theorem 2.9 we therefore have

[--1
_ 2mikt
OMHB’ =1+240 ] oyke :

k=1

As an exercise we recommend that the reader show by hand that A(HBJ has
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240 03(5) = 240*126 vectors X with <x,x> = 10. This will make it clear that
the theory of modular functions is a powerful tool in studying the distribu-
tion of vectors in lattices. We remark that it is known that A(HS) yields

the densest lattice packing in IRB.

We now turn to construction B. In this case we start with an (n,k)-code
C with minimum distance 8 for which all weights are = 0 (mod 4). The lattice
L(C) consists of all x ¢ R" such that 2H£ = ¢c + 2k where c € C and k ¢ z"
such that Zki = 0 (mod 2). The corresponding sphere-packing has spheres of
radius 1.

EXAMPLE 3.9. Start with the extended Golay code of length 24 and apply con-
struction B. This yields a lattice. If we shift this lattice over the vector
2_3/2(1,1,...,1,—3} then the union of the two sets is again a lattice. This

is the famous Leech lattice h24.

We return to the analogy between certain parts of coding theory and

the theory of lattices. For this purpose we consider so-called type II codes,
i.e. self-dual codes C for which all weights are = 0 (mod 4), and type II
lattices, i.e. self-dual lattices A for which <x,x> is even for every x € A.
A famous theorem of A.M. GLEASON (cf. [2]) states that the weight enumerator
Wc(x,y) of a type IT code is a polynomial in £ and n, where £ is the weight
enumerator of the extended Hamming code H8 and n is the weight enumerator of
the extended Golay code G24. We can now understand this theorem in the fol-
lowing way. Let C be a type II code. By construction A we find a lattice

A(C) which by Theorem 3.5 is self-dual. By the construction we see that

A(C) is of type II. Therefore the corresponding theta-function eA{C) satis-—

fies

0 T =0
A(C) |n,,2 AC)

n/2e

(-1) AlC) !

0 ’ s =
A(C) n/2
where we have used Theorem 3.4.
By the same method as we used in Theorem 2.15 one shows that such a
modular form is O unless n is a multiple of 8. In the latter case 0

A(C)
% for T(1). By the corollary to Theorem

is
an entire modular form of weight

2.16 it follows that BA(C) is a polynomial in G4 and A. In Example 3.8 we
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already saw that in this way HB and construction A produced G,. In the same

way the Golay code 624 leads to a polynomial in G4 and A, Theathecrem for
WC(x,y) is now proved by returning to weight enumerators via Theorem 3.6.
The original proof of Gleason's theorem did not use the method described
above.

There are many other analogies between codes and lattices. Not every-
thing is completely understood. As was stated in the introduction this
short survey will hopefully interest the reader into looking at the ex-
tensive literature on this subject and also at some of the still open
problems.
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SPHERE-PACKINGS IN EUCLIDEAN SPACE

A. BOS

0. PRELIMINARIES

0.1. Introduction

The purpose of this paper is to give the best known sphere-packings in
Euclidean space. Here "best" means "with highest density" or "with highest
contact number". Comparisons are made with the best upper bounds known up to
now. A distinction is made between n < 24 dimensions and higher dimensions.
Also asymptotic bounds are considered.

Most of the material presented here is from LEECH & SLOANE [8] and
COXETER [4], although some new facts are mentioned, mainly due to new codes
found in the meantime. Background can be found in ROGERS [14], sroane [17],
and van LINT [10].

0.2. Some notation and conventions

- E" is the n-dimensional, real, Euclidean space, B":= {x ¢ EM|Ixl < 1}

is the n-dimensional unit ball, and SV:= {x ¢ E'|Ixl = 1} is the (n-1)-dimen-
sional unit sphere. We mostly use the word sphere for both B™ ana Sn.

- Bll codes used are binary. An (n,M,d)-code is a code with M code-words
of length n and minimum Hamming distance d. If M is written as Zk then the
code is meant to be a linear code. Ad is the number of code-words with weight
d. If it is not clear which code is meant, we write d(C) respectively M(C)
for 4 respectively M of a code C.

= A sphere-packing is a set of spheres all with the same radius, any two
of which have no interior point in common. If the centers of the spheres
form an abelian group under componentwise addition, the sphere-packing is
called a lattice packing. Given a sphere-packing the following numbers are

important:

d, the minimum squared distance between two centers;
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p:=kV/d, the radius of the spheres;

T, the kissing number, being the maximum number of spheres touching
one sphere;

4, the density, being the fraction of En which lies inside the spheres
and

§ := Eéq the center density, where Jn is the n-dimensional volume of

a unitnsphere.

- All logarithms which are used are to the base 2.

~ If f and g are real functions then "f(x) ~ g(x) as x - a" means

s SLX)
x+a g(x) n, n n . n +n de . - B
= We use (al 18y -e a0 ) for any point in E r With ny coor

3 123

123 3
dinates equal to a,, n, coordinates equal to a etc. E.g. (E '-E? = (_535

1 2 2’
4 " " 3
Beware of the difference between a (7,2 ,3)-code and a point (?,24,3) in E~-.

0.3. Spheres, simplices and Schl&fli's Ffunction

The "volume" of B" is equal to
n

“2
(1) J_ =

n° _n
rﬁs+1)

and the "area" of 5" is equal to

n
2
(2) . <

Tz

A sphere with radius R has volume Ran and area Rn_lKn.
A (Euclidean) simplex is the convex hull of a set of n+l1 independent

points in En. A spherical simplex is the convex hull of a set of n points

in Sn, no n-1 of which lie in a hypersphere Sn‘i. A simplex is called regular

if all sides are equal. The sides of a spherical simplex are also called

angular sides and are given in radians. The volume of a Euclidean regular

simplex with side 2 equals

n
22/l
n!

(3) o
Given a regular spherical simplex S, there is a close relation between the
angular side 2¢, and the vertex angle or dihedral angle 2q of S. Let the

. . n-
vertices of S have coordinates (c+a,a 1). Then 2¢ is determined by
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2ac+na2
cos 2¢=—-§-—-.

2
c +2ac+na

The angle 20, between two bounding hyperplanes {c+(n—1)a}x1~a{x2+..,+xn) =0

and a(x1+...+xn_1)—{c+(n-l)a}xn = 0, is determined by

2ac+na’

cos 2a =

c +(n—1)(2ac+na2)

So the relation between « and ¢ is
(4) sec 2a = sec 2¢ + n-2.

In 1855 Schlafli studied polytopes in E" and s”. He defined a function
Fn in terms of which a regular spherical simplex of dihedral angle 2a has

surface

hl K_.F_{a).
n n

(5) 2
In the appendix more information about Schlafli's functions is gathered.

1. BOUNDS FOR DENSITIES OF SPHERE-PACKINGS

1.1. Rogers' upper bound in low dimensions

At this moment, the Rogers bound is the best upper bound for the density

ﬂn of a sphere-packing in real Euclidean n-space. It states that
(6) A =g
n

(ef. [12], [101), where o, is the part of the volume of a regular simplex

A n .
S in E with side 2, which is covered by the n+l1 spheres of radius 1 with
centers in the vertices of S. The intersection of S with the surface of one

of its vertex spheres is a reqular spherical simplex of angular side %

From (4) it is clear that the dihedral angle of S is equal to arcsec n.
According to the definition of Schlédfli's function, the area of the inter-
section of S with a vertex sphere equals

nl

fsy +F .
o K, n(& arcsec n)

[ 3]

So we get
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Re
T2 n 2 m
(7) g =2 (n!)"¥n+! ——— F (Larcsec n).
n r+1)
2
Hence the upper bound for the center density is
3
g T2, .2
(8) ¢! 1= —2=2 (ni) "vn+l F_(%arcsec n).
n I n
2

Since only El and E  can be filled with regular simplices, the Rogers bound
can be reached only in these cases. So n > 3 implies ﬂn < o, and it seems a

safe conjecture that there will be better upper bounds in higher dimensions.

1.2. Dense packings in low dimensions

First we give two constructions producing sphere-packings from binary
codes (cf. [17]).

CONSTRUCTION A: Given an (n,M,d)-code C with d < 4. Define ¢1: Zn*GF(2)n
-1
1
and A(C) is a lattice packing iff C is linear. The parameters of A(C) are:

by ¢1(x) := xmod 2 for all x € Zn. Then A(C) := ¢, (C) is a sphere-packing,

d =4d(c);
26"& if d(c) < 4
(9) T-= {
2n+163‘-\4 if d(c) = 4;
(10) & = 270y,

CONSTRUCTICON B: Let be given an (n,M,d)-code C with 4 < g < 8. Identify
n
GF(2) " with {0,1}" ¢ Z™. Define ¢, as above and ¢,: Z" > Gr(2)” by

*=¢, (x)
$y(x) == ¢1 [_5_) for all x ¢ z".

So we get ¢1 (x) + 2 $2(x) x (mod 4). Now

B(C) := ¢I1(C) n ¢;1(c).

Remark that this construction is the same as Construction B in [17] and [10]
if C is a code with all weights divisible by 4. The packing B(C) is a lattice

packing iff C is a linear code. We observe that the parameters of B(C) are:
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da = 4(c);
I2d‘lﬂd if d(c) < 8

(11) T =
12n(n—1}+128f—\8 if d(c) = 8;

= 2-n-lpny,

s
|

(12)

Most of the densest known lower dimensional packings are obtained by
applying Construction A or B to optimal codes. The remainder, except one,
one can get by "packing by stacking layers", which will be treated later on.
All the densest lattice packings can be obtained as intersections of the
Leech lattice A24 with carefully chosen hyperplanes so these are called An
(1 =n =< 24).
In Table 1 the densest packings obtained by Construction A or B are
gathered, together with the codes used.

Table 1

Densest sphere-packings obtained by Construction A or B

. . Lattice (L) or
Dimension Name Construction Code Nonlattice (N}
1 Ay A (1,2%,1)
3 Ay a (3,22,2) L
4 Ay a (4,23,2) L
4 A, A (4,2%,4) L
5 Ag A (5,24,2) L
7 A a (7,23,4) L
8 Ag a (8,24,4) L
8 Ag B (8,21,8) T
9 Ay B (9,21,8) L
10 P10c a (10,40,4) N
11 Plla A (11,72,4) N
15 Bie B (15,24,8) i
16 Aig B (16,25,8) 5
19 Ao B (19,27,8) L
20 Ay B (20,28,8) L
21 Asq B (21,29,8) L
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P10c is a new packing from the new (10,40,4) Best-code (cf. [11,[21). It

turns out that sometimes the same packing arises from different codes.

Given a lattice packing A in En, let n' be the maximum distance of a
point in En to (the set of centers of) A and let a' be a point at a distance
of at least n' from every center of A. A layer of spheres in En+1 is a set
of spheres whose centers lie in a hyperplane H and whose intersection with
that hyperplane is A. Let a be a point in En‘{-:L such that the projection of
@ onto H is a' and the distance from a to every center of the layer is at
least 2p, where p is the radius of the sphere, Suppose x to be a center of
the layer such that d(a,x) = 2p. Then we get a packing in En+1 by translating
the layer over integral multiples of a-x. The center density of the new pack-

ing is

p 8N &(A)

i N P ey N P

. n
If we find n' 2 2p, then the packing A can be doubled in E (see example 3
below) .

nl
(13) 8 with n=T.

Let b be another point in Em-1 with d(x,b) = 2p, such that the projec-
tion b' of b onto H has d(x,b') = n' and all centers y of the layer have
d(y,b') 2 n', and such that a and b are on different sides of H with d(a,b) =2p.
If b+(a-x) is not a center of the layer then we get a nonlattice packing -
even a nonperiodic one (c¢f. [10]) - by shifting the layer over nonnegative
integral multiples of a-x and of b-x.

We can make the packing more irregular by choosing, if possible, other
points for a and b. This procedure is called: packing by stacking layers.

EXAMPLE 1. Alhas as set of centers Z, thus p = n' = % and 6({\1) = 2_1. Only

the lattice packing A2 can be obtained by translating Al in E‘.2 over integral
multiples of (%,%/3). We find 8(h,) = R

X 2
EXAMPLE 2, Az has n = 5:3— = 3 \/5. By different choices for adjacent layers

we obtain lattice (1‘13) or nonlattice packings in E3 all with center density
-5/2
§ =2 .

EXAMPLE 3. The famous Leech-lattice can be obtained by applying construction
B to the binary extended Golay code (24,212,8) ¢ getting &!\24 with center

v el

density 2 ". One then observes n' = 2/2 = 2p, son = 2 and thus this packing
)

can be doubled by translating over a vector (- %-,%—3) .
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Table 2

Densest sphere-packings obtained by stackinag lavers

Dimension Name Used A

n a' Lattice (L) or
Nonlattice (N)
1
2 ity
A, A, 1 (2; L
5 1
6 Ag Ag = ) L
112
13 P13a A(12,144,4) V3 . N
% 8 13 113 t
14 Ayg A5 = A(13,27,4) % G )
6 10
17 #ye fse V3 L el L
18 AlB A16 (see below) - L
/29 1 3
22 Ay Koy == (221—2> L
10 /15 1 3
23 K5 B(22,2°",8) - (72;- 5) £
12 1 3
24 Ay B(24,277,8) 2 z =3 L

In Table 2 the densest packings, obtained by stacking layers, are
gathered, together with the original packing they arise from and the
point a' at maximum distance from the centers.

AIB is obtained in a somewhat more general way. Given the (16,25,8)-
RM-code C, there are two code-words a' and b' of the form (16,010) with
dH(a',C) = dH(b',C) = dH(a‘,b') = 6 and the code generated by C, a' and
b' is a (16,27,6)-0&:&&. Now A!.B is generated by (0,0,x) for x e 1'\16 = B(C),
(4v2, %6, a') and (-%vZ, %/6, b").

The only one missing, K12 (see Table 3), can be constructed analogously
from the ternary (12,36,6)—Golay code and doubling this packing twice (cf.

[8]), or from complex sphere-packings in c® (cf. [181).

1.3. Asymptotic upper bounds

The density A of a packing in E" is related to the center density & by

%109‘&=;11—~logé—llogn+ilog2ﬂe+o(n) as n + o,

(14) 2 2

Using Daniel's asymptotic formula, ROGERS [14] got an asymptotic expansion

for his bound, namely
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-
Un~§2 £ as n -+ o,
So
(15) Y og . & =%,
n_._mn n

This is equal to the asymptotic bound found by RANKIN [11]. SIDELNIKOV [15]
obtained

(16) lim L 109 A < - 0,5096
e n

which is only slightly better. By sharpening the methods Sidelnikov used,
LEVENSHTEIN [8] proved:

(17) lim = log A_ < - 0,5237
v n

*
which is much better. ) It is beyond the scope of this treatment to say more

about their methods, which are completely different from the one Rogers
used.

1.4. Asymptotic lower bounds

First of all we have to say something about Construction C, which

generalizes Construction A and B.

CONSTRUCTION C. Let, for i = 1,...,k, Ci be an (n,M,d)-code with the proper-
ty that di+1 = r—i—"} and dk < 4. Let ¢1: z"+ GF(2)™ be as in Construction A
and define ¢j: Z"+ GF(2)®, j = 2 inductively by

j=1 =
= Zy e 00 "
% (x) :=¢( - } for all x e 22 .
3 1 231

Note that ¢1(x) + 2¢2(x)+ v +2j_1¢j(x) = x (mod Zj) for j = 1,...,k. Now

*)
Very recently this is considerably improved by similar methods (cf. [21])
into

(17a) 1gm & log 4 = -0,5990.
fikeo 11 n



SPHERE-PACKINGS IN EUCLIDEAN SPACE 169

X -1
Ct{ci}l,...,k) := r_m ¢, (cy)-

Stated another way, represent x ¢ z" by its coordinate array, which
is formed by setting out in columns the walues of the coordinates in the
binary scale. For negative integers complementary notation is used. Then
X € C({Ci}) iff the i-th row of x's coordinate array is in Ci' The distance

between two centers is at least vdl and the center density is given by

n

o k
(18) § g 2 BN 5 o

1 i=1 i

2r
m .‘T_EO (T) =2
Using 2r-th order (2,2 , 2™ %)~ RM-codes C .y (r= 0.1....,%) of
length n = 2m, with m even we get § = 2—Sn/4nn/4_ Thus
(19) < 1 A~ = 1-lo n as n + o«
n °9 Sy g °9 =

Using BCH-codes instead of RM-codes (cf. [8]) we get

1 i
- ~ - = n as n +
(20) = log an 5 log log '
which is better than (19).

SLOANE [16] used a combination of BCH- and Justesen-codes to obtain
the densest packings that have been, as yet, explicitly constructed; he

found for all n of the form n = m2" where m > 256 is a power of 4:
(21) log an > — 6n + o(n).

He also remarks that from the Hamming bound the density of any packing, ob-
tained by Construction C, is bounded from above by log ﬂnd-—O,??Oz...n+o(n).
In a similar way, using the McEliece-Rodemich-Rumsey-Welch bound (cf£. [23]),
I improved this bound into %—log ﬂn-cﬂ 0,90415 ...+ o(l). Using the Gilbert
bound this density, obtained by Construction C, is bounded from below by
1
= log 6n >= 1,29194... + o(l).

It is worthwhile to note that with methods from the geometry of numbers
one can prove

1

(22) lim = log A_ = -1 (cf. [14]).
n-ce I n

Several authors conjectured that equality holds in (22).



170 11. BOS

2. BOUNDS FOR KISSING NUMBERS OF PACKINGS

2.1. Coxeter's conjectured upper bound

We consider the problem of packing spherical caps on Sn, all of angular

radius ¢, with empty pairwise intersection. That is, consider
Nn{dt) := max{|x| |X c s™; Vx,y € X, x # y:(x,¥) € cos 24},
with (x,y) as the usual inner product in E”. Note that Nn (161'_) is the maximal
kissing number in En.
If we take for X the set of vertices of a k-dimensional regular simplex
(1 £k £n) on Sn, we have 2¢ = m-arcsec k. RANKIN [11] proved that this is
the closest packing of k+1 spherical caps, so we have

(23) N (¢) =1+ | sec(m-2¢) | for m-arcsec n < 2¢ = .

DAVENPORT & HAJOS [5] proved that

(24) N, (¢) =n+1 for -;--C 2¢ < m-arcsec n
and that

i
(25) Nn(zi = 2n.

In the latter case the 2n points are the vertices of the n-dimensional
cross-polytope on s7.
We define the density of a packing of m spherical caps of angular ra-

\'4
dius ¢ to be E%, where V(¢) is the area of such a cap, so

V() =K (sinn_zpdp.
0
According to COXETER [4] it is “"intuitively obvious" that this density
cannot exceed the density of a packing of spherical caps of radius ¢ in a
regular spherical n-simplex of side 2¢. This last density equals EE-;&,
where L is the area of the spherical simplex and ¢ is the sum of the
vertex angles of the simplex expressed as a fraction of the total angle at

a point on s”,

Notice that this bound is the spherical analogue of Rogers' bound in
Euclidean space.
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So
vig) ovi¢)
Nn(¢)' K = z
n
which gives
cKn Fn—l (a)
(26) Nn(¢) = T = 2 ‘“Fn(_c”

where Fm is the m-dimensional Schlafli-function and 2o is the dihedral angle
of the regular spherical simplex. From (5) appears I = 2_nn!Kn.Fn(a) and

c=rh2_{null(n—l):Fn_lta)- Numerical values of this upper bound for ¢ = %
up to 24 dimensions are given in table 3.

Applying the asymptotic formula for Fn(u) (cf. the appendix), we get

n
P
2 2 ¥T cos 2¢ n3/2

esinn_1¢

(27) Nn(¢) s as n + o,

s
Setting ¢ = = we deduce as asymptotic upper bound for the maximal kissing

number (2H(n“l)/; n3/2)/e or
" 1 s
(28) iig-g log Nn(e) < 0,5 as n =+ =,

LEVENSHTEIN [9] obtained the much better bound

i X T *)
(29) lim ;-log hh(g)s 0,4763.

N+

2.2. Lower bounds for kissing numbers

It is not to be expected that the densest packings also have the highest
contact numbers, because the first is a global and the second a local problem
(c£.[17]). Nevertheless, most of the densest known lattice packings provide also
the highest known contact numbers, except in dimensions 9 up to 15, where one
finds nonlattice packings or even local arrangements of spheres, where some

spheres touch more neighbours than in any known lattice packing. In dimension

*)
Later (cf. [21]) improved into

1 m
i S —— =
(29a) %Lm = log Nn(e} < 0,4010
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9 WATSON [20] determined the highest lattice kissing number; this gives the
first example of a nonlattice packing which is best.

The nonlattice packings with highest known kissing numbers are called
P9%a, P10b, Plic, P12a, P13a, Pl14b and P15a, corresponding to their dimen-
sions. They are constructed as follows (cf. [81).

Using the (9,20,4)-code with A, = 18 and the (10,36,4)-code with
A4 =30 in Construction A, nonlattice packings P%9a and P10b are obtained
with t(P9a) = 306 and T(P1Ob) = 500.

The (11,35,4)-constant weight code (cf.[24]) gives Plic with T=582. It
is not yet known in which larger code with minimum distance 4 this constant
weight code can be embedded, although the size of this larger code has to
be less than 72.

33

The (12,144,4)-code with A4 = 51 gives T = B40 in Pl2a. In E we

take Pl2a as the central layer with last coordinate equal to 0, and shift

2,-8
it over integral multiples of (512,1), obtaining Pl13a with density §=372

and kissing number T = 1130.

For Pl4b we arrange the (13,65,4)-constant weight code as centers in
the hyperplane X4 =0. The adjgcent layers have as centers (c,O)—(&13,13¢53,
where c runs through the (13,2 +4)-code, the two outer layers consisting of
£(1,0'2,/3), so t = 1582.

Similarly in 215 we form a local arrangement Pl5a from five partial
layers. The central layer is Pl4a =‘A(14,29,4) with t(P14a) = 1484. Adjacent
layers are obtained by shifting the central one over (~514,i/5) and the
outer layers each have one center t(lz,ojz,fEﬁ . So t(P15a) = 2564.

As far as I know the only asymptotic lower bound for the maximal kissing
number is given by LEECH & SLOANE [8], obtained from applying Construction C
to Reed-Muller codes:

1 1 2
(30) o log T ~ o5 (log n) as n + =,

Table 3 contains the packings with highest known density or greatest

known kissing number, together with Rogers' upper bound for the density and

Coxeter's conjectured upper bound for the kissing number.
contains the upper bounds
& SLOANE

The sixth column
for the kissing numbers recently found by ODLYZKO
[22]. The type of a packing is lattice (L), nonlattice (N) or a

local arrangement of spheres (A). The fourth column is taken from LEECH &

SLOANE [8], since a numerical table of Schlafli-functions does not seem to
exist. Compared with this reference, &§(P10c) = 2_7

new, as is the sixth column.

-5 and T(Pllc) = 582 are
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Table 3.
Best packings and upper bounds up to 24 dimensions
Dimension|Name |Center density Rogers |Kissing| Best known |Coxeter's|Type
& bound ¢! |numbers|upper bound| bound
T for T ([221)

1 A 271 —o.s00 0.500 2 3 i
2 A, 2713745 29 0.289 6 6 6 | L
3 A, 2:2"2 =0.177 | 0.186 12 12 13 | L
4 A, 2 =0.125 0.131 24 25 26 | L
5 A 277/2 _0.088 | 0.100 40 a6 a8 | 1L
6 Ag 2'3.3'£=0.072 0.081 72 82 85 | L
7 A, 2% —0.063 0.070 126 140 146 | L
8 hg 2% =0.063 0.063 240 240 244 | L
9 Ag 2':/2 =0.044 0.060 272 L

P9a | 27 .5 =0.039 306 380 401 | N
10 |ptoc| 277.5 =0.039 | 0.060 372 N

p1ob| 272.3%=0.035 500 595 648 | N
11 |p11a| 27%.3%=0.035 | o0.061 566 N

Plic 582 915 1,035 | &
12 K, 3:2 2=0.03? 0.066 756 L

Pl2a| 27 °.3%=0.035 840 1,416 1,637 | N
13 p13a| 278.3%0.035 0.073 1,130 2,233 2,569 | N
14 Aia 2_4.3$=0.036 0.083 1,422 L

P14b 1,582 3,492 4,003 | &
15 s 2792 _0.044 0.097 2,340 L

P15a 2,564 5,431 6,198 | a
16 Ae 2% =0.063 0.118 4,320 8,313 9,544 | L
17 A, 274 -0.063 | 0.146 | 5,346 12,215 14,628 | L
18 Ay 73 540,072 0.186 7,398 17,877 22,324 | L
19 (A 2'2/2 =0.088 | 0.243 | 10,668| 25,901 33,940 | L
20 Ay 2_5/2 =0.125 0.325 | 17,400 37,974 51,421 | L
21 Ay | 2 =0.177 0.443 | 27,720 56,852 77,664 | L
o Ay, 71 540,289 0.617 | 49,896 86,537 116,965 | L
23 K 271 =0.500 0.878 | 93,150| 128,096 175,696 | L
24 Ay, | 2 =1.000 1.272 |196,560| 196,560 263,285 | L
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Only in 1 and 2 dimensions are the densest packings known and these
appear to be lattice packings. In up to 8 dimensions the densest lattice
packings are known. This is proved in an almost unreadable (cf. [19]) paper
by BLICHFELDT [3]; a more elegant proof would be of great interest.

For an arbitrary packing in E3, according to ROGERS [12], "many mathema-—
ticians believe and all physicists know, that the density cannot exceed n/v18".
FEJES TOTH [6] obtained an upper bound for 53 which is only 2% above 'rr/rfl_g,
with the help of an unproven but highly probable assumption.

ROGERS [14] conjectures that for sufficiently large dimensions, probably
for n = 5 or 7 already, there is a nonlattice packing which is denser than
all lattice packings. Up to now only in 10, 11 and 13 dimensions are non-
lattice packings known, which are denser than the densest known lattice

packings in these dimensions.
APPENDIX

Schlafli-functions

The Rogers bound as well as Coxeter's conjectured bound make use of the
Schl&dfli-functions, so it seems worthwhile to give more information about
these remarkable functions. Most of the material presented here comes from
COXETER [4].

The function Fn is defined in such a way that a regular spherxical
simplex of dihedral angle 2a has area 2 'n! K -F (a). So when a = % , we

1 n
find that F_(3) = —- Also trivial is F (a) + F_(m-a) = 2--, because the two
n'4 n! n n n!
corresponding simplices are complementary.
In Coxeter's words, "one of the most brilliant discoveries made by
Schl&fli" is the recurrence
a
2 f
(31a) Fn(u) =z Fn_2(8(9}1d8 with sec 2B(8) = sec 26-2
harcsec (n-1)

and initial conditions Fy(e) = F,(a) = 1. This implies F,(a) = &%
20 1 L

FB(G) = - 3and Fm_l(‘mrcsac n) = 0.
Apart from these recurrence relations there is another important one

(cf. [7]):

r 5 (-2)
(32a) F (a) = (-1) E el AR O

For n even and B = harcsec n we get F 41 (B} =0 so
n
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1 2 17,
33a) F L S 2l =
(33a n{B) 3 -2 (B 15 Caisg 0 3Y5 e P e

It is more convenient to write fn(sec 2a) for F_{a), so that

£ (x) = F_(harcsec x) (x > n-1). One has £y(x) = EEE%EE.E,
X X
£ (x=2) £ (x=2)
1 n-2 1 -2
(31b) £ Ky =iz f —————dx =f (n) + = J AL ax,
n T Bq xfxz—l 5 L s x#xz-l
(32p) £(x) = £ (%) ~2Ff _(x)+ of _(x)-<Lf _(x)+ (n odd)
" i 3 "n-3 15 'n-5 315 Sy A e '
1 Z 17
33b £ = = - — AR i
( ) n{n) 3 fn~2(n) 15 fn_4(n) + 315 fn_6(n) v--. (n even).

According to ROGERS [13], who applies Daniel's asymptotic formula, when the

number b_1 = sec 20 - n+l is bounded then

_ fimb 1 e /2
(34) Fn(cf-) > m (m} as n + «,
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2

GEOMETRICAL PACKING AND COVERING PROBLEMS

F. GOBEL

INTRODUCTION

In this paper, we consider some packing and covering problems of a geo-
metrical and usually recreational nature. Section ! is on a packing problem.
In Section 2, we consider a generalized type of covering, of the plane, by
rectangles (§ 2.2 and 2.3) or polyominoes (§ 2.4).

Sections 3 and 4 are on tilings, also called partitions, dissections,
and other names. In Section 3 we partition a rectangle. The four subsections
are on fairly distinct ways of doing this. There are brief digressions on
higher dimensions. In Section 4, we consider tilings of the plane, using
polyominoces (§ 4.1) or arbitrary polygons (§ 4.2) as pieces.

The treatment is elementary; proofs are hardly given. The stress is on

defining problem areas and pointing out open problems.
1. PACKING A SQUARE WITH UNIT SQUARES

*
Let S(z) be a square with side z, let n (z) be the maximum number of
2 %
unit squares that can be packed into S(z), and let W(z) = z"-n (z).
ERDOS & GRAHAM [5] have shown

(1) W(z) = O(z?/ll)

(z + =)

by a quite remarkable construction. One of the open problems they mention is
to determine a non-trivial lower bound for W. Such a bound has been found by
ROTH & VAUGHAN [19], who have proved that

Wiz) = c(ﬂz“z]l!,

=100
where lzl is the distance from z to the nearest integer, and where c = 10 )
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Since ¢ is small, the result can be considered as an asymptotic one.

In [19], an unpublished result by Montgemery is mentioned, implying
that the constant 7/11 in (1) can be slightly lowered.

We now consider fixed "small" values of z. Let z*(n] be the side of

the smallest square into which n unit squares may be packed. Then obviously
*
(2) ‘m<z () <[vm].

The exact value of zi|r (n) is known only for n = 2,3,5 and the sgquares
)

of integers* - In some of the remaining cases, the upper bound of (2) has
been improved by suitable packings. (See table 1.) They are not difficult
to reconstruct, except perhaps the packing for n = 19, which is shown in
figure 1. I have not been able to improve on the upper bound in (2) for any
n in a range lr.2 & Kossine '[k+1)2 - 1, although it is obvious from (1) that

such improvement is possible for n sufficiently large.

n upper bound n upper bound

10 3+ 42 2 3,707 37 6+ /2 = 6.707
11 %+ V2 2 3.914 38 "

17 4+ %/2 £ 4,707 39 4 + 2/2 = 6.828
18 2+ 2/2 2 4.828 40 4

19 4+ ~§-’2 = 4.943 50 7 + %2 = 7,707
26 5+ 4/2 2 5,707 51 L

27 5+ 4/2 2 5,707 52 u

28 3+ 2/2 2 5,828 65 5 + -;’—/2 = 8.536

Table 1.

Best known upper bounds for z*(n)

To demonstrate a technique for finding non-trivial lower bounds, we

outline a proof of the following result (which implies z*(SJ =2 + 4/2).

*)
According to A. Schrijver,

= E. BajmSczy of Budapest has shown that
z (7) = 3,
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Figure 1.

A square packed with 19 unit square

PROPOSITION 1. S' := S(2+%/2-¢) cannot be packed with 5 unit squares (e > 0).

OUTLINE OF PROOF. Take an S' and

to the sides and at a distance 1
sufficient to show that any unit

the points A, B, C, D. There are

h III

I

i
1
wjm

Figure 2.

draw four lines in its interior, varallel

- g/3 from the sides (see figure 2). It is

square S(1) in S' covers at least cne of

3 cases.

1)

2)

3)

The centre of S(1) is in region I. Then
an easy calculation in analytic geometry
shows that A is covered.

The centre of S(1) is in II. Suppose

the centre M is closest to A. Then the
distance d(A,M) is < &%, hence A is cov-
ered by S(1).

The centre is in III. Without loss of
generality we assume one vertex of S(1)
on the upper edge of S'. Again, a simple
calculation shows that the length of the
intersection of S(1) and the line at
distance 1 - €/3 from the upper edge has
length > %/2 - ¢/3, hence & or B is

covered. O
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2. GENERALIZED COVERINGS

2.1. Introduction

Let P and Q be polyominoes. Copies of P are placed on the sguare lattice,
such that the sides are on lattice-lines, forming a constellation of P. A
constellation of P is called Q-saturated if any copy of Q placed on the lat—
tice such that its sides are on lattice-lines, has at least one square in
common with some P.

If Q is the l-omino, then a C-saturated constellation of P is just a
covering of the plane with P. This justifies the term "generalized covering".

The cases where P is the l-omino, and Q is one of the pentominoces have
been considered by GOLOMB [10].

We intend to consider other special cases viz. with P = Q. From now on
we use the term "saturated" instead of "Q-saturated". In section 2.2, P is a
rectangular polyomino; in section 2.4, P is an n-omino (2 < n < 5). In sec-—
tion 2.3 we consider a limiting case: a xb rectangles where a and b are real.
In all cases, we are interested in generalized coverings with minimal density.
In order to avoid technical problems concerning the existence of a density,

we restrict our attention to periodic constellations.

2.2. Discrete rectangles

Let P be an a x b rectangle n with a < b. The constellation of figure
3 shows that the minimum density a* (a,b) satisfies

2ab

*
(3) d (a,b) =<
(a+l:\—1)2+(2a—1.}2

On the other hand, a constellation of the type in figure 4 shows that

(4) * 2ab
d-tal) < (2b-1)min{4a-2,a+b-1} *

A proof of (4) can be given as follows. If b > 3a-2, we choose v
and we obtain the upper bound

I
3]
]

a-1,

ab
(2a-1) (2b~-1) -
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L]

Figure 3.

ly

Figure 4.
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If b £ 3a-2, there are two cases: if b-a is odd, we choosey = z = (b-a-1)/2,
and if b-a is even, we choose y = (b-a-2)/2, z = (b-a)/2. In both cases we

obtain the upper bound

2ab
(a+b-1) (2b-1)

Lower bounds for d* can be obtained in several ways. The most successful
method turned out to be the shadow method of Jagers; a detailed exposition
is given in [14], a brief sketch in [9]. We state the following results of

Jagers without proof.

ab

*
ol R PV E S PY P R

if b = 3a-1,

2ab

*
(6 A bl =Ty Garb-9)

for all a £ b.

The lower bound (5) is better than (6) iff b < 3a-1. Combining the upper and
lower bounds, we note that the minimal density d*(a,b) has beenn determined
for a = b and for b = 3a-1. In all other cases, the exact value of <:'t,|r is un-
known. However, there is little doubt that the minimum is achiewved for one
of the types of constellations in figures 3 and 4.

2.3. Continuous rectangles

We replace the square lattice by a Cartesian coordinate system. Instead
of a x b rectangles, we consider a x 1 rectangles with 0 < a € 1. We only
allow positions of the rectangles in which the sides are parallel to the

axes. The limits of the upper and lower bounds found so far are s in order of
appearance:

2
€l a“ (o) = —=— (from (3)),
1420+5a
(8) @ s: foras %
(from (4)),
*
(9) (o) s 2 forotk-%-
* o 1
(10} d (a) 2'-——2- fora =z 3 (from (5)),

1+3a
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2a

*
1 ——
(11) d (a) =z a5 (5

(from (6)),

*
where d (a) is the minimum density in a saturated constellation of a x 1

rectangles. A pictorial summary is given in figure 5. The bracketed numbers

refer to the above inegualities.

=== (7)

£

T
I
|
|
|
1
|
1

3 1/4/5 13 1

A —

Figure 5.
The implicit conjecture at the encd of section 2.2 has a continuous

analogue: the upper bounds for d*(u) given by (7)), (B), (9) determine the

minimum.

2.4. Polyominoes

In this section we consider generalized coverings with n-ominces for

5.

e
1A

Again, good upper bounds for d*(P), the minimum density of a satu-
rated constellation of P's, can be obtained from suitable constellations.
Some of these appear in [9]. A summary of our best results is given in ta-
ble 2. Most of the lower bounds have been obtained by the shadow method.

Note that there are some quite large ratios between upper and lower
bounds.

The order (fifth column) is the number of polyominoes in an elementary
cell or period parallelogram. For a definition of the symbols in the first

column, we refer to [10].
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P lower bound upper bound ratio order
12 2/3 2/3 1 1
Iy 1/2 3/5 1.20 2
Ly 6/11 6/11 1

I, 2/5 8/17 1.18 2
L, 32/77 1/2 1.20 1
0, 4/9 4/9 1 1
Ty 4/9 4/9 1 2
2, 4/9 4/9 1 1
I 1/3 5/13 115 2
Fe 10/27 5/11 1523 2
Lg 20/59 20/47 1.26 4
Ng 20/57 4/9 1.27 4
P 20/47 5/11 1.07 1
Tq 20/57 5/12 1.19 2
Ug 4/11 10/23 1.20 2
Ve 1/3 5/13 1.15 2
W 10/27 10/21 1.29 2
Xg 5/13 5/13 1 1
g 20/57 4/9 1.27 -
25 20/57 5/11 1.30 1 & 3

Table 2.

3. PARTITIONING A RECTANGLE

3.1. Different squares

A rectangle partitioned into different squares is called a perfect
(squared) rectangle. It is called compound if it has a squared subrectangle,
simple otherwise. The number of constituent squares is called the order.

The following short historical account is taken mainly f£rom FEDERICO
[6]. A more easily accessible account can be found in BONDY & MURTY [1].

The first perfect squared rectangle was published in 1925 by Moron;
it is shown in figqure 6. Note that is is simple.
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24 19 22
5 3
11
23 17 25
Figure 6.

The conjecture that no perfect square exists was defeated in 1939 by
Sprague. He constructed a compound square of order 55. The first simple per-
fect square was published in 1940 by Brocks; its order is 55, too. If S is
the smallest possible order of a simple perfect square, then Brooks' result

implies S € 55. The subsequent history is as follows.

1940 Brooks, Smith, Stone, Tutte 529
1950 Brooks S < 38

Willcocks s = 37
1960 Bouwkamp, Duijvestijn, Medema S = 15
1962 Duijvestijn s = 19
1967 Wilson, Federico s < 31

Wilson s = 25
1977 Duijvestiin s 221 [3].

Recently, on March 22, 1978 to be precise, Duijvestijn closed the gap
by discovering a perfect simple square of order 21; for a description we

refer to [4].

3.2, Congruent rectangles

For which P and Q can a P X Q-rectangle be partitioned into r x s-rect-
angles? Obviously, if P is a multiple of r or s, and Q is a multiple of
the other cne, then such a partition is possible. If P = Ar+ps for non-
negative integers A and y, while Q is a multiple of r and s, then again
such a partition is possible. Of course, we may interchange P and Q here.

The following proposition, given by De BRUIJN [2], implies that there

are no other solutions. His terminology is self-explanatory.
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PROPOSITION 2. If the box Al X vwa X An can be filled with bricks .:1\1 X i % an
then at least one of the Ai is a multiple of al, at least one of the Ai is a

multiple of ay: etc.

For a proof we refer to De Bruijn's article. Here we give a proof for n = 2,

which is based on the same principle.

PROOF FOR n = 2. Colour the squares of the box (rectangle) with a1 colours in
a cyclic manner: let the colours be 0,... ,al-l and assign two coordinates
(x,y) to each square of the box (0 < x < Ai—l, 0y S Az-l) , then assign

the colour x + y (mod al.'l to (x,y).

Each small rectangle covers each of the colours a2 times, whatever its posi-
tion. On the other hand, if neither A, nor A

1 2
= A2a1+u2 with 0 < ”i < al’ then the number of occurrences

is a multiple of a;, e.g.

By = Ajagtuge Ay

of the colour a1—1 in the upper-right pl ® u2 rectangle is only max (O,u1+u2—a1
which is less than the average nluz,’al. Hence A1 or Az is divisible by a -
a

In the same way one shows the divisibility by a,.
EXAMPLE. The box 6 X 6 X 6 can not be filled with bricks of dimensions
1 x 2 x 4,

We return to the n-dimensional case to quote another result from [2].

We call a brick a, X L. X a, harmonic if the numbers a -3 can be re-

s i

a L] P L] T 1 L] 1 L] 1 »
arranged to as, +a) such that allaz, a2|a3,...,an_1|an
PROPOSITION 3. If a box Al X oue X An is filled with harmonic bricks

X ... % a [
a, - then there are integers ql""'qn such that qlal""'%an
is a rearrangement of Al,...,A =
n

3.3. Tatami partitions

A partition of a P x Q rectangle into r x g rectangles is called a
Tatami partition if PQ > rs and if each r x s rectangle has the following
property: the extension of each side either contains a side of the P x Q
rectangle or has a point in common with the interior of an r x s rectangle.
An example with P = 5:0=6,r=1, g =2 is given in figure 7.

PROPOSITION 4. For each r and s with r # s, there exist numbers P and Q such

that the P x Q rTectangle has a Tatami partition into r x g rectangles.

s

)’
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Figure 7.

OUTLINE OF PROOF. By a change of units, reduce to a case with (r,s)

= 1.
Enlarge figure 7 to a Tatami partition of 5rs X 6rxrs into rs % 2rs rectangles.

Next each rs % 2rs rectangle is subdivided into r * s rectangle as illustrat-

ed in figure 8 for the case r = 2, s = 3 (from left to right: 1 pile of ver-
tical rectangles, r piles of horizontal, and finally s - 1 piles of vertical
rectangles) .

Figure 8.

It is now an easy matter to verify that a Tatami partition results. 0

The problem reamins to determine, given r and s, which P X Q rectangles
have a Tatami partition. In an unpublished report of 1965, R.L. Graham has

given a complete solution. His result is as follows.

PROPOSITION 5. Let (r,s) = 1 and PQ > rs. Then a P % Q rectangle has a

Tatami partition into r X s rectangles if and only if

1) r divides P or Q; s divides P or Q;

2) both P and Q have at least two representations in the form xr+ys for
positive integers x and Y;

3) (P,Q) # (6,6) when {r,s} = {1,2}.
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In the special case r = 1, WETTERLING [20] has independently chtained
the following explicit result, which has a simple proof.

PROPOSITION 6. The smallest P X Q rectangle which admits a Tatami partition

into | x s rectangles Is the (2s+1) x 3s rectangle.

OUTLINE OF PROQOF. Suppose P X Q has a Tatami partition into 1 x s rectangles.

It is not difficult to show that this implies min (P,Q) = 2s+1. On the other
hand, from proposition 2 we know that P or Q is divisible by s. Hence the
smallest candidate is the (2s+1) x 3s rectangle. To compl ete the proof, it
is sufficient to give a Tatami partition for this case. We refer to figures
7 and 9; the latter gives the construction for s = 4. The generalization to

arbitrary s is obvious. [J

Figure 9.

3.4. Congruent polyvominces

Given a polyomino B, let B(P) be the class of rectangles which can be
partitioned into copies of p. The first question is: "Is B (P) empty?" Second
question: "If not, which rectangles belong to B(p)2"

We start with a simple example. Let p = Ly. It is obvious that 2¥3EB(L3}.
Hence, all rectangles which can be partitioned in
to B(L3) (cf. § 3.2).

is easily verified.

to 2 ¥ 3 rectangles, belong
Does B(L3) contain other elements? ves, 5"953(1.3) , as

Hence, each rectangle which can be partitioned into 2 x 3's and 5 x 9's

bel i i
ongs to B(L3). It is easily shown that B(L3) contains no other rectangles.

So we have a sati ipti
isfactory description of B(LE) » and we might consider 2 x 3
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and 5 % 9 as its prime elements.

KLARNER [16] showed that there are, for each polyomino P, only a finite
number of prime rectangles. When I attempted to generalize his proof to d-
dimensional polyominces, I made an error (cf. [17]), but Klarner succeeded
in finding a correct proof for the d-dimensional case [18].

The complete set P(P) of prime rectangles is known only in a relatively
small number of cases, although for certain polyominoes much partial infor-
mation is available.

since [17] has been written, the following results have been obtained.
HASELGROVE [13] has found a ¥Y_-partition of the 15 x 15 rectangle, thereby

5

solving an old problem, viz. "Does any odd number of Y_'s tile a rectangle?"

5
KLARNER [18] has determined P(Pa) (see figure 10}, it consists of the

4 x 4, 5% 16, 6 % 8, and 7 * 16 rectangles.

Figure 10, PS and YG'
As far as I know, it is still not known whether YG packs any rectangle.
In 3 dimensions, much more can be done. For example, the tetracube Z4
fills boxes of sizes 2 x 3 x 4, 2 x 4 x 4, 2 x 4 x 5, Less obvious examples
are TS which fills 3 x 10 x 10, and F_ which fills 4 x 5 % 10. It is not

5

known whether WS or 25 fills any box.

4. TILING THE PLANE

4.1. Polyominoes

If a polyomino does not tile a rectangle, it may still tile the plane,

as the example 24 shows. In fact, Z 6 tiles a strip of width 2, hence the

4
plane. GOLOMB [11] has considered this phenomenon in more detail. A polyomino
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may tile a rectangle (R), a strip (S), a bent strip (BS), a half-strip (HS),
a quadrant (Q), a half-plane (HP), the plane (P), or "all" shapes in the
empty collection (N). Golomb proves that there is a hierarchy between these

shapes, as shown in figure 11.

Figure 11.

For example, if a polyomino tiles a half-strip, it tiles a bent-strip,
etc. Each polyomino has its place in the hierarchy, in the s=nse that it
tiles the corresponding shape X, but not a shape which is higher in the
hierarchy (i.e. further to the left in figure 11). We say the the polyomino
is characteristic for the shape X. However, only for the starred places in
figure 11, it has been possible to determine characteristic polyominoes.

In a later paper [12], Golomb has determined characteristic sets of
polyominoes for each of the shapes.

GARDNER [8B] reports on an interesting sufficient condition for a
polyomino to the tile plane.

THEOREM. (Conway) Suppose the circumference of the polyomino P can be parti-

tioned into six connected bieces A, B, ¢, D, E, F (possibly empty) with the
properties

1) A and D are congruent,

2) the endpoints of A and D are the vertices of a parallellogram,

3) B, C, E, F have an axis of Symmetry perpendicular to the plane.

It turns out that 101 of them satisfy the criterion, so that only 7 cases

have to be considered Separately. Four of these are non-tilers.
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Figure 12.

It has been shown by GOLOMB [12] that no finite algorithm exists which
decides whether copies from a finite set of polyominoes tile the plane. If
the set contains only one element, the decidability gquestion is open.

But even when a polyomino is known to tile the plane, many questions
can be asked, e.g. "In what ways does it tile the plane?"

In figure 13 we indicate three ways of tiling the plane with copies of
CG: in figure 14 we present a much more complicated tiling with an elementary

cell containing 32 copies of C6'

T_L_! I O I

Figure 13.
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e

Figure 14.
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According to GARDNER [8B], A.W. Bell has discovered 19 types of tilings

with L4.

4.2. Tiling the plane with congruent polygons

It is easily seen that each triangle and each quadrangle, convex or not,
tiles the plane. Curiously, it seems that the guestion as to what types of
tilings are possible with quadrangles, say, has not been considered at all.

With pentagons or polygons of higher orders, it is possible to tile the
plane in special cases only. For the moment, we restrict our attention to
convex n-gons (n = 5).

The case n = 5 has a romantic history. In 1918, five types of pentagons
which tile the plane were discovered by K. Reinhardt. To illustrate, we de-—
scribe "type 2" in Kershner's notation [15]. Let the vertices be called A, B,
C, D, E in cyclic order, and let EAR=a, AB=b, BC=c, CD=d, DE=e. Then a pen-
tagon of type 2 is a pentagon with A+B+D=27w, a=d. In 1968, KERSHNER [15]
published 3 new types. He claimed completeness, but did not give the proof,
for reasons of space. In 1975, GARDNER [BA] wrote about Kershner's results
in the Scientific American, and after a couple of months, he published a
new type [8C], found by R.E. James. An example is shown in figure 15. The
requirements are A=90°, C+D=270°, 2D+E=2C+B=360°, a=b=c+e. It is clear that

the case of the convex pentagons is not closed.

Figure 15.
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For hexagons, the situation is much simpler: there are three types, all
found by Reinhardt. A tiling with congruent convex n-gons is not possible
when n = 7.

We return to not necessarily convex n-gons to quote from FEJES TOTH's
book [7]: "The general tiling problem consists of obtaining a description
of all partitions of the plane into equal (but not necessarily egquivalent)
parts. The difficulty inherent in this problem (brought into prominence by
Hilbert) is illustrated by the very interesting partition due to Voderberg
(1936, 1937)". A figure showing that partition can be found not only in [7],
but also in GARDNER's column [8D]. The latter describes a very simple way
to obtain Voderberg's partition, found by Golomb. He starts with a non-
periodic triangle tiling like the one in figure 16a. He then slides the
"upper half" to the left to obtain figure 16b. Finally, the lateral sides

of the triangles are "crooked" to yield something like Voderberg's 9-gons
(figure 17).

(a) (b)
Figure 16.

Figure 17.
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The tilings of figure 16 are non-periodic. Obviously, the triangle ad-
mits periodic tilings as well. An open guestion is whether any polygon exists,

which tiles the plane non-periodically only.

Figure 18.

According to GARDNER [8D], R. Berger has constructed a set of more than
20,000 cells, copies of which tile the plane non-periocdically only. He also
reports on the present record: Penrose has discovered the set of 2 polygons
shown in figure 18, which tile the plane non-periodically only. The letters
H and T near the wertices are intended as restrictions: two pieces may only
touch at equal letters. The sides have lengths 1 and ¢, where ¢ = M+hV5;
the angles are all multiples of 36°. Gardner mentions several properties of
Penrose's polygons, e.g. in each tiling the ratio of the number of "kites"
to "darts" is ¢. Also, there are uncountably many different tilings. How-
ever, each pair of tilings has arbitrarily large finite areas in common:

For further details, we refer to Gardner's article. No proofs are given
(with the exception of one incomplete proof), but the article is beautifully
illustrated.
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FRACTIONAL PACKING AND COVERING

A. SCHRIJVER

INTRODUCT ION

Let H = (V,E) be a hypergraph (i.e., V is a finite set (of points or
vertices), and £ is a family of subsets of V (called the edges)). Packing
problems ask for the maximum number v(H) of pairwise disjoint edges of H;
trivially, v(H) is never more than the minimum number T(H) of points rep-
resenting each edge, and one may ask: when do we have V(H) = T(H)? In anum-
ber of cases a useful tool to answer this question is the theory of fraction-
al packing and covering.

Usually, in a packing an edge occurs a certain integral number (0 or 1)
of times; we can extend this by allowing each edge to occur a fractional
number of times. We obtain a fractional packing by assigning to each edge
a nonnegative rational number such that, for each point, the sum of the num-
bers given to the edges containing that point, is at most one. So, if only
integers are assigned, we have a (usual) packing. Therefore, V(H) < v*(H),
where v*(H) equals the maximum sum of the assigned numbers in any fraction-
al packing. Similarly, one defines r*(H) to be the minimum sum of rational
numbers assigned to the points such that the sum of the numbers assigned to
the points in any edge is at least one. So T*(H) < 1(H), and it is not dif-

* *
ficult to see that U*(H) < T*(H). In fact we have v (H) = 1T (H) since

(1) v ) = max{lyl |y 20, yu < 1}
and
(2) (1) = min{lx] |x 20, Mx = 1},

where M is the incidence matrix of H (i.e. M is a (0,1)-matrix with rows
and columns indexed by E and V, respectively, the entry in the (E,v)-th posi-

tion being a one iff v € E), |yl and |x| denote the sums of the entries in
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the (appropriately sized) vectors x and Y., respectively, and 1 is an all-one
vector. Since, by the Duality theorem of linear programming, for any matrix A

and vectors b and w
(3) max{ybly = 0, yA € w} = min{wx|x 2 0, ax = b}

(and this also holds if we restrict ourselves to rational A, b, w, x, and y),
we conclude from (1) and (2) that v*(H) = T*(H]. There jis a reasonably good
procedure (the simplex method) to calculate (3), which, by (1) and (2), may
be used to determine u*(H) and 1*(H)-

What can we say about v(H) and T(H) if we know vx(H)? Clearly, v(H) is
equal to the right hand side of (1) if one restricts the range of y to in-
tegral (i.e., integer coordinate) vectors; t(H) can be described similarly.
Therefore, we want methods to determine the left and right hand sides of (3)
when we restrict ourselves to integral y and x (obviously, we lose equality
in (3) in general); the search for those methods is a main goal of the theory
of integer linear programming.

The branch of combinatorics which solves combinatorial problems with
the help of fractional packing and covering and linear programming sometimes
is called polyhedral combinatorics, since polyhedral representations are used
to solve the problems. Chvatal's claim that "combinatorics = number theory +
linear programming" seems to be particularly valid for polyhedral combina-
torics, searching for lattice points in polyhedra. For instance, the right

hand side of (3) asks for the minimum value of wx where x is in the poly-
hedron

(4) P ={x 2 0| ax = b}.

If we know that all the vertices of P have integer coordinates we may deduce
that, in (3), we can restrict ourselves to integral x, without loss of gen-
erality. In general it is useful to have a procedure to derive from (4) a

matrix A' and a vector b' such that the set
(5) P'={x 20| a'x25bp'}

is the convex hull of the integral vectors in P. For from (5) we may conclude
that

(6) min{wx| x 2 0, x integral, Ax = b} = min{wx| x 2 0, A'x 2 b'} =
max{yb'| v = 0, va' < w},
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and then the simplex method is applicable. Indeed Chvatal has given a general
procedure, which is, in a sense, related to Gomory's "cutting plane method"
for solving integer linear programs.

However, in the present paper, to keep the size in hand, we confine
ourselves mainly to finding classes of linear programming problems one or
both sides of which are achieved by integral vectors. That is, specializing
to hypergraphs, we focus our attention on classes of hyperqgraphs for which
v(H) = u*{H) or 1*{5) = t(H). Often these classes turn out to have nice struc-
tural properties. E.g., if we have v = u* for a certain hypergraph and certain
derived hypergraphs, then also 1 = T*, i.e. v=1. 0r, if 1 = T* for certain
hypergraphs, then 1 = r* also for certain other hypergraphs.

Often the content of the results is the assertion that certain polyhe-
dra have integral vertices, or the result consists of the determination of
the faces of the convex hull of a given set of vertices.

A further restriction is that our approach will be rather theoretical;
we shall not discuss algorithms to find packings and coverings. It must be
said, however, that algorithms and combinatorial optimization form an impor-
tant motivation for many of the results mentioned in this paper.

The reader whose interest exceeds the bounds we have set ourselves here
is referred to CHVATAL [18,19] for a procedure to find the faces of the con-
vex hull of integral vectors in a polyhedron, to GOMORY [61,62,63] for a
description of the "cutting plane algorithm", to ROSENBERG [136] for a com-
parison of Chvédtal's procedure with Gomory's algorithm, to CHVATAL [20] for
a nice informal discussion on polyhedral combinatorics, to Lovasz [103] and
STEIN [150] for investigations comparing T and ", and to LAWLER [93] for a
survey of algorithmic methods in combinatorial optimization.

In the present paper we assume familiarity with basic definitions and
properties of graphs, hypergraphs and polyhedra, and with the Duality theo-
rem of linear programming (knowing (3) is sufficient).

Background references are BONDY & MURTY [16] and BERGE [7] for graph
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Organization of the paper

Section 1 of this paper collects some general and special properties of
polyhedra and lattice points, and their interaction, needed for the other
sections. In Section 2 we investigate classes of hypergraphs H for which
v(H) = v () or 1*(H) = T(H); it includes Fulkerson's theory of blocking
and anti-blocking polyhedra and hypergraphs, and Lovédsz's perfect graph
theorem.

Section 3 gives Hoffman & Kruskal's result on totally unimodular matri-
ces and Berge's results on balanced hypergraphs. Finally, in Section 4 a re-
cently developed method of Edmonds & Giles is described, solving some special
classes of integer linear programming problems with “submodular” functions
and "cross-free" families; furthermore Edmonds' characterization of matching
polyhedra is discussed.

In each of the Sections 2, 3 and 4 we first present some general theo-
rems as tools, which are then applied to a number of examples. Some of these
examples emerge several times throughout the text, viz. "bipartite graphs"
(Examples 2, 5, 9 and 16), "network flows" (Examples_l, 10, 17, 18 and 21),
"partially ordered sets" (Examples 3 and 6), "graphs" (Examples 7 and 11,
and § 4.3), "matroids" (Examples 8 and 20), "directed cuts" (Examples 12,

19 and 23), "arborescences" (Examples 13 and 22). Sometimes in describing

an application, we anticipate results obtained in a subsequent section.

Some conventions

Throughout this paper we work within rational vector spaces rather than

real or complex ones. Also any matrix is assumed to be rational-valued. This

will not cause much loss of generality since, on the one hand, results will

be needed often only in their rational form, and, on the other hand, most
of the assertions can be straightforwardly extended to the real field.

When talking about a maximum or minimum the assertions in gquestion are
meant to hold only in case the maximum or minimum exists; e.g., if we say

that a certain maximum is an integer, we mean that the maximum is an inte-—
ger if it exists.

When using notations like Mx = b and WX,
and x are vectors,

where M is a matrix and b, w
we implicitly assume compatibility of sizes of M, b, w,

and x (wx denotes the usual inner product). Moreover, O and 1 stand for ap-

propriately sized all-zero and all-one vectors.
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If the rows and columns of a matrix M are indexed by sets X and Y, res-
pectively, then M is said to be an X X Y-matrix. Furthermore, we identify
functions with vectors; e.g., a function ¢: V + Q@ may be considered as a

= v
vector in @ , and conversely.

Q+ and z, denote the sets of nonnegative rationals and integers,

respectively.

I thank Dr. A. Frank (Budapest) and Dr. P.D. Seymour (Oxford) for helpful

communications.

1. POLYHEDRA AND INTEGRAL POINTS

Here we collect some general and special information about polyhedra

and integral points, and especially about their interaction.

1.1. Convexity and integrality

Convexity and integrality represent the two sides of polyhedral com-
binatorics. Two parallel aspects of convexity and integrality, respectively,
are given by the following two basic properties of a matrix A and a vector

c:

(1) there exists a nonnegative vector y such that yA = ¢, if and only

if for each vector x one has cx = 0 whenever Ax = 0

(Farkas' lemma; cf. Chapter 2, Proposition 10, or HALL [70], Theorem 8.2.1),

and

(2) there exists an integral vector y such that vyA = ¢, if and only if

for each vector x one has cx € Z whenever Ax is integral

(cf. Van der WAERDEN [169] Section 108).

(1) says that if C is the smallest convex cone containing the points
ayreeesay (represented by the rows of A), that is, if C is the set of non-
negative scalar combinations of Byrecer@, then C is the intersection of
all closed half-spaces (i.e. sets of the form {x| bx 2 0} for any vector b)
containing ai,...,am.

Similarly, (2) says that if S is the smallest lattice (additive sub-

group) containing the points al..--.%m,that is, if C is the set of integral
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scalar combinations of aI,...,am, then C is the intersection of all sets of
the form {x| bx is an integer} (for any b) containing a;s---,a . So @ _and
Z have parallel properties; it would be very helpful for many problems in
polyhedral combinatorics if the set Z, had an analogous property, but alas,
this is not the case, not even for dimension one (m = 1). Fortunately there

are some other useful results relating convexity with integrality.

32, Polyhedra

A (convex) polyhedron in Qn is a subset P of Qn determined by a finite

set of linear inequalities, that is, P is a polyhedron iff
n
(1) P={x¢e@ | ax < b}

: n .,
for some matrix A and vector b. P is a polytope in @ if P is the convex

hull of a finite number of points in Qn. A classical result is:
(2) P is a polytope iff P is a bounded polyhedron.

A point v in a polyhedron P is a vertex of P if P\{v} is convex. So a poly-
tope is the convex hull of its vertices. A polyhedron has a number of faces;

these can be described as nonempty subsets F of P such that
(3) F=1{xeP| a'x=0n'},

where A' and b' arise from A and b by deleting some rows of A and the corres—
ponding components in b.

A central problem in this field consists of determining (the egquations
for) the faces of a polyhedron if its vertices are known, or conversely.
The advantage of knowing the faces is that one can apply linear programming
techniques to find "optimal” vertices: if we know that (1) is the convex
hull of a finite set S of vectors then

(4) max{wx| x ¢ S} = max{wx| Ax < b} = min{yb| v 2 0, ya = w}.
E.g., let S be the set of characteristic vectors of stable subsets in a

graph. In general, it is a difficult problem to find the faces (to f£ind a
and b) of the convex hull of S (see CHVATAL [19], cf. [18], NEMHAUSER &
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TROTTER [120] and PADBERG [125]), although we shall see that for some classes
of graphs (perfect graphs and line-graphs) these faces can be found simply.

It is not difficult to see that a face F is a minimal face (with res-
pect to inclusion) of (1) iff

(5) F={xe0'| a'x =b'}

for some A' and b' (arising from A and b as before); so minimal faces are
exactly those faces which are affine subspaces of Qn.

Note that if x is not in the polyhedron P in Qn then there is a hyper-
plane separating x from P, i.e., there exists a w ¢ Qn and r € @ such that

wx > r and wv £ r for all v € P. So two polyhedra P and R are equal iff for
all w € Qn we have:

(6) max{wx| x € P} = max{wx| x ¢ rR}.

1.3. Blocking and anti-blocking polyhedra

Often we shall be concerned with polyhedra P of one of the types
(1) P={eri|CxEl}, or P={x£Q:|Cx21}

where C is a nonnegative matrix. FULKERSON [48,50,51] developed a theory
for polyhedra of these types, called the theory of blocking and anti-
blocking polyhedra.

For a polyhedron P of the first type, let
(2) A(P) = {y € Q:[ yx < 1 for x e P}

be the anti-blocking polyhedron of P; and for a polyhedron P of the second
type, let

(3) B(P)={Y£Q:lyx21 for x & P}

be the blocking polyhedron of P. Clearly, A(P) and B(P), respectively, are
of the same type as P.

A pair (P,R) is called an anti-blocking pair of polyhedra if P is a
polyhedron of the first type and R = A(P). The pair (P,R) is called a
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blocking pair of polyhedra if P is a polyhedron of the second type and

R = B(P). We list various equivalent characterizations of (anti-)blocking

pairs of polyhedra.

n
THEOREM 1. (FULKERSON [50,51], LEHMAN [94]) Let P = {x ¢ Q+I Cx £ 1} and
R={z ¢ Qn| Dz < 1}, where C and D are nonnegative matrices with row vec-—
+ 3
tors c ¢ and d1 ...,c'.H‘ respectively. Then the following assertions
1 LA Y m r r
are equivalent:
(1) (P,R) is an anti-blocking pair of polyhedra;
(i1) R consists of all vectors x such that x < ¢ for some convex combina-
tion ¢ of cl,...,cm;
(iii) for all w e ©": max{we se--rwe } = min{ly[|y 2 0, yD = w};
=+ 1 m >
(iv) =xz < 1 for x ¢ P and z € R, and for all £,w Q,:
max{wx| x € P}+ max{fz| z ¢ R} > fw ("length-width-inequality"”);

(v) (R,P) is an anti-blocking pair of polyhedra.

PROOF. (i) +> (ii). Since

(4) A(P)

{zeQirxzslforxeP}=

I'{ZEQI‘:I max{zx | x ¢ P} 5 1} =

i

{ze:Q:] max{zx | x 2 0, cx < 1} < 1} =

{z e fo min{|y|| v 2 0, yC z z} £ 1} =

{z € Q:_‘l z = yC for some y = 0 with |y| <1},

we have that A(P) consists of all vectors x such that x < ¢ for some convex

combination ¢ of cl,...,cm. Hence R = A(P) iff (ii) holds.

(ii) ++ (iii). This follows directly from the Duality theorem of linear
Programming:

(5) min{|y|| v = o, ¥yD 2 w} = max{wz| z > 0, pz < 1} = max{wz| z ¢ R}.
(1) ++ (iv). Clearly, the assertion "R c A(P)" is equivalent to the first

half of (iv). wWe brove that A(P) © R iff the second half of (iv) holds.
It is easy to see that A(P) € R iff

(6) Ve e Q:: max{fz| z € A(P)} < max{fz| z ¢ R}.
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By scalar multiplication of £ we see that (6) is equivalent to

(7) Ve ¢ Q:: nax{fz| z € R} <1 implies max{fz| z ¢ a(pP)} < 1.

(8) is a reformulation of (7):
(8) VL e @): (Vz € R: £z < 1) implies Vw € A(P): fw < 1.

It follows from the definition of the anti-blocking polyhedron A(P) that

(8) is eguivalent to:

(9) Ve e Qi: (Vze R: £z £ 1) impliesVw € Qi ((VxeP: wx<1) implies Lw<1),

and hence to:
(10) Ve, we Q:: max{wx|x € P} <1 and max{fz|z e R} <1 together imply Lw< 1.

Again by using scalar multiplications of £ and w, we see that (10) holds if

and only if:
(11) Ve, w e Q:: max{wx| x e P} - max{fz| z ¢ R} = Lw,
which is the second half of (iv).

(iv) +* (v). By symmetry of (iv) this equivalence can be proved in a manner

analogous to the previous one. ad

REMARK. Since each rational vector is a nonnegative scalar multiple of an
integral vector and since the (in-)equalities in question are stable under
nonnegative multiplication, in the assertions (iii) and (iv) we may replace

Ficy n n
the conditions w € Qz and £ € Qi. by w e:z+ and £ € Z+, respectively.

By changing terminology (replacing, anti-blocking, =, min, max, by
blocking, z, max, min and so on) one similarly proves the blocking analogue

of Theorem 1:

THEOREM 1. (FULKERSON [48,50], LEHMAN [94]) Let P = {x ¢ Qi‘} cx =z 1} and
let R = {z ¢ QEE Dz =2 1}, where C and D are nonnegative matrices with row

vectors cl,...,cm and dl,...,dk, respectively. Then the following assertions
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are equivalent:

(i) (P,R) is a blocking pair of polyhedra;

(ii) R consists of all vectors x such that x = ¢ for some convex combina-
tion ¢ of CireessCoy
(iii) for all w e g;f: min{wcl,.--.wcm} = max{lyl| y 2 0, yb < w};
In
(iv) xz 2 1 for x € P and z € R, and for all £,w € Q,:
in{\-fx[ x € P}- min{ﬂz| z € R} < Pw ("length-width-inequality") ;

(v) (R,P) is a blocking pair of polyhedra.
PROOF. Analogous to the previous proof. a

The theory of blocking and anti-blocking polyhedra is a useful tool

for fractional packing and covering problems.

1.4. Integrality of vertices

It will be useful to have a characterization of polytopes the vertices
of which all are integral; more general, a characterization is sought of
polyhedra all faces of which contain an integral vector. That is a charac-

terization of polyhedra P such that for all w € Qn
(1) max{wx| x e P}

is achieved by an integral x. The following theorem characterizes such poly-
hedra (in case all minimal faces of the polyhedron are vertices the theorem

can be proved in a simpler way).

THEOREM 3. (EDMONDS & GILES [37]) Let P be a polyhedron in Qn. Each face of
P contains an integral vector, if and only if max{wx| x € P} is an integer

for each w ¢ Zn.

PROQF. The "only if" part being straightforward, we prove "if". So suppose
that for all w e " max{wx| x € P} is an integer and let p = {x ¢ Qni Ax < b},
for some matrix A and vector b. Let F = {x e 9% a'x = b'} be a minimal face
of P (cf. § 1.2); we may suppose that the rows of A' are linearly independ-
ent. We have to prove that A'x = b' for some x ¢ Zn. By (2) of § 1.1 it
suffices to show that for each vector y: yA' is integral implies yb' is an
integer. So let y be a vector such that ya' is integral. F is a minimal

face, hence there is an open convex cone U < Qn such that, for all w e o,



FRACTIONAL PACKING AND COVERING 211

max{wx| x € P} is achieved by all vectors x in F. Since U is an open convex
cone there are integral vectors wl and w, in U such that yA' = w,-w_.. Since,

2 2
for all x € F, wlx and w,X are integers (independent of the choice of x ¢ F),

we have, for x € F:

LA ' = =
(2) yb YA'x WX - WX

which is again an integer. As F is nonempty we have proved that yb' € z. 0O

Let M be an nxm-matrix and let b be an integral vector of length n.

Consider the series of inequalities, for w ¢ z".

(3) max{wx] x e Z", Mx £ b} < max{wx| x ¢ @", Mx < b} =

= min{yb| v € Qi, yM = w} < min{yb| y € ’:22:, vM = w} <

wl.

< min{yb| vy € Z:, vM

Trivially, if the first and the last expressions are equal then also the
last two minima are equal. The next theorem asserts that the converse also
holds: if, for each w € za"’, the last two minima are equal, then all five
optima are the same (for each w € Zm} . The theorem is a combination of

results of EDMONDS & GILES [37] and LOVASZ [105,1067.

THEOREM 4. For each w € Z" both sides of the linear programming duality

equation

(4) max{wx| x € 9", Mx < b} = min{yb| v € Qﬁ, yM = w}
are attained by integral vectors x and y, if and only if for each w € z"
(5) min{yb| v € 522, yM = w}

is attained by an integral y.

PROOF. By (3) if suffices to prove the "if" part. So suppose (5) is achieved

by an integral vector y, for each w € z". Then for each natural number k we

have:

={k+1) _n
( )Z+’

yM = w} = min{yb| y € Z_RZn. ¥vM = w},

(6) min{yb| y € 2 R
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since this is eguivalent to

(n 2_k.min{yb| ¥ € ‘:Zi, vM = 2k.w} = Z_k.min{be v € Z:, yM = 2k.w}.
which holds by assumption. Therefore, by induction, for each natural number k
(8) min{yb| y € z'kzai‘, yM = w} = min{yb| y € EZ_I:, ¥yM = w}.

Hence, since

-k_n
(9) min{yb| y ¢ Q:, vM = w} = i]r(lf (min{yb| y € 2 zZ,, yM = w}),

we have that

w}

I

min{yb] vy € za:, ¥M = w}.

(10) min{yb| y € @, yM
By the Duality theorem of linear programming
(11) max{wx| x ¢ @", Mx < b} = mini{yb| y ¢ Q_I:, ¥yM = w}.

m

Since b is integral, it follows from (1) and (11) that max{wx| x € @ ,Mx<b}
n

is an integer, for each w ¢ % - Therefore, by Theorem 3, each face of the

polyhedron {x ¢ in Mx £ b} contains integral vectors. Therefore
(12) max{wx| x ¢ zan, Mx < b} = max{wx| x e g_)n, Mx =< b}

for each w € Z" (and hence also for each w « ™. (10), (11) and (12) to-
gether imply the required broperty of (4). a

An immediate corollary is:

COROLLARY 5. Let M be a nonnegative matrix and let b be an integral vector.

n
For each w € Z s both sides of the linear brogramming duality equation

(13) max{wx| x 2 0, Mx < b} = min{yb| vy 2 0, yM = w)}

are attained by integral vectors X and y, if and only if for each w e Z"
+

(14) min{yb| y e 1:222, ¥M 2 w}
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is attained by an integral vector y.

EDMONDS & GILES [37] call a system of linear inegualities Mx < b totally

dual integral if for all integral vectors w the minimization problem
(15) min{yb| v =2 0, yM = w}

has an integral solution y. It follows from Theorem 3 that if Mx < b is

totally dual integral and b is integer-valued then each face of the poly-

hedron {x]| Mx € b} contains integral vectors.

2. HYPERGRAPHS

2.1. Notation

A classical theorem of MENGER [113] says the following. Suppose we have
a directed graph G, with two fixed vertices r and s. Call the set of arrows
in a directed path from r to s an r-s-path. Then the maximum number of pair-
wise disjoint r-s-paths is equal to the minimum number of arrows meeting
each r-s-path.

To formulate this result in a wider context define, just as in the
introduction, for each hypergraph H = (V,E) the numbers

(1) v(H) = the maximum number of pairwise disjoint edges of H,
and
(2) T(H) = the minimum size of a subset V' of V intersecting each edge.

It is clear that v(H) < 1(H). If V is the arrow set of the digraph G
and E is the collection of all r-s-paths in G then the content of Menger's
theorem is that v(H) = T(H).

More generally, define, for hypergraphs H = (V,E) and natural numbers

k:

(3) vk(H] = max{ I g(E)|g: E Z _ such that ¥ g(E) € k for all ve v}
EcE E3v

and

(4) T, (B = min{ ] £(v)|£: v—r'zz: such that |} £(v) 2 k for all Ee E}.
vev veE

One easily sees that v(H) = vl(H), T{H) = TI(H) and vk(H) < Tk(H). Moreover,

let
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. v, (H) v, (H)

(5) v (H) = s;p T }J;:.E m '
and .
1, (H) T, (H

* o k i g k -

(6) T (H) = iif —= i_::ﬂ = ;

the right hand side equalities follow from the facts that Uk+£ (H) Zuk(H) +\J£(H)
and Tk+£(m < Tk (H) +'r£(H}, respectively (using "Fekete's lemma").
We may put (5) and (6) in a linear programming form. Let M be the in-

cidence matrix of H. Then

E
(7) viE) = max{lylly e 0., yM s 1}
and
* v
(8) T (H) = min{|x||x € Q.- Mx 2 1},
* *
The Duality theorem of linear programming gives us that v (H) = T (H). Since

the matrix M and the all-one vectors are rational-valued, the simplex-method
for solving linear programming problems delivers ratiocnal-valued vectors v
and x in (7) and (8); this implies that we may replace in (5) and (6) the
"sup" and "inf" by "max" and "min", respectively.

Summarizing we have for natural numbers k and £:

v, (H) v, p(H) T, p (H) T, (H)

k kL 2 * kL k
(9) v(H) < % S—-H,.-—‘Sv (1) = 1 (H) STS x < t(H).
In particular, if v(H) = T(H) then all inequalities become equalities. It

can be considered as one of the aims o? this paper to determine those k for
which vk{H) = k.v*(H}, or k.T*(H) = kaH). Often it amounts to investigating
to what extent the equality of certain terms in (9) implies the equality of
other terms.

It is easy to see that \.!k(H) = k.v*(H) if and only if the maximum in
(7) is attained by a vector Y € 1/k.Z+, i.e., by a vector y having inte-

gral multiples of 1/k as coordinates.

The question of determining v(H) may be viewed as a packing problem;
we now introduce its covering counterpart. A basic example (in a sense the
counterpart of Menger's theorem) is DILWORTH's theorem [26]: let (v,<) be
a finite partially ordered set; then the minimum number of chains needed to
cover V is equal to the maximum number of elements in an antichain (an (anti-)

chain is a set of pairwise (in-) comparable elements).
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In hypergraph language: define for each hypergraph H = (V,E) the num-
bers

(10) p(H) = the minimum number of edges needed to cover V,
and
(11) a(H) = the maximum number of points no two of which are contained

in an edge.

Now we have p(H) = a(H). If V is the set of elements of a partially ordered
set and E its collection of chains, then Dilworth's theorem tells us that
p(H) = a(H).

Again, define more generally for hypergraphs H = (V,E) and natural
numbers k:

(12) pk{H) =min{ § g(E)|g: E + Z_ such that Y g(E) 2 k for all v € V}
EeE E3v

and

(13) @, (H) =max{ Y Of(v)|£:v > Z such that Y f£(v) < k for all E ¢ E}.
veVvV veE

Now we have: p(H) = pltn), alH) = aI(HI and pk(H] 2 uk(H). Moreover, let

(14) p*(H) = inf pk(H) = lim pk(HJ = min pk(H)
k k ko k k k *
and
o, (H) o, (H) a, (H)
* = k . - i
(15) a (H) = sgp = ilm o m;x i

just as before these equalities follow from Fekete's lemma and the rationali-
* *
ty of linear programming solutions. The Duality theorem yields p (H) = o (H).

Summarizing we have, for natural numbers k and £:

pk{H) . Qk£(E) akK(H) ak(ﬁl

* *
(16) Q(H)ZT—TZD(H)=ﬂ(H)ZT2 % Zz a(H) .

We shall also investigate when these inequalities become egqualities.

2.2. Conormal and Fulkersonian hypergraphs

Now we shall deal with problems concerning the functions v, 1, p, and
o. Comparing the pair o«,p with the pair t,v, it turns out that they some-

times share analogous properties, but at times their properties diverge.
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In this subsection we exhibit some of their common features. Subsection
2.3 is devoted to the perfect graph theorem, being a base for many results
on o and p. Subsections 2.4 and 2.5 show some of the divergent properties of
a,p and 1,v, respectively.

We first need some further definitions. Let H = (V,E) be a hypergraph.
Multiplying a vertex v € B by some number k = 0 means that we replace v by
k new vertices Vireea s Vs and each edge E containing v by k new edges
(E\{v})u{vl},...,(E\{v})u{vk}. E.g., if V is the set of arrows of a direct-
ed graph, with two fixed vertices r and s, and E is the collection of r-s-—
paths, then multiplying v by k corresponds with replacing, in the digraph,
the arrow v by k parallel arrows.

Multiplying a vertex v by 0 is the same as removing the vertex v and
all edges containing v.

More generally, for a function w:V -+ Z+, the hypergraph H" arises from
H by multiplying, successively, every vertex v by w(v). So the class of hyper-
graphs arising from digraphs as described above is closed under the trans-
ition H + H", A class with this property will be called "closed under multi-—
plication of vertices”.

The hereditary closure ﬁ of H is the hypergraph having the same vertex
set as H, with edges all sets contained in any edge of H. H is hereditary
if H = ﬁ. Similarly, ﬁ again has the same vertex set as H, now with edges
all subsets containing some edge of H.

The anti-blocker A(H) and blocker B(H) of H are hypergraphs with vertex
set V, while the edge set of A(H) is the collection

(1) {vt cv| [v' nE| £ 1 for all E ¢ E};

the edge set of B(H) is

(2) (V' ev| Iv' nE|l 21 for all E E}.

So «(H) is equal to the maximum size of edges in A(H), and T(H) is equal to
the minimum size of edges in B(H).
A v
Clearly, A(H) = A(H) and B(H) = B(N). Tt is easy to see that B(B(H)) = N
(cf. EDMONDS & FULKERSON [36], and SEYMOUR [143]). An analogous property
does not hold for the anti-blocker; in fact

)
(3) A(A(H)) = H if and only if H is conformal,
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that is, by definition, iff any subset V' of V is contained in an edge of H
whenever each pair of vertices in V' is contained in an edge. In particular,
for each hypergraph H the hypergraph A(H) is conformal.

If M is the incidence matrix of H a straightforward analysis of HY, v

and T yields:

T(HY) = minlwx| x € Z:r, Mx = 1}

t (8Y) = min{wx| x € Q‘:, Mx = 1}
(4) e E

v (H)) = max{|yl]y ¢ Q.. yM < wl

v(E") = max{ly”y € ZE r ¥YM < wl.

Moreover, if H is hereditary we have:

a(8Y) = max{wx| x ¢ , Mx < 1}

(s) . v

Z
a®(8") = max{wx| x € Q‘:_, Mx < 1}
p (H) QE

mini lyl|y e r YM 2 w}

p (") min{lyl|y € =, yM 2 w}.

REMARK. In (5) we have to require that H is hereditary since otherwise we
must adapt, for the a,p-case the definition of "multiplying a vertex by 0".
In the 1,v-case removing a point v together with the edges incident with it
in case w(v) = 0 gives no problems, but in the «,p-case this does not work
unless we assume that H is hereditary. This causes no loss of generality
since in a,p-problems passing from H to f mostly does not change those

problems.

Now we have two analogous theorems, based on the theory of blocking
and anti-blocking polyvhedra (subsection 1.3).

THEOREM 6. (FULKERSON [50,51], LEHMAN [94]) Let H and K be hypergraphs such

that K = A(H) and H = A(K). Then the following assertions are equivalent:

*
(i) " (8Y) is an integer for each function w: V ~+ Z i

d*
{ii) a (Hw) - u(Hw) for each function w: V + Z&_'_:

(iidi) G(HWIG(K'E) 2 Evev L(v)w(v) for all functions £,w: V -+ Z
(iv) a*(i(z) = a(K") for each function £: Vv - Z, i

*
(v) o (K£] is an integer for each function £: vV + Z+.

REEMARK. Let M and N be the incidence matrices of H and K, respectively. Let
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(6) P={erf|stl}
and

v
(7 R={zeQ+] Nx £ 1}.

So, by (5), a*(Hw) = max{wx|x ¢ P} and a(H") = max{wx|x e ZE, x ¢ P} (since
H = A(K), H is hereditary). This means that (ii) is equivalent to saying
that P has integral vertices. Similarly, (iv) is equivalent to saying that
R has integral vertices.

All five assertions (i) - (v) are equivalent to: (P,R) is an anti-

blocking pair of polyhedra.

PROOF. Evidently, (ii) + (i) and (iv) - (v).

(i) + (ii). Assertion (i) says that, for each w: V + Z,, the number
max{wx|x ¢ P} is an integer. It follows that for each w: V - Z this number
is an integer. Consequently, by Theorem 3, each vertex of P is integral, that
is, (ii) holds.

The proof of (v) =+ (iv) is similar.

So the equivalence of (i) and (ii), and that of (iv) and (v), is based
on Theorem 3; Theorem 1 is a basis for the equivalence of (ii), (iii) and
(iv). We show that each of (ii), (iii), (iv) is equivalent to the pair (P,R)
being an anti-blocking pair of polyhedra.

As mentioned, (ii) is equivalent to P having integral vertices, that is, to
P consisting of all vectors v < c for some convex combination ¢ of character—
istic vectors of A(H). But these characteristic vectors are the row vectors
of N, hence, by Theorem 1, (ii) is equivalent to (P,R) being an anti-block-
ing pair of polyhedra.

Similarly, (iv) is equivalent to (P,R) being an anti-blocking pair of
polyhedra. Finally we show that assertion (iii) is equivalent to assertion
(iv) of Theorem 1. To this end let R' = A(P) and P' = A(R). So R' consists
of all vectors v £ ¢ for some convex combination ¢ of row vectors of M; P!
consists of all vectors v < d for some convex combination d of row vectors
of N.

Hence c:*(Hw) = max{wx|x € P'} and a*(K£) = max{fz|z € R'}, and for all
x € P' and z € R' one has xz < 1. Therefore (iii) implies, by (iv) of Theo-

rem 1, that (P',R') is an anti-blocking pair, hence also (P,R) is an anti-
blocking pair.
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Conversely, if (P,R) is an anti-blocking pair also (P',R') is an anti-block-
ing pair. But then (iv) of Theorem 1, applied to the pair (P',R'), implies
(iii). 0O

By using Theorem 3 together with Theorem 2 we can derive the blocking analo-

gue:

THEOREM 7. (FULKERSON [48,50], LEHMAN [94]) Let H and X be hypergraphs such

that K = B(H) and H = B(K). Then the following assertions are eguivalent:

(i) 1*(Hw) is an integer for each function w: V +:ZJ

(ii) r*(Hw) = T(Hw) for each function w: V =+ z+;

(iii) T(Hw)r(Kz] < Zvev L(v)w(v) for all functions £,w: Vv + Z i
(iv) 1*(K ) = 1(K") for each function £: Vv =+ Z, i

e A ;
(v) T (K) is an integer for each function £: V = ZZ+.
PROOF. Adapt the previous proof. [

By giving one example we indicate how these theorems can be used; in the

other subsections more examples can be found.

EXAMPLE 1: Network flows (cf. FULKERSON & WEINBERGER [55]). Suppose we have
a directed graph, with two fixed vertices r and s. Let V be the set of ar-
rows of the digraph, and let E be the collection of subsets of V containing
an r-s-path. Let F be the collection of subsets of V intersecting each r-s-
path; such sets are called r-s-disconnecting sets. Let H= (V,E) and X = (V,F);
hence B(H) = K and B(K) = H.

Proving T(K) = v(K) is easy: the length of a shortest r-s-path is equal
to the maximum number of pairwise disjoint r-s-disconnecting sets. Since
multiplication of vertices of K corresponds to replacing arrows by paths,
one even has: T(Ki) = v(Kz), for all £: v » Z+. In particular: T(K£)=‘;(K£)
for all £: Vv + Zq: Hence by Theorem 7, 1(Hw) = T*(Hw) = u*(Hw) for each
w: V =+ Z+.

So if we consider a function w: V + Z+_ as a "capacity function" de-
fined on the arrows of the digraph, then T(Hw) is equal to the minimum ca-
pacity of an r-s-disconnecting set: v*(Hw) is egual to the maximum amount
of "flow" which can go "through" the arrows of the digraph, from r to s,
such that through no arrow is there a flow bigger than the capacity of the
arrow. T(Hw) = u*(Hw) therefore, is the content of FORD & FULKERSON's max-

flow min-cut theorem [43].
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It is ewven true that, for w: V =+ ZZ+, t(H") = v(8") (Ford & Fulkerson's
integer-flow theorem), but this cannot be derived straightforwardly from
Theorem 7; it will be discussed in subsection 2.5. For an extensive survey
on "Flows in Networks" we refer to FORD & FULKERSON's fundamental book with

this title [44]. For a covering analogue see LINIAL [96].

We shall call a hypergraph H' conormal if H' is conformal such that one,
and hence each, of the conditions mentioned in Theorem 6 holds for the pair
H=f' and K = A(H).

We call a hypergraph H' Fulkersonian if one, and hence each, of the con-

v
ditions mentioned in Theorem 7 holds for the pair H= H' and K = B(H). So

(8) H is Fulkersonian iff B(H) is Fulkersonian,
and, if H is conformal,

(9) H is conormal iff A(H) is conormal.

(Fulkersonian hypergraphs are called bs SEYMOUR [145,147] hypergraphs with
the Q+—Max-flow Min-cut property. Cono:mal hypergraphs are those hypergraphs
whose duals are normal - see LOVASZ [98,100].)

The relationship between a,p and T,v has further counterparts: anti-blocking
versus blocking; A(H) versus B(H); conormal versus Fulkersonian. As said
earlier, the theory of a,p is not completely analogous to that of T,v. The
necessity of adding the conditions of hereditarity and conformality each time
shows one point of anomaly. However, this implies a simpler representation
for conormal hypergraphs, namely by perfect graphs (see § 2.3 .

It will turn out that another divergence is that in Theorem & (the a,p-
case) we may replace in the assertions (i)-(v) the conditions w: Vv - Z and
£: v -+ Z, by w: v+ {0,1} and £: v >+ {0,1}, respectively. Furthemore, we
may Extend (ii) to: a(m") = p(8Y) for all w: V » Z - These extensions and
sharpenings will be discussed in subsection 2.4.

Analogous sharpenings and extensions are not valid for Theorem 7. Re—
placing Z,_ there by {0,1} yields assertions which are not eqguivalent to the
original ones. Also the assertion "t (H" ) = v{H ) for all w: v - za is prov-
ably stronger than assertion (ii) of Theorem 7. For more details see sub-
section 2.5,
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2.3. Perfect graphs

Let v(G) and w(G) denote the chromatic number and clique number (maxi-
mum size of a clique) of the graph G. Clearly, w(G) < y(G). The property
"w = y" does not say much about the internal structure of a graph: by add-
ing a disjoint large clique each graph can be extended to a graph with this
property. The property

(1) w(G"'") = y(G') for each induced subgraph G' of G

says more; graphs G satisfying (1) are called perfect.

Examples of perfect graphs are: (i) bipartite graphs (trivially); (ii)
transitively orientable graphs (i.e., graphs with vertices the elements of
a partially ordered set, two of them being adjacent iff they are comparable;
the perfectness of these graphs is easy to see). The content of KONIG's
theorem [86] and DILWORTH's theorem [26], respectively, is that complements
of bipartite and of transitively orientable graphs are perfect. This caused
BERGE [3,4] to conjecture that the complementary graph G of a perfect graph
G is again perfect. This "perfect graph conjecture" was proved in 1972 by
Lovasz [98] (unknowingly extending one »>f Fulkerson's ideas), after partial
results of BERGE [7], BERGE & LAS VERGNAS [14], sacus [139], and FULKERSON
[49,50,51].

THEOREM 8. (LOVASZ's perfect graph theorem [98]) A graph G is perfect if
and only if G is perfect.

PROOF. I. We first show that if G = (V,E) is perfect, then the graph Gv is
perfect, where Gv arises from G by replacing the vertex v by two new ver-—
tices v' and v", each of them being adjacent to those vertices which were
adjacent in G to v; moreover v' and v" are adjacent. The adjacency within
vA{v} remains unchanged.

Choose an arbitrary vertex v. To prove that Gv is perfect it is, by
induction, sufficient to show that m{Gv) = Y(Gv}. If w(Gv) = w(G)+1, then
w(Gv) = Y(Gv), since Y(Gv) < ¥(G)+1 = w(G)+1. Therefore suppose m(Gv)==w(Gj.
Now colour G with w(G) colours, and suppose the vertex v is in the colour
class W. Consider the subgraph G' of Gv induced by (V\W)u{v'}; this graph
is isomorphic to the subgraph of G induced by (V\W)u{v}, so G' is perfect.
Also we have w(G') = w(G)-1, since if (V\W)u{v'} contains a cligue of size

w(G) it must contain v' (there is no clique of size w(G) = y(G) contained
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in V\W), and hence m(Gv) = w(G)+1.
Since G' is perfect, w(G') = y(G') and so G' can be coloured with

w(G"') = w(G )-1 colours. Adding the colour class (W\{v})u{v"} yields a col-
v

ouring with m(Gv) colours.

II. Now suppose G is a smallest (under taking induced subgraphs) perfect
graph such that G is not perfect. Hence we know that w(G) < Y(G), and also
that each stable subset of G is disjoint from some clique of G of size w(é)
(otherwise we could split off such a stable subset as a colour class to ob-
tain a smaller counterexample). That is, each clique of G is disjoint from
some stable subset of G of size a(G).

Let CI"“'Cm be all cliques of G. Let vl,...,vm be a(G)-sized stable
subsets of V such that Ci is disjoint from Vi, for i = 1,...,m. Now make a
graph G", having vertex set the disjoint sum of Vl,.. . ,Vm, such that two
"new" vertices v, €V, and vj € Vj (i#j) are adjacent iff the "old" wvertices

2 4
v, and v, are equal or adjacent (each set Vi is stable in G"). It is easy

t; see tl:'lxat G" arises from G by splitting points, as described in part I
of this prcoof. So G" is perfect.

But a(G") = a(G), and w(G") < m, since each clique is disjoint frxrom one
of the sets Vi. Since the number of vertices of G" is equal to m.a(G), G"
cannot be covered by w(G") stable subsets of G", i.e. w(G") < ¥(G"), con-

tradicting the perfectness of G". [J

The following examples are applications of the perfect graph theorem (see
also BERGE [5,11], SHANNON [149], TUCKER [154]).

EXAMPLE 2: Bipartite graphs. As remarked earlier, any bipartite graph is
trivially perfect, hence the complements of bipartite graphs are perfect.
This is the content of a theorem of KONIG [87] and EGERVARY [42]: the max-
imum cardinality of a stable subset of a bipartite graph is equal to the
minimum number of edges needed to cover all points (the theorem is easily
adapted if the graph has isolated vertices).

A theorem of GALLAI [56,57] says that, for any graph G without isolated
vertices one has:

(2) a(G) + T(G) = V(G) + p(G) = the number of points of G.

So the Konig-Egervdry theorem, together with Gallai's theorem, gives KONIG's

theorem [87]: the maximum number of pairwise disjoint edges in a bipartite
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graph is equal to the minimum number of points representing all edges.

This is equivalent to saying that the complement ETE) of the line-graph

L(G) of a bipartite graph G is perfect. By the perfect graph theorem also
the line-graph L(G) itself is perfect, which is the content of another theo-
rem of KONIG [86]1: the minimum number of colours needed to colour the edaes
of a bipartite graph such that no two edges of the same colour meet, is equal

to the maximum degree of the graph.

EXAMPLE 3: Partially ordered sets. A transitively orientable graph is tri-
vially perfect, hence its complementary graph is perfect, which is the con-
tent of DILWORTH's theorem [26]: the minimum number of chains needed to

cover a partially ordered set is egual to the maximum size of an anti-chain.

EXAMPLE 4: Triangulated graphs. A graph G is called triangulated if each
circuit having at least four edges contains a chord. Dirac (cf. FULKERSON
[51]) showed that each triangulated graph contains a vertex v all of whose
neighbours together form a clique, i.e., v is in only one maximal clique.
From this one easily derives that a(G) = y(é) for triangulated graphs G.
Since each induced subgraph of a triangulated graph is triangulated again,
it follows that complements of triangulated graphs are perfect (HAJNAL &
SURANYI [69)). Hence, by the perfect graph theorem, triangulated graphs

are perfect.

If G is perfect then w(G).u(G) is not l@ss than the number of vertices of
G, since colouring the vertices with w(3) = y(G) colours, each colour class
contains at most «(G) vertices. Each induced subgraph of G clearly has this
property. In fact this characterizes perfect graphs, as LOVASZ [99] has
proved the following sharpening of the perfect graph theorem (suggested by
A. Hajnal).

THEOREM 9. (LOVASZ [991) A graph G is perfect iff w(G')w(G') is not less
than the number of vertices of G', for each induced subgraph G' of G.

The following sharpening of Theorem 9 (and of the perfect graph theorem)

is a conjecture of Berge and Gilmore, which is still unsolved.

STRONG PERFECT GRAPH CONJECTURE (BERGE [61]): A graph G is perfect iff no

induced subgraph of G is isomorphic to the odd circuit C2n+1 or to its

complement €

T for n =z 2.
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So it is conjectured that each minimal nonperfect graph is isomorphic to an
odd circuit or to the complement of an odd circuit.

Several partial results on this conjecture have been found:
CHVATAL [21] showed that the strong perfect graph conjecture is equivalent
to the conjecture that each minimal nonperfect graph G has a spanning sub-
graph isomorphic to C 11, where o = a(G) and w = m}iG) (a spanning subgraph
of G arises from G by deleting some of the edges; Cn is the graph with ver-
tices 1,...,n, two vertices i and j being adjacent iff 0 < |i-j] £ k (mod n));
PARTHASARATHY & RAVINDRA [130] showed the truth of the strong perfect graph
conjecture for graphs having no ,‘t(l'3 as an induced subgraph (e.g. line-graphs;
see also TROTTER [153] and De WERRA [173]) (this implies that, to show the
conjecture, it is enough to show that any minimal nonperfect graph has no
KI,B as induced subgraph) and for graphs having no K4 minus one edge as an
induced subgraph [131]; they investigated also perfectness of product graphs
(see [135]); TUCKER proved the strong perfect graph conjecture for planar
graphs [155], “circular arc" graphs [156], and 3-chromatic graphs [157];
GALLAT [58], SACHS [139] and MEYNIEL [114] showed that if every odd circuit
in G of length at least five contains at least two non-crossing (Gallai)/
crossing (Sachs)/arbitrary (Meyniel) chords, then G is perfect; OLARU [122]
and PADBERG [125,126,128] have derived several properties of minimal non-
perfect graphs (e.g., PADBERG [125] showed that every minimal nonperfect
graph G with n points contains exactly n cliques of size w(G); their charac-

teristic vectors form a nonsingular matrix).

2.4. Conormal hypergraphs

The theory of perfect graphs can b described and extended smoothly
within the context of hypergraphs.

Let G = (V,E) be a graph; let the l‘ypergraph H, = (V,E) have edges all
stable subsets of V. So H is conformal iff H = H for some (uniquely deter-
mined) graph G. Then, as can be seen str. aightforwardly, the property

"w(G) = y(G)" coincides with "u(H ) = p(l! ) fad®

If G' is the subgraph of G induced hy V' € V, then H equals H;, where

'
w is the characteristic vector of V' (writing H for (H )GJ. It follows that
G is perfect if and only if u(Hw} p(H ) for each w: V> {0,1}. Part T of
the proof of the perfect graph theorem implies that G is perfect iff

O.(H ) = p(H ) for each function w: v -+ Z In particular, if G is perfect

then HG is conormal. The next theorem J.rnpla.es even that:
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G is perfect if and only if HG is conormal,
(1)

) Lo A
H is conormal if and only if H = HG for some perfect graph G.

Hence the theories of perfect graphs and conormal hypergraphs pursue parallel
courses. Formulations in terms of hypergraphs sometimes reveal underlying
structures and create better understanding.

For each graph G one has: HE; = A(HG) . The perfect graph theorem now
can be formulated and extended within the theory of hypergraphs as follows,

yielding an extension of Theorem 6.

THEOREM 10. (FULKERSON [50,51], LEEMAN [95], LovAsz [98,99,100], BERGE [101])
. Let H = (V,E) be a hereditary, conformal hypergraph. Each of the following

assertions is eguivalent to H being conormal:

(i) a(B") =p (8Y) for each w: v » {0,1); (11) id...wsV > Z_;
(iii)  a@") = o™ (@Y) for each w: v - {0,1}; (1v)  id...w:V > Z;
(v) 0" (8Y) = o (") for each w: v + {0,1}; (vi) id...w:V > Z ;
(vii) o (BY) € Z for each w: v + {0,1}; (viii) id...w:V+ Z ;
(ix) pz(Hw) = 2.p(8") for each w: vV + {0,1}; (x) id...w:V > Z ;
(i) a(E)xr(H8Y) 2 £ w(v) for each w: V ~ {0,1}; (xii) id...w:V > 2 ;
(xiidi) a(Hw)u(A(H)'E)VZ‘I; w(v)(v) for each £,w:V—+{0,1}; (xiv) 1d..£,w:v+zz+;

(i')—-(xii'), arising from (i)-(xii) by replacing H by A(H).

PROOF. We shall not give a complete proof of this theorem, but discuss some
parts of it and refer to the original papers for the details of the other

parts.

It is clear, by using (16) of subsection 2.1, that

where arrows stand for implications.

The eguivalence of the conormality of H to each of the assertions (iv),
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(viii), (xiv), (iv') and (viii') is true by definition (cf. Theorem 6).

The implication (iv) = (ii) was proved by FULKERSON [51]. This implies that
(ii) and (ii') are egquivalent, being the content of FULKERSON's "“pluperfect
graph theorem" [49,50,51] which says: if each graph arising from a graph G
by a series of splittings of points (as in the first part of the proof of
the perfect graph theorem) is perfect, then the same holds for the comple-
mentary graph G. So, knowing the pluperfect graph theorem, to prove the
perfect graph theorem it is enough to show that the class of perfect graphs
is closed under splitting of points, and this was shown by LOVASZ [98] (part
I of the proof of Theorem 8). Theorem 5 of [98] also shows the implication

(vii) -+ (viii), and hence the equivalence of (i)-(viii).

(%) = (vi) is straightforward by observing that pkﬁ(Hw) = p‘a(Hk‘w) o
2p (%) = pz(Hw) for all w: V =+ z&+, then
w 4 2t
(2) 0,141 (H) = p, (B Y) = 208" ) = 20,3 (B"),
hence, by induction on i, we have for all i

(3) p,1 () = 250",

i.e., for all i:

p,i (")

(4)
21

= p@E").

* W . w

Since p (H') = ii& (pk(H ))/k (ef. (14) in subsection 2.1) it follows that
*
o (H") = p(a").

The implication (ix) + (%), and hence the equivalence of (L)=-(x), fol-
lows from BERGE [10] (cf. LovAsz [100]).

Clearly (xii) -+ (xi) and (xiv) + (xiii). Purthermore (i) = (xi) and
(ii) -+ (xii), since for each hypergraph H we have that p(H) .xr(H) is at least
the number of points in H.

It is easy to see that, in (xiii), we lose no generality if we assume
that £ = w. Since, for w: Vv -+ 10,1}, r(") = a(A(EHY) the equivalence (xi)
++ (xiii) is clear.

< w £

Also, for w: v -+ Z+, r(H) = a(A(H)™), where £ arises from w by re-
placing each positive entry by 1. So (xiv) -+ (xii) is true. Finally, the
implication (xi) + (i) follows from Theorem 7 (Lovasz [99], cf. [ 1001,
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PADBERG [128], SAKAROVITCH [140]).

Hence the assertions (i)-(xiv) and (i')-(xii') all are equivalent. ]

Note that each of the assertions (i)-(xii) implies that H is conformal,
even if this were not required in advance (but hereditarity is still required).
For suppose H is not conformal; let V' cV be such that: (i) V' ¢ E; (ii) each
pair of elements of V' together forms an edge of H; and (iii) [v'] = k is
minimal (under the conditions (i) and (ii)). Let w be the characteristic vec—
tor of V'.Then: a(H") =1, o™ (") = %}1— =" "), r@") = k-1, Wiy YO =k,
pz(Hw} = 3, and p(Hw) = 2. This contradicts each of the assertions (i)-(xii).

A hypergraph is normal if the dual hypergraph is conormal. It follows
from Theorem 10 that H = (V,E) is normal if and only if v(H') = t(H') for
all hypergraphs H' = (V,E') with E' < E.

The perfect graph theorem is contained in Theorem 10. It also follows
that, to prove the strong perfect graph conjecture, it is sufficient to show

that if a graph G = (V,E) has no circuit C or its complement (n = 2) as

2n+1

induced subgraph, then the maximum value of VEV

is a nonnegative function defined on the vertices such that the sum of the

f(v) is an integer, where f

numbers assigned to the vertices in any clique does not exceed 1.
A straightforward sharpening of the results mentioned in Section 1 gives

that for each hypergraph H and natural number k:

(5) o, (B") = ko™ (8") for a1l w: v > =z_, if and only if

*
ka (Hw) is an integer, for all w: V =+ z:+-
Hence also

(6) o (H") = o, (H") for all w: V> Z_, if and only if
Dk(Hw) = kp*(Hw) for all w: V + Z+, and also, if and only if
W w
= pzk(H ) for all w: V =+ Z+.
What happens when we replace Z_ by {0,1} in (5) and (6)? For k = 1, 2 or 3
they remain valid (k = 1: Theorem 10 (LOVASZ [98]1); k = 2: Lovisz [102];
k = 3: LovAsz [106]), but for k = 60 we may not replace in (5) or (6) z,

by {0,1} (SCHRIJVER & SEYMOUR [1421]).
Finally we discuss some examples.

EXAMPLE 5: Bipartite graphs. Let G = (V,E) be a bipartite graph. Then G, E,
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L(G) and L{G) are perfect (Example 2). It follows from Theorem 10 that:

(i) for each function w: Vv -+ Z+, the maximum value of w(v')+w(v"), where
{v',v"} € E, is equal to the minimum number of stable subsets of V
(possibly taking a subset more than once) such that any vertex v is
in at least w(v) of these subsets;

(ii) for each function w: E - %, , the maximum value of w(e1)+...w(ek).
where el,...,ek are pairwise disjoint edges, is equal to the minimum
value of zvev £(v), where £: V > Z_such that £(v')+£(v") 2w({v',v"})
for each {v',v"} ¢ E;

(iii) each function w: E - Q+ such that egv w(e) €1 for each v ¢ V, is a
convex combination of characteristic vectors of matchings in G
(BIRKHOFF [15] and Von NEUMANN [121]).

For a survey of several linear Programming applications to bipartite graphs
see FORD &. FULKERSON [44], HOFFMAN [71] and HOFFMAN & KUEN [77].

EXAMPLE 6: Partially ordered sets. Theorem 10 also characterizes the convex
hull of (characteristic vectors of) chains/antichains in a partially ordered
set: this convex hull censists exactly of those nonnegative functions whose
sum is at most 1 on each antichain/chain.

This characterization (and also Dilworth's theorem) has been extended by
GREENE & KLEITMAN [64,65], cf. HOFFMAN & SCHWARTZ [797].

EXAMPLE 7: Graphs. Let G = (V,E) be a graph without isolated vertices, and let
E be the set Eu{{v}[v eVIu{@g}. set H = (7, E),di.8, H = 6. It is easy to see
that 94(H) = 2p2(H). Since the class of hypergraphs H obtained this way from
graphs is closed under multiplication of vertices, we derive from (6) that

P, (H) = o, (|, i.e., p,(G) = @,(G) (ecf. Lovisz [102]).

EXAMPLE 8: Matroids. Let H = (V,I) be a matroid, i.e. let I be a nonempty
collection of subsets of V such that:

(1) 41f V" € V' ¢ T then v" e I;
(ii) if v',v" ¢ I and [v'] < |v"| then V'u{v} € T for some v e vU\v',

We furthermore assume that each singleton is in I, The sets in I are called

the independent sets of the matroid. H determines a rank-function r: P(V) + =
given by

+

(7) (V") = max{|[v"||v" ¢ V' ana v" is independent},
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for V' € V. So V' € I iff r(v') = |v'].

Examples of matroids are given by:

(i) is the set of edges of an undirected graph,

(ii) is the set of edges of a connected, undirected graph,

v
I consists of all sets of edges containing no circuit;
v
1 consists of all sets of edges the removal of which does not dis-
connect the graph;
(iii) V is a set of vectors in a vector space,
I consists of all linearly independent subsets of V;
(iv) V is a collection of subsets of a finite set, ;
I consists of all subcollections of V having a system of distinct

representatives (cf. MIRSKY [116]).

For more background information about matroids see WELSH [172].
EDMONDS [32] (ef. [35]) showed, by means of the so-called greedy algo-
rithm, that, for w: Vv > z+, the maximum value of Evsv'“(v)' where V' is

independent, is equal to the minimum value of
(8) r(v1) T r(vk)

where VI.--.,Vk are subsets of V (for some k) such that each element v of

V occurs in at least w(v) sets of V1""’Vk‘ In the language of matrices,

let M be the P(V) % V-matrix such that the row with index V' e P(V) is the
characteristic vector of V'. Then Edmonds' result can be restated as: for

each w: V - 22+

P(v)

(9) max{wx| x € ZK. Mx € r} = min{yr| y ¢ zZ, .yMz wl.

Let M' arise from M by dividing any row with index V' by x (V') (and deleting
the row with index #). Then (9) implies that the polyhedron

(10) P={x20| Mx < 1}

is the convex hull of characteristic vectors of independent sets of H.

So the anti-blocking polyhedron of P is

(11) R={z z 0] Nz = 1}
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where N is the incidence matrix of H. By Theorem 1 R consists of all vectors
v < ¢ for some convex combination c¢ of row vectors of M'. So the left hand

side of the linear programming duality equality

(12} max{[z[[zzo,wzSl}=min{]yl|y20,yN = 1}

is equal to

(13) AV L o iy ot

max -
grvey TV

*
In fact, EDMONDS [28,33] and NASH-WILLIAMS [119] proved that p(H) = [p ()1,

i.e., the minimum number of independent sets needed to cover V is egqual to

(14) max
gy v

This can be used to determine the minimum number of forests needed to cover
the edges of a graph (NASH-WILLIAMS [118]; for a directed analogue see FRANK
[47]). This theory can be dualized to get, e.g., the maximum number of dis-
joint spanning forests - see EDMONDS [29], NASH-WILLIAMS [117], TurTe [162],
WELsH [172].

2.5. Fulkersonian hypergraphs

The assertions for T,v analogous to those in Theorem 10, are not all
equivalent to each other, that is, we ray not sharpen Theorem 7 by replacing
za+ by {0,1}, nor we may extend Theoren 7 by setting T = v for T = 'r*. How-

ever, there are still some equivalences.

THEOREM 11. (LOVASZ [100]) Let H = (V,E) be a hypergraph. Then the following
are equivalent:

s * .
(1) T (HY) is an integer for each w: V + {0,1}, and
(1i) w(#") = " (8") for each w: v + {0,1}.

PROOF. Since obviously (ii) =+ (i), we precve (i) ~ (ii). Suppose (i) is true
and (ii) is false. Let w: V =+ {0,1} be such that 1  (8") < (&%), and assume
lwl is as small as possible. Without loss of generality we may assume that
H=g",

So for all u: V + {0,1} we have (") = 1" (8Y) whenever u(v) = 0 for

some v € V. Let z: V =+ Q+ be such that vgl‘-: z(v) 21 for all E ¢ E, and
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*
T (H) = |z|. Let v' be a vertex such that z(v') > 0. Let u(v)
and u(v') = 0. Then

=1 4if v # v',

(1) T = Izl >0z —z(v") =uz 2 oY @EY) > ) - 1.

_ = *
Hence, since by (i) T (Hu) and t*(H) are integers, r*(H) =1+ T*(Hu). As

*
T(HY = " @Y and T(®) <1 + t(@Y) it follows that T(H) = t*(H). O
Direct consequences of Theorem 11 are:

COROLLARY 12. Let H = (V,E) be a hypergraph. Then the following two asser-

tions are equivalent:

(1) v(EY) = v EY) for a1l w: v > {0,1);
(ii) v(#") = t(#Y) for ail w: v + {0,1}.

COROLLARY 13. (cf. LOVASZ [105]) Let H = (V,E) be a hypergraph. Then the

following three assertions are equivalent:

(L) w(E") = v EY) for all w: v » Z,;
(i) v@EY) = T(Hw) for all w: V + zz+;
(iii) vztu‘*) = 2.v(H") for all w: V =+ z,.

Corollary 13 follows from Corollary 12 by applying Corollary 12 for
each B apart. Assertion (iii) can be seen in the same way as the implication
(x) -+ (vi) of Theorem 10.

A hypergraph H satisfying (i) and (ii) of Corollary 12 is called semi-
normal; if H satisfies (i), (ii) and (iii) of Corollary 12, H is called
Mengerian. It is not difficult to see that each normal hypergraph (cf. sub-
section 2.4) is seminormal.

The following theorem gives a characterization of hypergraphs H for
which the blocker B(H) is Mengerian. A k-cover of H = (V,E) is a function

£: Vv > 2Z_ such that I_ £(v) 2 k for all E ¢ E.
- VEE

THEOREM 14. Let H = (V,E) be a hypergraph. Then B(H) is Mengerian if and
only if, for each natural number k, any k-cover is the sum of k l-covers
of H.

PROOF. By definition, B(H) is Mengerian iff \J(B(H)’a) = T{B(H)'EJ , for each

£ v+ m+. Now T (B(H) Z’ equals the minimum wvalue of VEE L(v), for E ¢ E.

Morxeover, U(B{H)z) equals the maximum number k of l-covers £1" . ,Kk such
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that £_(v)+ +£k (v) < £(v) for each v € V. So, for each natural number
]

£ y ; £
k we have: for each £: Vv = Z,: T(B(H)") 2 k implies v(B(H)") 2 k, if and

only if each k-cover is the sum of k l-covers. 0

Note that the right hand side of the equivalence of Theorem 14 directly
implies (by definition of Ty (Section 2.1)) that Tk(H) =k 1(H) for all k,

that is, t(H) = T*{H)-
The relations between the several classes of hypergraphs can be wvisual-

ized in a diagram, where arrows stand for implications, and (+) denotes

£

(+) TH)T(BH)C) <£w, for all £L,w: V + {o,1},

for H = (V,E).

H seminormal

/

H Mengerian H satisfies Thm.11 (i)

/\

(2) H Fulkersonian

Ty (+)
T

B(H) satisfies Thm.11 (i)

\
/\

B(H) Mengerian

¢
\

B(H) seminormal

There are no more arrows (or equivalences) in this diagram (except for arrows
following from the transitive closure of implications). To show this, it is
enough to give an example of a non-seminormal hypergraph with Mengerian
blocker, and an example of a seminormal hypergraph whose blocker does not
satisfy (i) of Theorem 11.

The hypergraph Q&' having vertices all edges of K 4 (the complete un-
directed graph on four points) +» with edges all triangles in K4 (considered
as triples of edges) is not seminormal, but B(Q.) is Mengerian (Lovasz [100],
SEYMOUR [145]). SEYMOUR [145] conjectures that a Fulkersonian hypergraph
H = (V,E) is Mengerian if it does not contain a minor whose minimal edges
(under inclusion) form a hypergraph isomorphic to Q6 (a hypergraph H' is a
minor of H if it arises from H by a series of removals of points (i.e. mul—
tiplications by k = 0), ang contractions of points (i.e., removal of the
points from the vertex set and from the edges)). It is easy to see that any

minor of a Mengerian hypergaph is Mengerian again, Validity of this coen-
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than a superfluity of supporting evidence."). The hypergraph with four points
and with edges all three-element subsets containing a fixed point, is semi-
normal, but its blocker does not satisfy assertion (i) of Theorem 11.

Again, Theorem 11 and its corollaries can be extended to:

(3) k.t (8") is an integer for each w: V + Z,, if and only if

* W W
ket (H') = 'rk([-l ) for each w: V - za+,

and
* w W .
(4) k.w (H) = vk(H ) for each w: V =+ Z+, if and only if
tk(Hw) = \Jk(Hw) for each w: V + Z+ and also, if and only if
W W =
\)Zk(H ) = 2\Jk(H ) for each w: V + Z+.
for any hypergraph H = (V,E) (LovAsz [102,105], SCHRIJVER & SEYMOUR [1427).

There is a variety of classes of hypergraphs to which we can apply the
results obtained in this subsection (for more examples see MAURRAS [110],
woopaLL [175]) .

EXAMPLE 9: Bipartite graphs. Let H = (V,E) be a bipartite graph. It is very
easy to show that \Jz(H) = 2V(H). Since the class of bipartite graphs is
closed under multiplication of vertices we even know that v, (Hw) = Z\J(Hw)
for all w: V = Z+. Hence, by Corollary 13, t(H) = v(H), which is the con-
tent of KONIG's theorem [87].

Let K be the hypergraph obtained from the bipartite graph H by taking
as vertices all edges of H, and as edges of K all stars, i.e., all sets
{e € E|lv e el for v € V. Now K is Mengerian (see Example 16), and B(K) is
Mengerian, which follows from a result of GUPTA [67,68]: the maximum number
of pairwise disjoint sets of edges in bipartite graph, each set covering all
points, is equal to the minimum valency of the bipartite graph (this result
was also found by D. KSnig (unpublished)). Note that the class of hypergraphs
B(K) arising this way from a bipartite graph is closed under multiplication

of wvertices.

EXAMPLE 10: Network flows. Let H = (V,E) be a hypergraph with vertices all
arrows in a digraph, and edges all r-s-paths (where r and s are two fixed
vertices of the digraph). By Corollary 13, to prove FORD & FULKERSON's max-—
flow min-cut theorxrem [43] (in the integer form) it suffices to prove that
\Jz(HJ = 2v(H) for each hypergraph H arising this way from digraphs. Corol-
lary 13 then gives that T(Hw} = v(Hw) for all w: V - ZZ+. which is the
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content of the max-flow min-cut theorem.

EXAMPLE 11: Graphs. Let G = (V,E) be a graph. After proving that v4{GJ
2v,(G) (which is not difficult) and observing that the class of graphs is
Cl(;sed under multiplication of vertices, we deduce from (4) that T,(6) = Vo (G)
(TUTTE [160], cf. BERGE [12]).

GALLAT [56,57] showed that a(G)+1(G) = p(G)+v(G) = |V| (assuming that
V = UE). LOVASZ [102] observed that one proves similarly:

(s) @y (G) + T,(G) = p,(6) + v,(G) = 2fv|.

Hence "72(6} = UZ(G)" can be derived from Example 7.
BERGE [2] derived from a result of TUTTE [158,161] that

[vi+]v'|-o(v\v')
2

(6) V(G) = min
V'ev

where 0 (V\V') denotes the number of components having an odd number of ver-

tices in the subgraph of G induecd by VAV'. This result is known as the

Tutte-Berge theorem - see subsection 4.3,

EXAMPLE 12: Directed cuts. Let D = (V,A) be a digraph. A directed cut is a
set of arrows of the form (VAV',V") whenever @ # v' # V and (V',v\v') = ¢.
Here (V',V") denctes the set of arrows with tail in V' and head in V". Con-
sider the hypergraph H with vertices all arrows of D, and edges all directed
cuts.

Call a set of arrows the contraction of which makes D strongly connect-
ed, a diconnecting set. That is, a set &' of arrows is diconnecting iff
adding, for each arrow in A', an arrow in the reversed direction makes D
strongly connected. Let K be the hypergraph with vertices all arrows, and
with edges all diconnecting subsets of A. It is €asy to see that K = B(H).

In 1976 LUCCHESI & YOUNGER [108] proved that T(H) = v(H) (this was con-
Jectured by Robertson & Younger) , i.e., the minimum size of a diocmecting
set is equal to the maximum number of pairwise disjoint directed cuts (for
a proof see Example 19). Since the class of hypergraphs H obtained this way
from directed graphs is closed under multiplication of vertices, we even have
that T(Hw) = U(Hw) for each w: a -+ Z+, i.e., H is Mengerian. This implies
that H and K = B(H) are Pulkersonian. Hence t(K) = t™ (k).
by EDMONDS & GILES [37] that, in fact, t(K) = vw(K), i.e.

It is conjectured

the minimum size



FRACTIONAL PACKING AND COVERING 235

of a directed cut is equal to the maximum number of pairwise disjoint di-
connecting sets. Since the class of hypergraphs K obtained this way from
digraphs is closed under multiplication of vertices by k # 0, a simple
adaptation of the proof method for Corollary 13 shows that it is enough to
prove that, in general, v2(K) = 2v(K).

Edmonds & Giles' conjecture has been proved by FRANK [46] (cf. Example
23) in case the digraph D has a vertex from which each other vertex is reach-

able by a directed path (this result also follows from Edmonds' arborescence
theorem (Example 13)).

EXAMPLE 13: Arborescences. Let D = (V,A) be a digraph, with fixed vertex r,
called the root. An r-arborescence is a collection A' of arrows such that
each vertex in V is reachable from r by a directed path consisting of arrows
from A'. It is easy to see that a minimal (under inclusion) r-arborescence
is a directed tree.

Let H be the hypergraph with vertex set A and edges all r-arborescences.
EDMONDS [31,34] (cf. LOVASZz [105], TARJAN [152], and Example 22) proved that
T(H) = v(H), that is, the maximum number of edge-disjoint r-arborescences is
egual to the minimum "indegree" of any nonempty subset of V\{r} (Edmonds’'
arborescence or branching theorem). Here we used that the blocker XK = B(H)
of H has edges all sets containing a set of edges of the form (V\V',V') for
some § # V' < v\{r} (again, (V',V") denotes the set of arrows from V' to V").

By Menger's theorem, Edmonds' result is equivalent to: if there are k
edge-disjoint paths from r to any other vertex, then there are k edge-dis-
joint r-arborescences. A. Frank (personal communication) posed, as a conjec-

ture, a vertex-disjoint version of this theorem:

CONJECTURE. If from r to any other vertex there are at least k vertex-dis-
joint paths, then there are k r-arborescences such that, for each vertex
s # r, the (unique) paths from r to s within the respective r-arborescences

are pairwise vertex-disjoint (clearly, except for their endpoints).

FRANK [45] also relates Edmonds' theorem to Tutte's theorem on the
maximum number of disjoint spanning trees in a graph (cf. Example 8).

Since the class of hypergraphs H cbtained this way from digraphs is
closed under multiplication of vertices it is even true that @) = vE")
for all w: B -+ Z So H is Mengerian and Fulkersonian, hence also K = B(H)
is Fulkersonian. FULKERSON [52,53] (cf. LOVASZ [106]) showed that K is also

Mengerian, i.e., the minimum weight of an r-arborescence is egqual to the
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maximum number of sets of the form (V\V',V') (V' < V\{r}) such that no arrow
occurs in more of these sets than its weight (for any integral weight func-

tion defined on the edges) (see Example 22).

EXAMPLE 14: Binary hypergraphs. A hypergraph H = (V,E) is called binary if
21652653 € E whenever El' EZ' EB ¢ E (A means symmetric difference); so

the characteristic vectors of the edges may be regarded as vectors in a co-
set of a chain-group modulo 2 (for characterizations of binary hypergraphs,
see LEHMAN [94] and SEYMOUR [1141]).

It is easy to see that the class of hypergraphs § arising from binary
hypergraphs H is closed under multiplication of vertices. I.f H is binary,
then B(H) = ¥ where K has edges all subsets of V intersecting each edge of
H in an odd number of points. So K again is binary, and B(K) = ﬁ.

LOVASZ [102] proved that each binary hypergraph H has T,(H) = 2t (H).
SEYMOUR [145] proved that a binary hypergraph is Mengerian if and only if
H has no minor isomorphic to Q6.

The class of binary Fulkersonian hypergraphs has, as yet, not been
characterized this way, despite its nice structural pProperties (the class
is closed under taking blockers). SEYMOUR [146] conjectures that a binary
hypergraph is Fulkersonian if and only if it does not contain a minor whose
minimal edges are "isomorphic" to: either the lines of the Fano-plane, or
the edge-sets of odd circuits of Ks, or the minimal edge-sets in K inter-

secting each odd circuit.

5

(SEYMOUR [145] in fact proved: let H = (v,I) be a matroid, and let C
be its set of circuits (i.e., minimal dependent sets); then for each v ¢ V
the hypergraph W\vl, {c\v}|v e c e C}) is Mengerian if and only if H is a
binary matroid not containing the dual of the Fano-matroid as a minor (binary
and minor, for the moment, in the matroid sense). This generalizes Menger's
theorem for undirected graphs. In this light it is interesting to see that

MINTY [115] proved, for collections C and D of subsets of a set V: C and T

are the collections of circuits and cocircuits of a matroid, respectively,

if and only if for each v in V the hypergraphs v}, {c\{v}|v e C ¢ Ch
and (V) {v},{D'\{v}fv € D e D}) have, as edges,
blocker of each other.
v {c\{vl|v e c e C
duals.)

the minimal edges of the
So the class of matroids for which the hypergraphs
) are Fulkersonian (v e V) is closed under taking

We give four examples of binary hypergraphs,

each of them being de-
rived from a graph G = (v,E).
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(ii)
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Let r and s be two vertices of G. Let E consist of those subsets E'

of E such that the graph (V,E') has an even valency at each point ex-
cept at r and s. The hypergraph H = (E,E) is binary, and the minimal
edges are the r-s-paths. By Menger's theorem H is Mengerian, and also
B(H) is Mengerian (triviallwv).

Let T be an even subset of V and call a subset E' of E a T-join iE T
coincides with the set of vertices having an odd valency in the graph
(Vv,E'). Let E be the collection of T-joins. Then the hypergraph H =
(E,E) is binary.

A subsets E' of E is called a T-cut if E' is equal to &(V') for some
V' € Vwith |V' n T| odd (8(V') is the set of edges intersecting V'

in exactly one point). Let F consist of all T-cuts. The hypergraph

K = (E,F) again is binary. Furthermore g = B(K) and ¥ = B(H). SEYMOUR
[148] proved that, if G is bipartite, then uz(K} = 2v(K); this implies
a result of LOVASzZ [102] that, if G is arbitrary, Va(K) = 2v, (K) (this
implication can be seen by replacing each edge of G by two edges in
series, thus obtaining a bipartite graph). Since the class of hyper-—
graphs K obtained this way from graphs is closed under multiplication
of vertices (this is not so if we restrict ourselves to bipartite
graphs) (4) implies that uz(K) = Tz(K). As K is binary we know that
TZ{K) = 21(K), hence T(K) = 5VZ(K) ((a) moreover if G is bipartite then
T(K) = vw(K); (b) if G = K4 and T = V then T(K) # v(K); () if we have
T =V, then T(K) is equal to the minimum size of a V-join; in that
case T(K) = %|v| if and only if G contains a perfect matching (cf.
subsection 4.3) - LOVASZ [102] showed that Tutte's 1-factor theorem
can be derived in this way).

In particular, T(K) = T*(K), hence by Theorem 7 T(H) = T*(H) (EDMONDS
& JOHNSON [39], extending the "Chinese postman problem"), i.e., since
the class of hypergraphs H obtained this way is closed under multipli-
cation of vertices, H and K are Fulkersonian (but, in general it is
not the case that ﬁvz(H) = 1(H)).

Let r,s,r',s' be four distinct vertices of G. Let E be the collection
of all subsets E' of E such that, in the graph (V,E'), either r and s,
or r' and s' are the only two vertices of odd valency. So the minimal
elements of E are the r-s-paths and the r'-s'-paths. Clearly, the hyper-
graph H = (E,E) is binary.

Let F be the collection of all subsets E' = §(V') of E such that

iv' n {z,s}l = |v* n {xr',s'}| = 1. Again K = (E,F) is a binary
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hypergraph. Furthermore H = B(K) and X = B(H) .

LOVASZ [104] proved that, if G is Eulerian, then v, (H) = 2v(H); this

implies that, for arbitrary G, v, (H) = 2\J2(HJ (make G Eulerian by re-—

placing each edge by two parallel edges). Since the class of hypergraphs

H obtained this way is closed under multiplication of vertices we know,

by (4), that 1,(H) = v,(H). Moreover, since H is binary T,(H) = 21(H),

hence T(H) = Euzm), which is the content of HU's two-commodity-flow

theorem [811. So, if G is Eulerian, then T(H) = v(H) , which is a re-

sult of ROTHSCHILD & WHINSTON [137]: the maximum number of edge-dis—

Jjoint paths connecting r with s, or r' with s' in the Eulerian graph

G is egual to the minimum size of a collection of ed‘g«_as whose removal

disconnects r from s, and r' from s'.

Similarly, SEYMOUR [147] proved that, if G is bipartite, then vy (K) =

= 2v(K); hence, by an analogous reasoning, we know that T(K) = BUZ(K)

= v(K) if G is bipartite).

The classes of hypergraphs i and { arising this way are closed under

multiplication of vertices, so it follows that H and K are Fulkersonian.
(iv) Suppose V partitions into R;S,R' and S'. Let H be the hypergraph with

vertex set E, and edges all subsets E' of E such that, in the graph

(V,E'), either there is an odd number of points with odd valency in

each of R and S and an even number of points with odd valency in each

of R' and S', or conversely.

So the minimal edges of H are the paths connecting either R with S or

R' with §'. It is easy to see thit H is binary.

KLEITMAN, MARTIN-LOF, ROTHSCHILD & WHINSTON [85] proved that T(H) =

= Vv(H). This can be derived from “2 (H) = 2vu(H): the class of hyper-

graphs H arising this way is closz2d under multiplication of vertices,

hence, by Corollary 13, T(H) = v(g).

EXAMPLE 15: S-paths. Let G = (V/.E) be a graph and let s be a subset of V.
Call a set of edges an S-path if it forns a Path between twe different points
©f S. Let H be the hypergraph with vertex set E and edges all S-paths. LOVASZ
[104] proved that 1'2(1-1) = ule); since the class of hypergraphs obtained this
way is closed under multiplication of vertices it is sufficient to Prove that
V() = 2y, (m). -

MADER [109] showed that

MVIH...+ﬂ(Vk1-e(V\(v1u. ..uvk))

(7) V(H) = min
2
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where the minimum is taken over all collections of pairwise disjoint sets
VI,...,Vk such that 8 c vlu...uvk and each Vi intersects S in exactly one
point (so k = |8]|); A(V') is the number of edges intersecting V' in exactly
one point, and e(V') denotes the number of components C of the subgraph in-
duced by V' for which A(C) is odd.

Mader thus proved, inter alia, Gallai's conjecture that v(H) 2 4%t (H)
(cf. LOVASZ [104]). Mader's result can be derived also from the matroid
parity theorem for representable matroids of LOVASZ [107].

3. TOTAL UNIMODULARITY

3.1. Totally unimodular matrices

In the preceding section one of the main problems was to decide whether
certain polyhedra have integral vertices, or, more generally, whether each
of their faces contains integral vectors. Therefore, it would be nice to
have a characterization of pairs of matrices M and vectors b such that each

face of the polyhedron
(1) P = {x| Mx < b}

contains integral vectors. This problem has, as yet, not been solved in
general; but a nice result in this direction was found by HOFFMAN & KRUSKAL
[76]. A matrix M is called totally unimodular if each square submatrix of M

has determinant +1, 0 or -1; it follous that M is a {+1,0,-1}-matrix.

THEOREM 15. (HOFFMAN & KRUSKAL [76l1) If M is a totally unimodular matrix
and b is integer-valued then each face of the polyhedron P = {x| Mx £ b}

contains integral vectors.

PROOF. Let M be a totally unimodular matrix and let b be an integral vector.
Let F = {x| M'x = b'} be a minimal face of P (cf. Section 1.2), where the
matrix M' consists of some rows of M and b' consists of the corresponding
entries of b. We may assume that the rows of M' are linearly independent.
Let M' = Miné, where Mi is nonsingular. Since detMi = =1 we find that the
vector

2) X = ((gi) ).b'
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is integer-valued. Since M'x = b', the face F contains an integral vector. []

Let M be a totally unimodular matrix. Since the matrix

{ b
(3) i

M
\~M
is totally unimodular as well, it follows that for all integral a,b,c and 4,
each face of the polyhedron {x| ¢ €< x £ d, a £ Mx £ b} contains integral
vectors. In fact, Hoffman & Kruskal showed that this characterizes totally

unimodular matrices.

THEOREM 16. (HOFFMAN & KRUSKAL [76], VEINOTT & DANTZIG [1651) A matrix Mis
totally unimodular iff for each integral vector b each face of the polyhedron

ix] x = 0, Mx < b} contains integral vectors.

One implication follows directly from Theorem 15; the reverse implication
is more difficult to prove - see e.g. GARFINKEL & NEMHAUSER [59].

In particular, it follows from Theorem 15 that if M is totally uni-
modular and b and w are integral vectors, then both sides of the linear

programming duality equation
(4) max{wx| x 2 0, Mx < b} = min{yb|l v 2 0, yM = w}

can be solved with integral x and Y-

Other characterizations of a matrix M to be totally unimodular are:

(i) each collection of rows of M can be split into two classes such that
the sum of the rows in one class, minus the sum of rows in the other
class, is a 0,fl-vector (GHOUILA-HOURT [601);

(i) M is a (0,%1)-matrix with no nonsingular submatrix containing an even
number of nonzerc entries in each row and in each column (CAMION [171]);

(iii) M is a (0,*1)-matrix with no square submatrix having determinant +2
(Gomory, cf. camron [17]).

For more results concerning totally unimodular matrices, cf. COMMONER [22],
HOFFMAN (73], PADBERG [129].

Hoffman & Kruskal's result can be applied to the following examples.
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EXAMPLE 16: Bipartite graphs. The incidence matrix of a graph is totally
unimodular iff the graph is bipartite. Let M be the incidence matrix of

the bipartite graph G = (V,E). By taking in (4) w = 1 and b = 1 one gets
(5) max{lx| |x € 2, mx < 1} = min{]yl | ¥ 2 1}
4! = mini |y Yy € %+. yM = 1

which is the content of the theorem of KONIG [87] and EGERVARY [42]: the
maximum number of pairwise nonadjacent points is equal to the minimum num-
ber of edges covering all points, i.e., a(G) = p(G).

Similarly, one has that
v E -
(6) min{|x| | x ¢ Z_, Mx > 1} = max{lyl |y ¢ z, yM <1}

or: the maximum number of pairwise disjoint edges is equal to the minimum
number of points representing each edge (KONIG's theorem [87]), i.e. T(G) =
= v (G).

Clearly, by letting w and b arbitrary, we can obtain more general re-—

sults, e.g., for all w: E -+ Z+
5 E v
(7) min{yw|y e Z/, yM 2 1} = max{Ix||x € Z, , Mx S wl

which implies that the hypergraph K of Example 9 is Mengerian.

EXAMPLE 17: Network flows. The incidence matrix of a digraph D = (V,A) is
the A %X V-matrix M with:

Ma - =1, if v is head of arrow a,
r
(8) Ma = =-1, if v is tail of arrow a,
= ), otherwise.
a,v

The incidence matrix of a digraph is totally unimodular (this was first con-
jectured by POINCARE [132]).

Let r and s be two vertices of a digraph D = (V,A), and let D' be
derived from D by adding a new arrow a' with tail s and head r. Let M' be

the incidence matrix of D'. Consider the linear programming duality equation

(9) max{y£{0 <y < 4, yM' £ 0} = min{dz|z 2 0, x 2 0, z+M'x 2 £}
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where f is a vector with a one in the position of the new arrow a', and
zeros in the other positions, and d is any integral vector.

We may view d as a capacity function defined on the arrows of D' , and
y as a flow function. The condition "yM' < 0" can be interpreted as saying
that no vertex of D receives a larger amount of flow than departs from it.
Since the total amount of incoming flow is equal to the total amount of out-
going flow, yM' = 0 implies yM' = 0. The value of yf equals the flow in D'
through the new arrow a'. So the maximum value of yf is equal to the maxi-
mum flow through the arrows of D from r to s, subject to the capacity func-—
tion d (restricted to D), if we take d(a') large enough. By the total uni-
modularity of M this flow y can be taken to be integral.

The right hand side of (9) is equal to the minimum val.ue of dz where

Z: A =+ E+ and x: V =+ za+ such that
(10) z(a) + x(w) - x{(v) =2 0

for each arrow a = (v,w) of D, and z(a')+x(r)-x(s) = 1, by the definition of
f. If d(a') is laxge enough, a pair z,x achieving the minimum has z{a') =0,
so x(xr) 2 1 + x(s). It follows straightforwardly that the minimum value of
dz is equal to the minimum capacity of an r-s-disconnecting set.

So from the total unimodularity cf M one can derive FORD & FULKERSON's
max-flow min-cut theorem [43]: the maximum amount of flow from r to s sub-
ject to the capacity function 4 is equal to the minimum capacity of an r-s-
disconnecting set. If all capacities are integers then the optimal flow can
be taken to be integral ("integer flow theorem"). If each capacity is 1 then
Menger's theorem follows.

If we impose not only an upper bound d, but also a lower bound function
c for the flow through arrows, where 0 < ¢ < d, (9) gives: the maximum flow
in D from r to s subject to the upper kound 4 and the lower bound ¢, is
equal to the minimum value of

(11) ) allv,w)) - ) cl(w,v))
(v,w)eE (w,v)eE
vev' ,weV" weV",vev!'

where V', V" partitions V such that r € V' and s ¢ V" (cf. HOFFMAN [711]).
If we impose only lower bounds and no upper bounds one can derive, inter

alia, Dilworth's theorem (Example 3) (cf. also HOFFMAN [72] and HOFFMAN
& SCHWARTZ [79]).
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Let D = (V,A) be a directed graph, and let A' be a set of arrows

together forming a spanning tree for D. Let M be the A' X A-matrix given by

Ma o 0, 4if the unique wv-w-path in A' does not pass a;
r

(12) Ma e = 1+ if the unique v-w-path in A' pass a forwardly;
r

Ma - -1, if the unique v-w-path in A' pass a backwardly;
r

for a € A' and e = (v,w) € A. Then M is totally unimodular; this can be de-

rived from the above by using elementary linear algebra arguments (TUTTE
(163], cf. BONDY & MURTY [16]).

3.2. Unimodular, balanced and normal hypergraphs

A hypergraph H = (V,t) is called unimodular if its incidence matrix is
totally unimodular. H is balanced if for all El""'Ek' X € E1 n Ez, S
xk_1 € Ek—l n Ek, xk € Ek n El' where k is odd, there exists an Ei(I =i k)
containing at least three elements from KyrmenrXy . Formulated otherwise, H
is balanced iff its incidence matrix does not contain an odd-sized square
submatrix with exactly two ones in each row and each column. It follows from
Gomory's and Camion's characterizations of totally unimodular matrices (sub-
section 3.1) that each unimodular hypergraph is balanced.

Unimodular and balanced hypergraphs form, in a sense, a mixture of

hypergraphs "nice" for o,p-problems and those "nice" for T,v-problems.

Berge and Las Vergnas characterized balanced hypergraphs. A hypergraph

H' = (v',E') is called a partial subhypergraph of H = (V,E) if V' c Vv and
E' < {E n V'|E € E}.

THEOREM 17. (BERGE [8,9], BERGE & LAS VERGNAS L14]) Let H = (V,E) be a

hypergraph. The following assertions are equivalent:

(i) H is balanced;

(ii) T(H') = V(H'), for each partial subhypergraph H' of H;
(iii) a(H') = p(H'), for each partial subhypergraph H' of H;
(iv) +y(H') = r(H'), for each partial subhypergraph H' of H;
(v) q(H') = &8§(H'), for each partial subhypergraph H' of H;
(vi) «k(H') = x'(H'), for each partial subhypergraph H' of H;
(vii) e(H') = &8'(H'), for each partial subhypergraph H' of H.
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4

Here: Y(H') = the minimum number of colours needed to colour the vertices
of H' such that no edge contains the same colour twice;

r(H'} and r'(H') denote the maximum and minimum size, respectively, of edges
of H';

S§(H') and §'(H') denote the maximum and minimum valency, respectively, of H';

g(H') = minimum number of collections of pairwise disjoint edges, such that
each edge is in at least one of these collections;

¥ (H') = maximum number of pairwise disjoint subsets of the vertex set of H',
each of them intersecting each edge;

e(H') = maximum number of pairwise disjoint edge collections, each covering

the vertex set of H'.

PROOF. To prove that each of (ii)-(vii) implies (i) is easy: if H is not
balanced H contains, as a partial subhypergraph, an odd circuit graph, for
which none of (ii)-(vii) is walid.

For a proof of (i) + (ii) we refer to BERGE & LAS VERGNAS [14] or BERGE
[7]. Since the dual of a balanced hypergraph is trivially balanced again, a
proof of (i) + (ii) is also a proof of (i) =+ (iii).

In fact, (iii) is equivalent to: each partial subhypergraph is conormal.
So, by Theorem 10, for each partial subhypergraph H' the anti-blocker A(H')

is conormal, i.e.,

(1) YEH') = p(AH")) = a(a(H')) = r(8').

So (iii) implies (iv). Since (iv) implies that each partial subhypergraph
of H is conformal, also (iv)} =+ (iii). Since (v) arises from (iv) by re-—
placing H by its dual hypergraph, it follows that (i)-(v) are equivalent.
For the equivalence of (vi) and (vii) to (1)-(v) we refer to BERGE [7]. [

A graph is balanced iff it is bipartite, so Theorem 17 can be considered
as extending several theorems of KONIG [86,87], cuera [67,68] (cf. Examples
2, 5 and 16).

It follows from Theorem 17 that any balanced hypergraph is normal and

conormal. The relations between some classes of hypergraphs are represented

by the following diagram, where an arrow denotes implication. There are no

more arrows other than those arising from making the
BERGE [ 7]).

transitive closure (cf.



FRACTIONAL PACKING AND COVERING 245

H conormal
(2) H balanced—s H normal — s H seminormal ——H satisfies

A y ;
H unimodular’ — , H Mengerian -»H Fulkersonian’ .m-11(1)

We close this section with a rather technical theorem surveying the charac-
terizations and interrelations given so far, in the language of matrices (cf.
PADBERG | 127], FULKERSON, HOFFMAN & OPPENHEIM [54]). If in vector b the entry
@ occurs then the rows in the inegquality Mx £ b corresponding to = do not
impose any condition on x. Similarly if we minimize yb then we take any en-

try of v to be 0 if the corresponding entry in b is =.

THEOREM 18. Let M be an mxn-(0,1)-matrix.

(a) The following are eguivalent:

(1) M is the incidence matrix of a unimodular hypergraph;

(ii) Vb € ZT;VW € ZT min{ybiy =20, yM = w} is achieved by an integral y;
(iii) Vb € Z&f.Vw € Zi max{wx|x 20, Mx € b} is achieved by an integral x;
(iv) Vb € ET,V\M’ € Zi max{ybly =0, yM<w} is achieved by an integral y;
(v) Vb € Zf,‘v’w € zai min{wx|x =0, Mx > b} is achieved by an integral x.

(b) The following are eguivalent:
(1) M is the incidence matrix of a balanced hypergraph;
(ii) W¥be{1l,=}", vwe{0,1F min{yb|ly 20, yM > w} is achieved by an integral y;
(iii) V‘be'[l,w}m,WsEZE min{ybly # 0, yM 2 w} is achieved by an integral y;
(iv) Vbe{i.“}m,‘u’we{o,l}nmax{wxixz 0, Mx <b} is achieved by an integral x;
(v) \fbe{l,m}m,szzzn max{wx|x =0, Mx < b} is achieved by an integral x;
(vi) Vbs{o,l}m,Vwe{I,w}n max{ybly 20, yM <w} is achieved by an integral v;
(vii) V]le“;r Vwe{l,=} max{ybly >0, yM < w} is achieved by an integral y;
{viii)Vbe{O,l}m,We{l,w}nminth!xEO, Mx > b} is achieved by an integral x;
{ix) \ﬂxzf, Vwe{l,m}nmin{wxlxz 0, Mx 2 b} is achieved by an integral x.
(c) The following are eguivalent:
(i) M is the incidence matrix of a conormal hypergraph;
(ii) 4if b=1, Ywe {0,1}" min{ybly =0, yM> w} is achieved by an integral vy;
(i1ii) if bZ1, Vwe Z: min{yb|ly 20, yM> w} is achieved by an integral y;
(iv) if b=1, Ywe {0,1}" max{wxix 20, Mx <b} is achieved by an integral x;
(v) if bsl,VYwe E‘Z: max{wx|x >0, Mx < b} is achieved by an integral x;
(@) The following are equivalent:
(i) M is the incidence matrix of a normal hypergraph;
(ii) Vbe {0,1}™, if w31, max{ybly 20, yM<w} is achieved by an integral y;
(iii) Vb e ZET, if w=1, max{ybly 20, yM s w} is achieved by an integral y:
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¥be {0,1}", if w=1, min{wx|x 20, Mx 2b} is achieved by an integral x;

(iv)

() Vbez®, if wil, min{wxix20, Mx2b}is achieved by an integral x.
(e) The following are equivalent:

(1) M is the incidence matrix of a Fulkersonian hypergraph;

(ii) 4if b1, VWwe Zi min{wx|x 20, Mx 2 b} is achieved by an integral x.
(f) The following are equivalent:

(1) M is the incidence matrix of a Mengerian hypergraph;

(ii) iIf b1, VWw € Z: max{ybly =0, yM<w} is achieved by an integral y.

(g) The following are equivalent:
(i) M is the incidence matrix of a seminormal hypergraph;

(ii) if b1, Vwe {0,1}" max{ybly 20, yM<w} is achieved by an integral y.
4. SUBMODULAR FUNCTIONS AND NESTED FAMILIES

In this section we exhibit a method of proof designed by EDMONDS & GILES
[37], based on ideas of EDMONDS [32], LOVASZ [105] and N. Robertson. We shall
not give a general description of this method but present three instances of
its employment. The first one, duie to Edmonds & Giles, is based on defining
a submodular function on a "crossing" family, and is applicable to network
flows, matroids and directed cuts. The second one, due to FRANK [46], defines
a supermodular function on a "kernel system", yielding results again for
flows and directed cuts, and for arborescences. The third instance applies

Edmonds & Giles' method to matchings in graphs (SCHRIJVER & SEYMOUR [141]).

4.1. Submodular functions on graphs

The results in this subsection are based on EDMONDS & GILES [37]. Let
D = (V,R) be a digraph. Call a collection F c P(V) crossing if

(1) TUeF, TnU#@, TUU# Vimplies TanUe FandT u U ¢ F.
A function f: F + @ is submodular if
(2) £(T) + £(U) = £(TnU) + £(TUU)

whenever T, U, Tn U, T u U ¢ F.

Suppose we have a crossing family F < P(V) and a submodular function f on

F. Furthermore suppose there are functions d,b,c: A - D. Consider the follow-
ing problem.
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(3) What is the maximum value of cx, where x is a "flow" function
defined on the arrows such that:

(i) 4 = x € b;

(ii) for each T € F the loss of flow is at most £(T), i.e., the
total amount of flow going out of T, minus the total amount
of flow coming into T is at most f£(T)?

When does an integer-valued flow exists?

We remark that we do not require that in each vertex the amount of incoming
flow equals the amount of outgoing flow. By taking F = {{v}|v e V} and £=0
problem (3) becomes a problem about this "classic" form of flow. So this is
one of the problems derivable from (3) but there are more; we discuss them

at the end of this subsection.

We can put problem (3) in the language of linear programming. To this
end let M be the F x A-matrix with

MT " 1, if the tail of a is in T and its head is not in T,

r

4

(4) l"‘I‘..a.
M
T,a

i

-1, if the head of a is in T and its tail is not in T,

= 0, otherwise,

for T € F and a € A. Now condition (ii) of (3) is equivalent to: Mx s f.
So (3) asks for

(5) max{cx|d < x s b, Mx s £}

which is, by the Duality theorem of linear programming, equal to
. ) A F

(6) min{zb-wd+yf|z,w € Q,YeQ, z-w+yM=cl

Now we can formulate Edmonds & Giles' result:

THEOREM 19. (EDMONDS & GILES [37]) If b, d, c and f are integral then both

(5) and (6) have integral solutions x, z, w and y.

REMARK. It follows that if only b, 4@ and f are integral then (5) has an
integral solution x; if only c is integral, then (&) can be solved by in-

tegral z,w,¥y.
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DESCRIPTION OF THE METHOD OF PROOF

A collection F' of subsets of V is called cross-free if for all e Fos
(7) TcU orUcT, or TNnU=@, or TUuU=V.

By induction on |F'| one can prove: a collection F' is cross—free if and
only if there exists a directed tree, with vertex set V' and arrow set By
and a function ¢: V + V', such that for each set T in F' there is an arrow
a in the tree with the Property: T consists exactly of all v € V such that
the arrow a points to ¢ (v) (i.e., such that, if we should remove a from the
tree, ¢(v) is in the same component as the head of a). In fact one can make
2 one-to-one correspondence between F' and the arrows of the tree.

Call a vector y ¢ gf cross-free if the collection {T ¢ FIyT > 0} is

cross-free.

Step 1. The minimum (6) is achieved by some z,w,y where v is cross—free.

PROOF. Let z,w,y achieve the minimum, so that

(8) ) Yoo ITI. IV\T] is as small as possible.
TeF

We prove that y is cross-free. For suppose . that ¥ 2 Yy > 0, for T,U ¢ F,
such that T¢ U4 T, TnUZ@and T u U # V. Since Fis crossing, T n U ¢ F
and T U U e F. Now let yv': F + Q, be given by

L Q, fo= -
- T, Yp = Yp¥ye
Yrau = Ypaut¥ye Yrou = Youu¥yr

and y' coincides with Y in the remaining coordinates. Straightforward check—
ing shows that y'f < YE, v'M = yM (so z,w,y"' achieve the minimum (6)), and

(1 ) j Y . I I - i \ I - -
0 Ef.’.F !T T VAT E YT I T , I V \Ti
contradicting (8). O

Step 2. If ¢ is integral the minimum (6) is attained by integral Z,W,¥y.

PROOF. Let Z,w,y achieve (6) such that y is cross-free. Let M' ang f£' arise
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from M and f by deleting rows of M and entries of f, respectively, corres-
ponding with the O-coordinates of y. So the rows of M' correspond to the
cross-free family F' = {T ¢ F[yT > 0}. Thus (6) is equal to

(11) min{zb-wd+y'f'|z,w QE, ¥' € QEI, z-w+y'M' = c}.

Straightforward checking, using the definition of M, the tree representation
of cross—-free families and Example 17 (last paragraph), shows that M' is
totally unimodular. Hence (11) can be attained by integral z,w,y'. By length-
ening y' with zero-coordinates, thus getting y, we obtain an integral solu-

tion z,w,y for (6). )

Step 3. If c¢,d,b and £ are integral, both (5) and (6) are attained by

integral x,z,w,y.

PROOF. Since we have proved that for each integral ¢ the minimum (6) has an

integral solution, by Theorem 3 (or 4) also for each ¢ the maximum (5) has

an integral solution x. |

Theorem 19 can be restated as: for integral b,d and f the system of

linear inegualities

(12) b=<xs=sd, Mx=< £

is totally dual integral (cf. subsection 1.4).

The theorem of Edmonds and Giles has been extended to so-called lattice
polyhedra by HOFFMAN & SCHWARTZ [80], HOFFMAN [74,75] (cf. KORNBLUM [88,
89,90]). See also JOHNSON [83].

We now give some applications of Theorem 19.

EXAMPLE 18: Network flows. If we take F ={{v}|v ¢ vV} and £ = 0, the equal-
ities (5) and (6) pass to those treated in Example 17.

EXAMPLE 19: Directed cuts. Let D = (V,A) be a digraph. Let F be the collec-
tion of subsets V' of V such that @ # V' # V and no arrow leaves V'. So the
sets (V\V',V'), for v' ¢ F, are exactly the directed cuts of D (Example 12).
It is easy to check that F is a crossing family. Also the function f = -1
(defined on F) is trivially submodular. Taking b = 0, d = -=» (or very small),
c = 1 Theorem 19 passes into the theorem of LUCCHESI & YOUNGER [108]: the
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maximum number of disjoint directed cuts is egual to the minimum size of a
set of arrows intersecting each directed cut (this was proved for bipartite

directed graphs by McWHIRTHER & YOUNGER [112]). For (5) = (6) changes to

(13) max{|xi| x €0, Mx < -1} = min{-iy|| y 2 0, yM =< 1}
i.e.,
(14) min{|x|| x 20, Mx = 1} = max{ly|| y 2 0, yMm < 1},

both sides still having integral solutions x and y. The left hand side of
(14) is equal to the minimum cardinality of a set intersecting each directed
cut (a diconnecting set), and the right hand side equals the maximum number

of disjoint directed cuts.

EXAMPLE 20: Matroids. Let (V,Il) and (V,Iz) be matroids, with rank-functions
:*1 and Iy respectively. The theorem of Edmonds & Giles can be used to prove
EDMONDS' intersection theorem [32] (cf. TUTTE [164]) giving the maximum size
of a set in 1'1 n 12. This can be done as follows.

Let vl and v2 be disjoint copies of V, and make a digraph D with ver-
tex set VI u V2 by drawing an arrow from any point in V1 to its correspond-
ing point in V,. Let F be the collection

(15) F = {Vi'vi c vl}uw1 u vé] v;_ c v2},

which is crossing. Let f: F » Z_ be given by

£(v!) =x,(V!}, for v! c v_,
(16) 1 171 1 1
T = ] '
f(vluvz) r, szzj ¢ For vy v,
(lesing no generality we assume that xy (Vl) = x5 ("2”- Then £ is submodular

(this can be derived from the well-known submodularity of ry and rz) . Now
let ¢ 21, d=20, and b = 1. Then (5) becomes

(17) max{|x|| 0 < x 1, Mx < £}

and, since an integral solution x exists, this is the maximum cardinality

of a set in Il n Tz. Expression (6) equals
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(18) min{|z| + y£| z,y 2 0, z+yM = 1}.

This is (again since (6) has integral solutions) the minimum value of

1 k 1 z
19 v | +
(19) | " £y (V) # e T V) 4 r, (V) oLl 4 r, (V)
such that vV = vouv} (Y (O VTUVi U s vg. But always rlcvoj < [vol,
1 1 k 1 L
r, (V.,) + ... + Vk = e
1( : 21( 1) rltvl u u vl) and x2(v§) Foeu. + rztvz) >

rl(V; U ... u VZ), hence the minimum value of (19) is equal to the minimum
value of rl(V') + r2(v“), where V', V" partitions V. So Edmonds’' matroid
intersection theorem can be derived: the maximum cardinality of a common

independent set is equal to

(20) ﬁin (rl(V‘) + r2(v\v')).

vey
Of course, by taking c arbitrary, the Edmonds-Giles theorem gives the maxi-
mum weight of a common independent set as well (cf. EDMONDS [32,33], LAWLER
[92]1). A corollary is that the intersection of the convex hulls P1 and P2
of all characteristic vectors of independent sets in T1 and 12' respectively,
only has integral vertices. Also results on "polymatroids" are derivable -
see EDMONDS & GILES [37]. (For other extensions of Edmonds' matroid inter-
section theorem see CUNNINGHAM [23] and McDIARMID [111] (proving a conjec-

ture of FULDKERSON [50], cf. WEINBERGER [170,1711).)

4.2. Kernel systems on directed graphs

A second framework for proving min-max theorems, having many features
in common with the proof method described above but with a number of diffe-
rent applications, has been drawn up by FRANK [46].

Let D = (V,R) be a directed graph, with a fixed vertex r, called the
root. For subsets U of V, the indegree p(U) and cutdegree §(U) of U is the
number of arrows entering U and leaving U, respectively. A collection F of

subsets of V\{r} is called a kernel system with respect to D if

(i) p(U) >0 for all Ue F, and
(ii) if T,Uu e Fand Tn U # @, then Tn U e F and T u U ¢ F.

(1)

A function £: F + @ _ is supermodular if
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(2) £(T) + £(U) < £(TnU) + £(TuU)

whenever T,U ¢ F and T n U # @.
Suppose we have a kernel system F and a supermodular function f on F.

Furthermore suppose there is a function c: A -+ Q+. Consider the problem:

(3) What is the minimum value of cx for a "flow" x: A = @, such
that, for each T ¢ F, the total amount of flow coming into T
is at least £(T)?

When does an integral optimal flow exist?

Again, we delay the discussion of particular instances of this problem until
the end of this subsection.

First we put the problem in the language of linear programming. Let M
be the F x A-matrix with

MT 5 1, if the head of a is in T and its tail is not in T.

(4) <

MT = 0, otherwise,
;2

for T ¢ F and a ¢ A. The condition mentioned in (3) is equivalent to:
Mx = f. So (3) asks for

(5) min{ex| x 2 0, Mx = £}

which is, by the Duality theorem of linear Programming, equal to
F

(6) max{yf] y ¢ Q+, ¥M < c}.

If y is integral and ¥YM £ ¢, ¥y can be interpreted as a subcollection F' of
F, possibly taking sets repeatedly, such that no arrow a enters more than
c(a) of sets in F'.

Now Frank's theorem is:

THEOREM 20. (FRANK [46]) If ¢ and f are integral then both (5) and (6) are
achieved by integral x and Y.
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DESCRIPTION OF THE METHOD OF PROOF

Call a collection F' of subsets of V\{r} laminar if, for all T,U e Fr,
TecU,erUceT, or TnU-=@. Laminar collections again have a nice, tree-
like structure; their Venn-diagram is "planar". Laminar collections can be
split up into levels. The first level consists of all maximal (with respect
to inclusion) sets in F'; the (i+1)-th level consists of all maximal sets
in F' properly contained in some set of the i-th level. Each level consists
of pairwise disjoint sets.

Each laminar collection, being cross-free (subsection 4.1), has a tree-
representation by a directed tree; this tree can be taken to be rooted, i.e.,
the tree contains a vertex from which directed paths are going to any other

vertex of the tree.

; ; :
A vector y € @ is called laminar if the collection F' = {T ¢ FIyT> 0}
is laminar.

Step 1. The maximum (€) is achieved by some laminar y.

PROOF. Let y achieve the maximum (6) such that

(7) ) yT.ITi.[V\T1 is as small as possible.

Tef
Suppose y is not laminar, and let T,U € F be such that Yo 2 Yy > 0,
TnU#@ and T ¢ U ¢ T. Now let

= L -
© y,; 0, Yp = Yp ¥y

£ o= + e
Yoau T Yoau™Yur Ypou T YougtYur

and let y' coincide with y in the remaining coordinates. Straightforward
checking shows that y'f = yf, y'M = yM (so y' achieves the maximum (6)) and

(9) 3 oyrdrl.inel < ¥ oy ITl. v\t
TeF T TcF T

contradicting our assumption (7). O

Step 2. If c is integral the maximum (6) is achieved by an integral y.

PROOF. Let y achieve the maximum (6) such that y is laminar. Let Fr =

{T € FlyT > 0} and let M' and f' arise from M and f by deleting rows and
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entries corresponding with positions whose index is not in F'. So (6) is

equal to

, F' ,
(10) max{y"f'| y' ¢ Q. y'M' < cl.

Straightforward checking, using the definition of M, the (rooted) tree-
representation of F' and the last paragraph of Example 17, shows that M'
is totally unimodular; hence (10) is achieved by some integral y'. By
lengthening y' with zero-coordinates we obtain an integral solution y for
(e). U

Step 3. If ¢ and f are integral then both (5) and (6) are achieved by in-
tegral x and y.

PROOF. Since for each integral c the maximum (6) has an integral solution,
by Theorem 3 (or 4), also the minimum (5) has an integral solution b b

f is integral. [1

So Frank's theorem says: if f is integer-valued then the system of linear

inegualities

(11) x 20, Mx = f

is totally dual integral (cf. subsection 1.4).

Before giving applications of Frank's theorem we mention a second theorem
of Frank. Let be given a digraph D = 1V,A), with fixed root r, and a kernel
system F ¢ P(V\{r}). call a subset &' c a k-entering if for each T ¢ F there

are at least k arrows in A' entering 1.

THEOREM 21. (FRANK L46]) A subset A' of a is k-entering iff A' is the

disjoint union of k l-enterings.

For a proof we refer to [46]. We can translate this theorem in the language
of hypergraphs by defining the hypergrash B = (A,E), where E consists of all

sets (V\T,T), for T ¢ E (as usual, (V\V',V') denotes the set of arrows enter-

ing V'). By taking ¢ = 1 and £ = 1 in Theorem 20 one sees that T(H) = v(H),
W

or, more generally, that T(H") = v (") for all w: a - Z+ (by taking ¢ = w).

So H is Mengerian. Let X be the blocker of H; so the edges of K are the 1-

entering sets of arrows. From Theorem 14 it follows that Theorem 21 is
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equivalent to: K is Mengerian. In particular, t(K) = v(K).

We now apply Theorems 20 and 21 to some examples.

EXAMPLE 21: Network flows. Let D = (V,A) be a digraph, with fixed vertices
r and s, such that an r-s-path exists. Let F be the collection of all sub-
sets of V\{r} containing s. So F is a kernel system, with root r. It is easy

to see that Theorem 21 applied to this kernel system gives us Menger's theo-
rem.

EXAMPLE 22: Arborescences. Let D = (V,A) be a digraph, with root r, having
at least one r-arborescence. Now let F = P(v\{r})\{¢}. Then Theorem 21
applied to this kernel system is equivalent tc Edmonds' arborescence or
branching theorem [34] (cf. LovASz [105]): the maximum number of pairwise
edge-disjoint r—arborescences is equal to the minimum indegree of sets in F.
For let H and K be as described after Theorem 21, then K has, as edges, all
r-arborescences; hence T(K) = v(K), which is the content of Edmonds' theo-
rem (see VIDYASANKAR [166] for a covering analogue).

By taking £ = 1 Theorem 20 passes into: given a "weight" function ¢,
defined on the arrows, the minimum weight of an r-arborescence is equal to
the maximum number £ of nonempty sets Vl,... Vp < V\{r}, such that each
arrow a enters at most cl(a) of these sets, that is, H is Mengerian (this isa

result of FULKERSON [52], cf. LOVASZ [1061]).

EXAMPLE 23: Directed cuts. Let D = (V,A) be a directed graph, with root r,
having an r-arborescence. Let F be the collection of all nonempty subsets
of V\{r} having zeroc outdegree. So the edges of the hypergraph H, as de-
scribed after Theorem 21 are all direc:ed cuts. Theorem 21 implies a con-
jecture of EDMONDS & GILES [37] (cf. E:tample 12) that the minimum size of
a directed cut is equal to the maximum number of pairwise arrow-disjoint

diconnecting sets (this follows also from Edmonds' branching theorem).

4.3. Matchings in graphs

Finally we apply Edmonds-Giles-like technigues to prove total dual
integrality for some linear inequalities derived from matchings in graphs.
This was proved for the first time by CUNNINGHAM & MARSH [24] (cf. HOFFMAN
& OPPENHEIM [78]); the present proof method is taken from SCHRIJVER &
SEYMOUR [141]. We omit many technical details which are straightforward to
check. Let G = (V,E) be an undirected graph. A famous theorem of TUTTE [158]
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(cf. LOVASZ [101], see EDMONDS [27] and WITZGALL & ZAHN [174] for algorithms)

asserts the following.

(1) G has a l-factor if and only if for each subset V' of V the

number of odd components of <V\V'> does not exceed |V'].

[Here <V\V'> is the subgraph of G induced by V\V', and an odd component is
a component having an odd number of vertices. A l1-factor is a collection of
pairwise disjoint edges covering all points.]

This theorem has turned out to be fundamental for subsequent investigations
in matching theory. [A matching is a collection of pairwise disjoint edges.]
For example, by adding new vertices one can deduce the following theorem of

BERGE [2] (cf. aNDERSON [1]).
(2) The maximum cardinality of a matching in G (i.e., v(G)) equals

[vi+{v'|-o(w\v")
2

min
v'ev
[In this formula o (V\V') denotes the number of odd components of <v\v'>,]

This result is known as the Tutte-Berge theorem.

Much research has been done on matching theory by J. Edmonds and his co-
workers (cf. EDMONDS [27,301, EDMONDS, JOHNSON & LOCKHART [40), EDMONDS &
PULLEYBLANK ([41], PULLEYBLANK & EDMONDS [134], PULLEYBLANK [133]). EDMONDS
[30) studied maximum weighted matchings, and he gave a good algorithm for
finding one (given a weigthing of the edges). An interesting theoretical
byproduct is his matching polyhedron theorem:

(3) A vector g € QE is expressible as a convex combination of
(characteristic vectors of) matchings if and only if
(i) egv gle) £ 1, for each vertex v, and
(11) L .g(e) < |4[v'|] for each subset V' of v.
Clearly, the inequalities (i) and (ii) are satisfied by any convex combina-
tion of matchings, since each matching itself satisfies them - the content
of the theorem is the converse. Edmonds' theorem gives the faces of the con-

vex hull of the matchings; it may be considered as an extension of the char-

acterization of Birkhoff and Von Neumann (Example 5).

We can restate (3) in matrix terminology. Let M be the VXE-incidence-

matrix of G, i.e.,Mve=1ifvee,andee=Difvd'e, for v € V, e € E.
r r
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Define the P(V) X E-matrix N by Hon g™ 1 if e ¢ V', and Njig =0/ if e ¢ v,

for e € E', V' © V. So the rows of N are the collections of edges of induced

subgraphs of G. The function f: P(V) > @ _is defined by £(Vv') = £, = Lafwtll,

for V' © V. Now (3) says that the convex hull P of the collection of matchings
eguals

(4) P={xz20| Mmx <1, Nx = £}.

Since the matchings are the extreme points of P we have that the maximum
weight of a matching equals

(5) max{wxl X € Zf,b!x <1, Nx < f} = max{wxl X € QE, Mx € 1, Nx < £}

for any "weight" function w: E + Q.
The left hand side of (5) is the maximum weight of a matching; the

Duality theorem of linear programming is applicable to the right hand side,
yielding

(6) max{wx| x 20, Mx < 1, Nx < £} = min{|y| +tf|y 20, £ = 0, yM+tN 2 w}.

For the case w = 1 we have, by the Tutte-Berge theorem (2), a stronger

result since (2) may be formulated as

P
(7) max{|x| |x EZE. Mk <1, Nx< £} =min{ly| +tf|yezaf. tez+(V),YM+tN21}:

that is, also the minimum in (6) is achieved by an integral solution y.,t.
We shall show here that this is true for each integer-valued weight function

w, i.e.

THEOREM 22. (CUNNINGHAM & MARSH [24], cf. SCHRIJVER & SEYMOUR [142]) Both
sides of the linear programming duality equality (6) are achieved by integral

X,v,t if w is integral.

As already mentioned, (1), (2) and (3) follow from this. Theorem 22 is

equivalent to: the system of linear inegquall ties
(8) x>0, Mx <1, Nx < £

is totally dual integral (cf. subsection 1.4).
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DESCRIPTION OF THE METHOD OF PROOF

Again we use the terminology of laminar subcollections F of P(V) and

laminar vectors in QEW) (cf. subsection 4.2).
E
Step 1. For each w ¢ &
; v P(v)
(9) min{ly| + tf]| y ¢ Z,, teZ, ', yMttN = w}

is achieved by some y,t, where t is laminar.

PROOF. Let w ¢ ZE, and choose y € Z’.z, t e ZZE(V) such that y and t attain
the minimum in (9) and such that
(10) I t..lul .(IV\U| + 1) is as small as possible.

ucv 2

We prove that t is laminar. Suppose t is not laminar ; and let t:.T 2t
with T¢dUudTand T nu # g.
First suppose |T n U| is odd. Define

5= Oy

= " =
tU 0, tT = tT tU.r

L = + ! =
tTnU tTnu tyr Tuy tTuU+tU'

(11)

and let t' be equal to t in the remaining coordinates, i.e.,
12 T -
(12) t t + cuﬁrnU,Tun} tU{T,U},

identifying subsets of P(V) with their characteristic vectors in QPW) . It
can be checked straightforwardly that lyl+t'£ < |y] +tf ana YM+E'N = yM+tN,
so y,t' achieves the minimum (9), and

(13) ) th-lul (vivi+1) < § ty- 0l (Iv\ul+1),
ucv Uecv

contradicting (10).

Secondly assume that |T n u| is even. Let

]

y + (T nuw,
(14) “u

£ =t 4 tU{T\U,U\T} - tU{T,U}.
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again identifying characteristic vectors and subsets. Now we have that
ly' [+t'f < |yl+ tf, y'Mit'N 2 yM+tN, so y',t' achieves the minimum (6),
and, furthermore, (13) holds for this t', again contradicting (10). O

Step 2. For each w € ZE

(15) min{|yi+tf| v azzf. t e 522“”, YMHEN 2 w)

is attained by integral v and t.

PROOF. Since M and N are nonnegative we need to consider only w ¢ ZE-
Suppose (15) is not attained by an integral solution y,t, and let w € Ef
be a fixed counterexample to this, such that |w| is as small as possible.

v
Then each y € Hza_'_, t e ‘:EPW) attaining the minimum (15) is such that

v € [O,B}V and t € {O,H}PN}}, except, possibly, the (inessential) t-values
on singletons and the empty set. If this were not the case, there would
exist, as can be seen easily, a counterexample w' with [w']| < |w].

Since (15) is egual to

(16) b omin{ly bte] y e 2, te zzf“"’

, VM+EN = 2w}

it follows from step 1 that (15) is attained by some half-integer-valued
Y.t, where t is laminar. We may assume that t equals zero on singletons and
the empty set. We may also assume that y and t are chosen such that |y]| is
as large as possible, under the condition that t is laminar.

Mow we define the laminar collection

(17) F={ucyv| ty, = Ak
and let
(18) s=1{v e v| g = L1.

First suppose F = @, i.e., t = 0. Define y' = 0, t' = {S}. It can be checked

easily that

Iy*'] + t'f < |yl + t£,
(19)
v'M + t'N 2 [yM+ tN] = w,

(vector I_uJ arises from vector u by taking coordinate-wise lower integer
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parts) so y',t' reaches the minimum in (15); this contradicts our assumption
that for this w there are no integral y,t attaining (15).

1f F # @, there are sets on an odd level of the laminar collection F;
let U be a minimal set (under inclusion) in F on an odd level, i.e., U is

a minimal set such that [{T ¢ Flu ¢ T}| is odd. Let T /T, be the sets

177"k
in F properly contained in U (possibly k = 0). So Tl" i s 'Tk are pairwise

disjoint. It is easy to see that either

(20) Ls[o]] + Lalz [} +...+ sl ) 2 |vns| + 2(|_‘1i'I'1\S“+..-+]_%|Tk\SIJ}
(21) slul) + Lalz, | ] +...+ Lxim |] 2 [o\si + 2(LH[T1HS|J+...+[1;i'rkns|]).

If (20) is true, let

n

y + 4(Uns),
(22)
tl

]

t - ¥{u,T -.'I‘k} + {Tl‘\s..--,Tk\s}.

L

Since, as can be checked straightforwardly,

ly'] + £ < |y| + tg,
(23)
Y'M+ t'N 2 |[yM+ eN] 2w,

y',t' reaches the minimum (15). Hence y',t' are {0,%}-valued which implies
that the right hand side of (20) equals zero. Since the left hand side of

(20) is not zero this yields a strict inequality in the first line of (23),
contradicting the minimality of Iy[ + e,

Similarly we can deal with the case that (21) holds. Now let

y' =y + 4(u\s),
(24)

t' = - FE v
t 5{U,T1, Tk} + {Tlns,. ,Tkns}.

Again, for this y',t', (23) holds. Since &' is laminar we have that ]y‘ [siy[;
moreover t' is {0,%}-valued. Hence the right hand side of (21) equals zero.
This leads to a contradiction in the same way as before. O

Step 3. Both sides of the linear brogramming duality equality (6) are attained
by integral x,y,t, if w is integral.
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PROOF. This follows directly from step 2 and Theorem 4. 8]

As already mentioned a corollary of Theorem 22 is that any vector

E o Z i
¥ € Q+ is a convex combination of matchings if Mx < 1 and Nx < f.

Let N' be
the matrix arising from N by dividing any arrow with index U by [H[U“ = £(U)

(deleting the row if this number is zero). So the convex hull of matchings
in G is equal to the polyhedron

(25) P={x20] Mx <1, N'x s 1}.
The anti-blocking polyhedron R of P can be described as
(26) R={z 2 0| Lz = 1}

where L is a matrix whose rows are the characteristic vectors of matchings.
By the theory of anti-blocking polyhedra R consists of all vectors z < c

for some convex combination ¢ of row vectors of M and N'. So

umb >

(27) max{|zl|z 20, Lz £ 1} = max{A(G), max numbex: of edges in-2U }
uev (%ol ]

where A(G) is the maximum valency of G. By the Duality theorem of linear

programming (27) eguals
(28) min{|y||y =20, yL = 1}.

If this minimum has an integral solution y then (28) can be interpreted as
the minimum number ¥ (G) of colours needed to colour the edges of G such that
no two edges of the same colour intersect each other. However, the Petersen-
graph shows that (28) does not always have an integral solution y. The value
of (2B8) can be interpreted as the "fractional edge-colouring number" x*(G)
of G; so (27) and (28) together yield a min-max relation for x*(G). Note
that, if G is simple, then ¥ (G) = A(G) or x (G) = 4(G)+1, following a theo-
rem of VIZING [168] and GUPTA [66]. (See SEYMOUR [146] for results relating
matchings and edge-colouring to T-joins (Example 14 (ii)) and the Chinese
postman problem.)

GALLAT's theorem [56,57] (cf. Example 11) says that v(G)+p(G) = [VI,
for any graph G. Together with the Tutte-Berge theorem (2) this implies that

(29) S(6) = max 2B)+lul

ucv <
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Also a covering analogue of Edmonds' matching polyhedron theorem (3) can be
proved: for a vector g € Qf we have that g 2 c for some convex combination c
of (characteristic vectors of) edge sets covering all points, if and only
2F
(30) I gle) z ]llsiu| 1, for each subset U of V.

enu#d
More generally, it can be proved (in a way similar to the above proof of
Theorem 22) that the system of linear inequalities (30) is totally dual
integral.

This method of proof may also be extended to get results about f-factors,
i.e. subgraphs such that the vertices v have prescribed valencies f(v) (cf.
TUTTE [159,161], ORE [125,126], LOVASZ L97] and LAS VERGNAS [91]), and to
get results about subgraphs whose valencies obey prescribed upper and lower
bounds (cf. SCHRIJVER & SEYMOUR [141]).

The "matroid parity problem", posed by LAWLER (cf. [93]), generalizes
both the matching problem and the matroid intersection theorem: given a graph
G = (V,E) and a matroid M = (V,I), what is the maximum number of pairwise dis-—
joint edges whose union is an indepenclent set in the matroid? LOVASZ [107]

recently gave an answer in case M is linear (i.e., ] consists of the linear

independent subsets of a vector space).
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COMPLEXITY OF PACKING, COVERING AND PARTITIONING PROBLEMS

J.K. LENSTRA & A.H.G. RINNOOY KAN

ABSTRACT

The inherent computational complexity of a variety of packing, covering
and partitioning problems is analyzed through the use of concepts from the
theory of NP-completeness.

1. INTRODUCTION

In this contribution we view packing, covering and partitioning prob-
lems primarily as algorithmic challenges. As demonstrated elsewhere in this
volume by SCHRIJVER [17], such problems can often be formulated as integer
linear programming problems, in which a linear function has to be maximized
or minimized subject to a number of linear constraints and some variables
are restricted to take on only integral values.

Such a formulation need not necessarily be useful from a computational
point of view. General integer programming problems regquire a vast amount
of time to be solved. Most algorithms rely on some type of exhaustive search
over the set of all feasible solutions. Their worst—case running time grows
as an exponential function of problem size.

For some special cases, however, one may be able to do better, and
packing, covering and partitioning problems provide a few striking examples
of this phenomenon. In fact, it was in the context of matching (edge packing)
that EDMONDS [4] first proposed the notion of a "good" algorithm for any
method whose worst-case running time grows as a polynomial rather than ex-
ponential function of problem size. Polynomial-time algorithms have been
developed for important subclasses of integer programming problems, e.g.,
in the area of network flows, shortest paths and matroid optimization
(cf. LAWLER [14]). By now, it has been commonly accepted that problems for

which such algorithms exist are properly called well-solved or easy.
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When encountering a combinatorial problem, one would naturally like
to know if a polynomial algorithm can be expected to exist or if, on the
other hand, any solution method must require exponential time in the worst
case. Unfortunately, results of the latter type are still rare, but it is
often possible to establish that the existence of a polynomial algorithm is
at the very least extremely unlikely. If the problem in question belongs to
a large class of combinatorial problems known as NP, one arrives at such a
result by proving that the problem is NP-complete (COOK [3], karp [117).
The NP-complete problems are equivalent in the sense that none of them is
known to be easy and that, if one of them is easy, the same is true for all
problems in NP and in particular for all other NP-complete problems. Since
the latter category typically contains all the classical problems that are
notorious for their computational intractability, such as graph coloring,
traveling salesman and integer programming problems, the polynomlal time
solution of such a problem would be very surprising indeed.

In what follows, we shall show that the large majority of packing,
covering and partitioning problems belongs to this category as well. For
practical purposes, this implies that in solving those problems one may just
as well accept the inevitability of a bad (superpolynomial) optimization al-
gorithm or resort to using a good (polynomial) approximation algorithm.

We review the basic concepts of NP-completeness theory in Section 2.
For more extensive introductory expositions the reader is referred to AHO,
HOPCROFT & ULIMAN [1], xARP [12], LENSTRA & RINNOOY KAN [15] and GAREY &
JOHNSON [9]. We next investigate the complexity of packing, covering and
partitioning problems on graphs in Section 3, then extend these results to
problems involving subsets of a finite set in Section 4, and finally con-
sider two partitioning problems involving numbers in Section 5. Although
all the results presented in this paper can be found elsewhere, some of the

proofs are new. The material is partly adapted from LENSTRA & RINNOOY KAN
C15].

2. NP-COMPLETENESS

A formal theory of NP-completeness would require the introduction of
Turing machines (AHO, HOPCROFT & ULLMAN [1]) as theoretical computing de-
vices. A deterministic Turing machine is a classical model for an ordinary

computer, which is polynomially related to more realistic models such as the
random access machine (AHO, HOPCROFT & ULLMAN [1]). It can be designed to
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recognize languages; the input consists of a string, which is accepted by
the machine if and only if it belongs to the language. A nondeterministic
Turing machine is an artificial model, which can be thought of as a deter-
ministic one that can create copies of itself corresponding to different
state transitions whenever convenient. In this case, a string is accepted if
and only if it is accepted by one of the deterministic copies. P and NP are
now defined as the classes of languages recognizable in polynomial time by
deterministic and nondeterministic Turing machines, respectively.

For the purposes of exposition, we will expound the theory in terms of
recognition problems, which require a yes/no answer. A string then corre-
sponds to a problem instance and a language to a problem type or, more ex-
actly, to the set of all its feasible instances. The feasibility of an in-
stance is usually equivalent to the existence of an associated structure,
whose size is bounded by a polynomial in the size of the instance; for ex-
ample, the instance may be a graph and the structure a Hamiltoniarlx circuit
(kAaRP [12]). A recognition problem is in P if, for any instance, one can
determine its feasibility or infeasibility in polynomial time. It is in NP
if, for any instance, one can determine in polynomial time whether a giwven
structure affirms its feasibility.

Problem P' is said to be reducible to problem P (notation: P' = P) if
for any instance of P' an instance of P can be constructed in polynomial
time such that solving the instance of P will solve the instance of P' as
well. Informally, the reducibility of P' to P implies that P' can be con-
sidered as a special case of P, so that P is at least as hard as P'.

P is called NP-hard if P' = P for every P' ¢ NP. In that case, P is at
least as hard as any problem in NP. P is called NP-complete if P is NP-
hard and P € NP. Thus, the NP-complete problems are the most difficult
problems in NP.

A pélynomial algorithm for an NP-complete problem P could be used to
solve all problems in NP in polynomial time, since for any instance of such
a problem the construction of the corresponding instance of P and its solu-
tion can be both effected in polynomial time. Note the following two impor-
tant observations. _

(i) It is very unlikely that P = NP, since NP contains many notorious com-
binatorial problems, for which in spite of a considerable research effort
no polynomial algorithms have been found so far.

(ii) It is wvery unlikely that P ¢ P for any NP-complete P, since this would
imply that P = NP by the earlier argument.
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The first NP-completeness result is due to COOK [3]. He designed a
"master reduction" to prove that every problem in NP is reducible to the

SATISFIABILITY problem. This problem can be formulated as follows:

SATISFIABILITY: Given a boolean expression in conjunctive normal form, i.e.,
a conjunction of clauses Ci"' "Cs’ each of which is a disjunction of
literals from the set {x1,§1 e ,xt,:_ct}, where Xjr-..,%_ are boolean

variables and ;'1"'”§t denote their complements, is there a truth as—
signment to the variables such that the expression assumes the value

true?

For instance, the expression

(1) (xl) A (x1 vox, Vv x3) A (x3)

is satisfied if xl = :::2 =%, = true.

Starting from this result, KarRP [11] and many others identified a large
number of NP-complete problems in the following way. One can establish NP-
completeness of some P ¢ NP by specifying a reduction P' = P with p*' already
known to be NP-complete: for every P" ¢ NP, P" « P! and ' « p then imply
that P" = P as well. In Sections 3, 4 and 5 we shall outline several such
proofs. Their presentation will be sketchy; for instance, it will be left
to the reader to verify the membership of NP for the problems considered
and the polynomial-boundedness of the reductions presented. We shall take
(1) as an example of an instance of SATISFIABILITY to illustrate several
reductions.

As far as optimization problems are concerned, we shall reformulate a
maximization (minimization) problem by asking for the existence of a feasi-
ble solution with value at least (at most) equal to a given threshold. It
should be noted that membership of NP for this recognition version does not
immediately imply membership of NP for the original optimization problem as
well. In particular, proposing a systematic search over a polynomial number
of threshold values, guided by positive and negative answers to the exis—
tence question, is not a valid argument. This is because a nondeterministic
Turing machine is only required to give positive answers in polynomial time.
Indeed, no complement of any NP-complete problem is known to be in NP!

As an obvious consequence of the above discussion, NP-completeness can

only be proved with respect to a recognition problem. However, the corre-—
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sponding optimization problem might be called NP-hard in the sense that the
existence of a polynomial algorithm for its solution would imply that P = NP,
So far, we have been purposefully vague about the specific encoding of
problem instances. Suffice it to say that most reasonable encodings are
polynomially equivalent. One important observation with respect to the rep-

resentation of positive integers will be dealt with in Section 5.

3. GRAPHS

As mentioned before, the first examples of easy packing, covering and
partitioning problems were provided by matching problems on (finite, con-

nected and undirected) graphs:

EDGE PACKING: Given a graph G = (V,E) and an integer k, does G have a sub-
set of at least k edges such that every vertex is incident wiFh at most
one of them?

EDGE COVER: Given a graph G = (V,E) and an integer k, does G have a subset
of at most k edges such that every vertex is incident with at least
one of them?

EDGE PARTITION: Given a graph G = (V,E), does G have a subset of edges such

that every vertex is incident with exactly one of them?

EDGE PACKING, EDGE COVER and EDGE PARTITION are answered affirmatively
if there exists a matching (i.e., a subset of vertex—-disjoint edges) of
cardinality k, |V|-k and }|V|, respectively. Thus, they are solved by
EDMONDS' algorithm for f£inding a matching of maximum cardinality, the cur-—
rently best implementation of which runs in Otlvlzé) time (EVEN & KARIV [5]).
It follows that the three above problems belong to P.

These problems can be modified in two directions. In the remaining part
of this section, we investigate the complexity of the problems in which the
roles of vertices and edges are interchanged. In the next section, viewing
E as a family of subsets of cardinality two, we examine problems involving
subsets of larger cardinality. We shall find that with one exception all
the resulting problems are NP-complete.

Thus, the following problems are considered first:

VERTEX PACKING: Given a graph G = (V,E) and an integer k, does G have a sub-

set of at least k vertices such that every edge is incident with at
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most one of them?

VERTEX COVER: Given a graph G' = (V',E') and an integer k', does G' have
a subset of at most k' vertices such that every edge is incident with
at least one of them?

VERTEX PARTITION: Given a graph G = (V,E), does G have a subset of vertices

such that every edge is incident with exactly one of them?

Let us deal with the single exception first: VERTEX PARTITION belongs
to P. We leave it to the reader to verify that the problem has a solution
if and only if G is bipartite, which can be checked in O(|E|) time.

VERTEX PACKING is also known as the INDEPENDENT SET problem, in which
one looks for at least k nonadjacent vertices. The NP-completeness of this
problem is established by the reduction below, which is already implicit in
COOK's paper [3].

SATISFIABILITY =« VERTEX PACKING:
v

{(x,1) |x is a literal in clause Ci},-
{x, 1), (y,3) Hx =y or & = §);

k = s.

E

n

For the instance of SATISFIABILITY given by (1), Figure 1 illustrates

the resulting instance of VERTEX PACKING. We have created a vertex (x,i)

for each occurrence of a literal x in a clause Ci' and an edge {(x,i),(v,3)}
for each pair of occurrences such that inclusion of (x,i) in an independent
set excludes all (y,j) which have a conflicting value of the literal (y = %)
or belong to the same clause (j = i). An independent set of size k corre-
sponds to s occurrences of literals (one in each clause) that satisfy the
expression, and vice versa. The NP-completeness of VERTEX PACKTING now fol-
lows from (i) its membership of NP, (ii) the polynomial-boundedness of the
reduction, and (iii) the NP-completeness of SATISFIABILITY. []

This result immediately implies the NP-completeness of VERTEX COVER.

VERTEX PACKING « VERTEX COVER:

V' = v;
E' = E;
k' = |v[-k.

Cf. Figure 2. It is well known that a set of vertices covers all edges if
and only if its complement is independent. [J
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Figure 1 Instance of VERTEX PACKING for the example.

G':

Figure 2 Instance of VERTEX COVER for the example.

Next, we prove the NP-completeness of a covering problem that is close-
ly related to VERTEX COVER:

VERTEX DOMINATOR: Given a graph G = (V,E) and an integer k, does G have a
subset of at most k vertices such that every other vertex is adjacent

to at least one of them?

VERTEX COVER = VERTEX DOMINATOR:

vV=v"u{x [{v,w} e E'};

- {v,w}
E=E'uU [{v,x{v’w}}]{v,w} € E'};
k=k".

Cf. Figure 3. For each edge {v,w} in G', we have added a vertex Ao, wh which

’
is adjacent to both original vertices v and w.
Suppose that G' has a vertex cover U' of size at most k'. Each edge in

E' is incident with a vertex in U', and each vertex in V'-U' is adjacent to
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a vertex in U'. It follows that the set U' constitutes a vertex dominator
in G.

Conversely, suppose that G has a vertex dominator U of size at most k.
Any x{v,w} belonging to U can obviously be replaced by either v or w, so
that U € V', Since each x{v,w} is now adjacent to a vertex in U, the set U

constitutes a vertex cover in G'. [J

Figure 3 Instance of VERTEX DOMINATOR for the example.

We conclude this section by mentioning two NP-complete partitioning
problems on graphs:

GRAPH COLORING: Given a graph G = (V,E) and an integer k, can V be parti-

tioned into k disjoint subsets V ¥

b St k
the subgraph of G induced by Vi is independent?

PARTITION INTO ISOMORPHIC SUBGRAPHS : Given two graphs G = (V,E) and

such that, for i = 1,...,k,

G' = (V',E') with |V]| = k|V'| for some integer k, can V be partitioned

into k disjoint subsets vl,..-,vk such that, for i = 1,...,k, the sub-

graph of G induced by Vi is isomorphic to G'?

GRAPH COLORING remains NP-complete for any fixed k > 3 (GAREY, JOHNSON
& STOCKMEYER [10]). PARTITION INTO ISOMORPHIC SUBGRAPHS remains NF-complete
for any fixed G' with |V'| = 3 (KIRKPATRICK & HELL [13]). More detailed re-
sults for these problems and many other related NP-completeness results can

be found in the impressive survey by GAREY & JOHNSON [9].
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4. SETS

Let us now move to more general packing, covering and partitioning

problems involving subsets of a finite set:

SET PACKING: Given a finite set S, a family S of subsets of S and an integer
%, does S include a subfamily of at least { subsets such that every
element of S is contained in at most one of them?

SET COVER: Given a finite set S, a family S of subsets of S and an integer
2, does S include a subfamily of at most £ subsets such that every
element of S is contained in at least one of them?

SET PARTITION: Given a finite set S and a family S of subsets of S, does S
include a subfamily of subsets such that every element of S is contained

in exactly one of them?

We know from the previous section that these problems belong to P in
the case that all subsets in S have cardinality two. In this section, we
will first establish NP-completeness for the above problems, where the sub-
sets in S may be of arbitrary cardinality, and then extend these results to
the case that all subsets in S have cardinality three. We will thus be con-
fronted with what has been called the magic quality of two-ness: an increase
in some parameter from two to three often transforms an easy problem into
a hard one.

SET PACKING and SET COVER are obvious generalizations of VERTEX PACK-
ING and VERTEX COVER and as such they are both NP-complete.

VERTEX PACKING = SET PACKING:

S = E;
S = {{{v,w}|{v,w} € E}|v ¢ V};
L =%kx.0

VERTEX COVER = SET COVER:

S = E';
S = {({{v,w}|{v,w} € E'}v e v'};
2 =k'.0

Thus, SET PACKING and SET COVER are already NP-complete if each element
of S occurs in exactly two members of S. This is not true for SET PARTITION,



284 14. LENSTRA & RINNOOY KAN

since VERTEX PARTITION belongs to P. Nevertheless, SET PARTITION is NP-com-
plete (KARP [11]); the following reduction is from LENSTRA & RINNOOY KAN

[15].

VERTEX PACKING = SET PARTITION:
s=Eu {1,...,k};
8= {Svilv € Vid =ilyenankt U {S{v’w}[{v,w} € E}, where
Sy = {{v' ,w}{v',w} € E, v' = v} u {i},
S{v,w} = {{v,wl}}.

It

Cf. Figure 4. Suppose that G has an independent set U of size k, say, U
{vl,...,vk}. Then the sets S“r 1""’Sv . are disjoint, and the elements of
S not contained in any of them belong %o E. It follows that a partition S'
of. S is given by

S = {svll,-..,svkk} u {S{v'w}l{v,w} €E, v{£U w ¢ UL

Conversely, suppose that there exists a partition S§' of S. Then S' contains

k disjoint sets Sv 1....,5“r x’ and the vertices v v, clearly constitute

ey )
an independent setlin G of Size x. 01

% S”sm Sct a1 %er Sa2 Sp2 st Se2 Sa3 Sp3 Se3 sd3@s{a,b} Stb,c) s!c,a} Sta,e)
{a,b}| @« o - . CR - R - S . L - T - S . . o . o m .
lbe)] - © 0 «+ +« < & @ + « . B B . . . ) &

{b,d}| + o .. o . IR - B R - B A -

{e,d}| = - o o . . - @ o . 5 .« © o = o

fae}f « - 2 0 0 + . +« © B . . . o e . . o

1 L] o o (=] o

2 o o L ] (+] [=] -

3 e T O R T . . . 5

Figure 4 Instance of SET PARTITION for the example.

As announced before, we will now extend these results to the case that
all the subsets from which the packing, cover or partition is to be select-
ed are restricted to have cardinality three:

SET 3-PACKING: Given a finite set T, a family T of 3-element subsets of T

and an integer &, does T include a subfamily of at least 2 subsets

such that every element of T is contained in at most one of them?
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SET 3-COVER: Given a finite set T, a family T of 3-element subsets of T and
an integer %, does T include a subfamily of at most £ subsets such
that every element of T is contained in at least one of them?

SET 3-PARTITION: Given a finite set T and a family T of 3-element subsets
of T, does T include a subfamily of subsets such that every element

of T is contained in exactly one of them?

It should be clear that the NP-completeness of SET 3-PACKING and SET
3-COVER immediately follows when we establish NP-completeness for the fol-

lowing problem:

VERTEX 3-COVER: Given a graph G = (V,E) with degree 3 for each vertex and
an integer k, does G have a subset of at most k vertices such that

every edge is incident with at least one of them?

VERTEX COVER = VERTEX 3-COVER:

G is obtained by replacement of each vertex v in G' by a subgraph H(v)

as indicated in Figure 5; .

k =k' + 2t1 +t, + 2623(26—6)td, where ty = [{v|v € V' has degree d}|.
When v is (is not) in a vertex cover of G', then the circled (black) ver- '
tices in H(v) are in the corresponding vertex cover of G. The fact that in
each H(v) the number of circled vertices minus the number of black vertices
is equal to one implies the equivalence of both problem instances. We leave
it to the reader to verify that the size of G is polynomially bounded in
the size of G'. [J

G':
degree of v i § 2 3 4 d =z 4
v ? R R AR S
G:
H(v) i
R R
' (d-4) x

Figure 5 Reduction of VERTEX COVER to VERTEX 3-COVER.
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This problem was originally proved NP-complete by GAREY, JOHNSON &
STOCKMEYER [10]. They also showed that VERTEX COVER in a planar graph with
vertex degree at most 6 is NP-complete; for an agricultural application of
this result, see FEDERGRUEN [6, p. 220].

The NP-completeness of SET 3-PARTITION is established similarly through

local replacement of basic units in a known NP-complete problem by different

structures.,

SET PARTITION =« SET 3-PARTITION:
= L
® U‘I“eT 1
T = US'ES
where T is defined recursively as follows:

Tt{e,g,ae e s,

T(T') =

'1{{f1,f2.f3}) - {{fl.fz,EB}} if |7r| = 3, '
T T

T({flg-..,fss}) = {{flrfzrgl }r---r{fss_lrfss:gas}}

& L 1]
u -r({g'f .-.-.gr';s}) if |T'| > 3, |T"| even,

T T
THE e E D = £,,5,,9, | SEREYAC S SR P

LI LS
g 3r93g-1/93 1}

u r({g}",...,g‘;}) if |7'| > 3, |T'| odd.

Cf. Figure 6 (ignore the distinction between circles, sguares and triangles
for the time being). The validity of this procedure in preserving the crig-
inal structure of the problem should be clear: at each level of the recur-
sion, T replaces a set T' by a collection of sets, containing the original
elements as well as a number of dummy elements, in such a way that either
a collection of 3-element sets corresponding to T' or the set containing
all the dummy elements has to be in the partition. Note that the final in-
stance satisfies |T'| = 3 for all T' ¢ T.

We still have to show that the reduction can be carried out in poly-
nomial time. Let

e(t)
o(t) = the number of 3-element sets in T(T') with ] = +.

]

the number of new elements created by T(T') with | = ¢,

Then
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€(3) =0, e(6s) = 3s+e(3s) (s = 1), e(65-3) = 3s+e (3s) (s =2 2),

o(3) =1, o(6s) = 3s+0(3s) (s = 1), o(6s-3) = 3s-1+0(3s) (s =2 2),
whence

e(t) = 2¢t,

o(t) = 3t.

It follows that the original instance of SET PARTITION is transformed into

Figure 6 Instance of SET 3-PARTITION for the example;
O: red, O: white, A: blue.
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an instance of SET 3-PARTITION with

]

IT| = 3ls] + zs-es e(3ls'|) < 3|sl+6ls]|S],
IT| = ES'GS a(3ls']) < s|s||8]. O

As illustrated in Figure 6 (see also MULDER [16]), the above reduction
actually proves NP-completeness for a restricted version of SET 3-PARTITION,
in which the elements of T can be colored red, white and blue in such a way

that each subset in T contains one red, one white and one blue element:

3-DIMENSIONAL MATCHING: Given three disjoint sets R,W,B with |R| = |w| = |B|
and a family M © RxwWxB, does M include a subfamily of subsets such that

every element of RUWUB is contained in exactly one of them?
The original NP-completeness proof for this problem is due to KARP [11].

5. NUMBERS

We conclude our discussion by ekamining two NP-complete partitioning

problems involving numbers:

PARTITION: Given nonnegative integers n,a

1...‘,an,b with Z?_l a, = 2b, does

the index set N = {1,...,n} include a subset N' such that i a. = b?

jeN' 73
. 3n _

3n'b with Xj=1 aj = nb,
does the index set N = {1,...,3n} include n disjoint 3-element subsets
Nl""’Nn such that EjeNi a

3-PARTITION: Given nonnegative integers DeBysennsa

=bfori=1,...,n?

3

SET PARTITION « PARTITION:

Given § = {el,...,es} and S = {Sl""'st}’ we def;ne

3

_ {1 if e, € )
0 if e ¢ Sj

el.j } (i=11---rsF j=1!'--rt)0

and specify the reduction by

n = t+l; -
i-—
LD P S € R PO
o = _ TS 1=k _ vt A
& - l2ao Al, where ag = Ei=1 n , A= Zj=1 ayi

b = Q(A+f2a0—a|).
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Cf. KaRP [11]. Each subset Sj € S is represented by an integer ay which
can be viewed as a string of zeros and ones, corresponding to the character-
istic vector of S., in a number system of base n. Similarly, the set S is
represented by the integer ao. The base is sufficiently large to guarantee
that SET PARTITION has a solution if and only if there exists a subset

N' © {1,...,t} such that Z. a, = ag. In the case that 2a, 2 A (2a. < A),

jeN' T4 0 0
we h = = A- 1 - .
ave b 25 (b ao), so that a subset N' satisfies IjeN‘ ay ay if
and only if the subset N' c N (N'u{n} < N) constitutes a solution to PARTI-
TION. [J

3-DIMENSIONAL MATCHING « 3-PARTITION:
see GAREY & JOHNSON [7, 9].
The reduction consists of a complicated sequence of transformations, which

is beyond the scope of this paper. []

Although both PARTITION and 3-PARTITION are NP-complete, the iatter
problem appears to be much harder than the former one. To formalize this
distinction, let us note first that the size of an instance of either prob-
lem is O(n 1og2b) if the numerical data are represented in a reasonable
way, e.g., in a binary, ternary or decimal encoding, and O(nb) if a unary’
encoding is allowed. ) .

PARTITION has been proved NP-complete through a transformation that
is polynomial only with respect to the former encodings, i.e., by virtue
of the conventional assumption that the size of a number is proportional
to its logarithm. In contrast, consider the following dynamic programming
algorithm for its solution (BELLMAN & DREYFUS [2]). Define boolean func-
tions F

gr---F, by

true if there exists a subset N' ¢ {1,...,m} such

Fm(x) = that zjeN'

false otherwise.

a. = x,

3

PARTITION has a solution if and only if Fn(b). This wvalue can be calculated
in O(nb) time hy the following recursion:

1

true ifx=0,
Fo(x) {
false otherwise;

Fm(x) Fm_I(x) v Fm_l(x—am) (m = 1).
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This algorithm might be called pseudopolynomial in the sense that it is
polynomial only with respect to a unary encoding. Thus, the binary NP-com-
bleteness of PARTITION and its unary membership of P are perfectly compatible
results.

3-PARTITION remains NP-complete even of one measures the problem size
by using the actual numbers involved rather than their logarithms. This
strong or unary NP-completeness of 3-PARTITION implies that even the exis-
tence of a pseudopolynomial algorithm for its solution would imply that
P = NP (GAREY & JoHNSON [8]).

The reader should realize that the reductions presented in this paper
have been selected from our more transparent transparencies. We hope, none
the less, to have demonstrated how the taools from the theory of NP-com-
pleteness can be fruitfully applied to analyze the inherent computational

complexity of packing, covering and partitioning problems.
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brief definition

the complete graph with n vertices
the independence number of graph G
the clique number of graph G

the complementary graph of graph G

the colouring number of graph G

the complete bipartite graph with m and n vertices
the subgraph induced by v'

the collection of k-subsets of set X

the collection of k-subsets of a fixed v-set

the disjoint sum of hypergraphs (X.Ei) '

the complete k-uniform hypergraph with n vertices
the hereditary closure of hypergraph H

the collection of subsets of sets in E

the dual hypergraph of hypergraph H

the independence number of hypergraph H

the covering number of hypergraph H

the transversal number of hypergraph H

the matching number of hypergraph H
the line graph of hypergraph H

a t-(v,k,\)-design

a t-(v,k,1l)-design

a 2-(v,k,A)-design

the Hamming distance of x and y
the Hamming weight of x

the field with g elements

the field with g elements

the upper integral part of x

the lower integral part of x

the n-dimensional real vector space
the n-dimensional complex vector space
the transpose of matrix A

the adjoint of matrix A
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the transpose of vector x
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the standard inner product of vectors x and ¥
the trace of matrix A
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definite matrices

the eigenvalues of a graph

the Hoffman-bound for «(G)

the intersection numbers of an association scheme
the eigenvalues of an association scheme

the dual eigenvalues of an association scheme

the inner distribution of a subset in an
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scheme with index in A

v .
the Kravcuk polynomial of degree i in the variable x
the Eberlein polynomial of degree 2i in the variable

the Kneser-graph of n-subsets of an m-set

the product of graphs G and G'

the product of k copies of G

the Shannon capacity of graph G
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the Lovdsz bound for the Shannon capacity of G
the circuit with v vertices

extension of Delsarte's bound for a(G)
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that each t-subset is contained in at least one of
them
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that each £-subset contains one of them as a subset

the maximum number of pairwise disjoint k-hypercubes
in a d-dimensional n-hypercube
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the proper vertex-colouring number of hypergraph H
the strong vertex-colouring number of hypergraph H
the proper edge-colouring number of hypergraph H
the strong edge-colouring number of hypergraph H
the sum of s copies of hypergraph H

the sum of s copies of collection E

the maximum valency of hypergraph H

the complete r-partite k-uniform hypergraph with
nl,...,nr vertices

the complete r-partite k-uniform hypergraph with
r groups of size m

the maximum number of pairwise intersecting edges
of hypergraph H

2 =|da) or &= [a]

the d-dimensional sphere

the Borsuk-graph of dimension d and distance &
the £-chromatic number of graph G

a 2-(v,k,1)-design

the set of numbers v for which a 2-(v,k,1)-design
exists

a pairwise balanced design

a pairwise balanced design with A = 1

the set of numbers v for which a B(K,A;v) exists
the set of numbers v for which a B(K;v) exists

a group divisible design

the set of replication numbers occurring in B(k;v)
a transversal design

g.c.d.{k-1| ke K}

g.c.d.{k(k-1) | x e K}

the minimum number of k-subsets of a fixed v-set
such that each t-subset is contained in at least
A of them

the maximum number of k-subsets of a fixed v-set
such that each t-subset is contained in at most
A of them

the maximum number of codewords in a binary code
of length n, constant weight w and minimum distance
4a
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the minimum number of k-subsets of an n-set such
that any £-subset meets one of these k-subsets
in at least t points

a Ramsey number

R'[k1 PR ,km:2)

a graph Ramsey number

the origin

the Hamming weight of the codeword x

the maximum cardinality of an [n,d]-code
the weight enumerator of code C

the standard inner product of vectors x and v

the binary entropy function

a sphere in r"

the volume of A

the hypercube in R" with side s and centre 0

min{s | acc } ;
s s

the upper density of K

the lower density of K

the packing density of spheres in r”

the packing density of spheres in R"

the determinant of the lattice A

the lattice packing density

the periodic packing density

the Voronoi-polyhedron of the point a

the Rogers bound for the packing density ﬂn
the centre density an/vn

the volume of a sphere of radius 1 in ®"
the contact number of spheres in r"
the Eisenstein series of order n

the Weierstrasz % -function
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invariants of ?
3 2

92 = 2793

the upper half-plane of T

Klein's modular function
the modular group
SL2 ()

the group generated by T2 and S

the minimum squared distance of lattice A
sphere-packing obtained from lattice A
the dual of lattice A

the squared norm of vector x

the theta-function of lattice A

a lattice obtained from code C by construction A

extérnded Hamming code of length 8

a lattice obtained from code C by construction B
the n-dimensional real Euclidean space

the n-dimensional unit ball

the number of codewords with weight d

the minimum distance of code C

the number of codewords of code C

the minimum Squafed distance between centers of a
sphere-packing

L/d the radius of the spheres in a sphere-packing
the kissing number of a sphere-packing

the density of a sphere-packing

the center density of a sphere-packing

the n-dimensicnal volume of a unit sphere

the area of the n-dimensional unit sphere



298

0!

A(C)

B(C)

P10c
Plla
Fl3a

C({Ci}l,...

Nn(¢}
Vi)
P%a
P10b
Plic
Pl2a
Pl3a
Pl4b
Pl5a
s(z)

n*(z)

w(z)

z*(nl
a*(a,b)
a* (@)
a*(e)
B(p)

P(p)

*

v (H)
*

T (H)

Iyl

163,174
164
164

164

1565
165
165
167
169

170
170
172
172
172
172
172
172
172
179
179

179
180

182
185
185
1380

191
201,214
201,214

201
204

the Schlédfli-function
the center density Gn/Jn

a sphere-packing obtained from code C by construc-
tion A

a sphere-packing obtained from code C by construc-
tion B

lattice obtained from the Leech lattice

a sphere-packing obtained from codes Cl""’ck by
construction C

wax{ x| | xes®; Yx,yve X, x#y: (x,vy) £ cos 2¢}

the area of a spherical cap of angular radius ¢

a square of side =z

the maximum number of unit squares that can be
packed into S(z)

zz—n*(z)

the side of the smallest square into which n unit
squares may be packed

minimum density of a generalized covering by a X b
rectangles

minimum density in a saturated constellation of
a % 1 rectangles

minimum density of a saturated constellation of
polyominoes P

the class of rectangles which can be partitioned
into copies of P

the class of prime rectangles of the polyomino P
the fractional matching number of the hypergraph H

the fractional transversal number of the hyper-
graph H

the sum of the components of vector v

the standard inner product of vectors w and x
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p (U)
§(U)
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x (G)

X" (G)

P

204
204
205
205
207
207
213
213
215
215
216

216
216
216
224

224

232
234,254

237

244
244
244
244
244

244

251
251
256
261
261
277
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the all-zero vector

the all-one vector

the set of nennegative rational numbers

the set of nonnegative integers

the anti-blocking polyhedron of polyhedron P
the blocking polyhedron of polyhedron P

the k-matching number of hypergraph H

the k-transversal number of hypergraph H

the k-covering number of hypergraph H

the k-independence number of hypergraph H

the hypergraph obtained from H by multiplying
any vertex x by wx

the anti-hereditary closure of hypergraph H
the anti-blocker of hypergraph H
the blocker of hypergraph H

a graph with vertex set {1,...,n}, two vertices i
and j being adjacent iff |i-j|<k (mod n)

the hypergraph with edges all stable subsets of
the vertex set of G

the hypergraph with edges all edge-triangles of K4
the set of arrows in a digraph with tail in V' and
head in V"

the set of edges in a undirected graph intersecting
V' in exactly one point

the maximum size of an edge of hypergraph H'
the minimum size of an edge of hypergraph H'
the maximum valency of hypergraph H'
the minimum valency of hypergraph H'

the maximum number of pairwise disjoint subsets of
the vertex set of hypergraph H', each of them inter-
secting each edge

the maximum number of pairwise disjoint edge collec-
tions, each covering the vertex set of hypergraph H'

the indegree of the vertex set U

the outdegree of the vertex set U

the number of odd components of <V\v'>

the edge-colouring number of graph G

the fractional edge-colouring number of graph G

the class of languages recognizable in polynomial
time by deterministic Turing machines
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NP 277 the class of languages recognizable in polynomial
time by nondeterministic Turing machines

P' = p 277 problem P' is reducible to problem P
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SUBJECT INDEX

adjacency matrix 1

adjacent vertices 1

adjoint of a matrix 5

almost regular hypergraph 56
alphabet of a code 3,119

angular side of a spherical simplex
162

anti-blocker 216
anti-blocking hypergraph 204,207

anti-blocking pair of polyhedra
207

anti-blocking polyhedron 204
antichain 214

antipodal theorem, Borsuk's 65
arborescence, r- 235

arborescence theorem, Edmonds'.
235,255

arrow of a digraph 2

association scheme 22

balanced hypergraph 57,204,243

balanced incomplete block design
3,75

basis for a lattice 142
Best-code 166

BIBD 3,75

binary code 3,119

binary entropy function 132
binary hypergraph 236

binary NP-complete problem 290
bipartite graph 1,57
Blichfeldt's inequality 144
block of a design 3,75,82
blocker 216 '

blocking hypergraph 204
blocking pair of polyhedra 208
blocking polyhedron 204,207

Borsuk-graph 65
Bose-Mesner algebra 23

branching theorem, Edmonds' 235,
255

brick 188

capacity function 219
cell 147
center of a set of points 114

center density of a sphere-pack-
ing 146,162

chain in a partially ordered set
214

characteristic polynomial of a
matrix 5 '

characteristic polyomino 192
Chinese postman problem 237,261
chromatic number of a graph 1

chromatic number of a graph, £- |
66

clique in a gréph 1

cligue in a hypergraph 60,64
clique number of a graph 221
closed convex cone 9

closed half-space 9

closed under multiplication of
vertices 216

cocligue in a graph 1

code 3,119

code, (n,k)- 3,120

code, [n,d]- 119

code, (n,M,d)- 161

codeword 119

colouring number of a graph 1

colouring of a hypergraph, p-
53

complementary graph 1
complete bipartite graph 2
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complete graph 1

complete r-partite k-uniform hyper-
graph 59

complete k-uniform hypergraph 2,54
conformal hypergraph 216
conjunctive normal form 278
connected k-hypercube 44
conormal hypergraph 220

constant weight code 90
constellation of a polyomino 182
contact number 146

convex cone 9,205

convex polyhedron 206

cover, k- 231

covering radius 144

cross-free family 248

cross-free vector 248

crossing collection 246

cusp form 152

cut, T- 237

cutting plane method 203

cyclotomic class 76

degenerate code 119

degree of a vertex 1,2

density of a packing 170
density of a sphere-packing 162
design, t-(v,k,A) 3,47,75
determinant of a lattice 142
deterministic Turing machine 276
diagonal matrix 6

diconnecting set 234

digraph 2

dihedral angle of a simplex 162
dimension of a lingar code 120
DIMENSIONAL MATCHING, 3- 288
directed cut 234

directed graph 2

disconnecting set, r-s— 219
distance of words 119

distance distribution of a code
121

distance enumerator of a code 121

doubly periodic meromorphic
function 146

dual code 121

dual cone 9

dual distance distribution 122
dual lattice 154

dual hypergraph 2,53

Duality theorem 9

Duality theorem of linear program-
ming 10,11

easy problem 275

Eberlein polynomial 27

ECP 59

edge of a graph 1

edge of a hypergraph 2,201
edge colourinq 53

edge colouring property 59
EDGE COVER 279

EDGE PACKING 279

EDGE PARTITION 279
eigenvalue of a graph 15
eigenvalue of a matrix 5
eigenvector of a matrix 5
Eisenstein series 147

Elias bound 132

elliptic function 147
entering subset, k- 254
entire modular form 151
equipartite colouring 53
equitable colouring 53
Erdés-Ko-Rado theorem 35,39,45
éxror correcting code, t— 120
Euclidean Ramsey theory 113

.



Euclidean simplex 162

extended code 120

face of a polyhedron 206
factor, 1- €0,256
factor, f£- 262
factorization, 1- &0
fair colouring 53
Farkas' lemma 11,205
fits a graph, matrix 28
flow in a digraph 219
forest hypergraph 64
fractional colouring 56

fractional edge colouring number
261

fractional packing and covering
201

Fulkersonian hypergraph 220

fundamental region for a subgroup
150

generalized covering 182
generator matrix for a lattice 142
Gilbert bound 132,169

good algorithm 275

good colouring 53

graph 1

GRAPH COLORING 282

graph Ramsey number 109

greedy algorithm 229

group of a group divisible design
82

group of a transversal design 82

group divisible design 82

half-space 9

Hamming bound 120:133
Hamming distance 3,26,119
Hamming scheme 26
Hamming weight 119
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Hanani's lemma 82
harmonic brick 188
head of an arrow 2

hereditary closure of a hypergraph
2,216

hereditary hypergraph 2,60,216
hermitian matrix 7
Higman-Sims technique 21

homogeneous weight enumerator 120,
156

hypercube, k- 42
hypergraph 2,201

idempotents, minimal orthogonal
23

in the association scheme, graph
25

incidence matrix of a graph 256

incidence matrix of a hypergraph
3,201

indegree of a wvertex 251
independence number of a graph 15
independent set of a matroid 228
independent set of vertices 1
INDEPENDENT SET 280

induced subgraph 2

inner distribution of a code 25
inner product 5,121

Integer flow thecorem 51,63,220,
242

integer linear programming 202,
275

integral vector 202
interlacing eigenvalues 18
intersecting collection, m- 48

intersection theorem, Edmonds'
matroid 251

invariants of § 148

Johnson bound 91

Johnson distance 26
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Johnson scheme 27
join, T- 237
Julin-code 127,130

kernel system 251

kissing number 162,170
Klein's modular function 149
Kneser-graph 27,40
Kneser-theorem, Lovdsz's 65
Konig-Egervary theorem 222
Kravéuk polynomial 26,122,137
Kronecker product 28
Kruskal-Katona theorem 46

laminar collection 64,253
laminar vector 253

lattice in ®" 142,205
lattice packing 161

lattice packing density 142
lattice polyhedra 249

layer of spheres 166

Leech lattice 159,166
length of a code 3,119
length of a word 119

level of a laminar collection 253
line graph of a hypergraph 3
linear code 3,120

linear matroid 262

linear programming bound 26,121,
123

Lloyd polynomial 135,138
Lloyd's theorem 135
lotto problem 102

lower density 142
L.P.~bound 123 -

MacWilliams identity 124
MacWilliams inequality 134
magic quality of two-ness 283

matching in a graph 256,279
matching polyhedron 204

matching polyhedron theorem,
Edmonds' 256

matrix, XxY 205
matroid 228

matroid intersection theorem,
Edmonds' 251

matroid parity problem 262

Max-flow min-cut theorem 219,233,
242

max-flow min-cut property, Q+ 220

McEliece-Rodemich—Rumsey—Welch
bound 132,169

Mengerian hypergraph 231

minimal orthogonal idempotents 23
minimum distance of a code 119
minimum squared distance 154,161

minimum weight of a linear code
120

MGbius transformations 149
modular group 150

modular function 150
multiplication of a vertex 216
multiplicity of an edge 1,2

Nadler code 131

nondeterministic Turing machine
277

normal hypergraph 58,220,227
normal matrix. 6

NP-complete problem 277
NP-hard problem 277,279

odd component 256

optimal code 119

order of a squared rectangle 186
order of an elliptic function 147
origin of an alphabet 119
orthogonal matrix 6



orthonormal set of vectors 6
orthogonality relation 24,138
outdegree of a vertex 251

over an alphabet, code 119

packing density 142
pairwise balanced design 82
parallel class 60
parallelism 60

parity check bit 120
partial hypergraph 58
partial subhypergraph 243
PARTITION 289

PARTITION, 3- 289
partition, m- 51

PARTITION INTO ISOMORPHIC SUBGRAPHS
282

path, r-s- 213
path, s- 238
pentagon 17
perfect code, t- 120,136
Perfect code theorem 136
perfect graph 221

perfect graph conjecture 221

perfect graph theorem, Lovisz's
204,221

perfect rectangle 186
perfect square 187

perfect squared rectangle 186
period parallelogram 147
periodic.packing density 142
Perron-Frobenius theorem 15
pigeon-hole principle 107
Plotkin bound 133

pluperfect graph theorem,
Fulkerson's 226

point of a design 3,75
point of a digraph 2
point of a graph 1
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point of a hypergraph 2,201
Poisson summation formula 154
polyhedral combinatorics 202
polyhedron 206

polymatroid 251

polynomial algorithm 275
polycmino 182

polytope 206

positive semi-definite matrix 8

prime rectangle of a polyomino
191

principal submatrix 8
probabilistic method 110
product of graphs 27

proper colouring 53
pseudopolynomial algorithm 290
punctured code 120

radius of a set of points 114
radius of a sphere 162

Ramsey number 109

Ramsey theory 107

Ramseyan graph theory 109
random access machine 276
rank function of a matroid 228
rate of a code 120,121
recognition problem 277
rectangle, kx£- 43

reducible problem 277

regular graph. 1

regular simplex 162

Rogers bound 145,163,173,174
root of a digraph 251

rooted tree 253

SATISFIABILITY 278
saturated constellation, Q- 182

Schlafli graph 18
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Schldfli-function 163,174 submodular function 204,246
Schénheim bound 91 subset, k- 2

self-dual code 157 subspace 61

self-dual lattice 154 supermodular function 251

seminormal hypergraph 231
set, k- 2,39

SET COVER 283

SET PACKING 283

SET PARTITION 283

SET 3-COVER 285

SET 3-PACKING 284

tail of an arrow 2
Tatami partitions 188

theory of blocking and anti-block-
ing polyhedra 207

theta functions 153,155
threshold 278
totally dual integral system of

SET 3-PARTITION 285 linear inequalities 213
shadow method 184 totally unimodular matrix 58,204,
239

Shannon capacity 27,44

tri 6
shortened code 119 trace of a matrix

i i raph 221
simple squared rectangle 186 transitively orientable grap

simplex 162 transversal 58

simplex method 202 transversal design 82

tree-representation of a cross-

SRAPRENg snbgraph 224 free family 248,253

Spectral theorem 6
sphere 65,161

triangulated graph 223
Turén hypergrabh 102

Turdn number 90,93,99
Turdn's problem 41,42,93
Turing machine 276
Tutte-Berge theorem 256,261

sphere-packing 141,161
sphere-packing condition 120
spherical set of points 114
spherical simplex 162
squared rect 1 186
q = ANg:Le two-commodity-flow theorem, Hu's

stability number of a hypergraph 238
99

stable subset 1,66

two-ness, magic quality of 283

type II codes 159

stacking layers acki b 165,
166 9 “ayexs, packing by type II lattices 159

standard inner product 121

unary NP-complete problem 290
star 20,46

uniform hypergraph, k- 2
Steiner system 3,41 .
unimodular hypergraph 58,243

strong colouring 53
g ] unit ball 161

stron erfect graph conjecture
2239 P grap Jectur unit sphere 161

strongly regular graph 27 unitary matrix 6

subgraph 2 upper density 142




valency of a vertex 1
vertex of a digraph 2
vertex of a graph 1,2
vertex of a hypergraph 2,201
vertex of a polyhedron 206
vertex colouring 53

VERTEX COVER 280
vertex-critical, (n-2k+2)- 66
VERTEX DOMINATOR 281

VERTEX PACKING 279

VERTEX PARTITION 280

Voronoi polyhedron 144

Weierstrasz g -function 147
weight of a codeword 3,119

weight of an entire modular form
151

weight distribution of a linear
code 120

weight enumerator of a code 120
well-solved problem 275
word 119

zero-element of an alphabet 119



